
Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

DCT-LNS: Integration of The Large Neighborhood
Search Algorithm into the DCT

Ana Paula M Tarchetti

Undergraduate thesis submitted presented as partial requirement
for completion of the Bachelor’s Degree in Computer Science

Supervisor
Prof. Dr. Rodrigo Bonifácio de Almeida

Brasília
2021

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

DCT-LNS: Integration of The Large Neighborhood
Search Algorithm into the DCT

Ana Paula M Tarchetti

Undergraduate thesis submitted presented as partial requirement
for completion of the Bachelor’s Degree in Computer Science

Prof. Dr. Rodrigo Bonifácio de Almeida (Supervisor)
CIC/UnB

Profa. Dra. Edna Dias Canedo Dr. Luís Henrique Vieira Amaral
CIC/UnB CIC/UnB

Prof. Dr. Marcelo Grandi Mandelli
Coordinator of the Bachelor’s Degree in Computer Science

Brasília, May 25, 2021

Dedicatory

I dedicate this work to everyone who supported me in this undergraduate journey, my
family, friends and teachers.

iii

Acknowledgments

Initially, I would like to thank all the time and patience that my supervisor made available
to help me in this work. I would also like to thank my colleagues: Luís Amaral, João
Neves, and Marcos César, each of them did extremely important work that made up our
platform. Finally, I would like to thank the past researchers who have been working on
this same theme over the years and helped in the construction of an initial knowledge
base that was extremely helpful.

iv

Abstract

This study operates in the area of Software Quality in order to help overcoming the
problems related to the lack of documentation and architecture planning of a software
system. This can be done by recovering the system architecture, using automatic module
clustering tools. Thus, was presented the integration of one of the multiple automatic
module clustering tools that compose the Draco Clustering Tool (DCT). This tool is
based on a mono-objective implementation, in which only the Modularization Quality
(MQ) parameter is considered to perform the clustering of the software’s modules. This
implementation was done by means of the evolutionary metaheuristic algorithm Large
Neighborhood Search (LNS). In this context, two comparative analyses were performed.
The focus of the first analysis was on the existing multi-objective tool of Draco Clustering
Tool and showed that it can be considered scalable. Furthermore, in this first analysis
it was also possible to see how effective the multi-objective tool from DCT is in terms
of runtime and memory usage in relation to another multi-objective tool available in
the literature. Finally, this first analysis also shows the better performance of the mono-
objective tools in terms of all the metrics used in the study. Taking this into consideration,
the motivation for this study arose, which is the integration of another mono-objective tool
into the DCT, which was evaluated in the second comparative analysis done by this study,
in which it was possible to see that, the integrated tool: (i) is also scalable, possessing in
a cubic time complexity, (ii) showed better performance compared to the other tool that
also used LNS in terms of the runtime and memory usage metrics, and (iii) also shows
good performance compared to other tools with other algorithm in terms of all metrics
except runtime when in comparison with the Bunch tool. This last item is a possibility
for improvement to be explored in future work.

Keywords: Software Module Clustering, Multi-Objective, Mono-Objective, Evolutionary
Algorithms

v

Resumo

Este estudo atua na área de Qualidade de Software no sentido de aulixiar na superação
dos problemas relacionados à falta de documentação e de planejamento da arquitetura de
um sistema de software. Isso é feito por meio da recuperação da aquitetura do sistema,
utilizando-se de ferramentas automáticas de clusterização de módulos. Sendo assim, foi
apresentado a integração de uma das múltiplas ferramentas automáticas de clusterização
de módulos que compõem a Draco Clustering Tool (DCT). Essa ferramenta em questão
se baseia em uma implementação mono-objetiva, na qual se considera apena o parâmetro
de Qualidade de Modularização para realizar a clusterização dos módulos de um software.
Essa implementação foi feita por meio do algoritmo meta-heurístico evolucionário Large
Neighborhood Search (LNS). Nesse contexto, foram realizadas duas análises comparativas.
O foco da primeira análise foi a ferramenta multi-objetiva já existente da Draco Clustering
Tool (DCT) e mostrou que ela pode ser considerada escalável. Além disso, nessa primeira
análise também foi possível perceber a eficácia da ferramenta multi-objetiva da DCT em
termos de tempo de execução e uso de memória com relação a outra ferramenta mult-
objetiva disponível na literatura. Por fim, essa primeira análise também mostra o melhor
desempenho das ferramentas mono-objetivas em termos de todas as métricas utilizadas
no estudo. Levando isso em consideração, surgiu a motivação deste estudo, que é a
integração de mais uma ferramenta mono-objetiva na DCT, que foi avaliada na segunda
análise comparativa feita por este estudo, na qual foi possível perceber que, a ferramenta
integrada: (i) também é escalável, possindo uma complexidade de tempo cúbica, (ii)
mostrou melhor desempenho em comparação com a outra ferramenta que usa o LNS em
termos das métricas de tempo de execução e uso de memória e (iii) também mostra um
bom desempenho em comparação com outras ferramentas em termos de todas as métricas,
exceto o tempo de execução quando em compação com a ferramenta Bunch. Esse último
item constitui uma possibilidade de melhoria para ser explorada em trabalhos futuros.

Palavras-chave: Clusterização de módulos, Multi-objetivo, Mono-objetivo, Algoritmos
Evolucionários

vi

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Proposed solution . 2
1.3 Document Structure . 3

2 Background and Related Work 4

3 Draco Clustering Tool 6
3.1 Design Principles . 6
3.2 Genetic Algorithm Characterization . 7

3.2.1 Individuals and Genetic Operators . 7
3.2.2 Fitness Evaluation and Parameters . 9

3.3 Empirical Assessment Settings . 10
3.4 Results of The Empirical Assessment . 12

3.4.1 How does the complexity of the systems affect the DCT performance? . 12
3.4.2 How does the DCT performance compare to the performance of multi-

objective tools (HD-NSGA-II)? . 13
3.4.3 How does the performance of multi-objective tools (DCT and HD-

NSGA-II) compare to the performance of mono-objective tools (Bunch
and HD-LNS)? . 14

4 The LNS extension for the DCT 16
4.1 Design Principles . 16
4.2 Large Neighborhood Search (LNS) Algorithm 17
4.3 Empirical Assessment Settings . 18
4.4 Results of The Empirical Assessment . 20

4.4.1 How does the complexity of the systems affect DCT-LNS performance? 20
4.4.2 How does the DCT-LNS performance compares to the performance of

mono-objective tool with same algorithm HD-LNS? 21

vii

4.4.3 How does the performance of DCT-LNS compare to the performance
Other mono-objective tools: Bunch and the old DCT mono-obj algo-
rithm? . 22

5 Final Remarks 25

Bibliography 26

viii

List of Figures

3.1 Individual representation. 8
3.2 Performance comparison of SMC tools. (a) Compares TS, (b) compares

MMC, and (c) compares MQ. We removed the outliers in the boxplots. . . . 15

4.1 Illustration of a typical LNS execution . 17
4.2 Performance comparison of SMC tools. (a) Compares TS, (b) compares

MMC, and (c) compares MQ. 24

ix

List of Tables

3.1 Projects used in the empirical assessments 12
3.2 R2 scores of the TS variance models for DCT 12
3.3 Comparison of the elapsed time to generate the clusters (considering the

multi-objective tools DCT and HD-NSGA-II). 13
3.4 Comparison of the memory usage generating the clusters (considering the

multi-objective tools DCT and HD-NSGA-II). 14
3.5 Comparison of the clusters’ MQ (considering the multi-objective tools DCT

and HD-NSGA-II). 14

4.1 Projects used in the empirical assessments 20
4.2 R2 scores of the TS variance models for DCT-LNS 21
4.3 Comparison of the elapsed time to generate the clusters (considering the

mono-objective LNS tools DCT-LNS and HD-LNS). 22
4.4 Comparison of the MQ and (MEM) metrics (considering the mono-objective

LNS tools DCT-LNS and HD-LNS). 22

x

Acronyms

CLI Command Line Interface.

