
University of Brasília - UnB
Faculty Gama - FGA

Bachelor of Software Engineering

Impact of a Pseudocode Online Judge on
Programming Language Learning

Author: Geovana Ramos Sousa Silva
Supervisor: Giovanni Almeida Santos, M.Sc.

Brasília, DF
2021

Geovana Ramos Sousa Silva

Impact of a Pseudocode Online Judge on Programming
Language Learning

In partial fulfillment of the requirements for
the degree of Bachelor of Software Engineer-
ing.

University of Brasília - UnB

Faculty Gama - FGA

Supervisor: Giovanni Almeida Santos, M.Sc.

Brasília, DF
2021

Geovana Ramos Sousa Silva
Impact of a Pseudocode Online Judge on Programming Language Learning/

Geovana Ramos Sousa Silva. – Brasília, DF, 2021-
126 p. : il. color.) ; 30 cm.

Supervisor: Giovanni Almeida Santos, M.Sc.

Undergraduate Thesis – University of Brasília - UnB
Faculty Gama - FGA , 2021.
1. calango. 2. online judge. I. Giovanni Almeida Santos, M.Sc.. II. University

of Brasília. III. Faculty UnB Gama. IV. Impact of a Pseudocode Online Judge on
Programming Language Learning

CDU 02:141:005.6

Geovana Ramos Sousa Silva

Impact of a Pseudocode Online Judge on Programming
Language Learning

In partial fulfillment of the requirements for
the degree of Bachelor of Software Engineer-
ing.

Approved. Brasília, DF, October 14, 2021:

Giovanni Almeida Santos, M.Sc.
Supervisor

Edna Dias Canedo, Ph.D
Examiner

Milene Serrano, Ph.D
Examiner

Brasília, DF
2021

Acknowledgements

First and foremost, I thank God for providing me with the opportunity to step
into the excellent world of science.

From the bottom of my heart, I am extremely grateful to my parents, Luiz and
Mariana, for their love, unconditional support, encouragement, for giving me strength
when I had none left, and for being the first to believe in whatever I have ever set as a
goal to my life.

I would also like to express my gratitude and appreciation for Prof. Giovanni
Santos for giving me the opportunities to grow as a professional and for the research
partnership during all of these years. I have benefited greatly from your knowledge and
academic guidance.

I cannot forget to thank my course colleagues that shared great experiences with
me and the ones that participated in this work. Special thanks to my dearest and best
friends that provided me with the best years of my life: Gabriela Medeiros, Gabriel Mar-
tins, Guilherme Guy, Joberth Rogers, and Daniel Maike.

Last but not least, I thank the Faculty Gama professors, the University of Brasília,
the Laboratory for Decision Making Technologies (LATITUDE), and everyone that has
been part of my academic journey until now.

“Entrust your works to the LORD,
and your plans will succeed.

(Proverbs 16:3)

Resumo
O Calango é uma linguagem de programação criada para ensinar programação de com-
putadores a iniciantes. Ele foi desenvolvido partindo do pressuposto de que falantes do
português que não dominam a língua inglesa têm dificuldade em aprender linguagens
de programação que possuem palavras-chave em inglês. Por isso, as palavras-chave do
Calango estão mais próximas do português falado e é uma linguagem de programação
simplificada. No entanto, o Calango não possui o suporte de uma ferramenta valiosa para
o ensino de linguagens de programação: um juiz online. Os juízes online permitem que os
professores testem, de forma automática e rápida, o código dos seus alunos, ao passo que
os alunos se beneficiam de uma resposta instantânea, tendo a oportunidade de corrigir
seu código e aprender com seus erros. Portanto, este trabalho aborda o desenvolvimento
do Calango Online Judge (COJ) e sua experimentação em aulas que ensinam introdução
à programação na Universidade de Brasília (UnB). O seu desenvolvimento e experimen-
tação foram executados em ciclos paralelos de Pesquisa-Ação e Desenvolvimento Rápido
de Aplicações, o que desencadeou melhorias no software. Tanto a metodologia de ensino-
aprendizagem adotada quanto o COJ foram avaliados através de três pesquisas aplicadas
em períodos diferentes de cada ciclo. Padrões comportamentais dos estudantes foram
identificados por meio da análise dos dados do COJ.

Palavras-chaves: juíz online. Calango. introdução à programação.

Abstract
Calango is a programming language created for introducing computer programming to
novices. It was developed based on the assumption that Portuguese speakers that do
not master the English language have difficulties learning programming languages with
English keywords. Hence, Calango keywords are closer to spoken Portuguese, and it is a
simplified programming language. However, Calango lacks the support of a valuable tool
for teaching programming languages: an online judge. Online judges allow professors to
automatically and quickly test their students’ code, whereas students benefit from instant
feedback, having the opportunity to correct their code and learn from their mistakes.
Therefore, this work approaches the development of the Calango Online Judge (COJ) and
its experimentation in classes that teach introductory programming at the University of
Brasília (UnB). The development and experimentation were run in parallel cycles of Action
Research and Rapid Application Development (RAD), which triggered improvements in
the software. Both the teaching-learning methodology and COJ were evaluated through
three surveys applied at different periods in each cycle. Student behavioral patterns were
identified by analyzing COJ’s data.

Keywords: online judge. Calango. introductory programming.

List of Figures

Figure 1 – Calango IDE . 31
Figure 2 – Research Methodology . 39
Figure 3 – RAD Methodology . 42
Figure 4 – Activities timeline . 45
Figure 5 – COJ Architecture . 50
Figure 6 – Login page . 54
Figure 7 – Home page (professor’s view) . 55
Figure 8 – Scheduled lists page (professor’s view) 56
Figure 9 – Schedule’s detail page (professor’s view) 56
Figure 10 – Schedule’s results page . 57
Figure 11 – Problems page . 58
Figure 12 – Problem’s details page . 58
Figure 13 – Submissions page . 59
Figure 14 – Classes page . 60
Figure 15 – Help page . 61
Figure 16 – Deployment pipeline . 62
Figure 17 – Number of accepted and unaccepted submissions per list 72
Figure 18 – Distribution of errors of unaccepted submissions per list 72
Figure 19 – Average number of unaccepted submissions per student on each ques-

tion of a list. 73
Figure 20 – Students’ submissions per day of list grouped by problems solved . . . 75
Figure 21 – Number of students per class grouped by list conclusion, gender, and

semester . 76
Figure 22 – Entity-relationship diagram of the Django application 91
Figure 23 – Logical database schema generated by the ORM for PostgreSQL 92
Figure 24 – Sequence diagram showing the interaction between the judge service

and the Calango Interpreter to judge a submission from the Web App . 93
Figure 25 – (S1Q1) What degree do you pursue? 101
Figure 26 – (S1Q2) How important do you think programming knowledge is to the

degree you have chosen (or intend to choose) and to your professional
life? . 102

Figure 27 – (S1Q3) What semester of your degree are you in? 102
Figure 28 – (S1Q4) Have you ever been in contact with programming languages? . 103
Figure 29 – (S1Q5) If you have been in contact with programming languages, mark

the languages with which you had contact. 103
Figure 30 – (S1Q6) Have you ever heard of the Calango language? 104

Figure 31 – (S1Q7) In relation to Calango and your expectations regarding the
course, you. 104

Figure 32 – (S1Q8) Do you know what an online judge is? 105
Figure 33 – (S1Q9) In relation to online judges and your expectations regarding

the course, you. 105
Figure 34 – (S2Q2) Regarding the use of CALANGO as a tool and programming

language, in general, you were. 106
Figure 35 – (S2Q4) Regarding the use of COJ as an online judge, in general, you

were. 106
Figure 36 – (S2Q5) What did you think about COJ’s judgment? 107
Figure 37 – (S2Q6) In your opinion, would it be interesting to have more questions

in COJ, in addition to the lists, for practicing? 107
Figure 38 – (S2Q7) In your opinion, would it be interesting for the COJ to approach

theoretical content, such as multiple-choice questions? 108
Figure 39 – (S2Q8) What did you think about the level of COJ problems? 108
Figure 40 – (S2Q9) What did you think about the quality of COJ problems and

their test cases? . 109
Figure 41 – (S2Q10) What did you think about the number of questions on the lists?109
Figure 42 – (S2Q11) Did the submission chart on COJ’s home page encourage you

to make better submissions to improve your results? 110
Figure 43 – (S3Q1) Did you think Calango made it easier for you to learn program-

ming logic? . 113
Figure 44 – (S3Q2) Did you think Calango made the transition to the C language

easier? . 113
Figure 45 – (S3Q3) What did you think about Calango’s usage time? 114
Figure 46 – (S3Q4) For you, did the fact that Calango is in Portuguese facilitate

your learning? . 114
Figure 47 – (S3Q5) What is your level of knowledge in English? 115
Figure 48 – (S2Q6) Did you find that the online judges used strengthened your

practical knowledge in programming? 115
Figure 49 – (S3Q7) For you, which methodology makes you more motivated in the

course? . 116
Figure 50 – (S3Q8) Do you think online judges (COJ and URI) have made the

quality of your codes better than if you had to deliver directly to the
teacher without prior feedback? . 116

Figure 51 – (S3Q9) What did you think about taking the course in this class? . . . 117
Figure 52 – (S3Q10) In your opinion, were all the contents of the course satisfacto-

rily addressed? . 117

Figure 53 – (S3Q11) Most of the time in this course, did you feel motivated or
unmotivated? . 118

Figure 54 – (S3Q12) What did you think about the pace of the course? 118
Figure 55 – (S3Q13)(2020.2-14A) What did you think about the workload of the

course? . 119
Figure 56 – (S3Q13)(2021.1-CC) What did you think about the workload of the

course? . 119
Figure 57 – Original SUS questionnaire . 125

List of Tables

Table 1 – Corresponding Calango keywords for C keywords. 32
Table 2 – COJ’s functional requirements . 48
Table 3 – COJ’s non-functional requirements . 49
Table 4 – Results returned by the Judge Microservice 53
Table 5 – Amount of responses to the surveys . 65
Table 6 – Percentage of students that selected positive impressions about COJ’s

attributes in survey questions. 69
Table 7 – SUS scores obtained from survey . 69
Table 8 – General students results from COJ . 71
Table 9 – Deadlines of each list applied during the experiment 74
Table 10 – Students’ average attempts until acceptance per URI problem 75
Table 11 – Average attempts per student for each concluded EP grouped by list

conclusion, gender, and semester . 76
Table 14 – (S2Q12)(2021.1(DD)) If you want to add something, use the field below

to commend or suggest improvements for Calango or COJ. 110
Table 12 – (S2Q12)(2020.2-14A) If you want to add something, use the field below

to commend or suggest improvements for Calango or COJ. 111
Table 13 – (S2Q12)(2021.1-CC) If you want to add something, use the field below

to commend or suggest improvements for Calango or COJ. 112
Table 15 – (S3Q14)(2020.2-14A) If you want to add something, use the field below

to commend or suggest improvements to the course. 120
Table 16 – (S3Q14)(2021.1-CC) If you want to add something, use the field below

to commend or suggest improvements to the course. 121
Table 17 – (S3Q14)(2021.1-DD) If you want to add something, use the field below

to commend or suggest improvements to the course. 122
Table 18 – Validated European Portuguese version of the SUS questionnaire 126

List of abbreviations and acronyms

ANTLR ANother Tool for Language Recognition

COJ Calango Online Judge

EBNF Extended Backus–Naur Form

EP Evaluative Problem

IaaS Infraestructure as a Service

IDE Integrated Development Environment

MVP Minimum Viable Product

NEP Non-Evaluative Problem

ORM Object-Relational Mapper

RAD Rapid Application Development

RDBMS Relational Database Management System

SSH Secure Shell

SUS System Usability Scale

UnB University of Brasília

Contents

1 INTRODUCTION . 25
1.1 Contextualization . 25
1.2 Justification . 26
1.3 Research Question . 26
1.4 Aims and Objectives . 27
1.5 Manuscript Organization . 27

2 BACKGROUND AND THEORY . 29
2.1 Meaningful Learning in Introductory Programming 29
2.2 Calango . 30
2.2.1 Similar Tools . 31
2.3 Online Judge . 33
2.3.1 Definition . 33
2.3.2 History . 34
2.3.3 Advantages of Automated Assessment . 35
2.3.4 Important Features . 36
2.4 Chapter Summary . 37

3 METHODOLOGY . 39
3.1 Research Methodology . 39
3.1.1 Action Research . 40
3.1.2 Surveys . 40
3.1.3 Data Analytics . 41
3.1.4 Research Tools . 41
3.2 Software Development Methodology 41
3.2.1 Rapid Application Development (RAD) 41
3.2.1.1 Requirements Planning . 42
3.2.1.2 Prototype Cycles . 43
3.2.1.3 Cutover Phase . 43
3.2.2 Development Tools . 44
3.3 Activities Timeline . 44
3.4 Chapter Summary . 44

4 CALANGO ONLINE JUDGE . 47
4.1 Requirements . 47
4.1.1 Functional Requirements . 47

4.1.2 Non-functional Requirements . 47
4.2 Software Architecture . 50
4.2.1 Judge Microservice . 51
4.2.2 Web Application . 52
4.3 User Interfaces . 54
4.3.1 Authentication . 54
4.3.2 Home . 54
4.3.3 Scheduled Lists . 55
4.3.4 List Results . 57
4.3.5 Problems . 57
4.3.6 Submissions . 58
4.3.7 Classes . 59
4.3.8 Help . 60
4.4 DevOps . 61
4.4.1 Pipeline . 61
4.4.2 Infrastructure . 62
4.5 Chapter Summary . 62

5 RESULTS AND DISCUSSION . 65
5.1 Surveys . 65
5.2 First Survey Results . 66
5.3 Second Survey . 67
5.4 Third Survey Results . 70
5.5 Data Analytics . 71
5.6 Threats to Validity . 77
5.7 Chapter Summary . 77

6 CONCLUSION . 79

REFERENCES . 81

APPENDIX 87

APPENDIX A – SOURCE CODE REPOSITORIES 89

APPENDIX B – ARTIFACTS . 91

APPENDIX C – DATA ANALYTICS SQL 95

APPENDIX D – SURVEYS . 101

D.1 First Survey Results . 101
D.2 Second Survey Results . 106
D.3 Third Survey Results . 113

ANNEX 123

ANNEX A – SUS QUESTIONNAIRE 125
A.1 Original SUS . 125
A.2 European Portuguese SUS . 126

25

1 Introduction

This chapter details the problem that motivated this work, defines the proposed
solution, sets the objectives, and describes how this document is organized.

1.1 Contextualization

As educational institutions go deeper into STEM (Science, Technology, Engineer-
ing, & Mathematics) education, programming becomes a relevant subject in areas be-
yond technology. Writing efficient algorithms requires more abilities than knowing a pro-
gramming language, such as problem-solving, mathematical skills, abstraction, critical
thinking, creativity, time management, and English (MEDEIROS; RAMALHO; FAL-
CÃO, 2019).

Learning your first programming language is not always an easygoing experience,
as shown by the high failure rates in introductory programming courses worldwide (WAT-
SON; LI, 2014). Several social, economic, and educational factors can be associated with
this problem when looking at students as a whole. If we look deeper into each country, it is
possible to find specific barriers to novice learners. In Canedo, Santos and Freitas (2017),
66% of interviewed Brazilian students considered introductory programming courses as
one of the most challenging courses, and 21% considered it very challenging.

Apart from the same difficulties every novice face when learning programming
languages, non-English speakers also have the language obstacle, because most of the
programming languages have English-based keywords and commands (VEERASAMY;
SHILLABEER, 2014). Starting an introductory programming course with professional
languages, such as C, may hinder students from developing logical thinking and problem-
solving abilities. Because of the complex syntax and foreign keywords, they spend more
time trying to figure out how to program in that language instead of focusing on the
problem.

Therefore, some professors start courses with pseudocode. Since pseudocode is a
generic language, learners can concentrate on the problem being solved instead of worrying
about syntax and semantics, and it is possible to write algorithms in their native language.
For helping specifically Portuguese-speaker learners, there is a pseudo-language called
Portugol. However, pseudocode is not executable and students cannot test their solutions.
Therefore some tools were created to execute Portugol.

One of the initial implementations of Portugol was a symbiosis of the Portuguese
language and the programming languages: Pascal and Algol. The most popular tools

26 Chapter 1. Introduction

for Portugol nowadays still have this proximity with these programming languages, but
they have lost space in introductory programming courses, becoming obsolete. Calango
language was created to solve this problem for Portuguese speakers. It is a Portuguese-
structured language with a dedicated IDE. Besides executing its own language, Calango
IDE has a debugger for novices to keep track of the program variables. Its keywords and
structure were inspired by the C language, which is a widely used language in introductory
programming courses.

