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Abstract
A quick ’walk-through’ of the fundamentals is made to expose the similarities of the quan-
tum mechanic and electromagnetic approach to reach the final equation describing radia-
tion pressure. As radiation pressure is described by these two point of view, it is explicit
that for a laser propulsion it is reasonable to work with electromagnetic approach as it
ease the manipulation of the energy transfer by the high energy laser. The orbit dynamic
of a satellite with solar sail have some particular differences in the equation of motion
because of its behaviour receiving momentum transfer from a propulsion system external
to its own body, and this require a series of force, coefficients and angle analysis. All these
three parameters are exposed and calculated as well as the laser power efficiency that will
reach the sail considering a simple ambient deviation of the beam, and these results are
used to check the available ground sites. With all necessary paramaters calculated, the
possible orbit change using 100kW laser power incidence in a sail with 32𝑚2 and satellite
weight 5𝑘𝑔 results are positive and a good amount of change are achieved using this type
of laser with the parameters given in this work. Until the date of this work a laser with
100kW power is not yet fully developed to achieve such power in the amount of time
duration needed for this application, but a 60kW laser are being produced for military
purpose and soon we will get a 100kW comercial laser. Theoretically it is feasable to use
high energy laser to change cubesats orbits parameters.

Key-Words: Laser propulsion. solar sails. cubesat. lightsail.
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Introduction

The theoretical design of solar sails came before the idea to use laser beam as a
photonic momentum transfer and it is agreed that Konstantin E. Tsiolkovsky were the
first to suggest that a spacecraft could be propelled by sunlight in the publication of 1921
Extension of Man into Outer Space, but only in 1924 his student Fridrickh Tsander would
publish the first paper about solar sailing (MCINNES, 2000). The solar sail propulsion
system design had a lot of technical issues in it’s initial phase such as the method of de-
ployment and the material of the sail, but recently these issues were solved and missions to
gather data for future researches were successfully accomplished. In 2010 Japan Aerospace
Exploration Agency (JAXA)1. launched IKAROS2, a satellite with built-in solar power
that would be used as solar sail to have practical data about this type of propulsion. It
was the first mission in the world to acquire this type of data along with information
about solar power and sail deployment techniquies.

Studies about solar sail propulsion are getting attention as it is proving the feasi-
bility in the use of sails for small satellites. The solar radiation momentum transfer are
the topic of many studies about sails and the laser-driven propulsion still in the field of
interplanetary projects, but here in this work I will try to cover a initial analysis of the
laser propulsion, from earth to low earth orbit, being used for orbit change in cubesats.

1 <https://global.jaxa.jp//>
2 <http://www.isas.jaxa.jp/en/missions/spacecraft/current/ikaros.html/>
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1 Solar Sail Propulsion Fundamentals

1.1 Objetive
The main focus will be in the possibility of cubesats orbit change using laser-driven

system and parameters of the LightSail 2 mission (SPENCER, 2020), but first introducing
physics and mathematical fundamentals to achieve a reasonable result.

1.2 Radiation Pressure
Radiation pressure is a topic that was dicussed and studied a lot until any practi-

cal experiments were able to be made, due to this long theoretical time spent in studies
of this phenomena some mathematical explanations were made, but only the latest two
approaches to define radiation pressure is accepted today. By the quantum mechanics
view, the radiation pressure happens because momentum is transported by photons (the
quantum packets of energy that light is composed), and from the electromagnetic point of
view the momentum is transported to the solar sail by electromagnetic waves (MCINNES,
1999). Even though the quantum mechanics approach will be described in this section,
the electromagnetic model will be available in the laser-driven section. These two models
give us exactly the same equation to work with.

1.2.1 Describing Radiation Pressure

A quick ’walk-through’ on the mathematical development to determine the pressure
exerted on a surface due to sun radiation (MCINNES, 1999). For symbol clarification check
the list of symbols.

Consider the special relativity mass-energy equivalence for a moving body;

𝐸2 = 𝑚2
0𝑐

4 + 𝑝2𝑐2 (1.1)

Where the first term on the right side of the equation is the rest energy of the body and
the second is the motion energy.

Since a photon has zero rest mass the equation 1.1 becomes;

𝐸 = 𝑝𝑐 (1.2)
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To determine the momentum transported by a single photon we use Planck’s law:

𝐸 = ℎ𝑣 (1.3)

And substituting equation 1.3 on equation 1.2;

𝑝 = ℎ𝑣

𝑐
(1.4)

The energy flux 𝑊𝐸 considering the distance from Earth to the Sun is;

𝑊𝐸 = 𝐿𝑆

4𝜋𝑅2
𝐸

(1.5)

Then we can write the energy flux 𝑊 at a distance r from the Sun

𝑊 = 𝑊𝐸(𝑅𝐸

𝑟
)2 (1.6)

Using the energy flux we can obtain the energy △𝐸 transported in a surface area
in time △𝑡

△𝐸 = 𝑊𝐴△𝑡 (1.7)

The equation 1.2, when solving for 𝑝 we see that the energy △𝐸 transports a
momentum △𝑝

△𝑝 = △𝐸

𝑐
(1.8)

Now that we have described all the terms we need, it’s time to write the pressure
exerted on a surface area in terms of the momentum transported per unit time and area;
one

𝑃 = 1
𝐴

△𝑝

△𝑡
(1.9)

𝑃 = 𝑊

𝑐
(1.10)
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1.2.2 Describing Laser-driven propulsion

For the laser propulsion it is necessary to look at the energy transfer by the elec-
tromagnetic point of view. The complete derivation and explanation of this model is well
documented in the book Solar Sailing, Technology, Dynamics and Mission Applications
by Colin R. McInnes1, thus making the whole presentation here unnecessary.

A electric field is considered and a component of it’s wave induce a current 𝑗 in
the sail. A Lorentz force j𝑥B is generated as a magnetic component of incident wave B
appears in the direction of the propagation, see fig.1, and for this wave propagating along
the x axis the force exerted is;

𝑑𝑓 = 𝑗𝑧𝐵𝑦𝑑𝑥𝑑𝑦𝑑𝑧 (1.11)

Figure 1 – Electromagnetic description of radiation pressure (MCINNES, 1999)

The pressure is defined to be force per unit area, thus the element in fig.1 will
perceive a pressure written as;

𝑑𝑃 = 𝑗𝑧𝐵𝑦𝑑𝑥 (1.12)

Using Maxwell’s equation we can get the field terms,

𝑑𝑃 = 𝜕

𝜕𝑥
(1
2𝜀0𝐸

2
𝑧 + 1

2𝜇0
𝐵2)𝑑𝑥 (1.13)

𝑈 = 1
2𝜀0𝐸

2 + 1
2𝜇0

𝐵2
𝑦 (1.14)

U being the energy density, E the electric component, B the magnetic component
of the incident wave, 𝜀0 the permittivity of free space and 𝜇0 the permeability.

1 (MCINNES, 1999)
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△l being the surface thickness, the pressure is obtained by integrating equation
1.16;

𝑃 = −
∫︁ △𝑙

0

𝜕𝑈

𝜕𝑥
𝑑𝑥 (1.15)

The pressure exerted will be the total energy density of the electromagnetic wave
𝑃 = 𝑈 .

For the case shown in fig. 2 we have a distance △𝑥 between those two plane waves
with incident occurring on a surface area 𝐴.

Figure 2 – Energy density of an electromagnetic wave (MCINNES, 1999)

The energy density of the electromagnetic wave, considering that △𝑥 is equivalent
to 𝑐△𝑡, we have;

𝑈 = △𝐸

𝐴(𝑐△𝑡) (1.16)

Knowing that the energy flux 𝑊 across the surface is;

𝑊 = △𝐸

𝐴△𝑡
(1.17)

we reach a pressure equation based on the energy density of the electromagnetic
wave;

𝑈 = 𝑊

𝑐
(1.18)

And as expected it is equivalent to the equation 1.10.
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2 Orbit Dynamic for Solar Sail

2.1 Equation of motion

This section will not cover the sun-centered orbit. We are interested in the the
Earth-Centered system to take a look at the feasibility of the laser beam system.

The analysis of the orbit will include a look at some controls of the sail to keep
desireable aspects of its force vectors. As it will receive a beam light from the Earth it is
needed to keep an angle to receive the photon transfer properly and manage these vectors
in the right direction. Considering more than one ground site to be the source of the laser
beam a control over the sail angle with respect to earth will be needed.

