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Abstract
Self-driving cars is a trending topic. Much of the safety and security concerns in traffic may
be reduced when cheap and functional versions from these vehicles become widespread.
These vehicles are highly complex and advanced robots that, in order to avoid accidents
and make the best decisions, use many sensors to perceive their surroundings in the
best way possible. Multisensor data fusion can contribute to this task by joining each
sensor’s best pieces of information, building a more complete and more accurate version of
this information. Software that perform such tasks are frequently reimplemented between
companies and research centers for their specific hardware configurations and objectives.
Object-level fusion performs fusion at a higher level of abstraction and, for this reason,
contributes to the modularity and reuse of the solution. A software solution to address part
of this reimplementation problem is developed in this work using the ROS 2 framework.
It implements the object lists preprocessing from the fusion layer of an object-level fusion
architecture. This preprocessing is composed of the spatial and temporal alignments, plus
the objects associations. Finally, the solution design and implementation were validated
using the CARLA self-driving simulator, using the number of failed associations as the
primary metric assessed.

Key-words: Self-driving; Autonomous; ROS; Autonomous Driving Applications; Au-
tonomous Driving Systems; Multisensor Data Fusion; Object-level fusion; CARLA; Multi-
object tracking
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Resumo
Carros autônomos é um assunto atual e popular. Muitas preocupações relativas a segu-
rança no tráfego poderão ser reduzidas quando versões baratas e funcionais desses veículos
se popularizarem. Esses veículos são robôs altamente complexos e avançados que, para evi-
tar acidentes e tomarem as melhores decisões possíveis, usam uma variedade de sensores
para perceber suas redondezas da melhor maneira possível. A fusão de dados de multi-
sensores pode contribuir para essa tarefa unindo os melhores pedaços de informação de
cada um dos sensores para formar uma versão mais completa e mais acurada dessa infor-
mação. Softwares que realizam essas tarefas são frequentemente reimplementados dentre
diferentes empresas e centros de pesquisa para suas próprias configurações de hardware e
objetivos. A fusão no nível dos objetos é realizada num nível mais alto de abstração e, por
essa razão, contribui para modularidade e reuso da solução. Uma solução de software para
resolver parte desse problema é desenvolvida neste trabalho utilizando o framework ROS
2. Ela implementa o preprocessamento das listas de objeto na camada de fusão de uma
arquitetura de fusão à nível de objetos. Esse processamento é composto do alinhamento
espacial e temporal, mais a associação de objetos. Por fim, este preprocessamento foi va-
lidado utilizando o simulador de veículos autônomos CARLA, utilizando como métrica
principal o número de associações que falharam nos casos de teste.

Palavras-chave: Veículos Autônomos; Veículos auto-dirigidos; ROS; Aplicações de Di-
reção Autônoma; Sistemas de Direção Autônoma; Fusão de Dados Multi-sensores; Fusão
à nível de objetos; CARLA; Rastreio de múltiplos objetos;

vii
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1

1 Introduction

The usage of technology in the world is increasing. New technologies become pop-
ular every year by facilitating activities from many aspects of everyday life, such as recre-
ation, study, work, and healthy. Undoubtedly, more and more complex electronic devices
are responsible for much of these advances.

In this context, self-driving vehicles are emerging. In Brazil, 90% of road accidents
are caused by human fault. Therefore, if we had fully functional and fully automated
vehicles on the roads, these accidents could be avoided. Hence, it is not just about comfort
and convenience. It is also about traffic safety and public health.

It is already a reality that the more modern the car, the more features it has to fa-
cilitate driving it. These features are called Advanced Driver Assistance Systems (ADAS).
They are systems designed to assist a driver in certain situations or even controlling the
vehicle (AEBERHARD, 2017). A vehicle that could assist the driver the most would be
autonomous, "The ultimate ADAS is an autonomous driving system." (AEBERHARD,
2017).

Since each sensor has its limitations and capabilities, multiple ADAS with different
purposes may be developed. In this case, the vehicle can be seen as a hardware platform
in which ADAS can be implemented on top, choosing relevant sensors for its features.
An overview of the relationship between some commonly implemented ADAS in modern
cars, and its used sensors, are illustrated in the Figure 1.

Usually, more capable devices, considering the number and complexity of features,
are equipped with more sensors and actuators. As a consequence, there exist many sce-
narios in which different sensors generate constant flows of data. These data need to be
transformed and merged so that the most amount of relevant information can be ob-
tained and used to make decisions. This is the situation in the development of self-driving
vehicles and is where sensor data fusion meets the subject.

1.1 Problem

Multisensor data fusion implementations, which are part of autonomous driving
applications, usually inherit the complexity of embedded systems. The implementation is
highly coupled with the sensors in use and the general setup. This sort of situation makes
modifications to the project slow and expensive (MUNZ; MAHLISCH; DIETMAYER,
2010). That coupling also makes it harder to develop reusable solutions, like libraries or
frameworks, which could spare time from several researchers when making experiments



2 Chapter 1. Introduction

Figure 1 – ADAS and Sensors Range

Source: Adapted from (CARPENTER, 2018)

and companies developing their products.

1.2 Objectives

1.2.1 Main Objective

The main objective is to propose and develop a modular and reusable software
solution capable of preprocessing lists of objects generated by environment perception
sensors, making the lists ready to be fused and used in self-driving applications.

1.2.2 Specific Objectives

1. Perform a study about autonomous driving applications, multisensor data fusion,
and the relationship between them;

2. Define the data fusion architecture and describe its main characteristics;
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3. Define the general design of the software solution, based on the defined data fusion
architecture;

4. Define the communication interfaces with the proposed software solution;

5. Implement the software solution capable of performing spatial and temporal align-
ment, and object association;

6. Validate that the software solution is capable of preprocessing the objects lists and
return results to another module;

7. Make the software solution available to be integrated with other compatible projects;

1.3 Methodology
To achieve the proposed objectives, the following steps are defined:

1. Problem and domain understanding: Study and describe the primary points
related to this work goals: sensors, data fusion, and the autonomous driving scenario;

2. Description of the fusion architecture: Choose a data fusion architecture with
well-defined components and potential to be used in a modular and reusable imple-
mentation, then describe the components of this chosen architecture;

3. General requirements gathering: Formulate the main functional and non-functional
software requirements of the software solution;

4. Search for helper software tools: A software solution can be of different forms de-
pending on the tools available, e.g. libraries, frameworks. This step is about looking
for available free tools that can help to build the solution and meet the requirements
for this specific context, autonomous driving;

5. Architecture design: Based on the found helper tools and defined fusion archi-
tecture, design the architecture overview from the implementation point of view,
considering the interfaces and the communication between the components;

6. Interfaces implementation: An initial implementation of the architecture to test
its feasibility. The chosen tools will be integrated into the project and the interfaces
implemented;

7. Preprocessing implementation: Implement and describe the preprocessing al-
gorithms and their interaction. The development will adopt an iterative and in-
cremental approach, so there will not be a separation between the implementation
and testing stages. Each increment will be designed, implemented and tested before
implementing the next one (LARMAN; BASILI, 2003);
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8. Validation: Validate, through an experiment, that the software solution can be
used, as a separate module, interacting with some self-driving software simulator,
and describe the obtained results.

9. Repository documentation: Write the repository documentation, including project
description, instructions for usage and building, and usage examples.

10. Packaging: Package the repository so that users can integrate it into their projects
through a package manager.

1.4 General Structure
This work is organized into two parts and nine chapters. This is the first chapter

Chapter 1 and the chapter that presents the rest of the work.

Part I is mainly about the theory necessary to understand the development and
designing of the software solution. It is divided into five chapters. Chapter 2 presents
sensors in the context of self-driving applications, Chapter 3 introduces data fusion in
the broader sense, Chapter 4 explains how usually data fusion is used to fuse data from
sensors, Chapter 5 presents the object-level fusion architecture used in this work, and
Chapter 6 explains the main aspects from the ROS framework and its application to the
self-driving context.

Part II is divided into three chapters and is about the results achieved in this
work, based on the theory from the last part. Chapter 7 explains aspects about the
software solution definition and implementation, Chapter 8 describes the experiment used
to validate the solution, and Chapter 9 brings the main conclusions about this work and
suggestions for future works.



Part I

Theoretical Framework
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2 Sensors

Sensors are physical devices developed to measure some attribute of the physical
world. As the world is a very diverse place, there are many sensors with different costs,
sizes, precision, measured attribute, and other aspects. Among the problems they can
solve are detecting surrounding objects, estimating positions, movement detection, and
systems state monitoring.

Taking the temperature attribute as an example, sensors about air temperature
can be very different from engine temperature or computer processor temperature. It is
needed to question, not exclusive but: if the sensor fits the structure, supports the weather
condition, can deliver results with the expected precision, and has coherent costs. It is not
always possible to measure some attribute directly. This situation requires using a sensor
that measures another attribute than the desired one and then using a mathematical
model to estimate the desired. These are indirect measurements. (MOUZINHO et al.,
2006).

2.1 Self-Driving

Despite the numerous kinds of sensors, complex applications, such as self-driving,
besides not relying on a single sensor for some attribute estimation, eventually measure
attributes that are not a physical quantity. It may be such a complex attribute as a whole
surrounding reading. In this context, different kinds of sensors are capable of providing
different readings depending on their functioning, current weather conditions (rain, fog,
snow), luminosity conditions, among others.

Recent research summarized core functions for self-driving, or ADS, in localiza-
tion and mapping, perception, assessment, planning and decision making, vehicle control,
and human-machine interface (YURTSEVER et al., 2020). From these, localization and
mapping, and perception are the functions that receive data directly from the sensors and
generate higher-level information that the other functions can use.

Commonly used sensors for self-driving vehicles are cameras, lidar, radar, sonar,
Global Navigation Satellite System (GNSS), Inertial Measurement Unit (IMU), and wheel
odometer (KOCIĆ; JOVIČIĆ; DRNDAREVIĆ, 2018). GNSS, IMU, and wheel odometer
are often used for localization and mapping and the others for perception.

The Figure 2 shows how the Waymo company is positioning some perception
sensors in the Jaguar I-Pace model. It is a great example of which sensors are used by the
industry in autonomous cars, and how they are positioned.
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Figure 2 – Waymo’s autonomous Jaguar I-Pace - Some of the sensors

Source: Adapted from (LI, 2021), and (BALDWIN, 2020)

2.1.1 Localization and Mapping

Localization and mapping are processes used to acquire the vehicle’s position re-
specting the requirements demanded by ADS. The natural guess for drivers when it comes
to positioning is to use the (Global Positioning System) GPS, but the provided accuracy
and availability are not enough for ADS applications (KUUTTI et al., 2018). Conse-
quently, it is necessary to use more sensors and reference maps to have complete position-
ing information using IMUs and odometry sensors combined with GNSS.

