
University of Brasília
Computer Science Department

Continuous Time Modeling Made Functional:
Solving Differential Equations with Haskell

Eduardo L. Rocha

Monograph submitted in partial fullfilment of
the requirements to the Computer Engineering Program at University of Brasília

Advisor
Prof. José Edil Guimarães

Brasília
2022

University of Brasília
Computer Science Department

Continuous Time Modeling Made Functional:
Solving Differential Equations with Haskell

Eduardo L. Rocha

Monograph submitted in partial fullfilment of
the requirements to the Computer Engineering Program at University of Brasília

Prof. José Edil Guimarães (Advisor)
ENE/UnB

Prof. Vander Ramos Alves Dr. George Ungureanu
CIC/UnB Ericsson Sweden

Prof. João José Costa Gondim
Coordinator of Computer Engineering Program at University of Brasília

Brasília, May 11, 2022

“If you don’t know, the thing to do is not to get scared, but to learn.”

— Ayn Rand, Atlas Shrugged

Dedicated to

I dedicate this milestone to my family. To my sister Alexya Lemos, for the memorable
moments of joy and fun. To my father Rodolfo Rocha, for sharing with me his wise
and insightful perceptions about life. And foremost, to my mom Dania Lemos, for her
relentless will of teaching me the basics of everything since infancy, for her always-present
joyful smiles to alleviate my painful academic journey, for being my golden guardian
during my countless unhealthy decisions in pursuit of doing the best regardless of the
cost, for always celebrating my minor and major achievements to make me believe in
self-steem by merit and for being an inspirational example of an unstoppable warrior for
me to follow.

iv

Acknowledgements

First and foremost, I thank my advisor José Edil Guimarães. He trusted that my effort
could go on and beyond, surpassing my own expectations and limits, even without having
any experience with the chosen domain of the project. All the endless meetings, including
on the weekends, filled with thoughtful advice and helpful comments, will be the most
remarkable memory of the best teacher I have encountered to this day.

I’m thankful for my colleague Breno Fatureto for inviting me to this beautiful and
elegant world of functional programming, which is the core foundation of the present
work, even though this being an uncommon paradigm to explore during graduation.

I’m grateful for the company I’m currently working in, Datarisk, where I’m surrounded
by phenomenal people who always remind me of the importance of pushing forward,
diminishing the fear that naturally comes when entering new countries.

Finally, a special thanks for everybody that took any amount of time to read any draft
I had of this thesis, providing honest feedback to enhance my final project before being
graduated as a computer engineer.

v

Abstract

Physical phenomena is difficult to properly model due to its continuous nature. Its par-
alellism and nuances were a challenge before the transistor, and even after the digital
computer still is an unsolved issue. In the past, some formalism were brought with the
General Purpose Analog Computer proposed by Shannon in the 1940s. Unfortunately,
this formal foundation was lost in time, with ad-hoc practices becoming mainstream to
simulate continuous time. In this work, we propose a domain-specific language (DSL)
written in Haskell that resembles GPAC’s concepts. The main goal is to take advantage
of high level abtractions to execute systems of differential equations, which describe physi-
cal problems mathematically. We evaluate performance and domain problems and address
them accordingly. Future improvements for the DSL are also explored and detailed.

Keywords: differential equations, continuous systems, GPAC, integrator

vi

Resumo

Fenômenos físicos são difíceis de modelar propriamente devido a sua natureza contínua.
O paralelismo e nuances envolvidos eram um desafio antes do transistor, e mesmo depois
do computador digital esse problema continua insolúvel. No passado, algum formalismo
foi trazido pelo computador analógico de propósito geral (GPAC) por Shannon nos anos
1940. Infelizmente, essa base formal foi perdida com o tempo, e práticas ad-hoc tornaram-
se comuns para simular o tempo contínuo. Neste trabalho, propomos uma linguagem de
domínio específico (DSL) escrita em Haskell que assemelha-se aos conceitos do GPAC. O
principal objetivo é aproveitar de abstrações de mais alto nível para executar sistemas
de equações diferenciais, que descrevem sistemas físicos matematicamente. Nós avaliamos
performance and problemas de domínio e os endereçamos propriamente. Melhorias futuras
para a DSL também são exploradas e datalhadas.

Palavras-chave: equações diferenciais, sistemas contínuos, GPAC, integrador

vii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Proposal . 2
1.3 Goal . 4
1.4 Outline . 5

2 Design Philosophy 6
2.1 Shannon’s Foundation: GPAC . 6
2.2 The Shape of Information . 8
2.3 Modeling Reality . 12
2.4 Making Mathematics Cyber . 14

3 Effectful Integrals 16
3.1 Uplifting the Dynamics Type . 16
3.2 GPAC Bind I: Dynamics . 19
3.3 Exploiting Impurity . 20
3.4 GPAC Bind II: Integrator . 24
3.5 Using Recursion to solve Math . 26

4 Execution Walkthrough 29
4.1 From Models to Models . 29
4.2 Driving the Model . 32
4.3 An attractive example . 33
4.4 Lorenz’s Butterfly . 39

5 Travelling across Domains 40
5.1 Time Domains . 40
5.2 Tweak I: Interpolation . 42

viii

6 Caching the Speed Pill 46
6.1 Performance . 46
6.2 The Saving Strategy . 47
6.3 Tweak II: Memoization . 49
6.4 A change in Perspective . 55
6.5 Tweak III: Model and Driver . 56
6.6 Results with Caching . 58

7 Conclusion 60
7.1 Limitations . 60
7.2 Future Improvements . 61
7.3 Final Thoughts . 64

References 65

ix

List of Figures

1.1 The translation between the world of software and the mathematical de-
scription of differential equations are explicit in Rivika. 5

2.1 The combination of these four basic units compose any GPAC circuit (taken
from [1] with permission). 7

2.2 Polynomial circuits resembles combinational circuits, in which the circuit
respond instantly to changes on its inputs (taken from [1] with permission). 8

2.3 Types are not just labels; they enhance the manipulated data with new
information. Their difference in shape can work as the interface for the data. 9

2.4 Functions’ signatures are contracts; they specify which shape the input
information has as well as which shape the output information will have. . 9

2.5 Sum types can be understood in terms of sets, in which the members of the
set are available candidates for the outer shell type. Parity and possible
values in digital states are examples. 9

2.6 Product types are a combination of different sets, where you pick a repre-
sentative from each one. Digital clocks’ time and objects’ coordinates in
space are common use cases. In Haskell, a product type can be defined
using a record alongside with the constructor, where the labels for each
member inside it are explicit. 10

2.7 Depending on the application, different representations of the same struc-
ture need to used due to the domain of interest and/or memory constraints. 11

2.8 The minimum requirement for the Ord typeclass is the <= operator, mean-
ing that the functions <, <=, >, >=, max and min are now unlocked for
the type ClockTime after the implementation. Typeclasses can be viewed
as a third dimension in a type. 11

2.9 Replacements for the validation function within a pipeline like the above
is common. 12

x

2.10 The initial value is used as a starting point for the procedure. The algorithm
continues until the time of interest is reached in the unknown function. Due
to its large time step, the final answer is really far-off from the expected
result. 13

2.11 In Haskell, the type keyword works for alias. The first draft of the Dynamics
type is a function, in which providing a floating point value as time returns
another value as outcome. 14

2.12 The Parameters type represents a given moment in time, carrying over all
the necessary information to execute a solver step until the time limit is
reached. Some useful typeclasses are being derived to these types, given
that Haskell is capable of inferring the implementation of typeclasses in
simple cases. 15

2.13 The Dynamics type is a function of from time related information to an
arbitraty outcome value. 15

3.1 Given a parametric record ps and a dynamic value da, the fmap functor
of the Dynamics type applies the former to the latter. Because the final
result is wrapped inside the IO shell, a second fmap is necessary. 17

3.2 With the Applicative typeclass, it is possible to cope with functions in-
side the Dynamics type. Again, the fmap from IO is being used in the
implementation. 18

3.3 The >>= operator used in the implementation is the bind from the IO
shell. This indicates that when dealing with monads within monads, it is
frequent to use the implementation of the internal members. 18

3.4 The typeclass MonadIO transforms a given value wrapped in IO into a dif-
ferent monad. In this case, the parameter m of the function is the output
of the Dynamics type. 19

3.5 The ability of lifting numerical values to the Dynamics type resembles three
FF-GPAC analog circuits: Constant, Adder and Multiplier. 20

3.6 State Machines are a common abstraction in computer science due to its
easy mapping between function calls and states. Memory regions and pe-
ripherals are embedded with the idea of a state, not only pure functions.
Further, side effects can even act as the trigger to move from one state to
another, meaning that executing a simple function can do more than return
a value. Its internal guts can significantly modify the state machine. 21

3.7 The integrator functions attend the rules of composition of FF-GPAC,
whilst the Dynamics and Integrator types match the four basic units. . . 26

xi

4.1 The integrator functions are essential to create and interconnect combina-
tional and feedback-dependent circuits. 30

4.2 The developed DSL translates a system described by differential equations
to an executable model that resembles FF-GPAC’s description. 30

4.3 Because the list implements the Traversable typeclass, it allows this type
to use the traverse and sequence functions, in which both are related to
changing the internal behaviour of the nested structures. 31

4.4 A state vector comprises multiple state variables and requires the use of
the sequence function to sync time across all variables. 31

4.5 When building a model for simulation, the above pipeline is always used,
from both points of view. The operations with meaning, i.e., the ones
in the Semantics pipeline, are mapped to executable operations in the
Operational pipeline, and vice-versa. 32

4.6 Using only FF-GPAC’s basic units and their composition rules, it’s possible
to model the Lorenz Attractor example. 35

4.7 After newInteg, this record is the final image of the integrator. The function
initialize gives us protecting against wrong records of the type Parameters,
assuring it begins from the first iteration, i.e., t0. 36

4.8 After readInteg, the final floating point values is obtained by reading from
memory a dynamic computation and passing to it the received parameters
record. The result of this application, v, is the returned value. 37

4.9 The diffInteg function only does side effects, meaning that only affects
memory. The internal variable c is a pointer to the computation itself, i.e.,
the dynamic computation being created references this exact procedure. . . 37

4.10 After setting up the environment, this is the final depiction of an indepen-
dent variable. The reader x reads the values computed by the procedure
stored in memory, a second-order Runge-Kutta method in this case. 38

4.11 The Lorenz’s Attractor example has a very famous butterfly shape from
certain angles and constant values in the graph generated by the solution
of the differential equations. 39

5.1 During simulation, functions change the time domain to the one that better
fits certain entities, such as the Solver and the driver. The image is heavily
inspired by a figure in [2]. 40

5.2 Linear interpolation is a transformation that transition us back to the con-
tinuous domain. 45

xii

5.3 The new diffInteg function add linear interpolation to the pipeline when
receiving a parametric record. 45

6.1 With just a few iterations, the exponential behaviour of the implementation
is already noticeable. 47

6.2 The new newInteg function relies on interpolation composed with memo-
ization. Also, this combination produces results from the computation
located in a different memory region, the one pointed by the computation
pointer in the integrator. 53

6.3 The function reads information from the caching pointer, rather than the
pointer where the solvers compute the results. 54

6.4 The new diffInteg function gives to the solver functions access to the region
with the cached data. 55

6.5 Caching changes the direction of walking through the iteration axis. It also
removes an entire pass through the previous iterations. 56

6.6 By using a logarithmic scale, we can see that the final implementation is
performant with more than 100 million iterations in the simulation. 59

xiii

List of Tables

6.1 Small increases in the number of the iterations within the simulation provoke
exponential penalties in performance. 47

6.2 Because the previous solver steps are not saved, the total number of steps
per iteration starts to accumullate following the numerical sequence of
triangular numbers when using the Euler method. 49

6.3 These values were obtained using the same hardware. It shows that the
caching strategy drastically improves Rivika’s performance. Again, the con-
crete memory values obtained from GHC should be considered as just an
indicative of improvement due to the garbage collector interference. 58

6.4 These values were obtained using the same hardware. More complicated
simulations can be done with Rivika after adding memoization. 59

xiv

Chapter 1

Introduction

1.1 Context

Continuous behaviours are deeply embedded into the real world. However, even our most
advanced computers are not capable of completely modeling such phenomena due to its
discrete nature; thus becoming a still-unsolved challenge. Cyber-physical systems (CPS)
— the integration of computers and physical processes [3, 4] — tackles this problem by
attempting to include into the semantics of computing the physical notion of time [4], i.e.,
treating time as a measurement of correctness, not performance [3] nor just an accident
of implementation [4]. Additionally, many systems perform in parallel, which requires
precise and sensitive management of time; a non-achievable goal by using traditional
computing abstractions, e.g., threads [4].

Examples of these concepts are older than the digital computers; analog computers
were used to model battleships’ fire systems and core functionalities of fly-by-wire air-
craft [5]. The mechanical metrics involved in these problems change continuously, such
as space, speed and area, e.g., the firing’s range and velocity are crucial in fire systems,
and surfaces of control are indispensable to model aircraft’s flaps. The main goal of such
models was, and still is, to abstract away the continuous facet of the scenario to the
computer. In this manner, the human in the loop aspect only matters when interfacing
with the computer, with all the heavy-lifting being done by formalized use of shafts and
gears in analog machines [6], and by software after the digital era.

Within software, the aforementioned issues — the lack of time semantics and the
wrong tools for implementing concurrency — are only a glimpse of serious concerns or-
biting around CPS. The main villain is that today’s computer science and engineering
primarily focus on matching software demands, not expressing essential aspects of physi-
cal systems [4, 7]. Further, its sidekick is the weak formalism surrounding the semantics
of model-based design tools; modeling languages whose semantics are defined by the tools

1

rather than by the language itself [7], encouraging ad-hoc design practices. With this in
mind, Lee advocated that leveraging better formal abstractions is the paramount goal
to advance continuous time modeling [4, 7]. More importantly, these new ideas need to
embrace the physical world, taking into account predictability, reliability and interoper-
ability.

The development of a model of computation (MoC) to define and express models is the
major hero towards this better set of abstractions, given that it provides clear, formal and
well-defined semantics [3]. These MoCs determine how concurrency works in the model,
choose which communication protocols will be used, define whether different components
share the notion of time, as well as whether and how they share state [3, 7]. Also, Sangio-
vanni and Lee [8] proposed a formalized denotational framework to allow understanding
and comparison between mixtures of MoCs, thus solving the heterogeneity issue that
raises naturally in many situations during design [3, 7]. Moreover, their framework also
describes how to compose different MoCs, along with addressing the absence of time in
models, via what is defined as tagged systems — a relationship between a tag, generally
used to order events, and an output value.

