

MONOGRAPH

QUADROTOR CONTROLLER FOR
COOPERATIVE INTERACTION WITH JUGGLER

Gabriel Pires Iduarte
Luan Haickel Araújo

Brasília, May 2021

ii

UNIVERSIDADE DE BRASÍLIA
Faculdade de Tecnologia

Undergraduate Course in Control and Automation Engineering

MONOGRAPH

QUADROTOR CONTROLLER FOR
COOPERATIVE INTERACTION WITH JUGGLER

Gabriel Pires Iduarte
Luan Haickel Araújo

Report submitted as a partial requirement to obtain
the degree of Control and Automation Engineer.

Banca Examinadora
Prof. José Edil Guimarães de Medeiros, UnB/
ENE (Orientador)

Prof. Fernando Cardoso Guimarães, UnB/ ENE
(Coorientador)

Prof. Rodrigo Mallet Duprat, Unicamp/ FEF

Prof. Renato Alves Borges, UnB/ ENE

Prof. Geovany Araújo Borges, UnB/ ENE

Brasília, May 2021

iii

FICHA CATALOGRÁFICA
Gabriel, Pires Iduarte
Luan, Haickel Araújo
QUADROTOR CONTROLLER FOR COOPERATIVE INTERACTION WITH JUGGLER,

[Distrito Federal] 2021.

xiv, 40p., 297mm (FT/UnB, Engenheiro, Controle e Automação, 2021). Trabalho de

Graduação - Universidade de Brasília. Faculdade de Tecnologia.

1. Quadrotor 2. Juggle
3. E-FRIT 4. Crazyflie

I. Mecatrônica/FT/UnB II. Quadrotor Controller For Cooperative

Interaction With Juggler

REFERÊNCIA BIBLIOGRÁFICA

Iduarte, GP, Haickel Araújo, LH, (2021). Quadrotor Controller for Cooperative

Interaction with Juggler. Monograph in Control and Automation Engineering, Publication

FT.TG-nº 16, Faculty of Technology, Universidade de Brasília, Brasília, DF, 54p.

CESSÃO DE DIREITOS

AUTORES: Gabriel Pires Iduarte, Luan Haickel Araújo

QUADROTOR CONTROLLER FOR COOPERATIVE INTERACTION WITH

JUGGLER: Conception, design, construction, and control of a juggling prop capable of flying

autonomously and interacting with jugglers.

GRAU: Engenheiro ANO: 2021

É concedida à Universidade de Brasília permissão para reproduzir cópias deste Trabalho de

Graduação e para emprestar ou vender tais cópias somente para propósitos acadêmicos e

científicos. O autor reserva outros direitos de publicação e nenhuma parte desse Trabalho de

Graduação pode ser reproduzida sem autorização por escrito do autor.

____________________________ ____________________________

 Gabriel Pires Iduarte Luan Haickel Araújo

 Brasília - DF – Brasil Brasília - DF - Brasil

iv

Dedicatórias

Aos meus pais, Dalila e Gorgonio.

Luan Haickel Araújo

Á você, leitor.

Gabriel Pires Iduarte

v

AGRADECIMENTOS
Agradeço primeiramente aos meus pais, Dalila e Gorgonio, que sempre tiveram a saúde e

educação dos seus filhos como primeira prioridade, sendo assim, inquestionavelmente, os

principais responsáveis por eu chegar até aqui.

Agradeço à minha irmã Mariah que sempre me apoiou da maneira que pode. Chegou a me

emprestar uma máquina da gráfica dela para eu tentar usar para fabricar peça de drone, e o

pior, conhecendo os riscos.

Agradeço ao meu parceiro neste trabalho, Gabriel, que pela segunda vez na mesma

graduação, aceitou um convite meu para trocar de tema de TG, com sua única pergunta

sendo: “Como faz pra trocar?”.

 À Carol, que sempre me apoiou, e foi uma grande companhia nestes últimos meses.

Especialmente nesta reta final quando, por mais de uma vez, ficou até tarde da noite corrigindo

meu inglês através de uma tela.

Ao meu melhor amigo, Tarzan, que não apenas acreditou em mim desde a primeira vez que

falei neste projeto, como também foi o primeiro a colocar a mão na massa junto comigo para

fazê-lo acontecer, e certamente estará no projeto até o fim.

