
University of Brasília – UnB
Faculty of Gama – FGA

Software Engineering

The Importance of (Exponentially More)
Computing Power

Author: Gabriel Filipe Manso Araujo
Supervisor: Prof. Dr. Carla Silva Rocha Aguiar

Brasília, DF
2021





Gabriel Filipe Manso Araujo

The Importance of (Exponentially More) Computing
Power

Monograph submitted to the undergraduate
course in Software Engineering of the Univer-
sity of Brasília, as a partial requirement for
obtaining the Bachelor’s Degree in Software
Engineering.

University of Brasília – UnB

Faculty of Gama – FGA

Supervisor: Prof. Dr. Carla Silva Rocha Aguiar
Co-supervisor: Dr. Neil C. Thompson

Brasília, DF
2021



Gabriel Filipe Manso Araujo
The Importance of (Exponentially More) Computing Power/ Gabriel Filipe

Manso Araujo. – Brasília, DF, 2021-
51 p. : il. (algumas color.) ; 30 cm.

Supervisor: Prof. Dr. Carla Silva Rocha Aguiar

Undergraduate thesis – University of Brasília – UnB
Faculty of Gama – FGA , 2021.
1. Computing power. 2. Moore’s Law. I. Prof. Dr. Carla Silva Rocha Aguiar.

II. University of Brasília. III. Faculty of Gama. IV. The Importance of (Exponen-
tially More) Computing Power

CDU 02:141:005.6



Gabriel Filipe Manso Araujo

The Importance of (Exponentially More) Computing
Power

Monograph submitted to the undergraduate
course in Software Engineering of the Univer-
sity of Brasília, as a partial requirement for
obtaining the Bachelor’s Degree in Software
Engineering.

Undergraduate thesis approved. Brasília, DF, 2021, November 16th:

Prof. Dr. Carla Silva Rocha Aguiar
Supervisor

Prof. Dr. Renato Coral Sampaio
Guest 1

Prof. Dr. Paulo Meirelles
Guest 2

Brasília, DF
2021





To my siblings Daniel, Matheus, Miguel, Julia, and to all children who live in the "moon
world" and dream of conquering the world.





Acknowledgements

I would first like to thank my supervisor, Prof. Dr. Carla Rocha, for all her support,
kind words, advice, and wisdom that have helped me overcome many obstacles over the
past five school years. Professor Carla, as I always tell you, I will always be grateful for
everything you have done for me.

I want to thank my thesis co-supervisor, Dr. Neil Thompson at MIT. As a summer
student just out of his second year of undergraduate, Dr. Neil Thompson was generous
enough to give me the opportunity to work in his laboratory and introduce me to lab-
oratory research. The example he sets as a leader is one I will aspire to if I ever find
myself in a managerial role. I thank him for letting me try my strengths, for giving me
the opportunity to fail at times, and for his constant support as my career goals have
evolved. Professor Neil, I promise that I will always take all of our “teaching moments”
with me.

I would also like to thank Prof. Dr. Vinicius Rispoli, Prof. Dr. Rejane Maria,
Prof. Dr. Fabrício Braz, Prof. Dr. Renato Coral, Prof. Dr. Fernando William, Prof. Dr.
John Gardengui, Prof. Dr. Nilton Correia da Silva, Prof. Dr. Maurício Serrano, Prof. Dr.
Milene Serrano, Prof. M.Sc Hilmer Neri, Prof. M.Sc Cristiane Ramos and Prof. M.Sc
Ricardo Ajax for always showing me the right directions, for believing in my potential,
for giving me opportunities, and for always being willing to help me when I needed it.

In addition, I would also like to thanks my labmate, M.Sc Shuning Ge for all her
patience, for supporting me and always making me believe in myself in many of the most
chaotic moments of my University days. Shuning, “you are god!”.

Finally, I would like to acknowledge my parents, my grandparents, and my siblings
for always being there for me. My wife, Larissa, who is always by my side when times
I needed her most, for her kind ear and for always taking care of me. And my friends,
Andrew and João, for always holding hands with me when I am freaking out, for all our
philosophical moments and sleepless nights talking about random things.

Thank you, everyone.





Abstract
Denizens of Silicon Valley have called Moore’s Law “the most important graph in hu-
man history,” and economists describe the Moore’s Law-powered I.T. revolution as one
of the most important sources of national productivity. But data substantiating these
claims tend to either be abstracted – for example by examining spending on I.T., rather
than I.T. itself – or anecdotal. In this work, we assemble direct evidence of the impact
that computing power has had on two computing bellwethers: Computer Chess and Com-
puter Go. Computing power explains 38%-94% of the performance improvements in these
domains. Moreover, in line with economic theory, we find that exponential increases in
computing power are needed to get linear improvements in outcomes, which helps clarify
why Moore’s Law has been so important. We also discuss how this dependence on com-
putation means that performance improvements in these domains (and presumably many
others) are becoming economically tenuous as Moore’s Law breaks down.

Key-words: Computing power; Moore’s Law; Production function; Computer chess;
Computer Go;





Resumo
Habitantes do Vale do Silício chamaram a Lei de Moore de "o gráfico mais importante da
história humana", e economistas descrevem a revolução do TI como uma das fontes mais
importantes de produtividade nacional. Mas os dados que comprovam essas afirmações
tendem a ser abstraídas - por exemplo, examinando os gastos com TI, ao invés de TI em
si - ou anedótico. Neste artigo, reunimos evidências diretas do impacto que o poder da
computação teve em dois termômetros da computação Computadores de Xadrez e de Go.
O poder de computação explica 38 % - 94 % das melhorias de desempenho nesses domínios.
Além disso, em linha com a teoria econômica, descobrimos que aumentos exponenciais no
poder de computação são necessários para obter melhorias lineares nos resultados, o que
ajuda a esclarecer por que a Lei de Moore tem sido tão importante. Também discutimos
como essa dependência da computação significa que as melhorias de desempenho nesses
domínios (e presumivelmente em muitos outros) estão se tornando economicamente tênues
à medida que a Lei de Moore entra em colapso.

Key-words: Computing power; Moore’s Law; Production function; Computer chess;
Computer Go;
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1 Introduction

Production functions, be them macroeconomic1 models of the economy or mi-
croeconomic2 models of individual agents or firms, attempt to model and parameterize
how changes in key inputs produce changes in output. Traditional models, for example
(ROMER, 1989; ROMER, 1990), focused on two key inputs: labor and capital, which are
mutual complementary, but independently face decreasing marginal returns. But not all
capital is the same, and so some modern models (ACEMOGLU, 2018b; ACEMOGLU,
2018a; CHENG; NAULT, 2007) split apart I.T. capital, making it complementary to other
forms of capital (HITT, 1996; BRYNJOLFSSON, 1997), rather than substitutable.

Studies at the micro-level have found strong effects on the importance of I.T. on
firm productivity3 (BANKER; KAUFFMAN, 1991; GEROW et al., 2014; SABHERWAL;
JEYARAJ, 2015; FOSTER; FLYNN, 1984; PINSONNEAULT; RIVARD, 1998). For ex-
ample Brynjolfsson and Hitt (HITT, 1996) showed I.T. capital, as distinct from other
types of capital, contributed significantly to margin firm output. Most studies, however,
take an abstracted view of computing capital, measuring it in dollars rather than in pro-
ductive capacity. As Devaraj and Kholi (DEVARAJ; KOHLI, 2003) have pointed out,
this is inferior to measuring I.T. in the form of actual usage.