1.2 Justification
Professional programming languages have various supporting tools at their dis-

posal, such as debuggers, dedicated IDEs, and interactive tutorials. Another relevant tool
is the online judge, which helps both students and professors directly. Silva et al. (2020)
made an exploratory research that gathered students’ impressions about using Calango in
an introductory programming course. Students expressed positive opinions about Calango
and some students suggested the use of an online judge for it, such as the one they used
for C language later in the course.

By automatically testing students’ code, the online judge enables the professor
to apply more activities with proper testing, and the students to have instant feedback
on their code. In Canedo, Santos and Leite (2018), 57% of interviewed students from
the University of Brasília (UnB) stated that the lack of practical exercises is negatively
impactful when they are learning computer programming. If a professor does not use
an online judge as part of his teaching methodology, either he will not test his students’
code, or he will be limited by the number of the students’ programs he can test. Therefore,
this works proposes the development of an online judge for Calango. This online judge is
tested through cycles of Action Research due to its suitability for educational scenarios
as a research method because of its practical, participative, and collaborative nature.

1.3 Research Question
Notwithstanding that the literature has supported the hypothesis that online

judges have a positive impact on students’ programming learning, this work intends to
prove the same hypothesis but considering the singularity of a teaching-learning method-
ology that uses Calango. However, since a positive impact is expected, the focus of this
work is to clarify in which way students are influenced. Therefore, the research question
is as follows:

How students’ behavior and satisfaction are affected by the use of an online
judge for the Calango language?

1.4. Aims and Objectives 27

1.4 Aims and Objectives
In light of the advantages of having automated assessment through online judges

and enforced by the literature, this work intends to develop an online judge for Calango.
The specific goals are:

• Implementation of an online judge for Calango with an architecture consistent with
what is presented in the literature and meeting requirements of a reliable web plat-
form of this nature.

• Inspection of the already developed Calango software to implement improvements
according to the experiences of use in class and to incorporate the source code into
the online judge.

• Conduction of an experiment that applies the online judge in an undergraduate
course that introduces computer programming to students.

• Analysis of surveys’ responses to confirm if this online judge has a positive impact
on students’ opinions.

• Analysis of data from the online judge to undercover relevant behavior patterns.

1.5 Manuscript Organization

• Chapter 2 - Background and Theory: presents the concepts related to the
theme of this work.

• Chapter 3 - Methodology: details the research and development methodology.

• Chapter 4 - Calango Online Judge (COJ): describes the technical and user
details of the online judge.

• Chapter 5 - Results and Discussion: describes the results of the surveys and
the data collected by COJ.

• Chapter 6 - Conclusion: presents conclusions of this work and suggests some
possibilities for future works.

29

2 Background and Theory

This chapter addresses the theoretical framework that supports this work by re-
viewing the literature and explaining relevant concepts about programming education.

2.1 Meaningful Learning in Introductory Programming

The Meaningful Learning Theory proposed by Ausubel, Novak and Hanesian
(1978), briefly explained, is the process when previous knowledge is used as a bridge
for acquiring new knowledge. Ausubel defended the Cognitive Learning Theory, which
states that information, in the form of knowledge, is hierarchically organized and stored
in a "cognitive structure". This structure is a network of concepts already established by
the learner.

Meaningful Learning happens if three conditions are met (WANG, 2020). First, the
learning materials must have logical meaning by interconnecting subjects and gradually
introducing new concepts. The second is learners’ commitment and interest to learn mean-
ingfully. The third one is the existence of previous knowledge in the cognitive structure
that can establish connections with the new knowledge.

In introductory programming, meaningful learning can be achieved by allowing
students to program first using their native language. This way, they rely on the knowledge
already established in their cognitive structure (their native language) to acquire new
knowledge (build algorithms). This methodology would also be supported by the fact
that it is possible to trace parallels between cognitive mechanisms of programming and
natural languages (FEDORENKO et al., 2019; PORTNOFF, 2018).

Roussel et al. (2017) conducted three experiments in higher education where 294
students received varied academic texts in three different conditions: native language,
foreign language, and foreign language with a translation into the native language. Results
showed that foreign language presentation without explicit foreign language instructional
support decreased both language and content learning.

In Guo (2018), non-English speakers reported a lot of different barriers when learn-
ing programming, such as: reading instructional materials, technical communication, read-
ing code, writing code, and learning a foreign language at the same time as programming.
An interviewed learner stated: "My low level of English fluency badly affected my learning
of a programming language at the beginning.".

30 Chapter 2. Background and Theory

2.2 Calango
Calango is a multiplatform educational software developed in 2012 that allows

the construction, debugging, and execution of algorithms. The motivations for developing
Calango were (FELINTO; GIROTTO, 2012): to reduce programming complexity; to pro-
vide a straightforward view of code execution; to facilitate user experience; to encourage
good practices; to facilitate the transition to C language. Its main advantages are (SILVA
et al., 2020):

• It removes the foreign language barrier for Portuguese speakers.

• It is as simple as pseudocode. Nevertheless, it is executable.

• It has its own Integrated Development Environment (IDE) with debugging tools for
novices.

• Errors are presented in a more instructive way and in Portuguese.

• It is a multiplatform tool that does not require installation.

• Because it is based on the C language, it facilitates transitioning from one to another.

Choosing C as a base language for Calango’s development was not an arbitrary
decision. In 2017, 657 students from the University of Brasília (UnB) were interviewed
and 95% confirmed that they used C language in their introductory programming course
(CANEDO; SANTOS; LEITE, 2018). In 2016, 218 colleges and 143 universities in 35
European countries were analyzed by a study and their key finding was that the introduc-
tory programming language that was most often taught in the 1st semester is C (45.7%)
(ALEKSIĆ; IVANOVIĆ, 2016).

Calango was developed with Java and is composed of two main packages: the
interface and the interpreter. The interface was developed with a graphical user interface
toolkit called Java Swing. Figure 1 shows the appearance of the Calango IDE. On the
top side, there is the toolbar with options related to file management, code editor, code
execution, and assistance instructions. In the middle left side, there is the code editor
followed by the console on the bottom. On the right side, there is the pile of scopes which
is the debugging tool’s visualization.

The toolbar is simple and presents a minimum number of options, as well as the
whole interface. It is important to have in mind that Calango is not a substitute for C
or other advanced languages, because it seeks to introduce basic concepts and focus on
problem-solving. Therefore, as an introductory language, its syntax and interface do not
need complexity, because other advanced features of an IDE can be introduced later in
the course with C.

2.2. Calango 31

Figure 1 – Calango IDE

Source: the author

The interpreter was built upon the artifacts generated by the ANother Tool for
Language Recognition (ANTLR) parser generator. The language is first formally defined
by the extended Backus–Naur form (EBNF). ANTLR takes the EBNF as input and gen-
erates GrammarLexer and GrammarParser as Java files (FELINTO; GIROTTO, 2012).
The language and syntax definition is very close to the C language to reduce students’
learning curve in introductory programming. Table 1 maps Calango’s keywords to corre-
sponding C language keywords. This similarity is also a differential point for Calango.

The interpreter is an entirely independent package that can be easily used by
other Java programs. The interface was also built as an independent package although
it depends on the interpreter to fully function. The interface connects to the interpreter
through an API class that has entries for general execution or debugging mode.

2.2.1 Similar Tools

Since Calango was developed in 2012, there were many similar initiatives devel-
oped since then. Considering just the ones available for use nowadays, there are three
direct competitors: Portugol IDE 2.2, Visualg 3.0 and Portugol Studio. They are all IDEs

32 Chapter 2. Background and Theory

Table 1 – Corresponding Calango keywords for C keywords.

C keyword Calango keyword
Main

int main(void){...} principal ... fimPrincipal
int func() funcao inteiro func()

return retorna
Logical operators

&& e
|| ou
! nao

Data types
char* texto
char caracter

double real
int inteiro
0, 1 logico

Read and write
printf("...") escreva("...")

printf("...\n") escreval("...")
scanf ("...", var) leia(var)

Conditionals
if(){...} se() entao ... fimSe

else senao
switch(){...} escolha() ... fimEscolha

case caso
break interrompa

Loops
while(){...} enquanto() faca ... fimEnquanto

do ... while() faca ... enquanto()
for(int i=0; i<=3; i++) para (i de 0 ate 3 passo 1)

Embedded Functions
strcmp(const char* str1, const char* str2) comparaTexto(texto str1, texto str2)

strlen(const char* str) tamanhoTexto(texto str)
abs(int x) abs(inteiro x)

pow(double x, double y) exp(real x, real y)
sqrt(double x) raizQuadrada(real x)

toupper(char c) maiusculoCaracter(caracter c)
tolower(char c) minusculoCaracter(caracter c)

M_PI pi()

Source: adapted from Silva et al. (2020)

2.3. Online Judge 33

capable of executing their own variation of structured Portuguese-written pseudocode.
These variations are very similar but they have their particularities.

Portugol IDE 2.2 differs from Calango’s syntax mainly in three points. First, the
variable attribution is done by using the operator "<-". Second, commands are not followed
by semicolons. Third, the command to print data to the console does not surround argu-
ments with parentheses. One downside is that it does not support subprograms whereas
Calango does. Although Portugol IDE 2.2 is available for download, its last version is
from 2006, suggesting that is no longer maintained.

Visualg 3.0 was developed before Calango and it is still maintained. The main
difference is the variable attribution because it has inherited entirely from Pascal, differing
only the variable types because they are written in Portuguese. Pascal does not appear
in the list of the most recently used programming languages in introductory courses
from Brazil, the USA, and countries from Europe (CANEDO; SANTOS; LEITE, 2018;
ALEKSIĆ; IVANOVIĆ, 2016; EZENWOYE, 2018), therefore it has become obsolete for
teaching computer programming to novices. Another downside is that Visualg is not
supported in macOS, a widely used operating system.

Portugol Studio is the most recent tool of them all, it is still maintained, and it is
closer to C language than Calango. However, when Portugol Studio was being developed,
Calango was already being used in classes for years. Calango is a more mature educational
tool because it has studies supporting its use in class with student approval (SILVA et
al., 2020).

2.3 Online Judge

In the research conducted by Malik (2018), programming exercise questions and
answers appeared as one of the most useful learning resources for 67% of the students.
However, considering that testing and correcting programming exercises is a laborious
process, professors rely on online judges to reduce the workload.

2.3.1 Definition

Online judges are a subcategory of a broader class of Automated Assessment Sys-
tems or Automated Grading Systems, which are not restricted to programming. They
receive an input, usually a student activity, and return a result based on some evaluation
criteria. Online judges receive source code as an input and they can run dynamic or static
tests to check the correctness of the submitted source code.

The terminology "online judge" was first used in the literature by Kurnia, Lim
and Cheang (2001) and it was defined as "an automatic programming assignment grading

34 Chapter 2. Background and Theory

system". Although it was the first time it was referred to as an online judge, similar
systems had been already in use at that time in a series of different contexts. However,
this marked the separation of online judges from other grading systems of general-purpose,
and it gained its own segment.

According to Wasik et al. (2018), based on an extensive literature review, an online
judge is a service that performs the following activities in a cloud: collects, compiles
sources if needed, and verifies executability of resultant binaries; assesses solutions based
on a set of test instances in a reliable, homogeneous, evaluation environment; computes
the aggregated status and evaluation score based on the statuses and scores for particular
instances.

Notice that these activities are not exclusive to online judges, and can be addressed
to any grading system for programming exercises, or even other kinds of input. However,
the key definition for online judges is that it is run in the cloud. This is what sets it
apart from other grading systems categories alongside its exclusive use for programming
assignments.

2.3.2 History

Douce, Livingstone and Orwell (2005) identified three broad generations of au-
tomated assessment systems for programming assignments: the first generation systems
were forerunners but limited to particular computing laboratories, for professors; the sec-
ond generation systems were command-line-based tools, sometimes supported by GUI
interfaces; and the third, and current, generation systems are marked by being web-based
and having more facilities, that is, online judges.

Automatic grading systems for programming assignments started back in 1961
at Stanford University, with an ALGOL grader for students’ programs (FORSYTHE;
WIRTH, 1965). Unsurprisingly, it was an offline solution considering that there was no
internet at that time. By definition, it was not an online judge per si. Nonetheless, the
first generation of automated assessment systems paved the way for online judges, since
the idea is the same, simply differing on the implementation and features.

Online Judges emerged stronger on competitive programming contests. The evalu-
ation on the cloud was necessary because many people would work on parallel in contests
and it was necessary to share the same evaluation environment. One of the first popular
online judges for competitive programming was the UVa online judge that was open to
the public in 1997 (REVILLA; MANZOOR; LIU, 2008). UVa’s website shows that in 1997
there were 4031 submissions, while in 2020 there were 1445197 submissions (UVa, 2021).

Other popular and more recent online judges include Codeforces (2021), SPOJ
(2021) and CodeChef (2021). However, because these platforms focus on competitions,

2.3. Online Judge 35

they lack tools for an educational environment and managing a course class. Therefore,
Tonin and Bez (2012) created the URI Online Judge with an interface designed for learn-
ers and educators. As an online judge, its functioning does not differ from the others
previously cited. However, URI’s interface and organization are more suitable for use in
class.

More importantly, URI Online Judge has an advantage over other tools for use in
class because it has an Academic module for professors to manage disciplines, homework,
deadlines, acceptance criteria, and plagiarism detection (BEZ; TONIN; RODEGHERI,
2014). These features provide full monitoring of students’ performance. By having this
kind of visualization and control, educators can detect problems in the learning process
adjust methodology.

2.3.3 Advantages of Automated Assessment

The literature presents a variety of benefits coupled with the use of automated
assessment in programming assignments. An online judge can increase students’ interest
in programming, programming skills, and overall performance (WU et al., 2016), besides
leaving time for professors to focus on other educational activities. This kind of assessment
saves the professor’s time wasted with testing and allows students to "work anytime,
anywhere and with immediate feedback" (SKALKA; DRLÍK; OBONYA, 2019).

Wang et al. (2016) developed an online judge for a course that focuses on pro-
gramming thoughts and methods. The teaching method was adapted to be contest-driven
and practice-oriented. Students that participated in the adapted teaching method with
the online judge exhibited higher enthusiasm and had their practical and comprehensive
abilities were more promoted than the control group.

In Verdú et al. (2012), the EduJudge system increased students’ scores and satis-
faction in comparison to students who did not use it and the interesting finding is that "the
level of students’ satisfaction does not depend on their computer skills levels". Aleman
(2011) found a positive correlation (0.85) between the number of accepted submissions in
the Mooshak online judge and students’ final scores in the course. This correlation encour-
ages studies about students dropping out from classes using online judge data, because it
can perhaps predict final scores.

With higher interest and performance from students, the use of online judges
also impacts positively the withdrawal rates. In Wilcox (2015), the average withdrawal
rate dropped from 10.4% to 4.9% and students started submitting earlier in comparison
with the traditional method. However, this study also raises a point of concern, because
students work only until the judge tests are passed, missing subjective requirements.

The replacement of humans by machines is just a consequence of technology be-

36 Chapter 2. Background and Theory

coming more accessible. The use of an online judge is no different and it carries the same
benefits other processes achieve when using automation. One of these benefits is the re-
duction of human failure. In the educational process, this has greater importance, because
the assessment process is exhaustive and professors "may mark differently as they become
fatigued as well as being affected by the order of marking" (HALEY et al., 2007). On the
contrary, the online judge always gives the same output for the same input infinite times.

2.3.4 Important Features

Online judges can be used in a variety of contexts, such as competitive program-
ming, education, online compilers, recruitment, and data-mining services (WASIK et al.,
2018). In each context, there is the need for specific features, even though the problem
description and test cases are basic features for online judges. In addition, they all share
a security requirement that requires running submitted code in an isolated environment.

One popular isolation technique is sandboxing. This method is "a security mecha-
nism for separating running programs, often used to execute untrusted source code" (YI;
FENG; GONG, 2014). Sandboxing is not a very recent concept because it basically relies
on virtualization. However, its implementation methods have evolved considerably. Nowa-
days, Docker is a widespread option for sandboxing online judges, because it is flexible,
simplified, and ensures isolation (ŠPAČEK; SOHLICH; DULÍK, 2015).

Regarding what aspects the online judge can evaluate, there are a lot of possi-
bilities, such as functionality, efficiency, testing skills, coding style, programming errors,
software metrics, and design (ALA-MUTKA, 2005). Popular and free online judges usu-
ally focus on the dynamic and functional assessment draw on test cases. Static assessment
is more difficult to automate as it can get subjective, but, even though it is not popular,
it is possible to achieve.

In the educational context, there are other required features for supporting pro-
fessors and students. Pieterse (2013) and Ullah et al. (2018) made an extensive review of
online judges for automated assessment. Below are the features recommended by both of
these works:

• Well designed test cases: the quality of the assessment is dependent on the quality
of the test cases. They must cover every program limit, such as stop conditions and
input exceptions. Both success and failure conditions must be tested, to ensure
students covered all situations. One way to guarantee this coverage is to define test
cases in parallel with the assignment requirements.

