

Universidade de Brasília - UnB Faculdade UnB Gama - FGA Engenharia Eletrônica

Desenvolvimento de um sistema de monitoramento para caixas de junção de sistemas fotovoltaicos

Autor: Rafael Feijó Leonardo Orientador: Prof. Dr. Alex Reis

Brasília, DF 2021

Rafael Feijó Leonardo

Desenvolvimento de um sistema de monitoramento para caixas de junção de sistemas fotovoltaicos

Monografia submetida ao curso de graduação em (Engenharia Eletrônica) da Universidade de Brasília, como requisito parcial para obtenção do Título de Bacharel em (Engenharia Eletrônica).

Universidade de Brasília - UnB Faculdade UnB Gama - FGA

Orientador: Prof. Dr. Alex Reis

Brasília, DF 2021

Rafael Feijó Leonardo

Desenvolvimento de um sistema de monitoramento para caixas de junção de sistemas fotovoltaicos/ Rafael Feijó Leonardo. – Brasília, DF, 2021-

95 p. : il. (algumas color.) ; 30 cm.

Orientador: Prof. Dr. Alex Reis

Trabalho de Conclusão de Curso – Universidade de Brasília - Un
B Faculdade Un
B Gama - FGA , 2021.

1. Sistema de Monitoramento, Energia Fotovoltaica. 2. String Box. I. Prof. Dr. Alex Reis. II. Universidade de Brasília. III. Faculdade UnB Gama. IV. Desenvolvimento de um sistema de monitoramento para caixas de junção de sistemas fotovoltaicos

CDU 02:141:005.6

Rafael Feijó Leonardo

Desenvolvimento de um sistema de monitoramento para caixas de junção de sistemas fotovoltaicos

Monografia submetida ao curso de graduação em (Engenharia Eletrônica) da Universidade de Brasília, como requisito parcial para obtenção do Título de Bacharel em (Engenharia Eletrônica).

Brasília, DF, 17 de Novembro de 2021:

Prof. Dr. Alex Reis Orientador

Prof. Dr. Sandro Augusto Pavlik Haddad Convidado 1

Prof^a. Dr^a. Loana Nunes Velasco Convidado 2

> Brasília, DF 2021

Este trabalho é dedicado aos meus pais, Fabiana e Allan, que sempre me motivaram a extrair meu melhor.

•

Agradecimentos

Primeiramente agradeço a Deus pela oportunidade da vida, bem como pela trajetória abençoada ao longo de tantos desafios.

Agradeço também aos meus pais, Fabiana e Allan, por todo esforço, conselhos e, principalmente, amor, que me tornaram quem sou hoje. Aos meus irmãos, Vítor e Thiago, pelo companheirismo e lealdade e a toda minha família que sempre me proporcionou tantos bons adjetivos.

A minha namorada, Rafaella, por todo incentivo, paciência e ajuda, que me incentivou nos momentos mais difíceis.

Aos meus grandes amigos Bismark, Giovanni e Igor, por compartilharem do mesmo momento acadêmico, motivando uns aos outros.

Ao meu orientador, Prof. Dr. Alex Reis, por toda a dedicação e atenção no desenvolvimento do trabalho, mas principalmente pelos valiosos ensinamentos passados.

Por fim, agradeço a todos que fizeram parte, direta ou indiretamente, da minha jornada.

Resumo

O aumento acelerado da demanda por energia elétrica em todo o mundo, associado a necessidade de diminuir a dependência por combustíveis fósseis, têm alavancado a busca por fontes de energia alternativas. Nos últimos anos, destaca-se o forte crescimento do setor solar fotovoltaico brasileiro, com sistemas conectados à rede, que chegou a crescer 216% em um período de três anos. O aumento da quantidade de sistemas fotovoltaicos implantados implicam na necessidade de se desenvolver sistemas que favoreçam a operação e manutenção, de forma a garantir que os equipamentos operem sob as condições projetadas e com menores riscos a saúde e meio ambiente. Nesse contexto, este trabalho tem por objetivo principal o desenvolvimento de um sistema microcontrolado, voltado para o monitoramento e controle de caixas de junção (*String Box*), se aproveitando do cenário promissor do setor.

Palavras-chaves: Sistema Microcontrolado. Monitoramento. Energia Solar. Caixa de *String.*

Abstract

The accelerated increase in the demand for electricity around the world, coupled with the need for decreasing dependence on fossil fuels, has leveraged the search for alternative energy sources. In the last years, the strong growth of the brazilian photovoltaic solar sector, specifically with systems connected on grid, has grew by 216% in a period of three years. In this context, this work aims to develop a embedded system, focused on monitoring and controlling String Boxes, taking advantage of the promising scenario in this sector.

Key-words: Embedded System. Monitoring. Solar Energy. String Box.

Lista de ilustrações

Figura 1 $-$	Evolução da fonte solar fotovoltaica no Brasil. (ABSOLAR, 2021) $\ .$.	19
Figura 2 –	Matriz Elétrica brasileira, referente ao ano 2021. (ABSOLAR, 2021)	19
Figura 3 –	Geração Centralizada no Brasil. (ABSOLAR, 2021)	20
Figura 4 –	Geração Distribuída no Brasil. (ABSOLAR, 2021)	20
Figura 5 –	Estrutura da célula fotovoltaica. (VILLALVA, 2015)	23
Figura 6 –	Estrutura de um módulo fotovoltaico. (ENERGêS, 2020)	24
Figura 7 $-$	Influência da radiação solar na corrente de saída do módulo fotovol-	
	taico. (VILLALVA, 2015)	24
Figura 8 $-$	Curva característica I - V (corrente - tensão) dos painéis solares. (VIL-	
	LALVA, 2015)	25
Figura 9 $\ -$	Curva característica P - V (potência - tensão) dos painéis solares. (VIL-	
	LALVA, 2015)	25
Figura 10 –	Influência da temperatura ambiente na potência de saída dos módulos	
	fotovoltaicos. (VILLALVA, 2015)	25
Figura 11 –	Identificação das células, módulos, séries e arranjos fotovoltaicos. (UCF,	
	2014)	26
Figura 12 –	Resultado da associação série e paralelo em arranjos fotovoltaicos. (VIL-	
	LALVA, 2015)	26
Figura 13 –	Diagrama Elétrico geral de uma <i>String Box</i> . (FRONTIN, 2017)	27
Figura 14 –	Diagrama Elétrico geral de uma <i>String Box</i> . (FRONTIN, 2017)	27
Figura 15 –	Caixa de junção real, modelo CLAMPER Solar SB. (CLAMPER, 2021b)	27
Figura 16 –	Caixa de junção real, montada manualmente. (ML, 2021)	27
Figura 17 –	Diagrama funcional de um sistema fotovoltaico conectado à rede. (ECO-	
	MAIS, 2021)	28
Figura 18 –	Discretização de um sinal contínuo no tempo. (USF, 2014)	29
Figura 19 –	Fluxograma geral para aquisição e processamento de dados em sistemas	
	microcontrolados. (BARRE'I'TO, 2011)	29
Figura 20 –	Topologia de circuito equivalente do $AmpOp$. (SEDRA, 2011)	30
Figura 21 –	(a) Configuração amplificador não inversor. (b) Configuração amplifi-	~ 1
	cador inversor. (SEDRA, 2011)	31
Figura 22 –	Resposta a frequência, ideal, dos quatro tipos de filtros: (a) passa bai-	00
D : 00	xas. (b) passa altas. (c) passa faixa. (d) rejeita faixa. (SEDRA, 2011)	32
Figura 23 –	Topologia e resposta de um filtro passa baixa de primeira ordem. (SA-	0.0
	$DIKU, 2013) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	33
Figura 24 –	Diagrama de blocos do <i>firmware</i> proposto	38
Figura 25 –	Diagrama eletrico do transdutor de tensão LV 20-P. (LEM, 2014b)	39

Figura 26 –	Diagrama elétrico do transdutor de corrente LA 55-P. (LEM, 2014a) .	40
Figura 27 –	Topologia do filtro de 2ª ordem utilizado para remoção de componentes	
	de alta frequência.	41
Figura 28 –	Método de agregação em multicamadas, baseado na norma IEC 61400- 4-30	43
Figura 29 –	Topologia de circuito para identificação de fim de vida útil do DPS	45
Figura 30 –	Foto do kit de desenvolvimento $NUCLEO\mathchar`G474RE,$ da $STMicroelec\mathchar`G474RE,$	
	tronics. (ST, 2020a) \ldots	45
Figura 31 –	Principais características do microcontrolador STM32G474RE. (ST, 2020b)	46
Figura 32 –	Fluxograma do módulo gerenciador de eventos.	46
Figura 33 –	Esquemático do circuito proposto para condicionamento e aquisição da tensão	49
Figura 34 –	Esquema do circuito montado para caracterização do circuito de con-	
	dicionamento de tensão.	50
Figura 35 –	Foto do Varivolt utilizado nos ensaios experimentais. Note que, apesar de o dispositivo ser trifásico, para o teste será utilizada somente uma	
	fase	51
Figura 36 –	Foto da ponte retificadora utilizada nos ensaios experimentais. Note que, novamente, a ponte retificadora é trifásica, porém, serão usados	
	apenas 4 diodos para o ensaio	51
Figura 37 –	Foto do filtro LC utilizado nos ensaios experimentais, tal que o indutor	
	é de $1, 5mH/20A$ e o capacitor é de $11, 4uF/440V$	51
Figura 38 –	Foto do banco de resistores utilizado nos ensaios experimentais. Resis- tência: 100Ω . Potência máxima: $1KW$	52
Figura 39 –	Foto do ensaio de caracterização do circuito de condicionamento de	
	tensão para condição inicial, ou seja, para um sinal de 0V. \ldots .	52
Figura 40 –	Fotos dos resultados obtidos no ensaio de caracterização do circuito de	
	condicionamento de tensão, para sinais entre 25V a 250V. \ldots .	53
Figura 41 –	Gráfico de dispersão dos resultados obtidos na caracterização do cir-	
	cuito de condicionamento de tensão.	54
Figura 42 –	Esquemático do circuito proposto para condicionamento e aquisição da	
T : (2)	corrente	54
Figura 43 –	Foto da conexao entre os circuitos de condicionamento de tensao e	
D ¹	corrente e a fonte dos sinais monitorados.	55
гıgura 44 –	rotos do ensalo de caracterização do circuito de condicionamento de	56
Figure 45	Créfico de dispersõe des recultados obtidos na constanização de sin	90
гıgura 45 –	Granco de dispersão dos resultados obtidos na caracterização do cir-	57
	cuito de condicionamento de corrente.	97

Figura 46 –	Foto ilustrativa de um DPS da linha <i>CLAMPER Front SR</i> , voltado para	
	instalações em sistemas fotovoltaicos, da fabricante <i>Clamper</i> . (CLAM-	
	PER, 2021a)	58
Figura 47 –	Foto do esquema elétrico de dispositivos DPS voltados para instala-	
	ções em sistemas fotovoltaicos, com sinalização remota, da fabricante	
	Clamper. (CLAMPER, 2021a)	58
Figura 48 –	Esquemático do circuito proposto para o monitoramento da vida útil	
	do DPS	59
Figura 49 –	Esquemático do circuito proposto para controle dos dispositivos relés,	
	voltados para o seccionamento do circuito.	59
Figura 50 –	Esquemático contendo o $pinout$ do microcontrolador e os $LEDs$ do	
	módulo <i>debug</i>	60
Figura 51 –	Esquemático do circuito de alimentação, baseado em um transformador \hfill	
	com $T\!AP$ central, um retificador completo e reguladores lineares de	
	tensão	61
Figura 52 $-$	Foto do <i>layout</i> projetado e da placa montada do sistema de alimenta-	
	ção. Dimensões: $92x58,45mm$	63
Figura 53 –	Foto do <i>layout</i> projetado e da placa montada do sistema de controle.	
	Dimensões: 120×150 mm.	63
Figura 54 –	Fluxograma global de execução do <i>firmware</i>	64
Figura 55 –	Tela de configuração dos GPIOs na plataforma Cube IDE	64
Figura 56 –	Parâmetros de configuração dos módulos ADC1 e ADC2, respectiva-	
	mente, para amostragem simultânea de tensão e corrente	65
Figura 57 –	Parâmetros de configuração do módulo ADC5, para amostragem da	
	temperatura interna do processador.	66
Figura 58 –	Parâmetros de configuração dos módulos TIM1 e TIM2, com frequên-	
	cias de 960Hz e 1Hz, respectivamente.	66
Figura 59 –	Fluxograma do processo de conversão do módulo ADC via interrupções.	
	Note que a linha tracejada indica o fluxo de atividades realizadas pelo	
	módulo ADC, ou seja, sem demandar recursos do processador	67
Figura 60 –	Rotina chamada após o término de uma conversão dos módulos ADC $-$	
	1e $2.$ Note que o dado amostrado é retornado em uma única variável,	
	do tipo $\mathit{uint32_t},$ e, portanto, deve-se realizar operações lógicas para	
	extração dos dados de tensão e corrente	67
Figura 61 –	Fluxograma da agregação em multi-camadas, após separação das amos-	
	tras de corrente e tensão	68
Figura 62 –	Fluxograma da rotina de cálculo da potência e energia produzidas	68
Figura 63 –	Printscreen da rotina chamada após o término de uma conversão do	
	módulo ADC 5	69

Figura 64	4 –	Fluxograma das rotinas executadas após interrupção externa dos pinos \hfill	
		voltados para seccionamento manual e monitoramento de vida útil do	
		DPS	69
Figura 65	5 –	Descritivo da variável utilizada para gerenciamento dos eventos	70
Figura 66	<u>-</u> 6	Rotina de <i>set/reset</i> das flags identificadores dos eventos	70
Figura 67	7 –	Foto do ensaio experimental relacionado ao seccionamento manual, sem	
		detecção de qualquer evento	71
Figura 68	8 -	Foto do ensaio experimental após interação com a botoeira de seccio-	
		namento manual.	71
Figura 69	9 –	Printscreen das macros referente aos limiares para identificação dos	
		eventos.	72
Figura 70) –	Resultados dos ensaios de 0V até, aproximadamente, 50V	73
Figura 71	1 –	Resultados dos ensaios de 100V até, aproximadamente, 200V	74
Figura 72	2 –	Resultado do ensaio de, aproximadamente, 215V	75
Figura 73	3 –	Resultados dos ensaios de 200V até, aproximadamente, 175V	76
Figura 74	4 –	Resultado do ensaio em, aproximadamente, 150V	76
Figura 75	5 -	Resultados dos ensaios de 100V até, aproximadamente, 25V	77
Figura 76	6 –	Plote dos resultados obtidos na medição de tensão e corrente, respec-	
		tivamente, em função do número de amostras do ensaio.	78
Figura 77	7 –	Resultado do ensaio voltado para validação do cálculo da potência e	
		energia gerada.	79
Figura 78	8 -	Resultado do ensaio voltado para validação do monitoramento da tem-	
		peratura interna do microcontrolador.	80
Figura 79	9 –	Resultado do ensaio voltado para validação do monitoramento de vida	
		útil do componente DPS.	81

Lista de tabelas

Tabela 1 – Características gerais do transdutor de tensão LV 20-P, da fabricant	5e
<i>LEM</i> . (LEM, 2014b)	39
Tabela 2 – Características elétricas do transdutor de tensão LV 20-P, da fabricant	te
<i>LEM</i> . (LEM, 2014b)	40
Tabela 3 – Características gerais do transdutor de corrente LA 55- P , da fabricant	5e
<i>LEM</i> . (LEM, 2014a)	41
Tabela 4 – Características elétricas do transdutor de corrente LA 55- P , da fabr	i-
cante <i>LEM</i> . (LEM, 2014a)	41
Tabela 5 – Identificação dos eventos e suas respectivas ações de controle, oderna	1 -
dos por prioridade.	47
Tabela 6 – Tabela verdade do módulo Debug.	47
Tabela 7 – Resultado do ensaio de caracterização do circuito de condicionament	Ö
para medição de tensão.	53
Tabela 8 – Resultado do ensaio de caracterização do circuito de condicionament	Ö
para medição de corrente.	57
Tabela 9 – Estimativa de consumo de corrente, considerando o pior cenário, o	u
seja, em que todos os circuitos e sub-circuitos estarão ligados. $\ .$.	61
Tabela 10 – Largura mínima de uma trilha, em função de sua espessura e corrent	e
nominal. (LIMA, 2012)	62
Tabela 11 — Espaçamento mínimo entre trilhas adjacentes, em função da diferenç	a
de potencial. (LIMA, 2012) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	62
Tabela 12 – Descrição dos $GPIOs$ configurados na plataforma $Cube\ IDE.$	65
Tabela 13 – Resultado da multiplexação da variável de gerenciamento dos evento)S
para o módulo $debug$	70
Tabela 14 – Resultado consolidado do ensaio de análise de desempenho do sistem	a
de medição de corrente e tensão.	78