In this work 4, we study the micro-level foundations for how I.T. capital improves
performance in the natural units for computer processors: computing power, as measured
by the number of operations that it can perform. This is very much in the spirit of
Thompson, Greenewald, Lee, and Manso (THOMPSON et al., 2020), which shows that
many of the most-important improvements in machine learning are heavily dependent on
improvements in computing power. In this work, we extend this type of analysis to other
areas, and show that a much broader conclusion can be reached: progress across other
areas of computing is dependent on exponential increases in computing power. To reach
this conclusion, we gather detailed records on the performance and usage of computing
power across the domains of Computer Chess and Computer Go.

1 Branch of economics dealing with performance, structure, behavior, and decision-making of an econ-
omy as a whole (Wikipedia , 2021e).

2 Branch of mainstream economics that studies the behavior of individuals and firms in making decisions
regarding the allocation of scarce resources and the interactions among these individuals and firms
(Wikipedia , 2021f).

3 The efficiency with which firms, organisations, industry, and the economy as a whole, convert inputs
(labour, capital, and raw materials) into output (Australian Government Productivity Commission,
2021)

4 This document is an excerpt from a research carried out in conjunction with two other co-authors, Dr.
Neil Thompson (MIT CSAIL) and M.Sc Shuning Ge (University of Pennsylvania), and will contain
more detailed information about two case studies, Computer Chess and Computer Go, in which I was
in charge as well as other analysis that I was also responsible for.



16 Chapter 1. Introduction

Chess and Go are important bellwethers for computing performance because both
were traditionally viewed as areas of human expertise. Therefore, progress against human
acumen could be used to track the development of programs that could play these games.
For example, chess master David Levy said “Until 1977, there seemed to be no point in
my playing a formal challenge match against any chess program because none of them
were good enough, but when [the program] CHESS 4.5 began doing well. . . it was time
for me to defend the human race against the coming invasion.” (LEVY; NEWBORN,
1982). Of the two games, Go is much harder. In 1997, astrophysicist Piet Hut, from the
Institute for Advanced Study in New Jersey, told the New York Times (in retrospect
incorrectly) that “It may be a hundred years before a computer beats humans at Go —
maybe even longer.” (MUOIO, 2016). Because these two games are such bellwethers, they
have attracted substantial attention from computer scientists which has led to a broad
exploration of computational algorithms, hardware and software approaches for playing.
As such, these bellwethers present a promising way to study the importance of computing
power for progress.

We see large effects from increases in computing power on both domains. In Com-
puter Chess, a 10× increase in computing power correlates with an increase of 242-point
Elo – half the point difference between Masters from Grandmasters. In Computer Go, we
find a similar result with a 10x increase in computing power leading to a 244-point Elo
improvement.

Perhaps as interesting as our overall findings about the importance of computing,
is our ability to contrast the contributions that computing power is making to improved
performance to those arising from other sources. Using an analysis-of-variance approach,
we find that computing power explains 48-88% of the variation in output. Put another
way, for these applications, increases in computing power5 are at least as important as all
other factors put together.

Our findings are particularly important at a time when computer progress is slow-
ing, and thus the ability to get improvements in performance is getting harder (LEIS-
ERSON et al., 2020; THOMPSON; SPANUTH, 2021). Perhaps even more worrisome, if
sources of computer improvement (such as Moore’s Law) are running out, then the cost
of improvement will rise proportionally to computing power increases. But, since expo-
nential increases in computing power would then come with exponential increases in cost,
such improvements are likely to be economically unappetizing, and thus we would expect
the rate of progress to diminish in many areas as increases in computing power slow.

5 This includes both computing power increases directly, as well as other productivity increases that
depend on computing power increases (e.g. a less efficient algorithm that nevertheless performs better
with sufficient computing power).



1.1. Objectives 17

1.1 Objectives
To reach the expected goal of this work, the following tasks needed to be accom-

plished:

• Understand domains of the case studies (Computer Chess and Computer Go);

• Study the most suitable computing power and performance metrics for each case;

• Gather detailed records on the performance and usage of computing power across
these two domains;

• Create scripts for data cleaning and preprocessing making necessary adjustments to
the metrics, if needed;

• Perform ordinary least squares regressions to better understand the existing rela-
tionship between computers’ performance and their computing power;

• Interpret coefficients based on the production function theory;

1.2 Work Structure
This work is structured starting with a background chapter, which explains the

context of meaningful topics addressed in the study as well as historical contextualization
of the case studies, a proposal chapter that defines the study’s proposal, research questions,
methodology, and technologies used, a results and discussion chapter that presents the
result of our analysis and some discussions about further topics, and a conclusion.
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2 Background

2.1 Production Functions Theory
Production functions 1, of the type pioneered by Romer (ROMER, 1986), take the

following form:

𝑌 = 𝐴𝐿𝛼𝐾𝛽 (2.1)

Where 𝑌 represents output (the quantity of a good produced), 𝐾 represents capi-
tal, 𝐿 labor, and 𝐴 represents a productivity multiplier that is calculated as a residual. The
marginal contribution as each input grows is parameterized by 0 < 𝛼 < 1 and 0 < 𝛽 < 1.
As Syverson (SYVERSON, 2011) has pointed out, this form has the advantage of being
a linear approximation to any production function. Two key features of such production
functions are that they have decreasing marginal returns in each input, and that they are
complementary between inputs. Thus, adding ever more capital becomes less and less ef-
ficient, but growing capital and labor proportionally yields mutually reinforcing benefits.
As I.T. capital becomes increasingly important and evidence mounts that it is comple-
mentary, rather than substitutive, to other forms of capital (HITT, 1996), it makes sense
to add it separately as another input factor, to get:

𝑌 = 𝐴𝐿𝛼𝐾𝛽𝐼𝑇 𝛾 (2.2)

For the cases that we will be observing, the rate of change of these inputs will be
dramatically different. In particular 𝜕𝐼𝑇

𝜕𝑡
, 𝜕𝐴

𝜕𝑡
≫ 𝜕𝐿

𝜕𝑡
,𝜕𝐾

𝜕𝑡
, that is, the rate of increase of I.T.

capital and of productivity are much higher than those for labor and non-I.T. capital.
This is because there has been large exponential growth in the provision of computing
power (DANOWITZ et al., 2012; LEISERSON et al., 2020; THOMPSON; SPANUTH,
2021) and in the improvement of using that computing power more efficiently through
algorithms (HOLDREN; LANDER; VARMUS, 2010; SHERRY; THOMPSON, 2020) but
relatively little change in labor and non-IT capital2.

These growth rates have two important implications. First, exponential growth in
an input can be sufficient to overcome decreasing marginal returns and thus provide a
1 A production function, in economics, is a function that shows the relationship between inputs such

as capital and labor (and other factors) and the outputs of goods and services. (The Editors of
Encyclopaedia Britannica, 2021a)

2 As an example, the number of employees at the National Oceanographic and Atmospheric Association
(NOAA) has decreased from nearly 13,000 in 1997 (ENERGY; ENVIRONMENT, 1997) to 11,000 in
2015 (Wikipedia , 2021g)
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constant (or rising) share of the improvements to output. The second implication of faster
rates of growth for I.T. capital and productivity is that other rate terms are likely to be
negligible, i.e.