According to the general equation of motion for a perfectly reflecting solar sail
(MCINNES, 1999);

𝑑2r
𝑑𝑡2 + 𝜇

r
𝑟3 = 𝜅(l · r)2n (2.1)

And in this adaptation the vector 𝑙 in the equation above is considered the unit vector
directed along the laser beam line, 𝜅 being the magnitude of the solar sail acceleration
(A metric parameter to classify performance of a solar sail based on the mass, area and
efficiency it has) (MCINNES, 1999).

We are really interested in the use of the normal and transverse force, eq.2.3 and
eq.2.4. As we might expect there will be points of the orbit where the ground site will not
be able to deliver the beam as intended to use the maximum approximation of normal
force, and in that case we have the transverse force to work with.

Figure 3 – Force vectors illustration of a solar sail with Earth perspective (MCINNES,
1999) Adapted
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2.2 Forces and Coefficients

The Jet Propulsion Lab of California Institute of Technology1 in 1978 made an
optical force model for solar sail during the project to make a mission to Halley’s Comet.
Since that time this model became a standard, because it included tests to determine
optical coefficients using a thickness of 2.5 micrometer Kapton sail material coated with
100 nanometer of aluminium on the front side and chromium on the back side (HEATON;
ARTUSIO-GLIMPSE, 2015). This model take into account reflectance, absorption and
emissivity of the sail film and its total force is represented as;

𝑓 = 𝑓𝑟 + 𝑓𝑎 + 𝑓𝑒 (2.2)

According to these contributions and the derivation in the literature we reach to these
two equations [(MCINNES, 1999), p.47],(GRESCHIK, 2013);

𝑓𝑛 = 𝑃𝐴[(1 + 𝑟𝑠) cos2 𝛼 + 𝐵𝑓 (1 − 𝑠)𝑟 cos 𝛼 + (1 − 𝑟)𝜀𝑓𝐵𝑓 − 𝜀𝑏𝐵𝑏

𝜀𝑓 + 𝜀𝑏
cos 𝛼] (2.3)

𝑓𝑡 = 𝑃𝐴(1 − 𝑟𝑠) cos 𝛼 sin 𝛼 (2.4)

Figure 4 – Force vectors of a solar sail (MCINNES, 1999) Adapted

As 𝜀 being the emissivity and 𝐵 the Lambertian2 coefficient, both identified by 𝑓

for front side of the sail and 𝑏 for the back. The 𝑟 is reflection coefficient and 𝑠 the specular
reflection. These coefficients can be found in an updated article that derived them again
to use in new missions (HEATON; ARTUSIO-GLIMPSE, 2015). In this work the updated
values will be used as seen in the table below ;
1 <https://www.jpl.nasa.gov/>
2 "A lambertian surface is one which appears equally bright when viewed from any aspect angle. The

non-Lmabertian coefficient then describes the deviation from this condition"(MCINNES, 1999)
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Coefficient 𝑟 𝑠 𝐵𝑓 𝐵𝑏 𝜀𝑓 𝜀𝑏

Value 0.91
+/ − 0.005

0.94
+/ − 0.04

0.79
+/ − 0.05

0.67
+/ − 0.05

0.025
+/ − 0.005

0.27
+/ − 0.005

Table 1 – Coefficients value

Before we leave this section it is important to calculate the irradiance of the laser
to start our analysis. The table 2 bellow holds all the useful information to use the
irradiance code made to calculate the ideal irradiance (without considering jitter, that
is, not considering the deviation of the laser pulse) and the approximation irradiance
including jitter. The code used was based on studies made by Paul H. Merritt and John
R. Albertine (MERRITT; ALBERTINE, 2012)

Laser Parameters
Power 100 [kW]

Laser-Aperture 0.3 [m]
Object Distance 1015 - 1215 [km]
Wavelength 1024 [nm]

Jitter 3 [𝜇 rad]

Table 2 – Laser parameters based on Eglin Air Force Base ground site used as reference
for a 10kw laser (modified to 100kw here) (IV; THOMAS, 2016)

Results in ideal case and with jitter considered are in table 3 bellow;

Irradiance
Ideal 6543.3536 [𝑊/𝑚2]

With jitter 1427.2795 [𝑊/𝑚2]

Table 3 – Irradiance calculated for a laser with parameters in table 2

2.2.1 Forces exerted on Sail with 100kW laser beam

The ideal irradiance mentioned in previous section and shown in table 3 is the
peak irradiance using the laser, due to no jitter considered it is the maximum irradiance
possible for the range and parameters considered in table 2. But this high value is almost
surreal to acquire. Using equation 1.18 to get the radiation pressure magnitude,with jitter,
we have;

𝑈 = 792.204
299792458 = 4.7608.10−6𝑁/𝑚2 (2.5)

As stated in section 1.2.2 that 𝑈 = 𝑃 we now look foward to calculate the normal
force generated from equantion 2.3. Considering the coefficients in table 1 and using
the code in appendix A.2 we have that the normal force will be in the magnitude of
1.9860.10−4𝑁 . The variation of 𝛼 (Angle between the plane of the sail and the incident
beam) versus the normal force generated is shown in figure
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Figure 5 – Normal force magnitude [N] versus Angle 𝛼[°]

We see that the normal force becomes irrelevant when 𝛼 approaches 75° and as
expected the maximum occurs at 0°, that is, when the incident laser beam line is coincident
with the normal vector of the sail. Now we will take a look at the transverse force using
the equation 2.4 and implemented in the code at appendix A.3;

Figure 6 – Transverse force magnitude [N] versus Angle 𝛼[°]
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The maximum in transverse force occurs at approximately 45° with a magnitude of
1.32.10−5𝑁 . This shows that in order to get maximum transverse force the normal vector
force must be at 45° with respect to the incident laser beam line reaching the sail. These
were the magnitude that forces components can achieve with such laser parameters, but
we must know the direction of resultant force vector. (MCINNES, 1999)

Figure 7 – Angle 𝜑 and 𝜃 visualized

In figure 7 angle 𝜃 is the one between incident beam l and total vector force m, this
is the cone angle (MANCHESTER; LOEB, 2017). For 𝜑 we see it is the angle between
normal force n and total vector m called centre-line angle. These two angles can be used
to know the direction of the total vector. For 𝜑, it can be calculated by simply getting
the tangent of 𝜑 as follows; (MCINNES, 1999)

𝑡𝑎𝑛𝜑 = 𝑓𝑡

𝑓𝑛
(2.6)

This centre-line angle is important to know the angle constraint of our sail. The
figure 8 shows the relation of 𝜑 with 𝛼. With 𝜑 = 0 meaning that the total force vector m
is at the normal direction of the sail, thus 𝛼 = 0 because in order to have m completely
normal to the sail we need no angle between the incident beam and the normal vector.
As 𝛼 increase (the sail change its angle relative to the incident beam) the force vector m
will change its angle 𝜑 slowly until we reach the maximum angle the sail can achieve to
have a positive force vector as a result from 𝑓𝑛 and 𝑓𝑡.
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Figure 8 – Angle 𝜑[°] versus Angle 𝛼[°]

For a better perspective of what type of contraint the figure 8 brings to us, lets
take a look at the figures bellow showing how 𝜑 and 𝛼 are related;

(a) Ideal situation 𝛼 = 0° (b) 𝛼 = 30°

(c) 𝛼 = 55° (d) 𝛼 = 74°

Figure 9 – Visualization of 𝛼 influence on 𝜑
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2.3 Ground Site
Elegible ground sites that are already built and have safety requirements were

analyzed based on the latitude, longitude and altitude (IV; THOMAS, 2016). A few of
them are shown in figure 10;

Figure 10 – Ground sites elegible to host the laser system (IV; THOMAS, 2016)

Studies made by NASA (National Aeronautics and Space Administration) about
the LightSail 2 mission shows that for a ground site located in Santa Rosa Island the
dwell time for laser opportunities is 397 seconds (24° inclination circular orbit at 700km
altitude), divided in two access times of orbit pass (IV; THOMAS, 2016). Remembering
that depending on the laser power and location of the system on the Earth surface we
have to consider the angle constraints mentioned in figure 9. Here the analysis of a proper
ground site will be as simple as possible due to the lack of information granted by these
governamental organization about the building itself.