Lista de abreviaturas e siglas

Agência Nacional de Energia Elétrica

ANEEL

- IECDo inglês, International Electrotechnical Commission NBR Norma Brasileira Regulamentadora NR Norma Regulamentadora \mathbf{GC} Geração Centralizada GD Geração Distribuída C.C.Corrente Contínua C.A. Corrente Alternada SFCR Sistema Fotovoltaico Conectado à Rede MPPTDo inglês, Rastreamento do Ponto Máximo de Potência IOTDo inglês, Internet das Coisas ISRDo inglês, Rotina de Serviço de Interrupção ADCDo inglês, Conversor Analógico-Digital RTCDo inglês, Relógio em Tempo Real RFDo inglês, Radiofrequência Do inglês, Amostras por Segundo sps
- *CMRR* Do inglês, Relação de Rejeição em Modo Comum

Lista de símbolos

G	Prefixo 'Giga' (10^9)
М	Prefixo 'Mega' (10^6)
К	Prefixo 'Kilo' (10^3)
m	Prefixo 'Mili' (10^{-3})
μ	Prefixo 'Micro' (10^{-6})
n	Prefixo 'Nano' (10^{-9})
V	Tensão elétrica, dada em $Volt$
А	Corrente elétrica, dada em Ampère
W	Potência elétrica, dada em <i>Watts</i>
Wh	Energia elétrica, dada em Watts-hora
Hz	Frequência, dada em $Hertz$
dB	Decibel

Sumário

1	INTRODUÇÃO	19
1.1	Objetivo Geral	21
1.1.1	Objetivos Específicos	21
1.2	Organização do Trabalho	21
2	FUNDAMENTAÇÃO TEÓRICA	23
2.1	Componentes do Sistema Fotovoltaico	23
2.1.1	Módulo Fotovoltaico	23
2.1.1.1	Características Gerais	24
2.1.1.2	Instalação em Corrente Contínua	25
2.1.2	Caixa de Junção ou <i>String Box</i>	26
2.1.3	Inversor Solar	27
2.1.3.1	Rastreamento do Ponto de Potência Máxima	28
2.1.3.2	Detecção de Ilhamento	28
2.2	Outros Conceitos Fundamentais	29
2.2.1	Teorema da Amostragem de Sinais	29
2.2.2	Condicionamento de Sinais	29
2.2.3	Amplificador Operacional	30
2.2.3.1	Amplificador Inversor e Não Inversor	31
2.2.4	Filtros Eletrônicos	32
2.2.4.1	Filtro Passa Baixas	32
3	METODOLOGIA	35
3.1	Análise de Requisitos	35
3.1.1	Requisitos Funcionais	35
3.1.2	Requisitos Não Funcionais	37
3.2	Arquitetura do Sistema	38
3.2.1	Diagrama de Blocos do Sistema	38
3.2.2	Medição de Tensão e Corrente	38
3.2.2.1	Transdutor de Tensão LV 20-P	39
3.2.2.2	Transdutor de Corrente LA 55-P	40
3.2.2.3	Filtro Anti <i>Aliasing</i>	41
3.2.2.4	Aquisição e Processamento	42
3.2.3	Cálculo da Potência e Energia Produzida	44
3.2.4	Monitoramento de Vida Útil do DPS	45
3.2.5	Seccionamento do Circuito	45

3.2.6	Microcontrolador	45
3.2.7	Gerenciamento de Eventos	46
4	RESULTADOS E DISCUSSÃO	49
4.1	Projeto de Hardware do Protótipo	49
4.1.1	Condicionamento de Tensão	49
4.1.1.1	Caracterização do Circuito de Condicionamento de Tensão	49
4.1.2	Condicionamento de Corrente	54
4.1.2.1	Caracterização do Circuito de Condicionamento de Corrente	55
4.1.3	Monitoramento de Fim de Vida Útil do DPS	58
4.1.4	Seccionamento do Circuito	59
4.1.5	Microcontrolador	60
4.1.6	Fonte de Alimentação	60
4.1.7	Placa de Circuito Impresso	61
4.1.7.1	Requisitos de <i>Layout</i>	62
4.1.8	Produção das <i>PCIs</i>	63
4.2	Desenvolvimento de Firmware do Protótipo Funcional	64
4.2.1	Configurações Gerais do <i>Firmware</i>	64
4.2.1.1	Configuração dos <i>GPIOs</i>	64
4.2.1.2	Configuração dos Módulos ADC	65
4.2.1.3	Configuração dos <i>Timers</i>	66
4.2.2	Amostragem e Processamento de Corrente e Tensão	66
4.2.3	Cálculo de Potência e Energia	68
4.2.4	Aquisição e Processamento da Temperatura Interna do Processador	68
4.2.5	Interrupções Externas	69
4.2.6	Gerenciador de Eventos	69
4.2.6.1	Módulo <i>Debug</i>	70
4.3	Análise de Desempenho do Sistema	71
4.3.1	Seccionamento Manual	71
4.3.2	Medição de Tensão e Corrente	72
4.3.3	Medição de Potência e Energia	79
4.3.4	Monitoramento da Temperatura Interna	80
4.3.5	Monitoramento da Vida Útil do DPS	81
5	CONSIDERAÇÕES FINAIS	83
	REFERÊNCIAS	85

ANEXOS	
ANEXO A – ESQUEMÁTICO COMPLETO	89
ANEXO B – LISTA DE MATERIAIS	95

1 Introdução

Os sistemas de energia elétrica têm passado, nas últimas décadas, por grandes alterações em paradigmas de projeto, operação e manutenção de instalações, bem como modernização de processos, as quais estão associadas aos diversos avanços tecnológicos e preocupações com as mudanças climáticas, eficiência energética e sustentabilidade, segurança de suprimento, dentre outros aspectos. Nesse sentido, o aumento acelerado da demanda por energia elétrica em todo o mundo, associado a necessidade de diminuir a dependência por combustíveis fósseis, têm alavancado a busca por fontes de energia renováveis. Dentre estas, destaca-se a de origem solar fotovoltaica, a qual tem se apresentado como uma eminente estratégia para a geração de energia elétrica no Brasil e no Mundo

No Brasil, conforme apresentado nas Figuras 1 e 2, o número de sistemas fotovoltaicos conectados à rede tem aumentado consideravelmente ao longo dos últimos anos. Estima-se que, até o primeiro trimestre de 2021, este setor possua uma potência total instalada de 8,8GW, que representa 1,8% da matriz elétrica do País (EPE, 2020).

Figura 1 – Evolução da fonte solar fotovoltaica no Brasil. (ABSOLAR, 2021)

Figura 2 – Matriz Elétrica brasileira, referente ao ano 2021. (ABSOLAR, 2021)

No quesito Geração Centralizada, conforme dados apresentados na Figura 3, as principais fontes geradoras de energia solar fotovoltaica estão localizadas nas regiões Nordeste (Bahia, Pernambuco, Ceará, Piauí, Rio Grande do Norte e Paraíba) e Sudeste (Minas Gerais e São Paulo), e, juntas, somam uma potência total instalada de, aproximadamente, 3, 3*GW* (ABSOLAR, 2021). Baseado nos projetos contratados em leilões do Ambiente de Contratação Regulada (ACR), é previsto que o Brasil atinja a marca de potência operacional de 26GW até o ano de 2025, com investimentos de mais de R\$25, 4 bilhões no setor. (PORTAL SOLAR, 2020)

Outra grande evolução para o setor solar fotovoltaico foi a regulamentação da Geração Distribuída (GD), através da Resolução Normativa ANEEL nº 482/2012. Nesta, foi estabelecido o sistema de compensação de energia para micro e minigerações conectadas às redes de distribuição, favorecendo ao consumidor a geração de sua própria energia elétrica, a partir de fontes renováveis ou cogeração qualificada e inclusive fornecer o excedente para a rede de distribuição local. (ANEEL, 2012)

Na GD, as fontes eólica, hídrica e biomassa juntas representam 2%, enquanto a fonte solar fotovoltaica representa 97, 1% das instalações, totalizando 470.156 Sistemas Fotovoltaicos Conectados à Rede, com potência operacional estimada em 4, 7GW, conforme dados apresentados na Figura 4. Desde 2017, o Brasil vem ganhando posições no Ranking Global de Capacidade Instalada - 26° em 2017, 21° em 2018 e 16° lugar desde 2019. O forte impulso no setor deve-se, principalmente, aos sistemas da Geração Distribuída, que somaram crescimento de até 216% durante o período. (PORTAL SOLAR, 2020) De acordo com a Associação Brasileira de Energia Solar Fotovoltaica (ABSOLAR), estima-se que, só em 2021, haja um crescimento de 60% na potência total instalada, relativa ao ano anterior, totalizando 13, 9GW.

Figura 4 – Geração Distribuída no Brasil. (ABSOLAR, 2021)

Com o avanço da geração solar fotovoltaica distribuída, é necessário o estabelecimento de procedimentos e/ou sistemas que assegurem a qualidade e segurança das instalações elétricas. De fato, o desenvolvimento de equipamentos que permitam o acompanhamento da operação de sistemas fotovoltaicos, viabilizando o monitoramento da quantidade de energia produzida e a identificação de possíveis falhas se mostra bastante atrativo. Tomando-se como referência este cenário, este trabalho de conclusão de curso tem por objetivo o desenvolvimento de um protótipo, constituído por hardware e software, dedicado à automatização de caixas de junção, as quais são usadas nos circuitos em corrente contínua de uma instalação fotovoltaica. Dentre as funcionalidades previstas neste sistema, destaca-se: medição de variáveis elétricas (tensão, corrente, potência e energia) na entrada da caixa de junção; acompanhamento do estado de vida útil do Dispositivos de Proteção contra Surtos (DPS); possibilidade de realização de manobras remotas do sistema.

1.1 Objetivo Geral

Este trabalho tem por objetivo o desenvolvimento de um sistema embarcado para o monitoramento, em tempo real, de caixas de junção de sistemas fotovoltaicos, viabilizando o acompanhamento de variáveis elétricas e estado de operação dos equipamentos.

1.1.1 Objetivos Específicos

- Compreender os equipamentos que compõem um sistema de geração fotovoltaico;
- Identificar as funcionalidades das caixas de junção em sistemas fotovoltaicos;
- Desenvolver o projeto de *hardware*, abrangendo sensores, circuitos de condicionamento, microcontrolador e sistema de alimentação;
- Desenvolver o *firmware* para processamento das grandezas elétricas e acompanhamento da produção de energia;

1.2 Organização do Trabalho

O Capítulo 2 apresenta a fundamentação teórica do projeto, com destaque para os conceitos e componentes que integram os sistemas solares fotovoltaicos, bem como outros conceitos fundamentais para o bom entendimento do trabalho.

O Capítulo 3 descreve a metodologia adotada para cumprir com os objetivos do trabalho, detalhando a arquitetura do sistema proposto.

No Capítulo 4 são apresentados os resultados e discussões pertinentes ao projeto de *hardware* do protótipo, desenvolvimento do *firmware* e análise de desempenho do sistema.

No Capítulo 5 são apresentadas as considerações finais sobre o trabalho, bem como a proposta para trabalhos futuros.

Por fim, no Anexo A são apresentados todos os esquemáticos dos circuitos e subcircuitos e no Anexo B é apresentada a lista de materiais (BOM) do sistema.

2 Fundamentação Teórica

Este capítulo apresenta a fundamentação teórica sobre sistemas fotovoltaicos, abrangendo os seus principais componentes, além de conceitos fundamentais para o bom entendimento deste trabalho.

2.1 Componentes do Sistema Fotovoltaico

2.1.1 Módulo Fotovoltaico

O efeito fotovoltaico é o fenômeno físico que permite a transformação da energia proveniente do Sol em eletricidade. Isso ocorre quando a radiação solar incide sobre uma célula composta de materiais semicondutores, com propriedades específicas, que, por sua vez, geram uma diferença de potencial no material, conforme ilustrado na Figura 5. (VILLALVA, 2015)Dentre os diversos materiais semicondutores presentes no mercado, o silício é utilizado em 95% das células fotovoltaicas fabricadas no mundo. Isso devido a sua abundância e baixo custo. (VILLALVA, 2015)

Figura 5 – Estrutura da célula fotovoltaica. (VILLALVA, 2015)

O módulo fotovoltaico, também conhecido como placa solar ou painel solar, é composto por um conjunto de células fotovoltaicas montadas sobre uma estrutura rígida e conectadas eletricamente entre si, conforme esquematizado na Figura 6.Uma única célula fotovoltaica fornece uma tensão elétrica de, aproximadamente, 0, 6V. Para obter tensões maiores, os projetistas conectam 36, 54, 60 ou mais células em série. (VILLALVA, 2015)

Figura 6 – Estrutura de um módulo fotovoltaico. (ENERGêS, 2020)

2.1.1.1 Características Gerais

Tipicamente, os módulos fotovoltaicos se comportam como fontes de corrente, ou seja, o painel produz uma corrente contínua em função da radiação solar incidente sobre a placa, conforme exemplificado na Figura 7.

Figura 7 – Influência da radiação solar na corrente de saída do módulo fotovoltaico. (VIL-LALVA, 2015)

As Figuras 8 e 9 apresentam as curvas características Corrente-Tensão e Potência-Tensão de painéis solares. Nelas, a corrente de curto-circuito é atingida quando os terminais do módulo são curto circuitados entre si, tal que a tensão de saída tenda a zero. A tensão de circuito aberto é a máxima tensão de saída do módulo, idealmente, quando não haja fluxo de corrente. Existe ainda um terceiro ponto na qual o módulo opera em sua máxima potência, ou seja, em que se fornece a maior quantidade de energia para a carga alimentada.

Outro fator determinante no quesito potência de saída é a temperatura ambiente. A Figura 10 apresenta a variação da curva I - V, considerando três situações diferentes temperaturas para a temperatura ambiente.

Figura 10 – Influência da temperatura ambiente na potência de saída dos módulos fotovoltaicos. (VILLALVA, 2015)

2.1.1.2 Instalação em Corrente Contínua

Segundo a ABNT NBR 16690:2019, a conexão dos módulos é dividida, basicamente, em duas possibilidades, conforme exemplificado na 11:

- Séries fotovoltaicas (*strings*); ou
- Arranjos fotovoltaicos (*arrays*);

Figura 11 – Identificação das células, módulos, séries e arranjos fotovoltaicos. (UCF, 2014)

Nas *strings*, a tensão de saída é a soma algébrica das tensões individuais e a corrente é comum a todos os módulos. Já nos *arrays*, a corrente de saída é a soma algébrica das correntes individuais e a tensão é comum a todos os módulos. A Figura 12 exemplifica as diferentes disposições de módulos fotovoltaicos, bem como seu resultado em função da corrente e tensão de saída.

Figura 12 – Resultado da associação série e paralelo em arranjos fotovoltaicos. (VIL-LALVA, 2015)

2.1.2 Caixa de Junção ou String Box

As Caixas de Junção, também conhecidas como *String Boxes*, são quadros elétricos em corrente contínua, voltados para interconexão de módulos, séries ou subarranjos fotovoltaicos, com grau mínimo de proteção IP54 (VILLALVA, 2015). A 13 apresenta um diagrama elétrico geral de uma string box, em que se constata os seguintes elementos:

• Entradas em CC advnidas das strigs;

- Dispositivo de proteção contra sobrecorrentes, os quais, via de regra, se constituem por fusíveis;
- Dispositivo de proteção contra surtos (DPS), compatíveis com os níveis de tensão existente nas instalações CC;
- Dispositivo de seccionamento CC proteção, o qual deve possuir capacidade de interrupção de corrente compatível com o sistema;
- Barramento vinculado ao condutor de proteção da instalação.