𝜕Y
𝜕t

= 𝜕Y
𝜕A

· 𝜕A
𝜕t

+ 𝜕Y
𝜕IT

· 𝜕IT
𝜕t

+ 𝜕Y
𝜕L

· 𝜕L
𝜕t

+ 𝜕Y
𝜕K

· 𝜕K
𝜕t

≈ 𝜕Y
𝜕A

· 𝜕A
𝜕t

+ 𝜕Y
𝜕IT

· 𝜕IT
𝜕t

(2.3)

In the case studies that follow, we estimate how performance (Y) and computing
power (IT) have changed over time for these important areas of computing. We find that,
as expected, IT has strong decreasing marginal effects on output, but that 𝜕IT

𝜕t has grown
so rapidly that 𝜕Y

𝜕IT · 𝜕IT
𝜕t accounts for most of 𝜕Y

𝜕IT . That is, growth in computing power
explains most of the growth in output. In the analysis that follows, we estimate these
parameters explicitly, test the robustness of these effects, and consider what these mean
for the economic viability of improving outcomes using I.T..

2.2 Computer Chess

2.2.1 History

Chess is one of the most popular board games in the world and has been played
since at least the 6th century A.D. (MURRAY, 2015). The first discussion of chess, from a
computational perspective, came in 1950 when the mathematician Claude Shannon pub-
lished a paper entitled “Programming a Computer for Playing Chess” (SHANNON, 1950).
Shortly thereafter, Alan Turing created the first algorithm that a computer could use to
play chess. Unfortunately, because of the state of computing at the time, Turing’s chess
algorithm had to be executed manually. It took 15-30 minutes to calculate each move and
the algorithm only considered the consequences of its actions two moves in advance. It
could not play a full game, much less beat a professional chess player. According to Kas-
parov and Friedel, Turing’s algorithm would take less than five milliseconds to calculate
each move in a modern computer in 2017 (KASPAROV; FRIEDEL, 2017).

Roughly speaking, all computer chess programs do two types of operations: (1) look
ahead to potential future board states and (2) evaluate how likely any board position is to
produce a win. For example, a program might look ahead 3 moves (called “plies”) and for
each potential result it will evaluate whether it is in a good or bad position by counting
when opponent’s pieces can be constrained or taken. In computer science, the resulting
analysis is thought of as a tree, where nodes are the board position and edges are the
possible moves for each player, as shown in Figure 1.

Each node has an associated probability of winning. In general, these guide the sys-
tem towards good moves, but can be misleading if the computer can’t look far enough into
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Figure 1 – Small subset of a decision tree for chess.

the future (and see a potential problem spot) or if it incorrectly evaluates how valuable
different board configurations are. Figure 1 illustrates it showing that among the move
options, only d) leads the computer (white player) to checkmate in 3 plies. Otherwise, if
any other move is taken, the computer would take longer to reach the victory. Additional
computing ameliorates these deficiencies by looking further ahead in the tree or adding
more evaluation criteria to each position. Looking farther ahead, however, requires expo-
nentially more computing power since the number of possible moves grows exponentially
as you project forward. For example, if each player had 10 potential moves each ply, then
there are 10,000 potential evaluations after four plies (102+2), whereas looking six plies
into the future would take 1,000,000 evaluations (103+3). Smarter evaluation algorithms
help this by decreasing the number of moves considered at each point, but at the cost of
doing more computation to evaluate each board position. Most programs find a balance
between spending time exploring farther ahead and evaluating positions more carefully -
although there are exceptions that heavily favor one approach or another3.

3 One such example is AlphaZero, a 2017 program by DeepMind that focuses more on evaluating
positions than depth of search.
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By 1957, Alex Bernstein was able to develop a chess program running on an IBM
704 mainframe that was capable of playing a full game (BERNSTEIN; ROBERTS, 1958).
Ten years later, the MacHack IV program was the first to play in a tournament. It ended
up with a score of one draw and four losses against amateur J.Conroy (WALL, 2008). 30
years later, in 1996, after enormous work by the computer chess community Deep Blue,
an IBM RS/6000 SP supercomputer4 capable of calculating 200 million chess positions
per second, beat the world chess champion, Garry Kasparov. This event was a major
milestone in the history of computer chess and is known as the beginning of computer
chess supremacy.

Algorithm and hardware improvements have continued to progress since Deep
Blue. A study by “hippke” shows evidence that modern computer chess algorithms could
achieve the same performance as Kasparov already in 1994 running on a single 486-DX4
100 MHz (HIPPKE, 2020). On the other hand, old chess engines could achieve much
higher performance running on modern hardware (HIPPKE, 2021). As of July 2021, the
best chess program was Stockfish 13. With an Elo of 3547, Stockfish 14 is 665 points
better than the best rating ever achieved by a chess human player, Magnus Carlsen at
2882 in May 2014 (CCRL, 2021). This means that the best players in the world are as
likely to win a game against Stockfish 13 as a top amateur player would be to win a game
against a grandmaster.

2.2.2 Measuring Performance in Computer Chess

The most used performance metric in chess, and computer chess, is known as "Elo"
(Wikipedia , 2021b). The Elo rating system system was designed to make the probability
of a chess player to win a match, and the understanding of how Elo can vary in consequence
of players’ performance, easily understandable. It can be summarized by formulas 2.4 and
2.5.

𝑃𝑟𝑜𝑏(𝐴 𝑊𝑖𝑛𝑠) = 1
1 + 10

−(𝐸𝐿𝑂𝐴−𝐸𝐿𝑂𝐵)
400

(2.4)

𝐸𝐿𝑂𝑛𝑒𝑤 = 𝐸𝐿𝑂𝑜𝑙𝑑 +𝐾(
𝑛∑︁

𝑖=1
𝑆𝑖 −

𝑛∑︁
𝑖=1

𝑃𝑟𝑜𝑏(𝐴 𝑊𝑖𝑛𝑠)𝑖) (2.5)

Formula 2.4 calculates the winning likelihood of a player in a given match. The
variables 𝐸𝐿𝑂𝐴 and 𝐸𝐿𝑂𝐵 represent the players’ ratings. For instance, in a hypothetical
game between players rated with a 50-point difference (e.g., 1550 and 1600), the winning
likelihood for the lower-rated player could be estimated as 1

1+10
−(50)

400
= 43%. If this rating

4 In terms of comparison, NASA’s Pathfinder used the same IBM RS/6000 technology for its onboard
flight to Mars (COMPUTERWORLD, 1997)
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difference among the players is bigger, say a 1200-amateur against a 2500-grandmaster,
the winning likelihood for the 1200-player would decay to 0.06%.

Players’ Elo are updated after they participate in tournaments. Formula 2.5 demon-
strate who it works. In this formula, 𝑃𝑟𝑜𝑏(𝐴 𝑊𝑖𝑛𝑠)𝑖 would be the estimated winning
likelihood for each tournament match (Formula 2.4), 𝑆𝑖 is the overall performance of the
player registered in the tournament, 𝐾 is a constant, 𝐸𝐿𝑂𝑜𝑙𝑑 is the player’s old rating
(before the tournament), 𝐸𝐿𝑂𝑛𝑒𝑤 is the adjusted player’s rating and n is the number of
games played in the tournament.

The chess rating division can be visualized in Table 1.

RATING RANGE CATEGORY
2882 + SUPER-HUMAN 5

2500 - 2882 6 GRANDMASTER
2000 - 2499 EXPERT
1200 - 1999 AMATEUR

0 - 1199 NOVICE

Table 1 – Rating System in Chess

2.2.3 Measuring Computing Power in Computer Chess

When we are talking about measuring the computational power of a chess machine,
3 are the main metrics that can be used: positions/sec, search depth and MIPS.