As mentioned, the angle that a satellite sees the laser ground site have some
constraints. This angle is called nadir and is represented in the figures bellow;

Figure 11 – Ground station geometry 1 (CAKAJ, 2011)
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Figure 12 – Ground station geometry 2 (CAKAJ, 2011)

With the method presented by Cakaj (CAKAJ, 2011) a slant range can be calcu-
lated for a generic orbital altitude considering the elevation angle of the ground site as
shown in figure 13;

Figure 13 – Laser propagation distance from the ground to spacecraft (IV; THOMAS,
2016)

In figure 13 the red line is highlighting the slant range of the LightSail 2 mission,
that is; 720km altitude orbit. This analysis shows that opportunities of laser access will
not have the same slant range, therefore, the power delivered to the sail by the ground site
will change inside the dwell time. The blue line indicated in the figure 13 is the optimal
range inside the nadir angle of 30° and 40°. These limit angles starting on 30° are the
results of studies made by radio amateur (BRUNINGA, ) about circular orbits and its
dwell time with respect to the elevation angle (nadir), and concluding that only 40% of
the dwell time is elegible to receive the laser beam.
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3 Amount of change in orbit

Now that we have considered and explained the parameters needed, the △V pos-
sible will be calculated using orbit parameters from LightSail 2 mission. Since cubesats
have a relative similar weight, size, and ballistic coefficient this study results might include
other missions to the possibility of laser beam use in LEO.

The orbit parameters that will be considered in this section are shown in the
two-line element set (TEL) bellow;

Figure 14 – Two-line element set from LightSail 2 mission

These parameters were taken in 26 January of 2021 at 10:07:17.1 For better view
and identification, a table with parameters that we need are in the table bellow;

Eccentricity 0.0019102
Inclination 24.0066°

Perigee height 685 [km]
Apogee height 712 [km]

Right ascension of ascending node 136.3264°
Argument of perigee 46.4956°
Revolutions per day 14.58300401

Mean anomaly at epoch 313.7122°
Orbit number at epoch 8282

Mass 5 [kg]
Sail Area 32 [𝑚2]

Table 4 – LightSail 2 orbit elements

With the elements we are able to calculate the state vector, position and velocity
vectors in 3D, and apply the possible velocity change generated by the laser beam. First,
we need to know the magnitude of forces that will be applied in the situation of the
satellite. Using the values acquired in section 2.2 for the normal and transverse force,
and ground site dwell time parameters (with slant range) we can have the amount of
acceleration delivered to the sail by dividing the force(thrust) by the mass of the satellite.

𝑎𝑐𝑛 = 𝑓𝑛

5[𝑘𝑔] (3.1)

1 <https://www.heavens-above.com/orbit.aspx?satid=44420>
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𝑎𝑐𝑡 = 𝑓𝑡

5[𝑘𝑔] (3.2)

These acceleration are shown together in figure 15 bellow, so we can notice that it
is balanced out as the magnitude of them are the same when the 𝜑 = 45°. As previously
demonstrated 𝜑 is the direction angle of the resultant force with respect to the normal
vector. Since the normal vector is always perpendicular to the transverse vector, when
𝜑 = 45° the resultant vector is in the middle of both normal and transverse demonstrating
the equilibrium of the calculation made through the work.

Figure 15 – Normal and transverse acceleration due to 𝜑 angle

The maximum normal acceleration happens when 𝜑 = 0°, therefore, being at full
transference of the incident beam. But the transverse acceleration deserves a better look
to expose its maximum magnitude, as a mistake could be made thinking that the more
higher 𝜑 get, more would be the magnitude of the transverse vector. This is not the case,
as 𝜑 depends on the angle of beam incidence 𝛼.

The transverse acceleration maximum occurs at approximately 𝜑 = 9° (figure
16) then starts decreasing until the last viable 𝜑 angle. It shows that in order to have
maximum transverse acceleration the normal must be considered, because at this angle
the normal still have expressive values.
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Figure 16 – Transverse acceleration due to 𝜑 angle

Now we can check the amount of acceleration transfer that will occur in a oppor-
tunity similar to the one described in section 2.3, where the dwell time disponible for the
ground site located in Santa Rosa Island is 397 seconds. Considering the slant range and
the optimal nadir angle mentioned in that section, the viable time is about 40% of the
total satellite appearance leading us to a dwell time of 160seconds. For both, normal and
transverse forces we calculate the velocity change by;

△𝑉𝑖 = 𝑎𝑖.160 (3.3)

Change in velocity vectors will always depend on the objetive of the maneuver,
but to use as an example of how the laser-driven propulsion would affect an orbit we can
make a few hypotetical assumptions.

Let 𝜑 = 9° be our fixed angle through the entire laser incidence, therefore, 𝛼 = 45°.
The table bellow have all the parameters assuming this initial condition;
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𝜑 9°
𝛼 45°

Normal Acceleration 1.6558.10−5 [𝑚/𝑠2]
Transverse Acceleration 2.6325.10−6 [𝑚/𝑠2]

Dwell time 160 [seconds]
△𝑉𝑁𝐼𝑛𝑖𝑡𝑖𝑎𝑙 2.6493.10−6 [km/s]
△𝑉𝑁𝐹 𝑖𝑛𝑎𝑙 1.8489.10−6 [km/s]
△𝑉𝑇 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 4.2120.10−7 [km/s]
△𝑉𝑇 𝐹 𝑖𝑛𝑎𝑙 2.9396.10−7 [km/s]

Table 5 – Parameters for 𝜑 = 9°

The amount of △𝑉 is different from the initial moment to the final simply because
of the slant range, that starts at 1015km up to 1215km, meaning the power delivered by
the laser beam is less effective. Now we can take a look at the satellite mentioned in table
4 and to know its position and velocity in a 3D vectorization orbit. A Scilab code were
made based on the algorithm disponible in the book Orbital Mechanics for Engineering
Students (MCINNES, 1999). Bellow are these vectors forms and values calculated;

r =
[︁
𝑋 𝑌 𝑍

]︁

r =
[︁
−5128.9029 4864.3875 10.430225

]︁
v =

[︁
−4.7128079 −4.9906925 3.057051

]︁

For coordinate reference of this orbit the figure 17 shows the unit vectors of trans-
verse, radial, and normal directions. The normal direction ĥ in the figure 17 is with
respect to the plane of orbit, thus different from the normal direction metioned before in
this work. And to finish the clarification of vectors directions, the radial vector û𝑟 is the
normal vector of the sail and the perpendicular vector û⊥ is our transverse vector.
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Figure 17 – Coordinates illustration (CURTIS, 2005)

Before applying the velocity changes it is necessary to adjust the coordinate system
from the geocentric equatorial frame to the perifocal frame, then we will be able to add
the velocity change to the vectors. After this rotation of matrix and increment in the
velocity vector we must do the inverse path to have our state vectors in the geocentric
equatorial frame again. For better understanding, the figure bellow shows a visualization
of these two frames and its axes;

Figure 18 – Geocentric equatorial frame and Perifocal frame illustration (CURTIS, 2005)
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The rotation matrix to find the perifocal terms is in the form bellow(CURTIS,
2005);

Q =

⎡⎢⎢⎢⎣
(cos Ω cos 𝜔 − sin Ω sin 𝜔 cos 𝑖) (sin Ω cos 𝜔 + cos Ω cos 𝑖 sin 𝜔) (sin 𝑖 sin 𝜔)

(− cos Ω sin 𝜔 − sin Ω cos 𝑖 cos 𝜔) (− sin Ω sin 𝜔 + cos Ω cos 𝑖 cos 𝜔) (sin 𝑖 cos 𝜔)
(sin Ω sin 𝑖) (− cos Ω sin 𝑖) (cos 𝑖)

⎤⎥⎥⎥⎦

Now we have the position and velocity vector in the perifocal frame, allowing us
to add the △𝑉 we have;

𝑟𝑝 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1.5182.103

−6.8953.103

0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ [𝑘𝑚]

𝑣𝑝 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
7.3431 + △𝑉𝑇

−1.5993 + △𝑉𝑁

0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ [𝑘𝑚/𝑠]

Applying the velocity changes of table 5 to the velocity vectors previously mentioned will,
in theory, cause the orbit to change if there is significant amount of acceleration transfer.

