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RESUMO

Título: Simulação e Execução de Árvores de Comportamento Dinâmicas no Contexto de
Robôs de Serviços
Autor: Gabriel F P Araújo
Orientador(a): Genaína Nunes Rodrigues, Dr.
Brasília, 05 de novembro de 2021

A robótica alcançou muito sucesso na fabricação industrial. Manipuladores têm sido
usados em linhas de montagem por sua velocidade, exatidão e precisão. Embora esse mer-
cado deva movimentar US $ 75,3 bilhões até 2026, há um mercado crescente para robôs
cada vez mais flexíveis. Estima-se que esse mercado receba US $ 102,5 bilhões até 2025.
Os objetivos sociais e econômicos moldam a nova realidade em que os robôs irão operar e,
para cumprir suas tarefas, esses robôs requerem mobilidade e a capacidade de cooperar com
outros robôs. Servicerobots são robôs projetados para atuarem entre humanos em ambientes
como hospitais, logística e transporte de forma autônoma. A ISO 8373: 2012 define que tais
robôs devem “realizar tarefas úteis para humanos ou equipamentos, excluindo aplicações de
automação industrial” e tem a “capacidade de realizar tarefas pretendidas com base no estado
atual e detecção, sem intervenção humana”. Vários setores, como comércio eletrônico e ma-
nufatura, já mostram sinais de aumento da demanda por robôs de serviço. Os algoritmos de
planejamento clássicos freqüentemente presumem que o mundo é estático e conhecido, com
todas as mudanças ocorrendo como resultado da ação executada por um agente controlado.
No entanto, isso não é verdade para robôs de serviço, e esses robôs precisam lidar com am-
bientes estruturados, embora populados e dinâmicos. Para preencher a lacuna entre os algo-
ritmos clássicos de planejamento de tarefas e os robôs de serviço recém-chegados, devemos
implementar uma estrutura para gerenciar ações e comportamentos robóticos para executar
um plano de alto nível. Propomos Árvores de Comportamento Dinâmico para coordenar
as habilidades do robô e executar um plano neste trabalho. As Árvores de Comportamento
Dinâmico também são responsáveis por gerenciar componentes do robô como o sistema de
navegação e as interfaces homem-máquina. Nós avaliamos o framework em uma simulação
em um ambiente hospitalar. Temos uma Enfermeira que solicita uma tarefa de entrega, o
robô é designado e recebe um plano para realizar a tarefa. O robô deve seguir o plano exe-
cutando suas habilidades. Se ocorrer alguma exceção, o robô deve enviar um relatório ao
planejador. Nossa estrutura aborda o problema de interface entre as funcionalidades delibe-
rativas e reativas em um sistema híbrido. O framework proposto mostra como um sistema
reativo lida e segue uma entrada deliberativa usando Árvores de Comportamento Dinâmico.
A estrutura também mostra como as Árvores de Comportamento Dinâmico encapsulam tudo
o que é necessário para executar uma determinada tarefa.

Palavras-chave: Robôs de Serviços, Sistemas ciberfísicos, Software de Controle de Robôs, Ár-
vores de Comportamento.



ABSTRACT

Title: Simulation and Execution of Dynamic Behavior Trees in Service Robots Context
Author: Gabriel F P Araújo
Supervisor: Genaína Nunes Rodrigues, Dr.
Brasília, November 05th, 2021

Robotics has achieved much success in industrial manufacturing. Manipulators have
been used in assembly lines for their speed, accuracy, and precision. Even though this mar-
ket should be worth US$ 75.3 billion by 2026, there is a growing market towards robots
even more flexible. This market is estimated to get US$ 102.5 billion by 2025. Social
and economic purposes shape the new reality where robots will operate, and to fulfill their
jobs, these robots require mobility and the ability to cooperate with other robots. Service
robots are robots designed to act among humans in environments such as hospitals, logistics,
and transportation in an autonomous manner. The ISO 8373:2012 defines that such robots
should “perform useful tasks for humans or equipment excluding industrial automation ap-
plications” and has the “ability to perform intended tasks based on current state and sensing,
without human intervention”. Several sectors like e-commerce and manufacturing already
show signs of increased demand for Service Robots. Classical planning algorithms often
assume the world to be static and known, with all changes occurring as a result of the actions
executed by one controlled agent. However, this is not true for service robots, and these
robots have to tackle structured though populated and dynamic environments. To bridge the
gap between classical task planning algorithms and the newly arrived Service Robots, we
aim to implement a framework to manage robotic actions and behaviors to execute a high-
level plan. We propose Dynamic Behavior Trees to coordinate the robot’s skills and execute
a plan in this work. The Dynamic Behavior Trees are also responsible for managing robot
components like the navigation system and the human-machine interfaces. We evaluated
the framework in a simulation in a hospital environment. We have a Nurse that requests a
delivery task, the robot is assigned and receives a plan to conduct the task. The robot has
to follow the plan executing its skills. If any exception occurs, the robot must send a report
to the planner. Our framework tackles the problem of interfacing deliberative and reactive
functionalities in a hybrid system. The proposed framework shows how a reactive system
handles and follows a deliberative input using Dynamic Behavior Trees. The framework also
shows how Dynamic Behavior Trees encapsulate everything needed to execute a given task.

Keywords: Service Robots, Cyber-phisical systems, Robot Control Software, Behavior
Trees.
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INTRODUCTION

Robotics has achieved a lot of success in industrial manufacturing. Robotic arms, or manipu-

lators (Figure 1.1), have been used in assembly lines for their speed, accuracy, and precision.
Among other uses, it has made possible making cellphones, computers, cars and myriads of
other industrial products in large scale. Even though this market should be worth US$ 75.3
billion by 2026,1 there is a growing market towards robots even more flexible – US$ 102.5
billion by 2025.2 These robots should be designed for particular applications usually driven
by economic/social reasons and to fully utilize the potential of a working robot requires
mobility and the ability to cooperate with other robotics [2].

Figure 1.1 – UR3 Universal Robots (Source: https://www.
universal-robots.com/products/ur3-robot/)

Service robots are robots designed to act among humans in environments such as hospi-
tals, logistics, and transportation in an autonomous manner [3]. Some examples are depicted
in Figure 1.2. The ISO Standard 8373 [3] from 2012 defines that such robots should “per-

form useful tasks for humans or equipment excluding industrial automation applications”
and has the “ability to perform intended tasks based on current state and sensing, without

human intervention”. The report “A Roadmap for US Robotics” [4] shows the COVID-19
pandemic sped up the deployment of robots in factories and opened new demands in the
health sector. Sectors as e-commerce and manufacturing sectors cast new demands towards
cleaning and disinfection without a human being.
1https://www.marketsandmarkets.com/PressReleases/industrial-robotics.asp
2https://www.marketsandmarkets.com/Market-Reports/service-robotics-market-681.
html

1

1
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Robots as a cyber-physical system are capable of acting, sensing the environment, and
executing complex tasks. Moreover, a Service robot has to do everything a usual robot does,
still working alongside other agents like humans and other types of robots. There is no
definition in the robotics community about the standardization of communication between
autonomous agents in populated environments. Neither is there a system that facilitates
communication between humans and robots. The Robotics 2020 Multi-Annual Roadmap
For Robotics in Europe (MAR) [5] defines the developmental drivers for R&D in European
robotics projects. The drivers go from configurability, adaptability, and dependability and
define each driver’s development levels to be taken. In order to meet these drivers and deploy
robots in real-world applications, we need a flexible robot control architecture to coordinate
the robot’s behavior.

(a) Locus Robots (b) Pepper from Softbank Robotics

(c) Model of Cleaning robot (d) UVD Robots

Figure 1.2 – Examples of Service Robots

A robot control architecture guides and constrains the organization of a robot’s “brain”.

2



The hybrid control architectures blend actions in a long-timescale, Deliberative Layer, and
actions in a short-time scale, Reactive Layer [6]. The 3-Tiered Architecture is a hybrid con-
trol architecture where three layers, Skills, Sequencer, and Planner - are organized by the
scope of the robot state. The Skill layer works on the present state, handling what the robot
has to do now. The Sequencer layer links the past with present states remembering what the
robot has done and what is successful or not, while the Planner layer works on the future
using information from the past. The Sequencer instantiates the Skills, a collection of be-
haviors to coordinate robot actions [1]. For Service robots, this means that the skills manage
robotics components like navigation system, perception, motion planning, communication,
and end effectors.

The Planner layer searches for sequence of actions or tasks to meet a goal. On the other
hand, the robot must be able to manage its skills to follow the plan in runtime. In the past
years, roboticists solved this issue using State Machines. However, their usage declined
due to the difficulty in programming complex and hierarchical behaviors. Roboticists are
switching their solutions to use Behavior Trees (BTs) due to code modularity, reusability,
and composing behaviors. Nevertheless, there is a gap in using BTs with standard and al-
ready researched planners, like in hybrid control architectures. So, we devise to use BTs
to implement the Skills that encapsulate a given task. Then we can switch between differ-
ent BTs at runtime following a plan using a Sequencer process to handle the switch. We
call these Dynamic Behavior Trees (DBTs). Our goal here is to investigate the usage of our
proposed DBTs, bridging this gap.

1.1 PROBLEM DESCRIPTION & PROJECT GOALS

BTs are gaining popularity in robotics because they are highly flexible, reusable, and well
suited to define reactive and deliberative elements in robotics architectures [7, 8, 9, 10, 11,
12]. Even though their appeal, it is still not clear how to design a BT that follows the output
from a classical task planner such as a Planning Domain Definition Language (PDDL)-based
or Answer Set Programming (ASP)-based.

The Software Engineering Lab (LES) in the Computer Science Department at University
of Brasilia (UnB) researches using high-level goal-oriented planners [13]. These planners
implement task planning like the deliberative and hybrid control architectures seen in the
robotics literature. However, there is an open question: “How to manage robotics skills and

execute such plans at runtime?”.

Therefore, we will investigate the feasibility of using BTs to execute the plans in this
work. The main goal of this work is to bridge the gap between classical planners and BT.
Specific goals are twofold: (i) implement a framework to use BTs and classical planners, and

3



(ii) evaluate if DBTs are suitable to implement behaviors at skill level.

