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ABSTRACT 
This text presents the work progress of the project which aims to create an autonomous 

juggling prop using a quadrotor and a carbon fiber structure. The text also details the current 

status and future plans, describing the next steps to be followed. 

In the first chapter we introduce the main goal of this project. And this work will start such a 

project aiming to answer the most fundamental questions about its viability. Also, in this chapter 

we present a smaller goal in order to be the first big milestone of the project.  

In the second chapter we will describe the Crazyflie, the platform we chose. We also will 

describe the format, materials and manufacture method chosen for making the dodecahedron 

structure that will allow the drone to be handled during flight. In the end of the second chapter, 

we will describe why the new structure requires the drone controller to be calibrated.  

In the third chapter we will describe the cascade PID implemented in Crazyflie firmware. Then 

we will discuss some approaches from how to recalibrate the control system of the drone 

followed by a detailed description of the FRIT and E-FRIT algorithms, the chosen methods to 

be used in this work. 

In the fourth chapter we will present our methodology and its results, showing how well the 

regulated the controller respond and how it allows the drone to fly with the new structure. 

Finally, in in the last chapter, we will discuss those results and compare with our initial goal. 

Also, in the last chapter we will present some suggestions for future work. 

 

 

Keywords: Drone, juggling, E-FRIT, Crazyflie. 
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RESUMO 
O presente texto apresenta a evolução do trabalho cujo objetivo final é a criação de um 

malabar autônomo, para tal será utilizado um drone que possui uma estrutura de fibra de 

carbono. O texto não só detalha o estado atual projeto, mas também descreve o futuro do 

mesmo, descrevendo os próximos passos a serem seguidos. 

No primeiro capítulo, começamos contextualizamos a interação de humanos com drones 

citando como exemplo o filme SPARKED. Apresentamos a contribuição do nosso objetivo 

principal que é uma apresentação de fato interativa e não uma coreografia pré-configurada. 

Além disso, neste capítulo, apresentamos um objetivo mais modesto para ser a primeira 

grande meta do projeto: Simular malabares entre duas pessoas substituindo a segunda 

pessoa pelo planejamento de trajetória do drone, ou seja, após a primeira pessoa lançar o 

drone, o mesmo irá planejar sua trajetória de modo que simule o lançamento da segunda 

pessoa. 

No segundo capítulo descreveremos o drone escolhido, Crazyflie. Descreveremos 

brevemente suas características, como a linguagem de programação usada no firmware e o 

rádio usado para a comunicação do drone com client software.  Também apresentamos os 

possíveis sensores que podem ser usados. Descreveremos a estrutura que será usada para 

permitir que a pessoa possa manipular o Crazyflie, ou seja, vamos apresentar o formato 

escolhido, os materiais e o método de fabricação escolhido para fazer a estrutura em forma. 

No final do segundo capítulo, descreveremos que devido a adição da nova estrutura o 

controlador com parâmetros de fábrica já não é o suficiente para que o drone decole, portanto 

devemos reajustar os seus parâmetros. 

No terceiro capítulo, apresentaremos de forma sucinta o que é um controlador. 

Descreveremos o controlador PID e o PID em cascata implementado no firmware Crazyflie. 

Em seguida, discutiremos sobre as coordenadas de referência usadas pelo drone e 

apresentaremos a implementação do controle do mesmo. Abordaremos então os requisitos 

de escolha e os possíveis método de calibração de controlador, e em seguida explicaremos 

o método escolhido para o nosso trabalho, E-FRIT. Finalizando o capítulo, apresentaremos 

alguns detalhes relevantes para a implementação do E-FRIT. 

No quarto capítulo apresentaremos nossa metodologia. Como abordamos o fato de que o E-

FRIT é válido apenas para sistemas SISO enquanto o drone é do tipo MIMO. Também 

apresentaremos nossa bancada de testes e em seguida, mostramos que não é necessário 

ajustar os parâmetros do controlador de velocidade angular e que o controlador de posição 

angular se tornou um sistema oscilante na bancada de testes. Mostramos nossa escolha de 

função de transferência desejada e como a encontramos. Como não é possível usar o E-FRIT 
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em sistemas instáveis, tivemos que trocar os valores originais do controlador de posição 

angular para que o mesmo se torne ao menos estável. Com os dados, aplicamos o algoritmo 

E-FRIT, mostramos nossos resultados, discutimos o quão bem o controlador regulado 

responde e como ele permite que o drone voe com a nova estrutura. Finalmente, no último 

capítulo, discutiremos esses resultados e os compararemos com nosso objetivo inicial. Além 

disso, apresentaremos algumas sugestões para trabalhos futuros. 

 

 

Palavras-Chave: Drone, malabares, E-FRIT, Crazyflie. 
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CHAPTER 1 – INTRODUCTION 
Juggle is present in human culture for at least 4000 years [1], and still, there is a huge potential 

for innovations in juggling performances, especially with the adoptions of modern technologies. 

Drones are great candidates to make appearances in modern juggling performances because 

of their capacity to fly precisely in any direction, and even stay still in the air. Indeed, drones 

have made some appearances in this area in the last decade. One of them is SPARKED [2], 

a film made by a partnership between Cirque du Soleil, Eidgenössische Technische 

Hochschule (ETH) Zurich, and Verity Studios. However, even in an amazing work like this, the 

juggler did not handle the flying props1. 

 

Figure 1- SPARKED: A Live Interaction Between Humans and Quadcopters [2] 

The present work aims to change this scenario or, at least, start that change. We envision a 

juggling prop that can fly by itself and also be safely handled by the juggler like a regular prop, 

or as close as possible. If such a goal is achieved, the possibilities are endless.  

Just like music, juggle have a well-defined rhythm, and there is a very precise way to 

mathematically express the juggle patterns2, hence, we could easily program certain behavior 

into these props in a way that it will be intuitive to the juggler to interact with them. This 

mathematical way to express juggle patterns is called siteswap [3], and the quantization of the 

throws is basically based in which hand the prop will land on and how long it will take to do it. 

Therefore, in the first stages we will tell the props which kind of throw they should do and based 

on this information the juggler can incorporate that in his patterns.  

 

1 Props: The objects that are juggled [1]. 
2 Patterns: repeating sequences of throw [3]. 
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At this point we could make a choreography that could freeze in time, go backwards or in slow-

motion, we could reverse gravity or change its direction, or turn it off entirely, all of that with 

the props in the air. However, the real magic will start when we manage to use the drone 

sensors, and maybe some external sensors as well, in order to predict in real time which kind 

of throw the juggler is intending. In that scenario, the algorithm will be able to take control of 

the prop right after it leaves the jugglers hand, and no matter the height, speed or path that the 

props follow, as long it lands in the right hand at the right time, it will not interfere in the pattern. 

Thus, the performances could have some level of freestyle interaction between the props and 

the juggler, which is very common in juggling presentations. And now we could do all those 

things mentioned earlier without having to precisely time everything. However, we can go even 

further. Note that the prop which was thrown is not necessarily the one that have to land in the 

juggler’s hand. As long as the juggler always has a prop in his hand at the right time, the props 

can change positions in the air freely. Add the ability to make props appear and disappear by 

controlling on board LEDs and stage lights and will be very unlikely to someone to describe 

what is going on in the stage without using the word magic. 

1.1 BREAKING DOWN THE PROBLEM 
Although it is clear that some type of structure needs to be built around the drone to enable it 

to be handled in flight, many other questions come to mind: what kind of structure can we build 

around the drone that is dense enough to be handled? How well will the drone fly with such a 

structure? How can the drone detect when it is being handled in order to turn off its controller? 

How can the system keep track of the hand’s position if the juggler starts to move in the stage? 

How silent can the prop be? Will it be possible to mask the sound? How portable can we make 

the system? Will it be possible to perform in any stage or only in pre-prepared ones? How long 

can the battery go? We could go on forever making questions. 