Now we retrieve the state vector to check the change in the orbital elements. It is
important to remember that this type of system is design to give significant changes by
multiple incidence times for months. Here we will be adding the value equivalent to 365
days of beam incidence two times a day for 160 seconds each dwell time. To check the
orbital parameters of the satellite after this change we will be using another Scilab code
made based on the algorithm on the book Orbital Mechanics for Engineering Students
(CURTIS, 2005).

r =
[︁
178.01635 −5648.8545 −4227.0431

]︁
v =

[︁
3.9277737 3.9326405 −5.0604931

]︁
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Elements Before After
Period 5900.5092 5896.9219[seconds]

Velocity magnitude 7.5152[km/s] 7.5167[km/s]
Mass 5 [kg] 5 [kg]

Sail Area 32 [𝑚2] 32 [𝑚2]

Table 6 – LightSail 2 orbit elements after laser beam incidence

The velocity change were in the magnitude of 0.0015237[𝑘𝑚/𝑠]. All this analytical
approach might have its inherent errors and there are some characteristcs not considered
here as the solar flux activity and aerodynamics aspects, because the goal is to check the
amount of influence the laser alone can have in this case. A better visualization of it would
be to take this analysis to simulation softwares such as System Tools Kit (STK) to check
all the parameters and behaviour.

3.1 Drag enhancement
The magnitude of the total velocity change is low when compared with other

options we already have to change orbits. This is the case where the technology should be
used to enhance another one to achieve the final objective, and in this case the objective
is to increase the drag of the satellite to deorbit it. In this section the drag force due to
the influence of the laser beam will be shown, and the density model used was MSISE-90
Model of Earth’s Upper Atmosphere.

The drag force is a well known force and the difficulties to calculate it correctly are
the uncertainty associated with drag coefficient and density, but for theoretical drag coef-
ficient the value for a sphere is 2 and for a flat plate is 4 (GUGLIELMO SANNY OMAR;
JOHNSON, 2018). Here we will be using a fixed value of 2.2 for the drag coefficient, as
some articles shows that for some cubesats missions this is the value used in the simula-
tions before the launch(COTTEN; ZEE, 2017). To calculate the drag force properly the
relative velocity of the satellite must be acquired:

v∞ = v − 𝜔xr (3.4)

As 𝑣∞ is the relative velocity of the satellite considering the rotation rate of the Earth, v
is the orbital velocity vector and r the position vector. This relative velocity is needed to
calculate the drag force on the sail using a well known equation;

F𝑑 = −1
2𝐶𝑑𝜌𝐴v2

∞ (3.5)

𝐹𝑑 is the drag force in vector form acting on the sail by the influence of the
particles hitting it, generating more drag we can achieve faster reentry plans, or make
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adjustments in the orbit using it. Using the data already mentioned in this work the drag
force influenced by the laser beam is calculated and shown in the table 7 ;

1 2 ... 730 731
X -3.056656213299972E-5 -3.0566562134510854E-5 ... -3.056656305349128E-5 -3.0566563054545824E-5
Y -3.427770783278481E-5 -3.42777078343205E-5 ... -3.4277708768235865E-5 -3.427770876930755E-5
Z -1.2862482263104288E-5 -1.2862482263104288E-5 ... -1.2862482263104288E-5 -1.2862482263104288E-5

Table 7 – Magnitude of drag force 𝐹𝑑 applied by laser beam each time the satellite passes
by

The table shows 731 iterations not because it was applied 731 days, it is 365 days
2 times per day. It is an odd looking table, but shows how little the drag force (specifically
applied by the beam and density) rise as the satellite decay more and more. The rise is in
the order of 9.215.10−13N for X and 9.365.10−13N for Y from day 1 to day 365, and for Z
we won’t have any change because the assumption before was an ideal case that the beam
would only affect X and Y in the perifocal frame, where Z is assumed to be zero in the
plane. Now it is time to bring the magnitude of the resultant drag force vector by taking
its norm and organizing it in 365 days chart with the cumulative change calculated. It was
expected to see a exponential rise in the cumulative contribution in the drag force, but as
table 7 shows we wouldn’t notice any exponential behaviour with that type of magnitude
rise, only a linear growth in drag force.

3.2 Quick look at orbit lifetime changes
The orbit lifetime depends on the scale height value and according to Kallmann-

Bijl’s scale height model, the average value of the scale height for altitude of 700km is
90.5km (KALLMANN-BIJL, 1961). The attempt to calculate the orbit lifetime in this
case was made using Desmond King-Hele work written in the book Theory of satellite
orbits in an atmosphere (KING-HELE, 1964), and it goes in terms of the period and its
rate of change. Clearly there are other methods and ways to have better accuracy, but
this section is just a quick look at the orbit lifetime in the idealization of the laser beam
influence in the lightsail2 cubesat.

The orbit lifetime is given by(KING-HELE, 1964);

𝑡𝐿 = 3𝐻𝑇𝑐𝑛

2𝑎𝑐�̇�𝑐

(3.6)

Where H is the scale height, 𝑇𝑐 is the period in a circular orbit, a is the distance
from the center of the Earth, �̇�𝑐 is the period rate of change, and n is equal to 1 in circular
orbits but if accuracy is really needed it is better to calculate it (KING-HELE, 1964).
The first data acquired of the lightsail2 orbit was 26 January of 2021 at 10:07:17 and its
period were 5924.70522 seconds, and following the data to 270 days later 23 October of
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2021 at 03:51:57 the period were 5912.52514. Using this data it is possible to produce �̇�

and expand linearly the amount of period change in this time, and we have �̇�=-0.00075186
min/day. This lead us to an orbit lifetime in the beginning of 2515.8 days (6.89years) and
at the end of the 270 days the result is 2514.3 days (6.88years) for the laser beam alone,
not considering the natural decay of the satellite. If we consider the natural decay using
this method, we have a difference of 5.7218 days from the begining to the end, that is
almost 5 times greater than the influence of the beam.

3.3 Quick look at internal efficiency

The conventional parameters to check efficiency in rocketry is not suitable for this
case as it rely on specific impulse, and the definition is; specific impulse is equal to the
momentum gained by the rocket per unit weight of propellant consumed (MCINNES,
1999). Clearly the sail system does not have any propellant to be consumed and in a
mathematical point of view the specific impulse would be infinite, but that is only true if
we had a infinite time mission. Since we have a finite time mission, the specific impulse is
finite but it is not calculated as it is to chemical rockets. Let’s take a look at the ’internal’
efficiency 𝜂𝑖𝑛𝑡, which in this case is the irradiance that gets to the sail compared with the
total irradiance that could reach the sail without jitter;

𝜂𝑖𝑛𝑡 = 𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 𝑟𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑎𝑖𝑙

𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 ′𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑/𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒′ = 0.2181266 = 21.81% (3.7)

This internal efficiency indicate the effectiveness of the conversion energy input to
the propulsion device and can be changed by using the system in much lower satellite alti-
tude (a common altitude for others cubesats is around 300-400km), or change the location
of the ground site emitting the laser to avoid the high density atmosphere (SUTTON,
2010).

The internal efficiency of a chemical rocket is defined as (for reference);

𝜂𝑖𝑛𝑡 = 𝐾𝑖𝑛𝑒𝑐𝑡 𝑝𝑜𝑤𝑒𝑟 𝑖𝑛 𝑗𝑒𝑡

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑝𝑜𝑤𝑒𝑟
(3.8)
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and the typical balance for a chemical propulsion systema is shown in the figure
bellow;

Figure 19 – Typical balance for chemical rocket shown in the book (SUTTON, 2010)

It shows that for a chemical rocket engine a typical internal efficiency is around
70%, and the same diagram can be adapted for the laser beam propulsion system;

Figure 20 – Typical balance for laser beam (SUTTON, 2010) Adapted

The laser beam diagram does not have percentages because it will depend on the
mission, but taking the parameters in this work and comparing to other propulsion system
typical values of internal efficiency we have;
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Engine Type 𝜂𝑖𝑛𝑡

Chemical Rocket 0.70
Nuclear Fission 0.50

Arc-electrothermal 0.40
Ion electrostatic 0.65

1 Laser Beam (From Earth) 0.21

The table only shows the typical internal efficiency of the system and it is known
that other parameters have to be considered, but here is just a quick look at the efficiency
of the system itself.
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4 Conclusion

The use of laser beam as a type of propulsion is a real challenge for the future to
come, but right now we can see that in the mathematical point of view it works. Results
shows that the amount of influence a 100kW laser beam would have in a satellite at
700km (average) altitude is real, but really small as the atmosphere will reduce by 4.58
times the irradiance reaching the sail. The answer to the question Does it work? is yes.
But is it worth right now? is the proper question for this type of propulsion. Almost
everything in this calculation were near idealization, not considering the sail stabilization
analysis, accurate solar flux, and other mission planning that might prove another points
of interest.