Positions (or node) per second is the most widely used, and appropriated, metric
when it comes to measuring the computational capability of a chess computer (Chessify,
). It is defined as the number of positions that a chess program can calculate per second.
𝑆𝑒𝑎𝑟𝑐ℎ 𝑑𝑒𝑝𝑡ℎ, in turn, it concerns the depth, the level, maximum that a chess engine
can traverse in the decision tree established by its used search algorithm. Finally, another
metric that can be used to estimate the computing power of these computers is million
instructions per second (𝑀𝐼𝑃𝑆). This one measures the microprocessor’s speed looking
at the number of million integer instructions that a computer can execute in one second.

For computer chess programs which data on 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠/𝑠𝑒𝑐 was not found, but
instead, it was reported data for 𝑠𝑒𝑎𝑟𝑐ℎ 𝑑𝑒𝑝𝑡ℎ or 𝑀𝐼𝑃𝑆, we performed alternative re-
gressions that would allow us to convert both 𝑠𝑒𝑎𝑟𝑐ℎ 𝑑𝑒𝑝𝑡ℎ and 𝑀𝐼𝑃𝑆 into positions/sec7.

6 This category was created to compose all chess programs that pursue a rating score higher than
Magnus Carlsen, considered the best chess player of the world.

6 This is the highest score ever achieved by a human Grandmaster as was recorded by Magnus Carlsen
in May 2014.

7 To convert 𝑀𝐼𝑃𝑆 and 𝑠𝑒𝑎𝑟𝑐ℎ 𝑑𝑒𝑝𝑡ℎ to ”𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠/𝑠𝑒𝑐” we ran 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠/𝑠𝑒𝑐 = 10(𝛼+𝛽𝑙𝑜𝑔10(𝑀𝐼𝑃 𝑆))

and 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠/𝑠𝑒𝑐 = 10(𝛼+𝛽 𝑆𝑒𝑎𝑟𝑐ℎ𝐷𝑒𝑝𝑡ℎ) respectively.
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2.3 Computer Go

2.3.1 History

Computer Go began with Albert Zobrist’s 1970 dissertation and programs – such as
Interim.2, The Many Faces of Go and Go++ – that emerged shortly thereafter. However,
only in 1984 did computer Go tournaments start to be held, and in 1986, the first computer
Go congress ever took place (British Go Association, 2018). From 1986 to 2006, the
progress in Computer Go suffered a long plod. This was mainly in consequence of the
computational and algorithms limitations to deal with such complex game. In 2006, an
algorithmic improvement8 significantly improved performance (GELLY; SILVER, 2011;
WALL, 2008) of Computer Go, allowing for the first time a Go program to achieve an
advanced amateur (1 dan) rank on a smaller (9×9) board (GELLY et al., 2012). In 2015,
AlphaGo defeated the European Go champion, Fan Hui, in a five-round game by 5-0
(BBCNEWS, 2016). This was the first time that an AI system had beaten a human
professional player without a handicap. One year later AlphaGo sealed a 4-1 victory over
Lee Sedol (BOROWIEC, 2016), considered by many to be the best Go player of all time
(GIBNEY, 2016).

AlphaGo introduced to the world a creative approach for Go computers by address-
ing both the massive search problem and lack of knowledge problem. Its tree search algo-
rithm could evaluate positions and select moves using deep neural networks. These neural
networks (NNs) were trained by supervised learning (SL) from human expert moves, and
by reinforcement learning (RL) from self-play (SILVER et al., 2017). Many grandmasters
said that new moves and new types of strategies had been explored by some insightful
moves from AlphaGo.

In November 27th, 2019, Lee Se-dol, the only human to ever beat AlphaGo, an-
nounced that he would no longer play Go professionally due to the AI invincibility. He
said "With the debut of AI in Go games, I’ve realized that I’m not at the top even if I
become the No. 1 through frantic efforts. . . Even if I become the No. 1, there is an entity
that cannot be defeated.".

2.3.2 Measuring Performance in Computer Go

In the Edo period (Japan, 1603 – 1868), a rank system based on stones was de-
veloped aiming to offset the strength difference between go players. It was known as the
handicap system(Wikipedia , 2021d). The handicap system was mainly responsible for
supporting another rank system named kyu/dan (Table 2) (Wikipedia , 2021a).

8 The introduction Monte-Carlo tree search (MCTS) applied to Computer Go (KOCSIS; SZEPESVáRI,
2006)
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RANK CATEGORY
9 pro - 1 pro PROFESSIONAL
6 dan - 1 dan ADVANCED AMATEUR
1 kyu - 9 kyu INTERMEDIATE AMATEUR

10 kyu - 19 kyu CASUAL PLAYER
20 kyu - 30 kyu NOVICE PLAYER

Table 2 – Rank System in Go

Before the existence of computers that plays Go, the strength difference between
players was enough to say that each rank difference, from 30 kyu to 9 pro, was equals to
one handicap stone. For instance, if the difference of two players is equal to 2 ranks, two
handicap stones are given to the weaker player as a way to offset the level disadvantages
between the players.

Four centuries later, the advent of the internet allowed Go players to start playing
games against machines. Online servers became widely used making practicing much more
accessible. In consequence of this phenomena, human players could get better and better
in this game. As an effect, the number of handicap stones for matches between humans
against Go computer, in a 19×19 board, decreased from 29 (1998) to 0 (2016).

At this time, the handicap stone was already considered obsolete by many, due to
the difficulty of measuring the professionals’ rank differences which have become tighter
and tighter over the years 9. It has led many players to discredit this rank system and
invest in other methods of measuring the strength difference between professional players.
One of these alternative ways is adopted by the European Go Federation (EGF), where
instead of using a rank system, the levels of players are distinguished by Elo (European
Go Database, 2018). However, both in the literature and in other resources where it was
possible to find data related to the performance of Go computers, the vast majority of
data were reported using the rank kyu/dan system and handicaps. Thus, in this work we
propose a formula (Formula 2.6) that, even with the decrease in the values of a handicap
stone in the professional rank, it would still be possible to estimate the rank values using
the handicap system.

𝑟𝑖 =

⎧⎪⎨⎪⎩𝑟𝑗 − 𝑠𝑖, 𝑟𝑗 ≤ 36

(36 + ( 𝑟𝑗−36
4 ) − 𝑠𝑖, 𝑟𝑗>36

(2.6)

In the formula, 𝑟𝑖 is the player 𝑖’s rank, 𝑟𝑗 is the player 𝑗’s rank, and 𝑠𝑖 is the
number of handicap stones given to the player 𝑖. When 𝑠𝑖 is a negative value indicates
that, instead of given to the player 𝑖, it was actually given to the player 𝑗 10.
9 Currently, the gap of the eight professional ranks is approximately equal to two stones, instead of

eight.
10 Note that, the kyu/dan ranks were converted to the numerical scale to be expressed into the formula.
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After estimating the rank by using the proposed formula, we recall to the Euro-
pean Go Federation (EGF) rating system to convert the ranks to equivalent Elo11. It is
important to note that, in the EGF rating system, a 9-pro is equivalent to 2940 Elo. But,
in consequence of the significant improvements in Computer Go, this Elo was already
surpassed. One example is AlphaGo Zero (5185) (SILVER et al., 2017). Then, for a 9-pro
Go program, it was used the Elo directly provided (if provided) by their developer teams.