DCT Draco Clustering Tool.

GA Genetic Algorithm.

HD-LNS Heuristic Design LNS.

LNS Large Neighborhood Search.

MDG Module Dependency Graph.

MQ Modularization Quality.

SMC Software Module Clustering.

xi

Chapter 1

Introduction

With increasing complexity of modern software, there is an increased demand for auto-
mated tools to support the maintainability and scalability of those systems, Dahiya et
al. [1]. Fundamental contributions to this subject include, for instance, the introduction
of the automated Software Module Clustering (SMC) tool by Mitchell and Mancoridis
[2]. This appliance began with the purpose to offer techniques to reveal the structure of
a software system by grouping its modules into clusters. They based their algorithm on
the principle of “low coupling and high cohesion”. The input of the algorithm is a set of
modules and dependencies between them. Typically, these modules correspond to files
(or classes, in object-oriented programming languages), and the dependencies correspond
to function/method calls or variables/fields access. While this structure of modules and
dependencies are common, other representations are useful too, such as methods/fields as
modules and co-change history as the dependencies [3].

Revealing the software structure by using SMC tools can help to overcome compli-
cations related to misleading or insufficient documentation. The problem concerning
documentations is accurately comprehended in Lethbridge et al. [4], which is a study
consisting of interviews with software engineers, and the general answers about documen-
tation were the following: (i) documentation is frequently out of date, (ii) often poorly
written, (iii) challenging in terms of finding useful content and (iv) has a considerable
untrustworthy fraction. In this context, it becomes very meaningful the chase for compu-
tational mechanisms such as SMC so that the documentation gap could be filled, hence,
making it possible to support the six main aspects of software development pointed out
by Garlan [5]: understanding, reuse, construction, evolution, analysis, and management.
Besides software structure recovering, SMC techniques can also be used as a preprocessing
phase for the following activities: (a) recommend or reveal alternative decompositions,
(b) recommend refactorings in order to conform to some alternative decomposition, and
(c) detect anomalies in the software design. It is possible to mention two frameworks

1

that provide a compilation of tools that perform some of these aforementioned activities
by using SMC as the preprocessing phase. The first is the recently published, ARCADE
workbench [6], which is a work of several researchers that offers a five stages implementa-
tion that supports the recovery of software system architectures, and the evaluation and
visualization of the architectural change and decay. The second work, named Draco, is
also the result of the work of several researchers [3, 7], and is similar to ARCADE in terms
of goals. This present study is part of the Draco project and will focus on evaluating and
trying to improve the Draco SMC stage.

1.1 Motivation

Past researches have proposed many alternative SMC approaches [8, 9, 10, 11, 12, 13, 14],
however, they failed to provide publicly available tools that use multi-objective genetic
algorithms in their designs. One of the primary benefits of multi-objective algorithms
is that they output a set of best solutions in contrast with mono-objective where there
is only one “best” solution. The problem with pursuing only one solution is that we
have to chose between conflicting objectives. For example, it is hard to chose between a
solution with better cohesion or other with better coupling; i.e. for a SMC tool to find
the best solution among several candidate solutions they have to decide about questions
like “which is better: coupling or cohesion?” [8, 15].

However, in general, multi-objective algorithms can be more time consuming than the
mono-objective options, this could be implied after a previous published article about a
research conducted by a group of academics that includes the present author [16]. Several
parts of this published article are presented in Chapter 3.

1.2 Proposed solution

With that in mind, this study presents the Draco Clustering Tool (DCT), a public tool that
belongs to the Draco project and performs automated SMC using both multi-objective and
mono-objective evolutionary algorithms. The study was separated in two phases. The first
phase proposes a comparative analysis between the original DCT implementations (multi
and mono objectives) and other implementations found in the literature. The second phase
proposes a new mono-objective implementation based on the Large Neighborhood Search
(LNS) algorithm, Pisinger et al. [17], and also performs a comparative analysis, now
considering the original mono-objective implementation of the DCT, the new proposed
algorithm for the DCT and other mono-objectives implementations found in the literature.

2

1.3 Document Structure

The present study is organized as follows: background and related work is provided in
Chapter 2, Chapter 3 (i) exposes details about the original DCT, (ii) sets up the first
empirical study, regarding the original DCT and other implementations and (iii) presents
the results of the first empirical study. Chapter 4 (a) exposes details about the new
proposed mono-objective implementation for the DCT based on the LNS algorithm, (b)
sets up the second empirical study, regarding only mono-objective algorithms, and (c)
presents the results of the second empirical study. Finally, Chapter 5 concludes the
paper.

3

Chapter 2

Background and Related Work

The re-engineering process in large scale software projects requires appropriate and scal-
able techniques. With the focus on Software Module Clustering (SMC) techniques, the
work of Anquetil and Lethbridge [18], for instance, compares different strategies for using
SMC as a software remodularization recommender. More recently, Maqbool and Babri [19]
investigate the use of hierarchical clustering algorithms for architecture recovering.

Praditwong et al. [8] proposed to represent the SMC problem as a multi-objective
search problem. They formulated the problem representing separately several different
objectives (including cohesion and coupling). The rationale of this proposal is that it is
not always possible to capture the relative importance of some desirable properties (for
example, it is hard to decide if cohesion is more important than coupling or vice-versa).

Candela et al. [15], investigated which properties developers consider relevant for a
high-quality software remodularization. To be able to compare different properties, they
had to use a multi-objective genetic algorithm to compute the software module clusters.
Accordingly, they presented to the developers several recommendations of remodulariza-
tion, and investigated which property (e.g. cohesion or coupling) the developers regard
most. This kind of study was only possible by using a multi-objective SMC tool.

Pinto et al. [20] propose the use of mono-objective evolutionary algorithms within the
Software Module Clustering Problem. Their work uses the Iterated Local Search algorithm
in order to perform the module clusterization. This algorithm is found alongside the
algorithm used in this study in the Handbook of Metaheuristics [21]. In addition to that,
the article [20] also performed a comparative analysis between their solution and other
genetic algorithms and their implementation outperformed the best configuration for the
genetic algorithms in 24 out of 40 instances and using only a fraction of the computing
effort. This drove attention to the possibility of using other evolutionary algorithms
besides the genetic algorithms.

Other works are also worth mentioning here, because they provide different SMC

4

implementations. First, M. Barros discusses the effects of using the Modularization Qual-
ity (MQ) metric as an extra objective on a multi-objective SMC tools [22]. Second,
Monçores et al. present a large study addressing a heuristic based on the mono-objective
Large Neighborhood Search (LNS) algorithm, applied to SMC problems [23]. Both works
published tools that were explored in this study. Finally, in a recent work concerning
the Draco project, [7] was leveraged a multi-objective software module clustering tool to
produce a set of alternative decompositions of a software.