It was expected to have exponential cumulative force behaviour on the force created
by the daily input of laser and it didn’t happen in this particular case, as the change is
so little in the satellite altitude we can see that the amount of power each beam increase
to the sail will be in the same order thus creating a linear cumulative behaviour rather
than exponential. Surely enough if taken to the extreme of years applying laser, it would
show exponential behaviour. This work has only considered using one structure to send
the beam, but we have to consider more than just 1 structure sending the beam. As
one structure is not enough to cause too much influence it might be enough to make
adjustments and to enhance drag for any purpose. It is easy to imagine that if we distribute
these structures in the world, at right locations, we could have a constant force reaching
the satellite and in this scenario the amount of influence would be significant. Another
way to maximize the power delivered is to use the laser outside atmosphere, either in
orbit or in another place without high density atmosphere. Further studies require the
use of physics simulation softwares to input more realistic parameters and check the orbit
change with real time visualization.

These results were all considering a cubesat at 700km altitude, but it is not com-
mon for the majority of cubesats in orbit. It might be the case to consider this study
in orbits at 300-350km altitude and check the influence of the beam, because this is the
common altitude of cubesats sent to orbit and at this altitude these results can change
a lot, therefore this work conclusion is particular to the case of a cubesat at 700km with
the parameters mentioned earlier.

Laser-driven propulsion is not as new as one might think, but the sufficient power
to achieve results near the ones treated in this work are the challenge for this kind of
propulsion system. Here we used a laser power of 100kW, but this type of laser is not
yet available for commercial use and this amount of power is only achieved in some
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laboratories working to military forces around the world (MARMO, ). In the date of the
making of this work there is already lasers with power near 60kW being produced to be
used in military trucks as a defense system against missiles.
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APPENDIX A – Sci-Lab codes

A.1 Irradiance code

//p−power , d−diametro da abertura , Ra− d i s t an c i a do objeto , w−wavelength
/∗

p = 100000;
d = 0 . 3 ;
Ra = 1015000 :1000 :1215000 ; //Considerando s l an t range e nadi r angulo
w = 1024e−9;

rak=Ra . /1000 ; // conve r t e r para km
∗/
a l f a = 45 ;
r1= 0 . 8 8 ;
s= 0 . 9 4 ;
e f= 0 . 0 5 ;
eb= 0 . 5 5 ;
bf= 0 . 7 9 ;
bb= 0 . 5 5 ;
c = 299792458;
//w = 1427 .2795 ;

a1=32;

j i = 3e−6;

// I r r a d i a n c i a r ea l , com a aproximacao cons iderando j i t t e r
function i r r a d i an c e 1

// hand le r s para pegar dados das t ab e l a s
t2_handler=get ( t2 , ’ s t r i n g ’ ) ;
p=ev s t r ( t2_handler ( 2 , 2 ) ) ;
d=ev s t r ( t2_handler ( 3 , 2 ) ) ;
w=ev s t r ( t2_handler ( 4 , 2 ) ) ;
t3_handler=get ( t3 , ’ s t r i n g ’ ) ;
Ra1=ev s t r ( t3_handler ( 2 , 2 ) ) ;
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Ra2=ev s t r ( t3_handler ( 2 , 3 ) ) ;
Ra=Ra1 : 2 7 3 . 9 7 2 6 :Ra2 ;
rak=Ra . /1000 ;
//

i 1= ((%pi ∗p∗d^2) . / ( 4∗ (w^2) .∗Ra^2))∗(1/((1+(% pi ^2)/2)∗ ( j i /(w/d ) ) ^ 2 ) ) ;

//PARAMETROS GRAFICO
/∗ da=gda ( )
// t i t u l o
da . t i t l e . t ex t=" " ;
da . t i t l e . foreground=3;
da . t i t l e . f on t_s i z e=4
//x l a b e l s
da . x_label . t ex t=" Distance ␣ [km] " ;
da . x_label . f on t_s ty l e = 2 ;
da . x_label . f on t_s i z e = 5 ;
da . x_label . foreground = 3 ;
da . x_locat ion = " bottom " ;
// y l a b e l s
da . y_label . t ex t=" I r r ad i an c e ␣ [W/m^2] " ;
da . y_label . f on t_s ty l e = 2 ;
da . y_label . f on t_s i z e = 5 ;
da . y_label . foreground = 3 ;
da . y_locat ion = " l e f t " ;
da . t h i c kne s s = 2 ;
da . foreground = 1 ;
da . zoom_box= [ ] ;
∗/

//Eq . 4 .39
R3_W = [ cos (RA) s i n (RA) 0 ; −s i n (RA) cos (RA) 0 ; 0 0 1 ] ;

//Eq . 4 .40
R1_i = [1 0 0 ; 0 cos ( i n c l ) s i n ( i n c l ) ; 0 −s i n ( i n c l ) cos ( i n c l ) ] ;

//Eq . 4 .41
R3_w = [ cos (w) s i n (w) 0 ; −s i n (w) cos (w) 0 ; 0 0 1 ] ;

Q_pX = R3_W’ ∗R1_i ’ ∗R3_w ’ ;
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//////////////␣FOR AS␣E␣ACELERACOES////////////////////

p=i1 /c ;

␣␣␣␣ fn1=p∗a1∗((1+ r1 ∗ s )∗ cosd ( a l f a )^2␣+␣bf ∗(1− s )∗ r1 ∗ cosd ( a l f a ) . . .
␣␣␣␣+(1−r1 )∗ ( ( e f ∗bf−eb∗bb)/ e f+eb )∗ cosd ( a l f a ) ) ;
␣␣␣␣ f t 1=p∗a1∗(1− r1 ∗ s ) . ∗ cosd ( a l f a ) . ∗ s ind ( a l f a ) ;
␣␣␣␣acn1=fn1 /5 ;
␣␣␣␣ act1=f t 1 /5 ;

//////////////////POSICAO␣E␣VELOCIDADE␣PERIFOCAL/////////////

coe ␣=␣ [ h , ␣e , ␣RA∗deg , ␣ i n c l ∗deg , ␣w∗deg , ␣TA∗deg ] ;
h␣=␣ coe ( 1 ) ;
e␣=␣ coe ( 2 ) ;
RA␣=␣coe ( 3 ) ;
i n c l ␣=␣ coe ( 4 ) ;
w␣=␣coe ( 5 ) ;
TA␣=␣coe ( 6 ) ;

rp␣=␣ ( ( h^2)/mu)∗(1/(1+ e∗ cos (TA) ) ) ∗ ( cos (TA) . ∗ [ 1 ; 0 ; 0 ] ␣+s i n (TA) . ∗ [ 0 ; 1 ; 0 ] ) ;
vp=␣ (mu/h)∗(− s i n (TA) ∗ [ 1 ; 0 ; 0 ]+ ( e+cos (TA) ∗ [ 0 ; 1 ; 0 ] ) ) ;

///////////////␣DELTA␣V␣////////////////////////////////

t4_handler=get ( t4 , ’ s t r i n g ’ ) ;
t=ev s t r ( t4_handler ) ;
vp1 = [ ] ;
z e ro=ze ro s ( 1 , 7 3 1 ) ;
deltaVn=(acn1∗ t )/1000 ;
de ltaVt=(act1 ∗ t )/1000 ;
v e c t o rd e l t a =[deltaVn ; de ltaVt ; ze ro ] ;
vp1=vp ;
f o r ␣ i =1:1:731
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␣␣␣␣auxvp=vp1+vec t o rd e l t a ( : , i ) ;
␣␣␣␣vpmatrix ( : , i )=auxvp ;
␣␣␣␣vp1=vpmatrix ( : , i ) ;
end