2.3.3 Measuring Computing Power in Computer Go

In order to measure the computational power, we looked at the number of float
points operations per second (Flops) provided by the processors used by Go computers
over the years.

Processors used in computers range from CPUs to TPUs. Fortunately, data related
to GPU and TPU flops is easily found. This type of data is usually available either on
the official specification page of these pieces of hardware or on benchmark websites.

In contrast to that, calculating the number of flops on a CPU can be quite a bit
of work at times. This is because this data is not available on hardware spec pages or
easily found in other type of resource. Therefore, for CPUs, this data had to be manually
calculated from Formula 2.7.

𝐹𝑙𝑜𝑝𝑠 = # 𝑜𝑓 𝑐𝑜𝑟𝑒𝑠 * 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 * 𝐹𝑃3212 (2.7)

Finally, having the number of flops of all computer processors, they are added
together using the formula 2.8.

𝑇𝑜𝑡𝑎𝑙 𝑓𝑙𝑜𝑝𝑠 =
𝑛∑︁

𝑖=1
𝐶𝑃𝑈𝑓𝑙𝑜𝑝𝑠 *

𝑛∑︁
𝑖=1

𝐺𝑃𝑈𝑓𝑙𝑜𝑝𝑠 *
𝑛∑︁

𝑖=1
𝑇𝑃𝑈𝑓𝑙𝑜𝑝𝑠 (2.8)

2.4 Go vs Chess – Why Go Is So Complex?

Go is the oldest board game played in the world, having been invented in China
approximately four thousand years ago (ASSOCIATION, 2020). The basic rules of Go
are simple: players take turns placing their stones on a 19×19 board and get points
by completely surrounding the other player’s stones. This simplicity, however, masks an
enormous amount of computational complexity due to the large number of possible moves
that players can make each turn. To put this into perspective, after each player makes a
11 For calculation details, check the EGF’s official website.
12 FP32 is the number of 32-bit float point operations that the CPU can process per cycle given the

microarchitecture that the CPU belongs to. Each microarchitecture has a specific number of FP32.
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single move in chess, there are 400 possible board configurations, in Go, there are 130,000
(INSIDER, 2016).

The relative complexity of games is often described by their “state-space complex-
ity”, which is the number of game positions that are reachable in legal gameplay(Wikipedia
, 2021c). In Go, the state-space complexity is estimated to be 10170, a value higher than the
number of atoms in the universe, computational capability of a supercomputer and of any
other known board game Figure 2. This complexity is important for software programs
that play the game because it limits how much brute-force can be used to strategize,
for example by looking ahead to every move. For Go, the traditional algorithms used
(minimax tree search and alpha-beta pruning) cannot look far ahead. MoGo, the first
Go computer ever to achieve the dan (master) level in a 9×9 board in 2008, could look
routinely only to 10 (or more) moves ahead (SILVER; SUTTON; MüLLER, 2012).

Figure 2 – State-space complexity of board games compared to the number of atoms in
the universe and the computational burden of a supercomputer.

Another way of understanding this difference is by comparing the hardware that
was used when programs beat the best humans in these two games. When Deep Blue,
chess-playing specialized supercomputer developed by IBM, beat Garry Kasparov at chess,
it used 30 chips containing 480 specialized processors. Twenty years later, when processor
chips where 100× better (HENNESSY; PATTERSON, 2011), AlphaGo, program started
in 2014 to test how well deep learning can compete at Go (Ribeiro, John, 2016), beat Lee
Sedol using, roughly, 75× as many processors13 . That is, using 7500×+ more computing
13 The exact number of processors used by AlphaGo is unknown. Here we make the simplifying as-

sumption that each modern chip has a similar number of processors as the IBM machines (16 pro-
cessors/chip) and thus AlphaGo’s 1920 CPUs, 280 GPUs, and 48 TPUs (THEECONOMIST, 2016;
SILVER et al., 2017) represent at least 36,000 “processors-equivalents”. In actual fact, the number
may be much larger since, for example, a single TPU has 65,000 multiply units, which would make
our number an underestimate.
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power.
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3 Methodology

The methodology of this work was established to better understand what role
computational power has played in improving performance in the Computer Chess and
Computer Go domains. Thus, this chapter aims to specify in more detail each of its steps.

3.1 Research Questions

This work focuses on creating a timeline of computer chess and Go since their
beginnings, in order to map the contributions that computing power has had over the
years in these domains, as well as understand their rate of growth over time. Thus, the
main questions we seek to answer in this work are:

RQ. 1 What are the in computing power growth rate (𝜓) in these domains?

RQ. 2 What are the contributions of I.T. (𝛾) to performance improvement in
these domains?

RQ. 3 What are the the share of variance in performance explained by computing
power ( 𝜕𝑌

𝜕𝐼𝑇
· 𝜕𝐼𝑇

𝜕𝑡
) in these domains?

RQ. 4 What are the the residual portion of growth not explained by increases in
computing power (𝜌 ≡ 𝜕𝑌

𝜕𝑡
− 𝜕𝑌

𝜕𝐼𝑇
· 𝜕𝐼𝑇

𝜕𝑡
) in these domains?

For each of these questions, subtopics were created in the "Analysis and Discussion"
section to answer them.

3.2 Methodology diagram

The diagram in Figure 3 was made to illustrate the methodology we chose to
answer the research questions of this work.
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Figure 3 – Methodology Diagram

3.3 Data Gathering
This section specifies all resource sources that were visited in data collection in

both Computer Chess and Computer Go. Data collection was done entirely manually due
to the lack of a single data source.

3.3.1 Computer Chess

To assess the progress of Computer Chess programs since 1957 (Bernstein’s pro-
gram), we gathered data from:

• The International Computer Games Association;

• The Swedish Chess Computer Association;

• World Chess Federation;

• US Chess Federation;

• 16 Books (see Table 3);

• 8 Researcher Papers (see Table 3);

• 5 Conference and Tournament Reports (see Table 3);

• 4 Newspapers and Magazine Articles (see Table 3);
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• 3 Databases provided by chess organizations (see Table 3);

• 7 Forum Articles and Community Discussions (see Table 3);

• 4 Official webpages (see Table 3);

• Personal interviews with Computer Chess program developers1;

Source Reference
Computer Chess Compendium by David Levy, Claude E. Shannon p.372 (LEVY, 2013)
Computer Games I by Hans Berliner (auth.), David Levy (eds.) p.206 (LEVY, 2012)
Chess Skill in Man and Machine by Peter W. Frey p. 207 (FREY, 2012)
"Concise Encyclopedia of Computer Science" by Edwin D. Reilly (book) (REILLY, 2004)
Computer Chess, Then And Now: The Deep Blue Saga by Feng-hsiung Hsu p.154 (HSU, 1997)
A.C.M monograph series by Monroe Newborn and Thomas A. Standish page 133 (BERLINER, 1976)
All About Chess and Computers by David Levy p.36 (LEVY; NEWBORN, 2012)
Deep Blue: An Artificial Intelligence Milestone (Page: 36, by Monty Newborn) (NEWBORN; NEWBORN, 2003)
Digital at Work - Snapshots from the first thirty-five years by Jamie Parker Pearson p.54 (PEARSON, 1992)
The Game of Chess by Nicolae Sfetcu (SFETCU, 2016)
Kasparov versus Deep Blue by Monty Newborn p.58 (NEWBORN, 2012)
Scalable Search in Computer Chess by Ernst A. Heinz p.127 (HEINZ, 2013)
Beyond Deep Blue Chess in the Stratosphere-Springer-Verlag London page 150 (ROUGETET, 2019)
The Quest for Artificial Intelligence page 593 (NILSSON, 2009)
ROBOT, Moravec, Oxford, 1998, Chapter 3: Power and Presence, page 71 (MORAVEC, 2000)