GNSS sensors communicate with a constellation of satellites to provide global
positioning and is a more general term than GPS (European GSA, 2017). Communicating
with the satellites may not always be possible, for example, when inside a tunnel or near
high buildings.

On the other hand, IMU sensor readings are always available because the sensor
is composed mainly of embedded accelerometers and gyroscopes. Therefore, to estimate
the position is possible to use the dead-reckoning method. It consists of periodically
estimating the new position based on the last one using heading and distance sensors
(KAO, 1991). Consequently, errors accumulate over time due to the estimation recursive
nature (KAO, 1991; LIU et al., 2020). Concerning the wheel odometry sensor, it is a
sensor for measuring the traveled distance. It can improve the dead-reckoning results as,
otherwise, this distance information would be calculated based on accelerations measured
by IMUs.

Even using results from GNSS, IMU, and wheel odometry altogether, as ADS per-
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formance requirements are very demanding, it may not be enough. A mapping technique
as Simultaneous Localization and Mapping (SLAM) or a priori map-based localization is
required for ADS. The first generates the map while localizing the vehicle in this same map
simultaneously, which currently is very resourcing intensive for outdoor environments. The
latter is about continuously localizing the vehicle in a map generated previously, which
can be achieved, for example, using landmark search or point cloud matching techniques
(YURTSEVER et al., 2020).

2.1.2 Perception

It is about gathering enough information through processing sensor data to build
a description of the vehicle’s surroundings. There are object detection, semantic segmen-
tation, road/lane detection, and object tracking between its tasks (YURTSEVER et al.,
2020). Object detection is responsible for detecting the size and location of objects of
interest. At the same time, semantic segmentation classifies every pixel of images with
class labels (YURTSEVER et al., 2020). Figure 3 illustrates this process as provided
by a specific sensor in the CARLA simulator (CARLA, 2021). Road and lane detection
goes beyond classifying the lanes in images. It is also responsible for understanding the
road semantics and the relationship between lanes and intersections (YURTSEVER et
al., 2020).

Figure 3 – Semantic Segmentation Example

Lastly, object tracking can be defined as "the task of estimating over time the state
of a single or multiple objects based on noisy measurements received from one or several
sensors" (KREBS; DURAISAMY; FLOHR, 2017). The obtained information complements
the perception and, along with motion models, can be used to predict trajectories of
surrounding dynamic objects (YURTSEVER et al., 2020).
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Regarding perception sensors’ limitations, Table 1 compiles some of them by kind
of sensor. All sensors have limitations, but one can cover other weak points when using
sensors with different strengths. In addition to different kinds of sensors, one may also
combine variations of the same kind. Figure 2 illustrates, for example, the use of lidar
variations, one on the top of the vehicle (with 360º view), and others at the front and
lateral.

Table 1 – Perception sensors limitations

Sensor Limitations
Camera Highly affected by weather/luminosity conditions (YU; MARINOV, 2020);

Radar
No color differentiation;
Low resolution (YU; MARINOV, 2020);
Highly affected by reflections in walls (KIM et al., 2018);

Lidar
No color differentiation;
Highly affected by weather/luminosity conditions (YU; MARINOV, 2020);
Expensive when compared to others;

Sonar

No color differentiation;
Only short range (YU; MARINOV, 2020);
Low resolution (YU; MARINOV, 2020);
Disruptions in noisy environments (YU; MARINOV, 2020);

2.2 Redundancy
In addition to each sensor’s characteristics, the whole sensor set should work col-

laboratively to achieve fault tolerance and effectiveness. Redundancy, in this case, is not
a negative point. Quite the opposite, often it is needed to provide some alternative to
misreadings or unavailability of some other sensor.

Between sensors, redundancy is not necessarily replicating a sensor of the same
type (e.g., more cameras). Perception tasks, for example, often have their results improved
using different sensor types. The vehicle in Figure 2 uses multiple sensors of a same type,
but it also has at least three types of sensors (radar, camera, and lidar). There are,
inclusive, situations of using the same sensor for different ADAS (Figure 1) or multiple
sensors by a single ADAS. Table 2 shows how some individual perception tasks can have
their rating improved by using a combination of sensors. These results can be achieved
with multisensor data fusion.



2.2. Redundancy 11

Table 2 – Perception Features vs Sensors

Legend: Good (G); Fair (F); Poor (P)
Camera Radar Lidar Ultrasonic Radar +

lidar
Lidar +
camera

Radar +
camera

Object detection F G G G G G G
Object classification G P F P F G G
Distance estimation F G G G G G G
Object-edge precision G P G G G G G
Lane tracking G P P P P G G
Range of visibility F G F P G F G
Functionality in bad weather P G F G G F G
Functionality in poor lighting F G G G G G G
Cost G G P G P P G
Production readiness G G P G P P G

Source: Adapted from (BURKACKY et al., 2018)
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3 Data fusion

Understanding the general concept of Data Fusion is part of understanding Sensor
Data Fusion. It is about fusing, that is, combining data. When introducing the Joint
Directors of Laboratories (JDL) model, the definition by Hall (HALL, 2001) is much more
precise: "Achieve a consistent, comprehensive estimate and prediction of some relevant
portion of the world state. In such a view, data fusion involves exploiting all sources
of data to solve all relevant state estimation/prediction problems, where relevance is
determined by the utility in forming plans of action." (HALL, 2001).

For data fusion, the critical point arises at "exploiting all sources of data". Data
fusion, most of the time, is about combining data from different sources, pursue
relevant information to understand (estimate or predict) an environment (a portion of
the world state) and, finally, make decisions (plans of action (HALL, 2001)).

3.1 Reasons to fuse data

3.1.1 Fault tolerance

Fusing data from sensors that can provide the same information can generate
redundancy, which, as discussed in section 2.2, can provide fault tolerance in case of
misreadings or unavailability of the other sensor (e.g. GNSS in tunnels).

3.1.2 Increase data quality and reliability

Fusing data from multiple independent sensors can improve spatial resolution
(RAOL, 2009) and, when using different kinds of sensors, the system becomes less vul-
nerable to interferences. Some data sources, like sensors, can compensate for faults in the
collecting process of another one, enhancing the confidence in the inferred results.

3.1.3 Estimate unmeasured states

For some reason, like a physical limitation, a state may not be directly measured.
However, it might be possible to measure this state through the measurement of another
one, followed by applying some mathematical or dynamics model.

3.1.4 Increase coverage area

Each sensor has a limited range (see Figure 1), but using more than one and fusing
their information may lead to a sum of their ranges if they have different positions (or
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rotations), see lidars and radars from Figure 2.

3.2 Joint Directors of Laboratories Model
The JDL data fusion model was proposed by the Data Fusion Working Group

from JDL and emerged from the need to unify terms related to data fusion (HALL, 2001).
From the time that preceded the formalization (1986), data fusion studies from researchers
and system developers from different study fields were following different paths. In this
context, JDL was conceived as a general and functional model without application field
restrictions.

A functional model is not meant to define specific inputs, outputs, or rigid order
of execution like a process model (STEINBERG; BOWMAN; WHITE, 2008). It just
provides a visualization of the whole and defines what should be implemented. Even with
that, visual representations of the JDL data fusion model tend to cause some confusion
in this aspect (see Figure 4) and gives the idea of a pipeline, which is not the case.

The initial version of the model could not solve all the problems it was meant
to solve. Consequently, multiple posterior revisions were made to address problems with
terminology, layers responsibilities, and even some definitions.

Moreover, the data model by JDL provides a holistic vision of the scenario in
which the data fusion process is inserted. It describes steps (layers) that go from the raw
signal input, or the data sources, to the computer-human interface, which could also be
actuators.

Observing Figure 4 and considering the revised model (STEINBERG; BOWMAN;
WHITE, 2008): Level 0 handles the raw signal, with Level 1 entities are already available,
Level 2 is capable of identifying relationships between these entities, composing situations,
while Level 3 is concerned about how possible decisions based on the new readings will
impact the external scenario. It is even predicted a dedicated module to check how the
whole process performs and optimize this performance, Level 4.

However, even though the JDL data fusion model is an essential reference for data
fusion, it is a high-level specification and not a detailed architecture on how to implement
Data Fusion concepts for specific use cases.
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Figure 4 – JDL Recommended Revised Model

Source: Adapted from (STEINBERG; BOWMAN; WHITE, 2008)
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4 Multisensor Data Fusion

Electronic devices interact with the physical world using sensors and actuators.
Sensors generate measurements, and usually, these measurements are made periodically
with fixed intervals defined by their Original Equipment Manufacturer (OEM). Conse-
quently, there is a constant flow of data being generated by different sources (sensors)
while the electronic device is turned on.

Following the ideas from Section 3.1, the information obtained from the sensors’
data can be increased (or improved) once they are fused between them, i.e., once the
Multisensor Data Fusion is applied to the data. This kind of fusion can be accomplished
in multiple different ways, with different algorithms, and through different levels of ab-
straction.

4.1 Environment Model

In ADS, many sensors collaborate to understand the surrounding environment
by completing tasks related to perception functionality. Even with capable sensors, and a
well-defined hardware platform, there is still a need to create a software approach to make
this information available to all modules that need it to make decisions. The environment
model is an alternative to achieve this goal.

4.1.1 Directly accessing sensors

Modern vehicles (not only autonomous) may have several applications requiring
data from specific sensors to perform their functions. Figure 5 shows the scenario using
a basic architecture with a naive and direct approach. Each ADAS application gets data
from the sensors it needs in this scenario, performing fusion whenever necessary. This kind
of architecture, among other problems, can lead to high complexity code, high redundancy,
and high bandwidth usage (AEBERHARD, 2017).

4.1.2 Collecting sensor data from Environment Model

Contrasting with the last architecture, architectures with environment model con-
centrates all data fusion inside a specific module. This module will produce a single
description of the environment (AEBERHARD, 2017).

Assuming the idea that the state of an environment can be decomposed at the
states of the objects (entities) in that environment (STEINBERG; BOWMAN; WHITE,
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Figure 5 – ADAS directly collecting data from sensors

Source: Adapted from (AEBERHARD, 2017)

2008), from the environment model, it is possible to estimate the whole "world state" for
that environment.

Thus, ADAS can directly get all information about the surrounding state from
the environment model (see Figure 6). All sensors’ complexity and specific details are
transparent to the applications.

Figure 6 – ADAS collecting data from environment model

Source: Adapted from (AEBERHARD, 2017)

4.2 Architectures

There are several variations in organizing the flow of data inside a software appli-
cation before they can be finally fused. This process can become a complex task as the
number of sensors generating data and ADAS consuming that data increases. Predefined
specifications for organizing this scenario can be called architectures for multisensor data
fusion.
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Three basic architectures are initially described by Hall (HALL, 2001): from least
to most abstraction: (i) direct fusion, (ii) fusion of feature vectors and (iii) fusion of
decisions. The first is about fusing data as it comes from the sensors. For the second
approach, feature extraction algorithms are first applied to data, and then the results are
fused. The last approach is about processing the data until much-derived information is
extracted, and then they are fused.