In order to start to answer those previous questions, we will first propose a smaller and more 

tangible goal. In the Figure 2, we illustrate a more modest goal, a single throw where the drone 

task is to simulate an invisible second juggler that would catch it and throw it back. 

In the scheme shown in Figure 2 we can see three stages in the trajectory. At the start of the 

movement the drone will be thrown by the juggler at a certain distance (blue trajectory). During 

this part of the path the drone must maintain its orientation (parallel to the ground) without 

interfering in the free fall trajectory intended by the juggler. 
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Figure 2 - First interaction goal proposal. 

When reaching a certain distance from the ground, the system must change its mode of 

operation and plan a trajectory for the drone to execute in order to reach point P2 with a pre-

determined speed V1 (red trajectory). And then, the drone must turn off the engines to 

complete the last part of the path in free fall, until it reaches the juggler again (green trajectory). 

However even with this goal being more modest it is still too complex for the scope of this work. 

Thus, in this work, we are going to focus on the first two questions: What kind of structure can 

we build around the drone that is dense enough to be handled? How well will the drone fly with 

such a structure? 

In the next chapter we will describe the chosen platform with all its advantages and drawbacks. 

We also will describe the format, materials and manufacture method chosen for making the 

structure that will allow the drone to be handled during flight. At the end of the second chapter, 

we will describe why the new structure requires the drone controller to be recalibrated.  

In the third chapter we will describe the control architecture implemented in Crazyflie firmware. 

Then we will discuss some approaches from how to recalibrate the control system of the drone 

followed by a detailed description of the chosen method, and the key aspects of our script 

implementation. 

In the fourth chapter we will present our methodology and its results. Finally, in in the last 

chapter, we will discuss those results and compare with our initial goal. Also, in the last chapter 

we will present some suggestions for future work. 
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CHAPTER 2 – HARDWARE 
The chosen platform was a nano3 drone, named Crazyflie [4] (Figure 3) sold by a company 

named Bitcraze [5], that is vastly used in researches with drones, especially in swarms of nano 

drones. 

The Crazyflie is a ready-to-fly drone, its firmware is written in C++ and it can be uploaded via 

the included radio, it has out-of-the-box wireless log capability, and support to receive 

commands by a number of different ways, like a client software that runs in Linux, Windows 

and Macs, or a mobile app (Android and iOS), or python scripts using a library, all this software 

are open source and are available in the Bitcraze GitHub. This drone also supports expansion 

decks with automatic detection that add many sensors to the drone in addition to the inertial 

measurement unit (IMU) of the main board. All this and the small size of the drone made the 

Crazyflie the perfect fit for this project. 

A 

 

B 

 

C 

 

D 

 

E 

 

F 

 

Figure 3 - Crazyflie 2.1(A), Crazyradio PA 2.4 GHz USB dongle (B), Flow deck v2 (C), Multi-

ranger deck (D), Lighthouse positioning deck (E), Lighthouse V2 base station (F). [6] 

Actually, we have one main concern with this drone, its thrust capability. With only 15g of 

recommended payload, we fear that it will not have enough power to do the necessary 

maneuvers with a structure coupled to it. However, if that’s proved to be the case, we could 

use in the future a Crazyflie Bolt [7], which is basically a Crazyflie board without the motors 

 

3 Nano drone: weight las then 200g [39] [40] 
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and drivers. It would enable us to build our own quadrotor by choosing the appropriate motors 

and drivers, perhaps with the structure already permanently attached on it. Given that the 

Crazyflie Bolt has the same sensors and the same decks compatibility as the Crazyflie itself 

we expect that everything we develop for one would work for the other. Therefore, we acquire 

for this project a Crazyflie 2.1 with the radio, a flow deck, a multi-ranger deck, a lighthouse 

positioning deck and two lighthouse V2 base station, shown in Figure 3. 

The flow deck is a deck put under the drone that has one distance laser sensor that measures 

the distance to the ground and one optical flow sensor that measure the xy-speed of the drone 

relative to the ground. With only this deck the drone is able to perform autonomous flight, 

although the accuracy rapidly decreases in high speeds [8].  

 

Figure 4 - Block diagram of the Crazyflie firmware Kalman Filter [9]. 

If the Flow deck proves to be sufficiently accurate for the planned maneuvers, it would be ideal 

to use only it, since all the sensors would be embedded, and consequently the stage would 

not have to be prepared with any markers or camera system. However, it is not prohibitive the 

usage of an external measurement system, if needed for the functionality.  In that case, we will 

try to use the Lighthouse positioning deck with two SteamVR V2 base station positioned across 

the stage. 

One can question why use the Lighthouse deck, that during the elaboration of this work it is 

still under development, instead of a method with safer results like a motion capture system 

with visual marks, which is the most used method for autonomous indoor flights [10] [11] [12] 

[13]. The advantage and decisive factor of the Lighthouse deck is the cost, which is a tenth of 

a motion capture system cost. The other solution offered by the Bitcraze for indoor navigation 

is the Loco Positioning System, LPS system, which has a similar price once the base station 
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for the lighthouse is accounted for, however it is not an attractive option for the project, as it 

requires more markers than the lighthouse, which results in a more expensive system. 

2.1 STRUCTURE 
The structure that will go around the drone needs to meet certain criteria: be light-weighted, 

don’t block the air flow and enable safe handling. The maximum recommended payload weight 

of the Crazyflie 2.1 is 15g [4], and the weight of the Flow deck V2 and the Lighthouse 

positioning deck are 1.6g [14] and 2.7g [15], respectively. Whereas it is possible to use both 

decks simultaneously, therefore the available payload comes down to 10.7g. After some tests 

and inspired by the work of Bruno Gabrich e David Saldaña [16], we assembled a 

dodecahedron with carbon fiber rod as edges and 3D printed connections as vertices, that can 

be seen in Figure 5. 

 

Figure 5 - Complete assembly of the dodecahedron without the drone. 

We chose the dodecahedron shape because it would be very difficult to juggle with a cuboid 

one, and a spherical shape would be much harder to manufacture since the process to shape 

the carbon fiber is not trivial. We calculated that the edges needed to be 61mm long for the 

drone to fit entirely into the structure. A 3D model was developed to confirm and is shown in 

Figure 6.  
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Figure 6 – The 3D model made to confirming that the calculated size of the structure would fit 

the drone inside. 

From the 3D model we modeled connection pieces. Figure 7 shows the proposed geometry 

after a few iterations of manufacturing and evaluation of the real structure rigidity and weight.  

 

Figure 7 – The 3D model of the vertices connections to be printed, the dimensions are in 

millimeters. 

A 3D model of the assembled dodecahedron can be seen Figure 8. 

 

Figure 8 – The complete assembly 3D model of the dodecahedron without the drone. 
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To mount the Crazyflie on the structure we model the parts that attach the motors of the 

quadrotor to the carbon fiber rods. It can be seen in  Figure 9. 

 

Figure 9 - 3D model of the parts for coupling the structure to the Crazyflie. How it docks to 

the drone and the dodecahedron can be seen in Figure 10. 

We weighted and calculated the density of the carbon fiber rods to be 1.5279 g/cm3, and the 

density of the filament we used is 1.06 g/ cm3. Given this value and the geometry of the 

structure we used a tool of the 3D modeling software to calculate the predicted mass to be 7g 

and the inertial moment to be the one shown in Eq. 1.  

𝐼 = 	 )
3.1956 0.0018 −0.0088
0.0018 3.6768 −0.0143
−0.0088 −0.0143 2.9556

6 10!"	[𝑘𝑔	𝑚#]. (1)						

For the printed parts we used ABS filament, since it is stronger and lighter than other materials 

commonly used for 3D printing. It is worth noting that we used an Ender 3, a very popular and 

open-source 3D printer, and in order to achieve the necessary precision for the parts, we 

changed the standard 4mm nozzle for a 2mm one. The dodecahedron mounted to the Crazyflie 

in Figure 10. 
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Figure 10 - Complete assembly of the dodecahedron structure with the drone docked. 