Books

Computers, Chess, and Cognition by T. Anthony Marsland, Jonathan Schaeffer p.18 (SCHAEFFER; MARSLAND, 1990)
IBM’S DEEP BLUE CHESS GRANDMASTER CHIPS
WCCC (Rating Computer Science Via Chess)
MAC PROJECT ( Artificial Intelligence Memo. No.178) - MIT
23rd ACM Computer Chess Championship
Deep Blue by Murray Campbell
Chess computer - ChessGenius

Research Papers

Communications of the ACM Vol 35, Num 11
http://rebel13.nl/misc/tournaments/yat.html
http://www.anacadigital.com/historia/anaca5_1_89.htm
Advances in Computer Vol.29 by Marshall C. Yovits
Advances in Computer Chess 3, (eds.) M.R.B. Clarke

Conference and Tournament Reports

Results of ACM’s eighteenth computer chess championship, reported by Monty Newborn
Computerworld Vol.X
Computerworld, 1987, No.49, Vol.XXI
https://www.newscientist.com/article/dn3312-kasparov-flummoxes-chess-computer/Newspaper & Magazine Articles

the LINK - The magazine of Carnegie Mellon University’s School of Computer Science
Computer Chess Rating Lists
ChessBaseDatabases
https://frc.ri.cmu.edu/∼hpm/book97/ch3/processor.list.txt
Computers and Chess - A History by Bill Wall
http://billwall.phpwebhosting.com/articles/Kaissa.htm
https://www.chess.com/article/view/machack-attack
http://www.chessmaniac.com/kaissa-chess-program/
https://www.reddit.com/r/chess/comments/8fe70l/how_many_positions_per_second_approximately_was/
https://www.chess.com/news/view/updated-alphazero-crushes-stockfish-in-new-1-000-game-match

Forum Articles and Community Discussions

http://billwall.phpwebhosting.com/articles/engines.htm
http://www.chessgenius.com/
https://www.ibm.com/ibm/history/documents/pdf/rs6000.pdfOfficial Webpages
https://www.sjeng.org/indexold.html

Table 3 – Computer Chess Data Sources

3.3.2 Computer Go

To assess the progress of Computer Go Programs, we gathered data from:

• British Go Association;

• European Go Federation;

• Ontology Applications & Software Engineering Laboratory (OASE Lab.);
1 We directly contacted Computer Chess programs developers, teams, and professional players to ask

for data related to some programs that we could not find online. Members of the Chess community
also generously provided significant help (e.g. Discord, Facebook). These interviews did not contain a
specific structure and were performed randomly
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• European Go database;

• KGS Go Server;

• Go forums (e.g. Sensei);

• 2 Personal reports and websites (see Table 4);

• 4 Conference and tournament reports (see Table 4);

• 4 Forum articles and community discussions (see Table 4)

• 2 Newspaper and magazine articles (see Table 4);

• 9 Brand and benchmark websites (see Table 4);

• 2 Tutorials and Manuals (see Table 4);

• 1 Technical Reports (see Table 4);

• Personal interviews with Computer Go programs’ developers 2;

As our main source, we used a large database provided by Mr. Nick Weed on his
website http://www.computer-go.info.

Source Reference

Personal Reports http://users.ics.aalto.fi/praiko/altparty2009/
https://www.usgo.org/sites/default/files/bh_library/Supercomputer%20Go.pdf

Conference & Tournament Reports

http://www.altparty.org/2009/competition-rules.html#csc-compo
https://www.usgo.org/sites/default/files/ejournal_archive/20080807/20080807.htm
http://computer-go.info/events/na/2008/index.html
https://www.eurogofed.org/index.html?id=89

Forum Articles & Community Discussions

https://www.lesswrong.com/posts/shnSyzv4Jq3bhMNw5/alphago-zero-and-the-foom-debate
https://www.britgo.org/bgj/06316
https://www.britgo.org/computergo/history
https://blog.codecentric.de/en/2014/10/codecentric-go-challenge-2014-interviews-franz-josef-dickhut-remi-coulom/

Newspaper & Magazine Articles https://www.theguardian.com/technology/2009/apr/30/games-software-mogo
https://www.wired.com/2016/03/two-moves-alphago-lee-sedol-redefined-future/

Brand & Benchmark websites

https://www.top500.org/system/174848
https://lowendmac.com/1991/mac-classic-ii/
https://everymac.com/systems/apple/mac_pro/specs/mac-pro-eight-core-2.26-early-2009-nehalem-specs.html
http://www.alternatewars.com/BBOW/Computing/Computing_Power.htm
https://www.mobygames.com/game/bbc-micro_/microgo1
http://www.gpuzoo.com/Compare/NVIDIA_Quadro_4000__vs__NVIDIA_Quadro_FX_5600/
https://ja.wikipedia.org/wiki/FLOPS
https://en.wikipedia.org/wiki/POWER6
https://en.wikipedia.org/wiki/Motorola_68881

Tutorials & Manuals https://www-903.ibm.com/kr/shop/pdf/IBM_Power_Systems_Facts_and_Features_April_2008.pdf
http://www.prace-ri.eu/IMG/pdf/Best-Practice-Guide-IBM-Power.pdf

Technical Reports http://staff.itee.uq.edu.au/janetw/Computer%20Go/CS-TR-339.html

Table 4 – Computer Go Data Sources

2 We directly contacted Computer Go programs developers, teams, and professional players to ask for
data related to some programs that we could not find online. Members of the Go community also
generously provided significant help (e.g. Discord, Facebook). These interviews did not contain a
specific structure and were performed randomly
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3.4 Data processing
In this section, we will talk about how the data was processed so that, finally, we

could achieve our expected goal (answer our research questions)3.

There are specific nuances for each of the domains of this work. For Computer
Chess, one of our concerns was, first of all, to find a method that would make it possible
to convert the 𝑆𝑒𝑎𝑟𝑐ℎ𝐷𝑒𝑝𝑡ℎ and 𝑀𝐼𝑃𝑆 variables to 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠/𝑠𝑒𝑐, taking into account
that for some of the chess programs the 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠/𝑠𝑒𝑐 variable was not found. For this,
the two regressions specified in subsection 2.2.3 (Formula 2.4 and Formula 2.5) were used.
For Computer Chess, there were no setbacks regarding the performance variable, Elo, as
it was accessible and reported in the resources used for data collection.

Regarding Go computers, the first challenge encountered was to find a way to
convert data related to kyu/dan and handicap rank systems to Elo. This is due to the
fact that in the vast majority of data sources visited, the existing data was not directly
converted to Elo. Thus, Formula 2.6 was developed for this purpose. The computing power
of Computer Go was measured using the flops metric, as mentioned earlier. To get the
number of flops that Go’s computers were able to calculate, we first looked at all the
processors (CPU, GPU, TPU) that were used by these computers. The flop values related
to GPUs and TPUs are easily found in the hardware specifications provided by their
brands. In opposition to that, computing flops for CPU is a little more tricky, as this data
is not reported in the technical specifications of the same. Therefore, the value of flops
for all CPUs was calculated manually using the Formula 2.7.