Lastly, it is also worth mentioning again the ARCADE workbench [6], already men-
tioned in the previous chapter. The ARCADE is a framework that provides a lot of tools
regarding the support for recovery of software systems’ architectures, and for evaluating
architectural change and decay. The interesting part that can be implied from this related
work is that they use 10 integrated Software Module Clustering (SMC) tools to compose
their framework, that means that it’s important to have several options of SMC tool in a
framework like this. Therefore, it’s possible to validate the need for the integration of a
further implementation in the Draco Clustering Tool (DCT).

5

Chapter 3

Draco Clustering Tool

Draco Clustering Tool (DCT) is a Command Line Interface (CLI) tool, that reads a
Module Dependency Graph (MDG) [2] from the standard input and writes a clustered
graph represented as a DOT1 file in the standard output. It was implemented in Go2

programming language, and is publicly available.3

3.1 Design Principles

The currently main use case of the tool is to run experiments involving multi-objective
SMC computation. Accordingly, the following principles guided the design of DCT:

• An easy to use interface. While a Graphical User Interface potentially could be
more intuitive, it makes experiments automation more difficult;

• Minimal memory usage. DCT users might want to run the tool in parallel, so
its memory consumption must be minimal;

• Runtime efficiency. Similarly, the time spent running a experiment must be
minimal;

• Extensible. To experiment with multiple scenarios, it must be possible to replace
portions of the clustering algorithm or to tune its parameters values;

• Standard formats. To make comparisons of DCT with other tools easier, DCT
must adopt well-known file formats, both for input (MDG) and output (DOT);

1https://graphviz.org/doc/info/lang.html
2https://golang.org
3https://github.com/project-draco/tools/tree/master/clustering

6

https://graphviz.org/doc/info/lang.html
https://golang.org
https://github.com/project-draco/tools/tree/master/clustering

In order to address these principles, Go was chosen as the programming language.
Go programs are compiled ahead of time to native machine code, therefore compiled
programs can execute efficiently. Furthermore, this property makes the use of CLI tools
more convenient, since they would not require a virtual machine to run. In addition, the
extensibility principle was addressed using Go interfaces. For instance, the presence of a
Go interface to abstract the random number generator (see more details bellow).

3.2 Genetic Algorithm Characterization

In DCT was used the definition of the SMC problem as a multi-objective optimization
problem, using the same set of objects recommended by Praditwong et al. [8]. The input
is a MDG represented by a graph G = (V,E) from a set of modules V and a set of
dependencies E ⊆ V ×V ; and the output is a set of solutions. A solution is a partition of
a MDG that corresponds to a set of clusters. Although the design of DCT uses a multi-
objective genetic algorithm (GA) [24] to compute optimal partitions, it is also possible to
extend DCT to use mono-objective algorithms.

3.2.1 Individuals and Genetic Operators

To use a genetic algorithm, it is necessary to precisely define the concept of individuals
and fitness functions for the problem domain. A typical GA executes as follows:

1. It first generates an initial population (i.e., a set of individuals) randomly;

2. It repeatedly produces a new population, by (a) selecting individuals from the pre-
vious population using the fitness values and (b) combining them using the genetic
operators crossover and mutation;

3. It proceeds until a stop condition is met.

In DCT, each GA component (e.g., the fitness function or the crossover operator) is
defined as Go interfaces, which enables the replacement for other implementations. The
default implementations of these interfaces are specified next.

The default DCT implementation relies on the multi-objective genetic algorithm NSGA-
II [25], responsible to implement the selection operator of the GA. When using multi-
objective GAs, each individual has a vector of fitness values [24]. To compare two indi-
viduals, the concept of Pareto Dominance was used: a vector v dominates another vector
u if no value vi is smaller than the value ui, and at least one vj is greater than uj [24]
(this applies to optimizations where the goal is to maximize the objective values, if the
goal is the opposite, we must invert the comparisons).

7

(a)

m1 m2

m3

m4 f1

Cluster 0 Cluster 1

(b)
0 1 2 3 4
0 1 0 0 1

Figure 3.1: Individual representation.

As such, the individuals were represented as a mapping from a module to the cluster
it belongs to (typically a module represents a file or a class). Technically, an individual
is an array where each position corresponds to a module, and each value corresponds to
a cluster. Two different modules belong to the same cluster when they refer to the same
value. Figure 3.1-(a) illustrates this representation, showing four modules (m1, m2, m3,
m4, f1). All modules belong to the cluster C0, except for m2 that belongs to the cluster
C1 (together with module f1).

Differently from previous works [26, 27, 23], DCT saves computer’s main memory
since the array is codified as a binary string (i.e., as a sequence of bits), as we can see
in Figure 3.1-(b). The maximum number of clusters is set to |V |2 , and each element of
the array occupies

⌈
log2

|V |−1
2

⌉
bits of the binary string—where V is the set of vertices of

the MDG. Previous works represent the individual as an array of “integers” [26, 27, 23],
which could place a toll on today processors that take 64 bits. For example, if we have a
MDG with 10,000 vertices, one element of the array will occupy 13 bits, while the state
of the art would occupy 64 bits.

The genetic operators transform the population through successive generations, main-
taining the diversity and adaptation properties from previous generations. In this work,
the one-point crossover operator was used, which takes two binary strings (parents) and
a random index as input, and produces two new binary strings (offspring) by swapping
the parents’ bits after that index. For example, if we have the parent binary strings
p1 = 101010 and p2 = 001111, and an index i = 1, the offspring will be c1 = 101111
and c2 = 001010. In addition to that, a mutation operator was used that can flip any
bit of the individual’s binary string at a specified probability. That is, given a mutation

8

probability p and a binary string s = b1b2 . . . bn, we produce a random number 0 ≤ ri < 1
for each bit bi, flipping bi in the cases where ri < p. For example, if we have a binary
string s = 10011, a mutation probability p = 0.1, and a sequence of random numbers
r = (0.9, 0.3, 0, 0.6, 0.5), the algorithm will produce a mutant binary string s′ = 10111.
In DCT was used the Xorshift algorithm in order to generate random numbers; which is
a known fast algorithm [28]. To the best of our knowledge, no other SMC tool uses this
algorithm.

3.2.2 Fitness Evaluation and Parameters

As mentioned before, the GA was setup to optimize the following five objectives [8]:

• maximize Modularization Quality (MQ);

• maximize intra-edge dependencies;

• minimize inter-edge dependencies;

• maximize number of clusters;

• minimize the difference between the maximum and the minimum number of source-
code entities in a cluster.

MQ was defined by Mitchell and Mancoridis [26] as follows:

MQ =
k∑
i=1

CF i

CF i =

µi

µi+ 1
2

k∑
j=1
j 6=i

(εi,j+εj,i)
µi > 0

0 µi = 0.

In this equation, k is the number of clusters, µi is the number of edges within the ith

cluster, and εi,j is the number of edges between the ith and the jth clusters.
With relation to the parameters, their values were chosen similarly to Candela et

al [15]. As such, given a software module graph G = (V,E), and n = |V |, it was defined
the parameters population size (PS), maximum number of generations (MG), crossover
probability (CP), and mutation probability (MP) are as follows:

• PS =

2n if n ≤ 300
n if 300 < n ≤ 3000
n/2 if 3000 < n ≤ 10000
n/4 if n > 10000

9

• MG =

50n if n ≤ 300
20n if 300 < n ≤ 3000
5n if 3000 < n ≤ 10000
n if n > 10000

• CP =

0.8 if n ≤ 100
0.8 + 0.2(n− 100)/899 if 100 < n < 1000
1 if n ≥ 1000

• MP = 16
100
√
n

In summary, DCT is a full-fledged SMC tool written in the Go programming language,
which (a) uses the multi-objective NSGA-II algorithm as default implementation, (b) it is
also possible to extend DCT to use mono-objective algorithms, (c) employs a simple CLI
to ease the execution of experiments, and (d) explores two optimization techniques: binary
strings to represent individuals and the Xorshift random number generator algorithm.