The structure with the four coupling parts weighs 6.3g, which is 10% less than the calculated 

weight and only 16.7% of the whole system mass. Due to the ABS expansion during the 

printing process, all the holes had to be adjusted with a drill, which removed a lot of material 

from the final parts, which explains the difference in weight between the model and the real 

one. Unfortunately, we couldn’t compare the real inertial moment with the calculated one since 

we don’t have any measuring equipment.  

Despite the structure mass being only 58% of the available payload, it is mainly distributed far 

from the center of mass, which makes the inertial moment increase considerably. When we 

compare the estimated inertial moment of the structure, shown in Equation (1), to the one of 

the Crazyflie [17], we can see that the moment of inertia of the drone with the structure is twice 

the one of the quadrotors alone. Therefore, it is very likely that the drone control loop has to 

be adjusted in order to fly with the new structure. Indeed, when we try fly without modifying the 

controller, the drone falls to one side and fails to takeoff. Therefore, we realized that the 

parameters of the proportional–integral–derivative (PID) controller were no longer enough for 

the drone takeoff and fly.  

With this problem comes two possible solutions. We could choose to remake the controller 

using a more modern one, or we could simply adjust the parameters of the original controller. 

During this work, we always try to use the practicality and speed of development as the criterion 

of choice to reach the goal of juggling the quadrotor as soon as possible. Given that we don’t 

have a model of the Crazyflie flying dynamics, or the components parameters to make our own 

model, remaking the controller would not be a fast solution. Therefore, we chose to recalibrate 

the control algorithm already implemented on the Crazyflie.  
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CHAPTER 3 – CONTROLLER ALGORITHMICS 
A drone without a control algorithm is an unstable system, meaning that it will not stay in the 

air effortlessly, much like an untrained person in a rola-bola (Figure 11).  

 

Figure 11 - Illustration of a rola-bola with an 𝜃 angle to be compensated.  

Modified image from [18]. 

Hence, to continue with our analogy, we will consider the simplified blocks diagram of the rola-

bola problem as shown in Figure 12. The muscle memory of a well-trained artist is the 

Controller, that allows him to stand on the rola-bola. His body on the rola-bola is the Plant. And 

the inner ear balance system is the sensor. How much the artist must move his muscle will 

depend on how much he is tilted, we call this error, 𝑒. The error is the difference between the 

perceived value and the desired value of the variable to be controlled 𝑒 = 	𝜃$ − 	𝜃, hence, in 

the rola-bola example, the error would be the angle between the board and the floor, since the 

desired position would be zero degrees (parallel to the ground). 
 

 

Figure 12 – Simplified blocks diagram of rola-bola 

However, in the drone case, the organic muscles are replaced by electrical motors, the inner 

ear balance system is replaced by an electronic gyroscope sensor and the neural network is 

replaced by a control algorithm running in a microcontroller. 

One of the most common control algorithms is the PID, Figure 13, in which, integrator is an 

integral operator and Derivative is a derivative operator. PID will multiplies the error by a 

constant usually called K%, multiplies the error integral by another constant usually called K&, 
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multiplies the error derivative by a third constant, K', adds all these values and uses the result 

as the control value for the actuators, hence the name. 

 

Figure 13 – PID blocks diagram 
Just like an untrained person would fall from the rola-bola, a PID controller with wrong 

constants values will not be able to follows the reference signal. Then, when we say that the 

control needs to be calibrated or tunned, that means we need to find the correct values (correct 

enough) of the K%, K& and K' constants for the controller to work properly. 

Another commonly used technique for controlling more complex systems is to concatenate 

several PID controllers, where one gives the reference value for the next one, in a struct called 

PID cascade. The Crazyflie control algorithm is a cascaded PID and can be seen in Figure 14. 

 

Figure 14 – Block diagram of a simplified version of the Crazyflie cascaded PID control 

structure [19]. 

In this cascaded PID the Position PID receives the desired and actual positions and calculate 

the velocity needed to arrive at the desired position as quickly as possible. Although, note that, 

even if the desired position is constant, the desired velocity will change over time, since the 

Position PID goal is to arrive at the desired position and stay there, and not zip through the 

position at a constant speed. Similarly, the Velocity PID receives that desired velocity and the 

current velocity to calculate a desired attitude (angle), since the vertical velocity of a drone is 

proportional to its angle. The attitude PID calculate the attitude rate (angular velocity) and 

finally the Attitude Rate PID sends the desired thrust to each motor. The figure simplifies the 

representation of a three-dimensional system, since the drone is able to move and rotate in all 

three directions each one of these blocks actually represents three PID controllers. Therefore, 

there are 12 PID controllers in total and 36 parameters that can be adjusted. In the next 

sections we will discuss a strategy to tunning such a complex system, but we still need to name 
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those dimensions in order to understand further this control structure and we need to define 

our referential systems and how they are associated. 

3.1 REFERENCE FRAMES 
We have two coordinate frames related to explain. One is the local coordinate that is in the 

body of Crazyflie, the other is the global coordinate attributed to the room, this is illustrated in 

figure 14 in a simplified way. Hence, when two coordinate frames are related it means there is 

a successive sequence of rotations about the coordinate axes that will make their attitudes be 

the same. The angle of rotation about a coordinate axis is called a Euler Angle and a sequence 

of such rotations is often called a Euler Angle Sequence. The rotational sequence is an 

essential information for the Euler Angles, in Crazyflie firmware the sequence is XYZ. The 

sequence be XYZ means to turn the attitude of the first frame into the second one, first rotate 

angle about the X-axis (pitch) then a rotation angle on the new Y-axis (roll) and finally a rotation 

angle in the new Z-axis (yaw) [20]. 

 

Figure 15 – Bottom of the Crazyflie main board, that also is the main structural component of 

que drone. 

The body of the Crazyflie is a single Printed Circuit Board (PCB), as can be seen in Figure 15. 

The plane on which it is contained is defined as the xy-plane of the body reference frame. 

Since this quadrotor has a cross-configuration, the x and y axis are rotated 45 degrees in 

relation to the lines that connect the opposite-sided propellers [21]. The x-axis goes from back-

to-front, where the back is the side that contains the large battery cable. The z axis direction 

is bottom-up placing the Crazyflie on the ground with its propellers facing upwards, in takeoff 

position. The y axis completes the cross product 𝑥⃗ 	× 	 𝑦⃗ = 𝑧, with its direction pointing from 

right to left, as illustrated in Figure 16. Furthermore, marks with this body frame orientation are 

printed in the main board as well as in all the extra boards that can be coupled to the Crazyflie. 

In Figure 15 one of this marks can be seen on the top, just above the name “bitcraze”, the 
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arrow indicates the front of the drone, positive x direction, and the circle with the cross indicates 

that the z-axis is entering the PCB.  

 

Figure 16 - Crazyflie body reference frame [22]. 

We will consider the room as our inertial reference system, since the room moves only with 

the rotation and translation of the earth, which is a negligible for the distance and durations of 

ours flights. That means the Newtons laws of motion will be valid in this reference frame [23]. 

Besides being fixed to the room, the xy-plane of the inertial reference frame will always be 

perpendicular to the Earth’s gravitational field, that fixes two of the three orientations. The other 

orientation (around z), as well as the coordination system origin, will depend on the sensors 

that are coupled to the drone. If no additional sensor boards are used the z orientation and the 

origin position of the reference frame will be set to be equal to the body reference frame in the 

moment that the State Estimator is reset, which happens every time the drone is turned on 

and whenever we send the reset state estimator command by radio. State Estimator in our 

case is the extended Kalman filter showed in Figure 4. However, if the Flow deck sensor is 

coupled, the distance between the drone and the ground is measured using the laser distance 

sensor included in the deck. With this information and assuming that the floor of the room is 

leveled (perpendicular to the Earth’s gravitational field) the xy-plane of the inertial reference 

frame is defined as the plane that contains the floor. And, finally, if the Lighthouse positioning 

deck is coupled to the Crazyflie and the base stations are set on the room, the position and 

orientation of the inertial reference frame will be the same as the body reference frame of the 

drone in the moment of the Lighthouse system setup, which only need to be done when the 

position of the bases change in relation to which other. This last setup is more convenient, 
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since the inertial frame is preserved between power cycles, but is the only one that requires 

external hardware to the drone, what would mean not being able to use the equipment on a 

stage that was not pre-prepared. Thereby, the reference for all the measurements of position 

and velocity (angular and linear) mentioned on this, and the following sections is the inertial 

frame. 

