

UNIVERSIDADE DE BRASÍLIA

INSTITUTO DE QUÍMICA - UNB

JOÃO VICTOR NEVES CAMPOS DE JESUS

TRABALHO DE CONCLUSÃO DE CURSO PROJETOS DE ENGENHARIA QUÍMICA

BRASÍLIA

2021

1 Sumário

2		Introdução				
3		Avaliação econômica e rentabilidade				
	3.	1 Av	aliação econômica da Unidade 1	5		
		3.1.1	Dados de projeto	6		
		3.1.2	Cálculo do custo do projeto	7		
		3.1.3	Custo da bomba	8		
		3.1.4	Custo do vaporizador	8		
		3.1.5	Custo do Condensador	8		
		3.1.6	Custo do Reboiler	9		
		3.1.7	Custo do vaso pulmão	9		
		3.1.8	Custo total	9		
	3.2	2 Av	aliação econômica para produção de cloreto de vinilideno	10		
		3.2.1	Processo 1	12		
		3.2.2	Cálculo de VAL e TIR	15		
		3.2.3	Processo 2	16		
		3.2.4	Cálculo de VAL e TIR	20		
4		Projeto	de vasos torres e reatores	21		
	4.	1 Pro	jeto da torre de destilação	21		
	4.2	2 Pro	jeto do vaso pulmão	27		
5		Projeto	de sistemas de troca de calor	29		
	5.	1 Ref	ervedor	31		
6		Projeto	de sistemas de impulsão mecânica	32		
	6.	1 Per	das de carga	33		
		6.1.1	Aspiração	33		
		6.1.2	Impulsão	34		
	6.2	2 Pre	ssão de aspiração (Pa)	34		
	6.3	3 Pre	ssão máxima de aspiração (P _{a max})	34		
	6.4	4 Pre	ssão de impulsão (P _i)	35		
	6.5	5 Pre	ssão diferencial (ΔP)	35		
	6.0	6 Alt	ura diferencial (H)	35		
	6.	7 Pre	ssão de shut-off (ΔP_{max})	35		

(5.8	Pre	essão máxima de impulsão (P _{i max})	.36
(5.9	Pre	essão de projeto (P _p)	.36
(5.10	Ţ	Vazão mínima (Q _m)	.36
(5.11	Ţ	Vazão de projeto (Q _p)	.36
(5.12	F	Potência absorvida (W _a)	.37
(5.13	F	Potência hidráulica (W _h)	.37
(5.14	F	Potencia elétrica (W _e)	.37
(5.15	N	NPSH disponível	.37
7	Pro	jeto	de I&C	.38
3	Dia	ıgraı	ma do processo	.39
)	Est	ima	ção dos custos	40
0	Co	nclu	são	.42
1	An	exos	S	.43
	11.1	S	Simulação de custos do processo 1	.43
	11.2	S	Simulação dos custos do processo 2	.47
	11.3	F	Folhas de especificação	.52
	11.	3.1	Correntes	.52
	11.	3.2	Vasos, torres e reatores	.56
	11.	3.3	Trocador de Calor	63
	11.	3.4	Sistema de impulsão	65
	11.	3.5	Instrumentação e Controle	67
2	Ref	ferêr	ncias	70

2 Introdução

O presente Trabalho de Conclusão de Curso consiste na elaboração de projetos presentes no ramo da engenharia química, vistos nas disciplinas de Projeto de Engenharia Química 1 e 2 da Universidade de Brasília.

Nestas disciplinas, foram realizadas atividades intimamente ligadas ao projeto de uma planta industrial, envolvendo diversos equipamentos industriais como torres de destilação, vasos, trocadores de calor, bombas, bem como seus componentes como tubos, válvulas, sistemas de controle, instrumentação entre outros.

Será desenvolvido um detalhamento da avaliação econômica e rentabilidade a fim de possibilitar ou não a execução do projeto. Inicialmente, será estimado os custos de projeto de uma torre de destilação e seus componentes, por meio do método das porcentagens mínimas.

Seguidamente, será escolhido entre dois projetos apresentados no capítulo 2.2. A viabilidade econômica será avaliada segundo os métodos do Valor Atualizado Líquido (VAL) e pela Taxa Interna de Retorno (TIR).

Assim, será feito o projeto de cada equipamento: torre de destilação, vaso pulmão, condensador, refervedor e bomba, estimando o custo de cada equipamento a 20%, 30%, 40% e 60% acima da taxa de refluxo. Desta forma, será avaliado a taxa de refluxo que necessitará de um investimento menor, sendo assim, um projeto economicamente mais atrativo.

No final deste trabalho, será apresentado os sistemas de controle e instrumentação da unidade mencionada, assim como o diagrama mecânico do processo e todas simulações e folhas de especificações.

3 Avaliação econômica e rentabilidade

Será feito uma avaliação econômica preliminar por meio de cálculos de rentabilidade para colocar uma planta de uma torre de destilação e todos equipamentos envolvidos na separação.

Em seguida, será analisado dois processos de produção de venilideno a fim de constatar o processo que será mais viável para investir.

3.1 Avaliação econômica da Unidade 1

Objetiva-se estimar o investimento total para colocar a unidade em funcionamento, constituída por uma bomba de alimentação, vaporizador, torre de destilação, condensador, refervedor (reboiler) e vaso pulmão.

Na unidade, há uma coluna de destilação, usada a fim de purificar uma corrente de entrada (alimentação) formada por um 40% de benzeno e um 60% de tolueno. O pré-projeto da planta, permitiu estimar um processamento de 25.000 kg/h da mistura, como ilustra a Figura 1. A unidade é alimentada com uma corrente fria a 25 °C e pressão atmosférica (referida como 0 kg/cm²g). A alimentação é impulsionada com ajuda de uma bomba centrífuga a uma pressão de 1,2 kg/cm²g, para depois ser direcionado a um evaporador, que permite vaporizar 50% da corrente de entrada após elevar a temperatura até 112,6 °C, com uma perda de pressão de 0,7 kg/cm². Em seguida, o alimento é introduzido em a coluna a fim de obter o benzeno destilado com pureza de 95% e uma corrente de resíduo constituída majoritariamente de tolueno (pureza de 95% em tolueno).

Figura 1. Desenho esquemático do processo de separação do benzeno e tolueno.

3.1.1 Dados de projeto

Segundo dados obtidos na planta a escala piloto, chegaram-se aos seguintes dados de projeto:

- Bomba de alimentação. Potência necessária 2,507 kW, com uma vazão operacional de 57,53 m³/h.
- Vaporizador. Quantidade de calor necessária: 3,958 Mkcal/ h. Considerar um valor do coeficiente global de transmissão de calor de 1000 kcal/ (h m²). Será utilizado vapor de baixa pressão para aquecimento, cuja pressão operacional é 6 kg/cm²g e 160 °C.
- Torre de destilação. A torre de destilação contém 15 pratos do tipo válvula. O diâmetro da torre é de 2,9 m para atender à demanda hidráulica e a altura correspondente é de 15,5 m, considerando a separação entre os pratos (2 pés), a folga no topo e no fundo (0,91 m) e a separação específica do prato de alimentação (0,61 m). Para o cálculo da altura também se considerou um tempo de retenção do líquido no fundo de 10 minutos. A pressão no topo é de 0 kg/cm²g e no fundo de 1 kg/cm²g.
- Condensador. Quantidade de calor a retirar: 7,209 MKcal/ h. Considerar um valor do coeficiente global de transmissão de calor de 700 kcal/ (h m²). Será utilizada a água de refrigeração, cuja temperatura de entrada é 28 °C e cuja máxima temperatura de saída é de 45 °C. Considerar uma temperatura do fluído de processo de 81,19 °C.
- Refervedor (reboiler) da torre de destilação. Quantidade de calor necessário: 5,146 Mkcal/h. Considerar um valor do coeficiente global de transmissão de calor de 1000 kcal/ (h m²). Será utilizado vapor de baixa pressão para aquecimento, cuja pressão operacional é 6 kg/cm²g e 160 °C. Considerar uma temperatura do fluído de processo de 133,6 °C.
- Pulmão da torre. Para o cálculo, considerar uma razão geométrica de L/D 5, uma vazão volumétrica de destilado de 21,86 m³/h e de refluxo de 73,44 m³/h. Em função disto, para um tempo de retenção de 10 minutos, considerando um nível normal de líquido de 50% do diâmetro do tanque, estimou-se que este último se corresponde com 2,1 m e um comprimento de 10,5 m. A pressão de operação correspondente é de 0 kg/cm².

3.1.2 Cálculo do custo do projeto

Para calcular o peso do vaso, necessita-se calcular o parâmetro t (espessura), definida pelas expressões abaixo:

$$t1 = \frac{Pi \, Di}{2SE - 1, 2Pi} \quad (1)$$

$$t2 = \frac{Pi Di}{4SE - 0.8Pi} \quad (2)$$

$$t = t_1 + t_2$$
 (3)

Assumindo Pi = 3,5 kg/cm2; Di = 2,9 m; S = 12900 psi; E = 0,85; δ = 3mm. Temos que a espessura é de 9,6 mm. Para o cálculo de Wv (peso do vaso), usa-se a expressão:

$$Wv = 240 Cw Dw (Hv + 0.8 Dm)t$$
 (4)

Onde Cw = 1,15; Dm = 2,9 m; Hv = 15,5 m; t = 9,6 mm.

Assim, Wv = 136 926,03 N. A massa do vaso é definida pela expressão:

$$m = \frac{Wv}{a}$$
 (5)

Sendo g a aceleração da gravidade (9,82 m/s²).

Logo, temos que a massa da torre é de 13.957,8 kg e para calcular o custo da torre, utiliza-se a equação (6).

$$Ce = a + bS^n \quad (6)$$

Sendo a=10.000; b=29; S=13.957.8 kg e n=1.9. Assim, concluiu-se que o custo da torre é de aproximadamente \$ 106.714.70.

Para calcular o custo dos pratos, utiliza-se a mesma expressão, onde a= 180; b = 29; S = 13957.8 e n = 0.85.

Resulta-se que o custo de cada prato é de \$ 2750,60. Para uma torre com 15 pratos, o custo total é de \$ 41.259,05.

3.1.3 Custo da bomba

Utiliza-se a expressão (6) novamente, onde S é a vazão operacional pré-estabelecida em L/s; a=6900; b=206 n=0.9 e S=15.98 L/s.

Assim, temos que o custo da bomba é de \$ 9395,09.

3.1.4 Custo do vaporizador

Usando a equação de troca de calor, sendo S (A) a área de troca térmica. Calculando a LMTD, é possível calcular a área de troca térmica pela equação (7).

$$Q = U A LMTD$$
 (7)

Onde Q é o fluxo de calor, U é o coeficiente global de troca térmica, A é a área de troca, e o LMTD é definido pela equação (8).

$$LMTD = \frac{(T - T_1) - (T - T_2)}{\ln \frac{(T - T_1)}{(T - T_2)}}$$
(8)

Calculando o LMTD pela expressão (8), onde $T_1 = 112,6$ °C; $T_2 = 25$ °C; T = 160 °C. Assim temos que LMTD é 83,7 °C. Considerando Q = 3958 M kcal/h e U = 1.000 kcal/hm², calcula-se a área pela expressão (7), A = 47,3 m².

Usando a equação (6), estima-se o custo do vaporizador, sendo este de \$28.705,34.