• Detailed feedback: submissions must transcend the correct and incorrect defini-
tions and provide more information about the result so that students can locate

2.4. Chapter Summary 37

the error more easily. Varied grading results also allow professors to grade partially
correct programs accordingly. If possible, the result should follow common grading
metrics used by online judges.

• Resubmission capacity: even the experienced programmers are prone to errors,
hence novices are not expected to get a fully corrected submission at their first
attempt. Furthermore, resubmission encourages students to learn from errors by
tracing their code, which is a day-to-day task in programming professions.

With regard to resubmission and detailed feedback, Ihantola et al. (2010) raises
the importance of limiting maximum submissions to force students to think by themselves
after their code received a failure result. Resubmissions can be managed by limited at-
tempts or time penalty at every new attempt. Feedbacks should give only an idea of what
went wrong but not give a full error message, because students may bypass local testing.
The judge must be the code’s final destination and testing and debugging should be done
locally.

2.4 Chapter Summary
This chapter starts by explaining the Meaning Learning Theory and how it applies

to programming education. Then, it describes the Calango platform and how it stands out
among other Portugol tools. Lastly, it presents a wide literature review on online judges
and establishes common ground for the features of this type of software.

39

3 Methodology

This research is dependent on software development to collect results. Therefore,
Section 3.1 explains how the research itself was conducted and its results evaluated, while
Section 3.2 explains the methodology used for developing the online judge as a software
solution.

3.1 Research Methodology

All aspects of the research methodology are shown in Figure 2. The descriptive
purpose is a result of the exploratory work that has been done in Silva et al. (2020),
where general aspects of Calango were addressed and from there arose the need for an
online judge. The quali-quantitative approach is ideal because it is possible to run statis-
tical analyses and subjective interpretations from empirical observations through action
research, which provides great interaction between researcher and the object of study.

Figure 2 – Research Methodology

Source: the author

40 Chapter 3. Methodology

3.1.1 Action Research

The research method used was Action Research, which is "intended to solve prac-
tical problems of an individual or a group or an institution through planned intervention
in the day-to-day working" (KHAN et al., 2018, p. 88). This method requires that both
the researcher and a problem owner collaborate to solve a problem (EASTERBROOK et
al., 2008). Action research has proven to be an appropriate and efficient methodology for
conducting improvements in introductory programming courses (MALIK, 2018).

In this research, the professor and researcher worked together actively while con-
ducting a course that used the online judge. Students were consulted and observed closely
throughout the experiment. An experiment with the online judge is conducted within a
class of the Faculty UnB Gama, one of the campuses of the University of Brasília. The
course chosen introduces programming for freshman Engineering students. However, the
course is not limited to students of its campus, making it possible for students from other
courses to enroll.

Action Research is a cyclic process that seeks improvements in each iteration
based on the knowledge acquired in the previous iterations. According to (COLLATTO
et al., 2018), Action Research comprises four main phases: preliminary, to understand the
problem; conduction cycle, to execute the course of action; meta-phase, to monitor the
cycles; and the final phase, to communicate and publicize the research.

3.1.2 Surveys

A set of surveys were used at different times to collect data and analyze students’
profiles and impressions. Google Forms was chosen to share the surveys with students. The
surveys were applied at different times of the course because questions were dependent
on what moment of their learning students were at.

For example, questions about expectations must be asked before they had any
experience, while usability questions should be asked right after the use of the software.
Lastly, questions about the methodology must be asked at the end of the course, because
students can only confirm if it was a helpful experience after transitioning to the C
language. Research questions are detailed in Appendix D.

The evaluation of software usability relied on the System Usability Scale (SUS),
which was created in 1996 as a "quick and dirty" usability test (BROOKE, 1996). It is
composed of 10 questions that approach different usability aspects and the final result is
a measure of user perception about the software (DREW; FALCONE; BACCUS, 2018).
This questionnaire is shown in Annex A.1.

SUS is a reliable scientific instrument that has been studied in many works, there-
fore it is a widely used measure of perceived usability (LEWIS, 2018). Because of that,

3.2. Software Development Methodology 41

there were many works upon translations of SUS. The European Portuguese version of
SUS was validated as a usability test instrument (MARTINS et al., 2015) and is presented
in Annex A.2. Although in this work our participants are Brazilian Portuguese speakers,
SUS has proven to be not sensible to minor wording changes (BANGOR; KORTUM;
MILLER, 2008).

3.1.3 Data Analytics

The data stemming from the online judge was used to analyze student behavior
through their submissions. For that, it was necessary data analytics techniques for extract-
ing and processing data. The surveys evaluate the online judge through the students’ point
of view while the data analytics evaluates through students’ results.

3.1.4 Research Tools

• Digital Libraries: Google Scholar, ACM Library, IEEE Xplore, Springer and Taylor
& Francis Online

• Google Forms: web application to manage and share surveys.

3.2 Software Development Methodology
The software development methodology chosen was the Rapid Application Devel-

opment (RAD). The next section defines what is RAD and explains how each of RAD’s
phases were used in this work.

3.2.1 Rapid Application Development (RAD)

Martin (1991) first defined the Rapid Application Development as "a development
lifecycle designed to give much faster development and higher-quality results than those
achieved with the traditional lifecycle". Although RAD’s definition places it very close to
the Agile methods, RAD is more flexible and focused on software quality. Some of the
main characteristics of RAD are (BEYNON-DAVIES et al., 1999):

• Low costs;

• High quality;

• Incremental prototyping;

• Rapidity of development;

• Highly interactive, low complexity projects;

42 Chapter 3. Methodology

RAD methodology phases are shown in Figure 3. The central point of RAD is the
iterative cycle where prototypes are designed, implemented, and tested until a satisfying
version is finalized. The iterative cycle can be achieved with non-functional responsive
interfaces or with a functional software sample. We chose the latter to speed up the
concluding phases.

Figure 3 – RAD Methodology

Source: the author

RAD methodology fits well this project because it adheres to Action Research and
to the software development conditions. As explained in Section 3.1.1, Action Research is
an iterative process as well as RAD. They both work with iterative cycles of improvement
until the result is satisfying. Additionally, RAD is in accord with the short period of
development and the fact that the software does not need to be impeccable and complete
for the pilot test.

With incremental prototyping, we can have a Minimum Viable Product (MVP)
at the pilot test and benefit from end-users feedback, iterating until we have a definitive
version. Another reason for choosing the RAD methodology is the low complexity of the
online judge as a software solution.

One of the requirements for using RAD is having small teams and developers with
good knowledge of the technologies used. The only people involved in the development
were the authors of this manuscript, and their skills determined the development tools
and programming languages to be used.

3.2.1.1 Requirements Planning

Following the RAD methodology, preliminary requirements were elicited and later
adjusted according to user feedback and testing. The elicitation techniques used were
Unstructured Interview, Introspection, Domain Analysis, and Prototyping. Below are the
definitions of each technique according to Zowghi and Coulin (2005) and how they were
used in this work:

• Unstructured Interview: is a traditional, common, and conversational technique
where the interviewer has limited control over the discussions because he does not
follow a predetermined agenda or list of questions. The chosen interviewee was a

3.2. Software Development Methodology 43

professor with experience in teaching Calango. Questions were made via email and
messaging apps, which helped to keep the requirements’ traceability.

• Introspection: is a technique where requirements are elicited based on what the
developer thinks the end-users want and need for the system. In this case, the
introspection figures were students and teachers that would use the online judge.

• Domain Analysis: consists of analyzing similar applications and related docu-
mentation to come up with requirements for the system being developed. The URI
Online Judge is a similar application that served as a reference since it is free, open
for testing, and already used by the interviewed professor.

• Prototyping: is a simple experimental system model that is typically developed us-
ing preliminary requirements or existing examples of similar systems. Requirements
were added and adjusted by relying on the RAD’s prototype cycle.

These techniques were chosen in accordance with the RAD methodology and con-
sidering: the short development time, the limited number of stakeholders, similar systems
available for testing, and the developer’s familiarization with the domain.

3.2.1.2 Prototype Cycles

The first cycle started with an MVP of the online judge that was tested in an intro-
ductory programming course of the University of Brasília, as a pilot test. While students
were submitting code and being evaluated by the professor, the judge was being improved.
Users’ feedback and observations played an important part in identifying problems and
points of improvement.

The cycles did not have predefined periods and tasks, as they took advantage of
RAD’s flexibility. They kept going until the professor finished activities with Calango
and proceeded to C language. Some new requirements or improvements identified were
treated right away, while others were treated in the next cycle or the Cutover phase that
generated the final software version.

3.2.1.3 Cutover Phase

The final phase was retained for final improvements, documentation, and disclo-
sure. Less important details are taken care of, such as aesthetics and code improvement.
Since the software was constantly changing, there was no definitive documentation, and
specific details are covered in this phase, including user guides. Finally, the software is
released for a broader audience.

44 Chapter 3. Methodology

3.2.2 Development Tools

• Git: free and open-source distributed version control system.

• GitHub & GitHub Packages & GitHub Actions: free web interfaces for hosting the
source code, hosting Docker images, and auto-deploying code changes, respectively.

• Docker & Docker Compose (Version 1.26.0): free and open-source platform services
for virtualization and container orchestration, respectively.

• Django Framework (Version 3.1.4): free and open-source Python framework for rapid
web development.

• Spring Boot (Version 2.4.0): free and open-source Java framework for web develop-
ment based on design patterns.

• Maven: free and open-source software project management and comprehension tool.

• NGINX (Version 1.19.0): free and open-source lightweight reverse proxy server and
load balancer.

• PostreSQL (Version 13.0): free and open-source Relational Database Management
System (RDBMS).

• DigitalOcean: Infrastructure as a Service (IaaS) platform for hosting software.

3.3 Activities Timeline
This work is developed in a period of 13 months. Figure 4 depicts the activities

of each month from October 2020 until November 2021. Action Research’s cycles are
marked by the application of 3 surveys each, and RAD’s prototype cycles happen between
November 2020 and September 2021.

3.4 Chapter Summary
This section depicts both methodologies used in this work. Action Research is

used to follow the experiment closely and RAD is used to develop the online judge. They
are both cyclic and well-defined processes that fit this research scenario and objectives.
Furthermore, surveys and data analytics techniques are used as research instruments to
gather information during the experiment.

3.4. Chapter Summary 45

Figure 4 – Activities timeline

Source: the author

47

4 Calango Online Judge

This chapter presents the technical details of the Calango Online Judge (COJ) as
a software solution. Section 4.1 lists the final requirements after the RAD’s iterations,
Section 4.2 depicts the architecture’s modules and Section 4.4 describes the stages and
infrastructure for delivering COJ to users. The source code developed in this work is
available as open-source code and the repositories are linked in Appendix A.

4.1 Requirements

The first requirements were elicited in the Requirements Planning phase. Then,
the existing ones were improved and new ones were added according to user feedback at
the Prototype Cycles. Both functional and non-function requirements were listed and are
shown in the following sections.

4.1.1 Functional Requirements

The functional requirements modeling made use of User Stories, which are "a
popular method for representing requirements, often using a simple template such as “As
a <role>, I want <goal>, [so that <benefit>]” (LUCASSEN et al., 2016). Table 2 shows
COJ’s functional requirements as user stories grouped by epics. The "Pre-traceability"
column points to the elicitation techniques that generated the requirement, whereas the
"Post-traceability" column points to the finished interface that satisfies the requirement.
Elicitation techniques are ordered in a way that the first technique was responsible for
discovering the requirement and the following were used to refined acceptance criteria.

4.1.2 Non-functional Requirements

For classifying non-functional requirements, it was used the quality model from
ISO/IEC 25010 (2011), which categorizes product quality properties into eight charac-
teristics (functional suitability, performance efficiency, compatibility, usability, reliability,
security, maintainability, portability) that are composed of a set of related sub charac-
teristics. Some requirements may attend more than one quality sub characteristic, but
only the most satisfied sub characteristc is listed. Non-functional requirements worked as
a complement to acceptance criteria for functional requirements.

48 Chapter 4. Calango Online Judge

Table 2 – COJ’s functional requirements
Epic Role User Story Pre-

traceability
Post-
traceability

Authentication User I want to log in with my username and password so that the
system can authenticate me and I can trust it.

(DA) Section
4.3.1

User I want to be able to request a new password so that I don’t
permanently lose access to my data if I forget it.

(IW) Section
4.3.1

Lists

Student I want to access my lists so that I see evaluative problems and
the list’s deadline.

(DA)(IN) Section
4.3.3

Student I want to see my list’s conclusion percentage so that I know
what grade I will receive.

(IN) Section
4.3.3

Professor I want to create lists of problems so that I can join similar
problems in one evaluative assignment.

(DA) Section
4.3.3

Professor I want to edit lists of problems so that I can correct their name
or start/due dates in case they are wrong or outdated.

(IN) Section
4.3.3

Professor I want to schedule lists so that students can submit code to
the list only during the time between the start and due date.

(DA)(IW) Section
4.3.3

Professor I want to see my lists and their schedules so that I can review
their information and keep track of their status.

(DA)(IN) Section
4.3.3

Professor I want to have different schedules for the same list so that I
can assign different deadlines to each class.

(IN) Section
4.3.3

Problems

Student I want to access problems and test cases so that I can elaborate
my algorithm correctly.

(DA) Section
4.3.5

Professor I want to create problems and test cases so that my students
can submit code and have them automatically reviewed.

(DA)(IN) Section
4.3.5

Professor I want to have problems outside lists so that my students can
practice beyond evaluative problems.

(P)(IW) Section
4.3.5

Professor I want to see problems grouped by subject so that I can find
problems faster to add to my new lists.

(IW) Section
4.3.5

Professor I want to test my problems with code and have detailed feed-
back so that I ensure that my test cases are correct.

(P) Section
4.3.5

Professor I want to edit my problems and their test cases so that I correct
them in case there is any problem.

(P) Section
4.3.5

Results

Student I want to see general statistics of my submissions so that I can
follow my progress.

(IN) Section
4.3.2

Professor I want to see general statistics of my students’ submissions so
that I can monitor students’ progress.

(IN)(IW) Section
4.3.2

Professor I want to see the lists’ results question by question so that I
can see how students are doing in each question.

(DA)(P)(IW) Section
4.3.4

Professor I want to download lists’ results so that I assign students’
grades more easily.

(IN)(P) Section
4.3.4

Submissions

Student I want to submit code so that I can solve problems. (DA) Section
4.3.5

Student I want to receive a submission status so that I know if I solved
the problem.

(DA) Section
4.3.6

Student I want to know what each submission status means so that I
understand why my code is failing.

(P)(IN)(DA) Section
4.3.8

Student I want to see the submission’s code so that I identify what
triggered the submission’s status.

(DA) Section
4.3.6

Professor I want to see a student’s submission so that I can see his code
to help him when he has difficulties with some problem.

(P)(IN) Section
4.3.6

Classes

Professor I want to group students by class so that I can assign different
activities and deadlines to each class.

(IN) Section
4.3.7

Professor I want to remove students from classes so that they no longer
access my class data.

(IN) Section
4.3.7

Professor I want to add students to my class by email so that they receive
an invitation email.

(IW) Section
4.3.7

Professor I want to deactivate a class so that students lose access to this
class and they can be enrolled in another one in the future.

(IN) Section
4.3.7

Professor I want to see my students in their class so that I can review
their information and keep track of their status.

(IN)(P)(IW) Section
4.3.7

Professor I want to see my inactive classes separately so that my active
classes stand out to manage them more easily.

(P)(IW) Section
4.3.7

D=Domain; IN=Introspection; IW=Interview; P=Prototyping

Source: the author

4.1. Requirements 49

Table 3 – COJ’s non-functional requirements

Requirement Characteristic Sub-
characteristic

Isolate the judging module as a service in con-
tainer sandbox

Maintainability Modularity

Expire sessions after a browser closes to hinder
access of unauthorized users.

Security Confidentiality

Execute three attempts of running submitted
code in case of an unexpected failure.

Reliability Recoverability

Have daily backups and straightforward imple-
mentation through containers to quickly recover
from failures.

Reliability Recoverability

Parallelize the judging process in order to have
simultaneous submissions.

Performance
Efficiency

Time
Behaviour

Do not block the user interface while code is un-
der review and explicitly present status to the
user.

Usability Learnability

Limit submitted code to 5 seconds of execution
and kill the running program when the limit is
exceeded.

Recoverability Fault Tolerance

Design a user experience similar to online judges
for C language to have a smooth transition from
one to another.

Usability User Interface
Aesthetics

The user interfaces must avoid the use of loan-
words to be coherent with the methodology pro-
posal, except URLs and the platform’s name.

Usability Learnability

Each problem must have a detailed description of
inputs and outputs containing: the type of data,
what it represents in the context, and text for-
matting.

Usability Learnability

Programming code must be avoided when it is
possible to achieve the same functionality with
SQL queries.