3.2 CONTROLLER FIRMWARE 
To understand in more detail the control structure implemented in the Crazyflie, represented 

in a simplified way in the Figure 14, we reverse engineered the firmware code and represented 

how it works on a block diagram that can be seen in Figure 17. In this diagram each one of the 

PID(z) block represents different calls of the same function in the code, therefore all the 

controller blocks have the same implementation. The PID source code excerpt, Algorithm 1, 

show the PID implemented in Crazyflie, from it we calculate the transfer function that’s 

represent it in the Z domain that is express in Eq. 2. The full open-source code can be found 

on the Bitcraze’s GitHub page [24].   

𝐶()* 	= 	𝐾+ 	+ 	𝐾'
(1	 −	𝑧!,)

𝑇 	+	𝐾& 	
𝑇

(1	 −	𝑧!,)	 .
(2)	

... 
pid->outP = pid->kp * pid->error; 
output += pid->outP; 
 
float deriv = (pid->error - pid->prevError) / pid->dt; 
... 
pid->deriv = deriv; 
... 
pid->outD = pid->kd * pid->deriv; 
output += pid->outD; 
 
pid->integ += pid->error * pid->dt; 
... 
pid->outI = pid->ki * pid->integ; 
output += pid->outI; 
... 
pid->prevError = pid->error; 
 
return output; 
... 

Algorithm 1 - Excerpt of the Crazyflie firmware’s PID code implementation [24]. 

 



 

 

15 

 

Figure 17 - Block diagram of the detailed operation of the firmware controller. This diagram is 

not available from the manufacture, it was made by us through a reverse engineering of the 

Crazyflie firmware.   

3.3 TUNING METHODS 
In the future of this project, we intend to update the hardware. Perhaps changing the rotors for 

more efficient ones and/or upgrading the cage. Actions that will require re-adjusting the 

controller. Thus, the tuning of the PID controller parameters will be a recurring task. Therefore, 

the tuning method of choice should be something practical that can be easily repeated for each 

new upgrade of the quadrotor, whence we discard methods like the Ziegler Nichols, that’s 

require individual analysis each time we run it. With this requirement in mind, we analyzed 

some direct design methods based on input-output measurements without a plant model. A 

measurement of input-output contains expressive information about the plant and with the 

correct algorithm it can generate results as good as or even better than those obtained through 

models [25]. 

Some of those methods are the iterative feedback tunning (IFT) [26], the fictitious reference 

iterative tuning (FRIT) [25] and the virtual reference feedback tuning (VRFT) [27].  Among 

these methods, we will exclude the IFT, because it requires a new input-output measurement 

for each new iteration of the algorithm. The VRFT and FRIT methods require only one 

individual experiment in the plant. Despite those two last methods being based on similar ideas 

[28], the VRFT is suboptimal for restricted controller classes [27] and FRIT gives a better tuning 

parameter [29]. 

Initially, we chose the FRIT method and afterwards we changed to the extended fictitious 

reference iterative tuning (E-FRIT). The differences between those two methods will be 

explained in upcoming sections, for the time being is sufficient to know that both methods 

consider a time invariant, one-degree-of freedom, single-input single-output (SISO) closed 

loop system. However, considering the system represented in Figure 17 it is clear that the 
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complete Crazyflie controller is a multiple-input multiple-output (MIMO) system, therefore we 

must restrict and isolate each PID what will be discussed later. 

3.4 FRIT  
To explain how FRIT works let’s use as an example the generic control system shown in Figure 

18. Denoting the plant model as P(𝑠), the controller as C(𝑠, ρ), 𝜌 is the vector controller 

parameter, 𝑟(𝑠) is the reference signal, u(𝑠, ρ) is the controller signal and y(𝑠, ρ) is the system 

output signal. 𝑠 is the complex variable used in Laplace transform, since it is not influencing 

the results, it will be omitted from now on in order to result in a clear notation.  

 

Figure 18 – Diagram block of a generic closed loop system. 

The controller C may be any controller parametrized by 𝜌, in our case C is a PID controller and 

𝜌 is a vector defined by Eq. 3: 

𝜌 = Q
𝐾+
𝐾&
𝐾'
R . (3)	

The transfer function, 𝑇(𝜌), of the this closed loop system in given by 

𝑇(𝜌) =
𝑃. 𝐶(𝜌)

1 + 𝑃. 𝐶(𝜌)
	 , (4)	

its output y(𝜌),	

𝑦(𝜌) = 𝑇(𝜌). 𝑟. (5)	

The output signal of the controller C(ρ), can be express by: 

𝑢(𝜌) = 𝑇(𝜌). U𝑟 − 𝑦(𝜌)V. (6)	

The objective of the method is to find a configuration that makes the closed loop system 

achieve the desired behavior. Therefore, it is necessary to define in advance this behavior 

through a transfer function that we will call 𝑇'. The output of the 𝑇' will be 𝑦'with an input 

signal, 𝑟, 

𝑦' = 𝑇' . 𝑟. (7)	

Our objective is to find the parameters, 𝜌∗, that makes the output, 𝑦(𝜌∗), match with the 

reference model output, 𝑦',  i.e., 𝑦(𝜌∗) = 	𝑦'. Hence, if the optimal controller 𝐶(𝜌∗) really exists, 
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we expect 𝑇(𝜌∗)	to be identical to the desired model 𝑇' as shown by Eq. 10. Ergo, if we know 

the plant model it is possible to find 𝜌∗ by minimizing the performance index,		𝐽(𝜌): 

𝜌∗ 	= 𝑎𝑟𝑔𝑚𝑖𝑛.	 𝐽(𝜌), (8)	

in which, argmin/	is the arguments of the minimum, which gives the value of ρ at which J(ρ) 

attains the minimum value. The minimized function,	𝐽(ρ), is defined as: 

𝐽(𝜌) = 	b (𝑦(𝜌) − 𝑦')#	𝑑𝑡
0

1
. (9) 

Therefore, if 𝐽(𝜌∗) = 0, we expect that 𝑦' = 𝑦(𝜌∗), hence we conclude 

𝑇' =
𝑃. 𝐶(𝜌∗)

1 + 𝑃. 𝐶(𝜌∗)
. (10) 𝑦' = 𝑦(𝜌∗) ⇒ 	𝑇(𝜌)𝑟 = 𝑇' 	𝑟 ⇒ 	𝑇' =

𝑃	𝐶(𝜌∗)
1 + 𝑃	𝐶(𝜌∗)

. (10) 𝑦' = 𝑦(𝜌∗) 	 ∴ 	𝑇(𝜌)𝑟 = 𝑇' 	𝑟	 ∴ 		 𝑇' =
𝑃	𝐶(𝜌∗)

1 + 𝑃	𝐶(𝜌∗)
. (10)	

We can find 𝜌∗  with Eq. 8 through a nonlinear approach method, such as the Gauss-Newton 

method [28] [29]. A standard approach would be one of the following two options: 

1) If we have the model plant, 𝑃, we could use the iterative optimization method by 

simulating the system. This approach is valid even if the system is nonlinear. But we 

do not have the 𝑃 and it is not in the scope of this work modelling 𝑃;  

2) Same as before, but instead of simulating the response in each iteration, we run a test 

in the real system. This way we avoid the need to know the plant model. But this would 

result in a new collection of data at each iteration to estimate 𝜌∗. 