3.1.5 Custo do Condensador

Analogamente ao cálculo de custo do vaporizador, por meio da equação (8), calcula-se o LMTD para o condensador a fim de determinar a área de troca térmica. Considerando a

temperatura do fluido de processo constante de 81,9 °C, $T_1 = 28$ °C e $T_2 = 45$ °C, tem-se que LMTD = 44,1 °C, $A = 233.5 \text{ m}^2$ (Q = 7.209 M kcal/h; $U = 700 \text{ kcal/hm}^2$) e custo de \$55.289,20.

3.1.6 Custo do Reboiler

O mesmo calculo segue para o "reboiler". Tem-se que o LMTD = $47,92^{\circ}$ C, onde $T = 160^{\circ}\text{C}; T_1 = 81,19^{\circ}\text{C}; T_2 = 133,6^{\circ}\text{C}. \text{ A área de } 107,4\text{ m}^2\text{ foi calculada usando os seguintes}$ parâmetros: $Q = 5.146\text{ M kcal/h}; U = 1.000\text{ kcal/hm}^2$. Assim, usando a equação (6), estima-se um custo de \$ 36588,20.

3.1.7 Custo do vaso pulmão

O custo do vaso pulmão é calculado de acordo com a massa (m) do vaso. É estimado o a espessura por meio das expressões (1) e (2), onde P_i = 3,5 D_i = 2100 mm SE = 906,95. Assim, t = 4,78 mm.

Por meio da equação (4), calcula-se o peso W [N] assumindo D_i = 2,1 m e H = 10,5 m para, em seguida, usar a expressão (5) e estimar a massa (m) que, no caso, foi de 3.230 kg. Com a massa, é possível estimar o custo usando a equação (6). Assim, estimou-se um custo de \$ 37.878,50 para projetar o vaso pulmão.

3.1.8 Custo total

Pelo método das porcentagens, estimou-se o custo total dos equipamentos assim como outros custos como materiais, obra civil, pintura, construção entre outros.

Segue na tabela 1, os custos do projeto segundo a soma total de todos equipamentos de \$308.557,30.

Tabela 1. Custos do projeto usando método das porcentagens.

Partida	Custo (\$)
Equipamento (E)	308.557,30
Materiais (M)	215.990,11
Obra civil e edifícios	60.477,23
Tubulações e infraestrutura	97.195,55
Instrumentação	21.599,00
Eletricidade	21.599,00
Isolamento	10.799,50
Pintura	4.314,8
Engenharia de detalhe	
Projeto grande	209.818,96
Engenharia de processo e licenças	
Construção	314.728,45
Supervisão da construção	52.454,74
TOTAL ÁREA DE PROCESSO	ISBL
Serviços auxiliares	12.342,24
Off – sites	24.684,58
Gastos de arranque	12.342,29
Contingências e imprevistos	46.283,60
TOTAL	1.413.187,35

3.2 Avaliação econômica para produção de cloreto de vinilideno

Objetiva-se instalar uma planta de 40 quilo toneladas (kt) de capacidade para produzir cloreto de vinilideno. Existem duas possíveis alternativas cuja viabilidade técnica se encontra comprovada, fazendo-se necessária a participação da análise econômica para decidir.

As tabelas abaixo mostram os dados obtidos pelo balanço de massa em cada um dos dois processos.

Processo 1

Tabela 2. Dados dos balanços de massa para produção de vinilideno no processo 1.

Componente	Coeficiente t/t produto	R\$/ kg	
Cloro	-0,92	0,62	
Ácido clorídrico	0,47	0,94	
Tricloroetano	0,13	2,42	
Cloreto de vinilo	-0,72	1,76	
Cloreto de vinilideno	1,00	3,09	

- O Custo de energia: 247,08 R\$/t de produto.
- o Investimento fixo para uma planta de 23 kt: 83,72 MR\$.

Processo 2

Tabela 3. Dados dos balanços de massa para produção de vinilideno no processo 2.

Componente	Coeficiente t/t produto	R\$/kg
Cloro	-3,01	0,62
Etano	-0,56	0,26
Cloreto de etilo	0,08	1,59
Ácido clorídrico	2,11	0,94
Cloreto de vinilideno	1,00	3,09

- O Custo de energia: 437,68 R\$/ t de produto.
- o Investimento fixo para uma planta de 23 kt: 101,2 MR\$.

Supondo que a taxa mínima de juros de 10%, a taxa de impostos de 35% e a depreciação de 10% anual (amortização linear a 10 anos). Considerou-se a necessidade de 3 vagas, sendo cada vaga ocupada por 4,8 operários em média, com um salário anual bruto para a empresa de

R\$ 180.000,00. Para calcular os custos, considerando que o setor industrial possui maturidade elevada, utilizou-se as porcentagens mínimas. Considerou-se uma inflação anual constante de 5%, horizonte temporal de 3 anos para colocar a planta em funcionamento e 15 anos de operação.

Para a estimação da projeção econômica temporal considerou-se:

- Ano 0: 30% do investimento + 33,3% dos gastos prévios
- Ano 1: 60% do investimento + 33,3% dos gastos prévios
- Ano 2: 10% do investimento + gastos de entrada em funcionamento + capital de giro + 33,3% dos gastos prévios.
- No último ano, recupera-se todo o capital de giro (corrigido pela inflação) junto com um 10% do investimento em sucata (sem correção da inflação).

Com todos estes dados, foi possível estimar o projeto mais rentável pelo método do VAL e do TIR, calculando todos custos envolvidos em cada processo.

3.2.1 Processo 1

Com a informação de todos dados do processo, foi possível calcular o investimento, vendas, custos fixos e variáveis, como mostra nas tabelas abaixo.

Tabela 4. Estimativa do investimento do processo 1.

ESTIMATIVA DO INVESTIMENTO				
Estimativa do imobilizado da planta (MR\$) 116,688				
Capital de giro (MR\$)	23,338			
Entrada em funcionamento (MR\$)	5,834			
Gastos prévios (MR\$)	1,167			
Investimento total (MR\$)	147,028			

Tabela 5. Estimativa das vendas do processo 1.

ESTIMATIVA DAS VENDAS					
Produtos obtidos	Fator de produção	Produção (kt)	Preço unitário (R\$/kg)	Lucro de vendas (R\$)	
Ácido clorídrico	0,43	40	0,94	16.168.000,00	
Tricloroetano	0,13	40	2,42	12.584.000,00	
Cloreto de					
vinilideno	1	40	3,09	123.600.000,00	
Vendas total	R\$ 152.352.000,00				

Tabela 6. Estimativa dos custos diretos de fabricação do processo 1.

Custo de fabricação direto					
Matérias primas	Fator de produção	Produção (kt)	Preço unitário (R\$/kg)	Custo matérias primas (R\$)	
Cloro	0,92	40	0,62	22.816.000,00	
Cloreto de vinilo	0,72	40	1,76	50.688.000,00	
Custo unitário Custo mão d Mão de obra Vagas Operários anual obra					
	3	4,8	180.000,00	864.000,00	

Tabela 7. Estimativa dos custos indiretos variáveis de fabricação do processo 1.

	Custo de fabricação indiretos variáveis				
	Coeficiente	Base	Valor	Custo (R\$)	
Mão de obra indireta	0,15	Custo de mão de obra	864.000,00	129.600,00	
	Base	Valor da base t	Preço unitário (R\$/t)		
Eletricidade	200	40000	247,08	9.883.200,00	
	Coeficiente	Base	Valor	Custo (R\$)	
Abastecimento	0,0020	Imobilizado	116.688.622,44	233.377,24	
Manutenção	0,0200	Imobilizado	116.688.622,44	2.333.772,45	
Laboratório	0,0500	Imobilizado	116.688.622,44	5.834.431,12	
Embalagem	0,1500	Vendas	152.352.000,00	22.852.800,00	

Tabela 8. Estimativa dos custos indiretos fixos de fabricação do processo 1.

Custos de fabricação indiretos fixo					
	Coeficiente	Base	Valor (R\$)	Custo (R\$)	
Diretivos e empregados	0,100	Custo de mão de obra	864.000,00	86.400,00	
Impostos	0,005	Imobilizado	116.688.622,44	583.443,11	
Seguros	0,010	Imobilizado	116.688.622,44	1.166.886,22	
Total custos de fabricação (R\$)	117.471.910,15				

Tabela 9. Estimativa dos gastos gerais do processo 1.

		Gastos gerais		
	Coeficiente	Base	Valor (R\$)	Custo (R\$)
Gastos comerciais	0,05	Custos de fabricação	117.471.910,15	5.873.595,51
Gerência	0,03	Custos de fabricação	117.471.910,15	3.524.157,30
Pesquisa e serviço técnico	0,01	Vendas	152.352.000,00	1.523.520,00

Tabela 10. Estimativa custos totais e lucros do processo 1.

Soma total dos custos	R\$ 128.393.182,96
Lucro bruto	R\$ 12.289.954,79
Impostos	R\$ 4.301.484,18
Lucro líquido	R\$ 7.988.470,61

Obs. Os dados de todos os custos do processo 1, ao longo de cada um dos 17 anos, foram simulados e estão presentes no anexo 12.1 deste trabalho.

3.2.2 Cálculo de VAL e TIR

A fim de avaliar se o projeto vai ser rentável ou não, utilizou-se dois métodos: Valor Atualizado Líquido (VAL) e a Taxa Interna de retorno (TIR).

No método VAL, considera-se a soma dos fluxos de caixa ao longo da vida do projeto corrigidos pelo ano atual. Caso a soma seja positiva, o projeto é atrativo; caso seja zero, significa que o fundo investido é igual ao fundo gerado; caso seja negativo o projeto não é viável. Desta forma, utiliza-se a equação (9) para fazer essa análise.

$$VAL = \sum_{i}^{n} \frac{Fi}{(1+k)^{i}} \quad (9)$$

Onde n é a quantidade de anos, i é o ano analisado, F_i é o fluxo de caixa no ano i e k é a taxa de juros definida no valor de 10%.

Fazendo a análise do VAL, calculou-se um valor de VAL de -1.435.946, ou seja, o VAL < 0, implica que o projeto não é viável para este processo 1.

O método TIR, considera-se uma equação similar ao de VAL, porém o somatório da equação deve dar próximo de zero para que o projeto seja atrativo, caso contrário, o projeto não é interessante. Segue abaixo a equação usado na TIR.

$$TIR = \sum_{i}^{n} \frac{Fi}{(1+r)^{i}} \quad (10)$$

A diferença em relação ao VAL é os juros "r" foi chutado inicialmente de forma que zere a equação (10). No entanto, o somatório não convergiu, dando um valor de TIR de - 78.099,68.

Assim, concluiu-se que o processo 1 não é atrativo. É possível analisar os valores calculados para o método da TIR na tabela 11.

Tabela 11. Valores de TIR para cada ano do processo 1.

Ano	Fluxo de caixa corrigido (R\$)	TIR
0	-44.496.872,31	-44.496.872,31
1	-80.550.155,92	-80.631.593,83
2	-36.260.266,03	-36.333.622,89
3	14.768.845,11	14.813.685,26
4	13.958.059,15	14.014.592,38
5	13.196.806,62	13.263.652,90
6	12.481.683,33	12.557.590,43
7	11.809.544,58	11.893.376,40
8	11.177.483,92	11.268.209,86
9	10.582.813,58	10.679.498,96
10	10.023.046,70	10.124.844,10
11	9.495.881,03	9.602.022,40
12	8.999.184,04	9.108.973,58
13	7.347.960,47	7.445.124,76
14	7.013.962,27	7.113.895,03
15	6.695.145,80	6.797.401,54
16	6.390.820,99	6.494.988,68
17	15.930.110,79	16.206.133,07
oma		-78.099,68

3.2.3 Processo 2

Analogamente ao processo 1, foram calculados todos os custos para o processo 2.