Ingo et al. went even further [9] by presenting an example of a framework based on the
idea of tagged systems, known as ForSyDe. The tool’s main goal is to push system design
to a higher level of abstraction, by combining MoCs with the functional programming
paradigm. The technique separates the design into two phases, specification and synthe-
sis. The former stage, specification, focus on creating a high-level abstraction model, in
which mathematical formalism is taken into account. The latter part, synthesis, is respon-
sible for applying design transformations — the model is adapted to ForSyDe’s semantics
— and mapping this result onto a chosen architecture for later be implemented in a target
programming language or hardware platform [9]. Afterward, Seyed-Hosein and Ingo [10]
created a co-simulation architecture for multiple models based on ForSyDe’s methodol-
ogy, addressing heterogeneity across languages and tools with different semantics. One
example of such tools treated in the reference is Simulink 1, the de facto model-based
design tool that lacks a formal semantics basis [10]. Simulink being the standard tool for
modeling means that, despite all the effort into utilizing a formal approach to model-based
design, this is still an open problem.

1.2 Proposal

The aforementioned work — the formal notion of MoCs, the ForSyDe framework and its
interaction with modeling-related tools like Simulink — comprises the domain of model-

1Simulink documentation.

2

http://www.mathworks.com/products/simulink/

based design or model-based engineering. Furthermore, the main goal of the present
work contribute to this area of CPS by creating a domain-specific language tool (DSL) for
simulating continuous-time systems that addresses the absence of a formal basis. Thus,
this tool will help to cope with the incompatibility of the mentioned sets of abstractions [4]
— the discreteness of digital computers with the continuous nature of physical phenomena.

The proposed DSL has two special properties of interest: it needs to be a set of well-
defined operational semantics, thus being executable, and it needs to be related to a
formalized reasoning process. The former aspect provides verification via simulation,
a type of verification that is useful when dealing with non-preserving semantic transfor-
mations, i.e., modifications and tweaks in the model that do not assure that properties are
being preserved. Such phenomena are common within the engineering domain, given that
a lot of refinement goes into the modeling process in which previous proof-proved proper-
ties are not guaranteed to be maintained after iterations with the model. A work-around
solution for this problem would be to prove again that the features are in fact present in
the new model; an impractical activity when models start to scale in size and complexity.
Thus, by using an executable tool as a virtual workbench, models that suffered from those
transformations could be extensively tested and verified.

In order to address the latter property, a solid and formal foundation, the tool is
inspired by the general-purpose analog computer (GPAC) formal guidelines, proposed by
Shannon [6] in 1941. This concept was developed to model a Differential Analyzer — an
analog computer composed by a set of interconnected gears and shafts intended to solve
numerical problems [11]. The mechanical parts represents physical quantities and their
interaction results in solving differential equations, a common activity in engineering,
physics and other branches of science [6]. The model was based on a set of black boxes,
so-called circuits or analog units, and a set of proved theorems that guarantees that the
composition of these units are the minimum necessary to model the system, given some
conditions. For instance, if a system is composed by a set of differentially algebraic
equations with prescribed initial conditions [5], then a GPAC circuit can be built to
model it. Later on, some extensions of the original GPAC were developed, going from
solving unaddressed problems contained in the original scope of the model [5] all the
way to make GPAC capable of expressing generable functions, Turing universality and
hypertranscendental functions [11, 12]. Furthermore, although the analog computer has
been forgotten in favor of its digital counterpart [5], recent studies in the development of
hybrid systems [1] brought GPAC back to the spotlight in the CPS domain.

With these two core properties in mind, the proposed DSL will translate GPAC’s
original set of black boxes to some executable software.

3

1.3 Goal

The main goal of the present work is to build an executable software that can solve
differential equations and resembles the core idea of the GPAC model. The programming
language of choice was Haskell, due to a variety of different reasons. First, this is already
being used in the CPS domain in some degree, as showed by the ForSyDe framework [9,
10]. Second, Lee describes a lot of properties [3] that matches the functional programming
paradigm almost perfectly:

• Prevent misconnected MoCs by using great interfaces in between⇒ Such interfaces
can be built using Haskell’s strong type system

• Enable composition of MoCs ⇒ Composition is a first-class feature in functional
programming languages

• It should be possible to conjoin a functional model with an implementation model⇒
Functions programming languages makes a clear the separation between the deno-
tational aspect of the program, i.e., its meaning, from the operational functionality

• All too often the semantics emerge accidentally from the software implementation
rather than being built-in from the start ⇒ A denotative approach with no regard
for implementation details is common in the functional paradigm

• The challenge is to define MoCs that are sufficiently expressive and have strong for-
mal properties that enable systematic validation of designs and correct-by-construction
synthesis of implementations⇒ Functional languages are commonly used for formal
mathematical applications, such as proof of theorems and properties, as well as also
being known for "correct-by-construction" approaches

Thus, we believe that the use of functional programming for modeling continuous time
is not a coincidence; properties that are established as fundamental to leverage better ab-
stractions for CPS simulation seem to be within the functional programming paradigm.
Furthermore, this implementation is based on Aivika 2 — an open source multi-method
library for simulating a variety of paradigms, including partial support for physical dy-
namics, written in Haskell. Our version is modified for our needs, such as demonstrating
similarities between the implementation and GPAC, shrinking some functionality in favor
of focusing on continuous time modeling, and re-thinking the overall organization of the
project for better understanding. So, this reduced and refactored version of Aivika, so-
called Rivika 3, will be a Haskell Embedded Domain-Specific Language (HEDSL) within

2Aivika source code.
3Rivika source code.

4

https://github.com/dsorokin/aivika
https://github.com/FP-Modeling/rivika/releases/tag/1.0

the model-based engineering domain. So, the built DSL will explore Haskell’s specific fea-
tures and details, such as the type system and typeclasses, to solve differential equations.
Figure 1.1 shows a side-by-side comparison between a physical system and a valid model
created in Rivika.

1 sigma = 10.0
2 rho = 28.0
3 beta = 8.0 / 3.0

4 lorenzModel :: Model Vector
5 lorenzModel =
6 do integX <- newInteg 1.0
7 integY <- newInteg 1.0
8 integZ <- newInteg 1.0
9 let x = readInteg integX

10 y = readInteg integY
11 z = readInteg integZ
12 diffInteg integX (sigma * (y - x))
13 diffInteg integY (x * (rho - z) - y)
14 diffInteg integZ (x * y - beta * z)
15 return $ sequence [x, y, z]

σ = 10.0

ρ = 28.0

β = 8.0
3.0

dx

dt
= σ(y − x)

dy

dt
= x(ρ− z)

dz

dt
= xy − βz

Figure 1.1: The translation between the world of software and the mathematical description of differential
equations are explicit in Rivika.

1.4 Outline

Although written in Haskell, a high level programming language, Rivika explores a mix
of advanced abstractions with some direct memory manipulation — usually associated
with low level programming languages. Hence, the proposed software will be explained
in multiple chapters, each one with a separate and concrete objective.

Chapter 2, Design Philosophy, will explain basic Haskell concepts, such as the type sys-
tem and different sorts of polymorphism, and it will bind them to numerical methods and
GPAC’s circuits. The next chapter, Effectful Integrals, is dedicated to introduce GPAC’s
integrator representative in software, alongside further improvements in the overall mod-
eling of physical systems. The follow-up chapter, Execution Walkthrough, will discuss
how the proposed types aligns with mathematical definitions introduced in Chapter 2.
Moreover, how to execute a simulation as well as a guided example are presented. At the
end, some issues will be identified with the implementation at that point. Chapters 5 and
6, Travelling across Domains and Caching the Speed Pill respectively, address these con-
cerns. Finally, limitations, future improvements and final thoughts are drawn in chapter
7, Conclusion.

5

Chapter 2

Design Philosophy

In the previous chapter, the importance of making a bridge between two different sets
of abstractions — computers and the physical domain — was established. This chapter
will explain the core philosophy behind the implementation of this link, starting with
an introduction to GPAC, followed by the type system used in Haskell, as well as un-
derstanding how to model the main entities of the problem. At the end, the presented
modeling strategy will justify the data types used in the solution, paving the way for the
next chapter Effectful Integrals.

2.1 Shannon’s Foundation: GPAC

The General Purpose Computer or GPAC is a model for the Differential Analyzer —
a mechanical machine controlled by a human operator [12]. This machine is composed
by a set of shafts interconnected in such a manner that a given differential equation is
expressed by a shaft and other mechanical units transmit their values across the entire
machine [6, 11]. For instance, shafts that represent independent variables directly interact
with shafts that depicts dependent variables. The machine is primarily composed by four
types of units: gear boxes, adders, integrators and input tables [6]. These units provide
useful operations to the machine, such as multiplication, addition, integration and saving
the computed values. The main goal of this machine is to solve ordinary differential
equations via numerical solutions.

In order to add a formal basis to the machine, Shannon built the GPAC model, a
mathematical model sustained by proofs and axioms [6]. The end result was a set of rules
for which types of equations can be modeled as well as which units are the minimum
necessary for modeling them and how they can be combined. All algebraic functions (e.g.
quotients of polynomials and irrational algebraic functions) and algebraic-trascendental
functions (e.g. exponentials, logarithms, trigonometric, Bessel, elliptic and probability

6

functions) can be modeled using a GPAC circuit [1, 6]. Moreover, the four preceding
mechanical units were renamed and together created the minimum set of circuits for a
given GPAC [1]. Figure 2.1 portrays these basic units, followed by descriptions of their
behaviour, inputs and outputs.

Figure 2.1: The combination of these four basic units compose any GPAC circuit (taken from [1] with
permission).

• Constant Function: This unit generates a real constant output for any time t.

• Adder: It generates the sum of two given inputs with both varying in time, i.e., it
produces w = u+ v for all variations of u and v.

• Multiplier: The product of two given inputs is generated for all moments in time,
i.e., w = uv is the output.

• Integrator: Given two inputs — u(t) and v(t) — and an initial condition w0 at time
t0, the unit generates the output w(t) = w0 +

∫ t
t0
u(t) dv(t), where u is the integrand

and v is the variable of integration.

Composition rules that restrict how these units can be hooked to one another. Shannon
established that a valid GPAC is the one in which two inputs and two outputs are not
interconnected and the inputs are only driven by either the independent variable t (usually
time) or by a single unit output [1, 5, 6]. Daniel’s GPAC extension, FF-GPAC [5], added
new constraints related to no-feedback GPAC configurations while still using the same four
basic units. These structures, so-called polynomial circuits [1, 11], are being displayed in
Figure 2.2 and they are made by only using constant function units, adders and multipliers.
Also, such circuits are combinational, meaning that they compute values in a point-wise
manner between the given inputs. Thus, FF-GPAC’s composition rules are the following:

• An input of a polynomial circuit should be the input t or the output of an integrator.
Feedback can only be done from the output of integrators to inputs of polynomial
circuits.

7

Figure 2.2: Polynomial circuits resembles combinational circuits, in which the circuit respond instantly
to changes on its inputs (taken from [1] with permission).

• Each polynomial circuit admit multiple inputs.

• Each integrand input of an integrator should be generated by the output of a poly-
nomial unit.

• Each variable of integration of an integrator is the input t.

During the definition of the DSL, parallels will map the aforementioned basic units
and composition rules to the implementation. With this strategy, all the mathematical
formalism leveraged for analog computers will drive the implementation in the digital
computer. Although we do not formally prove a refinment between the GPAC theory,
i.e., our especification, and the final implementation, Rivika is an attempt to build a tool
with formalism taken into account; one of the most frequent critiques in the CPS domain,
as explained in the previous chapter.

2.2 The Shape of Information

Types in programming languages represent the format of information. Figure 2.3 illus-
trates types with an imaginary representation of their shape and Figure 2.4 shows how
types can be used to restrain which data can be plumbered into and from a function. In
the latter image, function lessThan10 has the type signature Int -> Bool, meaning that
it accepts Int data as input and produces Bool data as the output. These types are used

8

to make constratins and add a safety layer in compile time, given that using data with
different types as input, e.g, Char or Double, is regarded as a type error.

Figure 2.3: Types are not just labels; they en-
hance the manipulated data with new informa-
tion. Their difference in shape can work as the
interface for the data.

Figure 2.4: Functions’ signatures are contracts;
they specify which shape the input information
has as well as which shape the output informa-
tion will have.

Primitive types, e.g., Int, Double and Char, can be composed to create more powerful
data types, capable of modeling complicated data structures. In this context, composition
means binding or gluing existent types together to create more sophisticated abstractions,
such as recursive structures and records of information. Two algebraic data types are
the type composition mechanism provided by Haskell to bind existent types together.

The sum type, also known as tagged union in type theory, is an algebraic data type that
introduces choice across multiple options using a single label. For instance, a type named
Parity can represent the parity of a natural number. It has two options or representatives:
Even or Odd, where these are mutually exclusive. When using this type either of them
will be of type Parity. A given sum type can have any number of representatives, but
only one of them can be used at a given moment. Figure 2.5 depicts examples of sum
types with their syntax in the language, in which a given entry of the type can only
assume one of the available possibilities. Another use case depicted in the image is the
type DigitalStates, which describes the possible states in digital circuits as one of three
options: High, Low and Z.

1 data Parity = Even | Odd

2 data DigitalStates = High | Low | Z

Figure 2.5: Sum types can be understood in terms of sets, in which the members of the set are available
candidates for the outer shell type. Parity and possible values in digital states are examples.

9

The second type composition mechanism available is the product type, which com-
bines using a type constructor. While the sum type adds choice in the language, this data
type requires multiple types to assemble a new one in a mutually inclusive manner. For
example, a digital clock composed by two numbers, hours and minutes, can be portrayed
by the type ClockTime, which is a combination of two separate numbers combined by
the wrapper Time. In order to have any possible time, it is necessary to provide both
parts. Effectively, the product type executes a cartesian product with its parts. Figure
2.6 illustrates the syntax used in Haskell to create product types as well as another ex-
ample of combined data, the type SpacePosition. It represents spatial position in three
dimensional space, combining spatial coordinates in a single place.

1 data ClockTime = Time Int Int

2 data SpacePosition = Point Double Double Double

3 data SpacePosition = Point { x :: Double,
4 y :: Double,
5 z :: Double }

Figure 2.6: Product types are a combination of different sets, where you pick a representative from each
one. Digital clocks’ time and objects’ coordinates in space are common use cases. In Haskell, a product
type can be defined using a record alongside with the constructor, where the labels for each member
inside it are explicit.

Within algebraic data types, it is possible to abstract the structure out, meaning
that the outer shell of the type can be understood as a common pattern changing only
the internal content. For instance, if a given application can take advantage of integer
values but want to use the same configuration as the one presented in the SpacePosition
data type, it’s possible to add this customization. This feature is known as parametric
polymorphism, a powerful tool available in Haskell’s type system. An example is presented
in Figure 2.7 using the SpacePosition type structure, where its internal types are being
parametrized, thus allowing the use of other types internally, such as Float, Int and
Double.