Neither approach is attractive for us to use in Eq. 8. The FRIT method can overcome the need 

for multiple data collections as it only needs a single data, and also don’t need to know 𝑃. Let's 

understand how this is done.  

First, we will denote the value of the parameter 𝜌 used during the data collection as 𝜌1, note 

that the only requirement for choosing 𝜌1 is 𝑇(𝜌1) must be a stable system, even if it is not well 

tuned. The collected output signal and control signal will be called 𝑦1 and 𝑢1 and will be 

denoted, respectively, by: 

𝑦1 = 𝑇(𝜌1). 𝑟1, (11)	

𝑢1 = 𝐶(𝜌1). (𝑟1 − 𝑦1), (12)	

in which, 𝑟1 is the input signal used, that can be arbitrary.  

Let's start by assuming that in fact there is an optimal controller, 𝐶(𝜌∗) like showed in Eq. 10. 

The FRIT method uses a fictitious reference, 𝑟∗,  input to overcome the need for multiple 

experiments. The 𝑟∗ is defined as the reference signal that when applied to the closed loop 

system parameterized by 𝜌∗, 𝑇(𝜌∗), will produce the output system equal to 𝑦1, i.e.,  



 

 

18 

𝑦1 = 𝑇(𝜌1). 𝑟1 	= 𝑇' . 𝑟∗ = 𝑇(𝜌∗). 𝑟∗, (13)	

and since 𝑃 has not been changed and output remains 𝑦1 the control signal must be equal to 

𝑢1 [27], therefore 

𝑢1 = 𝐶(𝜌∗). (𝑟∗ − 𝑦1). (14)	

From Eq. 14 we can isolate 𝑟∗ and express it as: 

𝑟∗ =	𝐶(𝜌∗)!,. 𝑢1 + 𝑦1. (15)	

Replacing Eq. 15 in y1 = T(ρ∗). r∗ from Eq. 13, we have 

𝑦1 =	𝑇' . 𝐶(𝜌∗)!,. 𝑢1 + 𝑇' . 𝑦1. (16)	

Last’s pause for a second to understand the meaning of all those expressions, get a cup of 

coffee if you will. The parameter 𝜌∗ is what we want to find, it is the controller parameters that 

will make the close-loop system behave as desired, this is the idea expressed in Eq.  10. As 

can be seen in Eq. 3, in our particular case finding the 𝜌∗ means to find the correct values of 

the 𝐾+, 𝐾&, and 𝐾' constants for the controller to give the appropriate response, which is our 

goal after all. To avoid making a new experiment every time we change the controller 

parameters, we work with this clever idea of fictitious reference 𝑟∗. From Eq. 15 it is simple to 

see that if we have the 𝑟∗ we could find the 𝜌∗ with only one-shot experiment. Thus, now the 

problem become to find  𝑟∗. For this we could apply a similar no linear approach as before, but 

as we see in the rest of this section, we now have all the variables need for the calculation in 

each iteration. 

FRIT identifies the optimal controller parameter, 𝜌∗, based on Eq. 16. Then, in order to use an 

iterative optimization method to find the 𝜌∗, we need to define some variables, 𝑟̂& and ŷ&. 𝑟̂& is 

the i-th candidate of the optimization algorithm to be 𝑟∗,	

𝑟̂& = 𝐶(𝜌&)!,. 𝑢(𝜌1) + 𝑦(𝜌1), (17)	

and ŷ& is the output of 𝑇' using 𝑟̂& as input in the i-th round of the optimization algorithm, i. e., 

ŷ& = 𝑇' . 𝑟̂& , → ŷ& = 𝑇' . 𝐶(𝜌&)!,. 𝑢1 + 𝑇' . 𝑦1. (18)	

Remember that we want ŷ& to be equal to 𝑦1.	

Since we can calculate 𝐶(ρ&)!, and we have 𝑇', 𝑢1 and 𝑦1, then, we can find 𝜌∗ minimizing 

the performance index introduced by FRIT, 𝐽2(𝜌). We define the error 𝑒(𝜌&) as: 

𝑒(𝜌&) ≔ 𝑦1 −	ŷ& , (19)	

then, we define 𝐽2(𝜌) as	
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𝐽2(𝜌) = 	b 𝑒(𝜌)#	𝑑𝑡
0

1
.		 (20)	

Now we can find 𝜌∗ using Eq. 21:	

𝜌∗ 	= 𝑎𝑟𝑔𝑚𝑖𝑛.	𝐽2(𝜌) . (21)	

To show that we can use Eq. 21 instead of Eq. 8 we will assume that Eq. 10 is satisfied. Using 

Eq. 10, Eq. 7, Eq. 5 and Eq. 4 we can rewrite Eq. 8 as:  

𝐽(𝑝) = 	b (𝑦(𝜌) − 𝑦$)#	𝑑𝑡
0

1
= b m

𝐶(𝜌∗) − 	𝐶(𝜌)
1 + 𝑃	𝐶(𝜌∗)

∙
𝑃

1 + 𝑃	𝐶(𝜌)
𝑟o

#

𝑑𝑡
0

1
, (22) 

and, using Eq. 10, Eq. 13 and Eq. 18 we can rewrite Eq. 20 as: 

𝐽2(𝜌) = 	b 𝑒(𝜌)#𝑑𝑡
0

1
	= 	b U𝑦1 − 	ŷ(𝜌)V

#𝑑𝑡
0

1
= b m

𝐶(𝜌∗) − 	𝐶(𝜌)
1 + 𝑃	𝐶(𝜌∗)

∙
1

𝐶(𝜌)
𝑦1o

#

𝑑𝑡
0

1
. (23)	

We can see that 𝐶(𝜌∗) in 𝐽(𝜌) is equal to 𝐽2(ρ), thus the controller 𝐶(𝜌∗) can be derived from 

the minimization of 𝐽2(𝜌) through an iterative nonlinear optimization approach instead of 

minimizing 𝐽(𝜌) [29]. And even if there is no 𝐶(𝜌∗) to satisfy Eq. 16, 𝐽(𝜌) could be sufficiently 

approximated to 𝐽2(𝜌) using a pre-filter in 𝑦1 and 𝑢1 [30]. 

3.5 E-FRIT 
As mentioned earlier the FRIT approach requires that the reference model 𝑇' must be 

determined beforehand. However, the FRIT will have an undesirable performance if we choose 

a reference model faster than it is possible. To avoid this problem, we can add a delay 

parameter 𝐿 to the reference model  𝑇', therefore, the new reference model, 𝑇3, becomes [29]: 

𝑇3(𝑠, 𝐿) = 𝑇'(𝑠) ∙ 𝑒!34. (24) 

The evaluation function proposed on Eq. 21 is still the same. However, choosing an 

appropriate value of 𝐿 can become a complex task without any knowledge of the plant. Thus, 

in order to determine the reference model properly, it is useful to provide a 𝐿 parameters that 

can be optimize with the control parameters, then 𝜌 [31] used in Eq. 3 becomes:  

𝜌5 = q

𝐾+
𝐾&
𝐾'
𝐿

r , (25)	

and ŷ& becomes 

ŷ& =	𝑇3 ∙ 𝐶(𝜌&)!, ∙ 𝑢1 + 𝑇3 ∙ 𝑦1. (26)	

Therefore, we will use the E-FRIT instead FRIT.  
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Note that all this math could also be done in the discrete domain. Thus, considering that our 

data will be given in vector forms, the E-FRIT performance index, 𝐽2#(𝜌), used will be: 

𝐽2#(𝜌) =
1
𝑁
t{(𝑦1[𝑘] −	ŷ&[𝑘])# + 𝜆𝛥ũ(𝜌& , [𝑘])}
6

78,

, (27) 

in which, λ is a weighting coefficient and it is recommended to be equal to 1 [31] and 𝛥ũ(𝜌& , 𝑘), 

is a term added to penalize sudden variations in the controller signal, ũ, between two instants, 

defined by. 