////////////////␣ALTITUDE␣SATELITE␣ (GERAL)/////////

f o r ␣ i =1:1:731
␣␣␣␣␣␣␣␣ v l eo ( : , i )=norm( vpmatrix ( 1 : 3 , i ) )
end

f o r ␣ i =1:1:731
␣␣␣␣z ( : , i )=(mu/ v l eo (1 , i )^2)−6378.137
end
zaux=z+6378.137;
f o r ␣ i =1:1:731
␣␣␣␣␣␣␣␣T( : , i )=2∗%pi ∗ s q r t ( ( zaux ( : , i )^3)/mu) ;
␣␣␣␣␣␣␣␣h1 ( : , i )=(2∗%pi ∗zaux ( : , i )^2)/T( : , i ) ;
␣␣␣␣␣␣␣␣ rpmatrix ( : , i )=((h1 ( : , i )^2)/mu)∗(1/(1+ e∗ cos (TA) ) ) ∗ ( cos (TA) . ∗ [ 1 ; 0 ; 0 ] ␣+s i n (TA) . ∗ [ 0 ; 1 ; 0 ] ) ;
␣␣␣␣␣␣␣␣Rzaomatrix ( : , i )=Q_pX∗ rpmatrix ( : , i ) ;
end

///////////////////////////////////////////////////////////////

///////////////////CALCULO␣DA␣FOR A␣DE␣ARRASTO///////////////
omega=[0␣0␣ 0 . 0 0 00729 ] ; ␣// ve l o c idade ␣ angular
rho=3.91e−14;␣// dens idade ␣700km
//aux=c r o s s ( omega ,R) ; ␣// a u x i l i a r
f o r ␣ i =1:1:731 ␣aux ( : , i )= c r o s s ( omega ’ , Rzaomatrix ( : , i ) ) end ;
V=V∗1000 ; // passando para m/ s
for i =1:1:731
v i n f ( : , i )=V ’−aux ( : , i ) ;
end
f o r ␣ i =1:1:731
fd ( : , i )=−1/2∗2.2∗ rho ∗32∗ v i n f ( : , i )^2 ;
dragac (1 , i )=norm( fd ( : , i ) ) / 5 ;
end
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////////////////////ORBIT␣LIFETIME////////////////////////////
SH=90.5 ; ␣// Sca l e ␣ he ight
P1p=0.00075186;//T␣ponto , ␣ taxa␣de␣mudan a ␣do␣ per iodo
f o r ␣ i =1:1:731 ␣ z a l t=norm(Rzaomatrix ( : , i ) ) ; ␣end

d e f f ( ’L=f (T, z a l t ) ’ , ’L=(3∗SH∗(T/60))/(2∗ z a l t ∗P1p) ’ ) ;
d i a s =1 : 0 . 5 : 3 66 ;
f i g u r e ␣ ( 1 ) ;
␣␣da=gda ( ) ;
// t i t u l o
da . t i t l e . t ex t ="" ;
da . t i t l e . foreground=3;
da . t i t l e . f on t_s i z e=4
//x␣ l a b e l s
da . x_label . t ex t="Days " ;
da . x_label . f on t_s ty l e ␣=␣ 2 ;
da . x_label . f on t_s i z e ␣=␣ 5 ;
da . x_label . foreground ␣=␣ 3 ;
da . x_locat ion ␣=␣ " bottom " ;
//␣y␣ l a b e l s
da . y_label . t ex t="L i f e t ime ␣ (Days ) " ;
da . y_label . f on t_s ty l e ␣=␣ 2 ;
da . y_label . f on t_s i z e ␣=␣ 5 ;
da . y_label . foreground ␣=␣ 3 ;
da . y_locat ion ␣=␣ " l e f t " ;
da . t h i c kne s s ␣=␣ 2 ;
da . foreground ␣=␣ 1 ;
da . zoom_box= [ ] ;
p l o t ( dias , f (T, z a l t ) )

P1=98.542086:7 .5186E−4 :98 .7451 ;
P1=gso r t (P1 , ’ g ’ , ’ d ’ ) ;
d ia s2 =1 :1 :271 ;
L1=(3∗SH∗P1)/(2∗ a∗P1p ) ;

////////////////////VOLTAR␣PARA␣R␣e␣V/////////////////////////
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␣␣␣␣Rf=Q_pX∗ rpmatrix ( : , 7 3 1 ) ;
␣␣␣␣Vf=Q_pX∗vpmatrix ( : , 7 3 1 ) ;

/////////////////////GRAFICOS////////////////////
f i g u r e ( 2 ) ;
␣␣ p l o t ( rak , i 1 ) ;

␣␣ [ fn ␣acn␣ f t ␣ act ␣ i ␣dVn␣dVt␣vpmatrix␣ vleomedia ␣ r leomedia ␣ fd ␣dragac ␣ rpmatrix ␣T␣ fd ␣dragac ␣ v i n f ␣Rzao]= return ( fn1 , acn1 , f t1 , act1 , . . .
␣␣ i1 , deltaVn , deltaVt , vpmatrix , vleo , z , fd , dragac , rpmatrix ,T, fd , dragac , v in f , Rzaomatrix ) ;

endfunct ion

A.2 Normal Force
a l f a = 0 : 1 : 9 0 ;
r1= 0 . 8 8 ;
s= 0 . 9 4 ;
e f= 0 . 0 5 ;
eb= 0 . 5 5 ;
bf= 0 . 7 9 ;
bb= 0 . 5 5 ;
c = 299792458;
w = 1427 .2795 ;
a=32;
p= w/c ;
da=gda ( )
// t i t u l o
da . t i t l e . t ex t=" " ;
da . t i t l e . foreground=3;
da . t i t l e . f on t_s i z e=4
//x l a b e l s
da . x_label . t ex t=" Angle␣ alpha ␣ [ deg ] " ;
da . x_label . f on t_s ty l e = 2 ;
da . x_label . f on t_s i z e = 5 ;
da . x_label . foreground = 3 ;
da . x_locat ion = " bottom " ;
// y l a b e l s
da . y_label . t ex t="Normal␣Force ␣ [N] " ;
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da . y_label . f on t_s ty l e = 2 ;
da . y_label . f on t_s i z e = 5 ;
da . y_label . foreground = 3 ;
da . y_locat ion = " l e f t " ;
da . t h i c kne s s = 2 ;
da . foreground = 1 ;
da . zoom_box=[0 ,0 , 80 , 2 . 3 e −4] ;
function [ fn ]= fnormal ( r1 , s , a l f a , bf , bb , e f , eb , p , a )

fn=p∗a∗((1+ r1 ∗ s )∗ cosd ( a l f a )^2 + bf ∗(1− s )∗ r1 ∗ cosd ( a l f a )+(1− r1 )∗ ( ( e f ∗bf−eb∗bb)/ e f+eb )∗ cosd ( a l f a ) ) ;

p l o t ( a l f a , fn ) ;
endfunct ion

A.3 Transverse Force
a l f a = 0 : 1 : 9 0 ;
r1= 0 . 8 8 ;
s= 0 . 9 4 ;
c = 299792458;
w = 1427 .2795 ;
a=32;
p= w/c ;
da=gda ( )
// t i t u l o
da . t i t l e . t ex t=" " ;
da . t i t l e . foreground=3;
da . t i t l e . f on t_s i z e=4
//x l a b e l s
da . x_label . t ex t=" Angle␣ alpha ␣ [ deg ] " ;
da . x_label . f on t_s ty l e = 2 ;
da . x_label . f on t_s i z e = 5 ;
da . x_label . foreground = 3 ;
da . x_locat ion = " bottom " ;
// y l a b e l s
da . y_label . t ex t=" Transverse ␣Force ␣ [N] " ;
da . y_label . f on t_s ty l e = 2 ;
da . y_label . f on t_s i z e = 5 ;
da . y_label . foreground = 3 ;
da . y_locat ion = " l e f t " ;
da . t h i c kne s s = 2 ;
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da . foreground = 1 ;
//da . zoom_box=[0 ,0 , 90 , 0 . 00000000045 ] ;

function [ f t ]= f t r a n s (p , a , r1 , s , a l f a )
f t=p∗a∗(1− r1 ∗ s ) . ∗ cosd ( a l f a ) . ∗ s ind ( a l f a ) ;

p l o t ( a l f a , f t ) ;
endfunct ion

A.4 Getting r and v vectors from orbital elements
a = 7078 . 137 ;
// Parametros para o c a l c u l o