With all the conversions and calculations carried out, the data is properly prepared
for the execution of the analyses.

3.5 Data Analysis
After completing the data processing, they are ready for the analysis to be car-

ried out. Initially, for each domain, 3 graphs were plotted with different approaches that
allowed us to understand 3 different relationships:

• Performance x Time

• Computing Power x Time

• Performance x Computing Power

These graphs, in a way, corroborated so that we could finally answer the research
questions of this work and directly understand the relationship between performance
3 All phases of data processing are graphically displayed in the diagram in figure 3
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improvements and computing power. The performed regressions can be seen from the
diagram in Figure 3, as well as graphically from the graphs in Figures 4 and 5.

3.6 Technologies
In this section we describe the technologies adopted to develop this research.

3.6.1 Python

Python is an open-source programming language with an active community and
multiple libraries. Python was used in the work to manipulate the data, create tables,
create graphs and run the analysis (Python, 2021).

3.6.2 Jupyter

Jupyter is an open-software web application to make documents with live Python
code cells. The notebook is used to make the all analysis of this work (Jupyter, 2021).

3.6.3 Seaborn

Seaborn is a Python data visualization library that provides a high-level interface
for drawing attractive and informative statistical graphics. Seaborn was used to generate
graphs (Seaborn, 2021).

3.6.4 Pandas

Pandas powerful, flexible and easy to use open source data analysis and manipu-
lation tool. It was used to manipulate the data (Pandas, 2021).

3.6.5 Scikit-learn

Scikit-learn is a free software machine learning library for the Python programming
language. It was used to perform regressions.

3.6.6 Statsmodels

Statsmodels is a Python module that provides classes and functions for the esti-
mation of many different statistical models, as well as for conducting statistical tests, and
statistical data exploration. It was used to generate regression tables (scikitlearn, 2021).
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4 Results

The Computer Chess dataset contains data of 46 different computers. Initially, 35
of these computers had data related to Positions/sec. The conversion from search depth
and MIPS to Positions/sec allowed an increase of 18.7% of the data, which, finally, enabled
the analyzes to be carried out for 43 chess programs. Our data contains observations from
1957 to 2019.

In parallel, for Computer Go, the number of observations that have performance
variables and, at the same time, computing power, was equal to 109. Surprisingly, these
programs, due to the late development of this domain compared to Computer Chess,
belong to the range from 1990 to 2018.

The analysis was performed in Python and coded in the Jupyter notebook. The
pandas library was used for all data management. The scikit-learn and statsmodels li-
braries were used to perform the regressions and statistical analysis of the data. Finally,
the seaborn library was used for the creation and styling of the graphics.

The data is currently located in a private repository and will be opened shortly
after this work is published, as well as incorporated into the computerprogress.com web-
site.

4.1 Computer Chess
To assess the progress of chess computers over time, we developed an extensive his-

tory of computer chess programs from 1957 (Bernstein’s program) to 2019 (Komodo 13.1
at the World Computer Chess Championship). From 1957 to 2006 we use matches between
computers and humans, as gathered from records from international chess associations,
research papers, books, databases provided by the community, and others (see Table 3).
From 2006 on we use data from the World Computer Chess Championship, where com-
puters face each other, since at that point computer performance is super-human. Figure
4 shows how the performance of computer chess has evolved.

Since Bernstein’s 1957 model, computer chess performance went from a novice Elo
score of 800 to a super-human Elo score of 3547 and increased their computing power
usage by a factor of 108. On average, this means that chess programs improved by 37.6
Elo points per year and increased this computing power used by 38% per year (=100.14).

Analyzing the performance and the number of chess positions shows that an in-
crease of 10× in computing power is associated with an increase in Elo rating of 242 points
(statistically significant at the 0.01 level), as shown in Figure 4c. This is similar to esti-
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Figure 4 – Computer Chess: (a) Elo scores over time, (b) computing power used over
time, and (c) Elo scores as computing power increases. In each subfigure, the
dots are individual programs, the lines are linear regressions, and the shaded
region is the 95% confidence interval for the regression.

mate made by the Deep Blue team when planning the hardware needed to beat Kasparov
“there is a 200-point ELO rating improvement for each order of magnitude improvement
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in computing speed of the chess machine platform” (TAN, 1995). The variation in com-
puting power explains 88% of the variation in performance, while the residual variation
(e.g. due to algorithmic improvement independent of computing power) only explains
12%.

4.2 Computer Go

To assess how Go programs use computing power and how it is impacting their
performance we gathered data on computer versus human games. We sourced this data
from the British Go Association, the European Go Federation, research papers, tourna-
ment and personal reports, books, databases provided by the community, and others (see
Table 4). A key source in this work is the database assemble by Nick Wedd (WEDD,
2018). To fill in missing data, we directly contacted Go developers, teams, professional
players and other members of the Go community.

As Figure 5a shows, there has been enormous improvement in computer Go from
the 1970s until today, with an average of 84 Elo points being added to performance per
year. The best performing systems are now much better than humans, with AlphaGo Zero
achieving an Elo of 5135, compared to the human champion Shin Jinseo, who is a 3800
Elo player.

Unfortunately, very little data is available on the computing power used by the
early Go systems, so we focus our analysis on the period since 1990, when better data is
available. Since that time, the amount of computing power (as measured by floating point
operations per second) used by Go programs has increased approximately one hundred
billion-fold, a doubling every year (=100.3), as shown in Figure 5b.

Graph (c) compares the growth of computing power in Go with the performance
of those programs, revealing a highly significant correlation between them (statistically
significant at the p=0.01). In Go, a 10× increase in computing power increases Elo by 244
points on average. In Go, the variation in computing power explains 48% of the variation
in system performance.

4.3 Analysis and Discussion

Having presented our case studies graphically, we now answer the research ques-
tions (Section 3.1) and explicitly estimating the parameters presented in our theory sec-
tion, in particular: 𝜓 = 𝜕𝐼𝑇

𝜕𝑡
the rate of increase of computing power, 𝛾 the exponent for

I.T., 𝜕𝑌
𝜕𝐼𝑇

· 𝜕𝐼𝑇
𝜕𝑡

the proportion of improvement in performance explainable from improve-
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Figure 5 – Computer Go: (a) Elo scores over time, (b) computing power used over time,
and (c) Elo scores as computing power increases. In each subfigure, the dots
are individual programs, the lines are linear regressions and the shaded region
represents the 95% confidence interval for the regression.

ment in I.T.1, and 𝜌 ≡ 𝜕𝑌
𝜕𝑡

− 𝜕𝑌
𝜕𝐼𝑇

· 𝜕𝐼𝑇
𝜕𝑡

the residual portion of growth not explained by

1 This is proportion of variance in the dependent variable that can be explained by the independent
variable or, in other words, the 𝑅2.
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increases in computing power.

Throughout this section, we shall use the language of causality in interpreting
our results. Normally with time series data, this would be problematic without a natural
experiment, instrumental variable or other means of providing statistical identification.
But here, we rely not on statistical analysis of our data to get causality, but on the
extensive scientific experimentation done by those in these fields. That is, in several areas,
engineering and scientific understanding has been built using experiments that prove that
computing power causally improves performance (e.g. (DIRECTOR, 2010; NEUMANN
et al., 2019). For example, NOAA does test showing the weather forecast improvements
it can achieve with more computing power by running a forecast that would need to be
calculated in 1 day for a longer time. The results from this testing are then part of the
approval process for getting the funding needed to get a computer that could calculate
that better performance in the needed amount of time. Thus, it is the experimental testing
in these fields, not after-the-fact statistical identification, that we use to get causality2.