𝛥ũ(𝜌& , 𝑘) = 	ũ(𝜌& , 𝑘) − 	ũ(𝜌& , 𝑘 − 1), (28)	

considering we are working in the discrete time,	ũ(𝜌& , 𝑘) can be calculate as:	

ũ(𝜌& , 𝑘) = 𝐶(𝜌& , 𝑍). (𝑟̂&[𝑘] − ŷ&[𝑘]). (29)	

Therefore, with the E-FRIT method we can change the values of 𝜌5, calculate 𝑟̂& and 

consequently 𝑇3, ũ(𝜌& , 𝑡) and ŷ& hence we will have all the parameters of Eq. 27, thus, we can 

use a nonlinear optimization method and we can find 𝜌∗ using the Eq. 27. 

3.6 E-FRIT IMPLEMENTATION 
To execute the E-FRIT method we use scripts in the MATLAB® software [32]. In this work we 

use version R2020b update 5 with a student license running on a MacBook Air (M1, 2020). 

Our goal is not to make the low-level implantation of e-frit in the MATLAB® language, hence 

we will stick to a general explanation of how the implementation problem was addressed and 

give an in-depth look at just two functions that we consider most important, lsim and 

fmincon. We are inspired by the code available at [33], ergo, we wrote two scripts for 

MATLAB® to be able to use the e-frit method. The first one is perfomance_index.m that we 

write as a function to MATLAB®, and it will take the vector 𝜌 as an argument and execute all 

the necessary equations to return the value of 𝐽2#(𝜌). The second script will be e_frit.m 

(ANNEX I) which will pull the input-output data collected from the experiment, set the initial 

variables and call the iterative optimization function, fmincon, that will use the function 

perfomance_index.m as a cost function for optimization.  

The two most relevant functions in the implementation, as already mentioned, are the lsim 

function and the fmincon function. The “y = lsim(sys, rs) function returns the system 

response y, sampled at the same times t as the input. For single-output systems, y is a vector 

of the same length as t. This syntax does not generate a plot” [34]. In the syntax used, the 

input arguments are sys and r, where sys is a dynamic system model, rs is the input signal 
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for simulation, specified as a vector, and t is omitted, hence its value is equal to the period 

used in sys discretization. y is the simulated response data, returned as an array. 

The algorithm is based on recursive digital filter [34]. Hence, considering the input argument 

𝑠𝑦𝑠 defined by 

𝑠𝑦𝑠(𝑍!,) = 	
𝑎, + 𝑎#𝑍!, +⋯+ 𝑎9𝑍!9

1 + 𝑏,𝑍!, +⋯+ 𝑏:𝑍!:
(30)	

then the k-th element of output y becomes  

𝑦[𝑘] = 𝑠𝑦𝑠(𝑍!,)𝑟𝑠[𝑘], (31)	

replacing Eq. 30 in Eq. 31, we have 

𝑦[𝑘] =
𝑎, + 𝑎#𝑍!, +⋯+ 𝑎9𝑍!9

1 + 𝑏,𝑍!, +⋯+ 𝑏:𝑍!:
	𝑟𝑠[𝑘] (32)	

hence, multiplying both sides by the denominator of sys(Z!,), we have 

𝑦[𝑘] ∙ (1 + 𝑏,𝑍!, +⋯+ 𝑏:𝑍!:) = (𝑎1 + 𝑎,𝑍!, +⋯+ 𝑎9𝑍!9)𝑟𝑠[𝑘], (33)	

then, applying distributive property of multiplication, the Eq. 33 becomes 	

𝑦[𝑘] + 𝑏, ∙ 𝑦[𝑘] ∙ 𝑍!, +⋯+ 𝑏: ∙ 𝑦[𝑘] ∙ 𝑍!: = 𝑟𝑠[𝑘] ∙ 𝑎1 + 𝑎, ∙ 𝑟𝑠[𝑘] ∙ 𝑍!, +⋯+ 𝑎9 ∙ 𝑟𝑠[𝑘] ∙ 𝑍!9, (34)	

hence, isolating 𝑦[𝑘], we have the equation: 

𝑦[𝑘] = 	𝑢[𝑘] ∙ 𝑎1 + 𝑎, ∙ 𝑟𝑠[𝑘] ∙ 𝑍!, +⋯+ 𝑎9 ∙ 𝑟𝑠[𝑘] ∙ 𝑍!9 − 𝑏, ∙ 𝑦[𝑘] ∙ 𝑍!, −⋯− 𝑏: ∙ 𝑦[𝑘] ∙ 𝑍!:. (35)	

We set all initial conditions to zero, in Eq. 35. 

Another important function used is fmincon, that find the minimum of constrained nonlinear 

multivariable function [35]. Its syntax is: 

[x,fval,exitflag,output]=fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,op

tions).  

Input arguments are: 

• fun: Function to minimize, in our case its performance_index.m, i.e., fmincon will 

find the input argument of performance_index.m, 𝜌, that will return the minimal 

value. 

• x0: Initial point, 𝑥1 = [𝜌1		𝐿1], 𝜌1 used to collect eq. (11) and (12) and 𝐿1 is our initial 

guess. 

• A, b, Aeq, beq are linear inequality constrains and for our work they are all null. 

• lb it is a lower bound and ub is an upper bound, i.e., this will limit the maximum and 

minimum value that 𝜌 can be. 
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• nonlcon is nonlinear constraints, it is specified as a function name, nonlcon.m, which 

receives as input argument a vector or array x and return 𝑐𝑒𝑞 and 𝑐, where, 𝑐𝑒𝑞 is an 

array of nonlinear inequality constraints at, 𝑐𝑒𝑞(𝑥) ≤ 0, and 𝑐 is the array of nonlinear 

equality constraints, 𝑐(𝑥) = 0 [35]. fmincon attempts to satisfy both 𝑐𝑒𝑞 and 𝑐, in our 

work we have no need to define such limitations, hence our implementation of 

nonlcon.m returns 𝑐𝑒𝑞 and 𝑐 as null vectors. 

• Options is the optimization options parameters. We use the option Algorithm set on 

interior-point [36] [37].  

With the understanding of the FRIT method and its implementation in the ANNEX I scripts, we 

will do the experiments and the calibration of the controller in the next chapter.  



 

 

23 

CHAPTER 4 – PERFORMANCE EVALUATION 
As mentioned in the previous chapter, the first task is to choose the order in which each one 

of the 12 SISO controllers in the diagram shown in Figure 17 will be calibrated, and if in fact 

all 12 will need to be tuned. As the only significant characteristic of the Crazyflie altered by the 

addition of the structure, besides the shape, was the inertial moment, we foresee that the six 

most external controllers (left of the diagram) will not need tuning, since they control linear 

velocity and positions and those are not influenced by the inertial moment, only by the mass. 

Furthermore, we will not attempt to calibrate the yaw and yaw rate controllers at first, since the 

yaw orientation isn’t critical to the flight stability and our most immediate goal is to make the 

drone do a stable flight. Therefore, we start with the following four controllers: Attitude pitch, 

attitude rate pitch, attitude roll and attitude rate roll.  

Moreover, due to the symmetry of the structure and of the Crazyflie, we will only use data for 

one axis to run the FRIT algorithm and we will use the result parameters in both axes. It is 

highly likely that this assumption was also made in the calibration of the original firmware 

controller since the controller constants of the pitch and row controllers are the same in the 

firmware source code. Since there is no objective reason to choose one over the other between 

those two axes, we chose to run the experiments on the pitch axis because it was easier to 

attach the quadrotor in this orientation doe to the pins position in the PCB board. Finally, since 

the dynamics of the attitude rate controller affects the dynamics seen by the attitude controller, 

the inner controllers (attitude rate ones) need to be tunned first. 

 

Figure 19 – Crazyflie, without the dodecahedron, in the test stand that’s restrain all the 

degrees of freedom except the pitch one.  
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We assembled a test stand to constrain the drone movements other than the pitch, which can 

be seen in Figure 19. Beyond that we also disabled the other controllers during the tests to 

ensure that only the pitch PID controllers was contributing to the control signal 𝑢1. 