Tabela 12. Estimativa do investimento do processo 2.

ESTIMATIVA DO INVESTIMENTO				
Estimação do imobilizado da planta (MR\$)	141,052			
Capital de giro (MR\$)	28,210			
Entrada em funcionamento (MR\$)	7,0526			
Gastos prévios (MR\$)	1,411			
Investimento total (MR\$)	177,726			

Tabela 13. Estimativa das vendas do processo 2.

	ESTIMATIVA DAS VENDAS				
Produtos obtidos	Fator de produção	Produção (kt)	Preço unitário (R\$/kg)	Lucro de vendas (R\$)	
Cloreto de Etilo	0,08	40	1,59	5.088.000,00	
Ácido Clorídrico	2,11	40	0,94	79.336.000,00	
Cloreto de vinilideno	1	40	3,09	123.600.000,00	
Vendas total	R\$ 208.024.000,0	00			

Tabela 14. Estimativa dos custos diretos de fabricação do processo 2.

ESTIMATIVA DOS CUSTOS						
Custo de fabricação diretos						
Matérias primas	Fator de produção	Produção (kt)	Preço unitário (R\$/kg)	Custo matérias primas (R\$)		
Cloro	3,01	40	0,62	74.648.000,00		
Etano	0,56	40	0,26	5.824.000,00		
			Custo unitário			
Mão de obra	Vagas	Operários	anual	Custo mão de obra		
	3	4,8	180.000,00	864.000,00		

Tabela 15. Estimativa dos custos indiretos variáveis de fabricação do processo 2.

Custo de fabricação indiretos variáveis						
	Coeficiente	Base	Valor	Custo (R\$)		
		Custo de mão				
Mão de obra indireta	0,15	de obra	864.000,00	129.600,00		
	Base	Valor da base t	Preço unitário (R\$/t)			
	200	40000	437,68	17.507.200,00		
Eletricidade						
	Coeficiente	Base	Valor	Custo (R\$)		
	0,0020	Imobilizado	141.052.180,98	282.104,36		
Abastecimento						
	0,0200	Imobilizado	141.052.180,98	2.821.043,62		
Manutenção						
	0,0500	Imobilizado	141.052.180,98	7.052.609,05		
Laboratório						
	0,1500	Vendas	208.024.000,00	31.203.600,00		
Embalagem						

Tabela 16. Estimativa dos custos indiretos fixos de fabricação do processo 2.

_	Custos de fabricação indiretos fixo					
	Coeficiente	Base	Valor (R\$)	Custo (R\$)		
		Custo de mão				
Diretivos e empregados	0,100	de obra	864.000,00	86.400,00		
Impostos	0,005	Imobilizado	141.052.180,98	705.260,90		
Seguros	0,010	Imobilizado	141.052.180,98	1.410.521,81		
Total custos de fabricação (R\$)	142.534.339,7	45				

Tabela 17. Estimativa dos gastos gerais do processo 2.

		Gastos gera	is	
	Coeficiente	Base	Valor (R\$)	Custo (R\$)
		Custos de		
Gastos comerciais	0,05	fabricação	142.534.339,74	7.126.716,99
		Custos de		
Gerência	0,03	fabricação	142.534.339,74	4.276.030,19
Pesquisa e serviço técnico	0,01	Vendas	208.024.000,00	2.080.240,00

Tabela 18. Estimativa custos totais e lucros do processo 2.

Soma total dos custos	R\$ 156.017.326,92
Lucro bruto	R\$ 52.006.673,08
Impostos	R\$ 18.202.335,58
Lucro líquido	R\$ 33.804.337,50

Obs. Os dados de todos os custos do processo 2, ao longo de cada um dos 17 anos, foram simulados e estão presentes no anexo 12.2 deste trabalho.

3.2.4 Cálculo de VAL e TIR

Fazendo o procedimento análogo ao processo 1, constatou que o VAL foi 170.719.371, ou seja, VAL > 0 (projeto economicamente viável). Enquanto a TIR alcançou um valor de - 0,34, ou seja, TIR ficou próximo de zero, reforçando a viabilidade econômica do projeto.

Tabela 19. Valores de TIR para cada ano do processo 2.

Ano	Fluxo de caixa corrigido (R\$)	TIR
0	-53.787.428,16	-53.787.428,16
	,	ŕ
1	-48.897.661,96	-44.049.733,88
2	-44.219.275,87	-35.885.749,13
3	29.106.809,77	21.279.439,92
4	27.615.177,02	18.187.315,99
5	26.206.672,67	15.548.477,17
6	24.876.124,79	13.295.782,37
7	23.618.723,22	11.372.155,34
8	22.429.991,59	9.729.055,31
9	21.305.761,71	8.325.183,64
10	20.242.149,98	7.125.389,19
11	19.235.535,88	6.099.741,59
12	18.282.542,09	5.222.746,23
13	15.949.993,58	4.104.668,14
14	15.224.993,88	3.529.635,51
15	14.532.948,70	3.035.160,55
16	13.872.360,12	2.609.957,75
17	25.123.951,95	4.258.202,13
Soma		-0,348

4 Projeto de vasos torres e reatores

4.1 Projeto da torre de destilação

Objetiva-se projetar uma torre de destilação multicomponente com ajuda de um método de cálculo aproximado. Será estimado o melhor projeto em função de testar taxas de refluxo que são de 20, 40, 60 e 100% acima da taxa de refluxo. Será escolhido a combinação que resulte nos menores custo totais. Com essa combinação, será feito o preenchimento das folhas de especificação dos dois vasos que formam parte da unidade. Também serão preenchidas as folhas de especificação dos balanços de massa e energia e a dos pratos. Estas folhas de especificação se encontram nos anexos.

A primeira estimação que deve feita é a taxa de refluxo mínima, R_m , que pode ser estimada com ajuda das duas equações apresentadas a seguir:

$$\frac{\alpha_{cl} x_{cl_g}}{\alpha_{cl} - \theta} + \frac{\alpha_{cp} x_{cp_d}}{\alpha_{cp} - \theta} + \dots + \frac{\alpha_i x_{ia}}{\alpha_i - \theta} + \dots = 1 - q$$

$$\frac{\alpha_{cl} x_{cl_D}}{\alpha_{cl} - \theta} + \frac{\alpha_{cp} x_{cp_D}}{\alpha_{cp} - \theta} + \dots + \frac{\alpha_i x_{iD}}{\alpha_i - \theta} + \dots = R_m + 1$$
(11)

Nelas, aparecem os seguintes parâmetros:

- α_{cl} : volatilidade relativa do componente chave leve referido ao próprio componente chave pesado; α_{cp} : volatilidade relativa do componente chave pesado referido ao componente chave pesado (1); α_i : volatilidade relativa do componente i referido ao componente chave pesado.
- x_{cla}, x_{cpa}, x_{ia}: composição do componente chave leve, chave pesado e i no alimento (subscrito "a"), respectivamente; x_{clD}, x_{cpD}, x_{iD}: composição do componente chave leve, chave pesado e i no destilado (subscrito "D"), respectivamente.
- q: razão entre o calor requerido para vaporizar 1 mol de alimento com o calor latente de vaporização deste (assume 1 para líquido em ponto de bolha, assume 0 para vapor em ponto de orvalho, entre 0 e 1 para misturas bifásicas, maior que 1 para líquido subresfriado; menor que 0 para vapor superaquecido).
- θ : raíz da equação 1, entre α_{cl} e α_{cp}

Caso a mistura possua um componente com volatilidade relativa entre as correspondentes aos componentes chave leve e pesado, é necessário estimar um valor de θ . Caso houverem 2

componentes, seriam 2 valores de θ , θ ₁ e θ ₂. Neste caso, estimou-se somente um valor obtendo o valor de 1,17.

• R_m ((L/D)_{min}): taxa de refluxo mínima.

As frações de fluxos de n-hexano, n-heptano e n-octano são caracterizadas segundo a tabela a seguir.

Tabela 20. Frações de fluxos de n-hexano, n-heptano e n-octano.

	Alimento		Destilado		Resíduo		
Componente	A		D		R		Volatilidade relativa
	(kmol h ⁻¹)	XiA	(kmol h ⁻¹)	XiD	(kmol h ⁻¹)	XiR	
Hexano	40	0,40	40	0,534	0	0	2,7
Heptano	35	0,35	34	0,453	1	0,04	2,22
Octano	25	0,25	1	0,013	24	0,96	1,00

Considerando que o alimento entre na forma de líquido em ebulição, a primeira sequência de cálculo foi estimar a taxa de refluxo mínima, que servirá para os cálculos posteriores. Com todos dados e equações apresentadas, estimou-se o R_m e o N_{min} e obteve-se a tabela a seguir.

Tabela 21. Estimativa da taxa mínima de refluxo.

Estimativa do R _m				
$\alpha_{\rm cl}$	2,7			
$a_{ m cp}$	1			
$\alpha_{\mathbf{i}}$	2,22			
Xcla	0,4			
Xcpa	0,25			
Xia	0,35			
XclD	0,534			
X_{cpD}	0,013			
X_{iD}	0,453			
${f q}$	1			
θ	1,172			
R _m	0,828			

Indo ao outro extremo operativo, em condições de refluxo total, a coluna requereria do número de pisos mínimos. Fenske propôs uma equação aproximada que permite estimar o número mínimo de pisos em função das composições do componente chave leve e chave pesado no destilado e no resíduo. Considerou-se que o componente "chave leve" é o n-heptano, e o "chave pesado", o n-octano.

Com isso, a equação (12) permite estimar o número mínimo de pisos é "N_{min}".

$$N_{\min} + 1 = \frac{\log \left[\left(\frac{X_{cl}}{X_{cp}} \right)_{D} \left(\frac{X_{cp}}{X_{cl}} \right)_{R} \right]}{\log \left(\alpha_{cl,cp} \right)_{médio}}$$
(12)

Assim, obteve-se a tabela abaixo.

Tabela 22. Estimativa do número mínimo de pisos.

Estimativa do N _{min}				
$(\alpha_{\mathrm{cl,cp}})_{\mathrm{min}}$	2,22			
XclD	0,453			
ХсрD	0,013			
XclR	0,04			
XcpR	0,96			
N_{\min}	7,437537			

Para estimar o número aproximado de estágios, utilizou-se a correlação empírica de Gilliland, cuja equação numérica é:

Y=1-exp
$$\left[\left(\frac{1+54,4X}{11+117,2X} \right) \left(\frac{X-1}{\sqrt{X}} \right) \right]$$
 (13)

Os parâmetros X é apresentado na equação (14), enquanto o parâmetro Y permite estimar o número aproximado de andares da torre de acordo com a equação (15).

$$X = \frac{L/D - (L/D)_{m}}{L/D + 1} \quad (14)$$

$$N = \frac{N_{\min} + Y}{1 - Y} \qquad (15)$$

Com esta sequência de cálculo, foi possível estimar o número de andares necessários para satisfazer a separação para diferentes taxas de refluxo.