Aeberhard categorizes these and other variations of this approaches in classes with
different levels of abstraction: low-level, high-level and hybrid.

4.2.1 Low-Level

The most basic form of low-level fusion, (i), is also the most intuitive. Essentially,
a module will get data directly from the sensors, process this data, fuse it and return it to
other modules, a completely centralized approach. Nevertheless, some other alternatives
are still low-level, as the fusion of feature vectors, (ii), can also fit this category.

4.2.2 High-Level

The opposite of the last one, this type of architecture depends on the fact that
each sensor will have its data filtered and tracked by specific modules. When data gets
to the fusion module, its responsibility is to combine them. Because each sensor will have
separated filtering and tracking modules, this can also be considered a decentralized type
of architecture. Since the input for the fusion itself are outputs from tracking algorithms
(tracks), usually algorithms categorized as track-to-track are used. From the first men-
tioned three types of architecture, the fusion of decision, (iii), fits here.

4.2.3 Hybrid

A hybrid fusion architecture is an attempt to aggregate the advantages of both
other options. However, it comes with the risk of the architecture becoming too complex
for real-world scenarios.

Table 3 is a comparison table by Aeberhard, who does a great job explaining each
of these evaluated criteria in detail.

The most noticeable points are: first, about the unique positive point for Low-Level
being accuracy. Accuracy for the other options can be decreased due to model assumptions,
even for Hybrid, so applications that cannot tolerate this kind of loss should keep using a
Low-Level approach. Considering only the positives and negatives, High-Level appears to
be the best. However, each of the evaluated points needs to be evaluated specifically for
the scenario in which they will be applied. It is also important to note that variations in
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Table 3 – Architectures Comparison

Legend: Positive (P); Negative (N); Neutral (T)
Low-Level Feature-Level High-Level Hybrid

Sensor encapsulation N T P T
Bandwidth N T T T
Accuracy P T T P
Complexity N T T T
Modularity N T P T
Sensitivity to errors/bias N N T T
Practicality N T P T

Source: Adapted from (AEBERHARD, 2017)

the implementations of these architectures can also lead to better or worse performance
than the registered in the table.

4.3 Self-Driving Vehicle Sensor Fusion
For multisensor data fusion for self-driving vehicles, data must be fused to get the

best possible results for both the core functions detailed in section 2.1, which gets data
from the vehicle sensors perception, and localization and mapping.

More objectively and considering all the information from the other sections, Fig-
ure 7 abstracts perception as Static and Dynamic Environment Model and localization and
mapping as Global and Relative Position. Mainly, ADS requires distinct fusion modules
for each of these goals, collecting data from the indicated data sources, that may not
always be physical sensors.

Figure 7 – Self-Driving Vehicle Sensor Fusion
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4.4 Algorithms
Depending on the chosen architecture and hardware platform, many different types

of algorithms can be used, starting with filtering algorithms that can be applied to the
raw sensor data, to artificial intelligence ones to make decisions in the planning step.

To cite some examples, Bayes filters, like Kalman Filter variations, usually are
enough to obtain dynamics information (YURTSEVER et al., 2020). For filtering and fea-
ture extraction, it depends on the target sensor, e.g., from Fourier Transforms to YOLO,
and Deep Convolutional Neural Network (DCNN) might be applied to cameras data. Fur-
thermore, from basic statistics to Evidence Theory can be applied to merge data, calculate
the existence probability of elements, control weights based on the reliability of the data,
and others.

Using four main kinds of problems, Khaleghi groups algorithms: data imperfection,
data correlation, data inconsistency, and disparateness (KHALEGHI et al., 2013). Besides
the kinds of problems, algorithms may also be classified between frameworks as proba-
bilistic, evidential, fuzzy reasoning. Despite these classifications, algorithms are chosen
based on details of the chosen approaches for each step of this whole ecosystem.
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5 Object-Level Fusion Architecture

To estimate the Dynamic Environment Model (see Figure 7) for developing ADAS
applications, Aeberhard (AEBERHARD, 2017) proposed a novel architecture for fusing
data from perception sensors (see subsection 2.1.2). This chapter is dedicated to giving
an overview of such architecture, a central point of this work.

As seen in section 4.2, there are multiple different architectures to fuse data from
multiple sensors. Aeberhard proposes a hybrid one, mainly based on high-level archi-
tectures, but that eventually uses low-level or feature-level fusion techniques for specific
situations. The proposed architecture is essentially a layered architecture with three layers
(levels), the sensor-level, fusion-level and application-level (see Figure 8).

Figure 8 – Aeberhard Proposed Architecture Overview

Source: Adapted from (AEBERHARD, 2017)

Considering this architecture, as necessary as the levels (layers) definitions are
the interfaces definitions between these layers. The Object Model defines these inter-
face definitions, modeling relevant information about each detected object, both between
sensor-level and fusion-level, and fusion-level and application-level.

The following sections provide a better understanding of the functioning and re-
sponsibilities of all elements of this architecture. Moreover, due to the preprocessing steps
implemented in this work being part of the fusion-level, it is described better.
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5.1 Object model
The object model is the interface between the layers of the proposed architecture.

Hence, it needs to carry all relevant information about all the detected dynamic objects. It
was modeled as a list of objects in which each object is a structure with information about
its track, dimensions, existence probability, classification results, and shape features.

Track is composed of two attributes, the estimated state vector and its covariation
matrix. Similarly are the object dimensions, it also contains the dimensions themselves and
another attribute to hold the variances. From left to right in Equation 5.1, the state vector
x is composed by: position in x, position in y, velocity in x, velocity in y, acceleration in
x, acceleration in y, yaw angle and yaw rate. Dimension d (see Equation 5.2) is composed
only by the length and width of the object.

x = [𝑥, 𝑦, 𝑣𝑥, 𝑣𝑦, 𝑎𝑥, 𝑎𝑦, 𝜓, �̇�] (5.1)

d = [𝑙, 𝑤] (5.2)

Classification is the output of a classification algorithm for each of the classes: car,
truck, motorcycle, bicycle, pedestrian, stationary and other. Each sensor will run feature
descriptor algorithms to extract features from its measurements and then run classification
algorithms to fill this vector.

Lastly, shape features vary according to the choice of how to represent an object’s
shape. The reference work uses rectangular shapes, with each feature representing one
point of the rectangle. As illustrated in Figure 9, the features are the relevant combinations
of rear (R), front (F), middle (M), left (L), and right (R): FL, FR, RL, RR, FM, RM, ML
and MR. Each of these points is a boolean value, representing if the sensor detected that
position of the object in the current reading. It is also worth noting that if considering
three dimensions, the shape features, object dimensions and the state vector could be
adjusted accordingly.

Despite the Object Model supporting all these data, not all sensors can fill every
single attribute. Therefore, a software implementation using these definitions should also
provide some mechanism to specify which attributes a sensor is responsible for filling and
which ones it cannot.

5.2 Layers
Aeberhard proposes the three processing levels that are abstracted as layers in

this work. It is common to design software architectures based on layers to retain specific
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Figure 9 – Shape Features

responsibilities to each layer. When layering, the information should flow only from bottom
to top, from the least to the most abstraction, keeping the layer on the top unaware of
the layers below.

Between the advantages of this approach, each layer can be understood as a whole
coherent module, and it can be modified without prior knowledge about other layers.
On the other hand, there can be performance degradation caused by transformations
between layers, and it is not always possible to keep the higher layers unaware of lower ones
(FOWLER, 2002). The following subsections highlight some of the proposed architecture’s
layers characteristics.

The proposed architecture meets these requirements for layered architectures. Each
processing level can be considered a layer, with self-contained and well-defined responsi-
bility, also, the information, object lists, go only from lower layers to higher layers (see
Figure 8).

5.2.1 Sensor-Level

The sensor-level is the base layer, the least abstracted. It communicates directly
with the sensors, and its responsibility is to, for each sensor, transform the sensor’s raw
data into the object list, filling the attributes from the object model according to the
sensor capabilities.

Eventually, better results may be achieved by performing low-level (or feature-
level) fusion in this layer. With this approach, data from more than one sensor would be
fused to generate one object list, and the group of used sensors would be called a virtual
sensor. Performing low-level fusion at this level is the reason that makes the proposed
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architecture a hybrid one.

The transformation of the raw data to the object list includes the steps of feature
extraction, existence estimation, tracking and classification. Moreover, there are several
options of algorithms that could be used for each one of these steps. In this layer, the
choice of algorithm and its implementations are also highly dependent on the selected
sensors.

5.2.2 Fusion-Level

As illustrated in Figure 10, the layer receives all the object lists from the sensor-
level and must fuse them into a single object list, the global one. The global object list
represents the surrounding environment state at a given instant. The fusion is accom-
plished by performing the lists alignments (spatial alignment and temporal alignment),
object association, and the fusion steps (state and covariance fusion, existence fusion and
classification fusion).

The steps of alignment (spatial and temporal) plus the object association will
be implemented in this work and will be called objects preprocessing. The following
subsections explain the main ideas about these processes.

5.2.2.1 Temporal Alignment

Usually, sensors do not generate measurements with the same frequency. Then,
different object lists received in fusion-level do not represent the vehicle surroundings at
the same instant, although probably close. The temporal alignment step addresses this
by predicting the most recent measurement to the desired point in time.

In Figure 11, sensor 1 generates measurements every time step, sensor 2 every
three and sensor 3 every two. In the figure, the global measurement is intended to be
generated at the instant 𝑡𝑘 by predicting the last measurements of sensor 1 and sensor
2. Without the prediction, only sensor 3 would have measurement value.

5.2.2.2 Spatial Alignment

Spatial alignment refers to the process of bringing all spatial data from the object
list to a common coordinate system, a unified spatial frame. As can be observed in Fig-
ure 12, this process is needed because each sensor may be at different positions and may
have its axis rotated or reflected compared with another sensor. After the alignment, the
objects’ state must be relative to the same origin point (often in the middle of the vehicle
rear-axis) and with positive x and y pointing to the same directions.
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Figure 10 – Fusion-level overview

Figure 11 – Temporal Alignment
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Figure 12 – Spatial Alignment

5.2.2.3 Object Association

Data association is the process of identifying which pieces of information, through-
out data from multiple sensors, refers to the same object (BEHERE; TORNGREN, 2015).
In this layer, these pieces of information are the objects from different object lists.