Ao nosso orientador, professor Edil, que mesmo em campanha para pegar menos trabalho

devido ao cargo de chefia, aceitou me orientar neste projeto maluco, quando eu ainda não

tinha nem um parceiro.

 Ao nosso coorientador, professor Fernando, que não apenas aceito de bom grado nos

orientar, como foi quem desvendou e nos explicou os mistérios dos métodos que queríamos

usar, mas não entendíamos.

À toda minha família que, de sangue ou não, de perto ou de longe, sempre compreenderam

e apoiaram minhas escolhas, raramente reclamaram da minha ausência e nunca negaram

nenhuma ajuda.

 A UnB... Nunca pensei que agradeceria uma instituição, mas essa universidade foi a

responsável pelo que hoje parece ser a maior transformação da minha vida. Foi graças a ela

que empreendi na Mecajun, onde passei a me enxergar como um líder. Foi também na UnB

que me doei para o CATRON, onde aprendi que algumas batalhas são muito grandes para

serem travadas sozinho. Também na UnB foi onde competi com e pela DROID, no ambiente

mais estimulante e desafiador que já estive, e do qual eu sinto mais saudades. As vezes até

eu me esqueço, mas foi na UnB, mesmo antes de ser aluno, que mergulhei de vez no universo

circense, parte tão importante da minha vida, que inclusive motivou este trabalho. Mesmo

agora perto do fim, quando eu já pensava apenas em me formar, a UnB continuou a me

vi

surpreender, quando, através da Descontrolada, me apresentou uma nova geração de

pessoas incríveis, que eu tenho certeza de que cuidarão muito bem da minha universidade.

E, por último, mas talvez mais importante, agradeço a todos os meus amigos, com os quais

eu as vezes converso sobre meus sonhos e ambições, como que para ver se eu não estou

louco em achar que consigo... E eles sempre realimentam as minhas loucuras. Eu sei que na

cabeça deles, pensam que acreditam em mim porque eu faço o impossível, mas a verdade é

que eu faço o impossível porque eles acreditam em mim.

Luan Haickel Araújo

vii

Eu acredito que toda e qualquer interação que tivemos com outra pessoa é como um pequeno

tijolo que foi usado para construir quem somos e que também pavimentou nosso caminho até

aqui, aonde chegamos, portanto, se eu fosse agradecer devidamente a todos que me

ajudaram a chegar aqui...bom, precisaria de muitas páginas, mas vou me esforçar para fazer

caber todas as pessoas mais importantes.

Primeiramente agradeço a minha dupla e amigo, Luan Haickel Araújo, quem me convidou

para essa jornada, com esse tema interessante. Seu apoio para esse finalzinho de graduação

deveras cansativo foi importante. Obrigado por ter sido sempre paciente com meus eventuais

atrasos (me desculpa, não eram de propósito).

Agradeço aos meus orientadores Prof. Edil e Prof. Fernando por todo o apoio, conhecimento

e dedicação para reservar espaço em suas rotinas puxadas para nos orientar.

Agradeço aos funcionários do SG11, em especial ao ex-técnico João, que me ensinou a não

perder meus dedos ao usar uma furadeira de bancada, Seu Cicero e ao Valter.

Agradeço a todos os membros da equipe de competição de robótica DROID, por todos os

momentos de aprendizado e felizes que me forneceram.

Agradeço a todas as minhas amizades, sejam elas feitas antes ou durante o curso,

principalmente as minhas amizades de qualidade duvidosa. Não vou agradecer um a um não,

se acharem ruim, mandem reclamações para o Milton.

Agradeço a todos os meus familiares pelo apoio que me deram, em especial a minha tia

Solange por fornecer moradia, aos meus pais Verni e Nilso que sempre me apoiaram e deram

todo o suporte necessário para que eu focasse em estudar agradeço ao meu irmão Gustavo

Pires Iduarte que foi uma peça fundamental que me permitiu ser quem eu sou hoje e a

agradeço a todos os demais familiares que me apoiaram.

Finalizando, espero que todos vocês consigam trazer o melhor de si à tona, lembre-se que

vocês são feitos de partículas com bilhões de anos, feitos até com átomos forjados em

estrelas, façam jus as suas origens.

Gabriel Pires Iduarte

viii

ABSTRACT
This text presents the work progress of the project which aims to create an autonomous

juggling prop using a quadrotor and a carbon fiber structure. The text also details the current

status and future plans, describing the next steps to be followed.