In some situations, changing the type of the structure is not the desired property
of interest. There are applications where some sort of behaviour is a necessity, e.g.,
the ability of comparing two instances of a custom type. This nature of polymorphism is
known as ad hoc polymorphism, which is implemented in Haskell via what is similar to java-
like interfaces, so-called typeclasses. However, establishing a contract with a typeclass
differs from an interface in a fundamental aspect: rather than inheritance being given
to the type, it has a lawful implementation, meaning that mathematical formalism is
assured for it. As an example, the implementation of the typeclass Eq gives to the type
all comparable operations (== and ! =). Figure 2.8 shows the implementation of Ord

10

1 data SpacePosition a = Point a a a

2 data SpacePosition a = Point { x :: a,
3 y :: a,
4 z :: a }

Figure 2.7: Depending on the application, different representations of the same structure need to used
due to the domain of interest and/or memory constraints.

typeclass for the presented ClockTime, giving it capabilities for sorting instances of such
type.

1 data ClockTime = Time Int Int

2 instance Ord ClockTime where
3 (Time a b) <= (Time c d)
4 = (a <= c) && (b <= d)

Figure 2.8: The minimum requirement for the Ord typeclass is the <= operator, meaning that the
functions <, <=, >, >=, max and min are now unlocked for the type ClockTime after the implementation.
Typeclasses can be viewed as a third dimension in a type.

Algebraic data types, when combined with polymorphism, are a powerful tool in pro-
gramming, being a useful way to model the domain of interest. However, both sum and
product types cannot portray by themselves the intuition of a procedure. A data trans-
formation process, as showed in Figure 2.4, can be utilized in a variety of different ways.
Imagine, for instance, a system where validation can vary according to the current situ-
ation. Any validation algorithm would be using the same data, such as a record called
SystemData, and returning a boolean as the result of the validation, but the internals of
these functions would be totally different. This is represented in Figure 2.9. In Haskell,

11

this motivates the use of functions as first class citizens, meaning that they are values
and can be treated equally in comparison with data types that carries information, such
as being used as arguments to another functions, so-called high order functions.

Figure 2.9: Replacements for the validation function within a pipeline like the above is common.

2.3 Modeling Reality

The continuous time problem explained in the introduction was initially addressed by
mathematics, which represents physical quantities by differential equations. This set
of equations establishes a relationship between functions and their respective derivatives;
the function express the variable of interest and its derivative describe how it changes
over time. It is common in the engineering and in the physics domain to know the rate
of change of a given variable, but the function itself is still unknown. These variables
describe the state of the system, e.g, velocity, water flow, electrical current, etc. When
those variables are allowed to vary continuously — in arbitrarily small increments —
differential equations arise as the standard tool to describe them.

While some differential equations have more than one independent variable per func-
tion, being classified as a partial differential equation, some phenomena can be mod-
eled with only one independent variable per function in a given set, being described as a
set of ordinary differential equations. However, because the majority of such equa-
tions does not have an analytical solution, i.e., cannot be described as a combination
of other analytical formulas, numerical procedures are used to solve the system. These
mechanisms quantize the physical time duration into an interval of numbers, each spaced
by a time step from the other, and the sequence starts from an initial value. Afterward,
the derivative is used to calculate the slope or the direction in which the tangent of the
function is moving in time in order to predict the value of the next step, i.e., determine
which point better represents the function in the next time step. The order of the method
varies its precision during the prediction of the steps, e.g, the Runge-Kutta method of 4th
order is more precise than the Euler method or the Runge-Kutta of 2nd order.

These numerical methods are used to solve problems specified by the following math-
ematical relations:

12

ẏ(t) = f(t, y(t)) y(t0) = y0 (2.1)

As showed, both the derivative and the function — the mathematical formulation of
the system — varies according to time. Both acts as functions in which for a given
time value, it produces a numerical outcome. Moreover, this equality assumes that the
next step following the derivative’s direction will not be that different from the actual
value of the function y if the time step is small enough. Further, it is assumed that
in case of a small enough time step, the difference between time samples is h, i.e., the
time step. In order to model this mathematical relationship between the functions and
its respective derivative, these methods use iteration-based approximations. For intance,
the following equation represents one step of the first-order Euler method, the simplest
numerical method:

yn+1 = yn + hf(tn, yn) (2.2)

So, the next step or iteration of the function yn+1 can be computed by the sum of the
previous step yn with the predicted value obtained by the derivative f(tn, yn) multiplied
by the time step h. Figure 2.10 provides an example of a step-by-step solution of one
differential equation using the Euler method. In this case, the unknown function is a
modified exponential function, and the time of interest is t = 5.

ẏ = y + t y(0) = 1

↓

yn+1 = yn + hf(tn, yn) h = 1 tn+1 = tn + h f(t, y) = y + t

y1 = y0 + 1 ∗ f(0, y0)→ y1 = 1 + 1 ∗ (1 + 0)→ y1 = 2

y2 = y1 + 1 ∗ f(1, y1)→ y2 = 2 + 1 ∗ (2 + 1)→ y2 = 5

y3 = y2 + 1 ∗ f(2, y2)→ y3 = 5 + 1 ∗ (5 + 2)→ y3 = 12

y4 = y3 + 1 ∗ f(3, y3)→ y4 = 12 + 1 ∗ (12 + 3)→ y4 = 27

y5 = y4 + 1 ∗ f(4, y4)→ y5 = 27 + 1 ∗ (27 + 4)→ y5 = 58

Figure 2.10: The initial value is used as a starting point for the procedure. The algorithm continues until
the time of interest is reached in the unknown function. Due to its large time step, the final answer is
really far-off from the expected result.

13

2.4 Making Mathematics Cyber

Our primary goal is to combine the knowledge levered in section 2.2 — modeling capa-
bilities of Haskell’s algebraic type system — with the core notion of differential equations
presented in section 2.3. The type system will model equation 2.2, detailed in the previous
section.

Any representation of a physical system that can be modeled by a set of differential
equations has an outcome value at any given moment in time. The type Dynamics in
Figure 2.11 is a first draft of representing the continuous physical dynamics [3] — the
evolution of a system state in time:

1 type Time = Double
2 type Outcome = Double
3 data Dynamics =
4 Dynamics (Time -> Outcome)

Figure 2.11: In Haskell, the type keyword works for alias. The first draft of the Dynamics type is a
function, in which providing a floating point value as time returns another value as outcome.

This type seems to capture the concept, whilst being compatible with the definition
of a tagged system presented by Lee and Sangiovanni [8]. However, because numerical
methods assume that the time variable is discrete, i.e., it is in the form of iterations
that they solve differential equations. Thus, some tweaks to this type are needed, such
as the number of the current iteration, which method is being used, in which stage the
method is and when the final time of the simulation will be reached. With this in mind,
new types are introduced. Figure 2.12 shows the auxiliary types to build a new version
of the Dynamics type.

The above auxiliary types serve a common purpose: to provide at any given moment
in time, all the information to execute a solver method until the end of the simulation.
The type Interval determines when the simulation should start and when it should end.
The Method sum type is used inside the Solver type to set solver sensible information,
such as the size of the time step, which method will be used and in which stage the method
is in at the current moment. Finally, the Parameters type combines everything together,
alongside with the current time value as well as its discrete counterpart, iteration.

Further, the new Dynamics type can also be parametrically polymorphic, removing the
limitation of only using Double values as the outcome. Figure 2.13 depicts the final type

14

1 data Interval = Interval { startTime :: Double,
2 stopTime :: Double
3 } deriving (Eq, Ord, Show)

4 data Method = Euler
5 | RungeKutta2
6 | RungeKutta4
7 deriving (Eq, Ord, Show)

8 data Solver = Solver { dt :: Double,
9 method :: Method,

10 stage :: Int
11 } deriving (Eq, Ord, Show)

12 data Parameters = Parameters { interval :: Interval,
13 solver :: Solver,
14 time :: Double,
15 iteration :: Int
16 } deriving (Eq, Show)

Figure 2.12: The Parameters type represents a given moment in time, carrying over all the necessary
information to execute a solver step until the time limit is reached. Some useful typeclasses are being
derived to these types, given that Haskell is capable of inferring the implementation of typeclasses in
simple cases.

for the physical dynamics. The IO wrapper is needed to cope with memory management
and side effects, all of which will be explained in the next chapter.

1 data Dynamics a =
2 Dynamics (Parameters -> IO a)

Figure 2.13: The Dynamics type is a function of from time related information to an arbitraty outcome
value.

This summarizes the main pilars in the design: FF-GPAC, the mathematical definition
of the problem and how we are modeling this domain in Haskell. The next chapter,
Effectful Integrals, will start from this foundation, by adding typeclasses to the Dynamics
type, and will later describe the last core type before explaining the solver execution: the
Integrator type. These improvements for the Dynamics type and the new Integrator
type will later be mapped to their FF-GPAC counterparts, explaining that they resemble
the basic units mentioned in section 2.1.

15

Chapter 3

Effectful Integrals

This chapter details the next steps to simulate continuous-time behaviours. It starts by en-
hancing the previously defined Dynamics type by implementing some specific typeclasses.
Next, the second core type of the simulation, the Integrator type, will be introduced
alongside its functions. These improvements will then be compared to FF-GPAC’s basic
units, our source of formalism within the project. At the end of the chapter, an implicit
recursion will be blended with a lot of effectful operations, making the Integrator type
hard to digest. This will be addressed by a guided Lorenz Attractor example in the next
chapter, Execution Walkthrough.

3.1 Uplifting the Dynamics Type

The Dynamics type needs algebraic operations to be better manipulated, i.e., useful
operations that can be applied to the type preserving its external structure. These pro-
cedures are algebraic laws or properties that enhance the capabilities of the proposed
function type wrapped by a Dynamics shell. Towards this goal, a few typeclasses need to
be implemented.

Across the spectrum of available typeclasses in Haskell, we are interested in the ones
that allow data manipulation with a single or multiple Dynamics and provide mathe-
matical operations. To address the former group of operations, the typeclasses Functor,
Applicative, Monad and MonadIO will be implemented. The later group of properties is
dedicated to provide mathematical operations, such as + and ×, and it can be acquired
by implementing the typeclasses Num, Fractional, and Floating.

The typeclasses Functor, Applicative and Monad are all lifting operations, meaning
that they allow functions to be lifted or involved by the chosen type. While they differ
which functions will be lifted, i.e., each one of them lift a function with a different
type signature, they share the intuition that these functions will be interacting with the

16

Dynamics type. This perspective is crucial for a practical understanding of these patterns.
A function with a certain shape and details will be lifted using one of those typeclasses
and their respective operators.

The Functor typeclass, when implemented for the type of interest, let the lifting of
functions to be enclosed by the Dynamics type. Thus, as depicted in Figure 3.1, the
function a -> b that comes as a parameter has its values surrounded by the same values
wrapped with the Dynamics type, i.e., the outcome is a function with the signature
Dynamics a -> Dynamics b. The code below shows the implementation of the fmap
function — the minimum requirement to the Functor typeclass — to the Dynamics type.
It is worth noting that, because this type uses an IO inside, a second fmap, this time
related to IO, needs to be used in the implementation.

1 instance Functor Dynamics where
2 fmap f (Dynamics da) = Dynamics $ \ps -> fmap f (da ps)

Figure 3.1: Given a parametric record ps and a dynamic value da, the fmap functor of the Dynamics
type applies the former to the latter. Because the final result is wrapped inside the IO shell, a second
fmap is necessary.

The next typeclass, Applicative, deals with functions that are inside the Dynamics
type. When implemented, this algebraic operation lifts this internal function, wrapped by
the type of choice, applying the external type to its internal members, thus generating
again a function with the signature Dynamics a -> Dynamics b. The minimum require-
ments for this typeclass is the function pure, a function responsible for wrapping any
value with the Dynamics wrapper, and the <*> operator, which does the aforementioned
interaction between the internal values with the outer shell. The implementation of this
typeclass is presented in the code bellow, in which the dependency df has the signature
Dynamics (a -> b) and its internal function a -> b is being lifted to the Dynamics type.
Figure 3.2 illustrates the described lifting with Applicative.

The third and final lifting is the Monad typeclass. In this case, the function being
lifted generates structure as the outcome, although its dependency is a pure value.
As Figure 3.3 portrays, a function with the signature a -> Dynamics b can be lifted
to the signature Dynamics a -> Dynamics b by using the Monad typeclass. This new
operation for lifting, so-called bind, is written below, alongside the return function, which
is the same pure function from the Applicative typeclass. Together, these two functions

17

1 instance Applicative Dynamics where
2 pure a = Dynamics $ const (return a)
3 (<*>) = appComposition

1 appComposition :: Dynamics (a -> b) -> Dynamics a -> Dynamics b
2 appComposition (Dynamics df) (Dynamics da)
3 = Dynamics $ \ps -> df ps >>= \f -> fmap f (da ps)

Figure 3.2: With the Applicative typeclass, it is possible to cope with functions inside the Dynamics
type. Again, the fmap from IO is being used in the implementation.

represent the minimum requirements of the Monad typeclass. Figure 3.3 illustrates the
aforementioned scenario.

1 instance Monad Dynamics where
2 return a = pure a
3 m >>= k = bind k m

1 bind :: (a -> Dynamics b) -> Dynamics a -> Dynamics b
2 bind k (Dynamics m)
3 = Dynamics $ \ps -> m ps >>= \a -> (\(Dynamics m') -> m' ps) $ k a

Figure 3.3: The >>= operator used in the implementation is the bind from the IO shell. This indicates
that when dealing with monads within monads, it is frequent to use the implementation of the internal
members.

Aside from lifting operations, the final typeclass related to data manipulation is the
MonadIO typeclass. It comprises only one function, liftIO, and its purpose is to change
the structure that is wrapping the value, going from an IO outer shell to the monad of
interest, Dynamics in this case. The usefulness of this typeclass will be more clear in the
next topic, section 3.3. The implementation is bellow, alongside its visual representation
in Figure 3.4.

18

1 instance MonadIO Dynamics where
2 liftIO m = Dynamics $ const m

Figure 3.4: The typeclass MonadIO transforms a given value wrapped in IO into a different monad. In
this case, the parameter m of the function is the output of the Dynamics type.