Consider a scenario in which a car has two cameras, one on the hood and the
other is lateral. The lateral one can visualize two cars (and the ego), while the other can
visualize just one, as shown in Figure 13. Suppose also that only obj123 is already known
and is being tracked as tracked1 and, therefore, the tracked objects is the set {tracked1}.
After the object association, both cameras will recognize obj123 and obj125 as tracked1,
and obj124 will begin to be tracked as tracked2. Consequently, the tracked objects will
become the set {tracked1, tracked2}.

5.2.2.4 Fusion

After the association, the fusion itself is performed in three steps state and covari-
ance fusion, existence fusion and classification fusion (see Figure 10). The first is handled
in two parts, the track-to-track fusion, which is solved using an information matrix fusion
algorithm, and geometry fusion solved with geometrical fusion applied to a parallel state
vector. For existence and classification, are proposed different novel approaches using
Dempster-Shafer Theory (DST).
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Figure 13 – Object Association

5.2.3 Application Level

In this layer, the global object list can be used to implement variations of ADAS,
even ADS. However, depending on the application that is going to be implemented, more
sources of data and algorithms may be needed. The fusion layer only provides the list of
surrounding dynamic objects (with all the information presented in the object model),
taking the ego-vehicle as the reference.

5.3 Fusion Strategy

Two typical fusion approaches could be adopted for fusing the object lists gener-
ated by the sensor layer, sensor-to-sensor and sensor-to-global. The first is mainly based
on cycles, and for each cycle, the lists from each sensor would be fused between them,
generating a global list. With this method, a temporary list is maintained for the current
cycle, and when a new list arrives, it is merged to the temporary one until the cycle is
completed and the temporary list becomes the global one. It can be said that this ap-
proach is memory-less, as the subsequent cycles do not consider the global lists from the
previous ones (AEBERHARD, 2017).

By contrast, with the sensor-to-global approach, which is the approach chosen in
the proposed architecture, whenever that any sensor generates a new list, it is fused to a
global object list right away. This global object list is maintained while the application is
running, and there are no cycles or completely renewing the global list. An advantage of
this approach is that a recently generated list is not buffered or keeps waiting for other
sensors, making the solution more flexible to removing or adding sensors. Since the global
object list is not completely replaced, it considers previous values, and it can be said that
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this approach has memory.

It is also important to note that both options require temporal alignment (see
Subsubsection 5.2.2.1). The current global list, in sensor-to-global case, or the temporary
list, in sensor-to-sensor case, must be predicted in time whenever any sensor generates a
new list.
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6 Robot Operating System (ROS)

ROS 2 is the second generation of ROS, a modular, open-source framework for
software development for robots (ROS, 2020c; Red Hat, 2020). It is not an operating
system like a Real-Time Operating System (RTOS) or Linux. It is described as a meta-
operating system that runs on top of another operating system providing its level of
abstractions, tools, libraries, conventions, inter-process communication, and packaging
system (ROS, 2020b). In this document, ROS 2 is assumed as the default version
of ROS and will be called just ROS. When referring to the first generation, ROS
1 will be used instead. The following sections contain more information about specific
points in the use of ROS.

6.1 Applications Architecture

Systems developed on ROS are entirely distributed and decentralized, with no
central server or broker. It forms a mesh of nodes that can communicate between them
mainly through the use of publish/subscribe (pub/sub) pattern, and also request/response
using services and actions. With a suitable Quality of Service (QoS) configuration, this
structure can make these applications achieve space, time, and synchronization decoupling
(EUGSTER et al., 2003).

6.1.1 Publish-Subscribe

Essentially, the publish/subscribe communication pattern (or paradigm) consists
of subscribers capable of demonstrating interest in specific events, and publishers capable
of generating these events. Once an event is generated, all subscribers registered will be
notified, which forms a full decoupled interaction (EUGSTER et al., 2003). This pattern
can be implemented in many forms. It is common to have topics and messages, messages
are units of data published to topics, and then, all subscribers receive these units. ROS
abstracts this behavior with the use of nodes, which are the entities capable of publishing
and subscribing.

Figure 14 illustrates this pattern. As examples, Node5 and Node4 will receive all
messages published by Node1 and Node3, that are publishers only from /topics/attr1.
Node3 may receive messages from Node2 through topic /topics/attr2 and Node2 is also
able to send messages to Node5 and Node6 through /topics/attr1.
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Figure 14 – Publish/Subscribe

6.1.2 Elements

Understanding the main elements which compose ROS applications also makes its
functioning clearer. These elements are:

• Nodes: ROS abstraction for processes. Each node should have one responsibility.
Nodes can communicate with the rest of the system by publishing messages, sub-
scribing to topics and making requests to services and actions.

• Topics: Receive messages published to them and then forward to nodes subscribed
to them. A path separated by slashes identifies topics (e.g. house/kitchen/temper-
ature/1 ), and this structure can be used to abstract composition or hierarchy, for
example.

• Messages: Data transmitted between the nodes. A message must have a well-
defined type that defines its serialization. New types can be created by composing
existing ones or from primitive types.

• Services: Another option to communicate between nodes, but instead of pub/sub,
services follow a request-response synchronous model. A node makes a request and
keeps waiting until the response arrives.

• Actions: One more option for communicating between nodes, similar to services,
and follows the request-response model, but asynchronously. A request is made (usu-
ally long-running), and while it is being executed, periodic feedbacks are returned.
Additionally, the action can be canceled before it ends.
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• Parameters: Similar to global or environment variables inside a node. They can
be kept in a file and have their value changed dynamically during the application
execution.

• Bag: ROS feature that enables to record data published to topics and play it back.
Useful to repeat experiments, debugging or mocking components in the system.

6.2 Packages
One of the advantages of using ROS is to have access to easily pluggable, open-

source packages from the community. Currently, in May 2021, including all versions of
ROS, there are almost 2300 repositories with more than 6300 packages available for usage
and study (ROS, 2020a).

ROS officially provides resources for developing packages in Python and C++ pro-
gramming languages, with all the packages being able to communicate with each other.
Usually, ROS projects are composed of several packages which may have different depen-
dencies and need to be built before the execution. A project usually is organized in a
workspace.

Over time, some tools, as ament and catkin, were developed to address these
problems of dependency resolving and project building. For the last ROS Long Term
Support (LTS) version available, Foxy Fitzroy, the official tutorials recommend using
colcon to build the packages and rosdep to resolve the dependencies (ROS, 2020).

These tools can complete such tasks by interacting with standard tools already
well known by programmers, e.g., CMake, apt, and pip. All ROS packages must have
a package.xml file in the repository root directory for this to be possible. Plus, or a
CMakeLists.txt file for C++, or a setup.py and a setup.cfg files for Python.

6.3 Data Distribution Service (DDS)
DDS is a middleware protocol and Application Programming Interface (API) stan-

dard for Industrial Internet of Things (IoT), i.e., it is a specification for the software layer
that will lay between the Operating System (OS) and the application, intermediating the
communication and sharing of data. Some of the features it has are about the automatic
discovery of the parts, QoS configurations, and security (DDS Foundation, 2020).

In the transition from ROS 1 to ROS 2, most of the middleware was replaced by
a DDS implementation. Additionally, another abstraction layer has been built on top of
DDS to keep interfaces and features similar to the previous ROS 1 version. This DDS
layer can be configured or replaced by another DDS implementation.
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Due to the use of DDS, ROS uses DDS Interoperability Wire Protocol (DDSI-
RTPS) as the wire protocol for communication between the nodes. It is a protocol built,
by default, on top of User Datagram Protocol (UDP) and provides some of the reliability of
Transmission Control Protocol (TCP). However, in a highly flexible way, allowing it to be
customized for the more diverse use cases through several QoS parameters (WOODALL,
2020).

6.4 Interfaces

At the user level, the interfaces to ROS are messages, services and actions. For
messages, one data structure is transmitted, for services are defined one data structure
to the request and another for the reply, and for actions, are defined request, reply, and
feedback. ROS defines that these data structures should be specified in .msg files. These
files are then converted to Interface Definition Language (IDL) (THOMAS, 2020), which
can be used as a mapping to different programming languages code or even serialization
(OBJECT MANAGEMENT GROUP, 2018).

6.5 RTOS

ROS 1, as a popular framework, has been extensively used for building modular
prototypes for robot applications. In the transition to ROS 2, a decentralized approach
through the use of DDS was designed and developed to make it more robust, meeting use
cases not met before, e.g., real-time applications and production environments (GERKEY,
2020).

The most critical differences between an RTOS and a general-purpose OS are
mainly regarding the execution of the tasks being deterministic and critical deadlines,
i.e., missing a deadline is considered a severe fault. To accomplish this, RTOS usually
provides mechanisms that give the developer better control over the execution of the
system, as a scheduler with predictable behavior based on priorities for tasks (SIEWERT;
PRATT, 2015).

Eventually, embedded software applications need to be run on top of RTOS, mainly
when are used in safety-critical applications. Discussing which modules of an ADS should
run on RTOS is not a goal of this work. However, as the slowness to perform some action
can cause injuries or deaths, an RTOS will likely be used at some point. For example, as
a time requirement, for localization estimation, it has been estimated a minimum of 10
Hz frequency (Connected Places Catapult, 2019). Therefore, it is essential to check the
ROS capabilities regarding real-time applications as ROS might need to interact or run
on top of an RTOS in a real-world scenario.
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The improvement of these real-time capabilities was one reason for the migration
from ROS 1 to ROS 2 (GERKEY, 2020). However, despite the intentions, these capabil-
ities were not implemented since the beginning. Later, there were official (recent) discus-
sions about the subject and plans to adapt the code base aiming real-time (PANGERCIC,
2019b). As a result, an official proposal was written (KAY, 2020b), yet it is not clear how
much of it is already implemented.

On the other hand, for the real-time scenario, there are official instructions for
using ROS with Linux using the kernel patch RT_PREEMPT. Additional specific config-
urations (ROS 2, 2020) and best practices (KAY, 2020a) are also provided. Some works
had even met the requirements for their soft real-time applications by using similar ap-
proaches: (PARK; DELGADO; CHOI, 2020; GUTIÉRREZ et al., 2018). The latter even
for firm real-time application. Not exhaustively, but like other options, there are also
commercial solutions as the eMCOS RTOS, which claims to be directly compatible with
ROS (eSOL, 2020) and Apex.OS, which can be used as a direct replacement for ROS
(Apex.AI, 2020).

For highly constrained environments, it was released micro-ROS, a solution with
seamless integration with ROS 2 architecture and ready to be used in microcontrollers
(micro-ROS, 2020a). Between its adaptations is the use of the DDS For Extremely Re-
source Constrained Environments (DDS-XRCE) instead of the default ROS DDS im-
plementation. Currently, for software platforms, micro-ROS supports Nuttx, FreeRTOS,
and Zephyr RTOSs. The hardware platform also supports popular platforms, e.g., ESP32
(micro-ROS, 2020b).