1.1.1 Work Overview

The present chapter brought up the behavior coordination problem in robotics and its
challenges. The first section explained how service robots emerged in the 21st-century
social-economics scenario to fulfill particular applications – services. Consequently, the
service robots concept fills a gap between robots being developed at research labs and robots
being deployed in commercial uses. As service robots have to deliver a task and still react to
events that may happen while running, there is a need for an approach to be flexible enough
to handle both sides. Then, the problem description and goal of this work were defined.

Including this Introduction chapter, this work is organized into five chapters. In Chap-
ter 2, the theoretical background and tools are presented. The Chapter 3 shows the project
development and how to implement Skills with BTs. Chapter 4 describes the achieved re-
sults in a simulation environment. The simulation tools utilized in this work are also shown
in this chapter. Last, Chapter 5 contains the conclusion, related works, and future work ideas
to enhance and better evaluate the work done.

1.1.2 Achieved Results

This work outcomes are divided into development and simulation results. The develop-
ment results are what we could achieve and implement as a usable framework. On the other
hand, the simulations show if we met our goals. The programming framework implemented
to develop DBTs turns into more straightforward future works and applications involving
implementing new behaviors and skills for robots in service robots scenarios. Although we
do not target multi-robot problems, we suggest a communication system between agents at
such a level, either Human-Robot or Robot-Robot Communication, is possible and easy to
interface with high-level task planners. The Skill library is a shared library among robots
as well. The BT engine written in Python allows a robot to execute a Sequential Plan if a
BT implementation is available in the library. Afterward, the simulation enables an environ-
ment to execute and test the framework with a local plan. The simulation was built to be
swappable by a real-world robot, adding more flexibility and reducing the amount of repro-
gramming when deploying and testing the Skills or Plans. The programming framework 3

and simulation 4 are publicly available in GitHub as well.

3https://github.com/Gastd/py_trees_ros_behaviors/
4https://github.com/Gastd/morse_simulation
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BACKGROUND AND TOOLS

Autonomously controlling a robot is not a new problem, but it is not old either. The first time
humans tried to answer “How a robot should do this?” was about the ’60s when the first real
robots appeared, but the question is still more open than ever. Nowadays, this problem has
passed through time from research labs to the market where robots are coming.

Finite State Machine (FSM) is a specification tool primarily used to compose abstract
behaviors and coordinate them. An FSM is usually represented by a set of states S, events
E, and state transition function δ(s, e). The states represent the current robot situation and
specify how the robot should behave, events model the external events that may happen, and
the transition function calculates the next state based on the current state of an event. Along-
side Potential Field and Subsumption Architecture, the robotics community has used FSM to
model what a robot should be doing at a given time [1]. However, apart from Potential Field
and Subsumption Architecture, Finite State Machines models behaviors where the interac-
tions may be more nuanced. That is why FSM is still one of the most used tools to develop
robotics behaviors nowadays.

Even though FSMs are easy to understand and implement, they have downsides [14].
Some of them are:

• Many states and many transitions are hard to compute and understand. Adding and
removing states require re-modeling the State Machine.

• Transitions between states depend on internal variables and specific states, making it
impractical to reuse the same sub-FSM in multiple projects.

• Transitions are hard to model for continuous transitions.1

• FSM have unpredictable behaviors whenever there is an unmodeled state or an event
is happening.

A BT, depicted in Figure 2.1, is a tool developed to represent how an agent should be-
have. The game community was the one to create and use to control autonomous characters.
In 2012 at CMU, Bagnell et al. used a BT to model the comportment of a robot for the first
time. In the following years, the robotics community followed their steps pushed by how
modular and reusable BT software is.
1Take for example a race self-driving car, there is two modeled states, straight-line driving and curve driving. It
is difficult to design a transition function between these two states. Because, it is not clear where a straight-line
ends and begins a curve, and vice-versa.

5
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Figure 2.1 – Behavior Tree Example (Source https://www.
behaviortree.dev/)

Michelle Colledanchise, together with Peter Ögren and several others, published various
papers and a book [8] showing how effective BTs are to model robotics behaviors. He is
also one of the creators behind one of the current most popular BT implementations, the
BehaviorTree.CPP.2 Besides BehaviorTree.CPP, there are many implementations in several
languages for multiple purposes.3,4 Even the Boston Dynamics’ Spot5 has BT as its main
Mission API.

2.1 3-T ARCHITECTURE FOR PLAN, SENSE-ACT

The Plan,Sense-Act (P,S-A) interaction is a paradigm for robotic control architectures
that decouples the planning from the sensing-acting loop as the planner functions on long
time horizons. Figure 2.2 shows the relationship between the plan and sense-act, in runtime
the sense-act loop is usually called as executor because it executes the plan. As in the Ser-
vice robots context, we may have several agents working together. We had to choose an
architecture that follows P,S-A. Decoupling the Planner allows the system to plan complex
goals with multiple agents, and each agent executes its local plan. Thus, We chose 3-Tiered
Architecture.

The 3-Tiered Architecture was developed at NASA as a merging solution between three
previous architectures [16, 17, 18]. The name 3-Tiered Architecture is because the robotic

2https://github.com/BehaviorTree/BehaviorTree.CPP
3LUA Example: https://github.com/tanema/behaviourtree.lua
4Python Example: https://github.com/splintered-reality/py_trees
5https://www.bostondynamics.com/spot2_0
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Sense Act

Plan

Figure 2.2 – Plan,Sense-Act style of interaction (Adapted from [1])

software system was divided into three layers, one reactive, one deliberative, and the last one
is an interface between the previous two. At the Jet Propulsion Laboratory , this architecture
was used for planetary rovers, underwater vehicles, and robot assistants for astronauts [1,
Chapter 12]. Nevertheless, as defined by Murphy, 3-Tiered Architecture is an example, of a
state-hierarchy style organizing its activities around the scope of time knowledge. Figure 2.3
shows the architecture overview for 3-Tiered Architecture, the red box highlights where the
work proposed in this document fits in the given architecture.

A short history behind the P,S-A architectures goes back to the early days of artificial
intelligence and robotics. In the ’60s, the hierarchical paradigm was the first approach where
robots must follow the sequence SENSE-PLAN-ACT. The hierarchical paradigm provides or-
der and relationship regarding the steps program steps SENSE-PLAN-ACT. However, mainly
because of the planning algorithms, there was a bottleneck performance-wise. Even though
we have computers that can handle expensive planning algorithms nowadays, this paradigm
has fallen from popularity due to the paradigm holding back modularity and portability –
hierarchical programs tend to be monolithic rather than object-oriented.

After the rise and fall of the hierarchical paradigm, the reactive approach takes inspi-
ration in biology and, as several animals, connects the sensing to acting as an end-to-end
solution. It was a rather popular approach, as there is no need for long-term planning the
programs were fast with quick responses, running in the old computers. The most famous
example of reactive systems is the potential field methodology, where a function of all be-
haviors is a vector, and the result is the vector sum of the behaviors. Two examples of the
reactive approach are: (i) the Subsumption Architecture and (ii) Potential Field. Both archi-
tectures are modular and reusable, but the reactive paradigm’s main disadvantage was the
lack of high-level abstraction. High-level abstractions and reasoning allow robots to work
in different problems even when the devised problem is different from the real one because
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Figure 2.3 – 3-T Architecture overview (Source: [1])

the representations are still there at a high level. Reactive programs are too attached to their
problems, even though the programs are reusable. If the robot is running in a different prob-
lem, e.g., a different environment, from the designed problem, there is a possibility that a
new undesired behavior emerges.

The hybrid approach tries to take advantage of both hierarchical and reactive, in a shape
where the disadvantages could be erased. The advantage is that having the planning algo-
rithm running detached from the sense-act allows a quick and inexpensive sense-act loop
required in dynamic environments while planning systems has time to plan the tasks and
actions.

This chapter aims to define the concepts shown throughout the document and show the
features of the tools used to build this work. We begin settling the concepts of what a plan
and task planner and skills are. We also compile what the literature says about BTs and how
to implement them. Then, we talk about Task Planning, Skills, and Behavior Trees. We
finish listing the tools used like Robot Operating System (ROS) and Morse.

8



2.2 SKILLS

Skills are constructs to create generic templates of assemblages of behaviors [19, 17].
They work as an actor’s script, where the robot acts like it is reading the script. Table 2.1
shows how an actor’s script compares to a robot script. The primary sequence of events
is called a causal chain. The causal chain is critical because it embodies the coordination
control program logic just as an Finite State Automata (FSA) [1]. A sub-script could be used
if an unexpected event occurs to handle the exception.

For example, consider a robot that is delivering medicine to some patient. The first action
on the causal chain is to get the medicine in someplace in the house. The second is to pick
up the right medicine. Then, move to the delivery room. Lastly, deliver the medicine to the
patient.

Table 2.1 – Comparison of actor’s script structures to skills(Adapted from
[1])

Actor’s Script Skills Elements Example
Goal Task deliver a medicine M1 to the patient P1

Places Applicability a house (domestic robot)
Actors Behaviors GET_OBJECT, MOVE_TO_GOAL,

DELIVER_OBJECT, IDENTIFY
Props, Cues Percepts red, blue
Causal Chain Sequence of Behaviors MOVE_TO_GOAL(KITCHEN), GET_OBJECT(M1),

MOVE_TO_GOAL(P1_ROOM), IDENTIFY(P1),
DELIVER_OBJECT(M1)

Sub-scripts Exception Handling if have M1 and drop, try GET_OBJECT three times

Ghallab et al. define the difference between a skill and a plan as Skills are an organization
of steps in a more complex structure than a plan. A skill such as a navigation skill has to in-
volve sensing and actuating functions, loops, and conditionals steps. Skills are also a recipe,
a collection of actions. However, they must be more structured as the robot instantiates them
to coordinate its actions and components.

A Skill coordinates the functions distributed in the robotics modules (components) ac-
cording to the task requirements in this work [21]. An agent chooses and retrieves appro-
priate skills from a library developed offline; it instantiates and adapts them to the current
context [20].