In the first chapter we introduce the main goal of this project. And this work will start such a

project aiming to answer the most fundamental questions about its viability. Also, in this chapter

we present a smaller goal in order to be the first big milestone of the project.

In the second chapter we will describe the Crazyflie, the platform we chose. We also will

describe the format, materials and manufacture method chosen for making the dodecahedron

structure that will allow the drone to be handled during flight. In the end of the second chapter,

we will describe why the new structure requires the drone controller to be calibrated.

In the third chapter we will describe the cascade PID implemented in Crazyflie firmware. Then

we will discuss some approaches from how to recalibrate the control system of the drone

followed by a detailed description of the FRIT and E-FRIT algorithms, the chosen methods to

be used in this work.

In the fourth chapter we will present our methodology and its results, showing how well the

regulated the controller respond and how it allows the drone to fly with the new structure.

Finally, in in the last chapter, we will discuss those results and compare with our initial goal.

Also, in the last chapter we will present some suggestions for future work.

Keywords: Drone, juggling, E-FRIT, Crazyflie.

ix

RESUMO
O presente texto apresenta a evolução do trabalho cujo objetivo final é a criação de um

malabar autônomo, para tal será utilizado um drone que possui uma estrutura de fibra de

carbono. O texto não só detalha o estado atual projeto, mas também descreve o futuro do

mesmo, descrevendo os próximos passos a serem seguidos.

No primeiro capítulo, começamos contextualizamos a interação de humanos com drones

citando como exemplo o filme SPARKED. Apresentamos a contribuição do nosso objetivo

principal que é uma apresentação de fato interativa e não uma coreografia pré-configurada.

Além disso, neste capítulo, apresentamos um objetivo mais modesto para ser a primeira

grande meta do projeto: Simular malabares entre duas pessoas substituindo a segunda

pessoa pelo planejamento de trajetória do drone, ou seja, após a primeira pessoa lançar o

drone, o mesmo irá planejar sua trajetória de modo que simule o lançamento da segunda

pessoa.

No segundo capítulo descreveremos o drone escolhido, Crazyflie. Descreveremos

brevemente suas características, como a linguagem de programação usada no firmware e o

rádio usado para a comunicação do drone com client software. Também apresentamos os

possíveis sensores que podem ser usados. Descreveremos a estrutura que será usada para

permitir que a pessoa possa manipular o Crazyflie, ou seja, vamos apresentar o formato

escolhido, os materiais e o método de fabricação escolhido para fazer a estrutura em forma.

No final do segundo capítulo, descreveremos que devido a adição da nova estrutura o

controlador com parâmetros de fábrica já não é o suficiente para que o drone decole, portanto

devemos reajustar os seus parâmetros.

No terceiro capítulo, apresentaremos de forma sucinta o que é um controlador.

Descreveremos o controlador PID e o PID em cascata implementado no firmware Crazyflie.

Em seguida, discutiremos sobre as coordenadas de referência usadas pelo drone e

apresentaremos a implementação do controle do mesmo. Abordaremos então os requisitos

de escolha e os possíveis método de calibração de controlador, e em seguida explicaremos

o método escolhido para o nosso trabalho, E-FRIT. Finalizando o capítulo, apresentaremos

alguns detalhes relevantes para a implementação do E-FRIT.

No quarto capítulo apresentaremos nossa metodologia. Como abordamos o fato de que o E-

FRIT é válido apenas para sistemas SISO enquanto o drone é do tipo MIMO. Também

apresentaremos nossa bancada de testes e em seguida, mostramos que não é necessário

ajustar os parâmetros do controlador de velocidade angular e que o controlador de posição

angular se tornou um sistema oscilante na bancada de testes. Mostramos nossa escolha de

função de transferência desejada e como a encontramos. Como não é possível usar o E-FRIT

x

em sistemas instáveis, tivemos que trocar os valores originais do controlador de posição

angular para que o mesmo se torne ao menos estável. Com os dados, aplicamos o algoritmo

E-FRIT, mostramos nossos resultados, discutimos o quão bem o controlador regulado

responde e como ele permite que o drone voe com a nova estrutura. Finalmente, no último

capítulo, discutiremos esses resultados e os compararemos com nosso objetivo inicial. Além

disso, apresentaremos algumas sugestões para trabalhos futuros.