6.6 Usage for Autonomous Driving

Autonomous vehicles are robots. They have sensors and actuators and, essentially,
common requirements with other robotic applications. As ROS is a framework for de-
veloping software for robots, it is expected that it also can be used in ADS. However,
autonomous driving is a very complex robotic application, one with critical requirements
for security and safety, complex sensors, and complex decision mechanisms. Therefore,
extra care must be taken when using ROS in this context, which might require some
extra steps.

Nevertheless, ROS has been used in the autonomous driving scenario by companies
like BMW (AEBERHARD et al., 2015) and Apex.AI, which has developed autonomous
cars (HO et al., 2018) and studied ROS real-time performance (PANGERCIC, 2019a). In
the academy, among other works, some researchers are proposing new software architec-
tures (REKE et al., 2020) and others considering ROS in the test and validation process
(KERNER, 2017). On Google Academic (2020 December), the query "ROS" ("autonomous
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driving" OR "self-driving") returns almost four thousand results since 2019. Besides, there
are also big open-source projects for ADS using ROS, e.g., Autoware.Auto, currently fo-
cused on the Autonomous Valet Parking and Autonomous Depot Maneuvering use cases
(The Autoware Foundation, 2020).



Part II

Results
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7 Software Solution

Previous chapters contain studies about all of the aspects deemed relevant for
delimiting this work’s main characteristics and scope. This chapter describes how all this
information was used to achieve the objective defined in Subsection 1.2.1.

The fusion architecture proposed by Aeberhard and explained in Chapter 5 is cho-
sen for this solution. Its high-level characteristics, well-defined interfaces, and processing
levels (mapped to layers in this work) make it possible, to a certain extent, to build a
generic and modular software solution. Another important point is that it was designed to
be used in the same kind of applications that this work, autonomous driving applications.

The focus of this work is the preprocessing in the entrance of the fusion layer,
comprised by the spatial alignment, temporal alignment, and object association.
The scope to implement the whole fusion layer would not fit the time available for this
work.

It is also worth noting that implementing all three layers would require other long
and more complex to generalize tasks. The sensor layer would require the processing and
extraction of features from different kinds of sensors’ raw data. In addition, the application
layer would require to implement some application that consumes the global object list
(e.g., autonomous driving). The fusion layer was considered the part of the architecture
more suitable for a generic and modular software solution.

The software solution will use ROS as the main framework. ROS has been widely
used for robot software, eventually even considered the de-facto standard (MALAVOLTA
et al., 2020). It was designed to make feasible a structure where independent packages
(modules), developed by different groups, could be integrated to compose a complete
robotic application. Additionally, it has been used for autonomous driving applications
(see Section 6.6). All of these aspects make it a proper tool to be used in this solution.

7.1 Requirements
Software requirements identify what is expected from the software once it is ready

to be used. Among other possibilities, it is common to classify requirements between func-
tional and non-functional. Functional requirements refer to what the software will do (i. e.,
functionalities), and non-functional requirements are about constraints on how to achieve
such functionalities (e.g., performance, accuracy, security, interoperability) (WOHLIN et
al., 2005).

When designing the software solution, the following functional requirements were
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gathered, based on the studies from Part I:

• For each sensor object list that arrives, a global object list must be published;

• The solution must allow the registration of sensors;

• The solution must allow the removal of sensors;

• The solution must allow the specification of sensors positions;

• The solution must allow the specification of which attributes from the object model
a sensor is capable of generating.

Additionally, the following non-functional requirements:

• The preprocessing implementation must be coherent to the layers specification (Fig-
ure 8);

• The solution must be compatible with ROS workspaces using ROS Foxy Fitzroy
version;

• The interfaces must be independent of the specific type of sensor (e.g. camera, radar,
lidar);

• The solution must be able to receive constant streams of object lists without the
need to be restarted;

• The solution must be able to receive data from multiple sensors simultaneously;

• The solution must be executed independently from the application using it;

• The implementation should follow real-time best practices as much as possible.

7.2 Architecture
Figure 15 illustrates the publishing/subscribing from the three layers described in

Section 5.2. The fusion layer entry is the /objectlevel_fusion/fusion_layer/fusion/submit
topic. It will receive the object lists produced by each of the sensors through publishes
from the sensor layer. The preprocessing steps from the fusion layer (see Figure 10) will
be implemented inside the fusion node and published to the
/objectlevel_fusion/fusion_layer/fusion/get topic. Nodes from the application layer must
subscribe to this topic to receive the global object lists. In the figure, nodes from the sensor
and application layers are just an example of integration for better understanding, and
different configurations can be adopted.
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Figure 15 – Solution Architecture Overview

It is also worth mentioning that the fusion strategy chosen by the used fusion
architecture (Chapter 5) is sensor-to-global (Section 5.3). Therefore, an object list from
a sensor is fused to the global state as soon as it is submitted. It is not buffered until
receiving lists from all the sensors, i.e., a global object list will be published whenever any
object list from any sensors is published.

7.3 Fusion Node
The ideal is that all steps from Figure 10 would be implemented in the fusion node,

but it would be a scope too big for this work. Thus, the grouping of spatial alignment,
temporal alignment, and object association is being named object preprocessing, and
it is the scope to be implemented in this work. The name preprocessing is because they
are the steps to be performed before the fusion steps.

Following the definitions from Chapter 5, the fusion module will start the flow
indicated in Figure 16 whenever a new object list is published by any sensor node in the
sensor layer. By the end of the flow, the global list will have incorporated all the objects
from the new list that arrived and will be up to date.
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Figure 16 – Fusion Node flow

7.3.1 Sensor Registration

The fusion layer must know the attributes from each sensor in the sensors layer to
perform some of the calculations, e.g., sensor position to perform the spatial alignment.
These attributes are provided through the registration of the sensor.

In this solution, the registration is performed by calling ROS services. There are
two services, one for adding a sensor and the other for removing it. Sensors not registered
will have their messages ignored by the fusion module, and a sensor can be added or
removed at any time during the application execution.

The attributes considered in the registration are the sensor name (arbitrary), posi-
tion (𝑥 and 𝑦), yaw angle, which attributes from the object model it is capable of providing
(as a boolean array), and the measurement noise matrix (see Source Code B.1). The mea-
surement noise matrix is a covariation matrix about the errors expected, from that sensor,
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for each attribute from the object model. Moreover, all the attributes about the position
are relative to the ego vehicle.

7.3.2 Spatial Alignment

When arriving in the fusion node, the values in the object list are relative to the
sensor that sent the list. The objective of the spatial alignment is to make them relative
to the ego-vehicle position (see Figure 12). In this solution, as defined in (AEBERHARD,
2017), this procedure is performed by applying a transformation matrix to the state vector.

The transformation matrix is as Equation 7.1. The ±Δ𝑥 and ±Δ𝑦 are the 𝑥 and
𝑦 provided in the sensor registration, and 𝜃 is the yaw angle, also provided in the same
way. The matrix is applied to the state vector as Equation 7.3, and the aligned state will
have its reference frame the frame from the ego vehicle.

𝐻 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(𝜃) − sin(𝜃) 0 0 0 0 0 0 ±Δ𝑥
sin(𝜃) cos(𝜃) 0 0 0 0 0 0 ±Δ𝑦

0 0 cos(𝜃) − sin(𝜃) 0 0 0 0 0
0 0 sin(𝜃) cos(𝜃) 0 0 0 0 0
0 0 0 0 cos(𝜃) − sin(𝜃) 0 0 0
0 0 0 0 sin(𝜃) cos(𝜃) 0 0 0
0 0 0 0 0 0 1 0 𝜃

0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.1)

𝑠𝑡𝑎𝑡𝑒 =
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𝜓
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1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.2)

𝑎𝑙𝑖𝑔𝑛𝑒𝑑_𝑠𝑡𝑎𝑡𝑒 = 𝐻 · 𝑠𝑡𝑎𝑡𝑒 (7.3)
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7.4 Temporal Alignment
In (AEBERHARD, 2017), it is used only the prediction step from a simple Kalman

Filter, with a constant velocity model, to perform the temporal alignment from the track
(state vector and its covariance). The same work also suggests using a more complex
model with Extended Kalman Filter (EKF) and, to attempt to get better results, this is
the approach adopted in this work.

This solution uses a model with a constant turn rate and constant acceleration in
an approach similar to (BALZER, 2021). To avoid modifications in the known equations,
the object model state is converted to Equation 7.4 by calculating the magnitude of
the velocity and acceleration vectors (𝑣𝑥 and 𝑣𝑦 become velocity, and analogously to the
acceleration), and the heading direction. Note that this state and dynamic matrix do
not use 𝜓, it uses the heading (ℎ) instead. The ℎ angle is the direction of the velocity
and is calculated as in Equation 7.6. According to the chosen model, the Equation 7.5 is
the dynamic matrix that updates the state of all global objects whenever a new message
arrives.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥

𝑦

ℎ

𝑣

�̇�

𝑎

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7.4)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥+ −�̇� 𝑣 sin(ℎ)−𝑎 cos(ℎ)+𝑎 cos(Δ𝑡 �̇� + ℎ)+(Δ𝑡 �̇� 𝑎+�̇� 𝑣) sin(Δ𝑡 �̇� + ℎ)
�̇�2

𝑦 + �̇� 𝑣 cos(ℎ)−𝑎 sin(ℎ)+𝑎 sin(Δ𝑡 �̇� + ℎ)+(−Δ𝑡 �̇� 𝑎−�̇� 𝑣) cos(Δ𝑡 �̇� + ℎ)
�̇�2

Δ𝑡 �̇� + ℎ

Δ𝑡 𝑎+ 𝑣

�̇�

𝑎

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7.5)

ℎ = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑣𝑦, 𝑣𝑥) (7.6)

7.5 Association
Subsubsection 5.2.2.3 describes the process of object association. Aeberhard pro-

poses a complete approach that handle partial observations of objects, considers the ob-
ject classification, probability of existence and the errors covariances. Other techniques
for track-to-track association could also be used.
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With the objective of reducing this work scope, it was implemented a much simpler
technique that is functional only for the best cases. It is considered that the registered
sensors are always capable of providing enough information to estimate the dimensions
and state of the objects, Equation 5.1 and Equation 5.2, respectively. Moreover, this is
the only information considered when associating.

In the solution implementation, all of the global objects have an associated index.
The task of the implemented association is to, for each object from a list arriving from
a sensor, return the index from the corresponding global object. The arriving object is
considered a new global object if the association score is not greater than a minimum
defined. In this case, the association returns the next available index in the global list.
Figure 17 illustrates this process.

Figure 17 – Association Flow

If the association returns the index of an existing global object, it means that, in
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the real world, they might be the same object, and their information should be fused.
Otherwise, it means that the arriving object was not being tracked but now will.