function RVcoe
//mu − parametro g r a v i t a c i o n a l
// coe − e lementos o r b i t a i s [ h e RA i n c l w TA]
//h − magnitude do vetor H (km^2/ s )
// i n c l − i n c l i n a c a o da o rb i t a ( rad )
//RA − ascensao d i r e i t a do no de ascensao ( rad )
// e − ex c en t r i c i d ade (magnitude do vetor E)
//TA − anomalia ve rdade i ra ( rad )
//w − argumento do per i geu ( rad )
//R3_w − matriz rotacao em Z pe lo angulo w
//R1_i − matriz rotacao em X pe lo angulo i
//R3_W − matriz rotacao em Z pe lo angulo RA
//Q_pX − matriz de tranformacao do p e r i f o c a l para o plano g eo c en t r i c o e qua t o r i a l
// rp − vetor pos i cao no plano p e r i f o c a l [km]
//vp − vetor ve l o c idade no plano p e r i f o c a l [km/ s ]
// r − vetor pos i cao no plano g eo c en t r i c o e qua t o r i a l [km]
//v − vetor ve l o c idade no plano g eo c en t r i c o e qua t o r i a l [km/ s ]
coe = [ h , e , RA∗deg , i n c l ∗deg , w∗deg , TA∗deg ] ;
h = coe ( 1 ) ;
e = coe ( 2 ) ;
RA = coe ( 3 ) ;
i n c l = coe ( 4 ) ;
w = coe ( 5 ) ;
TA = coe ( 6 ) ;
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//Eq . 4 .37 e 4 .38 ( rp e vp sao ve to r e s coluna )
rp1 = ( ( h^2)/mu)∗(1/(1+ e∗ cos (TA) ) ) ∗ ( cos (TA) . ∗ [ 1 ; 0 ; 0 ] +s i n (TA) . ∗ [ 0 ; 1 ; 0 ] ) ;
//vp1 = (mu/h)∗(− s i n (TA) ) ∗ [ 1 ; 0 ; 0 ] + ( e+cos (TA) ) ∗ [ 0 ; 1 ; 0 ] ;
vp1= (mu/h)∗(− s i n (TA) ∗ [ 1 ; 0 ; 0 ]+ ( e+cos (TA) ∗ [ 0 ; 1 ; 0 ] ) ) ;
[ rp vp]=return ( rp1 , vp1 ) ;

endfunct ion

A.5 Getting orbital elements from r and v vectors
// elementos o r b i t a i s do vetor de estado

mu=398600;
deg = 180/%pi ;

a = 7078 . 137 ;
//R=[−5128.9029 4864.3875 10 . 4 3 0225 ] ;
//V=[−4.7128079 −4.9906925 3.057051]; <− pr ime i ro t cc
//V=[−5.1200461 −0.6831624 1.7947233]; <− errado
// Antes de a p l i c a r os deltaV ’ s
//␣ rp=␣ [4884 .8339 ␣ −5109.4439␣ 0 ]
//␣vp=␣ [5 . 4242129 ␣ 0.6929511 ␣ 0 ]

//␣Depois ␣de␣ ap l i c a r ␣ os ␣deltaV ’ s
// Vn=0.00000265 [km/ s ]
// Vt=0.00000042 [km/ s ]
// depo i s de 90 d ia s ap l i cado duas vezes por dia
// Vn=0.000477 [km/ s ]
// Vt=0.0000756 [km/ s ]
// rp= [4884 .8339 −5109.4439 0 ]
// vp= [5 .4242885 0.6929538 0 ]

function coeRV

//mu − parametro g r a v i t a c i o n a l (km^3/ s ^2)
//R − vetor pos i cao no frame geo c en t r i c o e qua t o r i a l (km)
//V − vetor ve l o c idade no frame geo c en t r i c o e qua t o r i a l (km)
// r , v − magnitude dos ve to r e s R e V
// vr − ve l o c idade r a d i a l (km/ s )
//H − vetor momento angular (km^2/ s )
//h − magnitude do vetor H (km^2/ s )
// i n c l − i n c l i n a c a o da o rb i t a ( rad )
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//N − vetor da l i nha do node (km^2/ s )
//n − magnitude do vetor N
//cp − produto [ c r o s s ] dos v e t o r e s N e R
//RA − ascensao d i r e i t a do nodes de ascensao ( rad )
//E − vetor ex c en t r i c i d ade
// e − ex c en t r i c i d ade (magnitude do vetor E)
// eps − numero parametro para con s i d e r a r que a excent r idade e zero
//( abaixo des se numero a ex c en t r i c i d ad e e 0 para o c a l c u l o )
//w − argumento do per i geu ( rad )
//TA − anomalia ve rdade i ra ( rad )
//a − e ixo semi−maior (km)
// coe − vetor com os elementos o r b i t a i s [ h e RA i n c l w TA a ]
rv_handler=get ( t1 , ’ s t r i n g ’ ) ;
R=ev s t r ( rv_handler ( 2 , 2 : 4 ) ) ;
V=ev s t r ( rv_handler ( 3 , 2 : 4 ) ) ;

eps = 1 .E−10;
r = norm(R) ;
v = norm(V) ;
vr = R∗V’ / r ;
H␣=␣ c r o s s (R,V) ;
h␣=␣norm(H) ;
//Equacao␣ 4 .7
i n c l=acos (H(3)/h ) ;
//Equacao␣ 4 .8
N␣=␣ c r o s s ( [ 0 ␣0␣ 1 ] ,H) ;
n␣=␣norm(N) ;
//Equecao␣ 4 .9
i f ␣n~=0␣ then
␣␣␣␣RA=acos (N(1)/n ) ;
␣␣␣␣ i f ␣N(2)<0␣ then
␣␣␣␣␣␣␣␣RA=2∗%pi ␣−␣RA;
␣␣␣␣end
e l s e
␣␣␣␣RA␣=␣ 0 ;
end

//Equacao␣ 4 .10
E␣=␣ (1/mu)∗ ( ( v^2␣−␣mu/ r )∗R␣−␣ r ∗vr∗V) ;
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e␣=␣norm(E) ;

//Equacao␣ 4 .12 ␣ ( caso ␣da␣ ex c en t r i c i d ad e ␣ s e r ␣0␣e=0)
i f ␣n~=0␣ then
␣␣␣␣ i f ␣e>eps ␣ then
␣␣␣␣␣␣␣␣w=acos ( (N∗E ’ /n/e ) ) ;

i f E(3) < 0 then
w = 2∗%pi − w;

end
else

w=0;
end

else
w=0;

end

//Equacao 4 .13 a ( caso da ex c en t r i c i d ade s e r 0 e=0)
i f e>eps then

TA=acos (E∗R’ /e/ r ) ;
␣␣␣␣ i f ␣ vr ␣<␣0␣ then
␣␣␣␣␣␣␣␣TA␣=␣2∗%pi ␣−␣TA;
␣␣␣␣end
e l s e
␣␣␣␣cp␣=␣ c r o s s (N,R) ;
␣␣␣␣ i f ␣cp (3 ) ␣>=␣0␣ then
␣␣␣␣␣␣␣␣TA␣=␣acos (sum(N.∗R)/n/ r ) ;
␣␣␣␣ e l s e
␣␣␣␣␣␣␣␣TA␣=␣2∗%pi ␣−␣ acos (sum(N.∗R)/n/ r ) ;
␣␣␣␣end
end