Performance
Efficiency

Time
Behaviour

Pages should require less than six clicks to be
reached and the user must be visually informed
of where is he on the platform.

Usability Operability

The web app must work on Firefox and Chrome
for Desktop besides providing basic functionality
on mobile devices.

Portability Adaptability

Source: the author

50 Chapter 4. Calango Online Judge

4.2 Software Architecture

COJ’s architecture is composed of two main modules: the web application and
the judge microservice. The web application is the only module in the system where end-
users have direct interaction with the whole system and has a dedicated database. The
judge service is a microservice and it is responsible to judge Calango source code and test
cases, returning results back to the web application. Figure 5 shows an overview of the
system’s modules and how they interact. Appendix B shows some software artifacts that
are referred to in the next sections.

Figure 5 – COJ Architecture

Source: the author

Creating the judge as a decoupled service allows the use of suitable programming
languages for each service and parallelizes the judging process. The service-oriented design
provides modularization, promotes loose coupling, allows applications to be reused, and
permits an incremental approach (SERRANO; HERNANTES; GALLARDO, 2014).

NGINX acts as a reverse proxy and serves static files. Since the web application
runs in port 8000, NGINX forwards requests from port 80 to port 8000. Also, Django does
not serve static files in production, therefore NGINX has this responsibility. Lastly, Django
provides out-of-box integrations with a set of Relational Database Management Systems
(RDBMS), and PostgreSQL was chosen because of its suitability to system requirements
and the experience of the programmer in working with it.

4.2. Software Architecture 51

4.2.1 Judge Microservice

The microservice was developed with Spring and has an API for interacting with
other services. It receives as inputs Calango source code and the test cases that will be
tested one by one for the same source code. For that, the microservice needs to consume
Calango’s interpreter package.

Calango Interpreter is part of the original Calango source code, but it was built
as a separate package from Calango IDE. The same logic was applied to COJ when using
the interpreter, by consuming the interpreter package in the Spring application. Before
the development of the online judge modules, it was necessary to study this source code.
This also gave the opportunity to improve or correct some bugs in this source code.

It was necessary to do reverse engineering to recover Calango’s source code from
the distributed JAR file because its original remote repository went offline. After that,
the code was reorganized in order to become executable and Maven was used as a build
automation tool. Maven facilitated the project modularization because it is possible to
join different repositories in one project by using the dependency declaration of external
components. This way, there is one interpreter repository used by both Calango and the
microservice.

The microservice receives submissions from the Web App through an HTTP POST
request with a JSON body, transforms the JSON into Java objects, sends these objects to
the interpreter to be run as a Calango program, and waits for the program’s outputs. The
interaction between the Web App, the microservice, and the interpreter is shown in Figure
24 at Appendix B. Below, there is an example of a JSON input that the microservice could
receive from the Web App.

{
" code " : " a lgor i tmo converteParaMaiusculo ; \ n\ n p r i n c i p a l \n\

→˓ t c a r a c t e r l e t r a ; \ n\n\ t l e i a C a r a c t e r (l e t r a) ; \ n\n\ t e s c r e v a l
→˓ (maiusculoCaracter (l e t r a)) ; \ n\ n f imPr inc ipa l \n " ,

" c a s e s " : [
{

" input " : [" a "] ,
" output " : "A\n "

} ,
{

" input " : [" b "] ,
" output " : "B\n "

} ,
{

" input " : [" c "] ,

52 Chapter 4. Calango Online Judge

" output " : "C\n "
}

]
}

The source code above receives a letter as an input and prints it as a capital letter.
Considering the source code above is correct, given the test cases, the following JSON
response would be sent by the microservice:

{
" code " : 1 ,
" message " : "ACCEPTED" ,
" errorMessage " : "No e r r o r message "

}

The command "escreval" prints some content with a line break at the end. Alter-
natively, the command "escreva" prints content without the line break. The test cases in
this example expect a line break at the end of each output. If we changed the command
"escreval" to "escreva" the microservice would return the following JSON:

{
" code " : 3 ,
" message " : "PRESENTATION_ERROR" ,
" errorMessage " : " Expected : A\n Actual : A"

}

The judge service has six possible results, and they are all returned in the above
JSON format. The results are detailed in Table 4.

4.2.2 Web Application

The web application was developed with Django, which has a plethora of ready-
to-run functions and libraries at the developer’s disposal. For example, by just applying
some settings, Django manages user authentication and authorization by itself. Apart
from that, there are a lot of open-source third-party packages for Django that can be
added to your own Django project. The ones used in COJ were:

• django-crispy-forms: allows managing and customizing forms with straight-forward
Python and template tags.

• django-ckeditor: transforms simple text fields into rich text fields with markup.
It was added to the question’s creation form field.

4.2. Software Architecture 53

Table 4 – Results returned by the Judge Microservice

Result Description
ACCEPTED The code’s output and test cases’ outputs were

identical.
PRESENTATION_ERROR The code’s output is correct but wrongfully for-

matted due to letter case, spaces, or line breaks.
WRONG_ANSWER The code’s output has differed entirely or partially

from test cases’ outputs.
RUNTIME_ERROR The judge was able to run the source code, how-

ever, it stopped unexpectedly or finished execution
without presenting an answer.

COMPILATION_ERROR The judge was not able to run the source code
because of a syntactical error.

TIME_LIMIT_EXCEEDED The judge was able to run the source code, how-
ever, it took more than five seconds to finish.

Source: the author

• django-q: allows multiprocessing procedures. It is used for sending mass emails to
students and calling the judge microservice without blocking the web application.

The third-party package django-q plays a vital part in the judging process. It takes
care of sending submissions asynchronously to the judge service through async tasks. Each
task is saved in the PostgreSQL database alongside its results and error message, this
way it is possible to investigate what happened with a submission that got an unexpected
result.

Django-q stores successful, failed, and queued tasks. By default, django-q reruns
failed tasks infinite times until it is successful, but the number of attempts can be changed
by the developer. For example, if the judge service is unreachable, the task will fail and,
after a configured amount of time, the task will be rerun.

The web application interacts directly with PostgreSQL. However, due to Django’s
Object-Relational Mapper(ORM), it is not required that the developer writes raw SQL
queries. This makes the application more secure because it protects queries from SQL in-
jection, which can insert malicious data into the database. Therefore, the database mod-
eling is slightly different from a traditional SQL design, since it is done using Django’s
models but it follows the same rules for database modeling. The entity-relationship dia-
gram for the web app is shown in Figure 22 at Appendix B.

However, it was necessary to understand how the database was disposed at Post-
greSQL because information for the data analytics would be retrieved through SQL
queries. Figure 23 at Appendix B shows the database schema automatically generated
through Django’s ORM. The SQL queries for retrieving data analytics information are

54 Chapter 4. Calango Online Judge

listed on Appendix C.

4.3 User Interfaces

While authentication and database queries are handled by Django, COJ has its
own functionalities and interfaces, even though it benefits from the framework functions.
This section details COJ’s interfaces, how they work in the backend, and their business
logic.

4.3.1 Authentication

The first page of COJ’s is the login page shown in Figure 6. If an authenticated
user types any URL, he will be redirected to this page. From there, the user can either
log in or recover his password. It is not possible to self sign up. Professors are registered
by the administrator and students are invited by their professors through email.

Figure 6 – Login page

Source: the author

4.3.2 Home

The first link in the sidebar is the home page and it is where professors and stu-
dents are redirected after login. For both students and professors, there is some statistical
information about the submissions and the list of problems as shown in Figure 7. Students
see the data about submissions in their current class, while professors see data from his
active classes. If he wishes to see separated statistics, he must go to the classes page.

4.3. User Interfaces 55

Figure 7 – Home page (professor’s view)

Source: the author

Students can only see data related to their current class. This limitation takes into
consideration students that failed the course and is doing it for a second time. This way
they cannot see past submissions and problems, which would be an advantage over other
students. Besides the statistics from Figure 7, students see their average attempts per
question and his class’s average as well.

4.3.3 Scheduled Lists

The second link of the sidebar takes users to the scheduled lists page which is
shown in Figure 8. Students have the same view except that instead of the class name in
the last column of lists, they see if the list is closed or open according to the start date
and due date.

In the backend, there is a difference between lists and their schedules. Lists are
merely a group of problems. Schedules are used for assigning lists to a class with a start
and due date. For example, a professor can create a list called "Repetition Structures"
and schedule it for class "A" with a due date of five days. He can schedule the same list
for class "B" with a due date of seven days.

Each class of the example would have its own results for the same list with different
deadlines. This data modeling requires the professor to create a list just one time and have
different deadlines for different course classes. Scheduled lists appear to students once the
start date and time have passed, and submissions are no longer accepted after the due
date. However, they still can see the problems description and test cases, besides their
results.

56 Chapter 4. Calango Online Judge

Figure 8 – Scheduled lists page (professor’s view)

Source: the author

When the user clicks on a list name, he is taken to the page’s detail page shown
in Figure 9, where the list’s problems are listed. Moreover, students see their status on
each problem and their overall score, while professors see the number of conclusions of
each problem. Professors also see buttons for editing the schedule and to go to the result’s
page.

Figure 9 – Schedule’s detail page (professor’s view)

Source: the author

4.3. User Interfaces 57

4.3.4 List Results

Professors have a dedicated page for seeing students’ results that is shown in Figure
10. This page shows all students from the class for which the list was scheduled, followed
by their result on each problem. Icons indicate if there is an accepted submission followed
by numbers which are the number of submissions for that problem. In the last column,
there is a percentage of conclusions indicating how many problems the student concluded
for this scheduled list. Also, professors have an option to download the results as a CSV
file.

Figure 10 – Schedule’s results page

Source: the author

4.3.5 Problems

Questions are divided into 5 categories: Sequential Structures, Conditional Struc-
tures, Repetition Structures, Modularization, and Vectors as shown in Figure 11. Profes-
sors can view all problems registered in the system and create new ones, whereas students
can only see non-evaluative problems from this page because evaluative problems are only
available to them through lists.

The problem’s details interface shown in Figure 12 is similar for students and the
professor. Professors view a pencil icon to edit the question and a button to test the
problem by submitting a solution. This functionality is important to check if test cases
are correct.

Students have the submit button and a limited view of test cases since there
are hidden ones to avoid deceit and to stimulate students to solve possible scenarios by
themselves. If the problem’s list has passed the due date, a "Closed" message replaces the

58 Chapter 4. Calango Online Judge

Figure 11 – Problems page

Source: the author

button. If there is already an accepted submission, the button is replaced by a "Concluded"
message, preventing a new submission. The submission URL is also protected in case
students try to access the submission page directly.

Figure 12 – Problem’s details page

Source: the author

4.3.6 Submissions

Submissions’ page interface is shown in Figure 13. Submissions have a time of
submission and judging. It is important to differ both because in case of failures there

4.3. User Interfaces 59

is a command to rejudge submissions. If this happens, the judging time will be updated
accordingly.

Students see all of their own submissions referring to their current class, for either
evaluative or non-evaluative problems. They are taken to this page right after submitting
code to a problem. The result status shows "Waiting" until the microservice returns a
result, which is shown by refreshing the page. Professors have a search box at their disposal
to search for submissions that are from their active classes.

Figure 13 – Submissions page

Source: the author

Submissions have an identifier, in case a student wants to refer to it when talking
to the professor. It is also possible to check the submission code for both user types.
For professors, it is an important feature to check how their students are coding and for
manual analysis, if necessary. Submissions are linked to a question and a list. If a student
submits to the same question that is linked to different lists, he will have a different result
for each list.

4.3.7 Classes

The classes page is exclusive for professors and is shown in Figure 14. From there,
it is possible to create a new class, edit class, deactivate class, add students, remove
students, view the list of students, view the list of activities (lists and non-evaluative
problems), see class’s statistics, and go to inactive classes.

Once a professor creates a course class, he can add as many students as he wishes
at the same time. The form receives students’ full names and registration numbers in a
CSV format with a ";" separator. This method was chosen based on the University of

60 Chapter 4. Calango Online Judge

Figure 14 – Classes page

Source: the author

Brasília (UnB) system, which presents classes in this format. This way, professors can
copy the list of students from the University system and paste it into COJ.

After submitting the list of students, they will be added to the class in a back-
ground process, because it is a long-running task. COJ sends an invitation email to stu-
dents’ institutional email and allocates them to a class selected by the professor. UnB’s
institutional emails are formed by the registration number, therefore professors only need
to inform name and registration number. If the professor informs an email, emails are
sent to the email informed instead of the institutional.

During deactivation, students are set to inactive users, and they lose access to
COJ. However, their data is kept to preserve their course history. This happens because
COJ displays data of an active class for students. If they are not in an active class, there
is nothing for them to see in COJ. Once they are allocated to a new class, they regain
access.

4.3.8 Help

This page is shown in Figure 15. It has only static content and it is visible and
identical for both students and professors. For each result from the judge, there is a general
explanation of when it happens, steps to correct it in case it is an error, and what are the
possible causes.

4.4. DevOps 61

Figure 15 – Help page

Source: the author

4.4 DevOps
Since this project is service-oriented, it has two remote repositories. One for the

web platform and one for the judge service. Both repositories follow the same rules for
continuous development and have the same configuration, except language-specific set-
tings.

Continuous deployment was implemented through GitHub Actions and the infras-
tructure is hosted by DigitalOcean. Continuous deployment was important to advance
quickly in the Prototype Cycle because new modifications came as fast as possible to
testing users.

Docker and Docker Compose were chosen for supporting this development pipeline
with a container-based approach. Service-oriented architectures benefit from Docker be-
cause a container image turns a given service into a black box, only exposing its API in
exchange for resources, while Docker Compose can orchestrate any number of services with
guaranteed low coupling because containers are sealed from one to another (GOUIGOUX;
TAMZALIT, 2017).

4.4.1 Pipeline

The continuous deployment pipeline is shown in Figure 16 and starts with a commit
from the local repository to the remote repository. Once the commit reaches the remote
repository, GitHub automatically triggers GitHub Actions. This behavior is enabled by
adding workflow files to the .github folder.

These files detail the pipeline and GitHub Actions jobs. In both repositories, the

62 Chapter 4. Calango Online Judge

Figure 16 – Deployment pipeline

Source: the author

first job is to build the Docker image using the existing Dockerfile in each repository.
Then, the built image is sent to GitHub Packages, which is a hosting service for software
packages.

Considering that images hosted in GitHub packages have open access, it is impor-
tant to take care of some security details. Credentials and environment variables cannot
be shipped with the image. Therefore, all of the sensitive information is passed to the con-
tainer at the running time, this way the image does not carry confidential information.

Once the image is ready, the next job connects to the DigitalOcean server (called
droplet) through Secure Shell (SSH). The server already contains the project’s Docker
Compose file pointing to the images hosted by GitHub Packages. Considering the last
job has created a new image, it is necessary to update the server’s images by calling
docker-compose pull. Then, containers are recreated with docker-compose up.

4.4.2 Infrastructure

The server configuration was chosen according to the number of expected users in
the experiment, which was around 60 users. DigitalOcean’s servers are called droplets and
developers can choose any amount of resources they desire. For the experiment, a basic
droplet of 1vCPU, 1 GB RAM, and 25 GB SSD was chosen.

The server was up and running during the whole time for students to submit their
code, for a period of one month and a half. CPU usage was kept below 15% on average
and RAM usage was kept between 60% and 80% percent. A great percentage of this usage
is due to the Docker containers and not to the traffic. Therefore, a dozen of additional
users would have minimal impact on resource consumption.

4.5 Chapter Summary
This section describes in detail the development and implementation of COJ. From

the technological perspective, it starts by eliciting system requirements, illustrating the
architecture, and explaining how modules communicate. From the user’s perspective, it

4.5. Chapter Summary 63

maps the user journey of the platform and how to perform some actions. Lastly, it gives
a full picture of its infrastructure and how it is served to end-users.

65

5 Results and Discussion

This chapter presents the results of the surveys and the data collected from COJ.
There were two cycles of experimentation in 2021 in a course that is destined for freshmen
and introduces computer programming. The first cycle occurred from February until May
with one class that is referred to as the class "2020.2 (14A)". The second cycle occurred
from July until November with two classes that are referred to as "2021.1 (CC)" and
"2021.1 (DD)". This course is generally taught in person, but due to the COVID-19 pan-
demic, students had remote classes from the beginning to the end. The following sections
detail results from surveys and data analytics.

5.1 Surveys
All the students enrolled in these classes had the opportunity to respond to the

three surveys. However, they were not obligated to do it because when responding by
obligation answers may not be sincere. Therefore, the number of participants in each
survey may change. Another determining factor is the possibility of dropping out of the
class, hence the number of students at the end of the course may not be the same number
that enrolled. Table 5 shows how many students from each class responded to surveys.