3.3 Empirical Assessment Settings

This empirical assessment aims to evaluate the performance of DCT for clustering soft-
ware systems of different sizes and complexities. Two experiments were conducted. The
first compares the performance of DCT against one software clustering tool that runs
in a multi-objective mode (Heuristic Design NSGA-II [27]). The second compares the
performance of DCT and HD-NSGA-II against two software clustering tools that use a
mono-objective strategy (Bunch [2] and Heuristic Design LNS [23]). It is important to
point out that, although many research studies on software clustering are available in the
literature, most of these publications do not provide tools available for use.

We investigate the following questions in our study:

(a) How does the complexity of the systems affect DCT performance?

(b) How does the DCT performance compare to the performance of multi-objective
tools (HD-NSGA-II)?

(c) How does the performance of multi-objective tools (DCT and HD-NSGA-II) com-
pare to the performance of mono-objective tools (Bunch and HD-LNS)?

The multi-objective algorithm of DCT must explore a solution space of exponential
complexity. As such, answering the first research question allows us to understand if
DCT could be used to cluster software systems in real settings. Answering the second

10

research question, allows us to understand the performance of DCT in comparison with
another NSGA-II implementation. Finally, regarding the last research question, it is still
unclear to what extent the use of multi-objective algorithms compromise the performance
of publicly available SMC tools. Answering the last research question allows us to better
estimate the effect of using a multi-objective algorithm to cluster software systems.

We leveraged three metrics to answer these research questions:

1. TS is the elapsed time in seconds to cluster each studied system;

2. MMC is the Maximum Memory Consumption (in KB) necessary to cluster each
studied system; and

3. MQ is a metric for estimating the Modularization Quality of the clusters [29, 2].

We ran Bunch and HD-LNS tools with their default settings. On the other hand,
HD-NSGA-II was not concluding the process even on small systems. To reduce the
number of evaluations, we set the parameters population size and maximum number of
generations to 2n and 4n, respectively, where n is the number of vertices on the MDG.
The default values of these parameters are 10p and 200p, where p is the package count.
The definition of package used in HD-NSGA-II corresponds to a package in the Java
programming language. Furthermore, it was necessary to write a tool to convert MDGs
to the proprietary file format used by HD-NSGA-II. Finally, we ported the HD-NSGA-II
and HD-LNS implementations to Java libraries and implemented a command line tool
to execute both of them.4. We hope that this decision could help other researchers to
experiment with these tools.

We used the time Linux tool to compute the first two metrics. To calculate the MQ
metric we considered the outcomes of the clustering tools (Bunch, Heuristic Design, and
DCT). We used a dataset of 17 MDGs in our study. These MDGs come from a convenient
sample population of open source systems we used in a previous research work [7]. These
systems are from different domains and range from small to medium size systems (in
terms of lines of code). Moreover, we set 48h as the maximum execution time. Table 3.1
presents some characteristics of these systems.

We executed our experiments using an Intel(R) Xeon(R) E-2124 CPU @ 3.30GHz with
32 GB of RAM, running a Linux Ubuntu distribution (18.04.4 LTS).

4https://github.com/project-draco/cms_runner

11

https://github.com/project-draco/cms_runner

Table 3.1: Projects used in the empirical assessments
System Modules Deps. KLOC Commits
React Native Framework 190 1006 48 7842
Storm distributed realtime system 388 3249 213 7451
Bigbluebutton web conf. system 497 3661 82 13420
Minecraft Forge 501 3403 72 5498
CAS - Enterprise Single Sign On 513 1718 87 6268
Atmosphere Event Driven Framework 658 3523 41 5748
Druid analytics data store 668 2648 297 7452
Liquibase database source control 716 3981 77 5360
Kill Bill Billing & Payment Platform 767 5422 139 5361
Actor Messaging Platform 768 7452 157 8772
The ownCloud Android App 833 3389 36 5329
Hibernate Object-Relational Mapping 836 2935 628 7302
jOOQ SQL generator 851 4118 133 5022
LanguageTool Style/Grammar Checker 871 1931 75 19121
Bazel build system 965 3813 375 7258
H2O-3 - Machine Learning Platform 1586 27725 143 19336
Jitsi communicator 2557 6742 326 12420

3.4 Results of The Empirical Assessment

In this section we highlight the main findings of our empirical study and provide answers
to the research questions we introduced in Section 3.3.

3.4.1 How does the complexity of the systems affect the DCT
performance?

To answer this research question, we first considered the complexity of the MDGs (in
terms of number of modules) as a model of the log of the elapsed time (TS) to compute
the clusters. That is, we expressed this model as log(TS) ≈ Modules. Considering
the adjusted R2, this model indicates that we can explain 88.87% of the TS variance
as an exponential function on the number of modules. This exponential model better
explains this variance, in comparison to a quadratic model (R2 = 0.73) and a linear
model (R2 = 0.38), as shown in Table 3.2.

Table 3.2: R2 scores of the TS variance models for DCT
model R2 score
exponential 88.87%
quadratic 73%
linear 38%

In practice, DCT finds a cluster solution to a small system with 190 modules and 48
KLOC in 00:01:57 (React Native Framework), to a medium size system with 767
modules and 139 KLOC in 00:23:49 (Kill Bill Billing & Payment Platform), and
to a large system with 2557 modules and 326 KLOC in 08:30:07 (Jitsi communicator).
That is, although we confirmed the exponential cost necessary for DCT to compute the
clusters (as a function on the number of modules), we argue that it can still be used in

12

practice, particularly for small and medium size systems. For larger systems, DCT might
find a solution in an interval that goes from a couple of hours to a few days (for extra
large systems). So, regarding our first question, we found that:

Our empirical assessment suggests that we can predict the time necessary for DCT to
compute a cluster using an exponential formula on the system’s number of modules.

In the longest scenario of our experiment, DCT found a cluster in 08:30:07 for a
system with more than 2500 modules. We argue that this is still a reasonable time
for running a SMC reengineering task on a large system using a multi-objective
approach.

3.4.2 How does the DCT performance compare to the perfor-
mance of multi-objective tools (HD-NSGA-II)?

Our goal by answering this question is to understand how DCT compares to another
multi-objective SMC tool. Nonetheless, HD-NSGA-II only concluded the execution for
seven (out of the 17 projects we considered in our study) within our maximum time
threshold (48 hours). Considering only these seven projects, we realized a substantial
benefit on the DCT speed-up, ranging from 2.13x to 221x (see Table 3.3).

Table 3.3: Comparison of the elapsed time to generate the clusters (considering the multi-
objective tools DCT and HD-NSGA-II).