Finally, there are the typeclasses related to mathematical operations. The typeclasses
Num, Fractional and Floating provide unary and binary numerical operations, such as
arithmetic operations and trigonometric functions. However, because we want to use them
with the Dynamics type, their implementation involve lifting. Further, the Functor and
Applicative typeclasses allow us to execute this lifting, since they are designed for this
purpose. The code bellow depicts the implementation for unary and binary operations,
which are used in the requirements for those typeclasses:

1 unaryOP :: (a -> b) -> Dynamics a -> Dynamics b
2 unaryOP = fmap

3 binaryOP :: (a -> b -> c) -> Dynamics a -> Dynamics b -> Dynamics c
4 binaryOP func da db = (fmap func da) <*> db

3.2 GPAC Bind I: Dynamics

After these improvements in the Dynamics type, it is possible to map some of them to FF-
GPAC’s concepts. As we will see shortly, the implemented numerical typeclasses, when
combined with the lifting typeclasses (Functor, Applicative, Monad), express three out
of four FF-GPAC’s basic circuits presented in Figure 2.1 in the previous chapter.

First and foremost, all FF-GPAC units receive time as an available input to compute.
The Dynamics type represents continuous physical dynamics [3], which means that it
portrays a function from time to physical output. Hence, it already has time embedded
into its definition; a record with type Parameters is received as a dependency to obtain
the final result at that moment. Furthermore, it remains to model the FF-GPAC’s black
boxes and the composition rules that bind them together.

The simplest unit of all, Constant Unit, can be achieved via the implementation
of the Applicative and Num typeclasses. First, this unit needs to receive the time of
simulation at that point, which is an granted by the Dynamics type. Next, it needs to
return a constant value k for all moments in time. The Num given the Dynamics type
the option of using number representations, such as the types Int, Integer, Float and

19

Double. Further, the Applicative typeclass can lift those number-related functions to
the desired type by using the pure function.

Arithmetic basic units, such as the Adder Unit and the Multiplier Unit, are being
modeled by the Functor, Applicative and Num typeclasses. Those two units use binary
operations with physical signals. As demonstrated in the previous section, the combina-
tion of numerical and lifting typeclasses let us to model such operations. Figure 3.5 shows
FF-GPAC’s analog circuits alongside their Rivika counterparts. The forth unit and the
composition rules will be mapped after describing the second main type of Rivika: the
Integrator type.

Figure 3.5: The ability of lifting numerical values to the Dynamics type resembles three FF-GPAC analog
circuits: Constant, Adder and Multiplier.

3.3 Exploiting Impurity

The Dynamics type directly interacts with a second type that intensively explores side
effects. The notion of a side effect correlates to changing a state, i.e., if you see a com-
puter program as a state machine, an operation that goes beyond returning a value —
it has an observable interference somewhere else — is called a side effect operation or an
impure functionality. Examples of common use cases goes from modifying memory re-
gions to performing input-output procedures via system-calls. The nature of purity comes
from the mathematical domain, in which a function is a procedure that is deterministic,
meaning that the output value is always the same if the same input is provided — a
false assumption when programming with side effects. An example of an imaginary state
machine can be viewed in Figure 3.6.

20

Figure 3.6: State Machines are a
common abstraction in computer
science due to its easy mapping
between function calls and states.
Memory regions and peripherals
are embedded with the idea of
a state, not only pure functions.
Further, side effects can even act
as the trigger to move from one
state to another, meaning that ex-
ecuting a simple function can do
more than return a value. Its in-
ternal guts can significantly mod-
ify the state machine.

In low-level and imperative languages, such as C and Fortran, impurity is present
across the program and can be easily and naturally added via pointers — addresses
to memory regions where values, or even other pointers, can be stored. In contrast,
functional programming languages advocate to a more explicit use of such aspect, given
that it prioritizes pure and mathematical functions instead of allowing the developer to
mix these two facets. So, the developer has to take extra effort to add an effectful function
into the program, clearly separating these two different styles of programming.

The second core type of the present work, the Integrator, is based on this idea of side
effect operations, manipulating data directly in memory, always consulting and modifying
data in the impure world. Foremost, it represents a differential equation, as explained in
chapter 2, Design Philosophy section 2.3, meaning that the Integrator type models the
calculation of an integral. It accomplishes this task by driving the numerical algorithms
of a given solver method, implying that this is where the operational semantics of our
DSL reside.

With this in mind, the Integrator type is responsible for executing a given solver
method to calculate a given integral. This type comprises the initial value of the system,
i.e., the value of a given function at time t0, and a pointer to a memory region for
future use, called computation. In Haskell, something similar to a pointer and memory
allocation can be made by using the IORef type. This memory region is being allocated
to be used with the type Dynamics Double. Also, the initial value is also represented
by Dynamics Double, and the initial condition can be lifted to this type because the
typeclass Num is implemented (section 3.1). It is worth noticing that these pointers are
pointing to functions or computations and not to double precision values.

21

1 data Integrator = Integrator { initial :: Dynamics Double,
2 computation :: IORef (Dynamics Double)
3 }

There are three functions that involve the Integrator and the Dynamics types to-
gether: the function newInteg, responsible for allocating the memory that the pointer
will pointer to, readInteg, letting us to read from the pointer, and diffInteg, a function
that alters the content of the region being pointed. In summary, these functions allow us
to create, read and update data from that region, if we have the pointer on-hand. All
functions related to the integrator use what’s known as do-notation, a syntax sugar of
the Monad typeclass for the bind operator. The code bellow is the implementation of the
newInteg function, which creates an integrator:

1 newInteg :: Dynamics Double -> Dynamics Integrator
2 newInteg i =
3 do comp <- liftIO $ newIORef $ initialize i
4 let integ = Integrator { initial = i,
5 computation = comp }
6 return integ

The first step to create an integrator is to manage the initial value, which is a function
with the type Parameters -> IO Double wrapped in Dynamics. After acquiring a given
initial value i, the integrator needs to assure that any given parameter record is the
beginning of the computation process, i.e., it starts from t0. The initialize function
fulfills this role, doing a reset in time, iteration and stage in a given parameter record.
This is necessary because all the implemented solvers presumes sequential steps, starting
from the initial condition. So, in order to not allow this error-prone behaviour, the
integrator makes sure that the initial state of the system is configured correctly. The next
step is to allocate memory to this computation — a procedure that will get you the initial
value, while modifying the parameter record dependency of the function accordingly.

The following stage is to do a type conversion, given that in order to create the
Integrator record, it is necessary to have the type IORef (Dynamics Double). At first
glance, this can seem to be an issue because the result of the newIORef function is
wrapped with the IO monad 1. This conversion is the reason why the IO monad is being
used in the implementation, and hence forced us to implement the typeclass MonadIO. The
function liftIO is capable of removing the IO wrapper and adding an arbitrary monad in
its place, Dynamics in this case. So, after line 3 the comp value has the desired Dynamics
type. The remaining step of this creation process is to construct the integrator itself by

1 IORef hackage documentation.

22

https://hackage.haskell.org/package/base-4.16.1.0/docs/Data-IORef.html

building up the record with the correct fields, e.g., the dynamic version of the initial value
and the pointer to the constructed computation written in memory (lines 4 and 5).

1 readInteg :: Integrator -> Dynamics Double
2 readInteg integ =
3 Dynamics $ \ps ->
4 do (Dynamics m) <- readIORef (computation integ)
5 m ps

To read the content of this region, it is necessary to provide the integrator to the
readInteg function. Its implementation is straightforward: build a new Dynamics that
applies the given record of Parameters (line 5) to what’s being stored in the region (line
4). This is accomplished by using do-notation with the readIORef function 1.

Finally, the function diffInteg is a side-effect-only function that changes which com-
putation will be used by the integrator. It is worth noticing that after the creation
of the integrator, the computation pointer is addressing a simple and, initially, useless
computation: given an arbitrary record of Parameters, it will fix it to assure it is starting
at t0, and it will return the initial value in form of a Dynamics Double. To update this
behaviour, the diffInteg change the content being pointed by the integrator’s pointer:

1 diffInteg :: Integrator -> Dynamics Double -> Dynamics ()
2 diffInteg integ diff =
3 do let z = Dynamics $ \ps ->
4 do whatToDo <- readIORef (computation integ)
5 let i = initial integ
6 case method (solver ps) of
7 Euler -> integEuler diff i whatToDo ps
8 RungeKutta2 -> integRK2 diff i whatToDo ps
9 RungeKutta4 -> integRK4 diff i whatToDo ps

10 liftIO $ writeIORef (computation integ) z

In the beginning of the function (line 3), we create a new computation, so-called z — a
function wrapped in the Dynamics type that receives a Parameters record and computes
the result based on the solving method. In z, the first step is to build a copy of the same
process being pointed by the computation pointer (line 4), and get the initial condition
of the system (line 5). Finally, after checking the chosen solver (line 6), it is executed
one iteration of the process by calling integEuler, or integRK2 or integRK4. After line
10, this entire process z is being pointed by the computation pointer, being done by the
writeIORef function 1. It may seem confusing that inside z we are reading what is being
pointed and later, on the last line of diffInteg, this is being used on the final line to update
that same pointer. This is necessary, as it will be explained in the next chapter Execution

23

Walkthrough, to allow the use of an implicit recursion to assure the sequential aspect
needed by the solvers. For now, the core idea is this: the diffInteg function alters the
future computations; it rewrites which procedure will be pointed by the computation
pointer. This new procedure, which we called z, creates an intermediate computation,
whatToDo (line 4), that reads what this pointer is addressing, which is z itself.

Initially, this strange behaviour may cause the idea that this computation will never
halt. However, Haskell’s laziness assures that a given computation will not be computed
unless it is necessary to continue execution and this is not the case in the current stage,
given that we are just setting the environment in the memory to further calculate the
solution of the system.

3.4 GPAC Bind II: Integrator

The Integrator type introduced in the previous section corresponds to FF-GPAC’s forth
and final basic unit, the integrator. The analog version of the integrator used in FF-GPAC
had the goal of using physical systems (shafts and gears) that obeys the same mathemati-
cal relations that control other physical or technical phenomenon under investigation [11].
In contrast, the integrator modeled in Rivika uses pointers in a digital computer that
point to iteration-based algorithms that can approximate the solution of the problem at
a requested moment t in time.

Lastly, there are the composition rules in FF-GPAC — constraints that describe how
the units can be interconnected. The following are the same composition rules presented
in chapter 2, Design Philosophy, section 2.1:

1. An input of a polynomial circuit should be the input t or the output of an integrator.
Feedback can only be done from the output of integrators to inputs of polynomial
circuits.

2. Each polynomial circuit admit multiple inputs

3. Each integrand input of an integrator should be generated by the output of a poly-
nomial unit.

4. Each variable of integration of an integrator is the input t.

The preceding rules include defining connections with polynomial circuits — an acyclic
circuit composed only by constant functions, adders and multipliers. These special circuits
are already being modeled in Rivika by the Dynamics type with a set of typeclasses, as
explained in the previous section about GPAC. The integrator functions, e.g., readInteg
and diffInteg, represent the composition rules.

24

Going back to the type signature of the diffInteg, Integrator -> Dynamics Double
-> Dynamics (), we can interpret this function as a wiring operation. This function
connects as an input of the integrator, represented by the Integrator type, the output
of a polynomial circuit, represented by the value with Dynamics Double type. Because
the operation is just setting up the connections between the two, the functions ends with
the type Dynamics ().

A polynomial circuit can have the time t or an output of another integrator as in-
puts, with restricted feedback (rule 1). This rule is being matched by the following: the
Dynamics type makes time available to the circuits, and the readInteg function allows us
to read the output of another integrators. The second rule, related to multiple inputs in
the combinational circuit, is being followed because we can link inputs using arithmetic
operations, feature provided by the Num typeclass. Moreover, because the sole purpose of
Rivika is to solve differential equations, we are only interested in circuits that calculates
integrals, meaning that it is guaranteed that the integrand of the integrator will always
be the output of a polynomial unit (rule 3), as we saw with the type signature of the
diffInteg function. The forth rule is also being attended it, given that the solver methods
inside the diffInteg function always calculate the integral in respect to the time variable.
Figure 3.7 summarizes these last mappings between the implementation, and FF-GPAC’s
integrator and rules of composition.

25

Figure 3.7: The integrator functions attend the rules of composition of FF-GPAC, whilst the Dynamics
and Integrator types match the four basic units.

3.5 Using Recursion to solve Math

The remaining topic of this chapter is to describe in detail how the solver methods are
being implemented. There are three solvers currently implemented:

• Euler Method or First-order Runge-Kutta Method

• Second-order Runge-Kutta Method

• Forth-order Runge-Kutta Method

To explain how the solvers work and their nuances, it is useful to go into the imple-
mentation of the simplest one — the Euler method. However, the implementation of the
solvers use a slightly different function for the next step or iteration in comparison to the
one explained in chapter 2. Hence, it is worthwhile to remember how this method origi-
nally iterates in terms of its mathematical description and compare it to the new function.
From equation 2.2, we can obtain a different function to next step, by subtracting the
index from both sides of the equation:

26

yn+1 = yn + hf(tn, yn)→ yn = yn−1 + hf(tn−1, yn−1) (3.1)

The value of the current iteration, yn, can be described in terms of the sum of the
previous value and the product between the time step h with the differential equation from
the previous iteration and time. With this difference taken into account, the following
code is the implementation of the Euler method. In terms of main functionality, the
family of Runge-Kutta methods is analogous:

1 integEuler :: Dynamics Double
2 -> Dynamics Double
3 -> Dynamics Double
4 -> Parameters -> IO Double
5 integEuler (Dynamics diff) (Dynamics init) (Dynamics compute) ps =
6 case iteration ps of
7 0 ->
8 init ps
9 n -> do

10 let iv = interval ps
11 sl = solver ps
12 ty = iterToTime iv sl (n - 1) 0
13 prevPS = ps { time = ty, iteration = n - 1, solver = sl { stage = 0} }
14 a <- compute prevPS
15 b <- diff prevPS
16 let !v = a + dt (solver ps) * b
17 return v

On line 5, it is possible to see which functions are available in order to execute a
step in the solver. The dependency diff is the representation of the differential equation
itself. The initial value, y(t0), can be obtained by applying any Parameters record to the
init dependency function. The next dependency, compute, execute everything previously
defined in diffInteg; thus effectively executing a new step using the same solver. The result
of compute depends on which parametric record will be applied, meaning that we call a
new and different solver step in the current one, potentially building a chain of solver step
calls. This mechanism — of executing again a solver step, inside the solver itself — is the
aforementioned implicit recursion, described in the earlier section. By changing the ps
record to the previous moment and iteration with the solver starting from initial stage,
it is guaranteed that for any step the previous one can be computed, a requirement when
using numerical methods.