Figura 13 – Diagrama Elétrico geral de uma *String Box.* (FRON-TIN, 2017)

Figura 14 – Diagrama Elétrico geral de uma *String Box.* (FRON-TIN, 2017)

Figura 15 – Caixa de junção real, modelo CLAMPER Solar SB. (CLAMPER, 2021b)

Figura 16 – Caixa de junção real, montada manualmente. (ML, 2021)

2.1.3 Inversor Solar

O Inversor Solar tem papel fundamental em sistemas fotovoltaicos conectados à rede. Ele é o dispositivo eletrônico responsável pela conversão da corrente contínua gerada

nos módulos fotovoltaicos em corrente alternada, permitindo a interligação com a rede elétrica, conforme ilustrado na 17.

Figura 17 – Diagrama funcional de um sistema fotovoltaico conectado à rede. (ECOMAIS, 2021)

2.1.3.1 Rastreamento do Ponto de Potência Máxima

Como dito anteriormente, a potência fornecida pelos módulos fotovoltaicos depende diretamente da carga a ele conectada. A fim de maximizar o rendimento dos módulos, o gerador deve adaptar a carga de modo a operar sobre o ponto de máxima potência.

Com este propósito, o inversor conta com um transformador *chopper* controlado, voltado para o Rastreamento do Ponto de Potência Máxima (MPPT). O controlador calcula, em tempo real, o par V-I do gerador na qual a potência máxima disponível é produzida. (FRONTIN, 2017)

2.1.3.2 Detecção de Ilhamento

Quando se trata de inversores conectados a rede, as normas técnicas de conformidade são extremamente rigorosas quanto a detecção da condição de ilhamento.

Define-se ilhamento, a condição na qual uma seção de uma rede de potência é desconectada de sua principal fonte, tal que as cargas continuam potencializadas por um sistema fotovoltaico. (FRONTIN, 2017) A falta da desconexão do inversor, nessa situação, pode causar a energização de uma rede em manutenção, colocando em risco quem as opera.

2.2 Outros Conceitos Fundamentais

2.2.1 Teorema da Amostragem de Sinais

Grandezas físicas como velocidade, temperatura e tensão são representadas, matematicamente, por funções contínuas no tempo, que possuem um valor definido para cada infinitésimo de tempo.

Em sistemas digitais, este tipo de grandeza é discretizada, ou seja, sua representação é dada através de uma determinada quantidade de amostras, conforme mostrado na Figura 18.

Figura 18 – Discretização de um sinal contínuo no tempo. (USF, 2014)

Segundo o teorema da amostragem, um sinal real, cujo espectro é limitado em faixa a B Hz, tal que $X(\omega) = 0$ para $|\omega| > 2\pi B$, pode ser reconstruído sem qualquer erro a partir de amostras uniformes obtidas a uma frequência $f_s \ge 2B$. (LATHI, 2007)

2.2.2 Condicionamento de Sinais

O condicionamento de sinais é um processo muito utilizado quando se trata de processamento e aquisição de dados. O objetivo é adequar a grandeza física monitorada ao sistema de medição, de forma a garantir uma medição eficaz e confiável.

Figura 19 – Fluxograma geral para aquisição e processamento de dados em sistemas microcontrolados. (BARRETTO, 2011)

Dentre as principais funções do condicionamento de sinais, vale ressaltar:

• Conversão: a conversão de sinais é amplamente utilizada quando se trata de sensoriamento de processos. Isso devido aos diferentes sensores empregados, que podem precisar ter sua natureza convertida em função do sistema de medição. (LATHI, 2007)

- Amplificação: a amplificação entra como um trunfo na aplicação de um ganho no sinal de saída do sensor. Permitindo, assim, com que parâmetros como faixa útil, resolução e sensibilidade sejam personalizados. (LATHI, 2007)
- Filtragem: os filtros são muito utilizados na remoção ou atenuação de ruídos dentro de uma determinada faixa de frequência, de forma a filtrar tudo além da informação desejada. (LATHI, 2007)
- Isolamento: dispositivos com isolamento passam o sinal da fonte para o dispositivo de medição sem uma conexão física, utilizando, por exemplo, transformadores, acopladores capacitivos ou ópticos etc. além de evitar *loops* de terra, de modo a proteger o dispositivo contra surtos de alta tensão. (LATHI, 2007)

2.2.3 Amplificador Operacional

Os amplificadores operacionais são componentes capazes de realizar operações matemáticas (adição, subtração, multiplicação, divisão, integração e diferenciação), o que justifica seu nome. Suas principais características são impedância de entrada alta, impedância de saída baixa e ganho de tensão elevado.

Figura 20 – Topologia de circuito equivalente do AmpOp. (SEDRA, 2011)

Para escolha do amplificador operacional, foram levados em consideração os critérios abordados no artigo "Select the Right Operational Amplifier for your Filtering Circuits Design Note ADN003", publicado pela empresa Microchip (BAKER; MICRO-CHIP, 2003), são eles:

• Largura de banda (BW): definida em função da frequência de corte do filtro (f_c) , conforme Equação 2.1.

$$BW = 100 \times f_c \tag{2.1}$$

• Slew Rate (SR): definida em função da tensão de saída, pico a pico $(V_{out_{pp}})$, e da frequência de corte do filtro, conforme Equação 2.2.

$$SR \ge 2\pi \times V_{out_{pp}} \times f_c$$
 (2.2)

- Input Common Mode Voltage Range (V_{CMR}): define o limite da faixa do sinal de entrada;
- Input Current Bias (I_b) : define a quantidade de corrente drenada nos pinos de entrada do amplificador operacional;
- Common Mode Rejection Ratio (CMRR): razão de rejeição de modo comum superior a 60dB, quando em operação sob condições nominais.

Na sequência, são apresentados alguns circuitos que serão utilizados para o condicionamento de sinais ao longo do desenvolvimento deste trabalho.

2.2.3.1 Amplificador Inversor e Não Inversor

A configuração não inversora (Figura 21 (a)) permite aplicar um ganho no sinal de entrada (V_i) , conforme apresentado na Equação 2.3.

Já a configuração inversora (Figura 21 (b)) é utilizada quando, além do ganho, é necessário defasar o sinal de entrada em 180°, dessa forma, o sinal de saída (V_o) é dado pela Equação 2.4.

Figura 21 – (a) Configuração amplificador não inversor. (b) Configuração amplificador inversor. (SEDRA, 2011)

$$V_o = (1 + \frac{R_1}{R_2}) \times V_i$$
 (2.3) $V_o = -\frac{R_2}{R_1} \times V_i$ (2.4)

2.2.4 Filtros Eletrônicos

Filtros são circuitos projetados para permitir a passagem de frequências desejadas e rejeitar, ou atenuar, outras frequências. (SADIKU, 2013)

É denominado filtro passivo o circuito que contém apenas componentes passivos, como resistores, indutores e capacitores. Para circuitos com transistores e *ampops* além dos componentes passivos, denomina-se filtro ativo. (SADIKU, 2013)

O tipo de filtro é caracterizado por sua resposta em frequência. A Figura 22 apresenta a resposta ideal dos quatro tipos de filtros existentes, sejam eles passivos ou ativos.

Figura 22 – Resposta a frequência, ideal, dos quatro tipos de filtros: (a) passa baixas. (b) passa altas. (c) passa faixa. (d) rejeita faixa. (SEDRA, 2011)

Outro importante parâmetro em projetos de filtros eletrônicos é a ordem (n) do filtro. A ordem de um filtro está diretamente relacionada com a quantidade de polos em sua função de transferência (H(s)), ou seja, sua capacidade de atenuação. Sobre o ponto de vista prático, quanto maior a ordem de um filtro, maior será sua complexidade de implementação.

2.2.4.1 Filtro Passa Baixas

Este filtro possui uma faixa de passagem limitada da frequência zero até a frequência de corte (f_s) . Ao se aproximar desta última, as frequências começam a ser atenuadas em uma proporção definida pela ordem do circuito.

Um exemplo da topologia passa baixa é apresentado na Figura 23, com um filtro de primeira ordem.

Figura 23 – Topologia e resposta de um filtro passa baixa de primeira ordem. (SADIKU, 2013)

A frequência de corte (f_s) do filtro passa baixa é dada pela Equação 2.5.

$$f_s = \frac{1}{2\pi RC} \tag{2.5}$$

3 Metodologia

Esta seção descreve a metodologia empregada para atingir os objetivos deste trabalho. Basicamente, a mesma se constitui pelo levantamento e análise de requisitos, a seleção de componentes e circuitos e o desenvolvimento de hardware e firmware do protótipo.

3.1 Análise de Requisitos

Tomando por base os equipamentos utilizados em sistemas fotovoltaicos e suas características, na sequência são apresentados os requisitos funcionais e não funcionais do projeto para o desenvolvimento do sistema. Os requisitos serão identificados com um identificador único, com numeração iniciada em [RF1] para um requisito funcional e [NF1] para um requisito não-funcional.

Além do mais, para estabelecer a prioridade na implementação do no sistema, os requisitos foram enquadrados nas seguintes classificações:

- Essencial: requisito sem o qual o sistema não entra em funcionamento. Requisitos essenciais são aqueles imprescindíveis, que devem ser implementados impreterivelmente.
- Importante: requisito sem o qual o sistema entra em funcionamento, mas de forma não satisfatória. Requisitos importantes devem ser implementados, mas, se não forem, o sistema poderá ser implementado e usado normalmente.
- Desejável: requisito que não compromete as funcionalidades básicas do sistema, isto
 é, o sistema pode funcionar de forma satisfatória sem ele. Requisitos desejáveis
 podem ser deixados para versões posteriores do sistema, caso não haja tempo hábil
 para implementação dos mesmos nesta etapa.

3.1.1 Requisitos Funcionais

[RF1] - Medição de Tensão CC

O sistema deve ser capaz de monitorar, em tempo real, a tensão de entrada da *String Box*.

Faixa de Medição: 0 a 500V.

Prioridade: Essencial.
[RF2] - Medição de Corrente CC

O sistema deve ser capaz de monitorar, em tempo real, a corrente de entrada da *String Box*.

Faixa de Medição: 0 a 20A (C.C.).

Prioridade: Essencial.

[RF3] - Identificação de eventos nos circuitos CC

O sistema deve ser capaz de identificar a ocorrência de eventos nos circuitos C.C. das *strings*, abrangendo as seguitnes situações:

- Sobretensão e sobrecorrente: quando o sistema opera próximo ou acima dos limites estabelecidos (500V e 20A);
- Subtensão: quando o sistema opera próximo ou abaixo da tensão de alimentação (25V);

Prioridade: Importante.

[RF4] - Cálculo de Potência Instantânea

O sistema deve ser capaz de estimar a potência instantânea produzida, em kW, a partir das medições de tensão e corrente.

Prioridade: Importante.

[RF5] - Cálculo de Energia Acumulada

O sistema deve ser capaz de estimar a energia produzida, em kWh, a partir das medições de tensão e corrente.

Prioridade: Importante.

[RF6] - Seccionamento do Circuito

O sistema deve permitir que o usuário realize manobras no circuito, para fins de manutenção ou outras ações.

Prioridade: Essencial.

[RF7] - Monitoramento de Vida Útil do DPS

O sistema deve ser capaz de monitorar o estado de funcionamento do DPS, por meio da através da leitura de sinalização disponibilizada pelo próprio componente.

Prioridade: Importante.

[RF8] - Identificação de Superaquecimento do Sistema

O sistema deve ser capaz de identificar superaquecimento do processador ao atingir 75°C, bem como entrar em *low power mode*, visando garantir sua vida útil em instalações ao tempo.

Prioridade: Desejável.

3.1.2 Requisitos Não Funcionais

[NF1] - Sistema de Alimentação

O sistema deve possuir uma fonte de alimentação, integrada ou não, para energização dos circuitos eletrônicos.

Prioridade: Essencial.

[NF2] - Componente Sensor

O sistema deve possuir componentes sensores que atendam ao requisito de faixa de medição.

Prioridade: Essencial.

[NF3] - Componente Seccionador

O sistema deve possuir um componente seccionador, visando subsidiar manutenções via acionamento externo.

Prioridade: Essencial.

[NF4] - Circuito Condicionador

O sistema deve possuir um circuito eletrônico para condicionamento e filtragem das grandezas mensuradas.

Prioridade: Essencial.

[NF5] - Unidade Central de Processamento

O sistema deve possuir um microcontrolador como *CPU*, para aquisição e processamento de dados.

Prioridade: Essencial.

[NF6] - Isolamento

Por se tratar de um sistema eletrônico acoplado a alta tensão, o sistema deverá ser devidamente isolado.

Prioridade: Importante.

3.2 Arquitetura do Sistema

3.2.1 Diagrama de Blocos do Sistema

A Figura 24 apresenta o diagrama de blocos do sistema proposto neste trabalho.

Figura 24 – Diagrama de blocos do *firmware* proposto.

3.2.2 Medição de Tensão e Corrente

Existem, basicamente, duas técnicas para medição de grandezas como tensão e corrente: medição direta e medição indireta.

Na medição direta, a grandeza monitorada pode ser condicionada para atender à requisitos específicos do circuito de medição, mas, no geral, é acoplada diretamente no circuito, ou seja, sem qualquer isolamento. (FRONTIN, 2017)

Já na medição indireta, utilizam-se técnicas para que não haja nenhuma conexão elétrica entre a grandeza e o circuito de medição em si, baseadas nas leis de *Ampère* e *Faraday*. (FRONTIN, 2017)

Neste trabalho, o método adotado para medição de tensão e corrente foi o indireto, baseado em sensores que utilizam o efeito *Hall* em seu funcionamento. Os componentes escolhidos são os sensores LV 20-P e LA 55-P, respectivamente, da fabricante *LEM*. Ambos os sensores podem ser utilizados para medições de sinais alternados, contínuos e pulsantes. Além disso, possuem isolamento galvânico entre os circuitos primário e secundário, atendendo ao requisito de isolamento.

3.2.2.1 Transdutor de Tensão LV 20-P

A Figura 25 apresenta um diagrama elétrico simplificado do transdutor de tensão LV 20-P. Neste diagrama, o princípio de funcionamento do sensor, baseado no efeito *hall*, é representado por meio de bobinas e um circuito de compensação. As Tabelas 1 e 2 apresentam as características básicas de operação do componente.

Figura 25 – Diagrama elétrico do transdutor de tensão LV 20-P. (LEM, 2014b)

Tal que $+U_C$ e $-U_C$ são os terminais de alimentação do transdutor, M é a saída do transdutor, com sinal proporcional à sua entrada, e $+V_{IN}$ e $-V_{IN}$ são os terminais associados ao ponto de medição. R_1 deve ser calculado tal que a corrente nominal do primário seja limitada a 10mA, ou seja:

$$R_1 = \frac{500V}{10mA} \approx 50K\Omega/5W \tag{3.1}$$

E R_M deve ser tal como indicado na Tabela 2, adotando 3V como a máxima tensão de saída, ou seja:

$$R_{M_V} = \frac{3V}{25mA} \approx 120\Omega / \frac{1}{4}W \tag{3.2}$$

ϵ	Erro $(T_A m b = 25^{\circ} C)$	±	1, 1	%
ϵ_L	Erro linear	<	0, 2	%
t_R	Tempo de resposta $(90\% of I_{PN})$	40		μs
T_A	Temperatura de operação	0	70	°C

Tabela 1 – Características gerais do transdutor de tensão LV 20-P, da fabricante LEM. (LEM, 2014b)

I_{PN}	Corrente nominal do primário	10		mA
I_P	Faixa de medição	0	±14	mA
V_P	Faixa de medição	10	± 500	V
R_M	Resistência R_M	R_{M_min}	R_{M_max}	
	with $\pm 12V @ \pm 10mA$	30	190	Ω
	with $\pm 12V @ \pm 14mA$	30	100	Ω
	with $\pm 15V @ \pm 10mA$	100	350	Ω
	with $\pm 15V @ \pm 14mA$	100	190	Ω
I_{SN}	Corrente nominal do secundário	2	5	mA
K_N	Relação de conversão	2500:1000		
V_{CC}	Tensão de alimentação	± 12	± 15	V
V_D	Isolamento AC	2	, 5	KV

Tabela 2 – Características elétricas do transdutor de tensão LV 20-P, da fabricante LEM. (LEM, 2014b)

3.2.2.2 Transdutor de Corrente LA 55-P

A Figura 26 apresenta o diagrama elétrico simplificado do transdutor de corrente LA 55-P. Novamente, note que o princípio de funcionamento do sensor, baseado no efeito *hall*, está sendo representado por meio de bobinas e um circuito de compensação.