System DCT (TS) HD-NSGA-II (TS) Speed-up
React Native 117 249 2.13x
Storm 228 12448 54.60x
Big Blue Button 442 36264 82.05x
Minecraft Forge 579 54691 94.46x
CAS Single Sign On 335 39963 119.29x
Atmosphere 970 90954 93.77x
Druid 741 164428 221.90x

Regarding the other metrics (MMC and MQ), DCT improved memory consumption
up to 2x (minimum gain of 1.8x — see Table 3.4) and slightly decreased the MQ metrics in
six out of the seven cases (see Table 3.5). Specifically, DCT presents a significant reduction
on the time necessary to compute the clusters, in comparison to the HD-NSGA-II tool;
however, we observed a slight reduction in the quality of the clusters. In the worst case,
(Atmosphere project), DCT found a cluster with MQ = 69.64; while HD-NSGA-II found a
cluster with MQ = 95.70. Altogether, we answer our second research question as follows:

13

Our assessment reveals that DCT scales better than HD-NSGA-II, finishing the
clusterization process of the Druid tool in 741 seconds (while HD-NSGA-II needed
164 428 seconds). Considering larger projects, HD-NSGA-II did not finish the anal-
ysis within our maximum time threshold.

We observed that HD-NSGA-II clusters are slightly better than the clusters produced
by DCT

Table 3.4: Comparison of the memory usage generating the clusters (considering the
multi-objective tools DCT and HD-NSGA-II).

System DCT (MB) HD-NSGA-II (MB) Improv.
React Native 91 188 2.07
Storm 218 463 2.12
Bigbluebutton 282 511 1.81
Minecraft Forge 320 595 1.86
CAS - Enterprise Single Sign On 300 528 1.76
Atmosphere 416 741 1.78
Druid 396 713 1.80

Table 3.5: Comparison of the clusters’ MQ (considering the multi-objective tools DCT
and HD-NSGA-II).

System DCT (MQ) HD-NSGA-II (MQ) Improv.
React-native 39.27 33.57 1.17
Storm 60.40 66.60 0.91
Big Blue Button 71.15 79.31 0.90
Minecraft Forge 87.94 92.76 0.95
CAS - Enterprise Single Sign On 92.77 99.07 0.94
Atmosphere 69.64 95.70 0.73
Druid 122.65 128.00 0.96
Average 0.94

3.4.3 How does the performance of multi-objective tools (DCT
and HD-NSGA-II) compare to the performance of mono-
objective tools (Bunch and HD-LNS)?

The boxplots in Figure 3.2 show the performance of the tools (DCT, HD-NSGA-II, Bunch,
and HD-LNS), considering execution time (TS), memory consumption (MMC), and mod-
ularization quality (MQ). One could observe that multi-objective SMC implementations
requires much more time to compute the clusters. In the worst scenario, DCT requires
00:40:48 while Bunch required 00:00:04, and HD-LNS requires 00:02:57 in the same
comparison.

Regarding memory consumption, the Bunch tool achieved the best performance, with
an average memory consumption of ∼126MB; while HD-LNS achieved an average con-
sumption of ∼546MB. Considering the impact on the MQ metric, Figure 3.2 shows a

14

(a) (b) (c)

DCT HD−NII Bunch HD−LNS

0
20

00
0

40
00

0
60

00
0

80
00

0

T
im

e
(s

)

DCT HD−NII Bunch HD−LNS

20
0

40
0

60
0

80
0

10
00

M
em

or
y

C
on

su
m

pt
io

n
(M

B
)

DCT HD−NII Bunch HD−LNS

50
10

0
15

0
20

0
25

0
30

0

M
od

ul
ar

iz
at

io
n

Q
ua

lit
y

Figure 3.2: Performance comparison of SMC tools. (a) Compares TS, (b) compares MMC,
and (c) compares MQ. We removed the outliers in the boxplots.

(median) decreasing of 44% on the modularization quality of the clusters from multi-
objective SMC tools. Differently, the mono-objective tools preserve the average quality
of the clusters. Altogether, we answer our second research question as follows.

The use of multi-objective SMC implementations brings a negative impact on both
performance and modularization quality, in comparison with the multi-objective tools
we used in our research. That is, on average, we found a central tendency of (a)
increasing in 400x the time necessary to compute the cluster and (b) decreasing in
44% the modularization quality.

Comparing to HD-LNS, Bunch brings significant improvements in two metrics (on
average): time necessary to compute the clusters (up to 20x) and maximum memory
consumption (up to 2x).

Due to the issues raised above, came the opportunity for the integration of yet another
mono-objective implementation into the DCT platform, which is the main motivation of
this study. In the next chapter this new implementation will be described in more detail.

15

Chapter 4

The LNS extension for the DCT

This chapter presents the DCT-LNS, the new mono-objective implementation that this
study proposed to compose the DCT. This implementation is based on the Large Neigh-
borhood Search (LNS) algorithm brought by Pisinger et al. [17] alongside with other
evolutionary algorithm in the Handbook of metaheuristics [21]. It is important to men-
tion that this algorithm was first used in the context of SMC tools by Monçores et al.
[23], which served as the knowledge base for the implementation that was carried out.
The tool developed by Monçores et al. [23] in their research is the Heuristic Design LNS
(HD-LNS). This tool will be part of the empirical assessment explained in more details
further on.

4.1 Design Principles
DCT-LNS is also a Command Line Interface (CLI) tool, that reads a Module Dependency
Graph (MDG) [2] from the standard input and writes a clustered graph represented as a
DOT1 file in the standard output. It was implemented in Go2 programming language as
well, and is publicly available.3 A typical invocation of the tool looks like this:

$./lns < software.mdg > software.dot

This new implementation tries to follow the DCT design guidelines that was mentioned
earlier. The choice regarding the programming language still relies on the fact that Go
programs are compiled instead of being interpreted. Moreover, Go provides an easy
interface to deal with parallel programming. Such features can significantly increase the
runtime speed. Besides that, it is important to point out that the two optimization
techniques implemented by the DCT: (a) binary strings to represent individuals and (b)

1https://graphviz.org/doc/info/lang.html
2https://golang.org
3https://github.com/project-draco/DCT-mono-obj

16

https://graphviz.org/doc/info/lang.html
https://golang.org
https://github.com/project-draco/DCT-mono-obj

Xorshift random number generator algorithm, have not yet been explored by the DCT-
LNS.

The DCT-LNS used the definition of the SMC problem as a mono-objective optimiza-
tion problem. The same set of objects recommended by Praditwong et al. [8] used by
the DCT was also used for DCT-LNS. Furthermore, in DCT-LNS, the MQ metric was
used as the single objective to be reached. The input is a MDG represented by a graph
G = (V,E) from a set of modules V and a set of dependencies E ⊆ V ×V ; and the output
is a unique solution. This output solution is a partition of a MDG that corresponds to a
set of clusters with the best MQ found.

4.2 Large Neighborhood Search (LNS) Algorithm

A typical LNS executes as follows:

(a) It first generates an initial cluster set, randomly or not (See “Step 1” in Figure
4.1);

(b) It repeatedly produces a new cluster set, by: (a) removing some of the vertices from
its cluster (b) placing the removed vertices back into the cluster set, considering the
cluster that returns the best MQ (See “Step 2” in Figure 4.1);

(c) It proceeds until a stop condition is met, for example a threshold of no improvement
iterations (See “Step 3” in Figure 4.1);

Figure 4.1: Illustration of a typical LNS execution

The DCT-LNS implementation of the LNS algorithm follows the best configurations
found on the empirical study conducted by Monçores et al. [23], as follows:

17

1. The initial cluster set generation could be (i) randomly generated or (ii) agglom-
erative, the study [23] found out that the agglomerative method, despite of being
slightly slower produced solutions with better MQs. The process of the agglomera-
tive method starts with each vertex belonging to its own cluster, then we compute
the MQ for each possible merge between 2 of the remaining clusters. With that,
the merge with the best MQ is done. The process continues until only one cluster
remains. At the end, the set of clusters with the best MQ that was visited in the
process is returned.