9



2.3 BEHAVIOR TREES

Figure 2.4 – Behavior Tree example (Source:
https://roboticseabass.com/2021/05/08/
introduction-to-behavior-trees/)

As shown in Figure 2.4, the Behavior Tree is a mathematical model for representing how
switching actions are related. A BT has a tree-based structure, a set of nodes are connected,
one node can have only one parent but any quantity of children. A more formal definition
for BTs is directed acyclic graphs where one node is assigned as the root.

The games community created BTs to model the behavior and control the actions of
Non-Player Characterss (NPCs). Before BTs, NPCs were developed as FSM. However, they
were replaced with a far more modular and reusable approach. One of the first uses of BT in
a robotics system was in [15] being used to control a manipulator [22]. The citation below
by Bagnell et al. display the leading reason behind the adoption of BTs in robotics domain.

“The main advantage is that individual behaviors can easily be reused in the
context of another higher-level behavior without needing to specify how they
relate to subsequent behaviors.” [15]

A Behavior Tree has simple components structured in tree shape, where the tree leaves
are execution nodes, and the intermediate nodes control the tree flow. BTs have a component
called blackboard used to share data among the nodes. Figure 2.5 shows the four categories
of control nodes are: (i) Sequence, (ii) Fallback, (iii) Parallel, and (iv) Decorator. The leaf
nodes or execution nodes have two types, Action or Condition, and each node can have three
states, they are: (i) Success, (ii) Failure, (iii) Running.

Algorithms 1, 2, and 3 show the pseudocode for the Sequence, Fallback, and Parallel
nodes. The Sequence ticks its children from the left until finds a child that returns either
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Figure 2.5 – Node type seen in Behavior Tree
(Source: https://roboticseabass.com/2021/05/08/
introduction-to-behavior-trees/)

Failure or Running. It returns Success if all children returns Success. The Fallback node
route the ticks to its children from the left until it finds a child that returns either Success

or Running. It returns Failure if all its children returns also Failure. The Parallel returns
Success if M children returns Success, it returns Failure if N − M + 1 children return
Failure. Lastly, an Action node executes a command. It returns Success if the command is
correctly completed or Failure otherwise. When, it receives a tick, a Condition node checks
a condition. It returns Success or Failure depending on if the condition is True or not.

Algorithm 1 Pseudocode of a Sequence node
with N children

1: for i← 1 ∈ N do
2: childStatus← TICK(child(i))
3: if childStatus = Running then
4: return Running

5: else if childStatus = Failure then
6: return Failure

7: end if
8: end for
9: return Success

Algorithm 2 Pseudocode of a Fallback node
with N children

1: for i← 1 ∈ N do
2: childStatus← TICK(child(i))
3: if childStatus = Running then
4: return Running

5: else if childStatus = Success then
6: return Success

7: end if
8: return Failure

9: end for
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Algorithm 3 Pseudocode of a Parallel node with N children and success threshold M

1: for i← 1 ∈ N do
2: childStatus← TICK(child(i))
3: end for
4: if

∑
i:childStatus(i)=Success 1 ≥M then

5: return Success

6: else if
∑

i:childStatus(i)=Failure 1 ≥ N −M then
7: return Failure

8: end if
9: return Running

Behavior Tree (BT) have been showing much applicability in different fields. BTs are
being used for robotic manipulation [15, 23, 24] and mobile manipulation [25, 26, 27]. While
BTs have also been used to allow train non-specialists to program pick and place tasks [28].
In academia, studies show that BTs can generalize earlier ideas like subsumption architecture
[10] and follow deliberative policies [12]. [8, 9] show some design principles to achieve
readability, reactivity, safety, and deliberation.

However, BTs are not perfect. Some disadvantages hold back the usage in the service
robots domain. In order to be executable by currently available engines, the BT has to be
designed beforehand. Thus, problems arise regarding visualization and maintainability when
the robot works as a subsystem of a much larger one. Service robots work on valuable
tasks for humans and can perform the tasks without human intervention [3]. In this field,
the robot requests a human or another autonomous system to perform several tasks in an
environment populated by humans. A BT that encodes every possible task and handles faults
is significantly large and is difficult to maintain. A possible solution is to have a smaller BT
that encodes just one task and switch at runtime between them.

2.4 ROS

2.4.1 ROS1

ROS is a framework to develop robotics software. It is a collection of libraries, tools,
and conventions that simplify and standardize software production. The robotics community
considers ROS as a historical event that shapes the robotics software production afterward.
With ROS, the robotics software can be hardware agnostics, e.g., the developer can write
their code without previous knowledge of the hardware, and the same software could be used
in different platforms without more extensive changes. Furthermore, ROS has a large, active,
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and collaborative community developing software and integrating frameworks from different
research groups across the world. In 2021, ROS is 14 years old, and its ecosystem’s main
characteristics are code integration using the conventions standardization and its message
transport library.

ROS have these features:

• message transport

• message recording and playback

• remote call functions

• distributed parameters system

2.4.1.1 Navigation

The robot navigation used in this work is the 2D navigation stack from ROS. The ROS
navigation stack is a set of libraries, algorithms, and executables for mobile robots, and they
implement the architecture shown in Figure 2.6. ROS has its own navigation system, which
uses odometry and Light Detection and Ranging (LIDAR) to build a world (environment)
representation and plan the sequence of movements in a two-step way to plan and execute
the desired path. The main program that manages the stack is called move_base, Fig. 2.7.

Figure 2.6 – ROS software architecture used in mobile robots

2.4.2 ROS2

Robot Operating System 2 (ROS2) is the successor of the famous ROS presented in
section 2.4. As ROS, ROS2 is also a set of libraries and tools used to develop and reuse
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Figure 2.7 – move_base overview (Source: http://wiki.ros.org/
move_base)

robotics software quickly. After fifteen years of worldwide use, ROS is used in several
domains that it was not even designed to fulfill. The primary purpose of the original ROS
was to be used as a development environment by Willow Garage’s PR2 robot. Even though
ROS was designed to push the reuse of robotics research software, it was too much coupled
to PR2 design drivers. PR2 had two computers connected by a wired network. There were no
real-time requirements neither commercial uses. Funny enough, nowadays, ROS is used in
a wide variety of robots far different from the old than the old PR2, e.g., legged humanoids,
industrial arms, and self-driving cars.

So, ROS2 is designed to tackle problems that the old ROS was not meant to solve, and
ROS2 is also made to push forward the progress and robotics future. This new environment
is designed to:

• Teams of multiple robots

• Small embedded platforms

• Real-time systems

• Non-ideal networks

• Production environments

• Prescribed patterns for building and structuring systems

ROS2 improvements over ROS it is not meant to kill ROS but to work alongside. Many
robots that run the old ROS are too risky to get rid of such a widespread environment. Further
reading in post Why ROS2?6 by Brian Gerkey.
6http://design.ros2.org/articles/why_ros2.html
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In this work, we used both ROS and ROS2. There are two main reasons for ROS2 was
chosen to be in this project. First, we chose to use ROS2 because the features needed for this
project were much more developed in pytrees, 2.5, in its ROS2 version. The second reason,
the Sequencing Layer has to interface with the Skill Layer with the Deliberative Layer. In
our project, the Deliberative Layer is not inside the robot.

2.5 PYTREES

PyTrees [29] is a python BT library used to develop decision-making systems for the
robotics community quickly. Their main sell point is using python language features like
generators and decorators to help easy-to-use and quickly develop engines and new behav-
iors. The library design goals are:

• Quick development

• Medium-scale software

• Not real-time reactive

As python is an interpreted language, it does not add any problems in instantiating and
destroying objects. So, it is a match if we want to change the BT in runtime with different
parameters. The library has a ROS implementation called py_trees_ros where extends the
library to use in the ROS environment. The py_trees_ros implements some Action Nodes as
ROS nodes to transfer back and forth data from ROS objects to pytrees objects. However,
the pytrees stable-release is in ROS2 with many features missing in its ROS1 version. In this
work, we use pytrees and py_trees_ros, both in version 2.1 for ROS2.

2.6 MORSE

Simulators are programs built for simulating some environment in order to test systems
before the actual deployment. Simulators are used in the robotics community because of how
quickly novel algorithms can be tested without the overhead of configuring and testing in real
life. The Morse Simulator7 [30] is a robotics simulator. Its main focus is simulating a dozen
robots from small to large environments, either indoor or outdoor. It uses the Blender Game
Engine (BLE) to render and Bullet Library for physics simulation. Morse is written in python
for easy and fast modification and extension. Along with Morse, there is many simulators
options each one with its own characteristics like Gazebo, CoppeliaSim, and Webots.
7https://www.openrobots.org/morse/doc/stable/morse.html
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Morse supports several middlewares, including ROS. However, its interface is only avail-
able for ROS1, which had a great deal with BTs working on ROS2. In 2020 April, Morse
was stated as a dormant project by its maintainers8 as BLE was removed from Blender in the
latest release.

8https://sympa.laas.fr/sympa/arc/morse-users/2020-04/msg00001.html
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IMPLEMENTING SKILLS WITH
BEHAVIOR TREES

The 3-Tiered Architecture glues a planner running on the deliberative layer to a skill manager
that runs on top of the robotic components, the reactive layer. The sequencer selects a skill
to execute the tasks while monitoring its execution. 3-Tiered Architecture (3T) was created
in the ’90s but still inspires robot control architectures nowadays. For example, the ROS
Navigation stack [31] uses a State Machine to sequence the navigation while making queries
to a path planner and keeping the sense-act loop alive. As the Navigation stack, many robots
use FSM to sequence their actions. However, in a service robot domain, we have to rule the
robot’s components, subsystems, and communications. This increased complexity reaches
the limit that we can go with State Machines [14]. Behavior Tree (BT) shows great mod-
ularity, reusability, and flexibility to express reactive behaviors [15, 32, 10, 8, 33, 34, 35].
Hence, developers worldwide are using Behavior Tree (BT) to coordinate complex behavior
in robotics [22, 36].