The economic cost of the computing systems used provide a second argument for
why the causality runs from computing power to performance: revealed preference (See
(The Editors of Encyclopaedia Britannica, 2021b) for more details). As is shown below,
there has been an enormous increase in the cost of the computing power used for these
problems. Literally, millions of dollars have been spent on these systems because their
owners were convinced that causality runs in this direction. Had this not been true, we
would have expected the owners of these systems to update their computers to get the
benefit of newer hardware while maintaining or lowering costs.

4.3.1 The Growth in Computing Power

To show the growth rate in computing power over time we should look again at
the regression 𝐶𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔𝑃𝑜𝑤𝑒𝑟 = 10𝛼+𝛽×𝑌 𝑒𝑎𝑟 that was already graphically presented
in Figures 4b and 5b. Table 5 shows the same regressions but now in a table format
for easier comprehension and also our estimates for 𝜓, the rate of increase of computing
power across our domains.

As this showed in Table 5, for example for Chess, 𝜕𝑙𝑜𝑔10(𝐶𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔𝑃 𝑜𝑤𝑒𝑟)
𝜕𝑌 𝑒𝑎𝑟

= 0.14
(statistically significant at p-value < 1%). Exponentiating shows that computer power
usage in chess (𝜓 = 𝜕𝐶𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔𝑃 𝑜𝑤𝑒𝑟

𝜕𝑌 𝑒𝑎𝑟
) is 1.38. That is, the amount of computing used for

chess has grown by 38% per year, on average. In Computer GO, this effect is even stronger,
with an increasing at 95%.

2 One potential caveat to this is chess in the period since 1997. Since that time, the cost of computing
being used has fallen, suggesting that there may have been less vigilance on the budget and thus on
proving additional performance.
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Dependent variables

Computer Chess Computer Go

log10(𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠/𝑠𝑒𝑐) log10(𝐺𝑖𝑔𝑎𝑓𝑙𝑜𝑝𝑠)
(1) (2)

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 0.44*** −8.81***

(0.27) (0.69)

𝑌 𝑒𝑎𝑟 0.14*** 0.29***

(0.01) (0.02)

Observations 43 109
R2 0.88 0.74
Adjusted R2 0.88 0.74
Residual Std. Error 0.80 (df = 41) 0.93 (df = 107)
F Statistic 324.97*** (df = 1; 41) 303.32*** (df = 1; 107)
𝜓 1.3842 1.9498

Note: *p<0.1; **p<0.05; ***p<0.01

Table 5 – Computational Power (Gigaflops) in logarithm scale over year.

4.3.2 Contributions of I.T. to Performance Improvement

Table 6 shows our estimates for 𝛾, the coefficient that describes how increased
computing power changes performance across these domains. Here we explicitly model
the production function 𝑌 = 𝐴𝐿𝛼𝐾𝛽𝐼𝑇 𝛾 by taking logs to get our estimating equation:
𝑙𝑜𝑔(𝑌 ) = 𝑙𝑜𝑔(𝐴) + 𝛼 𝑙𝑜𝑔(𝐿) + 𝛽 𝑙𝑜𝑔(𝐾) + 𝛾 𝑙𝑜𝑔(𝐼𝑇 ) which, again by our assumptions of
the relative speeds of improvement simplifies to 𝑙𝑜𝑔(𝑌 ) = 𝑙𝑜𝑔(𝐴) + 𝛾 𝑙𝑜𝑔(𝐼𝑇 ).

These show that computing power has, in general, very low exponent 𝛾, ranging
from 0.05 for Computer Chess to 0.11 for Computer Go.

As this makes clear, the returns to computing have rapidly decreasing marginal
returns3. Adding a unit of computation to today’s powerful machines has much less impact
on outcomes that did ones when computers were brand new. Nevertheless, these results
are a powerful statement of the extent to which the exponential increase in computing is
needed for computing to contribute meaningfully to productivity improvements.

3 The decrease in marginal (incremental) output of a production process as the amount of a single factor
of production is incrementally increased, holding all other factors of production equal.(Wikipedia
contributors, 2021)
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Dependent variables

Computer Chess Computer Go

log10(𝐸𝐿𝑂) log10(𝐸𝐿𝑂)
(1) (2)

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 3.07*** 1.51***

(0.02) (0.01)

𝑙𝑜𝑔10(𝐶𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 𝑃𝑜𝑤𝑒𝑟) 0.05*** 0.03***

(0.005) (0.002)

𝛾 0.05 0.03

Observations 31 109
R2 0.80 0.77
Adjusted R2 0.80 0.76
Residual Std. Error 0.06 (𝑑𝑓 = 29) 0.03 (𝑑𝑓 = 107)
F Statistic 119.15*** (df = 1; 29) 350.44*** (df = 1; 107)

Note: *p<0.1; **p<0.05; ***p<0.01

Table 6 – Performance as computation grows in Computer Chess and Computer Go

4.3.3 Analysis of variance

Table 7 consolidates the discussion from our case studies sections about the share
of variance in performance explained by computing power. Figure 6 summarizes the 𝑅2 re-
sults from these regressions, showing the fraction of the variation explained by computing
power (dark) and that from all other factors (light).

Figure 6 – Analysis of Variance in Computer Chess and Computer Go

As noted earlier, these results suggest that, in many areas, computing power has
been overwhelmingly important as a source of gains in performance.
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Dependent variables

Computer Chess Computer Go

ELO ELO
(1) (2)

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 1, 078.15*** 1, 515.75***

(82.19) (88.64)

𝑙𝑜𝑔10(𝐶𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 𝑃𝑜𝑤𝑒𝑟) 242.39*** 243.58***

(16.38) (25.05)

Observations 31 104
R2 0.88 0.48
Adjusted R2 0.88 0.48
Residual Std. Error 180.33(𝑑𝑓 = 29) 402.425(𝑑𝑓 = 102)
F Statistic 218.94*** (df = 1; 29) 94.573*** (102)

Note: *p<0.1; **p<0.05; ***p<0.01

Table 7 – Performance over computation in logarithm scale in Computer Chess and Com-
puter Go
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5 Conclusion

During this work, several challenges were overcome. Due to the vast amount of
resources in which the data were found, it was impossible for their collection to be carried
out automatically. This required a significant consummation of time, just invested in
manual data collection. Subsequently, adequate solutions for the treatment of the data
were essential for the continuity and achievement of the objective of this work.

Finally, this work shows that computing power has been central to performance
improvement in the computing bellwethers of Computer Chess and Computer Go. In both
cases, we find that computing power, and implicitly the concurrent improvements which
depend on it, account for almost half of all improvement. The size of this contribution is
remarkable since computing power in all these areas has only a tiny effect per unit. But
with exponential increases in computing power, this can nevertheless be the dominant
source of improvements. Besides that, the compound growth rates of computing power
have for Computing Chess was equal to 38% and 95% for Computer Go.

Overall, this work paints a coherent picture of computing power improvements as
a central driver of progress two computational areas over decades, quantifying long-held
views about the centrality of I.T. in general.
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