2. The removal process of the vertices from its cluster could be (i) by choosing random
vertices to be removed, (ii) choosing a random cluster and removing up to six vertices
out of it or (iii) choosing based on the difference between the cluster of a random
vertex in the current solution and in the best solution found so far. The study
[23] found out that choosing random vertices to be removed was the best method,
specifically with a 10% removal rate.

3. The placing back process of the vertices could be in the various ways explained in
the study [23]. The study found out that the best method is a joint between two
methods described by the author in the study. However the DCT-LNS use only one
of the methods proposed, which is the method with lower complexity. This chosen
method for DCT-LNS is a greedy method that chooses a random vertex from the
set of removed vertices and place it on the cluster that provides the best MQ, also
being possible the creation of a new cluster in this process, this continues until there
is no more vertices on the removed vertices set.

4. The stop condition is based on a no-improvement iterations threshold. The study
[23] found out that the best threshold to use was 1000, so that is the threshold that
the DCT-LNS adopted.

In summary, DCT-LNS is a SMC tool to be integrated into the DCT, written in
the Go programming language, which (a) uses the mono-objective LNS algorithm, (b)
employs a simple CLI to ease the execution of experiments, and (c) follows the algorithm
configuration proposed by a previous LNS applied to SMC study, Monçores et al. [23].

4.3 Empirical Assessment Settings

This empirical assessment aims to evaluate the performance of DCT-LNS for clustering
software systems of different sizes and complexities. Two experiments were conducted.

18

The first compares the performance of DCT-LNS against one software clustering tool that
runs in mono-objective mode Heuristic Design LNS (HD-LNS) [23].

We investigate the following questions in our study:

(a) How does the complexity of the systems affect DCT-LNS performance?

(b) How does the DCT-LNS performance compare to the performance of a mono-
objective tool with same algorithm HD-LNS?

(c) How does the performance of DCT-LNS compare to the performance of other mono-
objective tools: Bunch and the old DCT mono-obj algorithm?

The implementation of the LNS algorithm made in DCT-LNS must explore a solution
space of cubic complexity. As such, answering the question (a) allows us to understand
if the runtime of DCT-LNS could be estimated when used to cluster software systems
in real settings. Answering question (b) allows us to understand the performance of the
DCT-LNS in comparison with another LNS implementation. Finally, the answer to the
question (c) will help us to understand the performance of the DCT-LNS in comparison
with other tools available.

The metrics taken into consideration were the same as in the DCT empirical assess-
ment:

1. TS is the elapsed time in seconds to cluster each studied system;

2. MMC is the Maximum Memory Consumption (in KB) necessary to cluster each
studied system; and

3. MQ is a metric for estimating the Modularization Quality of the clusters [29, 2].

Bunch was executed from the CLI interface that the authors have provided [2]. HD-
LNS was also executed from the CLI, but it was necessary to port the Java libraries and
implement a CLI tool to make this possible, as mentioned in Chapter 3. The projects
time Linux tool was used to compute TS and MMC. The MQ metric is printed by the
tools on the standard output. A data set of 16 MDGs was used in the study. These MDGs
come from a convenient sample population of open source systems we used in a previous
research work [7], as mentioned in Chapter 3. These systems are from different domains
and range from small to medium size systems (in terms of lines of code). Moreover, we
set 2h as the maximum execution time. Table 4.1 presents some characteristics of these
systems.

19

All experiments are available online4 for replication within a Docker5 environment. We
executed our experiments using a server with an Intel(R) Xeon(R) CPU @ 2.30GHz with
32 GB of RAM, running a Linux Debian distribution (Debian GNU/Linux 10 (buster)),
and for each tool and each MDG the execution was repeated five times and the metrics
means were collected.

Table 4.1: Projects used in the empirical assessments
System Modules Deps. KLOC Commits
React Native Framework 190 1006 48 7842
Storm distributed realtime system 388 3249 213 7451
Bigbluebutton web conf. system 497 3661 82 13420
Minecraft Forge 501 3403 72 5498
CAS - Enterprise Single Sign On 513 1718 87 6268
Atmosphere Event Driven Framework 658 3523 41 5748
Druid analytics data store 668 2648 297 7452
Liquibase database source control 716 3981 77 5360
Kill Bill Billing & Payment Platform 767 5422 139 5361
Actor Messaging Platform 768 7452 157 8772
The ownCloud Android App 833 3389 36 5329
Hibernate Object-Relational Mapping 836 2935 628 7302
jOOQ SQL generator 851 4118 133 5022
LanguageTool Style/Grammar Checker 871 1931 75 19121
Bazel build system 965 3813 375 7258
Jitsi communicator 2557 6742 326 12420

4.4 Results of The Empirical Assessment

In this section we highlight the main findings of our empirical study and provide answers
to the research questions we introduced in Section 4.3.

4.4.1 How does the complexity of the systems affect DCT-LNS
performance?

To answer this research question, we considered the complexity of the MDGs and elapsed
time (TS) to compute the clusters. Then, the following models were tested: linear,
quadratic, cubic and exponential. For each model the R2 score was calculated. The cubic
model was the expected best fit, and indeed was the best fit with a rate equal to 99,99%.
The quadratic model was the second best (R2 = 99,89%), followed by the linear model
(R2 = 86,83%), finally, the exponential model presented the worst fit (R2 = 83, 46%).
(See Table 4.2).

In practice, DCT-LNS finds a cluster solution to a small system with 190 modules and
48 KLOC in 00:00:00.59 (React Native Framework), to a medium size system
with 767 modules and 139 KLOC in 00:00:35.64 (Kill Bill Billing & Payment

4https://github.com/project-draco/SCM_performance_Analysis
5https://www.docker.com/

20

https://github.com/project-draco/SCM_performance_Analysis
https://www.docker.com/

Table 4.2: R2 scores of the TS variance models for DCT-LNS
model R2 score
exponential 83,46%
cubic 99,99%
quadratic 99,89%
linear 86,83%

Platform), and to a large system with 2557 modules and 326 KLOC in 00:33:11.23
(Jitsi communicator). That is, although we confirmed the cubic cost necessary for
DCT-LNS to compute the clusters (as a function on the number of modules), we argue
that it can still be used in practice, and it takes less than an hour even for large systems.
So, regarding our first question, we found that:

Our empirical assessment suggests that we can predict the time necessary for the
DCT-LNS to compute a cluster using an cubic formula on the system’s number of
modules.

In the longest scenario of our experiment, DCT-LNS found a cluster in 00:33:11.23
for a system with more than 2500 modules. We argue that this is a great time
for running a SMC reengineering task on a large system using this mono-objective
approach.

4.4.2 How does the DCT-LNS performance compares to the
performance of mono-objective tool with same algorithm
HD-LNS?

Our goal by answering this question is to understand how DCT-LNS compares to another
mono-objective LNS SMC tool. Considering the 16 systems in the experiment, it was
possible to see a benefit on the DCT-LNS speed-up for all systems, ranging from 1.44x to
5.32x (see Table 4.3). Regarding the other metrics (MMC and MQ), DCT-LNS improved
memory consumption up to 110.1x (minimum gain of 6.87x — see Table 4.4) and for the
MQ metric both tools performed equally for all the systems (see Table 4.4). Altogether,
we answer our second research question as follows:

Our assessment reveals that DCT-LNS, in comparision with HD-LNS, is optimized
regarding the elapsed time (TS) and the memory usage (MEM). However, in terms
of Modularization Quality (MQ), there was no difference between the performance
of the tools.