A BT coordinates a robot’s actions and components to achieve a task. Even though a BT
can be designed to show aspects such as deliberation and reactiveness [10], the BT still needs
to be static to be executed in the available BT engines. If an unknown plan arrives, a static
BT has to have structures and designs to workaround and follow the plan. However, a DBT
is a more straightforward approach, where smaller BTs can be configured and constructed at
runtime to handle the plan. We can also use previous states or the plan knowledge to build
these structures. So, following this idea, we describe how to implement such Skills using
what we call Dynamic Behavior Tree (DBT).

A DBT is an extension to BTs where the entire BT is not allocated in memory, and just
the current behavior (subtree) is running. The current behavior is a subtree that embodies
a goal or specific skill that the robot should achieve. A DBT is mounted and expanded in
runtime following a Skill Implementation previously implemented and available in a library
where the robot retrieves. We proposed the use of DBTs as a middle point/alternative to
static specified BTs.

3.1 PLANNING LAYER

Planning is the searching for the outcomes of possible actions and how a sequence of
these actions changes the world [6] if they are going to reach a desired goal or state or not.
Task Planning in the robotics domain outputs a sequence of actions for a robot to accomplish
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a goal impossible to reach with only one action [37, 38].

To execute a given task, the Planner gives the robot a recipe. These are then encoded
as a Sequential Plan and sent to the robot. The robot receives the Sequential Plan as input
and this should remain static while the robot is executing it. Then, the Sequencing process
consumes the plan controlling the robot that must follow the plan. The plan represents a
recipe or script, what task, parameters, and sequence the robot should perform to achieve
its goal. Each robot receives a local plan that they have to follow. Our plan is a sequence,
π = ⟨a, b, ..., u⟩, of n-tuples, a′ = (a, b, ..., u), where the first tuple element is a skill label,
and the following tuple elements are the parameters of the skill, a whole tuple encodes a
robot skill that will be mapped to a BT at runtime. Each skill has its own set of parameters
that will be presented in the next section.

EXAMPLE 3.1 (Plan Example)

π = ⟨(NavTo,Room4), (ApproachRobot,Manipulator2), (NavTo,Room15)⟩

Example 3.1 shows a simple plan where the robot must move to a room called Room4,
approach the robot Manipulator2, and finally move to another room, Room15. Parameters
like Room4 and Manipulator2 are in the world knowledge, so the planner only has to deliver
the plan to each robot with the proper labels. In this work, we do not have a planner up and
running alongside our approach as we aim to build an executor, the sense-act loop shown in
section 2.1. The plan step – in this work – is offline.

3.2 SEQUENCING PROCESS

As defined by the 3-Tiered Architecture in section 2.1, the Sequencer, Sequencing pro-

cess, or Sequencing Layer is responsible for coordinating the robot behaviors, what behav-
iors will execute, and interface the deliberative layer with the reactive layer – monitoring the
execution and warning the planning layer if something goes wrong. The Sequencer selects
and instantiates skills to execute the tasks in the plan. In this work, we implemented the
Sequencer as a dynamic BT Engine that switches the executed behavior following a received
plan, as Figure 3.1 shows.

The Sequencer is developed in three parts:

1. An interface that receives a local plan from the mission coordinator and reports the
plan status

2. A BT engine with the role of choosing the proper behavior and executing it
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Sequencer

BT

Factory

(skill, param)

Loader/Engine

(navto, pharmacy)(WM, nurse)(SM, nurse)(action, open)(authenticate, nurse)(approach, nurse)(navto, room3)

Skills Library 

ActionDrawer

NavigationToWaypoint

ApproachPerson

ApproachRobot

...

...

Behavior

Sequential Plan as list of tuples

Parameterized Behavior Trees

Element Program part

(skill2, param2)(skill1, params1)

Figure 3.1 – Sequencer architecture

3. A Factory that maps each skill label to a Skill Implementation and builds the Active
Skill to get ready for execution

A BT engine aims to load a BT and tick the BT root node. Then the signal goes through
the tree, exciting the nodes. A BT engine is a tricky program to implement because the tick
generation and the tree traversal have to be executed simultaneously as the action execution
[8]. We used the pytrees library [29], which implements the BT loading, tick generation, and
traversing. The developr’s job is reduced to

1. map each skill label to a behavior,

2. build the BT,

3. dynamically switch at runtime between different BTs,

4. report the BT status to the mission coordinator (upper layer).

The Sequencer receives the local plan as an ordered list of skills. The Engine gets the
right skill in the library and uses the skill parameters to build the BT. Then, the BT is loaded
and ticked. After every tick, the Sequencer sends the root node status as a report to the
planning layer.

Algorithm 4 shows how the Sequencer works. The Sequencer begins checking for the
plan. When there is an available plan, the execution starts; otherwise, the Sequencer waits.
For each skill in the plan, the Sequencer queries a Skill Implementation and activates it.
Then, the Active Skill is ticked, the local mission is updated, a report is sent, and the loop
restarts.
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Algorithm 4 Sequencing Process
Require:

1: local_mission: manages local plan, provides the tasks into the correct order
2: active_skill_ctrl: manages the life-cycle of the skills
3: task_status: interface with the knowledge base
4:
5: function SEQUENCING(local_mission, active_skill_ctrl, task_status)
6: if local_mission.HAS_NO_PLAN( )then
7: return
8: end if
9: if active_skill_ctrl.IS_IDLE( )then

10: next_task← local_mission.NEXT_TASK()
11: skill_impl← skill_library.QUERY(next_task)
12: active_skill_ctrl.LOAD(skill_impl)
13: task_status.SET_VALUE(status)
14: end if
15: tick_status← active_skill_ctrl.TICK()
16: local_mission.UPDATE(tick_status)
17: ts← local_mission.GET_TASK_STATUS()
18: task_status.SET_VALUE(ts)
19: end function

3.3 SKILL LAYER

The Skill Library developed in this work implements a set of skill implementations that
specify how a BT should be instantiated and how the skill parameters that appear in the plan
should be substituted.1 This happens because a BT used in this work is not fully known in
design time, and the remnant is parameters chosen by the Planner.

To execute a BT, we need to know the skill parameters before the execution, to specify
the Skill Implementation in a library. Then, when the robot needs the skill, it should retrieve
the Skill Implementation substitute with the appropriate parameters to get an Active Skill.

3.3.1 Active Skill vs. Skill Implementation

A Skill Implementation is a function – f : params 7→ bt – that specifies how a BT should
be created based on a set of parameters. The parameters are known only at runtime because
the planner configures them. Appendix A shows the list of the Skill Implementations for all
skills implemented in this work.

Active Skill is a BT Instance created at runtime using the implementation specification
and the parameters. Active Skill is the return of the Skill Implementation function. After

1A fully specified BTs do not have any parameters as input, although they can consume a set of parameters at
runtime and route the behavior accordingly.
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its creation, the BT Engine/Sequencer executes the BT. Further explanation about how this
happens is shown further in section 3.2.

→

Send<NewState>Signal WaitFor<NewState> Is<NewState>?

(a) Skill Implementation for controlling the
drawer state.

→

SendCloseSignal WaitForClosing IsClose?

(b) Active Skill for the Implementation in 3.2a,
where the NewState = Close.

Figure 3.2 – Skill Implementation and its corresponding Active Skill. The
Skill Implementation is shown in Algorithm 6.

Figure 3.2 shows the difference between the Skill Implementation and Active Skills when
the parameter NewState = Close for the ActionDrawer Skill. In order to execute a BT, its
parameters must be configured before the execution. That is one of the reasons behind using
DBTs to execute a plan.

3.3.2 Expansion and Substitution in Dynamic Behavior Tree

As the parameters are only known at runtime, we build the behaviors using the templates
and the parameters set by the planner. However, the planner also sends the waypoints to nav-
igation for the Navigation Behavior. So, for this behavior, we implemented a BT expansion.

Algorithm 5 Waypoint Expansion
1: function WAYPOINT_EXPANSION(waypoint_list)
2: root←SEQUENCENODE

3: for all waypoint ∈ waypoint_list do
4: pose.x← waypoint.x
5: pose.y ← waypoint.y
6: pose.θ ←ATAN2(waypoint.y − old_way.y, waypoint.x− old_way.x)
7: GoToPose←SENDNAVGOALROS(pose)
8: old_way ← waypoint
9: root.ADD_CHILDREN(GoToPose)

10: end for
11: return root
12: end function

Algorithm 5 shows the BT expansion for a list of waypoints received from the planner.
For each waypoint, a navigation goal in the format of a pose is calculated, and an Action
Node GoToPose is constructed using the pose. Then, a sequence behavior is built using the
list of GoToPose nodes.
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Figure 3.3 shows the subtree expanded by Algorithm 5 using the waypoint list from
Example 3.2, while Figure 3.4 shows the NavTo Skill with the subtree attached. Example 3.2
also show the pose calculated to use as navigation goals in the GoToPose nodes.

EXAMPLE 3.2 (Waypoint List)

⟨(−21.0, 18.0,−1.57), (−21.0, 16.0), (−18.0, 16.0), (−18.0, 13.0, 1.57)⟩ →

Pose1.x = −21.0
Pose1.y = 18.0

Pose1.θ = −1.57

Pose2.x = −21.0
Pose2.y = 16.0

Pose2.θ = −1.57

Pose3.x = −18.0
Pose3.y = 16.0

Pose3.θ = −1.57

Pose4.x = −18.0
Pose4.y = 13.0

Pose4.θ = 1.57

→

GoToPose1 GoToPose2 GoToPose3 GoToPose4

Figure 3.3 – Waypoint list Behavior Tree (BT) expanded for 4 waypoints

3.3.3 Human-Robot Communication and Robot-Robot Communication

To deal with Human-Robot Communication and Robot-Robot Communication, we im-
plemented Communications Skills to handle. The communications are between two agents
working in the same environment. Both communication processes rely on a synchronization
process based on client-server model. The first agent sends a message to the second, and
then the second agent responds to the first one.

If the second agent is a human, the behavior coordinates the human-robot communication
component to handle the communication. This component could be, for example, a touch-
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scan2BB

→

→

cancel2BB

| |

G →

GoToPose1

battery2BB

GoToPose2 GoToPose3 GoToPose4BatteryLevelOK?