Figura 26 – Diagrama elétrico do transdutor de corrente LA 55-P. (LEM, 2014a)

Tal que I_P é a corrente que flui no primário do transdutor, $+U_C$ e $-U_C$ são seus terminais de alimentação, M é o terminal de saída do transdutor, com sinal proporcional à sua entrada, e R_M deve ser tal como indicado na Tabela 4. Novamente, adotando 3Vcomo a máxima tensão de saída para uma corrente do primário de 20A:

$$R_{M_I} = \frac{3V}{20mA} \approx 150\Omega / \frac{1}{4}W \tag{3.3}$$

ϵ	Erro $(T_A m b = 25^{\circ} C)$	$\pm 0,$	9	%
E_L	Erro linear	< 0,	15	%
t_R	Tempo de resposta $(90\% of I_{PN})$	1		us
T_A	Temperatura de operação	-40	85	°С

Tabela 3 – Características gerais do transdutor de corrente LA 55-P, da fabricante LEM. (LEM, 2014a)

I_{PN}	Corrente nominal do primário	50		А
I_{PM}	Faixa de medição	0	± 70	А
R_M	Resistência $R_M (T_A = 70^{\circ}C)$	R_{M_min}	R_{M_max}	
	with $\pm 12V @ \pm 50A$	10	100	Ω
	with $\pm 12V @ \pm 70A$	10	50	Ω
	with $\pm 15V @ \pm 50A$	50	160	Ω
	with $\pm 15V @ \pm 70A$	50	90	Ω
I_{SN}	Corrente nominal do secundário	50		mA
K_N	Relação de conversão	1:1000		
U_C	Tensão de alimentação	±12	± 15	V
U_D	Isolamento AC, $50Hz$	2	,5	KV

Tabela 4 – Características elétricas do transdutor de corrente LA 55-P, da fabricante LEM. (LEM, 2014a)

3.2.2.3 Filtro Anti Aliasing

O filtro adotado é um passa baixas de 2^{a} ordem, voltado para atenuação de componentes de alta frequência, de topologia *Sallen-Key* e aproximação *Bessel*. (REIS, 2018)

Figura 27 – Topologia do filtro de 2ª ordem utilizado para remoção de componentes de alta frequência.

Utilizando a Lei de *Kirchhoff* dos nós, calcula-se a função de transferência do filtro da Figura 27:

$$H(s) = \frac{\frac{1}{R_1 R_2 C_1 C_2}}{s^2 + s(\frac{R_1 + R_2}{R_1 R_2 C_2}) + \frac{1}{R_1 R_2 C_1 C_2}}$$
(3.4)

Segundo SADIKU (2013), a função de transferência genérica de filtros de segunda ordem pode ser escrita na forma:

$$H(s) = \frac{K\omega_0^2}{s^2 + \frac{\omega_0^2}{Q} + \omega_0^2}$$
(3.5)

Comparando as Equações 3.4 e 3.5 e, ainda, adotando $R_1 = R_2 = R$ e K = 1, obtém-se:

$$\omega_0 = \frac{1}{R\sqrt{C_1 C_2}} \tag{3.6}$$

onde $\omega_0 = 2\pi f_c$, e:

$$Q = \frac{C_2}{2\sqrt{C_1 C_2}}$$
(3.7)

Adotando $C_1 = 10nF$, pode-se estimar Q = 0,577 para obter C_2 . (REIS, 2018)

$$C_2 = 4 \times Q^2 \times C_1 \approx 13nF \tag{3.8}$$

Dados C_1 e C_2 e, ainda, adotando uma frequência de corte de 1KHz, obtém-se R.

$$R = \frac{1}{2\pi \times f_c \times \sqrt{C_1 C_2}} \approx 14K7 \tag{3.9}$$

Assim, podemos calcular a frequência de corte real do filtro:

$$f_c = \frac{1}{2\pi \times 14K7\sqrt{(10n) \times (13n)}} \approx 950Hz$$
(3.10)

3.2.2.4 Aquisição e Processamento

Visando agilidade no tempo de resposta a variações, bem como acurácia das medições realizadas, a lógica para aquisição e processamento de tensão e corrente (Figura 24) amostra sequencialmente os canais analógicos à uma taxa de 960*sps* e os insere em um *buffer* circular, agregado em multicamadas.

Apesar de a norma IEC 61400-4-30 ser voltada para sistemas de medição em C.A., o método de agregação em multicamadas foi adotado para que o sistema seja capaz de tomar decisões baseadas em variações a curto prazo (surtos, curto circuitos) e a médio e longo prazo (cálculo da potência, degradação das séries fotovoltaicas).

Figura 28 – Método de agregação em multicamadas, baseado na norma IEC 61400-4-30.

Tal que os níveis de agregação foram divididos em:

1. 1ª Camada

Buffer circular de 192 posições (12 ciclos de 16 amostras cada), inseridas a partir da leitura do módulo ADC, a uma taxa de 960sps, totalizando 0, 2s.

2. $2^{\underline{a}}$ Camada

Buffer circular de 15 posições, calculadas a partir da média quadrática da primeira camada, a cada 0, 2s, totalizando 3s.

3. 3^a Camada

Buffer circular de 200 posições, calculadas a partir da média quadrática da segunda camada, a cada 3 segundos, totalizando 10m.

4. 4^a Camada

Buffer circular de 6 posições, calculadas a partir da média quadrática da terceira camada, a cada 10 minutos, totalizando 1h.

5. $5^{\rm a}$ Camada

Buffer circular de 24 posições, calculadas a partir da média quadrática da quarta camada, a cada hora, totalizando 24 horas.

O cálculo da média quadrática entre os níveis é dado por:

$$X_M = \sqrt{\frac{X_1^2 + X_2^2 + \dots + X_N^2}{n}}$$
(3.11)

Onde X_M é a média quadrática dos *n* termos de *X*, dada em *Volts* ou *Ampère*.

3.2.3 Cálculo da Potência e Energia Produzida

Para o cálculo da potência produzida, o sistema multiplicará uma amostra de tensão por uma amostra de corrente, ambos da 3^{a} camada do protocolo descrito acima. Assim, a potência calculada é referente a um período de 3 segundos, dada em kW.

$$P_{3s} = \frac{V_{3s} \times I_{3s}}{10^3} \ [kW] \tag{3.12}$$

O resultado obtido será armazenado seguindo o mesmo protocolo utilizado para tensão e corrente, a partir da 3^a camada.

Para o cálculo da energia acumulada, por sua vez, será realizado o somatório dos valores calculados de potência a cada 3 segundos, referentes ao período de 1 hora, visto que a unidade de medida é dada em kWh.

$$E = \sum_{i=1}^{\infty} \frac{P_{3s}}{3.6 \times 10^3} \ kWh \tag{3.13}$$

A energia acumulada será armazenada em uma variável do tipo *float*, atualizada conforme a Equações 3.13.

O tipo *float*, de 32*bits*, pode assumir valores absolutos entre $3, 4 \times 10^{-38}$ a $3, 4 \times 10^{38}$, aproximadamente. No geral, pode-se armazenar números com até 7 algarismos significativos, ou seja, para um número como 123456, 789 a variável o armazenará como 1, 234567*E*6.

Considerando um cenário contínuo em que a medição estivesse no limite, ou seja, para:

$$P_{3s} = \frac{500V \times 20A}{10^3} = 10kW \tag{3.14}$$

e, logo, $E_{1h} = 10KWh$. O tempo, em anos, até que ocorresse *overflow* aritmético da variável de energia é de:

$$T_{anos} = \frac{V_{MAX_{float}}}{E_{1h} \times 24 \times 30 \times 12} \approx 11,57anos \tag{3.15}$$

Onde $V_{MAX_{float}}$ é a máxima energia armazenada pelo *float*, ou seja, aproximadamente 999.999, 9KWh.

3.2.4 Monitoramento de Vida Útil do DPS

Para o monitoramento da vida útil do DPS, será utilizado a topologia de circuito da Figura 29, tal que os terminais SW_+ e SW_- são conectados a chave mecânica do DPS.

3.2.5 Seccionamento do Circuito

Para o seccionamento do circuito, serão utilizados componentes do tipo relé, controlados pelo microcontrolador na identificação de falhas no barramento C.C. ou via acionamento externo pelo usuário.

3.2.6 Microcontrolador

Como Unidade Central de Processamento (CPU), será utilizado o microcontrolador STM32G747RE, da *STMicroelectronics*.

Figura 30 – Foto do kit de desenvolvimento NUCLEO-G474RE, da STMicroelectronics. (ST, 2020a)

Trata-se de um processador de alta performance ARM Cortex -M4, com arquitetura RISC de 32bits e frequência de até 170MHz. Conta com 512Kbytes de memória Flash, 96Kbytes de memória SRAM, acelerador para funções matemáticas e aritméticas (CORDIC e FMAC), além de 5 módulos ADC de 12bits, 7 timers de 16bits e 2 de 32bitse diversas interfaces de comunicação (SPI, I2C, UxART, USB, CAN).

Figura 31 – Principais características do microcontrolador STM32G474RE. (ST, 2020b)

3.2.7 Gerenciamento de Eventos

O módulo de gerenciamento de eventos é baseado na ativação de *flags* identificadoras do estado do sistema. A Figura 32 apresenta o fluxograma geral do módulo, bem como os pontos de ativação de cada evento.

Figura 32 – Fluxograma do módulo gerenciador de eventos.

A seguir, são apresentados os eventos monitorados seguidos de suas respectivas ações de controle. Para eventos associados a medições de grandezas contínuas no tempo, foi utilizado um sistema de controle com histerese.

Tipo	Ação	Trigger	Obs
Seccionamento	Desabilita a saída		Acionado pelo
	da Caixa de		usuário.
	Strings		
Sobretensão	Desabilita a saída	$V_{off} \ge 475V$	Acionado pelo
	da Caixa de	$V_{on} \le 450V$	sistema.
	Strings		
Subtensão	Desabilita a saída	$V_{off} \le 25V$	Acionado pelo
	da Caixa de	$V_{on} \ge 50V$	sistema.
	Strings		
Sobrecorrente	Desabilita a saída	$V_{off} \ge 19A$	Acionado pelo
	da Caixa de	$V_{on} \le 18A$	sistema.
	Strings		
Superaquecimento	Desabilita o	$V_{off} \ge 75^{\circ}C$	Acionado pelo
	circuito de	$V_{on} \le 50^{\circ}C$	sistema.
	monitoramento		
Fim de vida Útil	Desabilita a saída		Acionado pelo
do DPS	da Caixa de		sistema.
	Strings		

Tabela 5 – Identificação dos eventos e suas respectivas ações de controle, odernados por prioridade.

Por fim, o sistema conta com um módulo debug, para identificação dos eventos através de 3 LED's. A Tabela 6 apresenta a tabela verdade do módulo.

LED1	LED2	LED3	Evento
0	0	0	Nenhum evento identificado
0	0	1	Seccionamento
0	1	0	Sobretensão
0	1	1	Sobrecorrente
1	0	0	Subtensão
1	0	1	Superaquecimento
1	1	0	Fim de vida Útil do DPS
1	1	1	Degradação do Painel Solar

Tabela 6 – Tabela verdade do módulo Debug.

4 Resultados e Discussão

Neste capítulo, serão apresentados e discutidos os resultados relacionados aos procedimentos experimentais para validação do protótipo funcional.

4.1 Projeto de Hardware do Protótipo

4.1.1 Condicionamento de Tensão

A Figura 33 apresenta diagrama esquemático do circuito proposto para aquisição e condicionamento da tensão.

Figura 33 – Esquemático do circuito proposto para condicionamento e aquisição da tensão.

Tal que o circuito é composto por um limitador de corrente (resistores de $100K\Omega$ por 3W) no primário do transdutor, um resistor *shunt* (resistor de 120Ω por 1/4W, com tolerância de 1%) no secundário do transdutor, seguido por um filtro passa-baixas de 2^a ordem.

4.1.1.1 Caracterização do Circuito de Condicionamento de Tensão

Para caracterização do circuito aquisição e condicionamento de tensão e, por consequência, determinação da relação entre os sinais de entrada e saída, foi realizado um ensaio experimental, o qual toma por base o esquema da Figura 34.

Figura 34 – Esquema do circuito montado para caracterização do circuito de condicionamento de tensão.

Para o ensaio, foi utilizado uma fonte controlada de tensão alternada (V_{IN}) , um retificador de onda completa monofásico, um filtro indutivo-capacitivo e uma carga resistiva (R_L) . A seguir são apresentadas as premissas definidas para a realização do ensaio. A esquerda, o multímetro amarelo apresenta a tensão de saída do Varivolt e o multímetro vermelho apresenta a tensão do barramento C.C., já a direita, o segundo multímetro amarelo apresenta a tensão de saída do circuito de condicionamento.

- No ponto de medição, sobre a carga resistiva (R_L) , serão inseridos sinais de amplitude conhecidas;
- Em função das características do Varivolt utilizado, a máxima tensão aplicada foi de, aproximadamente, 240V_{rms};
- Considerando que no laboratório em que foram realizados os testes não há um dispositivo padrão para calibração de medidores em eletricidade, a tensão do barramento C.C. foi aferida por meio de um multímetro *ICEL MD-6400*, do tipo 4 ½ dígitos;
- Outro ponto de medição, para controle do ensaio, foi a tensão de saída da fonte C.A., por meio de um multímetro *Hikari HM-1000*;
- Por sua vez, a tensão de saída do circuito de condicionamento foi medida por um multímetro *Hikari HM-2090*;
- Os testes foram realizados em temperatura ambiente (25 °C);

A seguir, as Figuras 35, 36, 37 e 38 apresentam fotos dos componentes utilizados ao longo dos ensaios experimentais.

Figura 35 – Foto do Varivolt utilizado nos ensaios experimentais. Note que, apesar de o dispositivo ser trifásico, para o teste será utilizada somente uma fase.

Figura 36 – Foto da ponte retificadora utilizada nos ensaios experimentais. Note que, novamente, a ponte retificadora é trifásica, porém, serão usados apenas 4 diodos para o ensaio.

Figura 37 – Foto do filtro LC utilizado nos ensaios experimentais, tal que o indutor é de 1,5mH/20A e o capacitor é de 11,4uF/440V.

Figura 38 – Foto do banco de resistores utilizado nos ensaios experimentais. Resistência: 100Ω . Potência máxima: 1KW.

Os resultados obtidos são apresentados a seguir, bem como a Tabela 7 apresenta o consolidado dos dados.

Figura 39 – Foto do ensaio de caracterização do circuito de condicionamento de tensão para condição inicial, ou seja, para um sinal de 0V.

(a) Foto do ensaio de caracterização do circuito de condicionamento de tensão para um sinal de, aproximadamente, 25V.

(b) Foto do ensaio de caracterização do circuito de condicionamento de tensão para um sinal de, aproximadamente, 50V.

(c) Foto do ensaio de caracterização do circuito de condicionamento de tensão para um sinal de, aproximadamente, 100V.

(d) Foto do ensaio de caracterização do circuito de condicionamento de tensão para um sinal de, aproximadamente, 150V.

(e) Foto do ensaio de caracterização do circuito de condicionamento de tensão para um sinal de, aproximadamente, 200V.