Tabela 23 . Estimativa do número	de pratos pa	ra cada porcentagem	acima do refluxo.
	F F		

Estimativa do N					
	20%	40%	60%	100%	
Taxa de Refluxo	0,994	1,160	1,326	1,657	
X	0,083	0,153	0,214	0,312	
Y	0,571	0,502	0,449	0,372	
N	18,675	15,940	14,307	12,440	
N (arredondado)	19	16	15	13	

Seguidamente, para focar na hidráulica da torre será necessário trabalhar com os balanços de massa para conhecer as vazões de vapor e líquido que circulam dentro dela. Segue o desenho esquemático do processo.

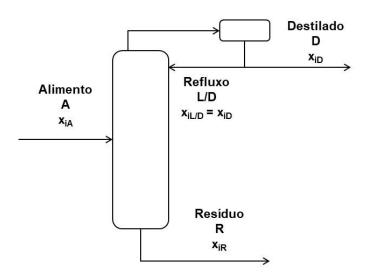


Figura 2. Desenhos esquemático da torre de destilação.

Dentro das duas regiões que compõem a coluna, enriquecimento e esgotamento, no método aproximado, consideram-se constantes as vazões de líquido e de vapor. Realizando um

balanço de massa ao setor de enriquecimento, o líquido que circula por ele será equivalente ao refluxo, visto que o alimento entra na forma de líquido em ebulição. No caso do vapor circulando pela torre, o valor se corresponde com o vapor ascendente pela torre procedente do refervedor de fundo, saindo pelo topo que é condensado completamente, e forma as correntes refluxo e destilado.

Considerando estas condições, é possível estimar a vazão molar de vapor que aproximadamente circula pela torre. Para transformá-la em vazão volumétrica, necessita-se da densidade molar da mistura que sai pelo destilado. Foi considerado um valor aproximado de 0,0349 kmol/m³.

Assim, estimou-se, de forma aproximada, a vazão de vapor da coluna que permitirá estimar o diâmetro. Segue a tabela com os valores de diâmetro para as quatro porcentagens acima do refluxo.

Em seguida, estimou-se a velocidade limite da fase vapor. Assim, utilizou-se a equação de York. Novamente, precisaremos de valores das densidades mássicas das fases vapor e líquida, cujos valores são, respectivamente, 3,242 kg/m³ e 616,1 kg/m³, completando com isto os cálculos necessários na estimação do diâmetro.

Tabela 24. Estimativa do diâmetro da coluna.

Estimativa do diâmetro						
	Porcentagem acima do refluxo					
	20% 40% 60% 100%					
Destilado (D) (kmol/h)	75,000	75,000	75,000	75,000		
Refluxo (L) (kmol/h)	74,582	87,012	99,442	124,303		
Vapor (V) (kmol/h)	149,582	162,012	174,442	199,303		
densidade (kmol/m³)	0,035	0,035	0,035	0,035		
Vazão vol. (m³/h)	4.286,012	4.642,181	4.998,351	5.710,689		
Vazão vol. (ft³/s)	42,044	45,538	49,032	56,019		
Densidade vap. (kg/m³)	3,242	3,242	3,242	3,242		
Densidade liq. (kg/m³)	616,100	616,1	616,100	616,100		
Velocidade limite (ft/s)	3,162	3,162	3,162	3,162		
Seção transversal (ft²)	13,295	14,400	15,505	17,714		
Diâmetro (ft)	4,114	4,282	4,443	4,749		
Diâmetro de proj. (m)	1,505	1,566	1,625	1,737		

Para estimar a altura da torre, considerou-se uma separação entre os pratos de 1,5 ft por tratar-se de um serviço considerado limpo. Considerou-se um espaçamento no prato de alimentação e no fundo da torre. Para estimar esse valor, foi necessário conhecer as vazões de líquido que são retiradas, correspondentes à vazão de líquido que desce pela coluna, somatória do valor do líquido entrante pelo refluxo e o alimento.

Foi aplicado um tempo de retenção de 10 minutos. Para transformar esse valor em vazão volumétrica, novamente é necessário conhecer o valor da densidade da corrente de resíduo, cujo valor molar é 5,375 kmol/m³. Assim, segue a tabela da estimação da altura da torre.

Tabela 25. Estimativa da altura da torre.

Estimativa da altura da Torre					
	Porcentagem acima do refluxo				
	20%	40%	60%	100%	
Altura do topo ao prato 1 (m)	0,91	0,91	0,91	0,91	
Altura do último prato ao líquido de fundo(m)	0,91	0,91	0,91	0,91	
Altura da zona de alimentação(m)	0,91	0,91	0,91	0,91	
Altura entre os pratos(m)	0,46	0,46	0,46	0,46	
Número de espaços entre pratos	17	14	13	11	
Altura ocupada pelos pratos (m)	7,82	6,44	5,98	5,06	
Vazão molar (kmol/h)	174,581	187,012	199,442	224,303	
Densidade(kmol/m³)	5,375	5,375	5,375	5,375	
Vazão volumétrica(m³/h)	32,480	34,792	37,105	41,730	
tempo de retenção(h)	0,166	0,166	0,166	0,166	
Volume de fundo (m³)	5,413	5,798	6,184	6,955	
Altura do liquido de fundo(m)	3,043	3,010	2,981	2,934	
Altura da torre(m)	13,593	12,180	11,691	10,724	
Altura da torre (ft)	44,598	39,960	38,357	35,186	

4.2 Projeto do vaso pulmão

Para o projeto do vaso pulmão do refluxo, foi considerada as vazões volumétricas de líquido que são retiradas, formadas pelo refluxo e o destilado que está sendo retirado da torre. Com isto, foi possível calcular o volume do vaso, diâmetro, espessura, peso e, por fim, o custo de fabricação do vaso pulmão. Segue esses valores nas tabelas abaixo.

Tabela 26. Estimativa do volume geométrico do vaso.

Estimativa do volume geométrico						
20% 40% 60% 100%						
Vazão de entrada(m³/h)	4286,012	4642,181	4998,351	5710,689		
Tempo de residência (h)	0,166	0,166	0,166	0,166		
Volume útil (m³) 714,335 773,6968 833,058 951,781						
Volume geométrico (m³)	1428,671	1547,394	1666,117	1903,563		

Tabela 27. Estimativa do diâmetro do vaso.

Estimativa do diâmetro					
L/D	5	5	5	5	
Diâmetro(m)	7,139	7,331	7,514	7,855	

Tabela 28. Estimativa da espessura do vaso.

Estimativa da espessura (e)				
	20%	40%	60%	100%
PD(kgf/cm ²)	3,5	3,5	3,5	3,5
St	1055	1055	1055	1055
${f E}$	0,85	0,85	0,85	0,85
CA	3	3	3	3
e(mm)	16,963	17,340	17,698	18,365

Tabela 29. Estimativa do peso do vaso.

Estimativa do peso (W)					
	20%	40%	60%	100%	
L(m)	35,69391	36,65644	37,57092	39,27707	
X	2	2	2	2	
W(kg)	137892,5	148317,4	158692,1	179308,9	

Tabela 30. Estimativa do custo do vaso.

Estimativa do custo do vaso pulmão					
	20%	40%	60%	100%	
Custo(\$)	240.023,8	250.864,2	261.353,7	281.416,8	

5 Projeto de sistemas de troca de calor

Para o projeto do sistema de troca de calor, é necessário conhecer os calores latentes de vaporização da mistura do topo e do fundo da torre, cujos valores, respectivamente, são 81,83 e 73,32 kcal/kg. Com estes dados, foi possível estimar os calores necessários para poder projetar o condensador de topo e o refervedor de fundo.

Segue nas tabelas seguintes o custo para o projeto de cada trocador de calor.

Tabela 31. Custo do condensador.

Condensador					
	20%	40%	60%	100%	
Vapor (V) (kmol/h)	149,5818	162,0121	174,4424	199,303	
L _{topo} (kcal/kg)	81,83	81,83	81,83	81,83	
Q _{vap} (kcal/kmol)	7602	7602	7602	7602	
Q _{cond} (kcal/h)	1.137.121	1.231.616	1.326.111	1.515.101	
$Q_{cond}(J/s)$	1321585	1431409	1541233	1760881	
$U(W/m^2C)$	500	500	500	500	
$t_{2c}(^{\circ}C)$	45	45	45	45	
$t_{1c}(^{\circ}C)$	28	28	28	28	
$T_{1h}(^{\circ}C)$	230	230	230	230	
$T_{2h}(^{\circ}C)$	79,66	79,66	79,66	79,66	
$T_{ln}(^{\circ}C)$	104,5253	104,5253	104,5253	104,5253	
$A(m^2)$	25,28736	27,38875	29,49014	33,69292	
Custo(\$)	26.219,43	26.442,56	26.669,13	27.131,87	

Tabela 32. Custo do refervedor.

Refervedor					
	20%	40%	60%	100%	
Refluxo (L) (kmol/h)	74,5818	87,0121	99,4424	124,303	
Alimento (A) (kmol/h)	100	100	100	100	
Vazão (kmol/h)	174,582	187,012	199,442	224,303	
L _{fundo} (kcal/kg)	73,32	73,32	73,32	73,32	
Q _{vap} (kcal/kmol)	7847	7847	7847	7847	
Q _{vap} (kcal/h)	585.244	682.784	780.325	975.406	
$Q_{vap}(J/s)$	680.182	793.545	906.909	1.133.636	
U(W/m2C)	750	750	750	750	
$t_1(^{\circ}C)$	79,66	79,66	79,66	79,66	
$\mathbf{t}_2(^{\circ}\mathbf{C})$	150,6	150,6	150,6	150,6	
$T_h(^{\circ}C)$	230	230	230	230	
$T_{2h}(^{\circ}C)$	230	230	230	230	
$T_{ln}(^{\circ}C)$	111,121	111,121	111,121	111,121	
A (m2)	7,02228	8,19265	9,36303	11,7038	
Custo(\$)	24.477	24.573,9	24.673,7	24.880,5	

5.1 Refervedor

Para preencher a folha de especificação de trocador de calor, considerou-se um refervedor de fundo de um sistema de destilação. Assumindo que o projeto ótimo da torre se alcançou para um número de 16 pratos e uma taxa de refluxo de 1,07. Após simulação, chegou-se à necessidade do refervedor de 796 Mcal/h. A figura 3 mostra o desenho esquemático do funcionamento do refervedor. O líquido de fundo desce para o refervedor (to reboiler), é aquecido e parte volta a coluna como vapor.

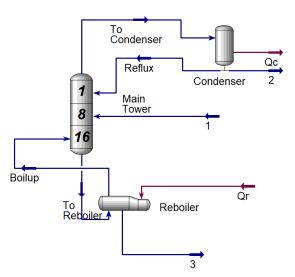


Figura 3. Desenho esquemático do funcionamento da coluna de destilação.

Para realizar este processo de aquecimento, considerou-se um vapor de baixa pressão cuja temperatura de condensação é de 180 °C (10 bar) e usou-se a equação de Regnault para estimar o calor latente de vaporização a esta temperatura.

Usando algumas propriedades da corrente que entra no refervedor (to Reboiler) e da corrente que sai (Boilup), juntamente com todos os dados para o projeto do refervedor, foi possível completar a folha de especificação do trocador de calor.

A folha de especificação do "reboiler" se encontra no anexo 12.3.3 ao final do trabalho.