21

Table 4.3: Comparison of the elapsed time to generate the clusters (considering the mono-
objective LNS tools DCT-LNS and HD-LNS).

System DCT-LNS (TS) HD-LNS (TS) Speed-up
React Native Framework 0.59 1.16 1.97x
Storm distributed realtime system 4.82 14.28 2.96x
Bigbluebutton web conf. system 9.6 18.62 1.94x
Minecraft Forge 13.91 35.96 2.59x
CAS - Enterprise Single Sign On 8.61 19.88 2.31x
Atmosphere Event Driven Framework 28.02 97.84 3.49x
Druid analytics data store 19.14 54.89 2.87x
Liquibase database source control 29.28 47.68 1.63x
Kill Bill Billing & Payment Platform 36.01 96.97 2.69x
Actor Messaging Platform 39.38 123.83 3.14x
The ownCloud Android App 38.71 205.89 5.32x
Hibernate Object-Relational Mapping 39.78 76.14 1.91x
jOOQ SQL generator 41.29 154.6 3.74x
LanguageTool Style/Grammar Checker 58.96 85.06 1.44x
Bazel build system 80.34 281.44 3.5x
Jitsi communicator 1993.61 3711.5 1.86x

Table 4.4: Comparison of the MQ and (MEM) metrics (considering the mono-objective
LNS tools DCT-LNS and HD-LNS).

System DCT-LNS (MQ) HD-LNS (MQ) Improv. DCT-LNS (MEM) HD-LNS (MEM) Improv.
React Native 56.22 56.22 1.0 14995.0 103041.0 6.87
Storm. 115.67 115.7 1.0 16685.0 264452.0 15.85
Bigbluebutton. 119.6 119.6 1.0 18776.0 170310.0 9.07
Minecraft Forge 154.59 154.61 1.0 17758.0 382812.0 21.56
CAS. 156.33 156.33 1.0 17711.0 180866.0 10.21
Atmosphere. 185.08 185.1 1.0 18794.0 183831.0 9.78
Druid analytics 193.37 192.66 1.0 18147.0 411647.0 22.68
Liquibase. 183.36 183.36 1.0 19720.0 185210.0 9.39
Kill Bill Billing. 214.66 214.66 1.0 21288.0 648191.0 30.45
Actor Platform 182.25 182.27 1.0 23016.0 188594.0 8.19
OwnCloud Android 171.63 171.93 1.0 20255.0 427341.0 21.1
Hibernate Object. 253.25 253.33 1.0 18371.0 1197090.0 65.16
jOOQ SQL generator 213.75 213.75 1.0 19324.0 198582.0 10.28
LanguageTool. 293.3 293.02 1.0 17163.0 1222302.0 71.22
Bazel build system 279.15 279.23 1.0 20258.0 1200883.0 59.28
Jitsi communicator 745.43 745.95 1.0 23040.0 2536610.0 110.1

4.4.3 How does the performance of DCT-LNS compare to the
performance Other mono-objective tools: Bunch and the
old DCT mono-obj algorithm?

The boxplots in Figure 4.2 show the performance of the tools (DCT-LNS, Bunch, and
Other DCT mono-objective implementation), considering the Log of the execution time
(Log TS) for better visualization, memory consumption (MMC), and Modularization
Quality (MQ). For this experiment, only 15 MDGs were considered out of the original 16,
because the other DCT mono-objective implementation could not complete the clustering

22

for the Jitsi communicator system before the time limit that was setup at the begging
of the empirical assessment. One could observe that the Other DCT mono-objective im-
plementation requires much more time to compute the clusters. In the worst scenario,
DCT-LNS requires 00:01:20.34 while Bunch required 00:00:03.34, and HD-LNS re-
quires 00:36:11.4 on the same comparison.

Regarding memory consumption, the DCT-LNS tool achieved the best performance
in all the cases (See Figure 4.2). Considering the impact on the MQ metric, Figure 4.2
shows that DCT-LNS and Bunch perform noticeably better than the Other DCT mono-
objective implementation, and that DCT-LNS is slightly better than Bunch in all the
systems. Altogether, we answer our second research question as follows.

The DCT-LNS has remarkable results regarding the MQ and MEM metric. However,
it is worse than Bunch in terms of elapsed time (TS), although it still executes in a
feasible time.

23

Figure 4.2: Performance comparison of SMC tools. (a) Compares TS, (b) compares MMC,
and (c) compares MQ.

24

Chapter 5

Final Remarks

With this present work it was possible to enhance the knowledge about automatic tech-
niques for software architecture recovery, more specifically, with respect to SMC tools.
From the empirical assessments that were performed it was possible to deduce that the
DCT tools, both mono-objective and multi-objective, are tools with good performance.
The advantage of the DCT tools is that they are available online for the academic and
even business community.

More in detail, the empirical assessments presented the DCT tools as scalable, as the
integrated mono-objective tool showed a cubic time complexity and the multi-objective
tool showed an exponential time complexity. This exponential time complexity of the
multi-objective tool was a concern at first, but the tests using real systems validated that
the usage of this tool was still possible within a few hours for large systems and within
a few days for extra large systems, considering that the size of the system was based
on the number of modules. Moreover, the empirical assessments also presented a better
performance of the multi-objective tool in comparison with other available multi-objective
tool in terms of the execution time and the memory usage. The integrated mono-objective
tool showed a good performance comparison as well, since it had a higher efficiency than
the other available tool that uses the same algorithm (LNS) in terms of execution time and
memory usage. On both DCT tools, the MQ metric had an equal or slightly worse results
than the other tools that were being compared. With that said, it’s possible to conclude
that the initial purpose of this study has been accomplished, which was evaluating and
extending the DCT with good results.

25

Bibliography

[1] Dahiya, S. S., J. K. Chhabra, and S. Kumar: Use of genetic algorithm for software
maintainability metrics’ conditioning. In 15th International Conference on Advanced
Computing and Communications (ADCOM 2007), pages 87–92, 2007. 1

[2] Mitchell, B. S. and S. Mancoridis: On the automatic modularization of software sys-
tems using the bunch tool. IEEE Transactions on Software Engineering, 32(3):193–
208, March 2006, ISSN 1939-3520. 1, 6, 10, 11, 16, 19

[3] Oliveira, Marcos César de, Rodrigo Bonifácio, Guilherme N. Ramos, and Márcio
Ribeiro: Unveiling and reasoning about co-change dependencies. In Fuentes, Lidia,
Don S. Batory, and Krzysztof Czarnecki (editors): Proceedings of the 15th Interna-
tional Conference on Modularity, MODULARITY 2016, Málaga, Spain, March 14 -
18, 2016, pages 25–36. ACM, 2016. https://doi.org/10.1145/2889443.2889450.
1, 2

[4] Lethbridge, T. C., J. Singer, and A. Forward: How software engineers use documen-
tation: the state of the practice. IEEE Software, 20(6):35–39, 2003. 1

[5] Garlan, David: Software architecture: a roadmap. In Proceedings of the Conference
on the Future of Software Engineering, pages 91–101, 2000. 1