- (f) Foto do ensaio de caracterização do circuito de condicionamento de tensão para um sinal de, aproximadamente, 250V.
- Figura 40 Fotos dos resultados obtidos no ensaio de caracterização do circuito de condicionamento de tensão, para sinais entre 25V a 250V.

$V_{varivolt}(V_{rms})$	$V_{DC}(V)$	Carga (Ω)	$V_{Meas}(V)$
0,0	0,0169	400	0,0
26	24,9	400	0,136
53	50,8	400	0,293
105	100,1	400	$0,\!591$
158	149,7	400	0,894
212	200,3	400	1,207
242	228,7	400	1,390

Tabela 7 – Resultado do ensaio de caracterização do circuito de condicionamento para medição de tensão.

Onde $V_{varivolt}$ é a tensão de saída da fonte C.A., V_{DC} é a tensão do barramento C.C. e V_{Meas} é a tensão medida na saída do circuito de condicionamento de tensão.

A partir dos resultados obtidos na Tabela 7, pode-se observar a linearidade do circuito de condicionamento de tensão, tal que é possível a obtenção da equação do ganho do circuito, conforme indicado na 41.

Figura 41 – Gráfico de dispersão dos resultados obtidos na caracterização do circuito de condicionamento de tensão.

$$V_{DC} = 164, 1 \times V_{meas} + 2,0356 \tag{4.1}$$

Onde, novamente, V_{meas} é a tensão medida na saída do circuito de condicionamento e V_{DC} é a tensão estimada na entrada do barramento C.C..

4.1.2 Condicionamento de Corrente

A Figura 42 apresenta o diagrama esquemático do circuito proposto para o condicionamento e aquisição de corrente.

Figura 42 – Esquemático do circuito proposto para condicionamento e aquisição da corrente.

Tal que o circuito é composto por um resistor *shunt* (resistor de 150 Ω por 1/4W, com tolerância de 1%) no secundário do transdutor, seguido por um filtro passa-baixas de 2^a ordem.

4.1.2.1 Caracterização do Circuito de Condicionamento de Corrente

De forma semelhante ao circuito de condicionamento e aquisição de tensão, foi realizado um ensaio experimental para caracterização do circuito de condicionamento e aquisição de corrente, também baseado no circuito da Figura 34.

Figura 43 – Foto da conexão entre os circuitos de condicionamento de tensão e corrente e a fonte dos sinais monitorados.

Os resultados do ensaio são apresentados a seguir, bem como a Figura 45 apresenta o modelo linear ajustado ao circuito, para obtenção de seu ganho. Neste ensaio, a esquerda, o multímetro vermelho apresenta a tensão do barramento C.C., já a direita, o multímetro de cima apresenta a tensão de saída do circuito de condicionamento e o multímetro de baixo apresenta a corrente passada no banco de resistores.

(a) Foto do ensaio de caracterização do circuito de condicionamento de corrente para um sinal de, aproximadamente, 0,2A.

(b) Foto do ensaio de caracterização do circuito de condicionamento de corrente para um sinal de, aproximadamente, 0,5A.

(c) Foto do ensaio de caracterização do circuito de condicionamento de corrente para um sinal de, aproximadamente, 0,8A.

(e) Foto do ensaio de caracterização do circuito de condicionamento de corrente para um sinal de, aproximadamente, 1,5A.

(d) Foto do ensaio de caracterização do circuito de condicionamento de corrente para um sinal de, aproximadamente, 1,0A.

(f) Foto do ensaio de caracterização do circuito de condicionamento de corrente para um sinal de, aproximadamente, 2,0A.

(g) Foto do ensaio de caracterização do circuito de condicionamento de corrente para um sinal de, aproximadamente, 2,5A.

- (h) Foto do ensaio de caracterização do circuito de condicionamento de corrente para um sinal de, aproximadamente, 3,0A.
- Figura 44 Fotos do ensaio de caracterização do circuito de condicionamento de corrente, para sinais entre 0,2A a 3A.

Observe que o circuito de condicionamento de corrente se comporta como um transdutor, com uma entrada de corrente e uma saída de tensão. Dessa forma, a *label* I_{Meas} é medida em *Volts*, possibilitando a medição por parte do microcontrolador.

$V_{DC}(V)$	Carga (Ω)	$I_{DC}(A)$	$I_{Meas}(V)$
10,07	50	0,20	0,026
25,12	50	0,50	0,070
40,00	50	0,80	0,114
50,40	50	1,01	0,144
75,10	50	1,51	0,216
99,80	50	2,01	0,289
125,20	50	2,53	0,363
151,30	50	3,05	0,440

Tabela 8 – Resultado do ensaio de caracterização do circuito de condicionamento para medição de corrente.

Onde V_{DC} é a tensão do barramento C.C., I_{DC} é a corrente que flui no barramento C.C. e I_{Meas} é a tensão medida na saída do circuito de condicionamento de corrente.

Novamente, a partir dos resultados obtidos na Tabela 8, é apresentado um modelo linear ajustado ao circuito de condicionamento de corrente, para obtenção da equação de ganho do circuito.

Figura 45 – Gráfico de dispersão dos resultados obtidos na caracterização do circuito de condicionamento de corrente.

$$I_{DC} = 6,9016 \times I_{meas} + 0,0174 \tag{4.2}$$

Onde I_{meas} é a tensão medida na saída do circuito de condicionamento e I_{DC} é a corrente estimada que circula no barramento C.C..

4.1.3 Monitoramento de Fim de Vida Útil do DPS

Para o monitoramento da vida útil do DPS, foi considerado uma string box com a linha de produtos *CLAMPER Front SR*, da fabricante *Clamper*, voltada para instalações em sistemas fotovoltaicos.

Figura 46 – Foto ilustrativa de um DPS da linha *CLAMPER Front SR*, voltado para instalações em sistemas fotovoltaicos, da fabricante *Clamper*. (CLAMPER, 2021a)

Esta linha de produtos possui um sistema para sinalização remota (SR) do estado de vida útil do dispositivo, a partir de três terminais: comum, normalmente aberto e normalmente fechado, conforme ilustrado na Figura 47.

DPS com sinalização remota "/SR"

Figura 47 – Foto do esquema elétrico de dispositivos DPS voltados para instalações em sistemas fotovoltaicos, com sinalização remota, da fabricante *Clamper*. (CLAM-PER, 2021a)

A Figura 48 apresenta o diagrama esquemático do circuito proposto para o monitoramento da vida útil do DPS, em que o terminal 1 do conector deverá ser acoplado ao terminal comum e o terminal 2 do conector ao terminal normalmente aberto do dispositivo. Assim, utilizando lógica *pull-up*, um dispositivo funcional resultará em uma saída com nível lógico alto e um dispositivo com defeito resultará em uma saída com nível lógico baixo.

Figura 48 – Esquemático do circuito proposto para o monitoramento da vida útil do DPS.

4.1.4 Seccionamento do Circuito

Para fins de seccionamento do circuito, foi utilizado uma par de relés JQC-3F, da fabricante Fangke.

Este componente foi escolhido com base nos requisitos de tensão e corrente especificados para o trabalho. Entretanto, ele também poderá ser utilizado para acionamentos de seccionadoras de maior porte. A Figura 49 apresenta o diagrama esquemático deste circuito.

Figura 49 – Esquemático do circuito proposto para controle dos dispositivos relés, voltados para o seccionamento do circuito.

4.1.5 Microcontrolador

Considerando o kit de desenvolvimento adotado (*NUCLEO-G474RE*), a Figura 50 apresenta a proposta de *pinout* do microcontrolador, considerando os demais circuito apresentados acima.

Figura 50 – Esquemático contendo o pinout do microcontrolador e os LEDs do módulo debug.

O módulo *debugg* é composto por três *LED's* (Figura 50), divididos em *Probe 1*, *Probe 2* e *Probe 3*, tal que a *Probe 1* representa o *bit* mais significativo, conforme descrito na Tabela 6.

4.1.6 Fonte de Alimentação

Para determinação do circuito da fonte de alimentação do sistema, foi considerado uma tensão nominal de 12V, bem como o consumo de corrente de cada circuito ou componente utilizado no protótipo.

A Tabela 9 apresenta a estimativa de consumo do circuito no pior cenário, ou seja, em que todos os circuitos e sub-circuitos estarão ligados.

Circuito/Componente	Tensão (V)	Corrente (mA)
Transdutor LV 20-P	12	35
Transdutor LA 55-P	12	60
Condicionamento de Tensão e Corrente	12	5
Monitoramento de Vida Útil do DPS	12	5
Módulo Debug	12	45
Microcontrolador NUCLE-G474RE	12	250
Módulo de Seccionamento	12	200
TOTAL	$12 \mathrm{V}$	600 mA

Tabela 9 – Estimativa de consumo de corrente, considerando o pior cenário, ou seja, em que todos os circuitos e sub-circuitos estarão ligados.

Baseado no levantamento feito, o consumo crítico do sistema poderá chegar a, aproximadamente, 7, 2W e, nesse sentido, foi adotado um fator de segurança de 1,65 no dimensionamento do circuito do sistema de alimentação.

Dessa forma, foi projetado uma fonte linear simétrica, de $\pm 12V/1A$, conforme circuito esquemático apresentado na Figura 51.

Figura 51 – Esquemático do circuito de alimentação, baseado em um transformador com TAP central, um retificador completo e reguladores lineares de tensão.

4.1.7 Placa de Circuito Impresso

Para o projeto da *PCI*, foram considerados os circuitos e componentes apresentados nos Anexos A e B, bem como alguns outros fatores para o correto dimensionamento da placa.

4.1.7.1 Requisitos de Layout

Dentre os diversos aspectos a serem levados em conta no desenvolvimento de um layout para *PCIs*, destacam-se a largura e espaçamento entre as trilhas.

A largura da camada de cobre, em conjunto com sua espessura, determinam a capacidade de condução de corrente da trilha. A Tabela 10 apresenta uma referência para determinação da largura de trilha, em função de sua espessura e corrente nominal.

Largura da Trilha ¹	Corrente (A)	
	1 oz^2	2 oz^2
5 mils	0,5	0,7
10 mils	0,8	1,4
20 mils	1,4	2,2
30 mils	1,9	3,0
50 mils	2,5	4,0
100 mils	4,0	7,0

Tabela 10 – Largura mínima de uma trilha, em função de sua espessura e corrente nominal. (LIMA, 2012)

O espaçamento entre as trilhas adjacentes, bem como o formato da trilha em si, pode resultar no mau funcionamento do circuito, causado por interferências eletromagnéticas e capacitâncias parasitas. A Tabela 11 apresenta uma referência para determinação do espaçamento mínimo entre as trilhas, em função da sua tensão nominal.

${f Tensão^3}$	Clearance ¹
30 V	8 mils
$50 \mathrm{V}$	25 mils
100 V	60 mils
170 V	150 mils
$250 \mathrm{V}$	300 mils
500 V	500 mils

Tabela 11 – Espaçamento mínimo entre trilhas adjacentes, em função da diferença de potencial. (LIMA, 2012)

¹ 1 mils = 0,0254 mm.

² 1 oz = 28,35 g.

³ DC ou tensão de pico V_p .

4.1.8 Produção das PCIs

Como o circuito é voltado para quadros em corrente contínua, optou-se por modularizar o sistema em fonte de alimentação e sistema de controle. Os resultados obtidos são apresentados a seguir.

(a) *Layout* da placa de circuito impresso da fonte de alimentação do sistema.

- (b) Foto da placa de circuito impresso com a fonte de alimentação montada.
- Figura 52 Foto do layout projetado e da placa montada do sistema de alimentação. Dimensões: 92x58,45mm

(a) *Layout* da placa de circuito impresso do sistema de controle.

(b) Foto da placa de circuito impresso com o sistema de controle montado.

Figura 53 – Foto do *layout* projetado e da placa montada do sistema de controle. Dimensões: 120x150mm.

4.2 Desenvolvimento de Firmware do Protótipo Funcional

Tomando-se por base os requisitos do projeto, a Figura 54 apresenta o fluxograma global modelado para o *firmware* embarcado.

Figura 54 – Fluxograma global de execução do *firmware*.

4.2.1 Configurações Gerais do Firmware

Nesse contexto, para implementação do código, foi utilizado a plataforma de desenvolvimento STM32 Cube IDE, da ST, voltada para o desenvolvimento em C e C++. (STMICROELECTRONICS, 2021)

4.2.1.1 Configuração dos GPIOs

A Figura 55 apresenta a relação de configuração dos GPIOs, bem como a Tabela 12 apresenta suas respectivas funcionalidades.

Figura 55 – Tela de configuração dos GPIOs na plataforma Cube IDE.

F	I	
ID	GPIO	Observação
CELL 1 BTN	PC13	Botão para seccionamento
CELL 1 Voltage	PC2	Monitoramento de tensão
CELL 1 Current	PC3	Monitoramento de corrente
CELL 1 DPS	PA0	Monitoramento de DPS
CELL 1 OUT NEG	PC0	Relé de saída 1 (negativo)
CELL 1 OUT POS	PA9	Relé de saída 2 (positivo)
CELL 1 BUILTIN LED	PA5	Status do acoplamento
CELL 1 DBG1	PB5	Debug Probe 1 (MSB)
CELL 1 DBG2	PB4	Debug Probe 2
CELL 1 DBG3	PB10	Debug Probe 3 (LMSB)

Tabela 12 – Descrição dos GPIOs configurados na plataforma Cube IDE.

4.2.1.2 Configuração dos Módulos ADC

Para este trabalho, foram utilizados 3 módulos ADC (ADC1, ADC2 e ADC5), voltados para amostragem de tensão, corrente e temperatura, respectivamente.

Visando tornar os cálculos de potência e energia mais precisos, a amostragem de tensão e corrente foi feita simultaneamente, justificando o uso de 2 módulos ADCs para tal função. A Figura 56 apresenta os parâmetros de configuração dos módulos ADC1 e ADC2.

~ ADCs_Common_Settings		V ADCs Common Settings	
Mode	Dual regular simultaneous mode only	Mode	Dual regular simultaneous mode only
DMA Access Mode	DMA access mode disabled	DMA Assass Mada	DMA assess made disabled
Delay between 2 sampling phases	1 Cycle	DMA Access Mode	1 Guele
✓ ADC_Settings		Delay between 2 sampling phases	1 Cycle
Clock Prescaler	Synchronous clock mode divided by 2	~ ADC_Settings	
Resolution	ADC 12-bit resolution	Clock Prescaler	Synchronous clock mode divided by 2
Data Alignment	Right alignment	Resolution	ADC 12-bit resolution
Gain Compensation	0	Data Alignment	Right alignment
Scan Conversion Mode	Disabled	Gain Compensation	0
End Of Conversion Selection	End of sequence of conversion	Scan Conversion Mode	Disabled
Low Power Auto Wait	Disabled	End Of Conversion Selection	End of sequence of conversion
Continuous Conversion Mode	Disabled	Low Power Auto Wait	Disabled
Discontinuous Conversion Mode	Disabled	Continuous Conversion Mode	Disabled
DMA Continuous Requests	Disabled	Discontinuous Conversion Mode	Disabled
Overrun behaviour	Overrun data preserved	DMA Continuous Requests	Disabled
~ ADC_Regular_ConversionMode		Overrun behaviour	Overrun data preserved
Enable Regular Conversions Enable		✓ ADC_Regular_ConversionMode	
Enable Regular Oversampling	Disable	Enable Regular Conversions	Enable
Number Of Conversion	1	Enable Regular Oversampling	Disable
External Trigger Conversion Source	Regular Conversion launched by software	Number Of Conversion	1
External Trigger Conversion Edge	None	∨ Rank	1
∼ Rank	1	Channel	Channel 9
Channel	Channel 8	Sampling Time	2.5 Cycles
Sampling Time	2.5 Cycles	Offset Number	No official
Offset Number	No offset	Offset Number	No bilsec
~ ADC_Injected_ConversionMode		 ADC_INJected_ConversionMode 	D: 11
Enable Injected Conversions	Disable	Enable injected Conversions	Disable

(a) Configuração do ADC1

(b) Configuração do ADC2

Figura 56 – Parâmetros de configuração dos módulos ADC1 e ADC2, respectivamente, para amostragem simultânea de tensão e corrente.