Palavras-Chave: Drone, malabares, E-FRIT, Crazyflie.

xi

CONTENTS

AGRADECIMENTOS ... v

ABSTRACT ... viii

RESUMO ... ix

CONTENTS ... xi

FIGURES LIST ... xii

ALGORITHMS LIST .. xiii

SYMBOL LIST ... xiv

CHAPTER 1 – INTRODUCTION .. 1

1.1 BREAKING DOWN THE PROBLEM .. 2

CHAPTER 2 – HARDWARE .. 4

2.1 STRUCTURE ... 6

CHAPTER 3 – CONTROLLER ALGORITHMICS .. 10

3.1 REFERENCE FRAMES ... 12

3.2 CONTROLLER FIRMWARE .. 14

3.3 TUNING METHODS ... 15

3.4 FRIT ... 16

3.5 E-FRIT .. 19

3.6 E-FRIT IMPLEMENTATION ... 20

CHAPTER 4 – PERFORMANCE EVALUATION ... 23

CHAPTER 5 – CONCLUSIONS ... 31

6.1 FUTURE WORKS .. 31

BIBLIOGRAPHY .. 33

ANNEX I - THE E-FRIT SCRIPT .. 36

ANNEX II - CHOOSING TD .. 39

xii

FIGURES LIST

Figure 1- SPARKED: A Live Interaction Between Humans and Quadcopters [2] .. 1

Figure 2 - First interaction goal proposal. ... 3

Figure 3 - Crazyflie 2.1(A), Crazyradio PA 2.4 GHz USB dongle (B), Flow deck v2 (C), Multi-ranger deck (D),

Lighthouse positioning deck (E), Lighthouse V2 base station (F). [6] ... 4

Figure 4 - Block diagram of the Crazyflie firmware Kalman Filter [9]. .. 5

Figure 5 - Complete assembly of the dodecahedron without the drone. ... 6

Figure 6 – The 3D model made to confirming that the calculated size of the structure would fit the drone inside. 7

Figure 7 – The 3D model of the vertices connections to be printed, the dimensions are in millimeters. 7

Figure 8 – The complete assembly 3D model of the dodecahedron without the drone. ... 7

Figure 9 - 3D model of the parts for coupling the structure to the Crazyflie. How it docks to the drone and the

dodecahedron can be seen in Figure 10. ... 8

Figure 10 - Complete assembly of the dodecahedron structure with the drone docked. .. 9

Figure 11 - Illustration of a rola-bola with an 𝜃 angle to be compensated. .. 10

Figure 12 – Simplified blocks diagram of rola-bola ... 10

Figure 13 – PID blocks diagram ... 11

Figure 14 – Block diagram of a simplified version of the Crazyflie cascaded PID control structure [19]. 11

Figure 15 – Bottom of the Crazyflie main board, that also is the main structural component of que drone. 12

Figure 16 - Crazyflie body reference frame [22]. ... 13

Figure 17 - Block diagram of the detailed operation of the firmware controller. This diagram is not available from

the manufacture, it was made by us through a reverse engineering of the Crazyflie firmware. 15

Figure 18 – Diagram block of a generic closed loop system. ... 16

Figure 19 – Crazyflie, without the dodecahedron, in the test stand that’s restrain all the degrees of freedom except

the pitch one. ... 23

Figure 20 – Response to a step input from the attitude pitch rate PID controller of the quadrotor in the constrained

test stand without the dodecahedron struct (in (A)) and with the structure (in (B)), in both cases with the original

PID parameters. ... 24

Figure 21 – Response to a step input from the attitude pitch PID controller of the quadrotor in the test stand without

the dodecahedron structure (in (A)) and with the structure (in (B)), in both cases with the original PID parameters.

 ... 25

xiii

Figure 22- Response of the drone without the structure, System response, on the test stand with input, r0, on the

pitch attitude PID, with original factory control parameters. Contribution of the roll and yaw rate attitude PID have

been disabled. .. 26

Figure 23- Simulated response of the desired transfer function, Td response, in pitch axis. 26

Figure 24 - Response of the drone with the structure, System response, on the test stand with input, r0, on the pitch

attitude PID, with original factory control parameters, 𝜌𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙. Contribution of the roll and yaw rate attitude

PID have been disabled. .. 27

Figure 25 - Response of the drone with the structure, System response, on the test stand with input, r0, on the pitch

attitude PID, with 𝜌0𝐸 control parameters. Contribution of the roll and yaw rate attitude PID have been disabled.