Table 5 – Amount of responses to the surveys

Classes
2020.2 (14A) 2021.1 (CC) 2021.1 (DD) Total

Students 59 79 66 204

Su
rv

ey
s First 74.6% 98.7% 81.8% 86.3%

Second 59.3% 58.2% 36.4% 51.6%
Third 49.2% 38.0% 37.9% 41.2%

Source: the author

Each survey is applied at a different time during the semester because questions
are related to the time they are in the course. Students were not directly identified but
were required an email to respond to the survey in order to avoid duplicate answers.
Questions descriptions and results are shown on Appendix D. Below there is a description
of the purpose of each survey and what period they are shared with students.

• First Survey: It is applied at the beginning of the semester when students did
not have any contact with the methodology yet. Approaches students’ profiles and

66 Chapter 5. Results and Discussion

expectations towards the course. These questions are important to certify if stu-
dents are willing to dedicate themselves to the methodology by inquiring about
their interest in trying it, which is a condition for obtaining relevant results in this
experiment.

• Second Survey: It is applied right after finishing with Calango and going into C
language. It intends to evaluate the user experience of both Calango and COJ with
questions about their impressions and the SUS questionnaire (Questions 1 and 3).
It gathers students’ opinions about Calango before going to C.

• Third Survey: It is applied at the end of the semester when the term is completed.
It has questions of the methodology as a whole and gathers students’ views after
going through C language and the URI online judge.

5.2 First Survey Results

The majority of the respondents are pursuing Software Engineering, and they
represent 30.1% of the total and other Engineering degrees make up together 47.7%. The
rest of the students are from other degrees or have not decided their major yet. Class
2020.2 (14A) is formed mostly by Software Engineering undergraduates. Class 2021.1
(CC) is formed mostly by Aerospace Engineering undergraduates, undecided students,
and Software Engineering undergraduates. Lastly, Class 2021.1 (DD) is formed mostly by
Software and Aerospace Engineering undergraduates.

None of the respondents consider computer programming NOT relevant for their
professional life, and the majority consider it VERY relevant (68.2%), which affects the
experiment positively by assuming that if they consider it important, they will put an
effort to learn. Students that assigned the lowest relevance (slightly) from responses are
all from Class 2020.2 (14A).

First semester students represent the majority being 56.3% of the participants,
while 17.6% are in the 5th semester or beyond. Class 2021.1 (CC) has the highest per-
centage of first-semester students. The following questions reflect this distribution because
Class 2021.1 (CC) has the least percentage of students that have been in contact with pro-
gramming languages before this course. However, as a single group, most of the students
have been in contact with programming languages somehow.

Lastly, more than half of the students have not experienced Calango or an online
judge of any kind, but they all presented great interest in having this experience. Merely
7.4% did not want to use Calango or did not think it is necessary and 5.7% thought there
were no benefits for them in using an online judge or did not want to experience it.

5.3. Second Survey 67

5.3 Second Survey
In relation to questions about Calango, students demonstrated enthusiasm with

the tool, and besides one unsatisfied student and the indifferent responses (11.4%), all
respondents were satisfied or very satisfied in using Calango as a programming tool.
By reading the open responses of Question 12, we believe that the indifference comes
from students that already know how to program, but did not feel harmed by Calango
and understood the importance for their novice colleagues. One of these responses is
transcribed below.

"[...] As I already have a knowledge of programming, I found it boring to use
Calango, but I believe that for beginners it must have been very useful."

Regarding students that were satisfied but not very satisfied, all the suggestions
for improvement in Calango are related to the help tab, which works as a manual and is
accessible through the IDE. From one experiment to the other, some of these suggestions
were addressed and implemented. These suggestions are transcribed below.

"As a suggestion, I think it would be in everyone’s interest to have an improved
Calango help tab [...]"
"I think it would be important to have a tab on the help page dedicated to the
number of decimal places and their formatting in Calango."
"Improvement in the examples in the help area of calango, especially in the
part of conditionals and repetitions."
"t would be ideal if the help box from Calango was complemented with some
information, such as the possibility of choosing the number of decimal places
of a number [...]"

Questions addressing COJ had three subjects: overall satisfaction, adequacy of
the content, and new features. Although most of the students were satisfied (48.6%) or
very satisfied (29.5%) using COJ, there were more unsatisfied students with it than with
Calango, although it is a small percentage.

By reading open-ended responses and doing qualitative analysis, we believe that
this slightly higher dissatisfaction is more related to the nature of both applications than
with the quality of these platforms. While Calango is only related to their individual
learning, COJ is used as an evaluative platform. That is, any problem with Calango
IDE does not affect their final grade, while difficulties with COJ may affect their lists’
conclusions and their grade. Therefore, most of the students’ complaints on open-ended
responses are related to difficulties in getting an accepted submission. Some of these
complaints are transcribed below.

68 Chapter 5. Results and Discussion

"[...] I received wrong answer several times, in which I did 34 tests and all cor-
rect, and even with help from colleagues and monitors I analyzed my program,
and without being able to identify the error I gave up submitting [...]"

"Certain codes output correct results in all ways but were not accepted by COJ
[...]"

"[...] better specify the problem that is preventing the algorithm from work-
ing, pointing out precisely the problem [...]"

"[...] it had some errors and I couldn’t identify the error by myself [...]"

"[...] I think it would be easier to understand if it showed where the error
is."

"COJ should have optional features to show where the programmer’s error
is [...]"

During the experiment, both the professor and the developer watched students
closely and addressed as fast as possible any possible problems with COJ, especially
because it is evaluating students. In the first list, there were a lot of students complaining
that their code was correct and they did not receive an acceptance. By analyzing their
submission using their ID, it was possible to see that students were missing requirements
from the problem, which was a recurrent problem. They had difficulties understanding
that if they did not strictly follow orientations from the problem, they would not get an
accepted submission.

In relation to the adequacy of content, Table 6 shows a summary of students’
positive responses from the survey. These questions are important to verify if the envi-
ronment and problems were coherent with the course, and would not be a negative factor
in the overall performance of the judge. For example, if students had been unsatisfied
with COJ but marked that problems were too difficult, their dissatisfaction would not be
concentrated on the tool itself, but on the quality of the problems.

Some of the negative responses about the adequacy of content were justified in
the open field of Question 12. One problem of online judges is the inflexibility of output
responses and some students were frustrated to keep fixing a functionally correct code
but with wrong output formatting. Some suggested a more informative output, but this
is controversial because results too informative keep students from thinking by themselves.

We also seized the opportunity to collect students’ opinions on feature ideas, such

5.3. Second Survey 69

Table 6 – Percentage of students that selected positive impressions about COJ’s attributes
in survey questions.

Impression about COJ Percentage of students

Judgment was fair or very fair 78.1%

Problems’ difficulty level was adequate 70.5%

Problems’ descriptions were adequate, well
written, or very well written

97.1%

Number of problems per list was balanced 87.6%

as theoretical questions and non-evaluative problems. The former was approved by ap-
proximately half of the students but it was discarded by us because we analyzed that the
professor already disposed of other mature tools for theoretical questions, such as Moodle,
which turned it less of a priority. Regarding non-evaluative problems, students showed a
higher interest in them, therefore we developed it for the second cycle, and although it
did not have lots of questions available, it was a well-received functionality.

Students’ responses also revealed that charts do have an impact on them. There-
fore, we added more charts for them in the second cycle of experimentation. Moreover,
the professor also has a dedicated page for seeing classes statistics besides the home page,
which presented itself as a necessity for him after the first cycle.

Apart from the questions discussed above, we applied SUS questionnaires for
Calango and COJ and obtained scores are listed in Table 5.3. According to Bangor,
Kortum and Miller (2008), products should be above the 70 marks to be considered ac-
ceptable, but do not guarantee high acceptability in the field. Considering the results
obtained and their confidence interval, Calango and COJ can be considered acceptable.
From the first cycle to the second one, there were improvements in navigation and infor-
mation available for users.

Table 7 – SUS scores obtained from survey

Tool Class Average Standard
deviation

Standard
error

Confidence
interval
(95%)

Calango
2020.2 (14A) 75.1 16.8 2.8 ±5.6
2021.1 (CC) 78.1 16.0 2.4 ±4.6
2021.1 (DD) 83,5 13.2 2.7 ±5.3

COJ
2020.2 (14A) 73.7 21.9 3.7 ±7.3
2021.1 (CC) 75.8 19.9 2.9 ±5.8
2021.1 (DD) 79.1 22.2 4.5 ±8.9

Source: the author

70 Chapter 5. Results and Discussion

5.4 Third Survey Results

One interesting result of this survey is that 84.5% of the students think that
Calango made their learning easier, however, only 57.1% of the students attributed this
event to the fact that Calango is in Portuguese. At first, one may think this refutes the
importance of teaching novices in their native language but there is one other question
that explains this distribution of opinions and we discuss this possibility below.

We questioned students about their English knowledge, and only 19.0% affirmed
that they had basic knowledge, whereas the majority affirmed that they have advanced
knowledge in English. Therefore, it makes sense that these students did not see Portuguese
as a decisive factor to facilitate their learning, although it is not a hindrance. We believe
that the students that have knowledge in English and are part of the 84.5% that agreed
that Calango facilitates learning were more impacted by Calango’s simplicity, pseudocode
nature, and proximity to C language which prepared them for the next course activities.

This survey also questions students about the course’s workload, rhythm, content
coverage, and overall impression of the class, which all received positive feedback from the
majority. Regarding online judges, 88.1% think that they reinforce their practical abilities
and 75.0% think that their code quality was promoted by online judges. However, one
particular result is concerning. When asked about which methodology makes them more
motivated, only 65.5% of the students chose the online judge over the professor’s manual
testing.

If we go back to the previous survey and read open-ended responses, most of the
students’ frustration is turned towards receiving many unaccepted submissions and not
finding the error. COJ and URI are not different from other online judges and this result
may indicate that future works should focus on how to keep students motivated while
using an online judge and how to improve their abilities in finding problems in their code
without someone explicitly telling them.

Going to open-ended responses, we can highlight the feedback of a student that
had taken this course without Calango and a student that suggested an improvement
to the methodology that was incorporated in the following classes of 2021.1. They are
transcribed below.

"This was the second time I took the discipline. The method that the professor
approached this semester really made me learn! [...]

"[Apply a] Similar project to that done as a final project in C but in calango
before the content transition to C would help to scale larger programs."

5.5. Data Analytics 71

5.5 Data Analytics
During the experiment, COJ received 9407 submissions from the three classes and

general student results are listed in Table 8. The professor applied 5 lists with 5 evaluative
problems each, and it was necessary to solve 75% of the total 25 evaluative problems as a
condition to pass this course. Non-evaluative problems were available only at the second
cycle because it was a feature derived from the first cycle.

Table 8 – General students results from COJ
Students that... 2020.2 (14A) 2021.1 (CC) 2021.1 (DD) Total

enrolled in the course 59 79 66 204

submitted at least one source code to EP 79.7% 94.9% 95.4% 90.7%

solved at least one EP 78.0% 94.9% 92.4% 89.2%

solved 100% of EPs (x=25) 25.4% 54.4% 33.3% 39.2%

solved between 75% and 99% of EPs (19<=x<25) 25.4% 19.0% 43.9% 28.9%

solved between 50% and 74% of EPs (13<=x<19) 11.9% 16.5% 6.1% 11.8%

solved between 25% and 49% of EPs (6<=x<13) 8.5% 2.5% 6.1% 5.4%

solved between 1% and 25% of EPs (1<=x<6) 6.8% 2.5% 3.0% 3.9%

solved all EPs tried 63.8% 80.0% 66.7% 64.7%

tried at least one NEP - 25.3% 21.2% *23.4%

solved at least one NEP - 25.3% 19.7% *22.8%

*percentage considering only classes CC and DD
EP=Evaluative problem; NEP=Non-evaluative problem

Source: the author

With regard to submission statistics, Figure 17 shows the number of submissions
that were accepted or not and Figure 18 shows detailed information about unaccepted
submissions in each list. The most common error was WRONG ANSWER. This may be
alarming at first but it is not different from the results of other online judges (RUBIO-
SÁNCHEZ et al., 2014; MANZOOR, 2006).

It is possible to see in Figure 17 that unaccepted submissions start high in the
first list and drop as students progress list by list, but in List 4 there is an increase in
this average. The high amount of submissions in the first list is normal since students
are getting to know the online judge and how it works. However, the high amount in the
fourth list is peculiar. Looking deeper into the data, we found that particularly 2 questions
from list 4 raised this average: a Fibonacci problem and a date validator problem.

The Fibonacci problem raised the PRESENTATION ERROR counting because
it was the first question to request inline outputs and most of the students wrongly
printed a space at the end of their output. The date validator was one of the problems
with many extreme cases and this raised the WRONG ANSWER counting because it

72 Chapter 5. Results and Discussion

Figure 17 – Number of accepted and unaccepted submissions per list

Source: the author

Figure 18 – Distribution of errors of unaccepted submissions per list

Source: the author

5.5. Data Analytics 73

required students to think through all the possibilities and many were not covering all
cases, especially the hidden ones.

Apart from this raise in List 4, the decrease in the average of unaccepted sub-
missions from students is an indicator of progress. Of course, COJ requires a piece of
knowledge on how to operate online judges, such as knowing how to print outputs accord-
ingly, but we can also infer that students progressed in their problem-solving ability, since
questions got more difficult but their error rate decreased. To reinforce this hypothesis,
Figure 19 shows the error rate by student in each question. It shows that students have
around 2 errors until they get an accepted submission and, in the last list, the average
is under 1, which implies that most of students got an accepted submission on their first
attempt.

Figure 19 – Average number of unaccepted submissions per student on each question of
a list.

Source: the author

Another interesting aspect to analyze is how students dealt with deadlines. Table
9 details the periods in which the lists were open for each class. Initially, every list was
supposed to be opened for eights days. System maintenance was responsible for leaving
only seven days for one of the lists. Regarding lists with nine days, the professor provided
extensions to attend to students’ requests, but these lists were scheduled with an eight-day
duration at first.

Students’ submissions over time may indicate success in solving all problems. Let
us consider a successful result as the student solving all 25 evaluative problems available,

74 Chapter 5. Results and Discussion

Table 9 – Deadlines of each list applied during the experiment

Class List Start End Days

2020.2 (14A)

1 05/02/2021 10:00 12/02/2021 23:59 8
2 13/02/2021 13:00 19/02/2021 23:59 7
3 19/02/2021 14:00 26/02/2021 23:59 8
4 26/02/2021 14:00 05/03/2021 23:59 8
5 05/03/2021 14:00 12/03/2021 23:59 8

2021.1 (CC)

1 23/07/2021 08:00 30/07/2021 23:59 8
2 30/07/2021 08:00 06/08/2021 23:59 8
3 06/08/2021 08:00 13/08/2021 23:59 8
4 13/08/2021 08:00 21/08/2021 23:59 9
5 20/08/2021 08:00 28/08/2021 23:59 9

2021.1 (DD)

1 23/07/2021 08:00 30/07/2021 23:59 8
2 30/07/2021 08:00 06/08/2021 23:59 8
3 06/08/2021 08:00 13/08/2021 23:59 8
4 13/08/2021 08:00 21/08/2021 23:59 9
5 20/08/2021 08:00 28/08/2021 23:59 9

Source: the author

and compare them with students who did not solve 100% of the problems. Figure 20
shows that the group who completed all problems have worked on them along all week,
and their percentage amount of submissions is well distributed across all days, while the
other group has a higher difference in percentages between the farthest and closest days
to deadlines.

We only compared students from the experiment with themselves to detect behav-
ior that can lead to success, that is, solving all problems. However, to validate COJ as
an effective methodology, it is necessary to compare it with a control group. Considering
that after learning Calango and using COJ, students start learning C and using the URI
online judge, it is possible to compare URI results from the experimental group with a
control group.

Table 10 list four 2019 classes that will compose the control group. They had the
same course, professor, and syllabus, but they did not use COJ. Another difference is
that the control group had in-person classes, and the experimental group did not. The
four URI problems listed by their identifier were applied to each class and the number of
average attempts per student is provided by URI.

If we aggregate results from the control and experimental groups, the experimental
group needed fewer attempts in three of the four problems. Still, we see that there is a
visible difference between classes. Although in surveys students’ responses for each class
are very close, the data analysis shows that classes are different from one another and it
turns out their groups of students were not as random as expected. This difference was also
observed in the action research. Class 2020.2(14A) was attentive but less participating,

5.5. Data Analytics 75

Figure 20 – Students’ submissions per day of list grouped by problems solved

Source: the author

Table 10 – Students’ average attempts until acceptance per URI problem
Control classes Experimental classes

2019.1
(DD)

2019.1
(EE)

2019.2
(DD)

2019.2
(EE)

2020.2
(14A)

2021.1
(CC)

2021.1
(DD)

P
ro

bl
em

s #1008 2.9 3.2 4.2 2.8 1.9 2.4 3.1
#1015 1.9 2.9 3.0 2.3 2.0 2.9 2.8
#1019 1.8 2.4 2.1 2.1 1.7 1.8 2.1
#1115 2.1 1.8 2.4 2.3 1.7 2.2 2.1
Average 2.2 2.6 2.9 2.4 1.8 2.3 2.5

Source: the author

class CC was proactive but less efficient, and class DD was less participating and less
efficient.