With this in mind, the solver function treats the initial value case as the base case of
the recursion, whilst it treats normally the remaining ones (line 9). In the base case (lines
7 and 8), the calculation can be done by doing an application of ps to init. Otherwise, it

27

is necessary to know the result from the previous iteration in order to generate the current
one. To address this requirement, the solver builds another parametric record (lines 10 to
13) and call another solver step (line 14). Also, it calculates the value from applying this
record to diff (line 15), the differential equation, and finally computes the result for the
current iteration (line 16). It is worth noting that the use of let! is mandatory, given
that it forces evaluation of the expression instead of lazily postponing the computation,
making it execute everything in order to get the value v (line 17).

This finishes this chapter, where we incremented the capabilities of the Dynamics type
and used it in combination with a brand-new type, the Integrator. Together these
types represent the mathematical integral operation. The solver methods are involved
within this implementation, and they use an implicit recursion to maintain their sequential
behaviour. Also, those abstractions were mapped to FF-GPAC’s ideas in order to bring
some formalism to the project. However, the used mechanisms, such as implicit recursion
and memory manipulation, make it hard to visualize how to execute the project given a
description of a physical system. The next chapter, Execution Walkthrough, will introduce
the driver of the simulation and present a step-by-step concrete example.

28

Chapter 4

Execution Walkthrough

Previously, we presented in detail the latter core type of the implementation, the Integrator,
as well as why it can model an integral when used with the Dynamics type. This chapter
is a follow-up, and its objectives are threefold: describe how to map a set of differential
equations to an executable model, reveal which functions execute a given example and
present a guided-example as a proof-of-concept.

4.1 From Models to Models

Systems of differential equations reside in the mathematical domain. In order to execute
using the Rivika DSL, this model needs to be converted into an executable model follow-
ing the DSL’s guidelines. Further, we saw that these requirements resemble FF-GPAC’s
description of its basic units and rules of composition. Thus, these mappings between the
three worlds need to be established. Chapters 2 and 3 explained the mapping between
Rivika and FF-GPAC. It remains to map the semantics of the mathematical world to
the operational world of Rivika. This mapping goes as the following:

• The relationship between the derivatives and their respective functions will be mod-
eled by feedback loops with Integrator type.

• The initial condition will be modeled by the initial pointer within an integrator.

• Combinational aspects, such as addition and multiplication of constants and the
time t, will be represented by typeclasses and the Dynamics type.

With that in mind, Figure 4.1 illustrates an example of a model in Rivika, alongside
its mathematical counterpart. Further, Figure 4.2 shows which FF-GPAC circuit each line
is modeling. This pipeline effectively makes Rivika a bridge between a physical system,
modeled by differential equations, and the FF-GPAC model proposed by Graça [5].

29

1 t :: Dynamics Double
2 t = Dynamics $ \ps -> return (time ps)

3 exampleModel :: Dynamics Double
4 exampleModel =
5 do integ <- newInteg 1
6 let y = readInteg integ
7 diffInteg integ (y + t)
8 y

ẏ = y + t y(0) = 1

Figure 4.1: The integrator functions are essential to create and interconnect combinational and feedback-
dependent circuits.

Figure 4.2: The developed DSL translates a system described by differential equations to an executable
model that resembles FF-GPAC’s description.

In line 5, a record with type Integrator is created, with 1 being the initial condition
of the system. Line 6 creates a state variable, a label that gives us access to the output
of an integrator, integ in this case. Afterward, in line 7, the diffInteg function connects
the inputs to a given integrator by creating a combinational circuit, (y + t). Polynomial
circuits and integrators’ outputs can be used as available inputs, as well as the time of
the simulation. Finally, line 8 returns the state variable as the output for the driver, the
main topic of the next section.

There is, however, an useful improvement to be made into the definition of a model
within the DSL. The presented example used only a single state variable, although it

30

is common to have multiple state variables, i.e., multiple integrators interacting with
each other, modeling different aspects of a given scenario. Moreover, when dealing with
multiple state variables, it is important to maintain synchronization between them, i.e.,
the same Parameters is being applied to all state variables at the same time.

To address both of these requirements, we will use the sequence function, available
in Haskell’s standard library. This function manipulates nested structures and change
their internal structure. The only requirement is that the outer type have to implement
the Traversable typeclass. For instance, applying this function to a list of values of type
Maybe would generate a single Maybe value in which its content is a list of the previous
content individually wrapped by the Maybe type. This is only possible because the external
or "bundler" type, list in this case, has implemented the Traversable typeclass. Figure
4.3 depicts the example before and after applying the function.

Figure 4.3: Because the list implements the Traversable typeclass, it allows this type to use the traverse
and sequence functions, in which both are related to changing the internal behaviour of the nested
structures.

Similarly to the preceding example, the list structure will be used to involve all the
state variables with type Dynamics Double. This tweak is effectively creating a vector
of state variables whilst sharing the same notion of time across all of them. So, the final
type signature of a model is Dynamics [Double] or, by using a type aliases for [Double]
as Vector, Dynamics Vector. A second alias can be created to make it more descriptive,
as exemplified in Figure 4.4:

1 type Vector = [Double]
2 type Model a = Dynamics a

3 exampleModel :: Model Vector
4 exampleModel =
5 do integX <- newInteg 1
6 integY <- newInteg 1
7 let x = readInteg integX
8 y = readInteg integY
9 diffInteg integX (x * y)

10 diffInteg integY (y + t)
11 sequence [x, y]

ẋ = y ∗ x x(0) = 1
ẏ = y + t y(0) = 1

Figure 4.4: A state vector comprises multiple state variables and requires the use of the sequence
function to sync time across all variables.

Finally, when creating a model, the same steps have to be done in the same order,
always starting with the integrator functions and finishing with the sequence function

31

being applied to a state vector. So, Figure 4.5 depicts the general pipeline used to create
any model in both the semantics and operational perspectives:

Figure 4.5: When building a model for simulation, the above pipeline is always used, from both points of
view. The operations with meaning, i.e., the ones in the Semantics pipeline, are mapped to executable
operations in the Operational pipeline, and vice-versa.

4.2 Driving the Model

Given a physical model translated to an executable one, it remains to understand which
functions drive the simulation, i.e., which functions take the simulations details into con-
sideration and generate the output. The function runDynamics fulfills this role:

1 runDynamics :: Model a -> Interval -> Solver -> IO [a]
2 runDynamics (Dynamics m) iv sl =
3 do let (nl, nu) = iterationBnds iv (dt sl)
4 parameterise n = Parameters { interval = iv,
5 time = iterToTime iv sl n 0,
6 iteration = n,
7 solver = sl { stage = 0 }}
8 sequence $ map (m . parameterise) [nl .. nu]

On line 3, we convert the time interval of the simulation to an iteration interval in the
format of a tuple, i.e., the continuous interval becomes the tuple (0, stopT ime−startT ime

timeStep
), in

which the second value of the tuple is rounded. From line 4 to line 7, we are defining an
auxiliary function parameterise. This function picks a natural number, which represents
the iteration index, and creates a new record with the type Parameters. Additionally, it
uses the auxiliary function iterToTime (line 5), which converts the iteration number from
the domain of discrete steps to the domain of discrete time, i.e., the time the solver
methods can operate with (chapter 5 will explore more of this concept). This conversion
is based on the time step being used, as well as which method and in which stage it is for
that specific iteration. Finally, line 8 produces the outcome of the runDyanmics function.
The final result is the output from a function called map piped it as an argument for the
sequence function.

32

The map operation is provided by the Functor of the list monad, and it applies an
arbitrary function to the internal members of a list in a sequential manner. In this case,
the parameterise function, composed with the dynamic application m, is the one being
mapped. Thus, a custom value of the type Parameters is taking place of each natural
natural number in the list, and this is being applied to the received Dynamics value. It
produces a list of answers in order, each one wrapped in the IO monad. To abstract
out the IO, thus getting IO [a] rather than [IO a], the sequence function finishes the
implementation.

Additionally, there is an analogous implementation of this function, so-called runDy-
namicsFinal, that return only the final result of the simulation, i.e., y(stopT ime), instead
of the outputs at the time step samples.

4.3 An attractive example

For the example walkthrough, the same example introduced in the chapter Introduction
will be used in this section. So, we will be solving a system, composed by a set of
chaotic solutions, called the Lorenz Attractor. In these types of systems, the ordinary
differential equations are used to model chaotic systems, providing solutions based on
parameter values and initial conditions. The original differential equations are presented
bellow:

σ = 10.0

ρ = 28.0

β = 8.0
3.0

dx

dt
= σ(y(t)− x(t))

dy

dt
= x(t)(ρ− z(t))

dz

dt
= x(t)y(t)− βz(t)

It is straight-forward to map it to the described domain-specific language (DSL).
The remaining details are simulation-related, e.g., which solver method will be used, the

33

interval of the simulation, as well as the size of the time step. Taking into account that
the constants σ, ρ and β need to be set, the code below summarizes it, and Figure 4.6
shows its FF-GPAC circuit:

1 lorenzInterv = Interval { startTime = 0,
2 stopTime = 100 }

3 lorenzSolver = Solver { dt = 0.01,
4 method = RungeKutta2,
5 stage = 0
6 }

7 sigma = 10.0
8 rho = 28.0
9 beta = 8.0 / 3.0

10 lorenzModel :: Model Vector
11 lorenzModel =
12 do integX <- newInteg 1.0
13 integY <- newInteg 1.0
14 integZ <- newInteg 1.0
15 let x = readInteg integX
16 y = readInteg integY
17 z = readInteg integZ
18 diffInteg integX (sigma * (y - x))
19 diffInteg integY (x * (rho - z) - y)
20 diffInteg integZ (x * y - beta * z)
21 sequence [x, y, z]

22 lorenzSystem = runDynamics lorenzModel lorenzInterv lorenzSolver

34

Figure 4.6: Using only FF-GPAC’s basic units and their composition rules, it’s possible to model the
Lorenz Attractor example.

The first two records, Interval and Solver, sets the environment (lines 1 to 6).
The former determines the simulation interval (lines 1 and 2), from start to finish, and
the latter configures the solver with 0.01 seconds as the time step, whilst executing the
second-order Runge-Kutta method from the initial stage (lines 3 to 6). The lorenzModel,
presented after setting the constants (lines 7 to 9), executes the aforementioned pipeline
to create the model: allocate memory (lines 12 to 14), create read-only pointers (lines 15
to 17), change the computation (lines 18 to 20) and dispatch it (line 21). Finally, the
function lorenzSystem groups everything together calling the runDynamics driver (line
22).

After this overview, let’s follow the execution path used by the compiler. Haskell’s
compiler works in a lazily manner, meaning that it calls for execution only the necessary
parts. So, the first step calling lorenzSystem is to call the runDynamics function with
a model, interval and solver configurations. Following its path of execution, the map
function (inside the driver) forces the application of a parametric record generated by the
parameterise function to the provided model, lorenzModel in this case. Thus, it needs to
be executed in order to return from the runDynamics function.

To understand the model, we need to follow the execution sequence of the output:
sequence [x, y, z], which requires executing all the lines before this line to obtain
the all the state variables. For the sake of simplicity, we will follow the execution of the
operations related to the x variable, given that the remaining variables have an analogous
execution walkthrough. First and foremost, memory is allocated for the integrator to

35

work with (line 12). Figure 4.7 depicts this idea, as well as being a reminder of what
the newInteg and initialize functions do, described in the chapter Effectful Integrals. In
this image, the integrator integX comprises two fields, initial and computation. The
former is a simple value of the type Dynamics Double that, regardless of the parameters
record it receives, it returns the initial condition of the system. The latter is a pointer or
address that references a specific Dynamics Double computation in memory: in the case
of receiving a parametric record ps, it fixes potential problems with it via the initialize
block, and it applies this fixed value in order to get i, i.e., the initial value 1, the same
being saved in the other field of the record, initial.

Figure 4.7: After newInteg, this record is the final image of the integrator. The function initialize gives
us protecting against wrong records of the type Parameters, assuring it begins from the first iteration,
i.e., t0.

The next step is the creation of the independent state variable x via readInteg function
(line 15). This variable will read the computations that are executing under the hood by
the integrator. The core idea is to read from the computation pointer inside the integrator
and create a new Dynamics Double value. Figure 4.8 portrays this mental image. When
reading a value from an integrator, the computation pointer is being used to access the
memory region previously allocated. Also, what’s being stored in memory is a Dynamics
Double value. The state variable, x in this case, combines its received Parameters value,
so-called ps, and applies it to the stored dynamic function. The result v is then returned.

The final step is to change the computation inside the memory region (line 18).
Until this moment, the stored computation is always returning the value of the system
at t0, whilst changing the obtained parameters record to be correct via the initialize
function. Our goal is to modify this behaviour to the actual solution of the differential
equations via using numerical methods, i.e., using the solver of the simulation. The
function diffInteg fulfills this role and its functionality is illustrated in Figure 4.9. With
the integrator integX and the differential equation σ(y − x) on hand, this function picks
the provided parametric record ps and it returns the result of a step of the solver RK2,
second-order Runge-Kutta method in this case. Additionally, the solver method receives

36

Figure 4.8: After readInteg, the final floating point values is obtained by reading from memory a dynamic
computation and passing to it the received parameters record. The result of this application, v, is the
returned value.

as a dependency what is being pointed by the computation pointer, represented by c
in the image, alongside the differential equation and initial value, pictured by d and i
respectively.

Figure 4.9: The diffInteg function only does side effects, meaning that only affects memory. The internal
variable c is a pointer to the computation itself, i.e., the dynamic computation being created references
this exact procedure.

Figure 4.10 shows the final image for state variable x after until this point in the
execution.

Lastly, the state variable is wrapped inside a list and it is applied to the sequence
function, as explained in the previous section. This means that the list of variable(s) in
the model, with the signature [Dynamics Double], is transformed into a value with the
type Dynamics [Double]. The transformation can be visually understood when looking

37

Figure 4.10: After setting up the environment, this is the final depiction of an independent variable. The
reader x reads the values computed by the procedure stored in memory, a second-order Runge-Kutta
method in this case.

at Figure 4.10. Instead of picking one ps of type Parameters and returning a value v, the
same parametric record returns a list of values, with the same parametric dependency
being applied to all state variables inside [x, y, z].

However, this only addresses how the driver triggers the entire execution, but does not
explain how the differential equations are actually being calculated with the RK2 numerical
method. This is done by the solver functions (integEuler, integRK2 and integRK4) and
those are all based on equation 3.1 regardless of the chosen method. The equation goes
as the following:

yn+1 = yn + hf(tn, yn)→ yn = yn−1 + hf(tn−1, yn−1)

The equation above makes the dependencies in the RK2 example in Figure 4.10 clear:

• d ⇒ Differential Equation that will be used to obtain the value of the previous
iteration (f(tn−1, yn−1)).

• ps ⇒ Parametric record with solver information, such as the size of the time step
(h).

• i and c ⇒ The initial value of the system, as well as a solver step function, will be
used to calculate the previous iteration result (yn−1).