 ... 27

Figure 26 - Response of the drone with the structure, System response, on the test stand with input, 𝑟0, on the pitch

attitude PID, with 𝜌 ∗ control parameters. Contribution of the roll and yaw rate attitude PID have been disabled.

 ... 28

Figure 27 - Crazyflie in about 3 meters height, outdoor flight, with structure and using 𝜌 ∗ as controller parameters

for the pitch and row attitude PIDs. .. 28

Figure 28 – Portion of data collected from drone pitch response in outdoor flight. (A) Drone with structure and

original factory control parameters 𝜌𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙. (B) Drone without structure and original factory control parameters

𝜌𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙; (C) Drone with structure and control parameters to 𝜌 ∗. ... 30

ALGORITHMS LIST
Algorithm 1 - Excerpt of the Crazyflie firmware’s PID code implementation [24]. .. 14

xiv

SYMBOL LIST

Greek Symbols
𝜑 Pitch [deg]

𝜃 Roll [deg]

𝜓 Yaw [deg]

λ Weighting coefficient

𝛥 Difference between the current instant and the previous instant of a variable

𝜌 Control parameter vector

Acronyms
3D Three Dimensions

ABS Acrylonitrile Butadiene Styrene

ETH Eidgenössische Technische Hochschule

E-FRIT Extended Fictitious Reference Iterative Tuning

FRIT Fictitious Reference Iterative Tuning

IFT Iterative Feedback Tunning

IMU Inertial Measurement Unit

LED Light-Emitting Diode

LPS Loco Position System

MIMO Multiple-Inputs Multiple-Output

PCB Printed Circuit Board

PID Proportional Integral Derivative

VRFT Virtual Reference Feedback Tuning

SISO Single-Input Single-Output

SQP Sequential Geometric Programming

1

CHAPTER 1 – INTRODUCTION
Juggle is present in human culture for at least 4000 years [1], and still, there is a huge potential

for innovations in juggling performances, especially with the adoptions of modern technologies.

Drones are great candidates to make appearances in modern juggling performances because

of their capacity to fly precisely in any direction, and even stay still in the air. Indeed, drones

have made some appearances in this area in the last decade. One of them is SPARKED [2],

a film made by a partnership between Cirque du Soleil, Eidgenössische Technische

Hochschule (ETH) Zurich, and Verity Studios. However, even in an amazing work like this, the

juggler did not handle the flying props1.

Figure 1- SPARKED: A Live Interaction Between Humans and Quadcopters [2]

The present work aims to change this scenario or, at least, start that change. We envision a

juggling prop that can fly by itself and also be safely handled by the juggler like a regular prop,

or as close as possible. If such a goal is achieved, the possibilities are endless.

Just like music, juggle have a well-defined rhythm, and there is a very precise way to

mathematically express the juggle patterns2, hence, we could easily program certain behavior

into these props in a way that it will be intuitive to the juggler to interact with them. This

mathematical way to express juggle patterns is called siteswap [3], and the quantization of the

throws is basically based in which hand the prop will land on and how long it will take to do it.

Therefore, in the first stages we will tell the props which kind of throw they should do and based

on this information the juggler can incorporate that in his patterns.

1 Props: The objects that are juggled [1].
2 Patterns: repeating sequences of throw [3].

2

At this point we could make a choreography that could freeze in time, go backwards or in slow-

motion, we could reverse gravity or change its direction, or turn it off entirely, all of that with

the props in the air. However, the real magic will start when we manage to use the drone

sensors, and maybe some external sensors as well, in order to predict in real time which kind

of throw the juggler is intending. In that scenario, the algorithm will be able to take control of

the prop right after it leaves the jugglers hand, and no matter the height, speed or path that the

props follow, as long it lands in the right hand at the right time, it will not interfere in the pattern.

Thus, the performances could have some level of freestyle interaction between the props and

the juggler, which is very common in juggling presentations. And now we could do all those

things mentioned earlier without having to precisely time everything. However, we can go even

further. Note that the prop which was thrown is not necessarily the one that have to land in the

juggler’s hand. As long as the juggler always has a prop in his hand at the right time, the props

can change positions in the air freely. Add the ability to make props appear and disappear by

controlling on board LEDs and stage lights and will be very unlikely to someone to describe

what is going on in the stage without using the word magic.