Going back to COJ’s data, Figure 21 separates students per class and by the
following criteria: percentage of the conclusion of lists, freshmen or veterans, and gender.
Proportions by gender seem to be regular among classes, but lists conclusion and number
of freshmen differ in class CC. Interestingly, they differ proportionally, that is, the higher
the number of freshmen, the higher the number of students who conclude 100% of the
lists.

This directly proportional difference takes us to a second analysis, in which we
check the percentage of students that concluded 100% of lists and are also freshmen.

76 Chapter 5. Results and Discussion

Figure 21 – Number of students per class grouped by list conclusion, gender, and semester

Source: the author

Results show that 55,45% of 101 freshmen students (1st semester) concluded 100% of EPs,
whereas only 23,30% of non-freshmen (>1st semester) concluded 100% of EPs. This makes
sense if we hypothesize that many of the veterans of this course are probably working as
well and therefore having less time to dedicate to the course. Regarding veterans from the
5th semester and beyond, they are probably in courses other than software engineering
that do not have programming as a direct requirement, which makes them not dedicate
themselves as much as software engineering students.

Another analysis from a different perspective shows that veterans do not have more
difficulties than freshmen to conclude EPs. Table 11 shows average attempts of concluded
EPs per student for crossed groups. Independently of list conclusion percentage, veterans
have similar averages to conclude EPs, whereas freshmen that did not conclude 100% of
EPs (row=<100% & column=1st semester) have the highest average of them all (3.08).
We can infer that veterans that do not conclude 100% of EPs are probably more affected
by the time they have available to dedicate to the course than difficulties in solving
problems.

Table 11 – Average attempts per student for each concluded EP grouped by list conclu-
sion, gender, and semester

Men Women
1st semester 2.52 2.71

>1st semester 2.16 2.31 1st semester >1st semester
<100% 2.63 2.22 3.08 2.27
=100% 2.17 2.51 2.28 2.10

Source: the author

5.6. Threats to Validity 77

5.6 Threats to Validity
This work may suffer interference from many factors attached to the environment

of experimentation or the survey instruments. Although it does not diminish the contri-
bution of this work to programming education, it is important to address its limitations.
Therefore, in this section, we discuss some variables that can impact our results.

Regarding the environment, experimental classes were conducted virtually during
all time considering the COVID-19 pandemic, while control classes were conducted in
person. Moreover, classes had different schedules although they all had three meetings
(synchronous or asynchronous) per week with a 2-hour duration at most. Another inter-
fering factor is that this class is for freshmen and each semester freshmen are picked out
from different public exams (Enem or UnB), which makes our sample not so random and
different from one another.

Other environmental conditions were identical or similar, but the differences noted
above may affect student’s behavior. For example, students having classes in the morning
may be more attentive than in the afternoon (or vice-versa). Concerning the experimental
group having virtual classes, it can be either beneficial or harmful.

About research instruments, there are some caveats inherent to unsupervised sur-
vey questionnaires, which are: students may not have been sincere due to fear of giving a
negative answer; students may not pay attention to questions to finish the survey faster;
students perception about a teaching methodology may not assess well their actual learn-
ing (DESLAURIERS et al., 2019).

To mitigate interferences in the research instruments: we added data analytics as
another layer of investigation; we assured students that they would not be identified in
surveys; we did not obligate students to answer the survey as part of class activities to
avoid uninterested responses. Lastly, qualitative results may suffer biases from researchers
and their personal experience, therefore we suggest to readers to interpret qualitative
results having in mind all the quantitative pieces of evidence as well.

5.7 Chapter Summary
This section presents the quantitative and qualitative results from COJ. It starts by

discussing the main results from surveys and data analytics. Overall, students had positive
opinions about this methodology. In relation to their behavior, data show a tendency
of them submitting code closer to the due date. Lastly, this section addresses threats
to validity by discussing interfering variables, such as the pandemic, classes’ different
schedules, and biases from students and researchers.

79

6 Conclusion

This work approached the development of the Calango Online Judge (COJ) and
the first cycle of experimentation on an undergraduate course class. The experiment was
conducted through two cycles of action research, in which we applied surveys. We also
seized the opportunity to question students about Calango as well. Between cycles, there
were improvements in the software. Our main findings were:

• Most students had a satisfactory experience with COJ and Calango as programming
tools.

• The main problem with online judges is how to keep students motivated to keep
trying when they get a lot of unaccepted submissions and do not find their errors.

• Students concentrate their submissions closer to the deadline. However, students
that solved all problems present a better distribution of submissions along all week-
days.

• Comparing the same problems of URI Online Judge across control groups and the
experimental group, we found that, in general, students that used Calango with
COJ needed fewer attempts to solve these problems than students that did not use
COJ while learning with Calango.

• Classes are not as random as expected. Each class has a different characteristic that
may work better with different approaches.

In summary, our main contributions to the area are that we found that teach-
ing non-English speaking novices in their native language is significantly important for
their learning, whereas English-speaking students benefit most from simpler languages
before going into more complex languages. Also, online judges improve their abilities but
professors should monitor their motivation and frustration while getting their code auto-
matically tested, besides analyzing the frequency of their submission along weekdays to
predict their final result. Future works may include the addition of new features to COJ
and other experiments comparing the usage of Calango and COJ with classes that learn
C language without them.

81

References

ACM Library. Association for Computing Machinery, 2021. Available at: <https:
//dl.acm.org>. Accessed on: August 14, 2021. Cited on page 41.

ALA-MUTKA, K. M. A survey of automated assessment approaches for programming
assignments. Computer science education, Taylor & Francis, v. 15, n. 2, p. 83–102, 2005.
Cited on page 36.

ALEKSIĆ, V.; IVANOVIĆ, M. Introductory programming subject in european higher
education. Informatics in Education, Vilnius University Institute of Data Science and
Digital Technologies, v. 15, n. 2, p. 163–182, 2016. Cited 2 times on pages 30 and 33.

ALEMAN, J. L. F. Automated assessment in a programming tools course. IEEE
Transactions on Education, v. 54, n. 4, p. 576–581, 2011. Cited on page 35.

AUSUBEL, D.; NOVAK, J.; HANESIAN, H. Educational Psychology: A Cognitive
View. Holt, Rinehart and Winston, 1978. ISBN 9780030899515. Available at:
<https://books.google.com.br/books?id=17cdAAAAMAAJ>. Cited on page 29.

BANGOR, A.; KORTUM, P. T.; MILLER, J. T. An empirical evaluation of the
system usability scale. International Journal of Human–Computer Interaction, Taylor
& Francis, v. 24, n. 6, p. 574–594, 2008. Available at: <https://doi.org/10.1080/
10447310802205776>. Cited 2 times on pages 41 and 69.

BEYNON-DAVIES, P. et al. Rapid application development (rad): an empirical review.
European Journal of Information Systems, Taylor & Francis, v. 8, n. 3, p. 211–223, 1999.
Cited on page 41.

BEZ, J. L.; TONIN, N. A.; RODEGHERI, P. R. Uri online judge academic: A tool for
algorithms and programming classes. In: 2014 9th International Conference on Computer
Science Education. [S.l.: s.n.], 2014. p. 149–152. Cited on page 35.

BROOKE, J. Sus: A ’quick and dirty’ usability scale. In: Usability Evaluation In
Industry. 1st edition. ed. London: Taylor & Francis, 1996. chap. 12, p. 189–194. Cited 2
times on pages 40 and 125.

CANEDO, E. D.; SANTOS, G. A.; FREITAS, S. A. A. de. Analysis of the teaching-
learning methodology adopted in the introduction to computer science classes. In: IEEE.
2017 IEEE Frontiers in Education Conference (FIE). [S.l.], 2017. p. 1–8. Cited on page
25.

CANEDO, E. D.; SANTOS, G. A.; LEITE, L. L. An assessment of the teaching-learning
methodologies used in the introductory programming courses at a brazilian university.
Informatics in Education, Vilnius University Institute of Mathematics and Informatics,
v. 17, n. 1, p. 45–59, 2018. Cited 3 times on pages 26, 30, and 33.

CodeChef. Sphere Research Labs., 2021. Available at: <https://www.codechef.com>.
Accessed on: August 12, 2021. Cited on page 34.

82 References

Codeforces. Mike Mirzayanov, 2021. Available at: <https://codeforces.com>. Accessed
on: August 12, 2021. Cited on page 34.

COLLATTO, D. et al. Is action design research indeed necessary? analysis and synergies
between action research and design science research. Systemic Practice and Action
Research, v. 31, 06 2018. Cited on page 40.

DESLAURIERS, L. et al. Measuring actual learning versus feeling of learning in response
to being actively engaged in the classroom. Proceedings of the National Academy of
Sciences, v. 116, p. 201821936, 09 2019. Cited on page 77.

DigitalOcean. DigitalOcean LLC, 2021. Available at: <https://www.digitalocean.com>.
Accessed on: August 14, 2021. Cited on page 44.

Django Framework (Version 3.1.4). Django Software Foundation, 2020. Available at:
<https://docs.djangoproject.com/en/3.1>. Accessed on: August 14, 2021. Cited on
page 44.

Docker. Docker Inc, 2021. Available at: <https://www.docker.com>. Accessed on:
August 14, 2021. Cited on page 44.

DOUCE, C.; LIVINGSTONE, D.; ORWELL, J. Automatic test-based assessment of
programming: A review. Journal on Educational Resources in Computing (JERIC),
ACM New York, NY, USA, v. 5, n. 3, p. 4–es, 2005. Cited on page 34.

DREW, M. R.; FALCONE, B.; BACCUS, W. L. What does the system usability
scale (sus) measure? In: MARCUS, A.; WANG, W. (Ed.). Design, User Experience,
and Usability: Theory and Practice. Cham: Springer International Publishing, 2018. p.
356–366. ISBN 978-3-319-91797-9. Cited on page 40.

EASTERBROOK, S. et al. Selecting empirical methods for software engineering
research. In: . Guide to Advanced Empirical Software Engineering. London:
Springer London, 2008. p. 285–311. ISBN 978-1-84800-044-5. Available at: <https:
//doi.org/10.1007/978-1-84800-044-5_11>. Cited on page 40.

EZENWOYE, O. What language? - the choice of an introductory programming language.
In: 2018 IEEE Frontiers in Education Conference (FIE). Los Alamitos, CA, USA: IEEE
Computer Society, 2018. p. 1–8. Available at: <https://doi.ieeecomputersociety.org/10.
1109/FIE.2018.8658592>. Cited on page 33.

FEDORENKO, E. et al. The language of programming: A cognitive perspective. Trends
in Cognitive Sciences, v. 23, n. 7, p. 525–528, 2019. ISSN 1364-6613. Available at:
<https://www.sciencedirect.com/science/article/pii/S1364661319301020>. Cited on
page 29.

FELINTO, C.; GIROTTO, V. Projeto Calango - Editor e Interpretador de Algoritmos.
Bachelor’s Thesis — Universidade Católica de Brasília (UCB), 2012. Cited 2 times on
pages 30 and 31.

FORSYTHE, G. E.; WIRTH, N. Automatic grading programs. Communications of the
ACM, ACM New York, NY, USA, v. 8, n. 5, p. 275–278, 1965. Cited on page 34.

Git. Software Freedom Conservancy, 2021. Available at: <https://git-scm.com>.
Accessed on: August 14, 2021. Cited on page 44.

References 83

GitHub. GitHub Inc., 2021. Available at: <https://github.com>. Accessed on: August
14, 2021. Cited on page 44.

Google Forms. Google LLC, 2021. Available at: <https://www.google.com/intl/pt-BR/
forms/about>. Accessed on: August 14, 2021. Cited on page 41.

Google Scholar. Google LLC, 2021. Available at: <https://scholar.google.com>. Accessed
on: August 14, 2021. Cited on page 41.

GOUIGOUX, J.; TAMZALIT, D. From monolith to microservices: Lessons learned on
an industrial migration to a web oriented architecture. In: 2017 IEEE International
Conference on Software Architecture Workshops (ICSAW). [S.l.: s.n.], 2017. p. 62–65.
Cited on page 61.

GUO, P. J. Non-native english speakers learning computer programming: Barriers,
desires, and design opportunities. In: Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems. New York, NY, USA: Association for
Computing Machinery, 2018. (CHI ’18), p. 1–14. ISBN 9781450356206. Available at:
<https://doi.org/10.1145/3173574.3173970>. Cited on page 29.

HALEY, D. T. et al. Seeing the whole picture: Evaluating automated assessment systems.
Innovation in Teaching and Learning in Information and Computer Sciences, Routledge,
v. 6, n. 4, p. 203–224, 2007. Available at: <https://doi.org/10.11120/ital.2007.06040203>.
Cited on page 36.

IEEE Xplore. IEEE, 2021. Available at: <https://ieeexplore.ieee.org>. Accessed on:
August 14, 2021. Cited on page 41.

IHANTOLA, P. et al. Review of recent systems for automatic assessment of programming
assignments. In: Proceedings of the 10th Koli Calling International Conference on
Computing Education Research. New York, NY, USA: Association for Computing
Machinery, 2010. (Koli Calling ’10), p. 86–93. ISBN 9781450305204. Available at:
<https://doi.org/10.1145/1930464.1930480>. Cited on page 37.

ISO/IEC 25010. ISO/IEC 25010:2011, Systems and software engineering — Systems
and software Quality Requirements and Evaluation (SQuaRE) — System and software
quality models. 2011. Cited on page 47.

KHAN, A. et al. Unit-4 descriptive, experimental and action research. In: Block-2
Research Methods for Distance Education. [S.l.]: IGNOU, 2018. p. 67–96. Cited on page
40.

KURNIA, A.; LIM, A.; CHEANG, B. Online judge. Computers & Education, v. 36,
n. 4, p. 299–315, 2001. ISSN 0360-1315. Available at: <https://www.sciencedirect.com/
science/article/pii/S0360131501000185>. Cited on page 33.

LEWIS, J. R. The system usability scale: Past, present, and future. International
Journal of Human–Computer Interaction, Taylor & Francis, v. 34, n. 7, p. 577–590, 2018.
Available at: <https://doi.org/10.1080/10447318.2018.1455307>. Cited on page 40.

LUCASSEN, G. et al. The use and effectiveness of user stories in practice. In: . [S.l.:
s.n.], 2016. p. 205–222. ISBN 978-3-319-30281-2. Cited on page 47.

84 References

MALIK, S. I. Improvements in introductory programming course: action research
insights and outcomes. Systemic Practice and Action Research, Springer, v. 31, n. 6, p.
637–656, 2018. Cited 2 times on pages 33 and 40.

MANZOOR, S. Analyzing programming contest statistics. Perspectives on Computer
Science Competitions for (High School) Students, v. 48, 2006. Cited on page 71.

MARTIN, J. Rapid Application Development. Macmillan Publishing Company,
1991. (The James Martin productivity series). ISBN 9780023767753. Available at:
<https://books.google.com.br/books?id=o6FQAAAAMAAJ>. Cited on page 41.

MARTINS, A. I. et al. European portuguese validation of the system usability
scale (sus). Procedia Computer Science, v. 67, p. 293–300, 2015. ISSN 1877-0509.
Proceedings of the 6th International Conference on Software Development and
Technologies for Enhancing Accessibility and Fighting Info-exclusion. Available at:
<https://www.sciencedirect.com/science/article/pii/S1877050915031191>. Cited 2
times on pages 41 and 126.

Maven. The Apache Software Foundation, 2021. Available at: <https://maven.apache.
org>. Accessed on: August 15, 2021. Cited 2 times on pages 44 and 51.

MEDEIROS, R. P.; RAMALHO, G. L.; FALCÃO, T. P. A systematic literature
review on teaching and learning introductory programming in higher education. IEEE
Transactions on Education, v. 62, n. 2, p. 77–90, 2019. Cited on page 25.

NGINX (Version 1.19.0). F5 Inc, 2021. Available at: <https://www.nginx.com>.
Accessed on: August 14, 2021. Cited on page 44.

PIETERSE, V. Automated assessment of programming assignments. In: Proceedings
of the 3rd Computer Science Education Research Conference on Computer Science
Education Research. Heerlen, NLD: Open Universiteit, Heerlen, 2013. (CSERC ’13), p.
45–56. Cited on page 36.

PORTNOFF, S. R. The introductory computer programming course is first and
foremost a Language course. ACM Inroads, Association for Computing Machinery,
New York, NY, USA, v. 9, n. 2, p. 34–52, Apr. 2018. ISSN 2153-2184. Available at:
<https://doi.org/10.1145/3152433>. Cited on page 29.