Although we did not use step signal as an input to use the FRIT and E-FRIT algorithms, we 

run some tests with step inputs to get a more intuitive sense of the current system response. 

The response of the rate pitch controller of the drone without the dodecahedron structure is 

shown in Figure 20 (A), and with the structure in Figure 20 (B). The rise time with the structure 

is equal to 0.057 seconds and the response without the structure is equal to 0.110 seconds, 

practically twice as slow, that is expected since the estimated inertial moment of one is twice 

of the other. The overshooting has also been attenuated, from 70,5% with structure to 60,9% 

without structure. Since changes in system response are caused by increased inertia, we have 

concluded that there is no need to tunning the pitch rate PID since the only possible solution 

in this case would be to increase the motor thrust capacity 

 

Figure 20 – Response to a step input from the attitude pitch rate PID controller of the 

quadrotor in the constrained test stand without the dodecahedron struct (in (A)) and with the 

structure (in (B)), in both cases with the original PID parameters.  

Moving on to the next controller in the PID cascade, Figure 14, the angle one, we also ran 

some steps experiments to compere the system response with and without the dodecahedron 

structure, the data are shown in Figure 21 (B) and (A), respectively. The response signal of 

the Figure 21 (A) has an overshooting of 20.5%, a rise time of 0.173 seconds and a settling 

time of 0.95 seconds with tolerance set in 15%. And the response signal of the Figure 21 (B) 

has a overshooting of 31.57%, a rise time of 0.195 seconds and no settling time with tolerance 

set in 15%. In this case we can see that the two responses are essentially different, the one 

without the structure (Figure 21 (A)) is underdamped and eventually settle on the reference, 

meanwhile the response with the structure is a undamped one (Figure 21 (B)), thus will 

oscillate indefinitely, which is a very compelling reason for the drone to refused to fly. 
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Figure 21 – Response to a step input from the attitude pitch PID controller of the quadrotor in 

the test stand without the dodecahedron structure (in (A)) and with the structure (in (B)), in 

both cases with the original PID parameters. 

Then we pursue to apply the E-FRIT method to better tune the attitude pitch PID. Inspired by 

previous results we decided to use a pulse sequence with exponential decay as our input 

reference signal [28].  The exact signal that we used is the 𝑟1 shown in Figure 22. In this figure 

we can also see response to this input of the original system, the Crazyflie without the 

dodecahedron structure with the original PID parameters 𝜌;$&<&9=>, in which: 

𝜌;$&<&9=> =	 Q
𝐾+	
𝐾& 	
𝐾'
R = 	 )

6
3
0
6 . (36)	

The high frequency component in the response of the original system, that can be seen in 

Figure 21 and in Figure 22, is not present when the drone is freely flying, as can be seen in 

Figure 28 (B) on the next chapter, therefore, this behavior must be induced by the test stand. 

Considering that the addition of the dodecahedron structure does not change the effect 

induced by the test stand, if we desire that the final version of the quadrotor controller have a 

similar behavior to the original one outside the test stand, then they also must have similar 

behavior in the test stand. Therefore, we must use a desired transfer function 𝑇', that has a 

similar response to the one shown in Figure 22. 
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Figure 22- Response of the drone without the structure, System response, on the test stand 

with input, r0, on the pitch attitude PID, with original factory control parameters. Contribution 

of the roll and yaw rate attitude PID have been disabled. 

To generate a desired transfer function 𝑇' that would have de desired effect we use the tfest, 

function of MATLAB® [38], using the data shown in Figure 22 as input. The script can be seen 

in Annex II and the result was the following: 

𝑇' =	
8.5637	(𝑠 + 18.79)(𝑠 + 3.13)(𝑠 + 0.1996)(𝑠# − 279.3	𝑠 + 7.456 ∙ 10?)
(𝑠 + 58.44)(𝑠 + 14)(𝑠 + 3.53)(𝑠 + 0.2035)(𝑠# − 35.81	𝑠 + 1.293 ∙ 10?) .

(37)	

To confirm that the T@ has a behavior similar to the intended one we ran a simulation with the 

same input 𝑟1, that can be seen in Figure 23. One can ask why we do not use the results shown 

in equation (37) to identify the system model and use a traditional controller design, since the 

controller transfer function is known. Besides the fact that the 𝑇' has not the same exact 

response to the one of the real system, which can be seen by comparing the Figure 22 and 

Figure 23, we have no way to separate the behavior caused by the test stand from our results. 

 

Figure 23- Simulated response of the desired transfer function, Td response, in pitch axis. 

To collect the initial data required to run the E-FRIT algorithm we have to chose 𝐾+ and 𝐾& 

values lower than the original ones, because when we run the test with the original values the 

system proves to be instable as can be seen in Figure 24, and as discussed in previous 

chapters the E-FRIT and FRIT algorithm require a stable one.  
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Figure 24 - Response of the drone with the structure, System response, on the test stand 

with input, r0, on the pitch attitude PID, with original factory control parameters, 𝜌;$&<&9=>. 

Contribution of the roll and yaw rate attitude PID have been disabled. 

We also decide to change the value of the 𝐾', that was zero previously, turning the controller 

into a PI. We suspect that it could cause the algorithm to be trapped in a local minimum. Using 

the new values shown on Eq. 36, we collect que data to be used in the algorithm, the data is 

shown on Figure 25, 

𝜌1A =	 Q
𝐾+	
𝐾& 	
𝐾'
R = 	 )

1.7344
1.445
0.001

6 , (38)	

Note that as we defined in Eq. 25, we also need to define 𝐿 in addition to 𝐾+ 𝐾& 	and 𝐾' in 

𝜌;$&<&9=>. In all test runs, we will use 𝐿 equal to 0.01 seconds, which was chosen arbitrarily.  

 

Figure 25 - Response of the drone with the structure, System response, on the test stand with 

input, r0, on the pitch attitude PID, with 𝜌1A control parameters. Contribution of the roll and yaw 

rate attitude PID have been disabled. 

We run the algorithm available, on the ANNEX I, it generated the estimated optimal parameters 

𝜌�∗, shown on Equation (39).  

𝜌�∗ =	 q

𝐾+
𝐾&
𝐾'
𝐿

r = Q	
4.2039
4.7822
0

0.0094

	R (39)	
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Our interest is in the values that we will introduce in the PID in the Crazyflie firmware, i.e., 𝐾+ 

𝐾& 	and 𝐾'. Hence, note that, even with we force a non-zero start point for the 𝐾' it converges 

to zero again. Which suggest that the optimal controller is indeed a PI.  

We run the experiment one more time with the generated parameter for confirmation, and the 

result is shown on Figure 26. As the answer obtained was very similar to the desired one, we 

preceded to the flight tests. 

 

Figure 26 - Response of the drone with the structure, System response, on the test stand 

with input, 𝑟1, on the pitch attitude PID, with 𝜌�∗ control parameters. Contribution of the roll 

and yaw rate attitude PID have been disabled. 

As can be seen in Figure 27 the drone is able to fly in the structure using the new parameters 

𝜌�∗ in the pitch and roll attitude PID controllers.  

 

Figure 27 - Crazyflie in about 3 meters height, outdoor flight, with structure and using 𝜌�∗ as 

controller parameters for the pitch and row attitude PIDs. 

However, because we do not yet regulate the yaw controllers, it was interfering with the drone's 

ability to fly as it saturates two of the engine's signals. Therefore, in all final flight tests we 

disabled the yaw controller, including in the flights with the drone without the structure that we 
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made for comparison. Although the Crazyflie flights were stable, we basically have no steering 

since the drone flew spinning in the z axis due to the missing yaw controller. Because of that, 

we made the final flights outdoors and short-lived to prevent the drone to crash in a tree or a 

wall.  