1.1 BREAKING DOWN THE PROBLEM
Although it is clear that some type of structure needs to be built around the drone to enable it

to be handled in flight, many other questions come to mind: what kind of structure can we build

around the drone that is dense enough to be handled? How well will the drone fly with such a

structure? How can the drone detect when it is being handled in order to turn off its controller?

How can the system keep track of the hand’s position if the juggler starts to move in the stage?

How silent can the prop be? Will it be possible to mask the sound? How portable can we make

the system? Will it be possible to perform in any stage or only in pre-prepared ones? How long

can the battery go? We could go on forever making questions.

In order to start to answer those previous questions, we will first propose a smaller and more

tangible goal. In the Figure 2, we illustrate a more modest goal, a single throw where the drone

task is to simulate an invisible second juggler that would catch it and throw it back.

In the scheme shown in Figure 2 we can see three stages in the trajectory. At the start of the

movement the drone will be thrown by the juggler at a certain distance (blue trajectory). During

this part of the path the drone must maintain its orientation (parallel to the ground) without

interfering in the free fall trajectory intended by the juggler.

3

Figure 2 - First interaction goal proposal.

When reaching a certain distance from the ground, the system must change its mode of

operation and plan a trajectory for the drone to execute in order to reach point P2 with a pre-

determined speed V1 (red trajectory). And then, the drone must turn off the engines to

complete the last part of the path in free fall, until it reaches the juggler again (green trajectory).

However even with this goal being more modest it is still too complex for the scope of this work.

Thus, in this work, we are going to focus on the first two questions: What kind of structure can

we build around the drone that is dense enough to be handled? How well will the drone fly with

such a structure?

In the next chapter we will describe the chosen platform with all its advantages and drawbacks.

We also will describe the format, materials and manufacture method chosen for making the

structure that will allow the drone to be handled during flight. At the end of the second chapter,

we will describe why the new structure requires the drone controller to be recalibrated.

In the third chapter we will describe the control architecture implemented in Crazyflie firmware.

Then we will discuss some approaches from how to recalibrate the control system of the drone

followed by a detailed description of the chosen method, and the key aspects of our script

implementation.

In the fourth chapter we will present our methodology and its results. Finally, in in the last

chapter, we will discuss those results and compare with our initial goal. Also, in the last chapter

we will present some suggestions for future work.

4

CHAPTER 2 – HARDWARE
The chosen platform was a nano3 drone, named Crazyflie [4] (Figure 3) sold by a company

named Bitcraze [5], that is vastly used in researches with drones, especially in swarms of nano

drones.

The Crazyflie is a ready-to-fly drone, its firmware is written in C++ and it can be uploaded via

the included radio, it has out-of-the-box wireless log capability, and support to receive

commands by a number of different ways, like a client software that runs in Linux, Windows

and Macs, or a mobile app (Android and iOS), or python scripts using a library, all this software

are open source and are available in the Bitcraze GitHub. This drone also supports expansion

decks with automatic detection that add many sensors to the drone in addition to the inertial

measurement unit (IMU) of the main board. All this and the small size of the drone made the

Crazyflie the perfect fit for this project.

A

B

C

D

E

F

Figure 3 - Crazyflie 2.1(A), Crazyradio PA 2.4 GHz USB dongle (B), Flow deck v2 (C), Multi-

ranger deck (D), Lighthouse positioning deck (E), Lighthouse V2 base station (F). [6]

Actually, we have one main concern with this drone, its thrust capability. With only 15g of

recommended payload, we fear that it will not have enough power to do the necessary

maneuvers with a structure coupled to it. However, if that’s proved to be the case, we could

use in the future a Crazyflie Bolt [7], which is basically a Crazyflie board without the motors

3 Nano drone: weight las then 200g [39] [40]

5

and drivers. It would enable us to build our own quadrotor by choosing the appropriate motors

and drivers, perhaps with the structure already permanently attached on it. Given that the

Crazyflie Bolt has the same sensors and the same decks compatibility as the Crazyflie itself

we expect that everything we develop for one would work for the other. Therefore, we acquire

for this project a Crazyflie 2.1 with the radio, a flow deck, a multi-ranger deck, a lighthouse

positioning deck and two lighthouse V2 base station, shown in Figure 3.