Figure 3.4 – NavTo Skill for 4 waypoints

screen interface, a mobile app, or a voice interface. If the second agent is another robot, the
behavior coordinates a communication using ROS topics. Both the communication behav-
iors work with the same interface for the planner, and they are labeled as SendMessage and
WaitMessage skills.

3.3.4 Skill Implementation for Service Robots

In this subsection, we talk about the Skill Implementation for Service robots domain. In
order to address each task specified in the plan, we designed seven Skill Implementations
that could be parameterized. Here we also show how the communication tasks [39] are
implemented as Synchronization Skill. We split the Skill Layers into groups: (i) Action
Skills, (ii) Sync Skills:

3.3.4.1 Action Skills

Action Skills are skills related to the coordination of robotics components like a naviga-
tion system, and perception.

Navigation To: Skill used to send navigation goals and report navigation status using way-
points. First, the skill stores the last LIDAR scan reading, the last cancel command, and
the last battery state. After that, the parallel watches if the Battery level is above 5 % and
sends sequentially the route waypoints to the navigation component. If any leaf node fails,
the whole Behavior is a failure. The Behavior is a success when the last waypoint is reached.
Figure 3.5 shows the Active Skill with two waypoints as input, and the decorator G is the
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EternalGuard2 decorator that forces the BT to run the child every tick.

scan2BB

→

→

cancel2BB

| |

G

BatteryLevelOK?

→

GoToPose1

battery2BB

GoToPose2

Figure 3.5 – NavTo Skill with 2 waypoints

Approach Person: Skill used to localize a person and get close to them. The Skill requests
a Human Detection, when there is a match the person’s position is stored in the blackboard
and then the Skill sends to the navigation component the a position close to the person,
for example pperson = (36.5; 41.2) 7→ pgoal = (35.5; 40.2). Figure 3.6a shows this Skill
Implementation

Authenticate Person: Skill used to authenticate a Human. The Skill sends a authentication
request to the Human-Robot interface and waits for the authentication. The skill reported
status is the root node status, success if the last condition is success or failure if any leaf
node fails. Figure 3.6b shows this Skill Implementation.

Approach Robot: Skill used to localize a known robot and get close to it. It is similar to the
Approach Person Skill. The Skill requests to the friend robot a available and close position,
when the robot answer, the answer is stored in the blackboard and then the Skill sends to the
navigation component the answer, for example probot = (20.5; 15.0). Figure 3.6c shows this
Skill Implementation.

2https://py-trees.readthedocs.io/en/devel/idioms.html#eternal-guard
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→

LocalizePerson GotoPose

(a) Approach Person

→

RequestAuthentication WaitForAuthentication IsAuthenticated?

(b) Authenticate Person

→

ReceiveRobotPose GotoPose

(c) Approach Robot

Figure 3.6 – Action Behaviors

3.3.4.2 Synchronization Skills

Synchronization Skills are skills shared between the different robots in the environment,
even heterogeneous like a mobile robot and a manipulator. They are based on the client-
server model, as shown in subsection 3.3.3.

Send Message: Skill used to send a message to another agent. The Skill stores the message
in the blackboard, then it publishes the message in a ROS topic given by the planner. The
skill reported status is the root node status, success if the last condition is success or failure

if any leaf node fails. Figure 3.7a shows this Skill Implementation.

Wait Message: Skill used to wait for a message from another agent. The Skill subscribe a
ROS topic, when a message arrives the skill stores the answer in the blackboard and checks
if the answer is the same as the planner expects. The skill reported status is the root node
status, success if the last condition is success or failure if any leaf node fails. Figure 3.7b
shows this Skill Implementation.

3.3.5 Leaf Nodes

As defined in section 2.3, the intermediate nodes from a BT route the control to the Leaf
Nodes as they are the ones that check a condition or do an action. In this subsection, we
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→

Msg2BB PublishFromBB

(a) Send Message Behavior

→

SubscribeToBB IsAnswer?

(b) Wait Message Behavior

Figure 3.7 – Synchronization Behaviors

define and describe the implemented Leaf Nodes for specifying the Skills.

The Leaf Nodes are divided into Action Node and Conditional Node. Action nodes
are nodes that perform some task or coordinate some system component, e.g., navigation.
Conditional Nodes are nodes that check if some information is True or False. Both node
types have to return a status, success, failure and running. The conditions and comportment
of each Leaf Node is described below:

3.3.5.1 Action Nodes

scan2BB: Whenever this condition receives a tick, it stores in the blackboard last LIDAR
reading. The condition returns success if the last reading is available. It returns failure

otherwise.

cancel2BB: Whenever this condition receives a tick, it stores in the blackboard last cancel
topic reading. The condition returns success if there is a last reading is False. It returns
failure otherwise.

battery2BB: Whenever this condition receives a tick, it stores in the blackboard last battery
reading. The condition returns success if the last reading is available. It returns failure

otherwise.

GoToPose: Whenever this action receives a tick, it sends a request to a navigation component
(in our implementation we use the ROS Navigation Stack, Subsection 2.4.1.1 [31]), and then
it waits if the destination is reached. The action returns failure if the navigation component
cannot move the robot to the Pose. It returns success if the robot reaches a destination. It
returns running if the robot is navigating towards the destination.

LocalizePerson: Whenever this action receives a tick, it sends a request to the human de-
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tection component, which is implemented as mock. 3 The action return success if there is
a successful detection. It return failure otherwise. The position of the detected person is
written in the blackboard.

ReceiveRobotPose: Whenever this action receives a tick, it sends a request to the robot-
robot component asking for the target robot its own localization. The action return success

if there is a successful response. It returns failure otherwise.

RequestAuthentication: Whenever this action receives a tick, it sends a string message to
the Human-interface component to handle a authentication from a user. The action return
success if the authentication is requested successfully. It returns failure otherwise.

WaitForAuthentication: Whenever this action receives a tick, it waits for a response from
the human-interface component. The action return success if a response is received. The
received response is stored in a blackboard variable. It returns failure if the timer expires and
a response is not received.

SendSignalDrawer: Whenever this action receives a tick, it sends a signal for the Drawer

component to Open or Close. The action return success if the signal is sent successfully. It
returns failure otherwise.

WaitForAction: Whenever this action receives a tick, it waits for a message from the
Drawer component updating its state. The action return success if a response is received.
The updated state is stored in a blackboard variable. It returns failure if the timer expires and
a response is not received.

3.3.5.2 Conditional Nodes

BatteryLevelOK?: Whenever this condition receives a tick, it checks if the battery level is
greater than 5 %. The condition return success if it is True. It returns failure otherwise.

IsAction?: Whenever this condition receives a tick, it checks if the updated state stored in
the is the same as the requested. The action return success if the Drawer conditional is True.
It returns failure otherwise.

IsAuthenticated?: Whenever this condition receives a tick, it checks if the response stored in
the blackboard is a successful authentication. The action return success if the authentication
is a success. It returns failure otherwise.

IsAnswer?: Whenever this condition receives a tick, it checks if the response stored in
the blackboard is the same response expected in the plan. The action return success if the
condition is True. It returns failure otherwise.

3Identify and Localize a person is not an easy problem, actually has its own research domain, and there is no
gain in really localizing a simulated person. So, we implemented this component as a direct interface between
the simulator and BT, mimicking the behavior of real Detector.
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EVALUATION AND RESULTS

In this work, we implement and use Dynamic Behavior Trees to command and supervise
robots’ behaviors and skills to follow a plan. In this section, we show the plan execution
using a simulation environment. The simulation environment will act as a plant giving feed-
back on the skills to work as specified. To evaluate, we show two runs: the first where the
robot executes its plan as expected, and the second one where an injected hardware failure
simulation halts the plan.

4.1 LAB SAMPLES LOGISTICS MISSION

In the Lab Samples Logistics mission used to test the framework, robots are deployed
in a hospital environment. This scenario is adapted from the RoboMax repository of exem-
plars [40]. In that scenario, the robots should transport samples from patient rooms to the
laboratory. A nurse is responsible for collecting the sample and can request delivery to the
laboratory, identifying the room where the collection should take place. The system must
include a robot with a securely locked drawer, which must then navigate to the collection
room, identify the nurse, approach her, open the drawer, await the deposit, close the drawer
and then navigate to the laboratory carrying the sample. In the laboratory, the sample can
be picked up by a robotic arm or laboratory personnel. The robotic arm picks up samples,
scans the barcode in each sample, sorts, and loads the samples into the entry module of the
analysis machines.

The high-level planner allocates the plan to a target robot, taking into account the knowl-
edge about the state of the system at the moment that the request is handled (i.e., the alloca-
tion follows an Instant Allocation, Multi-Robot, Single Task model [41]). When the system
receives a task, it can have a varying number of available robots, but – in this work – only
one of the robots receives the plan.

Definition 4.1 shows the local plan for the robot in the ‘Lab Samples Logistics’ mission
as a sequence of Skills. The plan is encoded as JSON structure and sent to the robot. The
Sequencer layer begins to coordinate the robot as soon as the plan arrives.
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DEFINITION 4.1 (Tested Plan)

π1 =

⟨(NavTo, Room3), (ApproachPerson, Nurse), (Authenticate, Nurse),

(ActionDrawer, Open), (SendMessage, open_drawer, person),
(WaitMessage, person), (ActionDrawer, Close),

(NavTo, Lab), (ApproachRobot, Manipulator1)

(ActionDrawer, Open), (SendMessage, open_drawer, robot),
(WaitMessage, robot), (ActionDrawer, Close)⟩

4.2 EVALUATION GOALS

We assess our implementation via simulation, aiming at showing if the developed frame-
work was implemented as devised and has everything that needs to execute a deliberative
plan. This test is divided into two trials:

• Run the Sequential Plan defined in Definition 4.1.

• Run a similar plan, however the robot spawns at different locations requiring that it
should move more and run out the battery.

This setup shows how the framework works in the Simulated Mission, we expect that the
framework executes the whole plan without significant errors, and if something goes wrong,
the Sequencer has to notify the upper layers to replan or cancel the request, otherwise.