//Equacao␣ 2 .61 ␣ (a<0␣para␣a␣ hyperbola )
//a␣=␣ (h^2)/mu/(1−e ^2) ;

coe ␣=␣ [ h , ␣e , ␣RA∗deg , ␣ i n c l ∗deg , ␣w∗deg , ␣TA∗deg ] ;

messagebox ( [ " Parametro␣Grav i ta c i ona l ␣ ( km 3 / s 2 ) ␣=" s t r i n g (mu ) . . .
␣␣␣␣␣␣␣␣␣␣␣␣␣ "Momentum␣Angular␣ ( km 2 / s ) ␣=" s t r i n g ( coe ( 1 ) ) . . .
␣␣␣␣␣␣␣␣␣␣␣␣␣ " Excent r i c idade ␣=" s t r i n g ( coe ( 2 ) ) . . .
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␣␣␣␣␣␣␣␣␣␣␣␣␣ " Right␣ a sc ens i on ␣ ( deg ) ␣=" s t r i n g ( coe ( 3 ) ) . . .
␣␣␣␣␣␣␣␣␣␣␣␣␣ " I n c l i n a c ao ␣ ( deg ) ␣=" s t r i n g ( coe ( 4 ) ) . . .
␣␣␣␣␣␣␣␣␣␣␣␣␣ "Argumento␣do␣ per igeu ␣ ( deg ) ␣=" s t r i n g ( coe ( 5 ) ) . . .
␣␣␣␣␣␣␣␣␣␣␣␣␣ " Anomalia␣Verdadeira ␣ ( deg ) ␣=" s t r i n g ( coe ( 6 ) ) . . .
␣␣␣␣␣␣␣␣␣␣␣␣␣ " Eixo␣Semi−Maior␣ (km) : ␣=" s t r i n g ( a ) ] . . .
␣␣␣␣␣␣␣␣␣␣␣␣␣ , " Co e f i c i e n t e s ␣ Orb i t a i s " )

␣␣␣␣h␣=␣coe ( 1 ) ;
␣␣␣␣e␣=␣ coe ( 2 ) ;
␣␣␣␣RA␣=␣coe ( 3 ) ;
␣␣␣␣ i n c l ␣=␣ coe ( 4 ) ;
␣␣␣␣w␣=␣coe ( 5 ) ;
␣␣␣␣TA␣=␣coe ( 6 ) ;

␣␣␣␣//Eq . ␣ 4 .37 ␣e␣ 4 .38 ␣ ( rp␣e␣vp␣ sao ␣ ve to r e s ␣ coluna )
//␣␣␣␣ rp1␣=␣ ( ( h^2)/mu)∗(1/(1+ e∗ cos (TA) ) ) ∗ ( cos (TA) . ∗ [ 1 ; 0 ; 0 ] ␣+s i n (TA) . ∗ [ 0 ; 1 ; 0 ] ) ;
//␣␣␣␣vp1␣=␣ (mu/h)∗(− s i n (TA) ) ∗ [ 1 ; 0 ; 0 ] ␣+␣ ( e+cos (TA) ) ∗ [ 0 ; 1 ; 0 ] ;

[ h␣e␣RA␣ i n c l ␣w␣TA␣a␣R␣V] ␣=␣ return (h , e ,RA, i n c l ,w,TA, a ,R,V) ;

endfunct ion

A.6 Simple interface to calculate everything
//p=ev s t r ( x_dialog ( ’ Valor ␣da␣ potenc ia ␣ [W] ’ , ’ 100000 ’ ) ) ;
//d=ev s t r ( x_dialog ( ’Tamanho␣da␣ abertura ␣do␣ l a s e r ␣ [m] ’ , ’ 0 . 3 ’ ) ) ;
//w=ev s t r ( x_dialog ( ’ Valor ␣do␣comprimento␣de␣onda␣ [ wavelength ] ␣ [m] ’ , ’ 100000 ’ ) ) ;
//Ra1=ev s t r ( x_dialog ( ’ D i s tanc ia ␣ i n i c i a l ␣ [m] ’ , ’ 1015000 ’ ) ) ;
//Ra2=ev s t r ( x_dialog ( ’ D i s tanc ia ␣ f i n a l ␣ [m] ’ , ’ 1215000 ’ ) ) ;
exec ( ’ I r r ad i anc e0 . s c i ’ , 0 ) ;
exec ( ’ coeRV . s c i ’ , 0 ) ;
exec ( ’RVcoe . s c i ’ , 0 ) ;
/∗exec ( ’ forcasdePrad . s c i ’ , 0 ) ;
exec ( ’ deltaV . s c i ’ , 0 ) ;
∗/
m1=[ " " , "X" , "Y" , "Z" ; "R" , " " , " " , " " ; "V" , " " , " " , " " ] ;
m2=[ " " , " " ; " Potencia " , " " ; " Abertura " , " " ; "Wavelength " , " " ] ;
m3=[ " " , " I n i c i a l " , " F ina l " ; " [ metros ] " , " " , " " ] ;
//////////////////
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f = createWindow ( ) ;
f . axes_s ize = [500 5 0 0 ] ;
f . figure_name = "Dados " ;

// TITULOS E TEXTOS /////////////////////////////////////////
text1=u i c on t r o l ( f , . . .

" s t y l e " , " t ex t " , . . .
" s t r i n g " , " ␣ State−Vectors ␣RV" , . . .
" p o s i t i o n " , [ 60 460 85 2 0 ] ) ;

t ext2=u i c on t r o l ( f , . . .
" s t y l e " , " t ex t " , . . .
" s t r i n g " , " ␣Parametros␣do␣ l a s e r " , . . .
" p o s i t i o n " , [ 0 360 100 2 0 ] ) ;

t ext3=u i c on t r o l ( f , . . .
" s t y l e " , " t ex t " , . . .
" s t r i n g " , " ␣ S lant ␣Range " , . . .
" p o s i t i o n " , [ 145 360 100 2 0 ] ) ;

t ext3=u i c on t r o l ( f , . . .
" s t y l e " , " t ex t " , . . .
" s t r i n g " , "Tempo␣de␣ a p l i c a o ␣do␣Laser ␣ [ Segundos ] " , . . .
" p o s i t i o n " , [ 0 260 200 2 0 ] ) ;

/∗
text3=u i c on t r o l ( f , . . .

" s t y l e " , " t ex t " , . . .
" s t r i n g " , " F o r a s ␣e␣ A c e l e r a o " , . . .
" p o s i t i o n " , [ 250 230 200 2 0 ] ) ;

∗/
//BOTOES ’CALLBACK’ /////////////////////////////////////////
pb1=u i c on t r o l ( f , . . .

" s t y l e " , " pushbutton " , . . .
" s t r i n g " , " Ca lcu la r ␣ Co e f i c i e n t e s " , . . .
" p o s i t i o n " , [ 210 410 150 4 0 ] , . . .
" ca l lback_type " , 2 , . . .
" c a l l b a ck " , " coeRV" ) ;
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pb2=u i c on t r o l ( f , . . .
" s t y l e " , " pushbutton " , . . .
" s t r i n g " , " Ca lcu la r " , . . .
" p o s i t i o n " , [ 0 190 150 40 ] , . . .
" c a l l b a ck " , " i r r ad i an c e 1 " ) ;

/∗
pb3=u i c on t r o l ( f , . . .

" s t y l e " , " pushbutton " , . . .
" s t r i n g " , " Ca lcu la r " , . . .
" p o s i t i o n " , [ 250 190 150 40 ] , . . .
" c a l l b a ck " , " f a c e l " ) ;

pb4=u i c on t r o l ( f , . . .
" s t y l e " , " pushbutton " , . . .
" s t r i n g " , " Ca lcu la r " , . . .
" p o s i t i o n " , [ 0 160 150 40 ] , . . .
" c a l l b a ck " , " de l tav " ) ;

∗/

// TABELAS //////////////////////////////////////////////////////
t1=u i c on t r o l ( f , . . .

" s t y l e " , " t ab l e " , . . .
" s t r i n g " , m1, . . .
" p o s i t i o n " , [ 0 400 200 5 9 ] ) ;

t2=u i c on t r o l ( f , . . .
" s t y l e " , " t ab l e " , . . .
" s t r i n g " , m2, . . .
" p o s i t i o n " , [ 0 300 100 6 1 ] ) ;

t3=u i c on t r o l ( f , . . .
" s t y l e " , " t ab l e " , . . .
" s t r i n g " , m3, . . .
" p o s i t i o n " , [ 120 318 150 4 3 ] ) ;

t4=u i c on t r o l ( f , . . .
" s t y l e " , " e d i t " , . . .
" p o s i t i o n " , [ 0 230 60 3 0 ] ) ;
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//////////////////

mu=398600;
deg = 180/%pi ;
// handler de f u n e s

//////////////////////////////////////////////////////////////
// Primeiro passo
// pegar o va l o r a tua l do vetor−estado
//R=[−5128.9029 4864.3875 10 . 4 3 0225 ] ;
//V=[−4.7128079 −4.9906925 3 . 0 5 7 0 5 1 ] ;

// passar para o plano p e r i f o c a l
// pegando dados da o rb i t a