Figure 28 shows the results of this work in form of reference and system responses of the 

attitude pitch PID controller during outdoors flights and flights attempts. In Figure 28 (A) we 

can see that even with the yaw controller disabled the drone is not able to fly in the 

dodecahedron structure with the original PID parameters 𝜌;$&<&9=> (Equation (34)), since in the 

presence of the smallest stimulus at the input of the pitch controller the system responds with 

an increasing oscillation that causes the drone to fall in less than a fifth of a second. Then in 

Figure 28 (C) we can see that with the new parameters 𝜌�∗ (equation (37)),  the Crazyflie not 

only is able to fly in the structure, but also the PID pitch controller response follows closely the 

reference, in a very similar way to the response of the original controller in flight without the 

structure, as can be seen in Figure 28 (B). 



 

 

30 

 

Figure 28 – Portion of data collected from drone pitch response in outdoor flight. (A) Drone 

with structure and original factory control parameters 𝜌;$&<&9=>. (B) Drone without structure 

and original factory control parameters 𝜌;$&<&9=>; (C) Drone with structure and control 

parameters to 𝜌�∗. 
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CHAPTER 5 – CONCLUSIONS  
In this work we aimed to transform a nano drone in a handleable flying object, as a first step 

towards an ambitious goal of creating a revolutionary juggling prop. Then we peruse to resolve 

the problem of creating a rigid and light-weight structure to be attached to the drone. Which 

provoked the need to recalibrate the drone control algorithm. 

Using carbon fiber rods and 3D print parts, we manage to design and build a structure that 

weighs less than 7 grams and fits the chosen drone inside. It fulfilled the role of protect the 

juggler hands and also protect the quadrotor form occasional crashes. Additionally, the 

structure modular design makes very easy to turn it in a much denser structure once we have 

the hardware with more lift capability. 

And, using the E-FRIT algorithm, we menage to recalibrate the drone controllers hence it could 

fly with the new structure. And because this algorithm doesn’t need a lot of experimental data, 

it will be easily replicated for any future iteration of this project hardware.  

However, even after we calibrated all the other controllers, we are not sure that the current 

prop will be able to meet the performance needed for the proposed show. Meanwhile, the 

versatility and modularity of the developed solutions will ensure that these solutions can be 

used regards of the future hardware modifications that certainly will be made in order to active 

the proposed performance. And even knowing that until this prop arrives on a stage that will 

be a lot of effort, the progress developed during this work was a solid start for this project final 

goal. 

6.1 FUTURE WORKS  
Definitely the next step of this project is regulating the yaw axis for the drone to recover its 

steering capability. In order to do that, we will need to build another test stand to isolate the 

yaw movement. However, now that the drone has regained its ability to fly, it may be possible 

to acquire the yaw data during flight, therefor spare the creation of another test stand. Then, it 

would be beneficial to mount the additional sensors already acquired, to investigate if the 

Crazyflie remains with the same autonomous flight capability. If hence, investigate if the drone 

has the trust capability to perform the maneuver illustrate on Figure 2. And surly, we could not 

fail to mention the build of a more capable drone using the Crazyflie Bolt [7] and bigger motors 

and battery. 

We have a few suggestions for anyone how decides to build on this work. One could try to use 

carbon fiber manufacture techniques to bend the rods and then make a spherical structure. 

Would also be interesting to investigate if there is really no advantage in adjust the pitch and 

row controllers with different parameters. In this work we were also assuming that the original 
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controllers of the drone were the optimal ones, this was translated in the way that we chose 

the desired transfer function 𝑇', but this may not be the case, and would be interesting to 

investigate others values for 𝑇' .  
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ANNEX I - THE E-FRIT SCRIPT 

clear 
global y0 Tds T u0 z lambda fs 
 
load("data/e_frit_data.mat"); 
T = 1/500; 
z = tf([1 0], 1, T); 
lambda = 1; 

I/O data use in the e-frit: 

plot(r0) 
hold on 
plot(y0) 
plot(u0) 
legend("r_0","y_0","u_0") 

 
  



 

 

37 

Desired transfer function used undelayed: 

Tds 
Tds = 
  
  From input "u1" to output "y1": 
     8.564 s^5 - 2202 s^4 + 5.862e05 s^3 + 1.397e07 s^2 + 4.031e07 s + 7.493e06 
  --------------------------------------------------------------------------------- 
  s^6 + 112 s^5 + 1.675e04 s^4 + 1.027e06 s^3 + 1.42e07 s^2 + 4.021e07 s + 7.601e06 
  
Continuous-time identified transfer function. 
 
Parameterization: 
   Number of poles: 6   Number of zeros: 5 
   Number of free coefficients: 12 
   Use "tfdata", "getpvec", "getcov" for parameters and their uncertainties. 
 
Status:                                           
Estimated using TFEST on time domain data "data". 
Fit to estimation data: 86.54%                    
FPE: 2.05, MSE: 2.026                             
Initial Kp, Ki, e Kd values: 

ro0(1:3) 
ans = 1×3 
    1.7344    1.4450    0.0010 

Call the optimization function to find the best ro value: 

ro = ro0; 
options = optimset(); 
[ ro, fval, exitflag, output] = 
fmincon('performance_index',ro,[],[],[],[],[0, 0, 0, 0.0001],300*[1, 1, 1, 
1],'funcon',options); 
Local minimum possible. Constraints satisfied. 
 
fmincon stopped because the size of the current step is less than 
the value of the step size tolerance and constraints are  
satisfied to within the value of the constraint tolerance. 
 
<stopping criteria details> 
Estimated optimal parameters: 

ro(1:3) 
ans = 1×3 
    4.2039    4.7822    0.0000 
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Function that will calculate the performance index of the E-FRIT method. 

This value will be used in the nonlinear optimization function: 

function [J] = performance_index(ro) 
    global Tds y0 T u0 z lambda 
     
    Tdsd = Tds * tf(1,1,'ioDelay',ro(4)); 
    Tdd = c2d(Tdsd,T,'zoh'); 
    C = ro(1) + ro(3)*(1 - z^(-1))/T + ro(2)*T/(1 - z^(-1)); 
    ri = lsim(1/C,u0) + y0; 
    yi  = lsim(Tdd,ri); 
    e   = y0 - yi; 
    Je  = ( e' *  e ) / length(y0); 
    ei = ri - yi; 
    ui = lsim(C,ei); 
    dui = ui - [0; ui(1:end-1)]; 
    Ju = ( lambda * ( dui' * dui ) ) / length(dui); 
    J  = Je + Ju; 
end 

Nonlinear constraints used by the optimization function: 

function [ c, ceq ] = funcon(theta) 
  c = [];     % no constraints 
  ceq = [];       % no constraints 
end 
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ANNEX II - CHOOSING TD 

clear 
load("data/dataset_to_find_Td.mat") 
T = 1/500; 

Loaded data: 

plot(r) 
hold on 
plot(y) 
legend("y","r") 
 

Estimated Td: 

data = iddata(y,r,T); 
Tds = tfest(data,6) 

 
Tds = 
  
  From input "u1" to output "y1": 
     8.564 s^5 - 2202 s^4 + 5.862e05 s^3 + 1.397e07 s^2 + 4.031e07 s + 7.493e06 
  --------------------------------------------------------------------------------- 
  s^6 + 112 s^5 + 1.675e04 s^4 + 1.027e06 s^3 + 1.42e07 s^2 + 4.021e07 s + 7.601e06 
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Continuous-time identified transfer function. 
 
Parameterization: 
   Number of poles: 6   Number of zeros: 5 
   Number of free coefficients: 12 
   Use "tfdata", "getpvec", "getcov" for parameters and their uncertainties. 
 
Status:                                           
Estimated using TFEST on time domain data "data". 
Fit to estimation data: 86.54%                    
FPE: 2.05, MSE: 2.026                             
Td response: 

vecT = 0:T:T*(size(r, 1) - 1); 
Yd = lsim(Tds,r,vecT); 
figure 
plot(r) 
hold on 
plot(Yd) 

 
 