The association scores are calculated as illustrated in Figure 18, and uses IoU
(Intersection over Union) as the metric. IoU is "the most commonly used metric for
comparing the similarity between two arbitrary shapes" (REZATOFIGHI et al., 2019).
These shapes are two rotated rectangles in this solution, one representing an object from
the sensor object list, and the other representing one object from the global object list.
The object from the sensor list is compared with all the objects from the global list, and
the index from the global object with the best score is returned.

Figure 18 – Association score calculation

7.6 Packages file structure
The repository 1 was created in the GitHub platform using the Git version control

system. It is a repository with two ROS C++ packages compatible with the Foxy Fitzroy
ROS release (see Section 6.2). The fusion_layer package contains the implementation of
1 <https://github.com/icaropires/objectlevel_fusion>
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the preprocessing of the object lists, and the object_model_msgs holds the definitions of
the messages which compose the object model (described in Section 5.1). The messages
definitions are available in the repository and in Section A.

The main part of the file structure of the repository is defined as shown in Fig-
ure 19. In the repository root, there is one directory for each package and configuration
files. Inside each package directory, the structure is as defined by ROS itself, src, include,
package.xml, CMakeLists.txt are auto-generated and made available for customization.
The object_model_msgs do not have any headers or src files, it will only contain the
definition files for the messages inside msg. The srv directory in the fusion_layer package
holds the definition files for the services of the fusion node, currently only the services to
register or remove sensors.

Figure 19 – Packages in the Repository Structure

Keeping a separated package containing the messages definitions favors a better
semantic and keeps them decoupled from the fusion_layer. Worth mentioning that there
are more directories in the repository, like examples, and docker. These, on the figure, are
only the directories for the created ROS packages.
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8 Experiment

Some experiment scenarios were performed, as Figure 20 illustrates, using the
CARLA self-driving simulator (CARLA, 2021). In the fusion layer, a default script from
CARLA was customized to generate object lists according to object model specifications
and to publish them to /objectlevel_fusion/fusion_layer/fusion/submit. In the fusion
layer there is the fusion node, which is the core of this software solution, as described
in Chapter 7. The node in the application layer is a Python script listening on the /ob-
jectlevel_fusion/fusion_layer/fusion/get topic. Note also that all the three nodes log in-
formation to a separated CSV file for posterior assessment. The following sections enter
in more details about how these steps are implemented.

Figure 20 – Experiment Modules
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8.1 Customized Manual Control Script
In addition to the main application, CARLA also provides some example Python

scripts on how to interact with the simulation. The manual_control.py is one of these
scripts, developed with pygame (PYGAME, 2021) and that enables the user to control a
vehicle (or pedestrian) as if it was a game. This script was customized by removing some
unnecessary features (which could cost performance), by adding two surround sensors,
and by implementing the integration with the fusion node (see Section 7.3). The script in
execution is illustrated in Figure 21.

Figure 21 – Custom manual control script in execution

Another option would be to use the CARLA ROS bridge, which also provides
another version of manual_control.py that, by default, publishes information about the
simulation to ROS (CARLA, 2021b). This option would also require customizations to
interact with the fusion node, but after assessing the source code, it seemed easier to
customize the default manual_control.py.

In this customization, a kind of sensor was also implemented to produce object lists
of the ego vehicles surroundings. In this work, this new kind of sensor is called surround
sensor (Subsection 8.1.1).

8.1.1 Surround Sensor

The software solution in this work only implements part of the fusion layer. It
does not have a sensor layer, making experimentation harder because the sensor layer
is responsible for transforming the raw data from sensors into object lists, following the
object model specification. This problem was addressed by implementing the surround
sensor.
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The surround sensor is an entity that mocks the behavior of a real-world sensor
by publishing surrounding perception information. To be instantiated, it receives all the
information defined in Subsection 7.3.1. It uses that information plus the value of the
attributes of the closest vehicles (and pedestrians, depending on the configuration) to
produce object lists. Its range is arbitrarily defined as 50 meters but could be any value.
As this experiment is about the best scenarios, the precision of the sensor is absolute, but
noises could be added to the data to produce more realistic scenarios.

Currently, the object lists produced by the surround sensor do not have all the
attributes filled, only the attributes that are being used by the current implementation of
the fuse node. The filled attributes are all from Equation 5.1 and Equation 5.2, but that
could be extended when implementing more components or improving the existing ones.
Table 4 concentrates the summary of the surround sensor attributes.

Table 4 – Surround sensor attributes

Attribute Value
range 50 m

accuracy 100%
coordinate frame X forward, Y left

length -
width -

readings object lists

8.1.1.1 Readings

The attributes measured by the sensor are obtained from CARLA using methods
and attributes from the carla.Actor class (CARLA, 2021a), according to Table 5. The
negative sign in yaw and yaw rate are needed to get positive rotation in the counter-
clockwise direction. With these transformations, the values follow the right-hand system
and use the east north up (ENU) convention (FOOTE; PURVIS, 2010). However, the
fusion node needs the attributes relative to the sensor position, and, at this point, they
are relative to the CARLA map.

These attributes can be made relative to the sensor with some additional steps
described in the sequence. First, considering the ego vehicle state as 𝑠𝑡𝑎𝑡𝑒𝑒𝑔𝑜 and 𝛼 = 𝜓𝑒𝑔𝑜,
the rotation matrix 𝑅 (Equation 8.1) is applied to the ego state resulting in the 𝑠𝑡𝑎𝑡𝑒𝑟_𝑒𝑔𝑜
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Table 5 – CARLA attributes to object model, in Python

object model attribute CARLA attribute
(class carla.Actor)

𝑥 actor.get_location().x
𝑦 actor.get_location().y
𝑣𝑥 actor.get_velocity().x
𝑣𝑦 actor.get_velocity().y
𝑎𝑥 actor.get_acceleration().x
𝑎𝑦 actor.get_acceleration().y
𝜓 -math.radians(actor.get_rotation().yaw)
�̇� -math.radians(actor.get_angular_velocity().z)
𝑤 actor.bounding_box.extent.y*2
𝑙 actor.bounding_box.extent.x*2

(Equation 8.2).

𝑅 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(𝛼) − sin(𝛼) 0 0 0 0 0 0
sin(𝛼) cos(𝛼) 0 0 0 0 0 0

0 0 cos(𝛼) − sin(𝛼) 0 0 0 0
0 0 sin(𝛼) cos(𝛼) 0 0 0 0
0 0 0 0 cos(𝛼) − sin(𝛼) 0 0
0 0 0 0 sin(𝛼) cos(𝛼) 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.1)

𝑠𝑡𝑎𝑡𝑒𝑟_𝑒𝑔𝑜 = 𝑅 · 𝑠𝑡𝑎𝑡𝑒𝑒𝑔𝑜 (8.2)

The 𝐻𝑟𝑒𝑙 transformation matrix (Equation 8.3) is then applied to the
𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑_𝑠𝑡𝑎𝑡𝑒𝑜𝑏𝑗 (Equation 8.4) resulting in the 𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑_𝑠𝑡𝑎𝑡𝑒𝑟𝑒𝑙_𝑜𝑏𝑗, a state that has
all the attributes relative to the ego vehicle (Equation 8.6). This transformation matrix
concentrates a rotation, subtraction from the 𝑠𝑡𝑎𝑡𝑒𝑟_𝑒𝑔𝑜, and mirroring of the 𝑦 axis. At
this point, the attributes are relative to the ego vehicle. Lastly, to make these attributes
relative to the sensor which measured them, the same steps from Subsection 7.3.2 are
applied, but instead of 𝐻, the inverse matrix of 𝐻 is used. After all these steps, the state
that is published to the fusion module is obtained. Note that the 𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑_𝑠𝑡𝑎𝑡𝑒𝑟𝑒𝑙_𝑜𝑏𝑗
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is to 𝑠𝑡𝑎𝑡𝑒𝑟𝑒𝑙_𝑜𝑏𝑗 the same as 𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑_𝑠𝑡𝑎𝑡𝑒𝑜𝑏𝑗 is to 𝑠𝑡𝑎𝑡𝑒𝑜𝑏𝑗 (see Equation 8.5).

𝐻𝑟𝑒𝑙 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(𝛼) − sin(𝛼) 0 0 0 0 0 0 −𝑥𝑟_𝑒𝑔𝑜

− sin(𝛼) − cos(𝛼) 0 0 0 0 0 0 𝑦𝑟_𝑒𝑔𝑜

0 0 cos(𝛼) − sin(𝛼) 0 0 0 0 −𝑣𝑟_𝑒𝑔𝑜𝑥

0 0 − sin(𝛼) − cos(𝛼) 0 0 0 0 𝑣𝑟_𝑒𝑔𝑜𝑦

0 0 0 0 cos(𝛼) − sin(𝛼) 0 0 −𝑎𝑟_𝑒𝑔𝑜𝑥

0 0 0 0 − sin(𝛼) − cos(𝛼) 0 0 𝑎𝑟_𝑒𝑔𝑜𝑦

0 0 0 0 0 0 1 0 −𝜓𝑟_𝑒𝑔𝑜

0 0 0 0 0 0 0 1 −�̇�𝑟_𝑒𝑔𝑜

0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.3)

𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑_𝑠𝑡𝑎𝑡𝑒𝑜𝑏𝑗 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥𝑜𝑏𝑗

𝑦𝑜𝑏𝑗

𝑣𝑜𝑏𝑗𝑥

𝑣𝑜𝑏𝑗𝑦

𝑎𝑜𝑏𝑗𝑥

𝑎𝑜𝑏𝑗𝑦

𝜓𝑜𝑏𝑗

�̇�𝑜𝑏𝑗

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.4)

𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑_𝑠𝑡𝑎𝑡𝑒𝑜𝑏𝑗 =
⎡⎣𝑠𝑡𝑎𝑡𝑒𝑜𝑏𝑗

1

⎤⎦ (8.5)

𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑_𝑠𝑡𝑎𝑡𝑒𝑟𝑒𝑙_𝑜𝑏𝑗 = 𝐻𝑟𝑒𝑙 · 𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑_𝑠𝑡𝑎𝑡𝑒𝑜𝑏𝑗 (8.6)

In the state to be published, the signs from the values 𝑥, 𝑦, 𝑣𝑥, 𝑣𝑦, 𝑎𝑥, and 𝑎𝑦 will
be according to Figure 22. It is important to note that all the values published by an
instance of a surround sensor follow this same instance reference frame. Therefore, unless
two instances are at the same position and with the same rotation, they will publish
different values for the same observed object. Later, the fusion node will spatially align
these values (see Subsection 7.3.2).