It is worth mentioning that the dependency c is a call of a solver step, meaning that
it is capable of calculating the previous step yn−1. This is accomplished in a recursive
manner, since for every iteration the previous one is necessary. When the base case
is achieved, by calculating the value at the first iteration using the i dependency, the
recursion stops and the process folds, getting the final result for the iteration that has

38

started the chain. This is the same pattern across all the implemented solvers (Euler,
RungeKutta2 and RungeKutta4).

4.4 Lorenz’s Butterfly

After all the explained theory behind the project, it remains to be seen if this can be
converted into practical results. With certain constant values, the generated graph of the
Lorenz’s Attractor example used in the last chapter is known for oscillation and getting
the shape of two fixed point attractors, meaning that the system evolves to an oscillating
state even if slightly disturbed. As showed in Figure 4.11, the obtained graph from the
Lorenz’s Attractor model matches what was expected for a Lorenz’s system. It is worth
noting that changing the values of σ, ρ and β can produce completely different answers,
destroying the resembled "butterfly" shape of the graph.

Figure 4.11: The Lorenz’s Attractor example has a very famous butterfly shape from certain angles and
constant values in the graph generated by the solution of the differential equations.

Although correct, the presented solution has a few drawbacks. The next two chapters
will explain and address the two identified problems with the current implementation.

39

Chapter 5

Travelling across Domains

The previous chapter ended anouncing that drawbacks are present in the current imple-
mentation. This chapter will introduce the first concern: numerical methods do not reside
in the continuous domain, the one we are actually interested in. After this chapter, this
domain issue will be addressed via interpolation, with a few tweaks in the integrator
and driver.

5.1 Time Domains

When dealing with continuous time, Rivika changes the domain in which time is being
modeled. Figure 5.1 shows the domains that the implementation interact with during
execution:

... ...

...

...

Figure 5.1: During simulation, functions change the time domain to the one that better fits certain
entities, such as the Solver and the driver. The image is heavily inspired by a figure in [2].

40

The problems starts in the physical domain. The goal is to obtain a value of an
unknown function y(t) at time tx. However, because the solution is based on numerical
methods a sampling process occurs and the continuous time domain is transformed into
a discrete time domain, where the solver methods reside — those are represented by
the functions integEuler, integRK2 and integRK4. A solver depends on the chosen time
step to execute a numerical algorithm. Thus, time is modeled by the sum of t0 with
n∆, where n is a natural number. Hence, from the solver perspective, time is always
dependent on the time step, i.e., only values that can be described as t0 + n∆ can be
properly visualized by the solver. Finally, there’s the iteration domain, used by the
driver functions, runDynamics and runDynamicsFinal. When executing the driver, one
of its first steps is to call the function iterationsBnds, which converts the simulation time
interval to a tuple of numbers that represent the amount of iterations based on the time
step of the solver. This functions is presented bellow:

1 iterationBnds :: Interval -> Double -> (Int, Int)
2 iterationBnds interv dt = (0, round ((stopTime interv -
3 startTime interv) / dt))

To achieve the total number of iterations, the function iterationBnds does a round
operation on the sampled result of iterations, based on the time interval (startTime and
stopTime) and the time step (dt). The second member of the tuple is always the answer,
given that it is assumed that the first member of the tuple is always zero.

The function that allows us to go back to the discrete time domain being in the
iteration axis is the iterToTime function. It uses the solver information, the current
iteration and the interval to transition back to time, as depicted by the following code:

1 iterToTime :: Interval -> Solver -> Int -> Int -> Double
2 iterToTime interv solver n st =
3 if st < 0 then
4 error "Incorrect stage: iterToTime"
5 else
6 (startTime interv) + n' * (dt solver) + delta (method solver) st
7 where n' = fromInteger (toInteger n)
8 delta Euler 0 = 0
9 delta RungeKutta2 0 = 0

10 delta RungeKutta2 1 = dt solver
11 delta RungeKutta4 0 = 0
12 delta RungeKutta4 1 = dt solver / 2
13 delta RungeKutta4 2 = dt solver / 2
14 delta RungeKutta4 3 = dt solver

A transformation from iteration to time depends on the chosen solver method due to
their next step functions. For instance, the second and forth order Runge-Kutta methods

41

have more stages, and it uses fractions of the time step for more granular use of the
derivative function. This is why lines 11 and 12 are using half of the time step. Moreover,
all discrete time calculations assume that the value starts from the beginning of the
simulation (startTime). The result is obtained by the sum of the initial value, the solver-
dependent delta function and the iteration times the solver time step (line 6).

There is, however, a missing transition: from the discrete time domain to the domain
of interest in CPS — the continuous time axis. This means that if the time value tx is
not present from the solver point of view, it is not possible to obtain y(tx). The proposed
solution is to add an interpolation function into the pipeline, which addresses this
transition. Thus, values in between solver steps will be transfered back to the continuous
domain.

5.2 Tweak I: Interpolation

This tweak in the current implementation is divided into two parts: the driver and the
integrator. These entities will communicate with each other to properly adapt the out-
come. As mentioned previously, we will add an interpolation function to change from the
discrete domain to the continuous one. However, this interpolation procedure needs to
occur only in special situations: when it is not possible to model that specific point in
time in the discrete time domain. Otherwise, the execution should continue as it is.

So, the proposed mechanism is the following: the driver will identify these corner cases
and communicate to the integrator — via the stage field in the Solver data type — that
the interpolation needs to be added into the pipeline of execution. When this flag is not
on, i.e., the stage informs to continue execution normally, the implementation goes as
the previous chapters detailed. This behaviour is altered only in particular scenarios,
which the driver will be responsible for identifying.

Hence, it remains to re-implement the driver functions. The driver will notify the inte-
grator that an interpolation needs to take place. Furthermore, the function iterationBnds
will also be modified to use ceiling instead of round. The reason will be explained further
on the line. The code below shows these changes:

1 iterationBnds :: Interval -> Double -> (Int, Int)
2 iterationBnds interv dt = (0, ceiling ((stopTime interv -
3 startTime interv) / dt))

4 epslon = 0.00001

5 runDynamics :: Model a -> Interval -> Solver -> IO [a]
6 runDynamics (Dynamics m) iv sl =

42

7 do let (nl, nu) = basicIterationBnds iv (dt sl)
8 parameterise n = Parameters { interval = iv,
9 time = iterToTime iv sl n 0,

10 iteration = n,
11 solver = sl { stage = 0 }}
12 ps = Parameters { interval = iv,
13 time = stopTime iv,
14 iteration = nu,
15 solver = sl { stage = -1}}
16 if (iterToTime iv sl nu 0) - (stopTime iv) < epslon
17 then sequence $ map (m . parameterise) [nl .. nu]
18 else sequence $ ((init $ map (m . parameterise) [nl .. nu]) ++ [m ps])

The new implementation of iterationBnds is pretty similar to the previous one, with
the difference being the replacement of the round function for the ceiling function. As
explained in the previous section, the rounding is used to go to the iteration domain.
However, because the interpolation requires both solver steps — the one that came
before tx and the one immediately afterwards — the number of iterations needs always to
surpass the requested time. For instance, the time 5.3 seconds will demand the fifth and
sixth iterations with a time step of 1 second. When using ceiling, it is assured that the
value of interest will be in the interval of computed values. So, when dealing with 5.3,
the integrator will calculate all values up to 6 seconds.

Lines 5 to 11 are equal to the previous implementation of the runDynamics function.
On line 12, a new record of type Parameters is being created, especifically to these
special cases of mismatch between discrete and continuous time. The differences within
this special record are relevant: the time field is being fulfilled with the actual stop time
and the stage field of the solver is being set to -1. The latter is how the driver tells the
integrator to apply the interpolation function. Later, as we will see, the integrator will
check for negative values in the stage field and it will execute a slightly different pipeline.

This parametric record, however, will only be used if, and only if, we detect that a
divergence took place, based on the configuration of the simulation. This is being checked
in line 16, where it is being compared the conversion of the last iteration to time with the
provided stop time in the Interval type record. If they are not discrepant by an epslon
value, it means that the simulation can proceed normally. Otherwise, the stop time is
between the two last iterations, and cannot be represented discreetly. So, the solution is
to cut the last iteration, given that we know that it surpasses the end of the simulation,
and add a new member to the list of outcomes, a computation where the altered ps record
is being applied. This major step is happening on line 18.

Next, the integrator needs to be modified in order to cope with negative value in solver
stages. The following interpolate function will be an added to the integrator:

43

1 interpolate :: Dynamics Double -> Dynamics Double
2 interpolate (Dynamics m) =
3 Dynamics $ \ps ->
4 if stage (solver ps) >= 0 then
5 m ps
6 else
7 let iv = interval ps
8 sl = solver ps
9 t = time ps

10 st = dt sl
11 x = (t - startTime iv) / st
12 n1 = max (floor x) (iterationLoBnd iv st)
13 n2 = min (ceiling x) (iterationHiBnd iv st)
14 t1 = iterToTime iv sl n1 0
15 t2 = iterToTime iv sl n2 0
16 z1 = m $ ps { time = t1,
17 iteration = n1,
18 solver = sl { stage = 0 } }
19 z2 = m $ ps { time = t2,
20 iteration = n2,
21 solver = sl { stage = 0 } }
22 in do y1 <- z1
23 y2 <- z2
24 return $ y1 + (y2 - y1) * (t - t1) / (t2 - t1)

Lines 4 to 6 are the normal workflow for positive values in the stage field. If a corner
case comes in, the reminaing code applies linear interpolation to it. It accomplishes
this by first comparing the next and previous discrete times (lines 14 and 15) relative to
x (line 11) — the discrete counterpart of the time of interest t (line 9). These time points
are calculated by their correspondent iterations (lines 12 and 13). Then, the integrator
calculates the outcomes at these two points, i.e., do applications of the previous and next
modeled times points with their respective parametric records (lines 16 to 21). Finally,
lines 22 to 24 execute the linear interpolation with the obtained values that surround the
non-discrete time point. Figure 5.2 illustrates the effect of the interpolate function when
converting domains.

1 diffInteg :: Integrator -> Dynamics Double -> Dynamics ()
2 diffInteg integ diff =
3 do let z = Dynamics $ \ps ->
4 do whatToDo <- readIORef (computation integ)
5 let i = initial integ
6 case method (solver ps) of
7 Euler -> integEuler diff i whatToDo ps
8 RungeKutta2 -> integRK2 diff i whatToDo ps

44

9 RungeKutta4 -> integRK4 diff i whatToDo ps
10 liftIO $ writeIORef (computation integ) (interpolate z)

... ...

...

Figure 5.2: Linear interpolation is a transformation that transition us back to the continuous domain.

The last step in this tweak is to add this function into the integrator function diffInteg.
The code is almost identical to the one presented in chapter 3, Effectful Integrals. The
main difference is in line 10, where the interpolation function is being applied to z. Figure
5.3 shows the same visual representation for the diffInteg function used in chapter 4, but
with the aforementioned modifications.

Figure 5.3: The new diffInteg function add linear interpolation to the pipeline when receiving a parametric
record.

This concludes the first tweak in Rivika. Now, the mismatches between the stop
time of the simulation and the time step are being treated differently, going back to the
continuous domain thanks to the added linear interpolation. The next chapter, Caching
the Speed Pill, goes deep into the program’s performance and how this can be fixed with
a caching strategy.

45

Chapter 6

Caching the Speed Pill

Chapter 5, Travelling across Domains, leveraged a major concern with the proposed
software: the solvers don’t work in the domain of interest, continuous time. This chapter,
Caching the Speed Pill, addresses a second problem: the performance in Rivika. At the
end of it, the simulation will be orders of magnitude faster by using a common modern
caching strategy to speed up computing processes: memoization.

6.1 Performance

The simulations executed in Rivika take too long to run. For instance, to execute the
Lorenz’s Attractor example using the second-order Runge-Kutta method with an unre-
alistic time step size for real simulations (time step of 1 second), the simulator can take
around 10 seconds to compute 0 to 5 seconds of the physical system with a testbench
using a 6-th generation quad-core (i5) Intel processor and 16GB of RAM. Increasing this
interval shows an exponential growth in execution time, as depicted by Table 6.1 and by
Figure 6.1 (values obtained after the interpolation tweak). Although the memory use is
also problematic, it is hard to reason about those numbers due to Haskell’s garbage col-
lector 1, a memory manager that deals with Haskell’s immutability. Thus, the memory
values serve just to solidify the notion that Rivika is inneficient, showing an exponenti-
nal growth in resource use, which makes it impractical to execute longer simulations and
diminishes the usability of the proposed software.

1Garbage Collector wiki page.

46

https://wiki.haskell.org/GHC/Memory_Management

Total of Iterations Execution Time (seconds) Consumed Memory (MB)
1 0.01 0.5
2 0.01 1.8
3 0.08 19.1
4 0.79 244.7
5 10.06 3198.7
6 140.95 41867.3
7 1798.16 548045.8
8 23801.51 7174008.0

Table 6.1: Small increases in the number of the iterations within the simulation provoke exponential
penalties in performance.

4 5 6 7 8 9 10

0

2k

4k

6k

8k

10k

12k

14k

16k

18k

Time VS Iterations

Total Number of Iterations

T
im

e
(S

ec
on

ds
)

Figure 6.1: With just a few iterations, the exponential behaviour of the implementation is already
noticeable.

6.2 The Saving Strategy

Before explaining the solution, it is worth describing why and where this problem arises.
First, we need to take a look back onto the solvers’ functions, such as the integEuler

47

function, introduced in chapter 3, Effectful Integrals:

1 integEuler :: Dynamics Double
2 -> Dynamics Double
3 -> Dynamics Double
4 -> Parameters -> IO Double
5 integEuler (Dynamics diff) (Dynamics init) (Dynamics compute) ps =
6 case iteration ps of
7 0 ->
8 init ps
9 n -> do

10 let iv = interval ps
11 sl = solver ps
12 ty = iterToTime iv sl (n - 1) 0
13 prevPS = ps { time = ty, iteration = n - 1, solver = sl { stage = 0} }
14 a <- compute prevPS
15 b <- diff prevPS
16 let !v = a + dt (solver ps) * b
17 return v

From chapter 3, we know that lines 10 to 13 serve the purpose of creating a new
parametric record to execute a new solver step for the previous iteration, in order to
calculate the current one. From chapter 4, this code section turned out to be where the
implicit recursion came in, because the current iteration needs to calculate the previous
one. Effectively, this means that for all iterations, all previous steps from each one needs
to be calculated. The problem is now clear: unnecessary computations are being made
for all iterations, because the same solvers steps are not being saved for future steps,
although these values do not change. In other words, to calculate step 3 of the solver,
steps 1 and 2 are the same to calculate step 4 as well, but these values are being lost
during the simulation.