Nesse contexto, o terceiro módulo ADC (ADC5) surge da necessidade de amostrar a temperatura em uma taxa mais lenta, conforme parametrizado na Figura 57.

	Clock Prescaler	Synchronous clock mode divided by 2
	Resolution	ADC 12-bit resolution
	Data Alignment	Right alignment
	Gain Compensation	0
	Scan Conversion Mode	Disabled
	End Of Conversion Selection	End of single conversion
	Low Power Auto Wait	Disabled
	Continuous Conversion Mode	Disabled
	Discontinuous Conversion Mode	Disabled
	DMA Continuous Requests	Disabled
	Overrun behaviour	Overrun data preserved
~ AD	C_Regular_ConversionMode	
Enable Regular Conversions		Enable
	Enable Regular Oversampling	Disable
	Number Of Conversion	1
	External Trigger Conversion Source	Regular Conversion launched by software
	External Trigger Conversion Edge	None
~	Rank	1
	Channel	Channel Temperature Sensor
	Sampling Time	640.5 Cycles
	Offset Number	No offset
~ AD	C_Injected_ConversionMode	
	Enable Injected Conversions	Disable

Figura 57 – Parâmetros de configuração do módulo ADC5, para amostragem da temperatura interna do processador.

Configuração dos Timers 4.2.1.3

Neste trabalho, o microcontrolador foi parametrizado para operar com um *clock* interno de 120MHz, tal que os módulos ADCs operem em máxima velocidade.

Nesse sentido, a Equação 4.3 demonstra como obter a frequência do timer em função do divisor de *clock* (PSC) e de seu contador (CNT). Na sequência, a Figura 58 apresenta a parametrização dos timers utilizados neste trabalho.

$$Freq = \frac{120MHz}{(PSC+1) \times CNT}$$
(4.3)

(a) Configuração do TIM1

(b) Configuração do TIM2

Figura 58 – Parâmetros de configuração dos módulos TIM1 e TIM2, com frequências de 960Hz e 1Hz, respectivamente.

4.2.2 Amostragem e Processamento de Corrente e Tensão

Uma vez inicializado o TIM1, o sistema irá gerar interrupções contínuas à 960Hz. Por sua vez, cada chamada da ISR inicializa uma nova amostragem simultânea dos módulos ADC 1 e 2. Ao final da conversão, é gerado uma segunda interrupção para inserção do resultado nas devidas estruturas de dados.

Figura 59 – Fluxograma do processo de conversão do módulo ADC via interrupções. Note que a linha tracejada indica o fluxo de atividades realizadas pelo módulo ADC, ou seja, sem demandar recursos do processador.

A Figura 60 apresenta a rotina de processamento, após a amostragem simultânea, em que uma dada amostra é dividida em tensão e corrente, seguida pela adição do ganho do módulo ADC.

Figura 60 – Rotina chamada após o término de uma conversão dos módulos ADC 1 e 2. Note que o dado amostrado é retornado em uma única variável, do tipo uint32_t, e, portanto, deve-se realizar operações lógicas para extração dos dados de tensão e corrente.

Onde raw é a variável do tipo $uint32_t$ que armazena o resultado da conversão, $LSB_WORD_BIT_MASK$ e $HALF_WORD_LENGTH$ são macros utilizadas para separação das amostras de corrente e tensão, conforme apresentado a seguir:

$$Voltage = raw \& 0xFFFF \tag{4.4}$$

$$Current = raw >> 16$$
 (4.5)

Inseridos os valores de tensão e corrente em suas respectivas estruturas de dados, a ISR é encerrada e, então, inicia-se o protocolo de agregação em multi camadas e o cálculo de potência e energia no *loop* principal, conforme apresentado no fluxograma a seguir.

Figura 61 – Fluxograma da agregação em multi-camadas, após separação das amostras de corrente e tensão.

Note que, na terceira camada do protocolo, o sistema realiza a verificação dos limiares para *set/reset* dos eventos em regime permanente (sobretensão, sobrecorrente e subtensão).

4.2.3 Cálculo de Potência e Energia

Após o término da rotina de gerenciamento do protocolo de agregação das estruturas de corrente e tensão, o sistema executa a rotina de cálculo de potência e energia, conforme apresentado no fluxograma da Figura 54.

Figura 62 – Fluxograma da rotina de cálculo da potência e energia produzidas.

Tal que a potência calculada é dada em kW e, para obtenção da energia produzida em kWh, o sistema multiplica este resultado pelo intervalo de medição (dT), de 3 segundos.

4.2.4 Aquisição e Processamento da Temperatura Interna do Processador

Analogamente ao TIM1, uma vez inicializado o TIM5, o sistema irá gerar interrupções contínuas a uma taxa de 1Hz, sendo esta a frequência de amostragem da temperatura interna do microcontrolador. A Figura 63 apresenta a rotina executada ao fim de uma nova conversão do módulo ADC.

Figura 63 – *Printscreen* da rotina chamada após o término de uma conversão do módulo ADC 5.

Onde *raw* é a variável do tipo *uint32_t* que armazena o resultado da conversão, ADC_GAIN é o ganho do módulo ADC, $TEMP_SENSOR_VREF$ é a tensão de referência interna do sensor (0,76 V), $TEMP_SENSOR_SLOPE$ é o ganho do sensor (2,5 mV/°C) e $TEMP_SENSOR_TREF$ é a temperatura de referência do sensor (30°C). (ST, 2020c)

4.2.5 Interrupções Externas

Tanto o seccionamento manual do circuito quanto o monitoramento do estado de operação do DPS foram configurados para gerarem interrupções na troca do estado lógico dos pinos, conforme apresentado na Figura 64.

Figura 64 – Fluxograma das rotinas executadas após interrupção externa dos pinos voltados para seccionamento manual e monitoramento de vida útil do DPS.

A rotina de seccionamento manual do sistema é ativada apenas em *rising edge*, ou seja, o *switch* se comporta como botoeira de estado permanente (*latch switch*) e deve ser pressionada para cada troca de estado.

Por sua vez, a rotina de monitoramento de vida útil do DPS é ativada em ambos rising edge e falling edge, ou seja, o switch se comporta como botoeira de estado momentâneo (momentary switch), em que o estado lógico alto identifica um DPS funcional e o estado lógico baixo identifica um DPS defeituoso.

4.2.6 Gerenciador de Eventos

O *firmware* foi modelado utilizando a técnica *set/reset* das flags identificadoras dos eventos. Dessa forma, utilizou-se uma variável de *8bits* para gerenciamento dos eventos,

conforme descrito na Figura 65.

Figura 65 – Descritivo da variável utilizada para gerenciamento dos eventos.

Dessa forma, o módulo gerenciador de eventos utiliza operações lógicas para configuração de eventos e, consequentemente, consegue lidar facilmente com a ocorrência de eventos simultâneos, considerando a prioridade de cada evento (Tabela 5).

101	<pre>d events_change_state(photovoltaic *ptr, uint8_t event)</pre>
ı	<pre>if (is_event_active(ptr->events_handler, event)) ptr->events_handler &= ~event; else</pre>
}	<pre>ptr->events_handler = event;</pre>

Figura 66 – Rotina de *set/reset* das flags identificadores dos eventos.

Onde ptr é o ponteiro para a célula fotovoltaica monitorada e event é a variável que contém a flag do evento manipulado.

4.2.6.1 Módulo Debug

Considerando a lógica adotada para gerenciamento dos eventos, descrita acima, foi utilizado um multiplexador 8x3, em que os 6 eventos monitorados são apresentados nos 3 *LEDs* do módulo *Debug*.

Evento	Event's	Módulo
	Handler	Debug
Nenhum evento identificado	0x00	0x0
Seccionamento	0x01	0x1
Sobretensão	0x02	0x2
Sobrecorrente	0x04	0x3
Subtensão	0x08	0x4
Superaquecimento	0x10	0x5
Fim de Vida Útil do DPS	0x20	0x6

Tabela 13 – Resultado da multiplexação da variável de gerenciamento dos eventos para o módulo debug.

4.3 Análise de Desempenho do Sistema

Para análise de desempenho do sistema projetado, nesta seção são apresentados os resultados dos ensaios experimentais relacionados a medição ou monitoramento de cada funcionalidade. O *setup* de materiais utilizados nestes ensaios é o mesmo apresentado pela Figura 34.

Para os ensaios seguintes, o multímetro vermelho apresenta a tensão de saída do Varivolt (V_{rms}) , o multímetro azul apresenta a temperatura (°C) de um sensor colado no microcontrolador, o multímetro amarelo de cima mostra a tensão do barramento C.C. e, o de baixo, a corrente que flui no barramento C.C..

4.3.1 Seccionamento Manual

Para o ensaio do seccionamento manual, o sistema foi submetido, inicialmente, a uma condição em regime permanente, ou seja, sem identificação de nenhum evento.

		18.000	10.64
2	pression	Туре	Value
~	© cell	photovoltaic *	0x20000#68
	> 🗢 tea		0x800981c "Photovoltaic Cell 1"
	99 new_sample	_Beol	
	> 🗘 master		0x20000ab0
	> 🖨 slave	rms_measurement *	0x20001198
	> > power_energy		
	> trelay_1	digital_IOs *	
	> > relay_2		
	> 🔿 status	digital_10s *	0x20000w00
	> the mod	debug_mod *	0x20000e18
	Plivoltage	float	88.4451904
			0.601268053
	Hi power		
	Henergy		
	20 temperature	float	39.9633636
	Milevents handler	winte t	

(b) *Printscreen* da tela *live expressions* da CUBE IDE.

(a) Foto da bancada de ensaio.

Note, na foto da esquerda, os *LEDs* do módulo *Debug* apagados e, na da direita, a variável *events_handler* zerada, ou seja, para uma condição sem nenhum evento detectado.

(a) Foto da bancada de ensaio.

Figura 68 – Foto do ensaio experimental após interação com a botoeira de seccionamento manual.
Após interação com o botão integrado do sistema, note na foto da esquerda os *LEDs* dos relés apagados, bem como os *LEDs* do módulo *debug* indicando seccionamento manual ativado. Note, também, na foto da direita a variável *events_handler* caracterizando o evento.

4.3.2 Medição de Tensão e Corrente

Para o ensaio de medição de tensão e corrente, o sistema foi submetido a valores conhecidos de tensão para uma carga de 150Ω . Além disso, os limitares foram configurados conforme mostrado na Figura 69 e, na sequência, são apresentados os resultados obtidos.

/** * @brief <u>Definição dos limiares de tensão</u> e <u>corrente</u> .			
#define	OVERVOLTAGE_HOLD_LIMIT	200.0	
#define	OVERVOLTAGE_RELEASE_LIMIT	175.0	
#define	UNDERVOLTAGE_HOLD_LIMIT	25.00	
#define	UNDERVOLTAGE_RELEASE_LIMIT	50.00	
#define	OVERCURRENT_HOLD_LIMIT	1.35	
#define	OVERCURRENT_RELEASE_LIMIT	1.00	

Figura 69 – Printscreen das macros referente aos limiares para identificação dos eventos.

(a) Foto da bancada de ensaio.

			34 76 1
Ex	pression	Туре	Value
~	🗢 cell	photovoltaic *	0x20000a68
	> 🗢 tag		0x80098fc "Photovoltaic Cell 1"
	10 new_sample	_Bool	
	> master		0x20000ab0
	> 🗢 slave	rms_measurement *	
	> > power_energy		
	> relay_1	digital_IOs *	0x200009d8
	> relay_2	digital_IOs *	
	> 🗢 status	digital_IOs *	0x20000a00
	> \Rightarrow dbg_mod	debug_mod *	
	D0 voltage		3.29610705
			0.0258168653
	b0 power	float	8.50951546e-05
	Di energy		7.09126269e-08
	D0 temperature	float	
	00 events_handler	uint8_t	8 °b'

(b) *Printscreen* da tela *live expressions* da CUBE IDE.

(c) Foto da bancada de ensaio.

Expression	Type	
✓ \$ cell	photovoltaic *	0x20000a68
> 🗢 tag		0x80098fc *Photovoltaic Cell 1*
b0 new_sample		
> 🗢 slave	rms_measurement *	0x20001198
> > power_energy		
> relay_1	digital_IOs *	0x200009d8
> relay_2	digital_IOs *	
> 🗢 status	digital_IOs *	0x20000a00
> 🗢 dbg_mod	debug_mod *	
00 voltage	float	25.2009583
00 power		0.00404105941
D0 energy		
00+temperature	float	37.7069473
00: events_handler	uint8_t	8 "\b'

(d) *Printscreen* da tela *live expressions* da CUBE IDE.

(e) Foto da bancada de ensaio.

xpression	Type		
v 🗢 cell	photovoltaic *	0x20000a68	
		0x80098fc "Photovoltaic Cell 1"	
00 new_sample	_Bool		
		0x20000ab0	
> 🔹 slave	rms_measurement *	0x20001198	
> > power_energy	power_measurement *		
> 🗢 relay_1	digital_IOs *	0x200009d8	
> relay_2	digital_IOs *	0x200009f0	
> 🗢 status	digital_IOs *	0x20000a00	
> 🗢 dbg_mod	debug_mod *		
D3 voltage	float		
		0.31596899	
00 power	float	0.0150455302	
00 energy			
00 temperature	float	37.3846054	
00 events_handler	uint8_t	8 '\b'	

(f) *Printscreen* da tela *live expressions* da CUBE IDE.

Expression	Type	l Value .
✓ ≦ cell	photovoltaic *	0x20000a68
> 🗅 tag	char *	0x80098fc *Photovoltaic Cell 1*
20 new_sample	_Bool	false
> the master	rms_measurement *	
> 🗢 slave	rms_measurement *	0x20001198
> > power_energy	power_measurement *	
> relay_1	digital_IOs *	0x200009d8
> > relay_2	digital_IOs *	0x200009f0
> 🗢 status	digital_IOs *	0x20000a00
> 🔿 dbg_mod	debug_mod *	
140 voltage	float	
		0.343266457
(H) power	float	
30 energy		
99 temperature		38.0293121
Perevents_handler	uint8_t	0 10

(h) *Printscreen* da tela *live expressions* da CUBE IDE.

(g) Foto da bancada de ensaio.

Note que, após *power on*, o sistema identificou corretamente o evento de subtensão tanto na variável *events_handler* (0x08) quanto no módulo *Debug* (0x4). Somente acima dos 50V o evento foi finalizado.

(a) Foto da bancada de ensaio.

		2 12
Expression	Type	Value
✓ \$ cell	photovoltaic *	0x20000a68
		0x80098fc "Photovoltaic Cell 1"
00 new_sample	_Bool	false
		0x20000ab0
> 🗢 slave	rms_measurement *	0x20001198
> > power_energy		
> 🗢 relay_1	digital_IOs *	0x200009d8
> relay_2	digital_IOs *	0x200009f0
> 🗢 status	digital_IOs *	0x20000a00
> 🗢 dbg_mod	debug_mod *	
tel voltage	float	
00 power		0.064973481
00 energy		
DI temperature	float	38.673996
events_handler	uint8-t	0 10'

(b) *Printscreen* da tela *live expressions* da CUBE IDE.

(c) Foto da bancada de ensaio.

		2.5
Expression	Type	Value
✓ \$ cell	photovoltaic *	0x20000a68
		0x80098fc "Photovoltaic Cell 1"
00 new_sample	_Bool	
		0x20000ab0
> 🗢 slave	rms_measurement *	
> > power_energy		
> relay_1	digital_IOs *	0x200009d8
> relay_2	digital_IOs *	
> 🗢 status	digital_IOs *	0x20000a00
> 😂 dbg_mod	debug_mod *	
00 voltage	float	148.802811
		1.01084948
00-power	float	
00 energy		0.000125347695
00 temperature	float	38.9963379
De events handler	uint8 t	0 '10'

(d) *Printscreen* da tela *live expressions* da CUBE IDE.

(e) Foto da bancada de ensaio.