8.2 Obtained Information
While running each scenario from the experiment, a series of information is col-

lected. For each execution are saved a ROS bag, a simulation recording file, and three CSV
files (one for each layer). The ROS bag records all the information transmitted between
the sensor and the fusion layers for posterior re-execution. Consequently, the fusion layer
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Figure 22 – Surround sensor reference frame

can be modified, and the same data replayed from the bag without the need to rerun the
simulator.

The CARLA simulator also has a feature to record the simulation, generating .rec
files. However, when using this feature, attributes as acceleration and velocity were not
being replayed, only the position of each object (CARLA, 2020). This problem was the
primary motivation also to use ROS bags. Nevertheless, it was decided to keep the record
file, facilitating the possibility of watching an experiment again visually.

The information contained in the CSV files is according Table 6 for the sensor layer,
Table 7 for the fusion layer, and Table 8 for the application layer. Figure 23 illustrates
the current directory structure for two experiments: both_moving, and stopped_car. Note
the simulation.rec files about the carla recordings, the CSV files, and the bag directories
input_bag.

Table 6 – Fields description from sensor layer’s CSV file

attribute description

timestamp Timestamp in nanoseconds measured since
00:00:00 UTC, at 1 January 1970

sensor_name Name of the sensor which made the measurement

n_objects Number of objects in the object list produced by
the sensor at this measurement

<ego vehicle state> One column for each attribute from the state from
the ego vehicle, according to the object model

8.3 Results

There are five test scenarios: two main experiments that have two variations each,
and a last experiment with only one variation. The experiments are the observed vehicle
stopped, both vehicle moving, and city tour. The variations from the first two experiments
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Table 7 – Fields description from fusion layer’s CSV file

attribute description

timestamp Timestamp in nanoseconds measured since 00:00:00 UTC,
at 1 January 1970.

sensor_name Name of the sensor which made the measurement.

<detected vehicle state> One column for each attribute from the state from the
detected vehicle, according to the object model.

idx_to_associate
The index from the global list returned by the
association function. Which global object this detected
object corresponds to.

association_score The best association score calculated when compared this
detected object to every global object.

association_failed Indicates if the association for this detected object failed.

Table 8 – Fields description from application layer’s CSV file

attribute description

timestamp Timestamp in nanoseconds measured since 00:00:00 UTC,
at 1 January 1970.

global_list_id The id of the list that contains this object. This id starts at one
and is incremented for each global list that arrives.

<global object state> One column for each attribute from the state from the
global object, according to the object model.

length Length of the detected object.
width Width of the detected object.

are the use or not of the temporal alignment, and in the last experiment, the temporal
alignment is used. All of the experiments use object association and spatial alignment.

The vehicles and sensors used in all test cases are according to Table 9 and Ta-
ble 10, respectively. The software and hardware environment used are as in Table 11.
To make the observed vehicle be stopped or moving were used, respectively, the default
manual_control.py and the automatic_control.py scripts. Another essential point is the
association score, which had 0.5 as the minimum acceptable value in these experiments,
but this value can be further calibrated.

Table 9 – Vehicles used in the experiments

vehicle model length (m) width (m)
ego Tesla Model 3 4.791 2.163

observed Audi TT 4.181 1.994
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Figure 23 – Experiments directory structure

Table 10 – Sensors positions (relative to the ego vehicle)

name type x (m) y (m) yaw angle (rad) range (m)
sensor1 surround sensor 1 -2 𝜋/4 50
sensor2 surround sensor -1 0.5 −𝜋/3 50

Additionally, the following topics are facts for the first two experiments (observed
vehicle stopped, both vehicle moving):

• the primary metric used to validate the fusion node implementation is the number
of failed associations performed;

• an association is failed when there is an object in the global list that corresponds to
a object detected by a sensor, but the association algorithm is not able to indicate
it;

• in case of a successful association, a newly detected object replaces the global object
that the association indicates;
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Table 11 – Experiments environment

Attribute Description
Laptop model Acer Nitro AN515-52
GPU Geforce GTX 1050 Ti Mobile
GPU configuration method PRIME Render Offload
NVIDIA driver version 450.80.0.2
CPU Intel Core i7-8750H
Operating System Linux, Kernel version 5.8.0
Desktop Environment KDE Plasma 5.14.5
Python version 3.7.3
CARLA version 0.9.11
CARLA start command DISPLAY= ./CarlaUE4.sh -opengl
CARLA Map Town03
ROS version Foxy

• the test scenarios were elaborated with two vehicles, the ego and the observed;

• the configuration used in the surround sensors is to only detect vehicles;

• the observed vehicle never returns to the sensor range once that it is out;

• each failed association generates a new global object.

8.3.1 Observed Vehicle Stopped

In this first experiment, there is a stopped vehicle on the road (the observed), then
the ego vehicle comes already accelerated in its direction and keeps accelerating. The
ego vehicle passes next to the observed and continues forward until the observed vehicle
gets out of range. Figure 24 illustrates the trajectory and velocity of both vehicles during
both variations of this experiment. The trajectory and velocity for both the variations
are the same because a ROS bag is recorded with the simulator data, and the same
bag is played when executing each of the variations. To complement the understanding,
Figure 25 illustrates the distance between both vehicles over time.

First, the variation with the temporal alignment disabled was executed. Not us-
ing the temporal alignment in the first execution allows checking how much the current
implementation of this alignment is really contributing to the final result. The summary
of this execution is in Table 12. The number of association errors is 23, and, conse-
quently, the number of global objects detected was 24. Calculating the relevant Pearson
correlation coefficients (using (PANDAS, 2021)), as shown in Figure 26, reveals that the
time_increment is almost proportional to the association_failed.

However, this experiment favors this correlation due to its high relative velocity
and the observed vehicle not performing complex movements. Figure 27 shows that one
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Figure 24 – Vehicles travel for stopped car experiment

Figure 25 – Ego distance for stopped car experiment

Table 12 – Results summary for stopped car experiment - Not using temporal alignment

Attribute Value

number of association errors 23
number of detected global objects 24
number of measurements 47
mean of measurements frequency (Hz) 27.708
duration (s) 1.696
maximum relative velocity magnitude (m/s) 30.555
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Figure 26 – Errors correlation for stopped car experiment

new global object is created for every two messages received from the fusion layer. Every
two messages because the interval between measurements from the two surround sensors
is significantly smaller than the time between ticks: average of ˜0.003s between sensors
against average of ˜0.074s between the ticks. In this execution, the association is failing
for the bigger interval, and succeeding for the smaller. To decrease this interval between
ticks, it is needed to increase the Frames Per Second (FPS) from the CARLA server
(CARLA, 2021).

Figure 27 – Number of global objects for stopped car experiment

Now, also using the temporal alignment, the execution summary is as in Table 12.
It can be observed that the temporal alignment decreased the number of association errors
to zero, detecting only one global object, which is the correct information and the best
possible result.
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Table 13 – Results summary for stopped car experiment - Using temporal alignment

Attribute Value

number of association errors 0
number of detected global objects 1
number of measurements 47
mean of measurements frequency (Hz) 27.708
duration (s) 1.696
maximum relative velocity magnitude (m/s) 30.555

8.3.2 Both vehicle moving

For the second experiment, both vehicles are moving in the same direction. Com-
pared with the first experiment, there is a smaller relative velocity between the vehicles,
but more variety of movements. Analogously to the observed vehicle stopped experiment,
Figure 28 illustrates the movement and velocity from both vehicles, and Figure 29 contains
information about the distance between them. Note that in the velocity graph, approx-
imately in the period between 10 and 40 seconds, the vehicles are stopped. This period
was when the vehicles were waiting to cross the traffic light.

Figure 28 – Vehicles travel for both vehicles moving experiment

In the first execution, with the temporal alignment disabled, the result is showed
in Table 14. There were 17 association errors, detecting 18 global objects. Comparing with
the same variation in the last experiment, there were less association errors for more than
30 times the experiment duration. In addition to the time the vehicles were stopped, this
is probably due to the smaller values for maximum relative velocity magnitude, 10.988
against 30.555 meters per second.
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Figure 29 – Distance from ego vehicle for both vehicles moving experiment

Table 14 – Results summary for both vehicles moving experiment - Not using temporal
alignment

Attribute Value

number of association errors 17
number of detected global objects 18
number of measurements 1308
mean of measurements frequency (Hz) 25.953
duration (s) 50.397
maximum relative velocity magnitude (m/s) 10.988

Unlike the last experiment, the correlation table (presented in Figure 30) is not
conclusive. The reason is that the correlation is being affected by the time the vehicles
remained stopped. To reduce this disturbance, Figure 31 shows the correlation from only
measurements in the period after the first 40 seconds, and it is observable a greater
inverse correlation between time_increment and association_score, which, by definition,
has an inverse correlation with the association_failed. Considering this, the impact from
time_increment on the association_failed attribute is consistent with the last experiment,
when the observed vehicle was stopped.

Figure 30 – Errors correlation for both vehicles moving experiment
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Figure 31 – Errors correlation for both vehicles moving experiment - After first 40 seconds

After enabling the temporal alignment, the result in Table 15 shows zero associa-
tion errors and one global object detected, the same as in the last experiment (observed
vehicle stopped). This result demonstrates that the current implementation of the tempo-
ral alignment is being effective even when both vehicles are moving.

Table 15 – Results summary for both vehicles moving experiment - Using temporal align-
ment

Attribute Value

number of association errors 0
number of detected global objects 1
number of measurements 1308
mean of measurements frequency (Hz) 25.953
duration (s) 50.397
maximum relative velocity magnitude (m/s) 10.988

8.3.3 City tour

In the city tour experiment, 30 pedestrians and 30 vehicles are first spawned on
the map. Then the ego vehicle is manually driven, observing some of the pedestrians
and vehicles. These vehicles and pedestrians are spawned using the default spawn_npc.py
script and follow random trajectories in the map. Another difference when comparing
with the last experiments is the surround sensors configuration. Previously, the surround
sensor was capable of detecting only vehicles, it was now configured to detect vehicles
and pedestrians. Same as with the last experiments, Figure 32 shows the trajectory and
velocity from the ego vehicle, but only from the ego. Another point

In the last experiments, there was only one more object to be detected on the
map, and then it was not a problem to identify failed associations. For this experiment, a
different approach was taken. Table 16 contains the summary of the execution, with each
row representing objects with a specific dimension. The best case column is the number
of different objects detected by the ego vehicle with the same dimension. Worst case
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Figure 32 – Ego vehicle travel for city tour experiment

indicates how many measurements were made for objects with this dimension, and result
is the number of global objects with this dimension after passing by the fusion node.
Finally, score is how close the result is from best case, and it is calculated according to
the Equation 8.7. It ranges from zero, when the result is the worst case, to one, when it is
the best case. For more information about the objects that have these dimensions, check
Appendix C.