To estimate how this lack of optimization affects performance, we can calculate how
many solver steps will be executed to simulate theLorenz’s Attractor example used in
chapter 4, Execution Walkthrough. The Table 6.2 shows the total number of solver steps
needed per iteration simulating the Lorenz example with the Euler method. In addition,
the amount of steps also increase depending on which solver method is being used, given
that in the higher order Runge-Kutta methods, multiple stages count as a new step as
well.

48

Iteration Total Solver Steps
1 1
2 3
3 6
4 10
5 15
6 21

Table 6.2: Because the previous solver steps are not saved, the total number of steps per iteration starts
to accumullate following the numerical sequence of triangular numbers when using the Euler method.

This is the cause of the imense hit in performance. However, it also clarifies the
solution: if the previous solver steps are saved, the next iterations don’t need to re-
compute them in order to continue. In the computer domain, the act of saving previous
steps that do not change is called memoization and it is one form to execute caching.
This optimization technique stores the values in a register or memory region and, instead
of the process starts calculating the result again, it consults this region to quickly obtain
the answer.

6.3 Tweak II: Memoization

The first tweak, Memoization, alters the Integrator type. The integrator will now have
a pointer to the memory region that stores the previous computed values, meaning that
before executing a new computation, it will consult this region first. Because the process
is executed in a sequential manner, it is guaranteed that the previous result will be used.
Thus, the accumulation of the solver steps will be addressed, and the amount of steps will
be equal to the amount of iterations times how many stages the solver method uses.

The memo function creates this memory region for storing values, as well as providing
read access to it. This is the only function in Rivika that uses a constraint, i.e., it restricts
the parametric types to the ones that have implemented the requirement. In our case,
this function requires that the internal type Dynamics dependency has implemented the
UMemo typeclass. Because this typeclass is too complicated to be in the scope of this
project, we will settle with the following explanation: it is required that the parametric
values are capable of being contained inside an mutable array, which is the case for our
Double values. As dependencies, the memo function receives the dynamic computation,
as well as the interpolation function that is assumed to be used, in order to attenuate the
domain problem described in the previous chapter. This means that at the end, the final
result will be piped to the interpolation function.

49

1 memo :: UMemo e => (Dynamics e -> Dynamics e) -> Dynamics e
2 -> Dynamics (Dynamics e)
3 memo tr (Dynamics m) =
4 Dynamics $ \ps ->
5 do let sl = solver ps
6 iv = interval ps
7 (stl, stu) = stageBnds sl
8 (nl, nu) = iterationBnds iv (dt sl)
9 arr <- newMemoUArray_ ((stl, nl), (stu, nu))

10 nref <- newIORef 0
11 stref <- newIORef 0
12 let r ps =
13 do let sl = solver ps
14 iv = interval ps
15 n = iteration ps
16 st = stage sl
17 stu = stageHiBnd sl
18 loop n' st' =
19 if (n' > n) || ((n' == n) && (st' > st))
20 then
21 readArray arr (st, n)
22 else
23 let ps' = ps { time = iterToTime iv sl n' st',
24 iteration = n',
25 solver = sl { stage = st' }}
26 in do a <- m ps'
27 a `seq` writeArray arr (st', n') a
28 if st' >= stu
29 then do writeIORef stref 0
30 writeIORef nref (n' + 1)
31 loop (n' + 1) 0
32 else do writeIORef stref (st' + 1)
33 loop n' (st' + 1)
34 n' <- readIORef nref
35 st' <- readIORef stref
36 loop n' st'
37 return $ tr $ Dynamics r

The function starts by getting how many iterations will occur in the simulation, as
well as how many stages the chosen method uses (lines 5 to 8). This is used to pre-allocate
the minimum amount of memory required for the execution (line 9). This mutable array
is two-dimensional and can be viewed as a table in which the number of iterations and
stages determine the number of rows and columns. Pointers to iterate accross the table are
declared as nref and stref (lines 10 and 11), to read iteration and stage values respectively.

50

The code block from line 12 to line 36 delimit a procedure or computation that will only
be used when needed, and it is being called at the end of the memo function (line 37).

The next step is to follow the exection of this internal function. From line 13 to line 17,
auxiliar "variables", i.e., labels to read information, are created to facilitate manipulation
of the solver (sl), interval (iv), current iteration (n), current stage (st) and the final
stage used in a solver step (stu). The definition of loop, which starts at line 18 and closes
at line 33, uses all the previously created labels. The conditional block (line 19 to 33)
will store in the pre-allocated memory region the computed values and, because they are
stored in a sequential way, the stop condition of the loop is one of the following: the
iteration counter of the loop (n’) surpassed the current iteration or the iteration counter
matches the current iteration and the stage counter (st’) reached the ceiling of stages of
used solver method (line 19). When the loop stops, it reads from the allocated array the
value of interest (line 21), given that it is guaranteed that is already in memory. If this
condition is not true, it means that further iterations in the loop need to occur in one of
the two axis, iteration or stage.

The first step towards that goal is to save the value of the current iteration and stage
into memory. The dynamic computation m, received as a dependency in line 3, is used to
compute a new result with the current counters for iteration and stage (lines 23 to 26).
Then, this new value is written into the array (line 27). The condition in line 28 checks if
the current stage already achieved its maximum possible value. In that case, the counters
for stage and iteration counters will be refreshed to the first stage (line 29) of the next
iteration (line 30) respectively, and the loop should continue (line 31). Otherwise, we
need to advance to the next stage within the same iteration and an updated stage (line
32). The loop should continue with the same iteration counter but with the stage counter
incremented (lines 32 and 33).

Lines 34 to 36 are the trigger to the beginning of the loop, with nref and stref being
read. These values set the initial values for the counters used in the loop function, and
both of their values start at zero (lines 10 and 11). All computations related to the loop
function will only be called when the r function is called. Further, all of these impure
computations (lines 12 to 36) compose the definition of r (line 12), which is being returned
in line 37 combined with the interpolation function tr and being wrapped with an extra
Dynamics shell via the return function (provided by the Monad typeclass).

With this function on-hand, it remains to couple it to the Integrator type, meaning
that all integrator functions need to be aware of this new caching strategy. First and
foremost, a pointer to this memory region needs to be added to the integrator type itself:

51

1 data Integrator = Integrator { initial :: Dynamics Double,
2 cache :: IORef (Dynamics Double),
3 computation :: IORef (Dynamics Double)
4 }

Next, two other functions need to be adapted: newInteg and readInteg. In the former
function, the new pointer will be used, and it points to the region where the mutable array
will be allocated. In the latter, instead of reading from the computation itself, the read-
only pointer will be looking at the cached version. These differences will be illustrated
by using the same integrator and state variables used in the Lorenz’s Attractor example,
detailed in chapter 4, Execution Walkthrough.

The main difference in the updated version of the newInteg function is the inclusion of
the new pointer that reads the cached memory (lines 4 to 7). The pointer computation,
which will be changed by diffInteg in a model to the differential equation, is being read
in lines 8 to 10 and piped with interpolation and memoization in line 11. This approach
maintains the interpolation, justified in the previous chapter, and adds the aforementioned
caching strategy. Finally, the final result is written in the memory region pointed by the
caching pointer (line 12).

Figure 6.2 shows that the updated version of the newInteg function is similar to the
previous implementation. The new field, cached, is a pointer that refers to readComp —
the result of memoization (memo), interpolation (interpolate) and the value obtained by
the region pointed by the computation pointer. Given a parametric record ps, readComp
gives this record to the dynamic value stored in the region pointed by computation. This
result is then interpolated via the interpolate block and it is used as a dependency for
the memo block.

The modifications in the readInteg function are being portrayed in Figure 6.3. As
described earlier, the change is minor: instead of reading from the region pointed by the
computation pointer, this function will read the value contained in the region pointed by
the cache pointer (line 4). This means that the same readComp, described in the new
newInteg function, will receive a given ps. It is worth noticing that, just like with the
newInteg function, this cache pointer indirectly interacts with the same memory location
pointed by the computation pointer in the integrator (Figure 6.3).

52

1 newInteg :: Dynamics Double -> Dynamics Integrator
2 newInteg i =
3 do comp <- liftIO $ newIORef $ initialize i
4 cachedComp <- liftIO $ newIORef $ initialize i
5 let integ = Integrator { initial = i,
6 cache = cachedComp,
7 computation = comp }
8 readComp = Dynamics $ \ps ->
9 do (Dynamics m) <- readIORef (computation integ)

10 m ps
11 interpCached <- memo interpolate readComp
12 liftIO $ writeIORef (cache integ) interpCached
13 return integ

Figure 6.2: The new newInteg function relies on interpolation composed with memoization. Also, this
combination produces results from the computation located in a different memory region, the one
pointed by the computation pointer in the integrator.

53

1 readInteg :: Integrator -> Dynamics Double
2 readInteg integ =
3 Dynamics $ \ps ->
4 do (Dynamics m) <- readIORef (cache integ)
5 m ps

Figure 6.3: The function reads information from the caching pointer, rather than the pointer where the
solvers compute the results.

Lastly, Figure 6.4 depicts the new version of the diffInteg function. Further, the tweaks
in this function are minor, just as with the readInteg function. Previously, the whatToDo
label, used as a dependency in the solver methods, was being made by reading the content
in the region pointed by the computation pointer. Now, this dependency reads the region
related to the caching methodology via reading the cache pointer.

54

1 diffInteg :: Integrator -> Dynamics Double -> Dynamics ()
2 diffInteg integ diff =
3 do let z = Dynamics $ \ps ->
4 do whatToDo <- readIORef (cache integ)
5 let i = initial integ
6 case method (solver ps) of
7 Euler -> integEuler diff i whatToDo ps
8 RungeKutta2 -> integRK2 diff i whatToDo ps
9 RungeKutta4 -> integRK4 diff i whatToDo ps

10 liftIO $ writeIORef (computation integ) z

Figure 6.4: The new diffInteg function gives to the solver functions access to the region with the cached
data.

The solver functions, integEuler, integRK2 and integRK4, always need to calculate
the value of the previous iteration. By giving them access to the cached region of the
simulation, instead of starting a recursive chain of stack calls, the previous computation
will be handled immediately. This is the key to cut orders of magnitude in execution time
during simulation.

6.4 A change in Perspective

Before the implementation of the described caching strategy, all the solver methods rely
on implicit recursion to get the previous iteration value. Thus, performance was degraded
due to this potentially long stack call. After caching, this mechanism is not only faster,
but it completely changes how the solvers will get these past values.

55

For instance, when using the function runDynamicsFinal as the driver, the simulation
will start by the last iteration. Without caching, the solver would go from the current
iteration to the previous ones, until it reaches the base case with the initial condition and
starts backtracking the recursive calls to compute the result of the final iteration. On the
other hand, with the caching strategy, the memo function goes in the opposite direction:
it starts from the beginning, with the counters at zero, and then incrementally proceeds
until it reaches the desired iteration.

Figure 6.5 depicts this stark difference in approach when using memoization in Rivika.
Instead of iterating through all iterations two times, one backtracking until the base case
and another one to accumulate all computed values, the new version starts from the base
case, i.e., at iteration 0, and stops when achieves the desired iteration, saving all the
values along the way.

......

Figure 6.5: Caching changes the direction of walking through the iteration axis. It also removes an entire
pass through the previous iterations.

6.5 Tweak III: Model and Driver

The memoization added to Rivika needs a second tweak, related to the executable models
established in chapter 4. The code bellow is the same example model used in that chapter:

1 exampleModel :: Model Vector
2 exampleModel =
3 do integX <- newInteg 1
4 integY <- newInteg 1
5 let x = readInteg integX
6 y = readInteg integY
7 diffInteg integX (x * y)
8 diffInteg integY (y + t)
9 sequence [x, y]

The caching strategy assumes that the created mutable array will be available for the
entire simulation. However, the proposed models will always discard the table created

56

by the newInteg function due to the garbage collector 2, after the sequence function.
Even worse, the table will be created again each time the model is being called and a
parametric record is being provided, which happens when using the driver. Thus, the
proposed solution to address this problem is to update the Model alias to a function
of the model. This can be achieved by wrapping the state vector with a the Dynamics
type, i.e., wrapping the model using the function pure or return. In this manner, the
computation will be "placed" as a side effect of the IO monad and Haskell’s memory
management system will not remove the table used for caching, in the first computation.
So, the following code is the new type alias, alongside the previous example model using
the return function:

1 type Model a = Dynamics (Dynamics a)

2 exampleModel :: Model Vector
3 exampleModel =
4 do integX <- newInteg 1
5 integY <- newInteg 1
6 let x = readInteg integX
7 y = readInteg integY
8 diffInteg integX (x * y)
9 diffInteg integY (y + t)

10 return $ sequence [x, y]

Due to the new type signature, this change implies changing the driver, i.e., modify
the function runDynamics (the changes are analogus to the runDynamicsFinal function
variant). Further, a new auxiliary function was created, subRunDynamics, to separate
the environment into two functions. The runDynamics will execute the mapping with the
function parameterise and the auxiliary function will address the need for interpolation.

1 runDynamics :: Model a -> Interval -> Solver -> IO [a]
2 runDynamics (Dynamics m) iv sl =
3 do d <- m Parameters { interval = iv,
4 time = startTime iv,
5 iteration = 0,
6 solver = sl { stage = 0 }}
7 sequence $ subRunDynamics d iv sl

8 subRunDynamics :: Dynamics a -> Interval -> Solver -> [IO a]
9 subRunDynamics (Dynamics m) iv sl =

10 do let (nl, nu) = iterationBnds iv (dt sl)
11 parameterise n = Parameters { interval = iv,

2Garbage Collector wiki page.

57

https://wiki.haskell.org/GHC/Memory_Management

12 time = iterToTime iv sl n 0,
13 iteration = n,
14 solver = sl { stage = 0 }}
15 ps = Parameters { interval = iv,
16 time = stopTime iv,
17 iteration = nu,
18 solver = sl { stage = -1}}
19 if (iterToTime iv sl nu 0) - (stopTime iv) < 0.00001
20 then map (m . parameterise) [nl .. nu]
21 else (init $ map (m . parameterise) [nl .. nu]) ++ [m ps]

The main change is the division of the driver into two: one dedicated to "initiate"
the simulation environment providing an initial record of the type Parameters (lines 3
to 6), and an auxiliary function doing the mapping to the iteration axis (lines 10 to 14,
20 and 21), as well as checking for interpolation (lines 15 to 19). Thus, this is the final
implementation of the driver in Rivika.

6.6 Results with Caching

The following table (Table 6.3) shows the same Lorenz’s Attractor example used in the
first section, but with the preceding tweaks in the Integrator type and the integrator
functions. These modifications allows better and more complicated models to be simu-
lated. For instance, the Lorenz example with a variety of total number of iterations can
be checked in Table 6.4 and in Figure 6.6.