4.3 SIMULATION ENVIRONMENT

Before running the framework along with the simulation, we had to build the environ-
ment, configure a simulated robot and implement the interfaces to work with our framework.

4.3.1 Simulated environment

We built the simulated environment to represent a real hospital, so we designed the floor
plan based on a real hospital, and then we modeled the building using a 3D CAD software.
The CAD was exported as an STL mesh to be used as an environment inside the simulator.
Figure 4.1 shows the floor plan used as the source. The red box shows the hospital wing
used to run the tests with simulated robots. Figure 4.2 shows the metric map used to help
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the Navigation Skill and the topological map used by the high-level planner to plan the
waypoints to define the Navigation Skill.

Figure 4.1 – Hospital floor plan used as reference

4.3.2 Simulated Robots

The Morse Simulator [30] has a handful of robots already ready to use and a built-in ROS
interface, making it suitable for our purposes. Choosing the right platform for our work took
into account two guidelines: (i) it should be suitable for the hospital environment, (ii) the
simulation has to be realistic enough.1

From the mobile bases available in Morse, only two meet our requirements. The Pioneer

3-DX2 and the Segway RMP 400.3 Both platforms use Differential Driver Actuator Morse
actuator. This actuator calculates the velocity for each wheel following differential-drives
Kinematic Model and the friction between the tire wheels and the floor. The thought process
behind choosing one is that the ROS Navigation Stack requires a differential-drive or an
omnidirectional robot.

We chose the Pioneer 3-DX as the main platform for the experiments.

1Realistic simulation here means that the robot should follow a kinematic model and it has to take account
friction.

2https://www.openrobots.org/morse/doc/latest/user/robots/pioneer3dx.html
3https://www.openrobots.org/morse/doc/latest/user/robots/segwayrmp400.
html
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Figure 4.2 – Simulated Environment

4.3.2.1 Available Components

The simulated robot has several available components:

LIDAR: The LIDAR component simulates a Hokuyo 30-LX sensor. It is mounted above the
robot. The LIDAR publishes the reading in 10 Hz with a range of a maximum of 10 m and
a scan window of 360◦. It is published in the ROS topic <robot_name>/lidar in the
LIDAR frame.

Odometry: The Odometry is used as available in Morse. Simulates the robot’s pose using
the readings from the movement sensors. The odometry is published at the same rate as the
simulation, 20 Hz. The odometry is published in <robot_name>/odom topic.

Position: The Position component simulates the localization system available in every real-
world mobile robot. The localization system used readings from proprioceptive and exte-
roceptive sensors, such as odometry and LIDAR, respectively, to estimate the robot’s pose
relative to the map’s origin. As we are using a simulator, the localization system itself does
not exist. The robot’s pose in the map is published directly from the simulator. The localiza-
tion is published at the same rate as the simulation, 20 Hz. The localization is published in
<robot_name>/pose topic.

ROS Navigation Stack: The ROS Navigation stack takes information from odometry, ex-
teroceptive sensors, and a navigation pose yields velocity references for the mobile base to
follow. It is a navigation component that handles all the navigation problems like path plan-
ning, obstacle avoidance, and velocity control. The main loop runs at 15 Hz. The main
program is the move_base that receives sensor feed – from Odometry, LIDAR, and Posi-
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tion components to know where the robot is. It receives the navigation goal sent by the
Sequencer during the Navigation Skill execution. As output, it drives the robot using the
<robot_name>/cmd_vel topic to send the velocity commands and use the sensors as
feedback.

4.3.2.2 Implemented Modules

Battery A battery usually is the main power source for a mobile robot. As our robot is
supposed to run for hours answering requests from the hospital crew, a power outage event
has to be considered. In order to simulate such component, we added a new module as a new
component inside each robot. The module is instantiated with two parameters: (i) an initial
battery percentage Lbatt and (ii) a discharge rate C. The battery module works as a sensor
that updates its state every second decreasing the discharge rate from the capacity, then uses
a ROS topic to publish the battery state. When the battery reaches 5 %, Battery Module
forcefully shuts down the robot’s movement, simulating a power outage. As Battery Module
works as a sensor, its interface is a ROS topic – <robot_name>/battery – where the
simulator publishes the Battery State message4 every second of the simulation.

Item Exchanger In order to get the sample from the nurse to the mobile robot, we imple-
mented an Item Exchanger5 Module. This module uses the BLE API6 to change the owner-
ship of the samples from the human to the robot. The component receives the new owner in
/<robot_name>/exchange. The message should be the object label as a string, then
the component transfers the ownership to the robot and teleports the object to be on top of
the robot.

Drawer The Drawer is supposed to be a physical component where the robot can securely
carry objects. As this project’s scope does not aim for a real platform, there is no need to
simulate the physics of such component. So, we implemented the component as an interface
using ROS topics where a higher component can control the component, as it would be in
real life. The Drawer receives a command in the topics <robot_name>/drawer_open
and <robot_name>/drawer_close. Each topic receives a ROS String message,7 and
the action is successful when the string matches the topic name.

4http://docs.ros.org/en/melodic/api/sensor_msgs/html/msg/BatteryState.
html

5Vicente Moraes discovered how to use the BLE API to transfer objects ownership between agents inside
MORSE. He implemented the first version of Item Exchange. Thank you!

6MORSE is built on top of Blender.
7http://docs.ros.org/en/noetic/api/std_msgs/html/msg/String.html
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4.3.3 Lab Samples Skills

For the Lab Samples Mission, we implemented a skill to handle an end effector. A drawer
is a hardware component controlled by a command sent in a ROS topic. The ActionDrawer

skill controls this component, as shown in Figure 4.3.

Action Drawer: Skill used to either open and closed the Drawer. The Action Drawer be-
havior is relatively straightforward. It requests the Drawer component, a controller, or a
hardware interface, to Open or Close, waits for the action to conclude, and checks if the
component executed the action. The skill reported status is the root node status, success if
the last condition is a success, or failure if any leaf node fails. Figure 4.3 shows this Skill
Implementation.

→

SendOpenSignal WaitForOpening IsOpen?

Figure 4.3 – Action Drawer

4.3.4 Leaf Nodes for Action Drawer

In this subsection, we define the Leaf nodes for the ActionDrawer skill.

4.3.4.1 Action Nodes

SendSignalDrawer: Whenever this action receives a tick, it sends a signal for the Drawer

component to Open or Close. The action return success if the signal is sent successfully. It
returns failure otherwise.

WaitForAction: Whenever this action receives a tick, it waits for a message from the
Drawer component updating its state. The action return success if a response is received.
The updated state is stored in a blackboard variable. It returns failure if the timer expires and
a response is not received.
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4.3.4.2 Conditional Nodes

IsAction?: Whenever this condition receives a tick, it checks if the updated state stored in
the is the same as the requested. The action return success if the Drawer conditional is True.
It returns failure otherwise.

4.4 ROS PACKAGES CREATED

Some packages used in this work are not entirely related to the main topic of the presented
work. These topics are briefly explained below and should be seen as auxiliary packages as
they hold configuration files, world knowledge, and auxiliary code.

4.4.1 motion_ctrl

The motion_ctrl package has the main purpose of configuring the navigation stack for
each simulated robot and implementing the interface used to integrate the ROS1 navigation
stack with the BT in ROS2.

The ROS1 navigation stack uses the Actionlib8 interface to receive navigation goals. As
in our architecture, the goals are managed by the NavTo BT. We have to use the ros1_bridge
package to integrate ROS1 and ROS2 software environments. However, the Actionlib inter-
face is not implemented yet. So, to work around this problem, we implemented a new node to
receive navigation goals as standard messaging from the ROS2 BT, send the received goals
to the navigation stack via Actionlib, and update the BT when the goal is reached or not.

Besides this new node, the motion_ctrl package holds the configuration for the motion
controllers and planners. Available in our repository on Github.9

4.4.2 turtulebot3_hospital_sim

The turtulebot3_hospital_sim package has the software used to simulate the robots. The
software implements the modules described in subsection 4.3.2.2. Available in our repository
on Github.10

8http://wiki.ros.org/actionlib
9https://github.com/Gastd/motion_ctrl
10https://github.com/Gastd/turtlebot3_hospital_sim
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4.4.3 hmrs_hospital_simulation

The hmrs_hospital_simulation package holds the world knowledge and model of the
simulated environment used in this work. The model represents the environment described
in subsection 4.3.1. Available in our repository on Github.11

4.5 TOOLS

Some tools were used to glue together the simulation. The ros1_bridge package helped
us make the Morse Simulator and the Navigation Stack work together with our framework
that runs in ROS2. The containerized simulation saved much effort in developing and set-
ting different environments. Lastly, a simple Python script sets runs, and shuts down the
containers autonomously.

4.5.1 ros1_bridge

The ros1_bridge12 is a package distributed by Open Robotics as a ROS2 package that
helps integrate ROS1 and ROS2 projects. ros1_bridge provides a network bridge to ex-
change messages between ROS1 and ROS2 environments. As the BT engine and the skills
implementations were developed using the pytrees version for ROS2.

4.5.2 Docker

To test the Simulated Mission alongside our framework in a reproducible manner, we
break apart the Simulation Environment in Docker Machines. The Docker containers work
as Virtual Machines (VMs), separating the working environment of each machine as it would
be if the framework ran in different physical computers in a real-world setting. Figure 4.4
depicts our Simulation Environment. In a top-down view, the first row shows the main ex-
ecutable for each working environment, the second row shows the working environment,
and the third row shows which simulation element the working environment represents. The
dockerized simulation enables us to have a flexible simulation and deploy a multi-robot sim-
ulation if needed. The ‘Robot 1’ box can be duplicated to spawn a second robot and so on
without the need for further adjustments.

11https://github.com/gabrielsr/hmrs_hospital_simulation
12https://github.com/ros2/ros1_bridge
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Figure 4.4 – How Docker supports the simulation

4.5.3 Python script

We develop a python script to set the Linux environment variables and call the Docker
service to up and run the Docker machine as we please. This script also checks the simulation
log searching for a successful mission accomplished or an error event if any of these events
happen the script shuts down the Docker machines.