Table 16 – Results summary for city tour experiment

dimensions (m)
(length, width) result best case worst case score

(0.38, 0.38) 438 7 2336 0.81
(0.50, 0.50) 93 1 328 0.72
(1.49, 0.86) 42 1 948 0.96
(2.21, 0.87) 14 1 234 0.94
(3.63, 1.84) 9 1 224 0.96
(3.71, 1.79) 5 1 127 0.97
(3.81, 1.97) 88 1 1494 0.94
(3.87, 1.91) 9 3 490 0.99
(4.19, 1.82) 22 2 348 0.94
(4.67, 2.00) 36 1 1491 0.98
(4.72, 1.90) 31 2 432 0.93
(4.79, 2.16) 3 1 148 0.99
(4.86, 2.03) 51 2 1570 0.97
(4.97, 2.04) 7 1 730 0.99
(5.20, 2.62) 10 1 535 0.98
(5.24, 2.10) 7 1 736 0.99
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𝑠𝑐𝑜𝑟𝑒 = 1 − 𝑟𝑒𝑠𝑢𝑙𝑡− 𝑏𝑒𝑠𝑡_𝑐𝑎𝑠𝑒
𝑤𝑜𝑟𝑠𝑡_𝑐𝑎𝑠𝑒− 𝑏𝑒𝑠𝑡_𝑐𝑎𝑠𝑒 (8.7)

Eventually, it is possible that best case can not be reached because the current
association algorithm does not handle object occlusions. Anyhow, even using the temporal
alignment, score did not reach the best case value even once. The worst results were from
the smaller objects, as expected. It is expected because bigger objects have a bigger chance
of getting better association scores for the same time interval between the measurements.
Another problem that should be tackled is old objects in the global object list not being
removed after some time. This behavior can cause new objects to be mistaken with old
ones.

As demonstrated in the last experiments, the time between measurements directly
impacts the association failures. Figure 33 shows the measurement frequency during this
experiment execution. The mean is 14.53 Hz considering only the sensor1. Considering
both sensors, it would be nearly double, which is not very different from, for example,
the average from both vehicles moving (which was 27.70 Hz). However, more association
errors will probably occur in the moments this frequency decreases.

Figure 33 – Measurements frequency for city tour experiment, considering only sensor1
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9 Conclusion

The accuracy and reliability requirements for ADS applications are very demand-
ing, which increases the need for multisensor data fusion. Sensors solutions that are enough
for more straightforward robotic applications do not meet the requirements for the self-
driving scenario. The redundancy between sensors of the same type and subsequent fusion
may increase the data’s reliability through fault tolerance. Moreover, the fusion between
different types of sensors may increase the accuracy, taking advantage of the best capa-
bilities from each type of sensor.

The multisensor data fusion may be implemented in different types of fusion ar-
chitectures, according to the requirements of the specific problem it is meant to solve.
For ADS, despite the accuracy from high-level and hybrid architectures possibly being
enough, it may vary depending on the implementation and other aspects. Low-level archi-
tectures often provide better accuracy at the cost of less maintainability, more bandwidth
usage, among others. Furthermore, strategies like the environment model may be used to
make an architecture more robust and scalable.

Despite the usefulness and popularity of multisensor fusion in self-driving contexts,
it is still common for companies and research centers to implement their solutions from
the ground up. The software solution implemented in this work offers a partial and initial
solution because not all modules needed to perform fusions are implemented, and the
solution is not currently ready to receive data from real sensors.

However, the used fusion architecture decouples the algorithms in the fusion layer
from details from each perception sensor, making the solution more generic. Additionally,
the use of ROS favors modularity, integration, and packaging. Moreover, in the future,
using the correct configurations and tools, it might be possible even to meet the require-
ments for firm real-time applications.

Additionally, it is currently already possible to run the solution as an independent
module, register and remove sensors, and communicate to it through the defined topics.
It receives object lists, applies spatial and temporal alignments, association, and returns
global lists. During the validation, it performed associations in scenarios with data coming
directly from a self-driving simulator, from two sensors in two different positions.

Nevertheless, this validation was performed in a well-controlled environment, with
mocked sensors publishing ground truth data. It was not used data from real-world sensors
at any moment, neither errors were emulated. Furthermore, the association implementa-
tion needs to be extended and improved to support such scenarios. It currently considers
that the sensors can always send accurate information about the object dimensions, posi-
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tion, velocity, and acceleration, which is not a real-world scenario. Thus, the solution still
need to be evolved to support simulations closer to the reality.

9.1 Suggestions for Future Works
This work offers an initial implementation based on solid foundations for object-

level fusion. The related future works should be increments to this foundation in order to
build a robust solution capable of handling complex scenarios from the real world.

Thereby, the initial steps are to finish the implementation of the fusion layer and to
improve (or substitute) the current object association implementation to consider partial
observations of an object and the sensor’s errors (see (AEBERHARD, 2017)). Once the
application receives these improvements, it could also be validated with data from real-
world sensors. Additionally, using the readings from the surround sensor, it is even possible
to generate object lists to mock a specific behavior, adding to them the desired noise or
omitting specific attributes.

Other improvements related to performance can also be made, such as measuring
the current implementation’s real-time capabilities and improving it, maybe testing in
an RTOS. Another suggestion is to delete global objects that are not relevant anymore,
improving the algorithm’s performance and saving resources.
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APPENDIX A – Messages definitions

This appendix contains the ROS message definitions used in the software solution.

A.1 Object Model
The object model, defined as in Source Code A.1 is the main message type for

this software solution. It is both, the input and output for the fusion layer. All the other
source codes of this section were defined in order to be used as attributes from the object
model.

Source Code A.1 – Object Model message definition

1 # Using frame_id from header to specify the sensor name
2 std_msgs/Header header
3
4 Object[] object_model

Source Code A.2 – Object message definition

1 Track track
2 Dimensions dimensions
3 ExistenceProbability existence_probability
4 Classification classification
5 ShapeFeatures shape_features
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Source Code A.3 – Track message definition

1 # Enumeration
2 uint8 STATE_X_IDX = 0
3 uint8 STATE_Y_IDX = 1
4 uint8 STATE_VELOCITY_X_IDX = 2
5 uint8 STATE_VELOCITY_Y_IDX = 3
6 uint8 STATE_ACCELERATION_X_IDX = 4
7 uint8 STATE_ACCELERATION_Y_IDX = 5
8 uint8 STATE_YAW_IDX = 6
9 uint8 STATE_YAW_RATE_IDX = 7

10
11 uint8 STATE_SIZE = 8
12
13 # Size is STATE_SIZE
14 float32[8] state # [x, y, velocity x, velocity y, acceleration x, acceleration y, yaw, yaw rate]
15
16 # Square matrix, size is the size of state squared
17 # float32[64] covariation # Only 1d array supported. Access with `covariation[i*8 + j]`
18
19 # Using covariation as size of CTRA squared for now, until remodel CTRA or figure out
20 # how to transform from 6x6 to 8x8 and back
21 float32[36] covariation

Source Code A.4 – Dimensions message definition

1 # Enumeration
2 uint8 DIMENSIONS_LENGHT_IDX = 0
3 uint8 DIMENSIONS_WIDTH_IDX = 1
4
5 float32[2] values # [length, width]
6 float32[2] uncertainty

Source Code A.5 – Classification message definition

1 # Enumeration
2 uint8 CLASS_CAR_IDX = 0
3 uint8 CLASS_TRUCK_IDX = 1
4 uint8 CLASS_MOTORCYCLE_IDX = 2
5 uint8 CLASS_BICYCLE_IDX = 3
6 uint8 CLASS_PEDESTRIAN_IDX = 4
7 uint8 CLASS_STATIONARY_IDX = 5
8 uint8 CLASS_OTHER_IDX = 6
9

10 float32[7] probabilities # [car, truck, motorcycle, bicycle, pedestrian, stationary, other]

Source Code A.6 – Existence Probability message definition

1 float32 probability
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Source Code A.7 – Shape Features message definition

1 # Indicates which corner and side features from the object were observable
2
3 # Enumeration
4 uint8 FEATURE_FL_IDX = 0
5 uint8 FEATURE_FR_IDX = 1
6 uint8 FEATURE_RL_IDX = 2
7 uint8 FEATURE_RR_IDX = 3
8 uint8 FEATURE_FM_IDX = 4
9 uint8 FEATURE_RM_IDX = 5

10 uint8 FEATURE_ML_IDX = 6
11 uint8 FEATURE_MR_IDX = 7
12
13 bool[8] features # [FL FR RL RR FM RM ML MR]
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APPENDIX B – Services definitions

B.1 Sensors Registration
These are the files for the definitions of the services responsible for adding or

removing sensors. Only messages from the registered sensors are considered in the fusion
layers, according to subsection 7.3.1.

Source Code B.1 – Register Sensor service definition

1 # Service to register sensors in the fusion layer
2 # sensors not registered will have its data ignored in fusion
3 string name
4
5 # All relative to the vehicle coordinate frame
6 float32 x
7 float32 y
8 float32 angle
9

10 # Which attributes from object_model_msgs/msg/Track.state this sensor is able to provide
11 # Size is object_model_msgs::msg::Track::STATE_SIZE
12 bool[8] capable
13
14 # The R matrix from EKF
15 # 6x6 matrix, according to CTRA model
16 # Row/columns are about attributes [x, y, v, a, yaw, yaw_rate], order matters
17 float32[36] measurement_noise_matrix
18 ---
19 # Success/error message
20 string status

Source Code B.2 – Shape Features service definition

1 # Service to remove from registered sensors
2
3 string name
4 ---
5 string status
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C Observed Objects Dimensions

Table 17 shows the type_id of the CARLA objects observed in the city tour ex-
periment.

Table 17 – CARLA object dimensions by type_id

dimensions type_id

(0.38, 0.38)

walker.pedestrian.0014
walker.pedestrian.0022
walker.pedestrian.0026
walker.pedestrian.0025
walker.pedestrian.0016
walker.pedestrian.0004
walker.pedestrian.0019

(0.50, 0.50) walker.pedestrian.0010
(1.49, 0.86) vehicle.bh.crossbike
(2.21, 0.87) vehicle.yamaha.yzf
(3.63, 1.85) vehicle.nissan.micra
(3.71, 1.79) vehicle.audi.a2
(3.81, 1.97) vehicle.mini.cooperst
(3.87, 1.91) vehicle.jeep.wrangler_rubicon
(4.19, 1.82) vehicle.seat.leon
(4.67, 2.00) vehicle.mercedesccc.mercedesccc
(4.72, 1.89) vehicle.mustang.mustang
(4.79, 2.16) vehicle.tesla.model3
(4.86, 2.03) vehicle.audi.etron
(4.97, 2.04) vehicle.dodge_charger.police
(5.20, 2.61) vehicle.carlamotors.carlacola
(5.24, 2.10) vehicle.chargercop2020.chargercop2020