Total
of

Iterations

Previous
Execution

Time (seconds)
Execution

Time (seconds)
Consumed

Memory (MB)
1 0.01 0.00 0.5
2 0.01 0.00 0.6
3 0.08 0.00 0.7
4 0.79 0.00 0.8
5 10.06 0.00 0.9
6 140.95 0.01 1.1
7 1798.16 0.01 1.2
8 23801.51 0.00 1.3

Table 6.3: These values were obtained using the same hardware. It shows that the caching strategy
drastically improves Rivika’s performance. Again, the concrete memory values obtained from GHC
should be considered as just an indicative of improvement due to the garbage collector interference.

58

Total of Iterations Execution Time (seconds) Consumed Memory (MB)
100 0.02 1.5
1K 0.04 11.8
10K 0.30 114.7
100K 3.28 1143.3
1M 29.91 11429.3
10M 307.66 114289.7
100M 3205.06 1142893.0

Table 6.4: These values were obtained using the same hardware. More complicated simulations can be
done with Rivika after adding memoization.

100 1000 10k 100k 1M 10M 100M

0,1

1

10

100

1000

Time VS Iterations

Total Number of Iterations

T
im

e
(s

ec
on

ds
)

Figure 6.6: By using a logarithmic scale, we can see that the final implementation is performant with
more than 100 million iterations in the simulation.

This summarizes the chapter, closing the arc about addressing drawbacks. The project
is currently capable of executing interpolation as well as applying memoization to speed
up results. These two solutions, detailed in chapter 5 and 6, adds practicality to Rivika
as well as makes it more competitive. The final chapter, Conclusion, will conclude this
work, pointing out limitations of the project, as well as future improvements and final
thoughts about the project.

59

Chapter 7

Conclusion

Chapters 2 and 3 explained the relationship between software, FF-GPAC and the math-
ematical world of differential equations. As a follow-up, chapter 4 raised intuition and
practical understanding of Rivika via a detailed walkthrough of an example. Chap-
ters 5 and 6 identified some problems with the current implementation, such as lack of
performance and the discrete time issue, and addressed both problems via caching and
interpolation. This chapter, Conclusion, draws limitations, future improvements that can
bring Rivika to a higher level of abstraction and some final conclusions about the project.

7.1 Limitations

One of the main concerns is the correctness of Rivika between its specification and its
final implementation, i.e., refinement. Shannon’s GPAC concept acted as the specification
of the project, whilst the proposed software attempted to implement it. The criteria used
to verify that the software fulfilled its goal were by using it for simulation and via code
inspection, both of which are based on human analysis. This connection, however, was not
formally verified. Thus, Rivika can be a threat to validity if a future formal verification
comes up and checks that the parallel between those two can’t be guaranteed.

Further, there is also an issue to regards to validation. In order to know that the
mathematical description of the problem is being correctly mapped onto a model represen-
tation some formal work needs to be done. This was not explored, and it was considered
out of the scope of the project. However, such aspect dictates if the specification for
further implementation is actually correct and describes its mathematical counterpart.
So, checking for validation is just as important as verifying refinement.

This lack of formalism extends to the typeclasses as well. The programming language
of choice, Haskell, does not provide any proofs that the created types actually follow the

60

typeclasses’ properties, even if the requested functions type check. This burden is on the
developer to manually write down such proofs, a non-explored aspect of this work.

As explained in chapters 1 and 2, there are some extensions that increase the capa-
bilities of Shannon’s original GPAC model. One of these extensions, FF-GPAC, was the
one chosen to be modeled via software. However, there are other extensions that not only
expand the types of functions that can be modeled, e.g., hypertranscendental functions,
but also explore new properties, such as Turing universitality [11, 12]. The proposed
software didn’t touch on those enhancements and restricted the set of functions to only
algebraic functions.

Finally, there is the language itself, Haskell. Although Haskell’s type system allowed
a great mapping between the numerical methods and its nuances to created types, its
simplicity started to fall apart when impurity came into picture. The side effect overhead
makes Rivika hard to reason about, especially for newcomers that intent to expand the
software’s functionalities.

7.2 Future Improvements

There are solutions to mitigate the problems presented in the previous section. First,
to address refinement, the simulation could be assessed by continuous domain specialists.
Also, proof-assistant tools, such as COQ and PVS, could be used to re-write Rivika with a
proper formal basis, hence establishing a solid map between the mathematical description,
specification and implementation. Further, the same tools can leverage the correctness
of the typeclasses’ implementation, via demonstrating that it assures the axioms and
properties demanded by each typeclass. More recent extensions of GPAC should also
be explored to simulate an even broader set of functions present in the continuous time
domain.

In regards to numerical methods, one of the immediate improvements would be to
use adaptive size for the solver time step that change dynamically in run time. This
strategy controls the errors accumulated when using the derivative by adapting the size
of the time step. Hence, it starts backtracking previous steps with smaller time steps
until some error threshold is satisfied, thus providing finer and granular control to the
numerical methods, coping with approximation errors due to larger time steps.

In terms of the used technology, some ideas come to mind related to abstracting out
duplicated patterns across the code base. The proposed software used a mix of high level
abstractions, such as algebraic types and typeclasses, with some low level abstractions,
e.g., explicit memory manipulation. An immediate improvement related to this topic
would be to abstract the stage information inside the solver using a sum type, Stage,

61

thus removing the use of negative and positive numbers as the trigger for interpolation.
On the same line of leveraging abstractions, another major improvement would be to make
it entirely pure, meaning that all the necessary side effects would be handled only by
high-level concepts internally, hence decreasing complexity of the software. For instance,
the memory allocated via IORef 1 acts as a state of the numerical solver; this could be
refactored to use the ST monad 2 This monad deals with state management by itself,
removing this weight from the developer.

Further, with the removal of IORef type from the project, the next step would be to
change the Dynamics type to not include in its definition the IO monad. As we saw in
chapters 2 and 3, this type is heavily coupled to functions that deal with IORef type,
such as providing a pointer to a memory region. Moreover, because IO was involved, the
typeclass MonadIO became a requirement, given that we need to transition from it to the
Dynamics monad in a few situations, like in the newInteg function. As a middle step
before achieving an implementation based on the ST monad, monad transformers 3

provides a more elegant alternative to go back and forth between monads, removing the
need for the MonadIO typeclass.

The Dynamics type, which is a function with the signature Parameters -> IO a,
resembles the Reader monad 4, a monad that captures the notion of functions. Across
the implementation, a lot of intermediate dynamic computations are being created and in
the majority of these steps the same record of Parameters is being applied in sequence,
creating a chain of functions that are passing the same parameter to one another. By
using the Reader monad, this pattern could be abstracted out from the program. This
idea, when combined with the ST monad initiative, indicates that the RWS monad 5, a
monad that combines the monads Reader, Writer and ST, may be the final goal for a
completely pure but effective solution.

Also, there’s GPAC and its mapping to Haskell features. As explained previously,
some basic units of GPAC are being modeled by the Num typeclass, present in Haskell’s
Prelude module. By using more specific and customized numerical typeclasses 6, it might
be possible to better express these basic units and take advantage of better performance
and convenience that these alternatives provide.

Finally, there’s the MonadFix typeclass [13, 14, 15] 7 8; an implemented typeclass
1IORef hackage documentation.
2ST Monad wiki page.
3Monad Transformers wiki page.
4Reader Monad hackage documentation.
5RWS Monad hackage documentation.
6Examples of alternative preludes.
7MonadFix Monad hackage documentation.
8MonadFix Monad wiki page.

62

https://hackage.haskell.org/package/base-4.16.1.0/docs/Data-IORef.html
https://wiki.haskell.org/State_Monad
https://en.wikibooks.org/wiki/Haskell/Monad_transformers
https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-Reader.html
https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-RWS-Lazy.html
https://guide.aelve.com/haskell/alternative-preludes-zr69k1hc
https://hackage.haskell.org/package/base-4.16.1.0/docs/Control-Monad-Fix.html
https://wiki.haskell.org/MonadFix

used in more recent versions of Aivika. This typeclass uses the mathematical definition
of the fixed-point concept to compute monadic operations, i.e., it makes it possible to
compute the fix point of a computation while being wrapped in a monad, thus being
useful for creating loopbacks 9 within the monad. As the final result, this typeclass
abstracts out the Integrator type, meaning that the manipulation of the integrator is
no longer maintained by the developer. This shrink in the DSL removes the similarities
of the implementation with the GPAC model in some degree, given that the integrator is
now implicit. The code below is the same Lorenz Attractor example previously used, but
written with this improved version. The main differences are: the absence of the integrator
explicitly, the existence of another type that encapsulates the Dynamics type, so-called
Simulation, and the use of mdo-notation, also known as recursive do-notation 10, rather
than do-notation:

1 lorenzModel :: Simulation [IO Vector]
2 lorenzModel =
3 mdo x <- integ (sigma * (y - x)) 1.0
4 y <- integ (x * (rho - z) - y) 1.0
5 z <- integ (x * y - beta * z) 1.0
6 let sigma = 10.0
7 rho = 28.0
8 beta = 8.0 / 3.0
9 runDynamicsInIntegTimes $ sequence [x, y, z]

9MonadFix Monad example of use case.
10Recursive do-notation GHC documentation.

63

https://github.com/FP-Modeling/fixingAnalog
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/recursive_do.html

7.3 Final Thoughts

When Shannon proposed a formal foundation for the Differential Analyzer [6], mathemat-
ical abstractions were leveraged to model continuous time. However, after the transistor
era, a new set of concepts that lack this formal basis was developed, and some of which
crippled our capacity of simulating reality. Later, the need for some formalism made a
comeback for modeling physical phenomena with abstractions that take time into con-
sideration. Models of computation [3, 4, 7, 8] and the ForSyDe framework [9, 10] are
examples of this change in direction. Nevertheless, Shannon’s original idea is now being
discussed again with some improvements [5, 11, 12] and being transposed to high level
programming languages in the hybrid system domain [1].

The Rivika EDSL 11 follows this path of bringing CPS simulation to the highest level
of abstraction, via the Haskell programming language, but still taking into account a
formal background inspired by the GPAC model. The software uses advanced functional
programming techniques to solve differential equations, mapping the abstractions to FF-
GPAC’s analog units. Although still limited by the discrete nature of numerical methods,
the solution is performant and accurate enough for studies in the cyber-physical domain.

11Rivika source code.

64

https://github.com/FP-Modeling/rivika/releases/tag/1.0

References

[1] Medeiros, José E. G. de, George Ungureanu, and Ingo Sander: An algebra for modeling
continuous time systems. In 2018 Design, Automation Test in Europe Conference
Exhibition (DATE), pages 861–864, 2018. x, 3, 7, 8, 64

[2] Medeiros, José E. G.: Unscented transform framework for quantization modeling in
data conversion systems. 2017. xii, 40

[3] Derler, Patricia, Edward A. Lee, and Albert Sangiovanni Vincentelli: Modeling cyber-
physical systems. Proceedings of the IEEE, 100(1):13–28, 2012. 1, 2, 4, 14, 19, 64

[4] Lee, Edward A.: Cyber physical systems: Design challenges. In 2008 11th IEEE
International Symposium on Object and Component-Oriented Real-Time Distributed
Computing (ISORC), pages 363–369, 2008. 1, 2, 3, 64

[5] Graça, Daniel and José Costa: Analog computers and recursive functions over the
reals. Journal of Complexity, 19:644–664, October 2003. 1, 3, 7, 29, 64

[6] Shannon, Claude E: Mathematical theory of the differential analyzer. Journal of
Mathematics and Physics, 20(1-4):337–354, 1941. 1, 3, 6, 7, 64

[7] Lee, Edward A. and Alberto L. Sangiovanni-Vincentelli: Component-based design for
the future. In 2011 Design, Automation Test in Europe, pages 1–5, 2011. 1, 2, 64

[8] Lee, E.A. and A. Sangiovanni-Vincentelli: A framework for comparing models of
computation. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 17(12):1217–1229, 1998. 2, 14, 64

[9] Sander, Ingo, Axel Jantsch, and Seyed Hosein Attarzadeh-Niaki: ForSyDe: Sys-
tem Design Using a Functional Language and Models of Computation, pages 1–42.
Springer Netherlands, Dordrecht, 2017, ISBN 978-94-017-7358-4. https://doi.org/
10.1007/978-94-017-7358-4_5-1. 2, 4, 64

[10] Attarzadeh-Niaki, Seyed Hosein and Ingo Sander: Heterogeneous co-simulation for
embedded and cyber-physical systems design. SIMULATION, 96(9):753–765, 2020.
https://doi.org/10.1177/0037549720921945. 2, 4, 64

[11] Graça, Daniel: Some recent developments on shannon’s general purpose analog com-
puter. Math. Log. Q., 50:473–485, September 2004. 3, 6, 7, 24, 61, 64

65

https://doi.org/10.1007/978-94-017-7358-4_5-1
https://doi.org/10.1007/978-94-017-7358-4_5-1
https://doi.org/10.1177/0037549720921945

[12] Bournez, Olivier, Daniel Graça, and Amaury Pouly: On the functions generated by
the general purpose analog computer. Information and Computation, 257, January
2016. 3, 6, 61, 64

[13] Erkök, Levent and John Launchbury: A recursive do for haskell. Proceedings of the
2002 ACM SIGPLAN Haskell Workshop, September 2002. 62

[14] Erkök, Levent and John Launchbury: Recursive monadic bindings. Volume 35, pages
174–185, September 2000. 62

[15] Erkök, Levent and John Launchbury: A recursive do for haskell: Design and imple-
mentation. January 2000. 62

66

	IfLanguageNameamericanDedicated toDedicatória
	IfLanguageNameamericanAcknowledgementsAcknowledgments
	Abstract
	Resumo
	Introduction
	Context
	Proposal
	Goal
	Outline

	Design Philosophy
	Shannon's Foundation: GPAC
	The Shape of Information
	Modeling Reality
	Making Mathematics Cyber

	Effectful Integrals
	Uplifting the Dynamics Type
	GPAC Bind I: Dynamics
	Exploiting Impurity
	GPAC Bind II: Integrator
	Using Recursion to solve Math

	Execution Walkthrough
	From Models to Models
	Driving the Model
	An attractive example
	Lorenz's Butterfly

	Travelling across Domains
	Time Domains
	Tweak I: Interpolation

	Caching the Speed Pill
	Performance
	The Saving Strategy
	Tweak II: Memoization
	A change in Perspective
	Tweak III: Model and Driver
	Results with Caching

	Conclusion
	Limitations
	Future Improvements
	Final Thoughts

	References