4.6 SIMULATION RESULTS

To run the Simulated Mission, we call our python script that sets the Docker machines to
up and run them. After the set-up stage, we send the robot plan to the Sequencer and begin
monitoring the execution. We stop the execution when the robot either reports an error or the
sample is delivered.

4.6.1 Simulation Setup

We have one Docker machine for the simulator to reproduce a framework with simu-
lated and real-world robots. Bundling the simulator in a virtual machine also allows more
than one robot simulation as two or more robots cannot share the same computer. We have
another Docker machine for the navigation system. Different from the Sequencing process,
the navigation works on ROS. So, a machine was allocated for the navigation stack. For the
Sequencer, we have a Docker machine running a ROS2 environment with pytrees.

Lastly, we still need something to interface ROS1 and ROS2 environments. We should
note that the shared environment between ROS1 and ROS2 is highly unstable and unpre-
dictable due to differences in how they use environment variables, executable paths, and
network usage. For this reason, we chose to instantiate a fourth Docker machine to set and
run the ros1_bridge package.
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4.6.2 Execution

After all Dockers are up and running, a Linux environment variable is used to set the robot
plan in JSON format. The Sequencer monitors this environment variable. If the variable is
different from void, the Sequencer calls the sequencing function, Algorithm 4, in a 1 Hz

loop. The Sequencer sends a signal as a report if the task changes its status, either a success

or a failure.

In order to check whatever happens inside the simulation and if the Sequencer is execut-
ing the plan, we implemented a simple logger service13 to persist in a log file: (i) when an
Active Skill starts and ends, (ii) if the sample was delivered, (iii) if the robot is with a low
battery. In the following sections, we show and describe two executions, one success and
one failure, with the support of this logger. We used an automatic script to start and run the
executions. The script shuts down the simulation when the logger shows either a successful
delivery or a low battery error.

13A shout out to Gabriel Rodrigues and Vicente Moraes that implemented the Jupyter notebooks to analyze the
logs. Thank you very much! Without the notebook I could have not shown any result from the simulation.
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4.7 EXECUTION #1

Table 4.1 – Configuration for Execution #1

Lbatt0 23.99 %

C 0.034 %/s

Robot Initial Room PC Room 5

Nurse Room PC Room 2

Before running the first experiment, we
configured the environment so the robot could
execute its plan with any fault as battery de-
pleted. Table 4.1 shows the parameters used
to configure the initial simulation state.

In the first trial, we set the robot to exe-
cute a similar plan to the Chapter Implement-
ing Skills with Behavior Trees plan. This plan

simulates the mission described in section 4.1. Table 4.2 shows the log data recorded from
an execution where the sample was delivered successfully. It seems that “send_message”
had not its end state logged even though the Sequencer logged its ending. Also, the last skill,
“wait_message”, did not show in the log file. Both events happen because the script used to
set the test shuts down the simulation right away when the successful delivery event appears.

Figure 4.5 shows the planned path from PC Room 5 to PC Room 2 and its waypoints.
Figure 4.6 shows the robot navigating towards the nurse. The red path is the robot’s motion,
the green circle is the robot’s footprint, the axis is the nurse position, and the white dots are
the LIDAR’s measurements. Like Figure 4.5, Figure 4.7 shows the waypoints planned to
robot go to the Lab from PC Room 2. Figure 4.8 shows the robot going to the Lab. The
displayed elements are the same as the previous figure. After the receiving the sample the
robot moves to the Lab. In both paths, the robot reaches

Table 4.2 – Recorded log from a successful running

skill label start_time end_time expent_time end_state
navigation navto_room 9.62 122.92 113.30 success
approach_person approach_nurse 122.92 123.68 0.76 success
authenticate_person authenticate_nurse 123.70 124.13 0.43 success
operate_drawer open_drawer_for_nurse 124.17 125.28 1.11 success
send_message notify_nurse_of_open_drawer_completed 125.30 129.48 4.18 success
wait_message wait_nurse_to_complete_deposit 129.48 130.48 1.00 success
operate_drawer close_drawer_nurse 130.48 131.65 1.17 success
navigation navto_lab 131.67 245.82 114.15 success
approach_robot approach_arm 245.83 247.02 1.19 success
operate_drawer open_drawer_lab 247.02 248.25 1.23 success
send_message notify_lab_arm_of_open_drawer_lab_completed 248.27 249.32 1.05 success
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Figure 4.5 – How Docker supports the simulation

Figure 4.6 – Simulated Environment
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4.8 EXECUTION #2

Table 4.3 – Configuration for Execution #2

Lbatt0 17.49 %

C 0.06 %/s

Robot Initial Room IC Room 5

Nurse Room IC Room 6

Execution #2 was configured to force a
fault from the robot’s side. In order to sim-
ulate the fault, we configured the robot with
slightly less battery, and we increased the dis-
charge rate. As in the first experiment, the Ini-
tial Robot Room and Nurse Room are close
to the Lab Room’s delivery point. We also
moved them away to distant rooms. It is ex-

pected that the robot to run out of battery at some moment during the plan execution. Ta-
ble 4.3 shows the used configuration for the second execution.

In the second execution, we executed the sequence of skills as the first one. Table 4.4
shows the execution result. All the skills work well until it comes to the last navigation
skill, where the robot goes from the Nurse Room to the Lab Room. As happened in the
first execution, the last skill did not register its end state because the script shut down the
simulation before the log registered.

It is important to note that the simulated error occurs when the battery module goes to
less than 5 %, and it is sensed by the reactive layer, then when reactive layer recognizes that
nothing can be done, it warns the plan layer.

Table 4.4 – Recorded log when the robot reaches a low battery level dur-
ing execution

skill label start_time end_time expent_time end_state
navigation navto_room 18.17 205.15 186.98 success
approach_person approach_nurse 205.15 205.80 0.65 success
authenticate_person authenticate_nurse 205.82 206.28 0.46 success
operate_drawer open_drawer_for_nurse 206.28 207.18 0.90 success
send_message notify_nurse_of_open_drawer_completed 207.20 210.33 3.13 success
wait_message wait_nurse_to_complete_deposit 210.33 212.15 1.82 success
operate_drawer close_drawer_nurse 212.15 213.07 0.92 success
navigation navto_lab 213.07 218.63 5.56 low-battery

4.9 ISSUES & LIMITATIONS

This section compiles some of our problems, thoughts, and framework limitations based
on the current literature. We go further and beyond the scope of this work, describing pos-
sible problems with extensions because we think some of our ideas could thrive in domains
like multi-robot.
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4.9.1 Issues

During the development of this project, we faced several issues. Although we already
knew what skills to implement, the first issue we did have was that we did not knkow how
much action a single skill should coordinate. For example, the Navigation Skill sends the
waypoints to the Navigation System without knowing what happens. In this example, it
is okay when a waypoint is reached, but when something blocks the path, the BT does
not know, and it can not report anything more than just a “navigation error”. Also, it is
pretty challenging to design the requirements and goals for each Skill if the execution is
detached from the planning. Some kind of structured interface needs like the preconditions
and postconditions seen in planning languages like in the PDDL14 family.

Another problem encountered was related to the ros1_bridge. This package is still beta,
and quite a few features are missing. The ROS Navigation Stack uses an interface not imple-
mented in ros1_bridge. Thus, we made an intermediate node to work around this problem.
However, we already did not have enough data about the navigation execution. We lost even
more feedback because of the lack of this interface.

The ROS1 does not have any reliability in delivering its messages. In this work. We had
a lot of synchronization problems due to the messages passing from ROS2 to ROS1 without
any trustworthiness.

4.9.2 Limitations

Regarding planning problems, the scope of this work is to match an already planned set-
ting like a recipe without further refinements. Nevertheless, when we are in the execution
domain in real-world applications, a feature much needed that rules us all: time. Our ap-
proach works well with the recipe given. However, a lot of time management it had to be
done inside each skill, like timeouts and so on. We do not have implemented any time limit
for the given tasks yet. This problem hinders the usage of our approach on a commercial
scale.

Even though it is not the scope of this project to target Multi-Robot systems, the frame-
work has limitations to further explore essential issues in the Service robots context. Our
framework does enable communication between different kinds of agents. However, there is
still no strong cooperation between them. Our approach goes as Murphy defines as Weakly

Coordinated where the robots know about other agents, where each agent has its own time
to act, but the robots do not work together in the same Skill. A couple of advantages are: (i)
we reduce the problem of task interference, and (ii) we enable coordination between hetero-

14https://en.wikipedia.org/wiki/Planning_Domain_Definition_Language
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geneous agents.15 On the downside, our framework does not support skills that need more
than one agent, e.g., carrying a box together with a human or another robot.

Finally, the framework does not support shared memory or knowledge representation. In
other words, if the world map changes, each robot has to update its knowledge representation.
As such, the framework does not support skills that need support or information from other
agents. For example, a hospital could have a set of cleaning robots deployed every night
to clean the floor of the corridors of the whole hospital. We could turn this problem into
an exploration problem where the robots have to explore the hospital, cleaning its floor ‘x’
times. It would be a waste of time if the same area is cleaned more than ‘x’ times, so the
robots must share and keep track of their partners’ paths. Even though we could have a
component to enable the shared work, our approach cannot coordinate such component.

15Human and mobile robot, and mobile robot and manipulator
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CONCLUSION

This work implemented DBTs and used them to bridge the gap between standard BTs and
Classical Planning. In order to diminish this gap, we implemented a framework where it is
possible to receive the output from a symbolic planner and execute its steps using BTs. Our
work shows how a Behavior Tree can coordinate several robotics components available in a
Service robot showing how DBTs are suitable for implementing the Skill Layer.

We evaluate the framework in a simulation environment, so we built the world, the robots,
and the components needed based on a specified mission. Then, we plugged everything to
see if our framework indeed coordinates a robot to execute the intended plan. We present
two executions to display how our framework works. In the first one, we configured the
robot to not stop during its navigation skill and allocated it near the Nurse and to the delivery
room. As expected, the robot goes to Nurse, receives its delivery item, and delivers it to
a Manipulator in the Lab. The recorded log points that the Simulation dies before the two
last skills finish their execution. This flaw happens because the program that manages the
Simulation execution shuts down the simulation right when the sample arrives at the Lab.