[6] Schmitt Laser, Marcelo, Nenad Medvidovic, Duc Minh Le, and Joshua Garcia: Ar-
cade: an extensible workbench for architecture recovery, change, and decay evalua-
tion. In Proceedings of the 28th ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering, pages
1546–1550, 2020. 2, 5

[7] Oliveira, Marcos César de, Davi Freitas, Rodrigo Bonifácio, Gustavo Pinto,
and David Lo: Finding needles in a haystack: Leveraging co-change dependen-
cies to recommend refactorings. Journal of Systems and Software, 158:110420,
2019, ISSN 0164-1212. http://www.sciencedirect.com/science/article/pii/
S0164121219301943. 2, 5, 11, 19

[8] Praditwong, Kata, Mark Harman, and Xin Yao: Software module clustering as a
multi-objective search problem. IEEE Trans. Softw. Eng., 37(2):264–282, March 2011,
ISSN 0098-5589. 2, 4, 7, 9, 17

[9] Huang, Jinhuang, Jing Liu, and Xin Yao: A multi-agent evolutionary algorithm for
software module clustering problems. Soft Computing, 21(12):3415–3428, 2017. 2

26

https://doi.org/10.1145/2889443.2889450
http://www.sciencedirect.com/science/article/pii/S0164121219301943
http://www.sciencedirect.com/science/article/pii/S0164121219301943

[10] Chhabra, Jitender Kumar et al.: Many-objective artificial bee colony algorithm for
large-scale software module clustering problem. Soft Computing, 22(19):6341–6361,
2018. 2

[11] Prajapati, Amarjeet and Jitender Kumar Chhabra: Madhs: Many-objective discrete
harmony search to improve existing package design. Computational Intelligence,
35(1):98–123, 2019. 2

[12] Sun, Jiaze and Beilei Ling: Software module clustering algorithm using probability
selection. Wuhan University Journal of Natural Sciences, 23(2):93–102, 2018. 2

[13] Bishnoi, M. and P. Singh: Modularizing software systems using pso optimized hierar-
chical clustering. In 2016 International Conference on Computational Techniques in
Information and Communication Technologies (ICCTICT), pages 659–664, 2016. 2

[14] Singh, V.: Software module clustering using metaheuristic search techniques: A sur-
vey. In 2016 3rd International Conference on Computing for Sustainable Global
Development (INDIACom), pages 2764–2767, 2016. 2

[15] Candela, Ivan, Gabriele Bavota, Barbara Russo, and Rocco Oliveto: Using cohesion
and coupling for software remodularization: Is it enough? ACM Trans. Softw. Eng.
Methodol., 25(3):24:1–24:28, June 2016, ISSN 1049-331X. http://doi.acm.org/
10.1145/2928268. 2, 4, 9

[16] Tarchetti, Ana Paula M, Luís Amaral, Marcos C Oliveira, Rodrigo Bonifácio, Gus-
tavo Pinto, and David Lo: Dct: An scalable multi-objective module clustering tool.
In 2020 IEEE 20th International Working Conference on Source Code Analysis and
Manipulation (SCAM), pages 171–176. IEEE, 2020. 2

[17] Pisinger, David and Stefan Ropke: Large neighborhood search. In Handbook of meta-
heuristics, pages 399–419. Springer, 2010. 2, 16

[18] Anquetil, Nicolas, Cédric Fourrier, and Timothy C. Lethbridge: Experiments with
clustering as a software remodularization method. In Proceedings of the Sixth Working
Conference on Reverse Engineering, WCRE ’99, pages 235–, Washington, DC, USA,
1999. IEEE Computer Society, ISBN 0-7695-0303-9. 4

[19] Maqbool, Onaiza and Haroon Babri: Hierarchical clustering for software architecture
recovery. IEEE Trans. Softw. Eng., 33(11):759–780, November 2007, ISSN 0098-5589.
4

[20] Pinto, Alexandre Fernandes, Adriana Cesário de Faria Alvim, and Márcio
de Oliveira Barros: Ils for the software module clustering problem. XLVI Simpósio
Brasileiro de Pesquisa Operacional. Salvador:[sn], pages 1972–1983, 2014. 4

[21] Glover, Fred W and Gary A Kochenberger: Handbook of metaheuristics, volume 57.
Springer Science & Business Media, 2006. 4, 16

[22] Oliveira Barros, Márcio de: Evaluating modularization quality as an extra objective
in multiobjective software module clustering. In International Symposium on Search
Based Software Engineering, pages 267–267. Springer, 2011. 5

27

http://doi.acm.org/10.1145/2928268
http://doi.acm.org/10.1145/2928268

[23] Monçores, Marlon C, Adriana CF Alvim, and Márcio O Barros: Large neighborhood
search applied to the software module clustering problem. Computers & Operations
Research, 91:92–111, 2018. 5, 8, 10, 16, 17, 18, 19

[24] Goldberg, David E: E. 1989. genetic algorithms in search, optimization, and machine
learning. Reading: Addison-Wesley, 1990. 7

[25] Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan: A fast and elitist multiobjec-
tive genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation,
6(2):182–197, Apr 2002, ISSN 1089-778X. 7

[26] Mitchell, Brian S. and Spiros Mancoridis: On the automatic modularization of soft-
ware systems using the bunch tool. IEEE Trans. Softw. Eng., 32(3):193–208, March
2006, ISSN 0098-5589. 8, 9

[27] Barros, Marcio de Oliveira: An analysis of the effects of composite objectives in mul-
tiobjective software module clustering. In Proceedings of the 14th annual conference
on Genetic and evolutionary computation, pages 1205–1212, 2012. 8, 10

[28] Marsaglia, George: Xorshift rngs. Journal of Statistical Software, Articles, 8(14):1–6,
2003, ISSN 1548-7660. https://www.jstatsoft.org/v008/i14. 9

[29] Mancoridis, Spiros, Brian S. Mitchell, Yih-Farn Chen, and Emden R. Gansner:
Bunch: A clustering tool for the recovery and maintenance of software system struc-
tures. In 1999 International Conference on Software Maintenance, ICSM 1999, Ox-
ford, England, UK, August 30 - September 3, 1999, page 50. IEEE Computer Society,
1999. https://doi.org/10.1109/ICSM.1999.792498. 11, 19

28

https://www.jstatsoft.org/v008/i14
https://doi.org/10.1109/ICSM.1999.792498

	Dedicatory
	Acknowledgments
	Abstract
	Resumo
	Introduction
	Motivation
	Proposed solution
	Document Structure

	Background and Related Work
	Draco Clustering Tool
	Design Principles
	Genetic Algorithm Characterization
	Individuals and Genetic Operators
	Fitness Evaluation and Parameters

	Empirical Assessment Settings
	Results of The Empirical Assessment
	How does the complexity of the systems affect the DCT performance?
	How does the DCT performance compare to the performance of multi-objective tools (HD-NSGA-II)?
	How does the performance of multi-objective tools (DCT and HD-NSGA-II) compare to the performance of mono-objective tools (Bunch and HD-LNS)?

	The LNS extension for the DCT
	Design Principles
	LNS Algorithm
	Empirical Assessment Settings
	Results of The Empirical Assessment
	How does the complexity of the systems affect DCT-LNS performance?
	How does the DCT-LNS performance compares to the performance of mono-objective tool with same algorithm HD-LNS?
	How does the performance of DCT-LNS compare to the performance Other mono-objective tools: Bunch and the old DCT mono-obj algorithm?

	Final Remarks
	Bibliography