Portugol IDE 2.2. Instituto Politécnico de Tomar, 2006. Available at: <http:
//orion.ipt.pt/~manso/Portugol>. Accessed on: August 14, 2021. Cited 2 times on
pages 31 and 33.

Portugol Studio. Alisson Steffens, 2021. Available at: <http://univali-lite.github.io/
Portugol-Studio>. Accessed on: August 14, 2021. Cited 2 times on pages 31 and 33.

PostreSQL (Version 13.0). The PostgreSQL Global Development Group, 2020. Available
at: <https://www.postgresql.org/docs/13/release-13.html>. Accessed on: August 14,
2021. Cited on page 44.

REVILLA, M. A.; MANZOOR, S.; LIU, R. Competitive learning in informatics: The
uva online judge experience. Olympiads in Informatics, Institute of Mathematics and
Informatics, v. 2, n. 10, p. 131–148, 2008. Cited on page 34.

References 85

ROUSSEL, S. et al. Learning subject content through a foreign language should
not ignore human cognitive architecture: A cognitive load theory approach.
Learning and Instruction, v. 52, p. 69–79, 2017. ISSN 0959-4752. Available at:
<https://www.sciencedirect.com/science/article/pii/S0959475216302584>. Cited on
page 29.

RUBIO-SÁNCHEZ, M. et al. Student perception and usage of an automated programming
assessment tool. Computers in Human Behavior, v. 31, p. 453–460, 2014. ISSN 0747-5632.
Available at: <https://www.sciencedirect.com/science/article/pii/S0747563213001040>.
Cited on page 71.

SERRANO, N.; HERNANTES, J.; GALLARDO, G. Service-oriented architecture and
legacy systems. IEEE Software, v. 31, n. 5, p. 15–19, 2014. Cited on page 50.

SILVA, G. et al. Impact of calango language in an introductory computer programming
course. In: 2020 IEEE Frontiers in Education Conference (FIE). [S.l.: s.n.], 2020. p. 1–9.
Cited 5 times on pages 26, 30, 32, 33, and 39.

SKALKA, J.; DRLÍK, M.; OBONYA, J. Automated assessment in learning and teaching
programming languages using virtual learning environment. In: 2019 IEEE Global
Engineering Education Conference (EDUCON). [S.l.: s.n.], 2019. p. 689–697. Cited on
page 35.

ŠPAČEK, F.; SOHLICH, R.; DULÍK, T. Docker as platform for assignments evaluation.
Procedia Engineering, v. 100, p. 1665–1671, 2015. ISSN 1877-7058. 25th DAAAM
International Symposium on Intelligent Manufacturing and Automation, 2014. Available
at: <https://www.sciencedirect.com/science/article/pii/S1877705815005688>. Cited
on page 36.

SPOJ. Sphere Research Labs., 2021. Available at: <https://spoj.com>. Accessed on:
August 12, 2021. Cited on page 34.

Spring Boot (Version 2.4.0). VMware Inc, 2020. Available at: <https://spring.io/>.
Accessed on: August 14, 2021. Cited on page 44.

Springer. Springer Nature Switzerland AG, 2021. Available at: <https://www.springer.
com>. Accessed on: August 14, 2021. Cited on page 41.

Taylor & Francis Online. Informa UK Limited, 2021. Available at: <https:
//www.tandfonline.com>. Accessed on: August 14, 2021. Cited on page 41.

TONIN, N. A.; BEZ, J. L. Uri online judge: A new classroom tool for interactive
learning. In: Proceedings of the International Conference on Frontiers in Education:
Computer Science and Computer Engineering (FECS). [S.l.: s.n.], 2012. p. 1. Cited on
page 35.

ULLAH, Z. et al. The effect of automatic assessment on novice programming: Strengths
and limitations of existing systems. Computer Applications in Engineering Education,
v. 26, n. 6, p. 2328–2341, 2018. Available at: <https://onlinelibrary.wiley.com/doi/abs/
10.1002/cae.21974>. Cited on page 36.

UVa. University of Valladolid, 2021. Available at: <https://onlinejudge.org/index.php?
option=com_onlinejudge&Itemid=23>. Accessed on: August 12, 2021. Cited on page
34.

86 References

VEERASAMY, A. K.; SHILLABEER, A. Teaching english based programming courses
to english language learners/non-native speakers of english. International Proceedings of
Economics Development and Research, IACSIT Press, v. 70, p. 17, 2014. Cited on page
25.

VERDÚ, E. et al. A distributed system for learning programming on-line.
Computers & Education, v. 58, n. 1, p. 1–10, 2012. ISSN 0360-1315. Available at:
<https://www.sciencedirect.com/science/article/pii/S036013151100193X>. Cited on
page 35.

Visualg 3.0. Emeplus, 2017. Available at: <https://visualg3.com.br>. Accessed on:
August 14, 2021. Cited 2 times on pages 31 and 33.

WANG, G. P. et al. Ojpot: online judge & practice oriented teaching idea in programming
courses. European Journal of Engineering Education, Taylor & Francis, v. 41, n. 3, p.
304–319, 2016. Available at: <https://doi.org/10.1080/03043797.2015.1056105>. Cited
on page 35.

WANG, S. Research on the teaching strategies of senior high school english listening
guided by the meaningful learning theory. International Journal of Liberal Arts and
Social Science, v. 8, n. 10, 2020. Cited on page 29.

WASIK, S. et al. A survey on online judge systems and their applications. ACM Comput.
Surv., Association for Computing Machinery, New York, NY, USA, v. 51, n. 1, Jan.
2018. ISSN 0360-0300. Available at: <https://doi.org/10.1145/3143560>. Cited 2 times
on pages 34 and 36.

WATSON, C.; LI, F. W. Failure rates in introductory programming revisited. In:
Proceedings of the 2014 conference on Innovation & technology in computer science
education. [S.l.: s.n.], 2014. p. 39–44. Cited on page 25.

WILCOX, C. The role of automation in undergraduate computer science education. In:
Proceedings of the 46th ACM Technical Symposium on Computer Science Education.
New York, NY, USA: Association for Computing Machinery, 2015. (SIGCSE ’15), p.
90–95. ISBN 9781450329668. Available at: <https://doi.org/10.1145/2676723.2677226>.
Cited on page 35.

WU, H. et al. Online judge system and its applications in c language teaching. In: 2016
International Symposium on Educational Technology (ISET). [S.l.: s.n.], 2016. p. 57–60.
Cited on page 35.

YI, C.; FENG, S.; GONG, Z. A comparison of sandbox technologies used in online judge
systems. In: Mechanical Design and Power Engineering. [S.l.]: Trans Tech Publications
Ltd, 2014. (Applied Mechanics and Materials, v. 490), p. 1201–1204. Cited on page 36.

ZOWGHI, D.; COULIN, C. Requirements elicitation: A survey of techniques,
approaches, and tools. In: . Engineering and Managing Software Requirements.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. p. 19–46. Available at:
<https://doi.org/10.1007/3-540-28244-0_2>. Cited on page 42.

Appendix

89

APPENDIX A – Source Code Repositories

All the source code used in this work is open at GitHub. See the list of repositories
below:

• Calango Online Judge (COJ) (https://github.com/GeovanaRamos/calango-online-
judge)

• Judge Microservice (https://github.com/GeovanaRamos/calango-judge-service)

• Calango Desktop App (https://github.com/GeovanaRamos/calango)

• Calango Interpreter Package (https://github.com/GeovanaRamos/calango-interpreter)

91

APPENDIX B – Artifacts

Figure 22 – Entity-relationship diagram of the Django application

Source: the author

92 APPENDIX B. Artifacts

Figure 23 – Logical database schema generated by the ORM for PostgreSQL

Source: the author

93

Figure 24 – Sequence diagram showing the interaction between the judge service and the
Calango Interpreter to judge a submission from the Web App

Source: the author

95

APPENDIX C – Data Analytics SQL

1

2 -- GET CLASSES IDs (14A(ID =2) , CC(ID =5) , DD(ID =6))
3 select * from judge_courseclass ;
4

5 -- STUDENTS IN EACH CLASS
6 select identifier , count (*)
7 from judge_enrollment
8 join judge_courseclass jc on jc.id =

→˓ judge_enrollment . course_class_id
9 where course_class_id in (2, 5, 6)

10 group by identifier
11 order by identifier ;
12

13 -- SUBMISSIONS AND STUDENTS THAT SUBMITTED
14 select jc.identifier , count (*) as subs , count(DISTINCT

→˓ student_id) as submitted
15 from judge_submission
16 join judge_listschedule jl on jl.id =

→˓ judge_submission . list_schedule_id
17 join judge_courseclass jc on jl. course_class_id = jc

→˓ .id
18 where jc.id in (2, 5, 6)
19 group by jc. identifier
20 order by identifier ;
21

22 -- STUDENTS BY LIST CONCLUSION (100% = 25)
23 select identifier , count(student_id)
24 from (select jc.identifier , count (*) , student_id
25 from judge_submission
26 join judge_listschedule jl on jl.id =

→˓ judge_submission . list_schedule_id
27 join judge_courseclass jc on jl.

→˓ course_class_id = jc.id
28 where jc.id in (2, 5, 6)
29 and result = ’ACCEPTED ’

96 APPENDIX C. Data Analytics SQL

30 group by jc.identifier , student_id
31 having count (*) = 25
32 order by identifier) as icsi
33 group by identifier
34 order by identifier ;
35

36 -- TRIED NON - EVALUATIVE
37 select identifier , count(DISTINCT student_id)
38 from judge_submission
39 join judge_courseclass jc on jc.id =

→˓ judge_submission . course_class_id
40 where jc.id in (2, 5, 6)
41 group by identifier
42 order by identifier ;
43

44 -- CONCLUDED NON - EVALUATIVE
45 select identifier , count(DISTINCT student_id)
46 from judge_submission
47 join judge_courseclass jc on jc.id =

→˓ judge_submission . course_class_id
48 where jc.id in (2, 5, 6)
49 and result = ’ACCEPTED ’
50 group by identifier
51 order by identifier ;
52

53 -- SUBMISSIONS AND STUDENTS PER LIST
54 select identifier , list_schedule_id , count (*) , count(DISTINCT

→˓ student_id)
55 from judge_submission
56 join judge_listschedule jl on jl.id =

→˓ judge_submission . list_schedule_id
57 join judge_courseclass jc on jl. course_class_id = jc

→˓ .id
58 where jc.id in (2, 5, 6)
59 group by identifier , list_schedule_id
60 order by identifier ;
61

62

63 -- RESULTS PER LIST

97

64 select identifier , list_schedule_id , result , count (*)
65 from judge_submission
66 join judge_listschedule jl on jl.id =

→˓ judge_submission . list_schedule_id
67 join judge_courseclass jc on jl. course_class_id = jc

→˓ .id
68 where jc.id in (2, 5, 6)
69 group by identifier , list_schedule_id , result
70 order by result , identifier , list_schedule_id ;
71

72 -- SUBMISSIONS BY DAY , MONTH AND STUDENT CONCLUSION (100% =
→˓ 25)

73 select identifier ,
74 list_schedule_id ,
75 date_part (’day ’, submitted_at :: date) as day ,
76 date_part (’month ’, submitted_at :: date) as month ,
77 COUNT (*)
78 from judge_submission js
79 join judge_listschedule jl on jl.id = js.

→˓ list_schedule_id
80 join judge_courseclass jc on jl. course_class_id = jc

→˓ .id
81 where (jc.id = 2 and student_id in
82 (select student_id
83 from judge_submission
84 join judge_listschedule jl on jl.id = judge_submission .

→˓ list_schedule_id
85 join judge_courseclass jc on jl. course_class_id = jc.id
86 where jc.id = 2 and result = ’ACCEPTED ’
87 group by student_id
88 having count (*) = 25)
89)
90 or (jc.id in (5, 6) and student_id in
91 (select student_id
92 from judge_submission
93 join judge_listschedule jl on jl.id = judge_submission .

→˓ list_schedule_id
94 join judge_courseclass jc on jl. course_class_id = jc.id
95 where jc.id in (5, 6) and result = ’ACCEPTED ’

98 APPENDIX C. Data Analytics SQL

96 group by student_id
97 having count (*) = 25)
98)
99 group by identifier , list_schedule_id , day , month

100 order by identifier , list_schedule_id , month , day;
101

102 -- NUMBER OF VETERANS (registration_number < ...) AND
→˓ FRESHMAN (registration_number > ...)

103 select identifier , count(DISTINCT student_id)
104 from judge_courseclass jc
105 join judge_enrollment je on jc.id = je.

→˓ course_class_id
106 join accounts_student "as" on je. student_id = "as".

→˓ id
107 where (((jc.id = 2 AND registration_number > 202000000)
108 OR (jc.id in (5, 6) AND registration_number > 211000000))

→˓)
109 group by identifier ;
110

111 -- NUMBER OF WOMEN AND MEN (change list of registration
→˓ numbers)

112 select identifier , count(DISTINCT student_id)
113 from judge_courseclass jc
114 join judge_enrollment je on jc.id = je.

→˓ course_class_id
115 join accounts_student "as" on je. student_id = "as".

→˓ id
116 where registration_number in (--SUPRESSED)
117 group by identifier ;
118

119 -- concluded all EPs (=25) AND FRESHMAN / VETERAN
120 select identifier , count(DISTINCT student_id)
121 from (select jc.identifier , student_id , count (*)
122 from judge_submission
123 join judge_listschedule jl on jl.id =

→˓ judge_submission . list_schedule_id
124 join judge_courseclass jc on jl.

→˓ course_class_id = jc.id
125 join accounts_student "as" on "as".id =

99

→˓ judge_submission . student_id
126 where jc.id in (2, 5, 6)
127 and ((jc.id = 2 AND registration_number < 202000000)
128 OR (jc.id in (5, 6) AND registration_number <

→˓ 211000000))
129 and result = ’ACCEPTED ’
130 group by jc.identifier , student_id
131 having count (*) = 25
132 order by identifier) as icsi
133 group by identifier ;

101

APPENDIX D – Surveys

This chapter presents the questions of each survey and their results. It is important
to remind that these questions and their options were presented to students in Portuguese.

D.1 First Survey Results

Figure 25 – (S1Q1) What degree do you pursue?

Source: the author

102 APPENDIX D. Surveys

Figure 26 – (S1Q2) How important do you think programming knowledge is to the degree
you have chosen (or intend to choose) and to your professional life?

Source: the author

Figure 27 – (S1Q3) What semester of your degree are you in?

Source: the author

D.1. First Survey Results 103

Figure 28 – (S1Q4) Have you ever been in contact with programming languages?

Source: the author

Figure 29 – (S1Q5) If you have been in contact with programming languages, mark the
languages with which you had contact.

Source: the author

104 APPENDIX D. Surveys

Figure 30 – (S1Q6) Have you ever heard of the Calango language?

Source: the author

Figure 31 – (S1Q7) In relation to Calango and your expectations regarding the course,
you. . .

Source: the author

D.1. First Survey Results 105

Figure 32 – (S1Q8) Do you know what an online judge is?

Source: the author

Figure 33 – (S1Q9) In relation to online judges and your expectations regarding the
course, you. . .

Source: the author

106 APPENDIX D. Surveys

D.2 Second Survey Results

Figure 34 – (S2Q2) Regarding the use of CALANGO as a tool and programming lan-
guage, in general, you were. . .

Source: the author

Figure 35 – (S2Q4) Regarding the use of COJ as an online judge, in general, you were. . .

Source: the author

D.2. Second Survey Results 107

Figure 36 – (S2Q5) What did you think about COJ’s judgment?

Source: the author

Figure 37 – (S2Q6) In your opinion, would it be interesting to have more questions in
COJ, in addition to the lists, for practicing?

Source: the author

108 APPENDIX D. Surveys

Figure 38 – (S2Q7) In your opinion, would it be interesting for the COJ to approach
theoretical content, such as multiple-choice questions?

Source: the author

Figure 39 – (S2Q8) What did you think about the level of COJ problems?

Source: the author

D.2. Second Survey Results 109

Figure 40 – (S2Q9) What did you think about the quality of COJ problems and their test
cases?

Source: the author

Figure 41 – (S2Q10) What did you think about the number of questions on the lists?

Source: the author

110 APPENDIX D. Surveys

Figure 42 – (S2Q11) Did the submission chart on COJ’s home page encourage you to
make better submissions to improve your results?

Source: the author

Table 14 – (S2Q12)(2021.1(DD)) If you want to add something, use the field below to
commend or suggest improvements for Calango or COJ.

Open responses
"in only one proposed exercise I received wrong answer several
times, in which I did 34 tests and all correct, and even with help
from colleagues and monitors I analyzed my program, and with-
out being able to identify the error I gave up submitting without
understanding where I was wrong. perhaps there could be a clearer
message in coj identifying the error more specifically to aid learning
and correction."
"Improvement in the examples in the help area of calango, especially
in the part of conditionals and repetitions"

Source: the author

D.2. Second Survey Results 111

Table 12 – (S2Q12)(2020.2-14A) If you want to add something, use the field below to
commend or suggest improvements for Calango or COJ.