Our approach exhibit how well-known 3-Tiered Architecture can work with nowadays
popular BTs. We also display how to implement skills that depend on runtime parameters
and how a classical planner can help instantiate robotics behaviors to execute a plan. At
last, we execute in a simulated mission a deliberative plan showing two cases. The first the
plan is executed as it should. In the second, the plan experience a failure and the Sequence
recognizes it and notify the planning layer.

We do not tackle any specific multi-robot problem, but we can not escape from them
in a service robots context. Hence, our framework tries to be flexible enough to deal with
multi-robot issues. Here we compile some multi-robot problems mentioned by Murphy and
how our approach solves them:

P: “How is programming multiple robots different from programming a single robot?” A:
As our framework detaches the deliberative planner from the Sequencing and Skill Layers,
the same structure works for multiple robots. Each robot can access a shared Skill library to
retrieve skills in runtime to execute a plan. The same architecture works for both single and
multi-robot missions.

P: “It is not clear when communication is needed between agents or what to say”. A: The
plan already solves when needed communication between who, but our framework shows
how this happens and how different skills can deliver different types of communication.

P: “The ‘right’ level of individuality and autonomy is usually not obvious in a problem
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domain”. A: The architecture used draws a line in the Sequencer Layer, separating the
concerns between the robot and the planner.

Our framework tackles the problem of interfacing deliberative and reactive functional-
ities in a hybrid system with a Sequencer running Dynamic Behavior Trees as the Skill
Implementation. The proposed framework shows how a reactive system handles and follows
a deliberative input using DBTs. Our Dynamic Behavior Trees are not so different from the
usual BTs. We also show how DBTs encapsulate everything needed to execute a given task.

5.1 RELATED WORK

There are not so many works that propose a Dynamic Behavior Tree as we do in this
project. So, we compiled some work that correlates to some ideas implemented here. In
2008, Flórez-Puga et al. used the recurring patterns in Behavior Tree design to implement
a BT that is expanded in runtime. They hint about the drawback that is having to redesign
a large and already statically designed BT. Their solution is to expand some BT nodes in
runtime, substituting the query nodes by a subtree [42]. In the planning and acting realm,
Colledanchise et al. try to solve some issues brought by Ghallab et al. in [38, 20] using a
planner inspired by the Hybrid Backward-Forward algorithm to create BTs in runtime to
achieve a given goal [11]. Cai et al. extend Colledanchise et al.’s work [11] presenting a
sound and complete algorithm to expand BTs to find a planning solution, bridging the gap
between BT representation and formal analysis [43]. In 2021, Mayr et al. bridge the gap
between BTs and Machine Learning using BTs to solve execution issues related to optimized
policies using Reinforcement Learning [44].

5.2 FUTURE WORK

As future work, we devise several improvements in the presented work. However, before
jumping to extensions, we need to know the earnings and losses in terms of implementation.
So, we propose several tests to analyze the overhead growth of using DBTs against a Static
BT baseline. The test can also show how different and difficult it is to develop a Static BT
that can execute the same plan in the same way. As features, we propose the possibility to
prune and insert new branches in the BT to deal either with faults or to replanning. Currently,
our Sequencer works with only one DBT each time. An extension of the Sequencer is the
ability to work with concurrent Skills. This feature adds a lot more flexibility to a more
complex plan where some tasks have to be done simultaneously by the same agent. Lastly,
each skill tries to achieve its goal, and if an exception occurs, the problem is sent to the
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planner. However, if the exception needs some robot action, e.g., the robot has to move from
a dangerous place, this does not happen until the replan. Thus, we propose a “fault-tolerant”
skill that assumes the robot behavior when something goes wrong and handles any problem
until a new plan arrives.
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SKILL IMPLEMENTATIONS

This appendix list the Algorithms for each Skill Implementation used in this work. Algo-
rithms 7, 8, 9, 10, 11, and 12 are described in Chapter 3. Algorithm 6 is explained in the
Chapter 4.

A.1 ACTION DRAWER

Algorithm 6 Action Drawer Implementation
Require: length of param_list > 0

1: function CREATE_ACTION_DRAWER_BT(param_list)
2: root←SEQUENCENODE()
3: drawer_state← GETSTRINGFROMJSON(param_list[0])
4: newstate2BB ←SETBLACKBOARDVARIABLE(drawer_state, “new_state”)
5: waitForNewstateBB ←WAITFORBLACKBOARDVARIABLE(“new_state”)
6: ros_publisher ←PUBLISHFROMBLACKBOARD(“new_state”, “set_drawer”)
7: wait_for_update←SUBSCRIBETOBLACKBOARD(“update_state”, “get_drawer”)
8: update2BB ←WAITFORBLACKBOARDVARIABLE(“update_state”)
9: isAction←CHECKBBVARIABLEVALUE(“update_state”, drawer_state)

10: root.ADD_CHILDREN([newstate2BB,waitForNewstateBB, ros_publisher])
11: root.ADD_CHILDREN([wait_for_update, update2BB, isAction])
12: return root
13: end function

A.2 WAIT MESSAGE

Algorithm 7 Wait Message Implementation
Require: length of param_list > 0

1: function CREATE_WAIT_MSG_BT(param_list)
2: root←SEQUENCENODE()
3: resp_2BB ← SUBSCRIBETOBLACKBOARD(param_list[0]+“comms”,“resp”)
4: wait_res←WAITFORBLACKBOARDVARIABLE(resp_msg, “resp”)
5: isOK ←CHECKBBVARIABLEVALUE(“resp”, param_list[1])
6: root.ADD_CHILDREN([resp_2BB,wait_res, isOK])
7: return root
8: end function
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A.3 SEND MESSAGE

Algorithm 8 Send Message Implementation
Require: length of param_list > 0

1: function CREATE_SEND_MSG_BT(param_list)
2: root←SEQUENCENODE()
3: msg_2BB ← SETBLACKBOARDVARIABLE(param_list[1],“msg”)
4: waitForMsgBB ←WAITFORBLACKBOARDVARIABLE(“msg”)
5: ros_publisher ←PUBLISHFROMBLACKBOARD(“msg”, param_list[0])
6: root.ADD_CHILDREN([msg_2BB,waitForMsgBB, ros_publisher])
7: return root
8: end function

A.4 NAVIGATION TO

Algorithm 9 NavTo Implementation
Require: length of param_list > 0

1: function CREATE_NAV_TO_BT(param_list)
2: root←SEQUENCENODE()
3: way_seq ←WAYPOINT_EXPANSION(param_list[1])
4: topics2bb←SEQUENCENODE()
5: scan2bb←ROSEVENTTOBLACKBOARD(“/RNAME/scan”)
6: cancel2bb←ROSEVENTTOBLACKBOARD(“/RNAME/cancel”)
7: battery2bb←ROSEVENTTOBLACKBOARD(“/RNAME/battery”)
8: batteryemergency ←ETERNALGUARD()
9: checkbatt←CHECKBLACKBOARDVARIABLEVALUE(“battery”)

10: batteryemergency.ADD_CHILD(checkbatt)
11: parallel←PARALLELNODE()
12: parallelADD_CHILDREN([batteryemergency, way_seq)
13: root.ADD_CHILDREN([topics2BB, parallel])
14: return root
15: end function

A.5 AUTHENTICATE PERSON

54



Algorithm 10 Authenticate Person Implementation
Require: length of param_list > 0

1: function CREATE_AUTH_PERSON_BT(param_list)
2: root←SEQUENCENODE()
3: req_person← GETSTRINGFROMJSON(param_list[0])
4: req2BB ←SETBLACKBOARDVARIABLE(req_person, “req_person”)
5: waitForReq ←WAITFORBLACKBOARDVARIABLE(“req_person”)
6: publisher ←PUBLISHFROMBLACKBOARD(“req_person”, “/auth/”)
7: person_resp←SUBSCRIBETOBLACKBOARD(“resp_person”, “/fauth/”)
8: wait_resp←WAITFORBLACKBOARDVARIABLE(“resp_person”)
9: isAuthenticated←CHECKBBVARIABLEVALUE(“resp_person”, True)

10: root.ADD_CHILDREN([req_person, req2BB,waitForReq, publisher])
11: root.ADD_CHILDREN([person_resp, wait_resp, isAuthenticated])
12: return root
13: end function

A.6 APPROACH PERSON

Algorithm 11 Approach Person Implementation
Require: length of param_list > 0

1: function CREATE_APPROACH_PERSON_BT(param_list)
2: root←SEQUENCENODE()
3: req_person← GETSTRINGFROMJSON(param_list[0])
4: req2BB ←SETBLACKBOARDVARIABLE(req_pose, “req_pose”)
5: waitForReq ←WAITFORBLACKBOARDVARIABLE(“req_pose”)
6: publisher ←PUBLISHFROMBLACKBOARD(“req_pose”, “/localize_person/”)
7: person_pose←SUBSCRIBETOBLACKBOARD(“pose_person”, “/get_pose/”)
8: wait_pose←WAITFORBLACKBOARDVARIABLE(“pose_person”)
9: GoToPose←SENDNAVGOALROSBB(“pose_person”)

10: root.ADD_CHILDREN([req_person, req2BB,waitForReq, publisher])
11: root.ADD_CHILDREN([person_pose, wait_pose,GoToPose])
12: return root
13: end function

A.7 APPROACH ROBOT
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Algorithm 12 Approach Robot Implementation
Require: length of param_list > 0

1: function CREATE_APPROACH_ROBOT_BT(param_list)
2: root←SEQUENCENODE()
3: r_pose←SUBSCRIBETOBLACKBOARD(“pose_robot”, param_list[0]“/pose/”)
4: wait_pose←WAITFORBLACKBOARDVARIABLE(“pose_robot”)
5: GoToPose←SENDNAVGOALROSBB(“pose_robot”)
6: root.ADD_CHILDREN([r_pose, req2BB,wait_pose,GoToPose])
7: return root
8: end function
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