6 Projeto de sistemas de impulsão mecânica

Os parâmetros que devem ser estimados para o projeto da bomba são a vazão volumétrica, correspondente ao refluxo, e a perda de carga que será vencida. Para este último item, é necessário estimar a pressão na admissão e na impulsão. No primeiro caso, considerou-se que o vaso do pulmão se encontra levantado 3 metros sobre o solo, além do nível normal (50%) do vaso pulmão (horizontal), somado isto à pressão à que opera este vaso (pressão atmosférica).

Na impulsão, considerou-se a pressão do topo da torre, onde sairá o refluxo (considerou-se que o condensador provoca uma perda de pressão de 0,35 kg/cm²), de forma que a pressão no topo foi de 0,35 kg/cm² relativos (normalizados frente à pressão atmosférica). Além disso, considerou-se toda a cota correspondente à altura da coluna somado a 0,1 kg/cm², correspondente a perda de pressão que uma válvula de controle que será colocada na tubulação do refluxo. A tabela 33 mostra os parâmetros de projeto da bomba com o custo aproximado para cada porcentagem acima do refluxo.

Tabela 33. Custo da bomba de refluxo

Bomba de refluxo						
	20%	40%	60%	100%		
Refluxo(L) (kmol/h)	74,581	87,012	99,44244	124,303		
densidade (kmol/m³)	0,034	0,034	0,0349	0,0349		
Vazão vol. (m³/h)	2,602	3,036	3,470541	4,338		
Raio(m)	3,569	3,665	3,757093	3,927		
Altura total da torre(m)	13,593	12,180	11,69139	10,724		
$P_{adm}(kgf/cm^2)$	0,755	0,761	0,766869	0,777		
$P_{imp}(kgf/cm^2)$	1,473	1,386	1,356364	1,296		
ΔP kgf/cm ²)	0,718	0,625	0,589495	0,519		
ΔP(Pa)	70.453,580	61.319,790	57.810,01	50.929,620		
Potência(kW)	452,800	459,780	495,3877	545,534		
Custo(\$)	68.475,210	69.115,430	72.322,400	76.686,640		

Para projetar a bomba de refluxo a fim do preenchimento da folha de especificação, é necessário calcular os seguintes parâmetros: pressão na aspiração, a pressão máxima na

aspiração, a diferença de pressão da bomba, a pressão de *shut-off*, a pressão máxima na impulsão, a potência de projeto e as vazões de operação, projeto e mínima, bem como o NPSH disponível.

Abaixo encontra-se o desenho esquemático do sistema da bomba centrífuga usada para impulsar uma corrente rica em n-hexano, vinda da coluna de destilação.

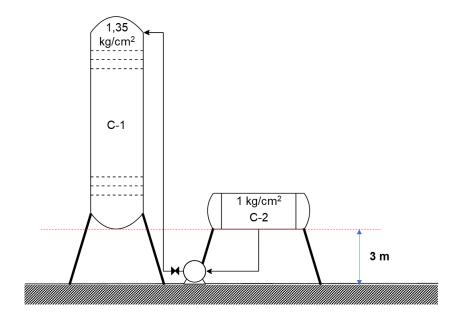


Figura. 4. Esquema do sistema de bombeamento do refluxo.

Com essas informações, é possível calcular esses parâmetros.

6.1 Perdas de carga

Para o cálculo das perdas de carga na aspiração é levado em consideração o tamanho do tubo antes da aspiração da bomba e a perda de carga por centímetro quadrado de tubo. Considera-se a perda de carga devido ao filtro.

6.1.1 Aspiração

Primeiramente, é calculado o tamanho L da tubulação (16) que em seguida é utilizado na equação (17) a fim de calcular a perda de carga na aspiração.

Tubo:
$$L = 1.3 x H$$
 (16)
 $L = 1.3 x 3 = 3.9 m$

$$\Delta Pt = \frac{P(\frac{kg}{cm^2})}{1000} x L(m)$$
 (17)

$$\Delta Pt = \frac{0.5}{1000} x \ 3.9 = 0.002 \ kg/cm^2$$

Considerou-se que o filtro gera uma perda de carga correspondente a $\Delta Pf = 0.05 \ kg/cm^2$.

6.1.2 Impulsão

O mesmo raciocínio é aplicado na perda de carga na impulsão da bomba, considerando a perda de pressão ocasionada pela válvula.

$$L = 1.3 x (3 + 12.3) = 19.89 m$$
$$\Delta Pt = \frac{2}{1000} x 19.89 = 0.04 kg/cm^{2}$$

Considerou-se que a válvula gera uma perda de carga correspondente a $\Delta Pv = 0.1 \ kg/cm^2$.

6.2 Pressão de aspiração (Pa)

Para o cálculo da pressão de aspiração, utiliza-se a equação (18), na qual considera a pressão atmosférica, a pressão gerada pela altura de líquido e as perdas de carga da válvula e filtro.

$$Pa = P + \rho gh - (\Delta Pt + \Delta Pv) \quad (18)$$

$$Pa = 1 + \frac{616.5 \times 9.8 \times (0.5 + 3)}{98067} - 0.052 = 1.163 \, kg/cm^2$$

6.3 Pressão máxima de aspiração (P_{a max})

Usando a equação acima, calcula-se a pressão máxima admitida na aspiração.

$$P_{a max} = 3.5 + \frac{616.5 \times 9.8 \times (1+3)}{98067} - 0.052 = 3.694 \, kg/cm^2$$

6.4 Pressão de impulsão (P_i)

A mesma equação é usada para calcular a pressão na impulsão da bomba.

$$P_i = 1.35 + \frac{616.5 \times 9.8 \times (12.3 + 3)}{98067} + 0.14 = 2.43 \, kg/cm^2$$

6.5 Pressão diferencial (ΔP)

A pressão diferencial é definida como a diferença entre a pressão de impulsão e aspiração. Assim, calcula-se o ΔP por meio da equação (19).

$$\Delta P = \text{Pi} - \text{Pa}$$
 (19)
 $\Delta P = 2.43 - 1.16 = 1.27 \text{ kg/cm}^2$

6.6 Altura diferencial (H)

Por meio da equação (20) é calculado a altura diferencial.

$$H = \frac{\Delta P}{\rho} x 10 \quad (20)$$

$$H = \frac{1,27}{0,616} x \ 10 = 20,61 \ m$$

6.7 Pressão de shut-off (ΔP_{max})

A pressão de shut-off é a pressão a 20% acima da pressão diferencial, sendo calculada por meio da equação abaixo.

$$\Delta P_{i \text{ max}} = 1.2 \text{ x } \Delta P$$
 (21)

$$\Delta \text{Pi max} = 1.2 \text{ x } 1.27 = 1.524 \text{ kg/cm}^2$$

6.8 Pressão máxima de impulsão (P_{i max})

A pressão máxima de impulsão foi calculada somando a pressão de shut-off com a pressão máxima de aspiração, como mostra a equação (22).

$$P_{imp\ max} = \Delta Pi\ max + \Delta Pa\ max$$
 (22)

$$P_{imp\ max} = 1,524 + 3,694 = 5,22\ kg/cm^2$$

6.9 Pressão de projeto (P_p)

A pressão de projeto que vai ser usada é o valor mais alto da soma entre P_1 e P_2 . A pressão P_1 é definida como a soma entre a pressão máxima de aspiração e a pressão diferencial e P_2 é a soma entre a perda de carga na aspiração e pressão de shut-off.

$$P_1 = P_{imax} + \Delta P \quad (23)$$

$$P_2 = Pa + \Delta P_{max} \quad (24)$$

Na aspiração, tem-se que:

$$P_{ap} = 3.7 + 1.27 = 4.97 \, kg/cm^2$$

Na impulsão, tem-se que:

$$P_{in} = 5.11 + 1.27 = 6.38 \, kg/cm^2$$

6.10 Vazão mínima (Q_m)

A vazão mínima é definida como 60% da vazão de operação.

$$Q_m = 0.6 x Q$$
 (25)

$$Q_m = 0.6 \times 13.1 = 7.86 \, \text{m}^3/\text{h}$$
 (26)

6.11 Vazão de projeto (Q_p)

A vazão de projeto é 20% acima da vazão de operação.

$$Q_p = 1.2 x Q$$
 (27)

$$Q_p = 1.2 \times 13.1 = 15.72 \, m^3/h$$

6.12 Potência absorvida (Wa)

Por meio da equação abaixo, calcula-se a potência absorvida.

$$W_a = Q \Delta P$$
 (28)

$$W_a = \frac{15,72 \times 1,524}{27,4} = 0,874 \ CV = 0,65 \ kWh/h$$

6.13 Potência hidráulica (W_h)

A potência hidráulica é a potência absorvida normalizada por um rendimento de 30%.

$$W_h = \frac{Wa}{n_h} \quad (29)$$

$$W_h = \frac{0.65}{0.3} = 2.16 \, kWh/h$$

6.14 Potencia elétrica (W_e)

A potência elétrica é a hidráulica normalizada por um rendimento de 85%.

$$W_e = \frac{Wh}{n_e} \quad (30)$$

$$W_e = \frac{2,16}{0,85} = 2,54 \, kWh/h$$

6.15 NPSH disponível

O NPSH disponível é calculado pela diferença entre a pressão de aspiração e a pressão de vapor do líquido de aspiração, normalizado pela densidade da corrente.

$$NPSH_d = \frac{(Pa - Pvap)x \, 10}{\rho} \quad (31)$$

$$NPSH_d = \frac{(1,163 - 1,033)x\ 10}{0,6165} = 2,11\ m$$

7 Projeto de I&C

Objetiva-se montar o esquema de instrumentação e controle do sistema de fracionamento da mistura n-hexano, n-heptano e n-octano. O esquema do sistema completo se apresenta na Figura 1.

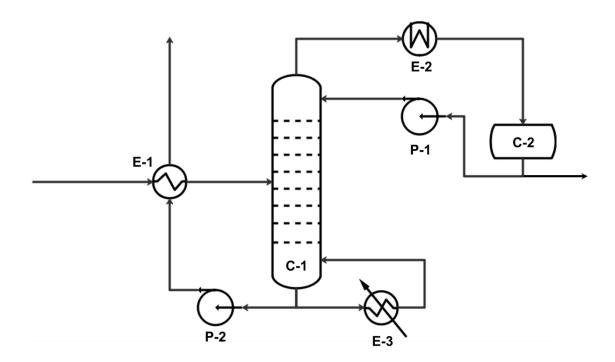
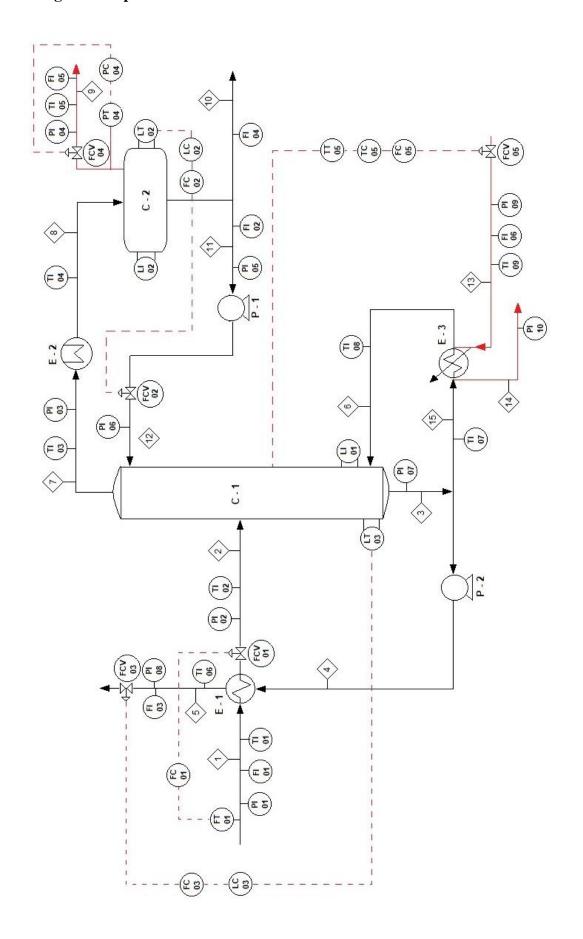



Figura 5. Diagrama básico do sistema de fracionamento da mistura n-C6, n-C7 e n-C8.