🔜 Build Analy 👎 Static Stac	🐁 Debug 怕 Include Br 📃 SWV	ITM D 🛠 Live Expres 🗙 🥒 Search 🔹
Expression	Туре	Value
✓ \$ cell	photovoltaic *	0x20000a68
> 🗢 tag		0x80098fc *Photovoltaic Cell 1*
141 new_sample	_Bool	
> 🗢 master	rms_measurement *	0x20000ab0
> 🗢 slave	rms_measurement *	0x20001198
> > power_energy	power_measurement *	0x20001880
> relay_1	digital_IOs *	0x200009d8
> relay_2	digital_IOs *	
> 🗢 status	digital_IOs *	0x20000a00
> to dbg_mod	debug_mod *	
14-voltage	float	199.74794
14 power	float	0.265133739
Dil-energy		0.0420347974
III temperature	float	42.2197838
IN events_handler		

(f) *Printscreen* da tela *live expressions* da CUBE IDE.

(h) *Printscreen* da tela *live expressions* da CUBE IDE.

(g) Foto da bancada de ensaio.

Desta vez, para tensões maiores que 50V e menores que 200V, o sistema não detectou nenhum evento. Em 201V, o sistema identificou corretamente o evento de sobretensão, tanto na variável *events_handler* (0x02) quanto no módulo *debug* (0x2).

		3 発
xpression	Type	Value
/ 🗢 cell	photovoltaic *	0x20000a68
> 🗘 tag		0x80098fc "Photovoltaic Cell 1"
III new_sample	_Bool	false
> 🗊 master	rms_measurement *	0x20000ab0
> \Rightarrow slave	rms_measurement *	0x20001198
> > power_energy	power_measurement *	
> to relay_1	digital_IOs *	0x200009d8
> trelay_2	digital_IOs *	0x20000910
> 🗢 status	digital_IOs *	0x20000a00
> 🗢 dbg_mod	debug_mod *	
14 voltage	float	
D3 power	float	
IN energy		0.0457841903
14 temperature	float	41.252758
IN events_handler	uint8 t	6 '006'

(b) *Printscreen* da tela *live expressions* da CUBE IDE.

(a) Foto da bancada de ensaio.

As Figuras 72a e 72b mostram, novamente, a identificação do evento de sobretensão. Note, ainda, que a corrente aplicada é de aproximadamente 1,4A, superior ao limiar para eventos de sobrecorrente. Entretanto, o evento não foi disparado pois o evento de sobretensão possui maior prioridade, conforme apresentado na Tabela 5.

(a) Foto da bancada de ensaio.

(b) *Printscreen* da tela *live expressions* da CUBE IDE.

(c) Foto da bancada de ensaio.

		19.76
Expression	Туре	Value
v D cell	photovoltaic *	0x20000a68
> 🗢 tag		0x80098fc "Photovoltaic Cell 1"
Intervesample	_Bool	false
		0x20000ab0
> 🗢 slave	rms_measurement *	0x20001198
> > power_energy		
> relay_1	digital_IOs *	0x200009d8
> relay_2	digital_IOs *	0x200009f0
> 🗢 status	digital_IOs *	0x20000a00
> to dbg_mod	debug_mod *	
Di-voltage	float	176.957153
		1.17169726
III-power	float	0.207340211
Int energy		0.0554838814
pt-temperature	float	38.673996
events handler	uint8 t	6 1006'

(d) *Printscreen* da tela *live expressions* da CUBE IDE.

Expression	Type	Value
cell	photovoltaic *	0x20000a68
> tag		0x80098fc "Photovoltaic Cell 1"
14 new_sample	_Bool	false
> 🗢 master		0x20000ab0
> 🗢 slave	rms_measurement *	0x20001198
> > power_energy		
> relay_1	digital_IOs *	0x200009d8
> trelay_2	digital_IOs *	
> 🗢 status	digital_IOs *	0x20000a00
> \Rightarrow dbg_mod	debug_mod *	
00 voltage	float	173.538635
De power	float	0.199663579
Denergy		
Di temperature	float	38.3516541
Die events_handler	uint8_t	

(f) *Printscreen* da tela *live expressions* da CUBE IDE.

(e) Foto da bancada de ensaio.

Abaixo da faixa dos 175V, o sistema finalizou o evento de sobretensão e identificou o evento de sobrecorrente, que já estava ativo, como já dito anteriormente.

(a) Foto da bancada de ensaio.

		2 20
Expression	Type	Value
✓ \$ cel	photovoltaic *	0x20000a68
> 🗢 tag		0x80098fc "Photovoltaic Cell 1"
III- new_sample	_Bool	
	rms_measurement *	0x20000ab0
> 🗊 slave	rms_measurement *	0x20001198
> > power_energy	power_measurement *	
> trelay_1	digital_IOs *	0x200009d8
> telay_2	digital_IOs *	0x200009f0
> 🔅 status	digital_IOs *	0x20000a00
> to dbg_mod	debug_mod *	
Divoltage	float	154.150513
IN-power	float	0.157923341
tel-energy		0.0632291585
PI- temperature	float	38.673996
De events handler	uint8_t	4 1004

(b) *Printscreen* da tela *live expressions* da CUBE IDE.

Build Analy 🔚 Static Stac	Debug Include Br SWV	ITM D M Live Expres X Search
		x & :
Expression		
✓ \$ cell	photovoltaic *	0x20000a68
> 🗢 tag		0x80098fc *Photovoltaic Cell 1*
00 new_sample	_Bool	
> 🗢 master		0x20000ab0
> 🗢 slave	rms_measurement *	
> > power_energy		
> relay_1	digital_IOs *	0x200009d8
> relay_2	digital_IOs *	
> 🗢 status	digital_IOs *	0x20000a00
> 🔷 dbg_mod	debug_mod *	
040 voltage	float	148.027313
		0.988919795
140 power		
01 energy		
84 temperature	float	38.3516541
III events_handler	uint8_t	0 /0

(d) *Printscreen* da tela *live expressions* da CUBE IDE.

(c) Foto da bancada de ensaio.

Figura 74 - Resultado do ensaio em, aproximadamente, 150V.

Com o evento de sobrecorrente ativo e uma corrente abaixo de 1A, o sistema volta para regime permanente, sem nenhum evento ativo.

(a) Foto da bancada de ensaio.

(c) Foto da bancada de ensaio.

Expression		Value
√ ‡ cel	photovoltaic *	0x20000a68
> 🗢 tag		0x80098fc "Photovoltaic Cell 1"
P0-new_sample	_Bool	
> 🗢 master	rms_measurement *	
> 🗢 slave	rms_measurement *	0x20001198
> > power_energy		
> relay_1	digital_IOs *	0x200009d8
> relay_2	digital_IOs *	
> 🗢 status	digital_IOs *	0x20000a00
> 🗢 dbg_mod	debug_mod *	
140 voltage	float	99.0027161
		0.663325965
DI power	float	
DI energy		
D1 temperature	floet	39.6410217
PI events_handler		0 1/01

(b) *Printscreen* da tela *live expressions* da CUBE IDE.

and remarks a state of the state	a neurol and neuron and and	The test -12 cite expression of a section -
		2.2
Expression		
✓ \$ cell	photovoltaic *	0x20000a68
> 🗢 tag		
00 new_sample	_Bool	
> 🗢 master		0x20000ab0
> 🗢 slave	rms_measurement *	0x20001198
> power_energy	power_measurement *	
> relay_1	digital_IOs *	0x200009d8
> relay_2	digital_IOs *	
> 🗢 status	digital_IOs *	0x20000a00
> 🗢 dbg_mod	debug_mod *	
D0-voltage	float	49.4419632
14 power	float	0.0163839944
Ind energy		
b0-temperature	float	
R events handler	uint8_t	0 10'

(d) *Printscreen* da tela *live expressions* da CUBE IDE.

(f) Printscreen da tela live expressions da

da

SWV ITM D...

(e) Foto da bancada de ensaio.

(g) Foto da bancada de ensaio.

DEN	(h) Printscree	en da tela <i>live</i>	expressions
	events_handler	uint8_t	8 '\b'
	04-temperature	float	40.2857056
	the energy		
	04 power	float	0.00378589286
	Di current		
10	DO voltage	float	24.3080349
14	> 🗢 dbg_mod	debug_mod *	
	> 🗢 status	digital_IOs *	0x20000a00
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	> relay_2	digital_IOs *	0x200009f0
	> relay_1	digital_IOs *	0x200009d8

CUBE IDE.

CUBE IDE.

Figura 75 – Resultados dos ensaios de 100V até, aproximadamente, 25V.

Por fim, ao abaixar a tensão da faixa dos 25V, o sistema identifica novamente o evento de subtensão.

A Tabela 14 apresenta o resultado consolidado do ensaio realizado acima, identificando o início e fim de cada evento detectado. Na sequência, as Figuras 76a e 76b apresentam o plote dos resultados obtidos através da medição de tensão e corrente, em função da quantidade de amostras obtidas.

V_{DC}	I_{DC}	V_{meas}	I_{meas}	Status
0V	0A	3,3V	0,03A	Início subtensão
25,4V	0,16A	$25,\!2V$	0,16A	Subtensão
48,7V	0,31A	47,6V	0,32A	Subtensão
51,0V	0,33A	51,3V	0,34A	Fim subtensão
100,4V	0,66A	97,7V	0,67A	Nenhum evento detectado
151,7V	1,00A	$148,\!8V$	1,01A	Nenhum evento detectado
199,4V	1,31A	199,7V	1,33A	Nenhum evento detectado
201,3V	1,32A	202,2V	1,34A	Início Sobretensão
215,4V	1,42A	217,3V	1,43A	Sobretensão $+$ início sobrecorrente
199,8V	1,31A	201,5V	1,33A	Sobretensão $+$ sobrecorrente
$176,\!8V$	1,16A	176,9V	1,17A	Fim sobretensão + sobrecorrente
173,5V	1,14A	173,5V	1,15A	Sobrecorrente
154,7V	1,01A	154,2V	1,02A	Sobrecorrente
149,0V	0,97A	148,0V	0,98A	Fim sobrecorrente
100,3V	$0,\!65A$	99,0V	0,66A	Nenhum evento detectado
50,8V	0,33A	49,4V	0,33A	Nenhum evento detectado
26,6V	0,17A	26,1V	0,17A	Nenhum evento detectado
24,8V	0,15A	24,3V	0,16A	Início subtensão
0V	0A	3,2V	0,03A	Subtensão

Tabela 14 – Resultado consolidado do ensaio de análise de desempenho do sistema de medição de corrente e tensão.

Onde V_{DC} e I_{DC} são tensão e corrente, respectivamente, no barramento C.C. e V_{meas} e I_{meas} são a tensão e corrente medidas pelo sistema.

Figura 76 – Plote dos resultados obtidos na medição de tensão e corrente, respectivamente, em função do número de amostras do ensaio.

Em seguida, as Equações 4.6 e 4.7 apresentam o erro quadrático médio (EQM) estimado para cada circuito de medição.

$$EQM_v \approx 2,68 V \tag{4.6}$$

$$EQM_i \approx 0,22 \ mA \tag{4.7}$$

4.3.3 Medição de Potência e Energia

Para validação do cálculo da potência e energia gerada, o sistema foi submetido a uma tensão de 150V com carga de 150Ω , durante um período de 15 minutos.

(a) Foto da bancada de ensaio.

	Teas.II - STHISZOUDEIDE		
	위 🗉 ㅋ [원 - 위 - 🌳 🔶 🔶	1	् 🖬 🔤
R	🔒 Build Analy 🔚 Static Stac 🐁 🛙	ebug 👕 Include Br 🧧 SWV ITM	D 🐔 Live Expres 🗙 🕖 Search 🔹 🦷
			2 校 日 :
Eq	xpression	Type	Value
¥	cell	photovoltaic *	0x20000a68
			0x80098fc "Photovoltaic Cell 1"
	te new_sample	_Bool	falso
		rms_measurement *	0x20000ab0
	> 🗢 slave	rms_measurement *	0x20001198
	> > power_energy	power_measurement *	0x20001880
	> relay_1	digital_IOs *	0x200009d8
	> \$ relay_2	digital_IOs *	0x20000910
	> 🗢 status	digital_IOs *	0x20000a00
	> 💲 dbg_mod	debug_mod *	0x20000a18
	Into voltage	float	148.802811
			1.01084948
	[4] power	float	0.150417238
	De energy		0.000125347695
	po temperature	float	38.9963379
	events_handler	uint8_t	0 10'

(b) *Printscreen* da tela *live expressions* da CUBE IDE.

(c) Foto da bancada de ensaio.

34 [1] 1 1 21 - 84 - 14 14 14	· 🖆 🚺	Q 🖬 🖬
🔜 Build Analy 🔚 Static Stac	🐁 Debug 🤺 Include Br 🔲 SWV	ITM D 🐔 Live Expres 🗙 🕖 Search 🔹
		株日
Expression	Туре	Value
✓ \$ cell	photovoltaic *	0x20000a68
		0x80098fc "Photovoltaic Cell 1*
10 new_sample	_Bool	false
> 🔷 master		0x20000ab0
> 🗢 slave	rms_measurement *	0x20001198
> > power_energy	power_measurement *	0x20001880
> relay_1	digital_IOs *	0x200009d8
> relay_2	digital_IOs *	0x200009f0
> 🗢 status	digital_IOs *	0x20000a00
> 🗢 dbg_mod	debug_mod *	0x20000a18
P0-voltage	float	150.086212
		1.00785267
De power	float	0.151264787
De energy	float	0.0380993783
D0 temperature	float	41.8974419
bit ments handler	stort t	0.50

- (d) *Printscreen* da tela *live expressions* da CUBE IDE.
- Figura 77 Resultado do ensaio voltado para validação do cálculo da potência e energia gerada.

A Figura 77b apresenta o *printscreen* da tela *live expressions* logo após o sistema ser resetado para início do ensaio. Note uma tensão medida de 148, 8V e corrente medida de 1,01A, resultando em uma potência de, aproximadamente, 0,15KW. Note, ainda, no topo da Figura 77b, o horário de início do ensaio, 18:59.

Já na Figura 77d, o resultado apresentado é ao fim dos 15 minutos, ou seja, as 19:14. Note uma pequena variação na medida de tensão e corrente, $150, 1V \in 1,00A$. Por fim, note a energia estimada, para o período, de 0,038KWh pelo sistema.

Dessa forma, a energia estimada apresentou erro inferior a 2%.

4.3.4 Monitoramento da Temperatura Interna

Para validação da medição de temperatura interna do processador, o sistema foi submetido a uma condição em regime permanente e, posteriormente, foi submetido a um soprador térmico para avaliar seu comportamento. Os resultados do ensaio são apresentados a seguir.

(a) Foto da bancada de ensaio.

		~ %
Expression	Туре	Value
✓ ⇒ cell	photovoltaic *	0x20000a68
> 🗢 tag	char *	0x80098fc "Photovoltaic Cell 1"
Inew_sample	_Bool	false
> 🗢 master	rms_measurement *	0x20000ab0
> 🗢 slave	rms_measurement *	0x20001198
> > power_energy	power_measurement *	0x20001880
> to relay_1	digital_IOs *	0x200009d8
> > relay_2	digital_IOs *	0x200009f0
> 🗢 status	digital_IOs *	0x20000a00
> 🗢 dbg_mod	debug_mod *	0x20000a18
90 voltage	float	88.5824966
		0.601371586
24 power	float	0.0532709956
per energy		0.000133098816
90+temperature	float	38.0293121
perents_handler	uint8_t	0 10'

(b) *Printscreen* da tela *live expressions* da CUBE IDE.

(c) Foto da bancada de ensaio.

			※ 後:
Б	pression	Type	Value
	🗢 cell	photovoltaic *	0x20000a68
	> 🗢 tag		0x80098fc "Photovoltaic Cell 1"
	Inew_sample	_Bool	false
	> 🗢 master	rms_measurement *	0x20000ab0
	> 🗢 slave	rms_measurement *	0x20001198
	> > power_energy	power_measurement *	0x20001880
	> 🗢 relay_1	digital_IOs *	0x200009d8
	> telay_2	digital_IOs *	0x200009f0
	> 🗢 status	digital_IOs *	0x20000a00
	> 😂 dbg_mod	debug_mod *	0x20000a18
	pol-voltage	float	88.6179504
			0.603082359
	(a) power	float	0.0534439236
	34 energy		0.000578253879
	24 temperature	float	44.4762001
	po- events_handler	uint8_t	16 '\020'

- (d) *Printscreen* da tela *live expressions* da CUBE IDE.
- Figura 78 Resultado do ensaio voltado para validação do monitoramento da temperatura interna do microcontrolador.