Open responses
"Certain codes output correct results in all ways but were not ac-
cepted by COJ, I believe that a system that accepts more different
codes but with the same purpose, would be a better system"
"I believe that the COJ needs to improve the test cases because there
was a case in which the problem was incorrect and was submitted."
"Honestly, I don’t like an online judge because of the problems I
have had with them the other times I have taken the course. I believe
that, in a way, it also limits the students’ thinking regarding training
outputs (some like to ornament the outputs and for that they are
"printing" several things before the final result, and I believe that
this helps the student to improve the code whenever possible, but
the online judge prevents it)."
"It would be ideal if the help box from Calango was complemented
with some information, such as the possibility of choosing the num-
ber of decimal places of a number, which is not present there and
makes the use of Calango more complicated than necessary."
"I believe that a good addition to COJ would be a representative
template, providing a basis for how to make the code. It could be
accessed after the lists’ deadlines. This could help the student to
understand some exercises that are confusing."
"Add extra problems (or an extra list) that are more complex (not
required to be delivered), to serve as a practice for people who want
to delve deeper into the programming logic"
"I believe that what is missing in COJ is a way to better specify the
problem that is preventing the algorithm from working, pointing out
precisely the problem, would help me understand the problem and
be able to solve it more efficiently."
"I think it would be important to have a tab on the help page ded-
icated to the number of decimal places and their formatting in
Calango."
"For students who arrived later, it should open more time to ask
old questions, because not everyone was able to learn to program
easily."
"I didn’t like COJ very much because it had some errors and I
couldn’t identify the error by myself. As I already have a knowl-
edge of programming, I found it boring to use Calango, but I believe
that for beginners it must have been very useful."

Source: the author

112 APPENDIX D. Surveys

Table 13 – (S2Q12)(2021.1-CC) If you want to add something, use the field below to
commend or suggest improvements for Calango or COJ.

Open responses
"As a suggestion, I think it would be in everyone’s interest to have an improved Calango
help tab. Explain more about each function and, mainly, insert examples of how a given
function is used. In this respect, I found the help tab too shallow and sometimes had to
resort to other resources, which would not be necessary with a more complete "manual".
Overall, Calango is a very practical platform and, although limited compared to the hori-
zons of other programming languages, I think it’s complete enough for those just starting
out."
"COJ could consider the percentage of the code delivered, presentation error could have a
grade of 80%, for example, due to the lack of a space or something like that, I understand
the binary issue, however, the lists were adequate and with time to learn and do."
"I thought Calango was very good, especially for those who are starting to program. As
for COJ, both the fact that you can’t put "escrevals" to show a message that asks the user
what to write and the fact that the outputs are extremely restricted gets in the way a bit,
but nothing that can’t be ignored. Overall, I was very pleased with this environment."
"It could have the option of a log to check the input values that the COJ put in our code,
because in some cases, the output/input examples worked correctly but when judging, it
gave an error and we didn’t know what values were inputting to give error in the code for
us to analyze."
"I think, as a future improvement, it should put what were the main errors in programming
to facilitate the correction."
"I found, depending on the COJ list, in general, too many questions. I think if from 5 to
4 or 3 questions it would be the perfect number. In these last 2 lists I really took a long
time to complete, because every question was relatively difficult and there were 5 more."
"Calango is very good as it helped me start my thinking about programming, as I had never
had access to this content before. Regarding COJ, it is a very good judge, but I think it
would be easier to understand if it showed where the error is."
"COJ should have optional features to show where the programmer’s error is, since calango
is a pseudo-language geared towards beginners, so this feature would be very didactic"
"It would be interesting for COJ to show the values (or value) in which an algorithm went
wrong, so it would be easier to solve the problem without the need to resort to a monitor
or the professor, which is a little time-consuming and ends up discouraging the resolution
of the non-evaluative questions."
"Very good platform that made it easier to understand programming."
"I enjoyed learning to program first in calango and then learn in C, I thought it made
learning a lot easier."
"I found Calango and COJ very good tools for starting programming languages to get used
to the structure of coding and the requirements of detail and perfection in the construction
of the algorithm. Without a doubt, it facilitated my entry into the C language, because the
clash between Portuguese and C was considerably eased through Calango."

Source: the author

D.3. Third Survey Results 113

D.3 Third Survey Results

Figure 43 – (S3Q1) Did you think Calango made it easier for you to learn programming
logic?

Source: the author

Figure 44 – (S3Q2) Did you think Calango made the transition to the C language easier?

Source: the author

114 APPENDIX D. Surveys

Figure 45 – (S3Q3) What did you think about Calango’s usage time?

Source: the author

Figure 46 – (S3Q4) For you, did the fact that Calango is in Portuguese facilitate your
learning?

Source: the author

D.3. Third Survey Results 115

Figure 47 – (S3Q5) What is your level of knowledge in English?

Source: the author

Figure 48 – (S2Q6) Did you find that the online judges used strengthened your practical
knowledge in programming?

Source: the author

116 APPENDIX D. Surveys

Figure 49 – (S3Q7) For you, which methodology makes you more motivated in the course?

Source: the author

Figure 50 – (S3Q8) Do you think online judges (COJ and URI) have made the quality of
your codes better than if you had to deliver directly to the teacher without
prior feedback?

Source: the author

D.3. Third Survey Results 117

Figure 51 – (S3Q9) What did you think about taking the course in this class?

Source: the author

Figure 52 – (S3Q10) In your opinion, were all the contents of the course satisfactorily
addressed?

Source: the author

118 APPENDIX D. Surveys

Figure 53 – (S3Q11) Most of the time in this course, did you feel motivated or unmoti-
vated?

Source: the author

Figure 54 – (S3Q12) What did you think about the pace of the course?

Source: the author

D.3. Third Survey Results 119

Figure 55 – (S3Q13)(2020.2-14A) What did you think about the workload of the course?

Source: the author

Figure 56 – (S3Q13)(2021.1-CC) What did you think about the workload of the course?

Source: the author

120 APPENDIX D. Surveys

Table 15 – (S3Q14)(2020.2-14A) If you want to add something, use the field below to
commend or suggest improvements to the course.

Open responses
"This was the second time I took the course. The method that the professor approached this semester
really made me learn! And the teacher was very accessible, answered the class’s doubts and was under-
standing. I had difficulty doing the final work, but the methodology that the professor approached during
the semester made me better understand what I was doing and how my code should be. And an added
compliment to the monitors who did a great job too! That was the best APC class."
"I think remote classes have been really hard for me and for everyone, especially balancing the obligations
of my personal life with college, but I believe I managed to get the support I needed to take the subject
and learn a lot."
"The subject itself was great, but I found the content very focused on language structures and less on
the logical part, and all the exercises were about logic."
"I think, in general, the course was very well conducted! Although I personally preferred that the C
language had been presented right away, without the calango part, I recognize that it was very important,
since in this part the students did not have the option of going to Google for a solution when doing
exercises . It was important to train the basics without internet interference. For the rest, I wish the
file manipulation part had been worked on more before the project was done, but I also recognize that
researching things on my own was positive. Thanks!"
"I believe it was a good course and a good semester, I realized that a lot of things were left for us to
search by ourselves, and I don’t know if that’s good or bad, but it taught me that I should go after things
and I liked that. In addition, the course is good and the monitors are also very good, I did very well
anyway (I don’t know if I mentioned it, but at least I feel that I learned a lot)."
"I thought the whole experience was very good, I already knew the course syllabus in C but I would really
like to have learned this method for the first time. You rocked, thanks for the semester."
"The APC course provided me with a good foundation to start my studies in Python and apply the
knowledge acquired throughout my academic life in the field of aerospace engineering."
"In my opinion, the intercalation between face-to-face classes and remote classes (learning missions and
classes with the teacher) was not well organized. Classroom classes were repetitive and often unnecessary.
I don’t remember having any significant information from the face-to-face classes that changed the way
I was solving problems with what I had seen in learning. I feel that this course was completely remote,
as if I had taken an online course."
"At times I didn’t understand the algorithm or the reasoning and even going to the mentoring I couldn’t
understand it, which disheartened me the most. But the teacher and monitors were really great, but with
the workload of other subjects, the time to study everything ended up not being enough"
"I believe that the file manipulation part was poorly explained, both by the pdf tutorial and by the monitor
videos. I had a lot of difficulties using the basics of files, and I think I could have a mission focused on
that content."
"Well I think I could have had more time in the C language, since it is more complete than the calango,
so it would be possible to better understand its functions and how to use them"
"The shortening of the semester due to the atypical scenario interferes a little in the assessment of the
course in relation to the pace of the content given. At certain times I thought it was a bit fast-paced
because in a week, where the student needs to dedicate himself to other materials, maybe he didn’t learn
the content of that week in the best way, but, as I said, the semester’s shortening must have influenced
a lot. In addition, I would like to emphasize the importance and usefulness of the calango since APC is
a first semester subject (in my opinion, this is a mistake) and many students, including me, are faced
with the world of programming for the first time and now is required to have a good performance to
be approved. Furthermore, I would like to immensely thank the professor for the way he conducted the
course, always available to answer questions, giving all classes in a serious and extremely transparent
manner in the evaluation activities."
"It would be interesting to add more simplified literature options and useful websites (I needed both to
develop the course projects) for learning and perhaps a list of additional or challenging exercises for
anyone interested in learning more on their own."
"Similar project to that done as a final project in C but in calango before the content transition to C
would help to scale larger programs."

Source: the author

D.3. Third Survey Results 121

Table 16 – (S3Q14)(2021.1-CC) If you want to add something, use the field below to
commend or suggest improvements to the course.

Open responses
"some students createad a server at Discord for freshmen who was extremely helpful. Most of the
questions, especially while making the exercise lists, were about this course. Other than that, I would
like to praise Professor Giovanni, I really enjoyed his presence in the WhatsApp group, always clearing
up doubts. The didactics and the way the contents are passed were also perfect for the course."
"The course was great. I learned more about C, although I would have liked the content about pro-
cedures to have been deepened in the study materials. But apart from that, the subject is great and
has a balanced workload. The missions in Moodle are important because they help students to observe
their evolution."
"I found the leap between the weekly missions in C and the final work very big. The codes required by
URI are much more for fun and training than professional application, like working in C. I under-
stand the importance of professionality after finishing the course, however, I think the requirement
of working in C is at the level only of students who opt for software engineering, being far from
the expectation of the other four engineering courses. In general I am satisfied with the course and
without a doubt I will take the lessons learned here for life."
"Great !! I just think calango could be taught faster in the beginning to have more time with the C"
"I was very satisfied with the results of the course. A very patient professor with excellent teaching
skills, as well as being polite and easy going."
"I don’t know if I’m running away from reality, but I think it would be good to cover the Python
language as well, as it is a very simple language to understand and one of the most used ones today.
The student would come away with a very good knowledge of programming knowing the basics of
Python and C."
"It’s the goal of the project, but still, the level of C’s final project is way above all throughout the
year, it was an excellent and challenging experience, but perhaps too complex."
"Complex final project"
"In my opinion the classes given were great, but I think it would have been better to use Calango less,
since we moved to C and it was a lot of information in a short time. I also think that the project in
C could have been a little more relaxed, since I spent many nights worrying about the code and taking
time away from studying other subjects to be able to finish the project and even with this extreme
dedication I didn’t get a result as good as i expected. In general, for me, the professor’s didactic is
very good and I enjoyed classes a lot, but in my opinion by improving that aspect, it would make the
subject perfect."
"I think the final project in C was a big challenge, mainly because I didn’t have any kind of contact
with programming before the course, but I feel that overcoming this challenge added a lot to me and
generated an extremely satisfying feeling."
"I think an improvement would be nice, for the Calango part, as missions are synchronous. As a
lot of people (myself included) don’t have any programming experience when arriving at this course,
Calango was quite difficult to learn all of its hacks, and there is no online content beyond the missions.
I believe that with Calango, it’s worth having synchronous classes and how missions are a bonus. I
don’t know if it would improve a lot, but it’s an idea I have that I imagine would have made my
learning easier."
"I really liked the course and it gave me another approach to programming."
"One of the most complicated parts of the subject was the use of files in C, but this part did not have
the necessary attention to facilitate learning"
"I think there are many things that I will have to study for the completion of the final project, as they
were not directly addressed, I already had programming logic before college, this filled me a lot for the
completion of the final project, but I have reports of colleagues who did not like the teaching method,
in their words, it was very "DIY", do-it-yourself."
"I found the course interesting, however, I think it could greatly reduce the time spent in Calango and
go straight to C. That way, I would have more time to introduce and use more useful C’s libraries."

Source: the author

122 APPENDIX D. Surveys

Table 17 – (S3Q14)(2021.1-DD) If you want to add something, use the field below to
commend or suggest improvements to the course.

Open responses
"The final project in C was extremely demanding and even though I had a good grasp of the language in
C, it was too extensive work, forcing some students to give up other subjects to be able to do the work,
I believe that in the coming semesters, this work could be reduced, or charged to students specifically in
the software area."
"I’m extremely satisfied with the course, I’m going through the subject for the second time and I brought
feelings of hatred with the content, I found it difficult, I didn’t understand anything, and this time I not
only liked the methodology, I actually learned and even fell in love with it. area, very grateful for all the
willingness and commitment of the teacher and monitors."
"There could have been URI missions on some topics that were needed in the final project."
"Excellent professor, the only point that makes it difficult is the final work in C, where we have to learn
some content on our own, which is frustrating at times, as finding quality material is a little complicated,
besides that, excellent course."
"My first contact with programming, I thought it was an excellent course, I just wish some points had
more time"
"The final project is very extensive and complicated, as there were no exercises or classes just for this
before starting the project, it complicated a lot because there was a lot that the students had to learn on
their own or wait for the professor to explain the class, which made it even more difficult plus the work,
what would be nice is before starting the work, having classes to explain each point, what can go wrong
and what usually works, the project itself added a lot, but it was a lot of work."
"Calango greatly facilitated my understanding of loops!!!"
"I think the methodology used was very efficient and turned what could have been a difficult and tiring
course into an even fun one."
"In my opinion, the introduction to calango could have been made a little faster so it could have classes
focused on files and structs."
"Overall, the course is very well conducted, but the final project is very demanding. I believe that the
level of the project does not match the content given. Over the time we do the work, there are still things
we have to learn to be able to apply it, and when the deadline comes, it’s when the most important
content is given to make the code work as it should (struct), and we don’t have a class of all the content
in which we need to apply, which makes it even more difficult (files).
"Professor, I found the pace of the course amazing and how the contents were approached and properly
explained, but I think the struct and files part of the work was little explained and fast, it was quite
complicated for me at least, and tiring. But I understand that the intention was to turn around a little.
I think if I had a struct list before, in the URI, it would have helped a lot."
"Excellent course. In 7 semesters of UnB, it was certainly one of my favorites! Balanced and with a
good amount of C elements for beginners, without overloading. The calango was excellent for learning.
I would say that 80% of the learning was allocated to the project in C. Extensive and laborious, but
with more than enough time and support. Congratulations to Professor Giovanni and monitors for their
understanding and availability throughout the semester."
"I missed a bigger evaluation in the final C work, I ended up working many hours on it and I couldn’t
present everything I wanted about the code in the presentation. Another fact that made me upset was
that I would like feedback directly from the professor about the code, although the monitor evaluated it
well. Anyway, I learned a lot that I will definitely take along my learning experience!!"

Source: the author

Annex

125

ANNEX A – SUS questionnaire

A.1 Original SUS

Figure 57 – Original SUS questionnaire

Source: Brooke (1996)

126 ANNEX A. SUS questionnaire

A.2 European Portuguese SUS

Table 18 – Validated European Portuguese version of the SUS questionnaire

Original Item Corresponding item in Portuguese
I think that I would like to use this sys-
tem frequently.

Acho que gostaria de utilizar este pro-
duto com frequência.

I found the system unnecessarily com-
plex.

Considerei o produto mais complexo do
que necessário.

I thought the system was easy to use. Achei o produto fácil de utilizar.
I think that I would need the support
of a technical person to be able to use
this system.

Acho que necessitaria de ajuda de um
técnico para conseguir utilizar este pro-
duto.

I found the various functions in this sys-
tem were well integrated.

Considerei que as várias funcionali-
dades deste produto estavam bem in-
tegradas.

I thought there was too much inconsis-
tency in this system.

Achei que este produto tinha muitas in-
consistências.

I would imagine that most people
would learn to use this system very
quickly.

Suponho que a maioria das pessoas
aprenderia a utilizar rapidamente este
produto.

I found the system very cumbersome to
use.

Considerei o produto muito complicado
de utilizar.

I felt very confident using the system. Senti-me muito confiante a utilizar este
produto.

I needed to learn a lot of things before
I could get going with this system.

Tive que aprender muito antes de con-
seguir lidar com este produto.

Source: Martins et al. (2015)