Como pode ser observado, o alimento entra à unidade prévio pré-aquecimento mediante trocador de calor E-1 com a corrente de saída do fundo da torre. Desta forma, o alimento acessa à torre C-1 onde se produz a separação. Pelo topo, obtém-se uma corrente de vapor enriquecida em n-hexano que será condensado em sua totalidade e enviado a um vaso pulmão C-2. Dele, obtém-se a corrente refluxo, devolvida à torre C-1 com ajuda de uma bomba e o destilado que sai do sistema. Pelo fundo da torre é extraída uma corrente que é dividida para formar uma parte que irá para o refervedor E-3 e formará o vapor que sobe pelo setor de esgotamento e a corrente resíduo que é enviada para aproveitamento de sua energia ao trocador E-1 com ajuda da bomba P-2.

Foi enumerado as correntes deste processo; inserido a instrumentação e sistemas de controle necessários como mostra o diagrama presente no capitulo 7. Depois de fazer toda identificação, preencheu-se as folhas de especificações referentes aos sistemas de controle e instrumentação.

8 Diagrama do processo

9 Estimação dos custos

Foi possível estimar o valor bruto do investimento com ajuda das equações, presentes no capítulo 6 do livro *Chemical Engineering Desing*, que disponibiliza os valores correspondentes aos custos dos equipamentos, sendo necessário aplicar o fator de correção de Lang para obterse o investimento.

Aplicou-se a equação para a torre, o vaso pulmão, o condensador de topo, o refervedor de fundo e a bomba do refluxo. Além disso, considerou-se os pratos da torre sendo do tipo válvula.

Seguidamente, foram avaliados os custos operacionais. Para isto, considerou-se uma vida da planta de 15 anos. Estimou-se os consumos de água de refrigeração no topo da torre, vapor de caldeiras no fundo e eletricidade para a bomba de refluxo e obteve-se as seguintes tabelas.

Tabela 34. Custo de todos equipamentos.

Custos dos equipamentos					
	20%	40%	60%	100%	
Custo da torre(\$)	175718,00	167901,20	169006,40	169311,40	
Custo do pulmão(\$)	240023,80	250864,20	261353,70	281416,80	
Custo do condensador(\$)	24477,01	24573,94	24673,69	24880,54	
Custo do refervedor(\$)	26219,43	26442,56	26669,13	27131,87	
Custo da bomba de refluxo(\$)	68475,21	69115,43	72322,40	76686,64	
Custo dos pratos(\$)	17463,92	15638,21	15531,00	14960,64	
Custo total dos equipamentos(\$)	552377,37	554535,54	569556,32	594387,89	
Investimento(\$)	2618268,7	2628498,5	2699697	2817398,6	

Tabela 35. Custos operacionais.

Custos operacionais(\$)				
	20%	40%	60%	100%
Qcond(kcal/h)	1137121	1231616	1326111	1515101
m(kg/h)	66,889	72,448	78,006	89,124
m(kg)(15anos)	8789276,4	9519667,2	10250058	11710839
Custo de água de resfriamento(\$)	878927,64	951966,72	1025005,8	1171083,9
Potencia(kW)	452,8001	459,7808	495,3877	545,5348
Custo de eletricidade da bomba(\$)	14874483	15103799	16273486	17920818
Custo operacional total (\$)	15753411	16055766	17298492	19091902
Custo total (\$)	18.371.680	18684264	19998189	21909301

10 Conclusão

Ao analisar ambos processos mencionados no capítulo 2.2, observou-se que o processo 2 foi mais viável, pois fazendo os cálculos VAL e TIR, obteve-se um VAL2 > VAL1, sendo VAL2 a análise do VAL para o processo 2 e o VAL 1 correspondente ao processo 1. Além disso, o VAL1 deu negativo, indicado que o projeto não é viável. O mesmo foi concluído fazendo os cálculos TIR. Para o processo 1 não foi possível encontrar o "r", pois o algoritmo não convergiu. No processo 2, foi possível encontrar uma aproximação de "r" tal que satisfaça a equação do somatório igual a zero.

Após ser feito todos os cálculos, concluiu-se que uma porcentagem de 20% acima do refluxo é mais viável para o projeto, mesmo necessitando de mais pratos para garantir a separação. O custo total (investimento e custo de operação) será de, aproximadamente, 18 milhões de dólares.

Portanto, este Trabalho de Conclusão de Curso auxiliou no meu aprendizado, dando uma noção em relação aos projetos que podem ser desenvolvidos nas indústrias químicas.

11 Anexos

11.1 Simulação de custos do processo 1

(R\$)	0	1	2	3
Estimação do imobilizado da planta	- 44.108.299,20	- 88.216.598,40	- 14.702.766,40	
Capital de giro			- 23.337.724,49	
Entrada em funcionamento			- 5.834.431,01	
Gastos prévios	- 388.573,11	- 388.573,11	- 388.573,11	
Vendas				152.352.000,00
Custos				128.393.182,96
Amortização				11.668.862,20
Lucro bruto				12.289.954,84
Impostos				4.301.484,19
Lucro líquido				7.988.470,65
Fluxo de caixa	- 44.496.872,31	-88.605.171,51	- 43.874.921,90	19.657.332,85
Fluxo de caixa corrigido	- 44.496.872,31	- 80.550.155,92	- 36.260.266,03	14.768.845,11

(R\$)	4	5	6	7
Estimação do imobilizado da planta				
Capital de giro				
Entrada em funcionamento				
Gastos prévios				
Vendas	159.969.600,00	167.968.080,00	176.366.484,00	185.184.808,20
Custos	134.812.842,11	141.553.484,21	148.631.158,42	156.062.716,35
Amortização	11.668.862,20	11.668.862,20	11.668.862,20	11.668.862,20
Lucro bruto	13.487.895,69	14.745.733,59	16.066.463,38	17.453.229,65
Impostos	4.720.763,49	5.161.006,76	5.623.262,18	6.108.630,38
Lucro líquido	8.767.132,20	9.584.726,83	10.443.201,19	11.344.599,28
Fluxo de caixa	20.435.994,40	21.253.589,03	22.112.063,39	23.013.461,48
Fluxo de caixa corrigido	13.958.059,15	13.196.806,62	12.481.683,33	11.809.544,58

(R\$)	8	9	10	11
Estimação do imobilizado da planta				
Capital de giro				
Entrada em funcionamento				
Gastos prévios				
Vendas	194.444.048,61	204.166.251,04	214.374.563,59	225.093.291,77
Custos	163.865.852,16	172.059.144,77	180.662.102,01	189.695.207,11
Amortização	11.668.862,20	11.668.862,20	11.668.862,20	11.668.862,20
Lucro bruto	18.909.334,25	20.438.244,07	22.043.599,38	23.729.222,46
Impostos	6.618.266,99	7.153.385,42	7.715.259,78	8.305.227,86
Lucro líquido	12.291.067,26	13.284.858,65	14.328.339,60	15.423.994,60
Fluxo de caixa	23.959.929,46	24.953.720,85	25.997.201,80	27.092.856,80
Fluxo de caixa corrigido	11.177.483,92	10.582.813,58	10.023.046,70	9.495.881,03

(R \$)	12	13	14	15
Estimação do imobilizado da planta				
Capital de giro				
Entrada em funcionamento				
Gastos prévios				
Vendas	236.347.956,36	248.165.354,18	260.573.621,89	273.602.302,98
Custos	199.179.967,47	209.138.965,84	219.595.914,13	230.575.709,84
Amortização	11.668.862,20	0,00	0,00	0,00
Lucro bruto	25.499.126,70	39.026.388,34	40.977.707,76	43.026.593,15
Impostos	8.924.694,34	13.659.235,92	14.342.197,72	15.059.307,60
Lucro líquido	16.574.432,35	25.367.152,42	26.635.510,04	27.967.285,54
Fluxo de caixa	28.243.294,55	25.367.152,42	26.635.510,04	27.967.285,54
Fluxo de caixa corrigido	8.999.184,04	7.347.960,47	7.013.962,27	6.695.145,80

(R\$)	16	17
Estimação do imobilizado da planta		
Capital de giro		
Entrada em funcionamento		
Gastos prévios		
Vendas	287.282.418,13	301.646.539,04
Custos	242.104.495,33	254.209.720,10
Amortização	0,00	0,00
Lucro bruto	45.177.922,80	47.436.818,94
Impostos	15.812.272,98	16.602.886,63
Lucro líquido	29.365.649,82	80.518.271,62
Fluxo de caixa	29.365.649,82	80.518.271,62
Recuperação		49.684.339,30
Fluxo de caixa corrigido	6.390.820,99	15.930.110,79

11.2 Simulação dos custos do processo 2

12. (R\$)	0	1	2	3
Estimação do imobilizado da planta	- 53.317.724,40	- 106.635.448,80	- 17.772.574,80	
Capital de giro			- 28.210.436,20	
Entrada em funcionamento			- 7.052.609,04	
Gastos prévios	- 469.703,76	- 469.703,76	- 469.703,76	
Vendas				208.024.000,00
Custos				156.017.326,92
Amortização				14.105.218,00
Lucro bruto				37.901.455,08
Impostos				13.265.509,28
Lucro líquido				24.635.945,80
Fluxo de caixa	- 53.787.428,16	- 53.787.428,16	- 53.505.323,80	38.741.163,80
Fluxo de caixa corrigido	- 53.787.428,16	- 48.897.661,96	- 44.219.275,87	29.106.809,77

(R\$)	4	5	6	7
Estimação do imobilizado da planta				
Capital de giro				
Entrada em funcionamento				
Gastos prévios				
Vendas	218.425.200,00	229.346.460,00	240.813.783,00	252.854.472,15
Custos	163.818.193,27	172.009.102,93	180.609.558,08	189.640.035,98
Amortização	14.105.218,00	14.105.218,00	14.105.218,00	14.105.218,00
Lucro bruto	40.501.788,73	43.232.139,07	46.099.006,92	49.109.218,17
Impostos	14.175.626,06	15.131.248,67	16.134.652,42	17.188.226,36
Lucro líquido	26.326.162,68	28.100.890,40	29.964.354,50	31.920.991,81
Fluxo de caixa	40.431.380,68	42.206.108,40	44.069.572,50	46.026.209,81
Fluxo de caixa corrigido	27.615.177,02	26.206.672,67	24.876.124,79	23.618.723,22