Note, nas Figuras 78a e 78b, que o sistema está em regime permanente, sem detecção de qualquer evento. No multímetro, foi aferida temperatura relativa de 33°C, já o sistema estimou uma temperatura relativa de 38°C. Esta diferença está associada muito ao fato de o sensor NTC, utilizado pelo multímetro, não estar devidamente em contato com o chip, resultando em uma má condutividade térmica e aumentado os erros associados a medição.

As Figuras 78c e 78d apresentam o resultado após aproximar o ar quente do microcontrolador. Note que o multímetro marca 46°C e o sistema 45°C. Note, ainda, que a variável *events_handler* identificou o evento (0x10), bem como o módulo *Debug* (0x5).

4.3.5 Monitoramento da Vida Útil do DPS

O último evento monitorado é o fim de vida útil do DPS. Para validação da rotina deste evento, o sistema foi novamente submetido a uma condição em regime permanente e, a partir de uma chave táctil, foi simulado a condição de fim de vida útil do componente.

(a) Foto da bancada de ensaio.

Expression		Value
✓ \$ cell	photovoltaic *	0x20000a68
> 🖈 tag		0x80098fc "Photovoltaic Cell 1"
🕬 new_sample	_Bool	false
> 🔹 master	rms_measurement *	0x20000ab0
> 🖈 slave	rms_measurement *	0x20001198
> power_energy	power_measurement *	0x20001880
> 🖈 relay_1	digital_IOs *	0x200009d8
> 🗊 relay_2	digital_IOs *	0x200009f0
> 🔹 status	digital_IOs *	0x20000a00
> 🔹 dbg_mod	debug_mod *	0x20000a18
10 voltage	float	88.5854111
III power	float	0.0533217154
🛤 energy		
14 temperature	float	39.3186798
🛤 events_handler	uint8_t	0 '\0'

(b) *Printscreen* da tela *live expressions* da CUBE IDE.

(c) Foto da bancada de ensaio.

Expression	Type	Value
v ⊉ cell	photovoltaic *	0x20000a68
> ⊅ tag		0x80098fc "Photovoltaic Cell 1"
00 new_sample	_Bool	false
> master	rms_measurement *	0x20000ab0
> 🗊 slave	rms_measurement *	0x20001198
> > power_energy	power_measurement *	0x20001880
> to relay_1	digital_IOs *	0x200009d8
> \$ relay_2	digital_IOs *	0x200009/0
> 🗇 status	digital_IOs *	0x20000a00
> to dbg_mod	debug_mod *	0x20000a18
10 voltage	float	88.5033264
		0.598884344
10 power	float	0.053003259
34 energy	float	0.00296382396
temperature	float	39.6410217
Perents_handler	uint8_t	

- (d) *Printscreen* da tela *live expressions* da CUBE IDE.
- Figura 79 Resultado do ensaio voltado para validação do monitoramento de vida útil do componente DPS.

Note, na Figura 79b, o sistema em regime permanente, ou seja, sem detecção de qualquer evento. Já as Figuras 79c e 79d apresentam o resultado ao pressionar a chave táctil, simulando o fim de vida útil do componente DPS. Note a identificação do evento através da variável *events_handler* (0x20), bem como pelos *LEDs* do módulo *Debug* (0x6).

5 Considerações Finais

Conforme evidenciado ao longo do trabalho, a implantação de sistemas de geração solar fotovoltaica, seja no formato centralizado ou distribuído, tem apresentado um forte crescimento nos últimos anos e mantém perspectivas de crescimento contínuo para os anos seguintes. Nesse contexto, o estabelecimento de sistemas que assegurem a qualidade e segurança das instalações elétricas, automatizando o acompanhamento da operação e facilitando a manutenção das instalações, se mostram bastantes promissores.

Neste trabalho de conclusão de curso, abordou-se o desenvolvimento de um protótipo de *hardware* e *firmware* para automatização de caixas de junção aplicadas às instalações C.C. de um sistema fotovoltaico. Dentre as funcionalidades previstas neste sistema, destacam-se: medição de variáveis elétricas (tensão, corrente, potência e energia) nas entradas da caixa de junção, acompanhamento do estado operacional do Dispositivos de Proteção contra Surtos (DPS) e possibilidade de realização de manobras remotas do sistema. Tais funcionalidades foram definidas em função de um levantamento de requisitos para automatizar uma caixa de junção.

Em relação ao *hardware*, foram apresentadas as características do projeto, diagramas esquemáticos dos circuitos e desenvolvimento de placa de circuito impresso para validação do sistema. No desenvolvimento do *firmware*, concebeu-se uma arquitetura para aquisição e processamento dos sinais de tensão e corrente, identificação de eventos (sobretensão, sobrecorrente, seccionamento, superaquecimento etc.) e acionamento remoto com o usuário. Ressalta-se a utilização do microcontrolador STM32G473, visto que este atende a todas as necessidades do sistema, permite a fácil expansão do circuito quanto a quantidade de variáveis monitoradas. Por fim, procedeu-se a realização de uma série de experimentos, em ambiente laboratorial, para a caracterização dos circuitos e validação de funcionamento do sistema como um todo.

Tendo em vista a continuidade de desenvolvimento deste sistema, sugere-se os seguintes trabalhos futuros:

- Evolução do hardware, priorizando a compactação da placa por meio de componentes SMD, e integração a uma string box comercial;
- Desenvolvimento e integração de uma fonte chaveada ao *hardware*, na qual utilizamse os próprios circuitos C.C. das instalações fotovoltaicas como entrada;
- Integração de um sistema de comunicação Wi-fi;

- Integração de algoritmos no *firmware* para subsidiar a manutenção de módulos fotovoltaicos;
- Desenvolvimento de testes com sistemas fotovoltaicos reais.

Por fim, todos os respectivos arquivos estão disponibilizados no repositório do trabalho, bem como um vídeo demonstrativo para apresentação do funcionamento do sistema e seu comportamento aos diversos eventos monitorados.

Referências

AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA. Resolução Normativa ANEEL n° 482/2012. 2012. Disponível em: http://www.aneel.gov.br/geracao-distribuida. Acesso em: 19 Abr. 2021. Citado na página 20.

ASSOCIAçãO BRASILEIRA DE ENERGIA SOLAR FOTOVOLTAICA. *Panorama da solar fotovoltaica no Brasil e no mundo*. 2021. Disponível em: <<u>https://www.absolar.org.br/mercado/infografico></u>. Acesso em: 19 Abr. 2021. Citado 3 vezes nas páginas 8, 19 e 20.

BAKER, B. C.; MICROCHIP. Select the Right Operational Amplifier for your Filtering Circuits. 2003. Disponível em: https://ww1.microchip.com/downloads/en/DeviceDoc/adn003.pdf>. Acesso em: 23 de Mai. 2021. Citado na página 30.

BARRETTO, A. C. Circuito Integrado de Condicionamento de Sinais Analógicos utilizando Tecnologia 0,5 um para Sinais Industriais e Biomédicos. 2011. Disponível em: <shorturl.at/mBLNR>. Acesso em: 23 de Mai. 2021. Citado 2 vezes nas páginas 8 e 29.

CLAMPER. *CLAMPER Front 15kA SR.* 2021. Disponível em: https://www.lojaclamper.com.br/dps-clamper-front-15ka-sr/p#product-description. Acesso em: 27 de Out. 2021. Citado 2 vezes nas páginas 10 e 58.

CLAMPER. *CLAMPER Solar SB*. 2021. Disponível em: https://www.clamper.com. br/product/clamper-solar-dps-fotovoltaico-3>. Acesso em: 24 de Mai. 2021. Citado 2 vezes nas páginas 8 e 27.

ECOMAIS. *Energia Solar*. 2021. Disponível em: <<u>http://www.ecomais.ind.br/</u> energia-solar>. Acesso em: 23 de Mai. 2021. Citado 2 vezes nas páginas 8 e 28.

EMPRESA DE PESQUISA ENERGÉTICA. Balanço Energético Nacional -Ano Base: 2019. 2020. Disponível em: https://www.epe.gov.br/sites-pt/ publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-479/ topico-528/BEN2020_sp.pdf>. Acesso em: 20 Abr. 2021. Citado na página 19.

ENERGêS. *Guia Completo do Módulo Fotovoltaico*. 2020. Disponível em: https://energes.com.br/energia-solar/guia-completo-modulos-fotovoltaicos. Acesso em: 5 de Mai. 2021. Citado 2 vezes nas páginas 8 e 24.

FRONTIN, S. de O. *Usina Fotovoltaica Jaíba Solar*. [S.l.]: Teixeira Gráfica e Editora LTDA., 2017. Citado 4 vezes nas páginas 8, 27, 28 e 38.

LATHI, B. P. *Sinais e Sistemas Lineares*. [S.l.]: Artmed Editora S.A., 2007. Citado 2 vezes nas páginas 29 e 30.

LIFE ENERGY MOTION. *Current Transducer LA 55-P.* 2014. Disponível em: <<u>https://www.lem.com/sites/default/files/products_datasheets/la_55-p_e.pdf</u>>. Acesso em: 12 de Mai. 2021. Citado 4 vezes nas páginas 9, 12, 40 e 41.

LIFE ENERGY MOTION. Voltage Transducer LV 20-P. 2014. Disponível em: <shorturl.at/stzBY>. Acesso em: 13 de Mai. 2021. Citado 4 vezes nas páginas 8, 12, 39 e 40.

LIMA, C. B. de. AVR e Arduino. Técnicas de Projeto, 2 Ed. São Paulo: Clube de Autores, 2012. Citado 2 vezes nas páginas 12 e 62.

MERCADO LIVRE. String Box Cc Fotovoltaica 1000v - 2 Entradas 1 Saída. 2021. Disponível em: https://produto.mercadolivre.com.br/ MLB-980911721-string-box-cc-fotovoltaica-1000v-2-entradas-1-saida-_JM>. Acesso em: 24 de Mai. 2021. Citado 2 vezes nas páginas 8 e 27.

PORTAL SOLAR. Geração solar centralizada terá investimentos de R\$9,5bilhões até 2025. 2020. Disponível em: https://www.portalsolar.com.br/blog-solar/energia-solar/geracao-solar-centralizada-tera-investimentos-de-r-95-bilhoes-ate-2025.html. Acesso em: 20 Abr. 2021. Citado na página 20.

REIS, P. H. A. dos. Projeto e Construção de um Sistema de Aquisição e Condicionamento de Sinais para Monitoramento da Qualidade de Energia. Brasília, DF, 2018. Citado 2 vezes nas páginas 41 e 42.

SADIKU, M. N. O. *Fundamentos de Circuitos Elétricos*. [S.l.]: AMGH Editora Ltda., 2013. Citado 4 vezes nas páginas 8, 32, 33 e 42.

SEDRA, A. S. *Microelectronic Circuits*. [S.l.]: Oxford University Press, 2011. Citado 4 vezes nas páginas 8, 30, 31 e 32.

STMICROELECTRONICS. *Microcontrolador NUCLEO-WL55JC STM32*. 2020. Disponível em: <<u>https://www.st.com/en/evaluation-tools/nucleo-wl55jc.html</u>>. Acesso em: 20 de Mai. 2021. Citado 2 vezes nas páginas 9 e 45.

STMICROELECTRONICS. *NUCLEO-WL55JC STM32 User Manual.* 2020. Disponível em: <file:///Users/rfeijoo/Downloads/ um2505-stm32g4-nucleo64-boards-mb1367-stmicroelectronics.pdf>. Acesso em: 20 de Mai. 2021. Citado 2 vezes nas páginas 9 e 46.

STMICROELECTRONICS. *STM32G474 Datasheet*. 2020. Disponível em: <htps://www.st.com/resource/en/datasheet/stm32g474cb.pdf>. Acesso em: 20 de Mai. 2021. Citado na página 69.

STMICROELECTRONICS. *STM32 CubeIDE*. 2021. Disponível em: https://www.st.com/en/development-tools/stm32cubeide.html. Acesso em: 1 de Nov. 2021. Citado na página 64.

UNIVERSITY OF CENTRAL FLORIDA. *Cells, Modules and Arrays.* 2014. Disponível em: http://www.fsec.ucf.edu/en/consumer/solar_electricity/basics/cells_modules_arrays.htm>. Acesso em: 6 de Mai. 2021. Citado 2 vezes nas páginas 8 e 26.

USF. *Processamento Digital de Sinais*. 2014. Disponível em: <<u>http://pds-usf.blogspot</u>. com/2014/05/sinais-e-sistemas-discretos.html>. Acesso em: 10 de Mai. 2021. Citado 2 vezes nas páginas 8 e 29.

VILLALVA, M. G. Energia Solar Fotovoltaica. Conceitos e Aplicações. São Paulo: Érica, 2015. Citado 5 vezes nas páginas 8, 23, 24, 25 e 26.

Anexos

ANEXO B – Lista de Materiais

Componente	Valor	Package	Qnt	Designador
Capacitor	1nF/50V	Cerâmico (RAD-0.2)	6	C2, C3, C4, C8, C9, C10
Capacitor	10nF/50V	Cerâmico (RAD-0.2)	4	C1, C5, C7, C11
Capacitor	100nF/50V	Cerâmico (RAD-0.2)	7	C6, C12, C14, C15, C17, C20, C22
Capacitor	10uF/50V	Eletrolítico (D6.3XF2.5)	1	C21
Capacitor	100uF/25V	Eletrolítico (D6.3XF2.5)	4	C13, C16, C18, C19
Resistor	100Ω	PTH-1/4W	4	R16, R17, R18, R19
Resistor	120Ω	PTH-1/4W (1%)	1	R3
Resistor	150Ω	PTH-1/4W (1%)	1	R9
Resistor	220Ω	PTH-1/4W	3	R21, R23, R34
Resistor	1.2KΩ	PTH-1/4W	2	R27, R28
Resistor	4.7ΚΩ	PTH-1/4W	4	R5, R7, R11, R13
Resistor	10ΚΩ	PTH-1/4W	11	R4, R6, R10, R12, R15, R20, R22, R24, R25, R26, R29
Resistor	100ΚΩ	PTH-1/4W	2	R8, R14
Resistor	100ΚΩ	PTH-3W	2	R1, R2
Diodo Retificador	1N4007	DO-41	6	D2, D3, D4, D5, D6, D7
Diodo TVS	P6KE6.8A	DO-15	1	D1
Diodo Zener	1N4728 (3.3V)	DO-41	2	ZD1, ZD2
LED	Amarelo	PTH-5mm	3	LED1, LED2, LED3
LED	Vermelho	PTH-5mm	2	LED4, LED5
LED	Verde	PTH-5mm	3	LED6, LED7, LED10
Relé	120VAC 10A	JQC-3F-C 5V	2	K1, K2
TBJ	2N2222	TO-92	2	Q1, Q2
Regulador de Tensão	7812	TO-220	1	U6
Regulador de Tensão	7912	TO-220	1	U7
Tansformador	15+15VAC		1	105
AmpOp	LM358	DIP8	1	U3
Transdutor de Tensão	LV 20-P		1	U1
Transdutor de Corrente	LA 55-P		1	U2
Microcontrolador	STM32 NUCLEO-G474RE		1	MCU1
Dissipador de Calor	34,5X12,5X20mm	DN322	2	U6, U7
Conector	KRE 2P	KRE	1	101
Conector	KRE 3P	KRE	6	100, 102, 103, 104, 105, 106
Conector	Male Header	Header 2x1	1	JP1
Conector	Female Header	MKBL02	1	JP1
Conector	Female Header	Header 2x19	2	MCU1
Conector	Female Header	Header 2x1	2	MCU1
Conector	Female Header	Header 1x6	1	MCU1
Conector	Female Header	Header 1x8	2	MCU1
Conector	Female Header	Header 1x10	1	MCU1