(R\$)	8	9	10	11
Estimação do imobilizado da planta				
Capital de giro				
Entrada em funcionamento				
Gastos prévios				
Vendas	265.497.195,76	278.772.055,55	292.710.658,32	307.346.191,24
Custos	199.122.037,78	209.078.139,67	219.532.046,65	230.508.648,98
Amortização	14.105.218,00	14.105.218,00	14.105.218,00	14.105.218,00
Lucro bruto	52.269.939,98	55.588.697,88	59.073.393,67	62.732.324,26
Impostos	18.294.478,99	19.456.044,26	20.675.687,79	21.956.313,49
Lucro líquido	33.975.460,99	36.132.653,62	38.397.705,89	40.776.010,77
Fluxo de caixa	48.080.678,99	50.237.871,62	52.502.923,89	54.881.228,77
Fluxo de caixa corrigido	22.429.991,59	21.305.761,71	20.242.149,98	19.235.535,88

(R \$)	12	13	14	15
Estimação do imobilizado da planta				
Capital de giro				
Entrada em funcionamento				
Gastos prévios				
Vendas	322.713.500,80	338.849.175,84	355.791.634,63	373.581.216,36
Custos	242.034.081,43	254.135.785,50	266.842.574,78	280.184.703,52
Amortização	14.105.218,00	0,00	0,00	0,00
Lucro bruto	66.574.201,37	84.713.390,34	88.949.059,85	93.396.512,85
Impostos	23.300.970,48	29.649.686,62	31.132.170,95	32.688.779,50
Lucro líquido	43.273.230,89	55.063.703,72	57.816.888,90	60.707.733,35
Fluxo de caixa	57.378.448,89	55.063.703,72	57.816.888,90	60.707.733,35
Fluxo de caixa corrigido	18.282.542,09	15.949.993,58	15.224.993,88	14.532.948,70

(R\$)	16	17
Estimação do imobilizado da planta		
Capital de giro		
Entrada em funcionamento		
Gastos prévios		
Vendas	392.260.277,18	411.873.291,04
Custos	294.193.938,69	308.903.635,63
Amortização	0,00	0,00
Lucro bruto	98.066.338,49	102.969.655,41
Impostos	34.323.218,47	36.039.379,39
Lucro líquido	63.743.120,02	126.988.268,59
Fluxo de caixa	63.743.120,02	126.988.268,59
Recuperação		60.057.992,57

11.3 Folhas de especificação

11.3.1 Correntes

Co	ORRENTES MATERIAIS	
Número de corrente	1	
Descrição	Alimento	
Pressão	0,40	Kg/cm ² g
Temperatura	101,4	°C
Vazão mássica	9810	Kg/h
Vazão molar	100.0	Kmol/h
Entalpia total	-4.842	Gkcal/h
Fração de sólidos		
Fração de vapor		
PROPRII	EDADES DA FASE LÍQUIDA	A
Vazão volumétrica @P e T de operação	16,20	m ³ /h
Peso molecular	98,10	Kg/kmol
Densidade	605,5	Kg/m ³
Viscosidade	0,1909	cP
Condutividade térmica	9,886e-002	W/m·°C
Calor específico	250,9	kJ/kg·°C
Tensão superficial	11,97	dinas/cm
PROPRIEI	DADES DA FASE VAPOR/GA	ÁS
Vazão volumétrica @P e T de operação		m ³ /h
Peso molecular		Kg/kmol

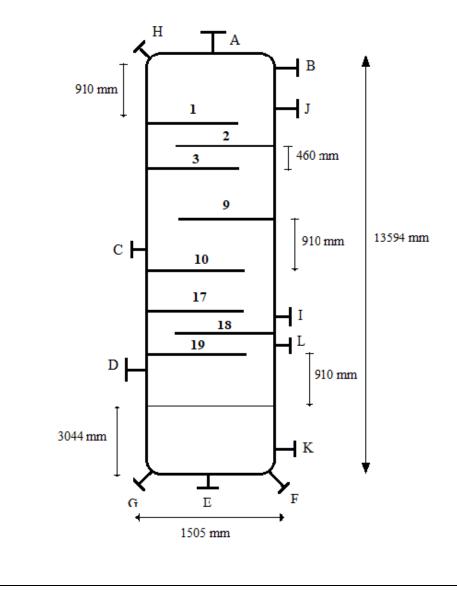
Densidade			Kg/m ³
Viscosidade			cР
Condutividade térmica			W/m·°C
Calor específico			kJ/kg·°C
Fator de compressibilidade			
	COMPOSIÇÃO		
Componente	Fração molar	Fraç	ão mássica
n-octano	0,25		0,29
n-heptano	0,35		0,36
n-hexano	0,40		0,35

	CORRENTES MATERIAIS			
Número de corrente	2			
Descrição	Destilado			
Pressão	0,35	Kg/cm ² g		
Temperatura	79,66	°C		
Vazão mássica	6967 K			
Vazão molar	75,00 Km			
Entalpia total	-3569e-003 Gkcal			
Fração de sólidos	0			
Fração de vapor	0			
PROPRIEDADES DA FASE LÍQUIDA				
Vazão volumétrica @P e T de operação	11,3	m³/h		

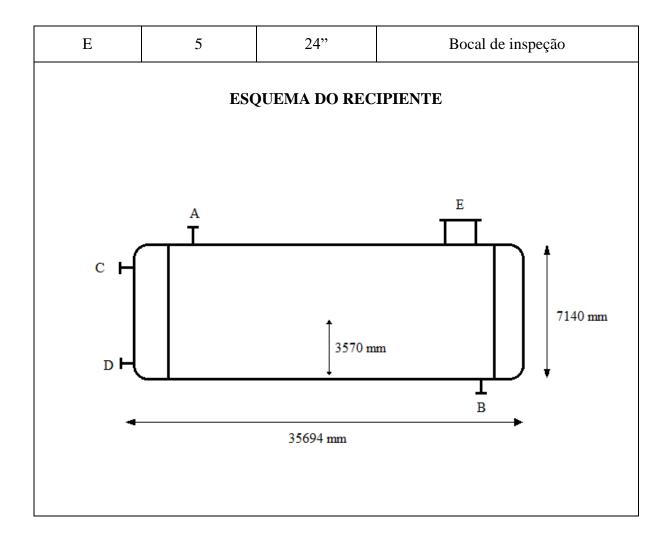
Peso molecular	92,9	Kg/kmol
Densidade	616,7	Kg/m ³
Viscosidade	0,2083	cР
Condutividade térmica	0,1025	W/m·°C
Calor específico	227,7	kJ/kg·°C
Tensão superficial	13,33	dinas/cm
PRO	PRIEDADES DA FASE VAPO	R/GÁS
Vazão volumétrica @P e T de operação		m ³ /h
Peso molecular		Kg/kmol
Densidade		Kg/m ³
Viscosidade		сР
Condutividade térmica		W/m·°C
Calor específico		kJ/kg·°C
Fator de compressibilidade		
	COMPOSIÇÃO	
Componente	Fração molar Fração mássic	
n-octano	0,534 0,657	
n-heptano	0,453	0,489
n-hexano	0,013	0,012

СО	RRENTES MATERIAIS			
Número de corrente	3			
Descrição	Resíduo			
Pressão	0,45	Kg/cm ² g		
Temperatura	150,6	°C		
Vazão mássica	8525	Kg/h		
Vazão molar	75,00	Kmol/h		
Entalpia total	-3826e-003	Gkcal/h		
Fração de sólidos	0			
Fração de vapor	0			
PROPRI	EDADES DA FASE LÍQUIDA			
Vazão volumétrica @P e T de operação	14,59	m ³ /h		
Peso molecular	113,7	Kg/kmol		
Densidade	548,3	Kg/m ³		
Viscosidade	0,1613	cP		
Condutividade térmica	9,338e-002	W/m·°C		
Calor específico	317,0	kJ/kg⋅°C		
Tensão superficial	9,797	dinas/cm		
PROPRIE	DADES DA FASE VAPOR/GÂ	ÁS		
Vazão volumétrica @P e T de operação		m ³ /h		
Peso molecular	Kg/kmol			
Densidade	Kg/m ³			

Viscosidade			cР	
Condutividade térmica			W/m·°C	
Calor específico			kJ/kg·°C	
Fator de compressibilidade				
	COMPOSIÇÃO			
Componente	Fração molar	Fraç	ão mássica	
n-octano	0,96		0,96	
n-heptano	0,04 0,04		0,04	
n-hexano	0		0	


11.3.2 Vasos, torres e reatores

ESPECIFICAÇÕES VASOS/TORRES/REATORES			
Número do equipamento C1			
Descrição	Torre de destilação		
Pressão no topo	0,35		
Pressão no fundo	1,3 Kg/		
Pressão de projeto	3,5		
Temperatura no topo	79,66	°C	


Temperatu	ra no fundo		150,6		
Temperatur	a de projeto		109,66		
Nível norma	al de líquido		3043		
	no de líquido %)				
Nível máxim (20	no de líquido %)		609		
Alt	Altura		13593		
Diân	netro		1504		
Mat	erial		Aço carbono		
	PRO	OPRIEDADES	DO FLUÍDO		
	fase leve @P e ão no prato ave	3,242 Kg/m ²			
	a fase pesada operação no chave	616,1 Kg/n		Kg/m ³	
		CONEX	ÕES		
Sigla	Número	Diâmetro	Serviço		
A	1		Saída de vapor pe	lo topo	
В	2		Entrada do refluxo		
C	3		Alimento		
D	4	Vapor do refervedor		edor	
E	5		Líquido de fundo		
F	6	2"	2" Ventilação		
G	7	2"	2" Drenagem		
Н	8	2"	Purga com vaj	oor	

I, J, K	9	 Medidor de temperatura
L	10	 Medidor de nível

ESQUEMA DO RECIPIENTE

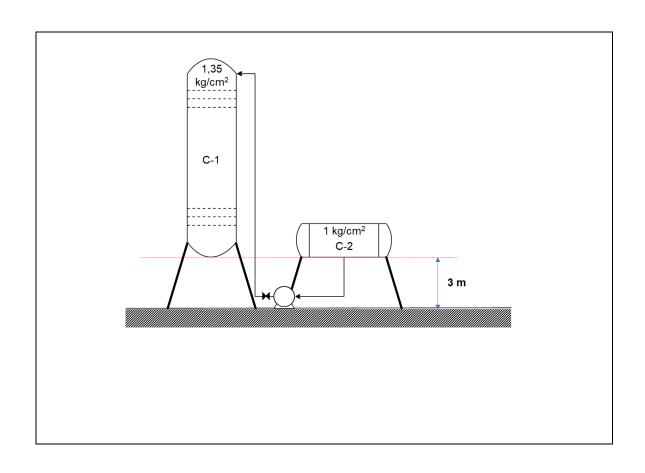
ESPECIFICAÇÕES VASOS/TORRES/REATORES					
Número do	equipamento		C2		
Des	scrição		Vaso pulmão		
Pressã	o no topo		0,35		
Pressão	o no fundo		0,57	Kg/cm ² g	
Pressão	de projeto		3,5		
Tempera	tura no topo		230		
Temperat	ura no fundo		79,66	°C	
Temperatu	ıra de projeto		109,66		
Nível norn	nal de líquido		3569,5		
Nível máximo	de líquido (80%)		5711,2		
Nível mínimo	de líquido (20%)	1427,8		mm	
A	ltura		35694		
Diâ	imetro		7139		
Ma	aterial		Aço carbono		
	PRO	PRIEDADES DO) FLUÍDO		
	fase leve @P e T no prato chave		3,242	Kg/m ³	
	fase pesada @P e o no prato chave		616,1	Kg/m ³	
		CONEXÕE	S		
Sigla	Número	Diâmetro	Diâmetro Serviço		
A	1		Corrente de	entrada	
В	2	Saída de destilado		stilado	
С	3		Medidor de	nível	
D	4		Medidor de	nível	

ESPECIFICAÇÕES PRATOS					
Número do equipamento	C1				
Descrição	Torre de destilação				
Número de seções da coluna	2				
SEÇÃO 1 DA	SEÇÃO 1 DA COLUNA				
Identificação	Zon	a de enrique	cimento		
De prato/A prato	1	9			
Pressão	0,35	0,44	Va/om² a		
Perda de pressão	0,09 Kg/cm g		Kg/cm ² g		
Temperatura	79,66	101,4	°C		

Vazão mássica de vapor/fase orgânica	13895,2	13895,2	V a/h
Vazão mássica de líquido/fase aquosa	20010,9	20010,9	Kg/h
Vazão volumétrica de vapor/fase	4286,01	4286,01	
orgânica @ P e T de operação			m ³ /h
Vazão volumétrica de líquido/fase	32,48034	22 49024	m ² /n
aquosa @ P e T de operação		32,48034	
Densidade da fase vapor/fase orgânica			
@ P e T de operação	3,242	3,242	Kg/m ³
Densidade da fase líquida/fase aquosa @			Ttg/III
P e T de operação	616,1	616,1	
Viscosidade da fase vapor/fase orgânica	6.860e-	7.269e-	
@ P e T de operação	003	003	cР
Viscosidade da fase líquida/fase aquosa	0.2083	0.1909	
@ P e T de operação			
Diâmetro	15	05	mm
Número de pratos	19		
Espaçamento entre pratos	460		mm
Tipo de pratos (válvulas, perfurados)	Válvulas		
Altura de recheio			mm
Tipo de recheio (anéis Raschig, selas			
Intalox)			
SEÇÃO 2 DA	COLUNA		
Identificação	Zona de esgotamento		mento
De prato/A prato	10	19	
Pressão	0,44	0,53	Kg/cm ² g
Perda de pressão	0,0	09	

101,4	150,6	°C	
13895,2	13895,2	Kg/h	
20010,9	20010,9	118/11	
4286,01	4286,01		
		m ³ /h	
32,48034	22 49024	111 /11	
	32,46034		
3,242	3,242	Kg/m ³	
		Kg/III	
616,1	616,1		
6.860e-	7.269e-		
003	003	cР	
0.2083	0.1909	CI	
	0.12,0,		
15	05	mm	
1	9		
460		mm	
Válvulas			
		mm	
	13895,2 20010,9 4286,01 32,48034 3,242 616,1 6.860e- 003 0.2083 15 1 46 Válv	13895,2 13895,2 20010,9 20010,9 4286,01 4286,01 32,48034 32,48034 3,242 3,242 616,1 616,1 6.860e- 7.269e- 003 003 0.2083 0.1909 1505 19 460 Válvulas	

11.3.3 Trocador de Calor


ESPECIFICAÇÕES TROCADORES DE CALOR							
Número do equipamento				E-1			
Descri	ção				Referved	or	
Tipo de trocado placas, tubos c					Casco-tu	bo	
Para casco-tubo,		inir o tipo			AKT		
Disposição (horiz	onta	nl/vertical)			horizont	al	
Circulação (forçad	a, te	rmosifão))		forçada	ı	
Número de carcaças estimadas		m série ou paralelo?		2	2		série
CARACTERÍS	TIC	AS DOS FI	LUÍDOS	E COND	IÇÕES DE	OPERA	ÇÃO
Lado		EXTEI FRÍO D	CO / CA RIOR/FI O TROC C PLACA	LUÍDO CADOR	INTE	IBO / TU RIOR/FL UENTE I DOR DE	UÍDO
		Entrada	Saída		Entrada	Saída	
Vazão total		1417	70	Kg/h	113	20	Kg/h
Fração de vapor/g	ás	0	1		1	1	
Vazão de vapor/gás 0		0	11320	IZ - /l-	10000	10000	TZ - /1-
Vazão de líquido)	14170 0		Kg/h	0	0	Kg/h
Temperatura		148.6	150.6	°C	180	180	°C
Pressão		2.03	2.03	Kg/cm ²	1.99	1.99	Kg/cm ²

Perda de pressão permitida	0.075	Kg/cm ²	0.075		Kg/cm ²
Coeficiente individual de transmissão de calor	780	Kcal / h m ² °C 5000		Kcal / h m ² °C	
Fator de deposição	0.00015	h m ² °C/ kcal 0.00015			h m ² °C/ kcal
Coeficiente global de transmissão de calor		644.88			Kcal / h m ² °C
ΔT_{ml}		30.4			°C
$\mathbf{F}_{\mathbf{T}}$		0.9			
Calor trocado	0.796			Gcal/h	
CON	DIÇÕES DE PRO	JETO ME	CÂNICO		
Pressão de projeto	3.8				Kg/cm ²
Temperatura de projeto	210				°C
CARACTER	ÍSTICAS CONSTI	RUTIVAS	DO TROCAI	DOR	
Área de troca	de calor		40.6		m ²
Diâmetro do	Diâmetro dos tubos 3/4 pole			pole	gadas/mm
Comprimento dos tubos 20 p					és/mm
Espessura dos tubos 2.11				BWG	
Espaçamento entre centro dos tubos 0.083 p			és/mm		
	Tipo de disposição dos tubos (triangular, triangular rotada, quadrangular, rômbica)				
Diâmetro d	o casco		2.5	p	és/mm

11.3.4 Sistema de impulsão

ESPECIFICAÇÕES BOMBAS						
Identificação do equipament operação / reserva	Identificação do equipamento operação / reserva		Operação		Reserva	
Descrição			E	Bomba c	le refluxo	
Número de bombas operação reserva)/		01a		0	lb
Tipo de bomba (centrífuga, volumétrica alternativa, volumétrica rotativa)				Cent	rífuga	
Funcionamento (contínuo ou descontínuo / série ou paralelo			Contínuc)	Con	tínuo
CARACTERÍSTICAS DOS	CARACTERÍSTICAS DOS FLUÍDOS E CONDIÇÕES DE OPERAÇÃO					
PARTE DA BOMBA		Aspi	ração		Impul	são
Vazão volumétrica de operação			13	,1		m³/h
Pressão	1	,16	kg/cm²	2 g	2,43	kg/cm ² g
Temperatura	80	0,58	°C		80,58	°C
Densidade	6.	16,5	kg/m	3	616,5	kg/m ³
Viscosidade	0,2	2083	cР		0,2083	cP
Pressão de vapor	1,	033	kg/cm ²	² g	1,033	kg/cm ² g
CARACTÉRIST	CARACTÉRISTICAS DE PROJETO DA BOMBA					
Vazão de projeto (110 ou 120% da vazão de operação)				15,72	3 /1	
Vazão mínima de processo (60% da vazão de operação)				7,86	- m ³ /h	
Pressão na aspiração na va	zão d	le proje	to		4,97	kg/cm ² g

Pressão na impuls	Pressão na impulsão na vazão de projeto				
Pressão	Pressão diferencial			kg/cm ²	
Altura	diferencial	20	,61	m	
NPSH	disponível	2,	11	m	
Máxima pressão difer	encial a impulsão fechada	1,5	524	kg/cm ²	
Pressão máx	ima na aspiração	3,6	594	kg/cm ² g	
Pressão máx	Pressão máxima na impulsão 5,22				
Diâmetro da tubulação aspiração/impulsão 8 8				polegada s	
CON	NDIÇÕES DE PROJETO ME	ECÂNICO)		
Pressão de projeto 6,38				Kg/cm ²	
Temperatura de 110,5 projeto				°C	
CAR	ACTERÍSTICAS DE ACION	AMENT	0		
Potência elétrica a vazão de projeto 2,54				kW	
ESQUEMA DO SISTEMA DE BOMBEAMENTO					

11.3.5 Instrumentação e Controle

ESPECIFICAÇÕES INSTRUMENTOS DE VAZÃO					
Identificação	Localização (núm. da tubulação)	Fase (L, G ou M)	Vazão normal / kg/h		
FI-01	1	M			
FI-02	11	L			
FI-03	5	L			
F-04	10	L			
FI-05	9	L			
FI-06	13	V			

ESPECIFICAÇÕES INSTRUMENTOS DE NÍVEL					
Identificação Localização (núm. do vaso) Localização (núm. do L-L ou L-V/G) Nível normal / n					
LI-01	C-1	L-V			
LI-02	C-2	L-V			

ESPECIFICAÇÕES INSTRUMENTOS DE TEMPERATURA					
Identificação	Localização (núm. da tubulação ou vaso)	Fase (L, G ou M)	Temperatura normal / °C		
TI-01	1	M			
TI-02	2	M			
TI-03	7	V			
TI-04	8	L			
TI-05	9	G			
TI-06	5	V			
TI-07	15	L			
TI-08	6	V			
TI-09	13	V			

ESPECIFICAÇÕES INSTRUMENTOS DE PRESSÃO					
Identificação	Localização (núm. da tubulação ou vaso)	Fase (L, G ou M)	Pressão normal / kg/cm² g		
PI-01	1	M			
PI-02	2	M			
PI-03	7	V			

PI-04	9	G	
PI-05	11	L	
PI-06	12	L	
PI-07	3	L	
PI-08	5	V	
PI-09	13	V	
PI-10	14	V	

ESPECIFICAÇÕES LAÇOS DE CONTROLE						
Identificação no diagrama mecânico	Localização (núm. da tubulação ou vaso)	Descrição da ação	Elementos vinculados (medidor, controle, acionador e válvula de controle)			
1	1	Controle de vazão de entrada na coluna	Medidor de vazão, controlador, válvula de controle			
2	C-2	Controle de nível no vaso pulmão	Medidor de nível, controlador, válvula de controle			
3	C-1	Controle de nível na coluna	Medidor de nível, controlador de nível e fluxo, válvula de controle			
4	C-2	Controle de pressão no vaso pulmão	Medidor de pressão, controlador, válvula de controle			
5	C-1	Controle de temperatura na coluna	Medidor de temperatura, controlador de temperatura e fluxo, válvula de controle			

12 Referências

- 1)EIDER, Warren D. Product and process design principles: synthesis, analysis, and evaluation . 3rd ed. New York: John Wiley & Sons, 2009. xxxvi, 728 p.
- 2) SHREVE, Randolph Norris; AUSTIN, George T. Shreve's Chemical process industries. 5th ed. New York: McGraw-Hill Book Co., c1984. xiii, 859 p.
- 3) HIMMELBLAU, David Mautner; RIGGS, James B. Basic principles and calculations in chemical engineering. 8th ed. Upper Saddle River, NJ: Prentice Hall, c2012. xx, 945 p.
- 4) GREEN, Don W.; PERRY, Robert H. (Ed.). Perry's chemical engineers' handbook. 8th ed. New York: McGraw-Hill, 2008.
- 5) RASE, Howard F. Piping design for process plants. New york: John Wiley & Sonsp.
- 6) SEBORG, Dale E. Process dynamics and control. 3rd ed. Hoboken: John Wiley & Sons, c2011. xiv, 514 p.
- 7) OGUNNAIKE, Babatunde A.; RAY, W. Harmon. Process dynamics, modeling, and control. New York: Oxford University Press, 1994. xx, 1260 p. (Topics in chemical engineering).
- 8) SEADER, J. D.; HENLEY, Ernest J; ROPER, D. Keith. Separation process principles: chemical and biochemical operations. 3rd ed. Hoboken: John Wiley & Sons, c2011. xxvi, 821 p.