The flow deck is a deck put under the drone that has one distance laser sensor that measures

the distance to the ground and one optical flow sensor that measure the xy-speed of the drone

relative to the ground. With only this deck the drone is able to perform autonomous flight,

although the accuracy rapidly decreases in high speeds [8].

Figure 4 - Block diagram of the Crazyflie firmware Kalman Filter [9].

If the Flow deck proves to be sufficiently accurate for the planned maneuvers, it would be ideal

to use only it, since all the sensors would be embedded, and consequently the stage would

not have to be prepared with any markers or camera system. However, it is not prohibitive the

usage of an external measurement system, if needed for the functionality. In that case, we will

try to use the Lighthouse positioning deck with two SteamVR V2 base station positioned across

the stage.

One can question why use the Lighthouse deck, that during the elaboration of this work it is

still under development, instead of a method with safer results like a motion capture system

with visual marks, which is the most used method for autonomous indoor flights [10] [11] [12]

[13]. The advantage and decisive factor of the Lighthouse deck is the cost, which is a tenth of

a motion capture system cost. The other solution offered by the Bitcraze for indoor navigation

is the Loco Positioning System, LPS system, which has a similar price once the base station

6

for the lighthouse is accounted for, however it is not an attractive option for the project, as it

requires more markers than the lighthouse, which results in a more expensive system.

2.1 STRUCTURE
The structure that will go around the drone needs to meet certain criteria: be light-weighted,

don’t block the air flow and enable safe handling. The maximum recommended payload weight

of the Crazyflie 2.1 is 15g [4], and the weight of the Flow deck V2 and the Lighthouse

positioning deck are 1.6g [14] and 2.7g [15], respectively. Whereas it is possible to use both

decks simultaneously, therefore the available payload comes down to 10.7g. After some tests

and inspired by the work of Bruno Gabrich e David Saldaña [16], we assembled a

dodecahedron with carbon fiber rod as edges and 3D printed connections as vertices, that can

be seen in Figure 5.

Figure 5 - Complete assembly of the dodecahedron without the drone.

We chose the dodecahedron shape because it would be very difficult to juggle with a cuboid

one, and a spherical shape would be much harder to manufacture since the process to shape

the carbon fiber is not trivial. We calculated that the edges needed to be 61mm long for the

drone to fit entirely into the structure. A 3D model was developed to confirm and is shown in

Figure 6.

7

Figure 6 – The 3D model made to confirming that the calculated size of the structure would fit

the drone inside.

From the 3D model we modeled connection pieces. Figure 7 shows the proposed geometry

after a few iterations of manufacturing and evaluation of the real structure rigidity and weight.

Figure 7 – The 3D model of the vertices connections to be printed, the dimensions are in

millimeters.

A 3D model of the assembled dodecahedron can be seen Figure 8.

Figure 8 – The complete assembly 3D model of the dodecahedron without the drone.

8

To mount the Crazyflie on the structure we model the parts that attach the motors of the

quadrotor to the carbon fiber rods. It can be seen in Figure 9.

Figure 9 - 3D model of the parts for coupling the structure to the Crazyflie. How it docks to

the drone and the dodecahedron can be seen in Figure 10.

We weighted and calculated the density of the carbon fiber rods to be 1.5279 g/cm3, and the

density of the filament we used is 1.06 g/ cm3. Given this value and the geometry of the

structure we used a tool of the 3D modeling software to calculate the predicted mass to be 7g

and the inertial moment to be the one shown in Eq. 1.

𝐼 =)
3.1956 0.0018 −0.0088
0.0018 3.6768 −0.0143
−0.0088 −0.0143 2.9556

6 10!"	[𝑘𝑔	𝑚#]. (1)						

For the printed parts we used ABS filament, since it is stronger and lighter than other materials

commonly used for 3D printing. It is worth noting that we used an Ender 3, a very popular and

open-source 3D printer, and in order to achieve the necessary precision for the parts, we

changed the standard 4mm nozzle for a 2mm one. The dodecahedron mounted to the Crazyflie

in Figure 10.

9

Figure 10 - Complete assembly of the dodecahedron structure with the drone docked.

The structure with the four coupling parts weighs 6.3g, which is 10% less than the calculated

weight and only 16.7% of the whole system mass. Due to the ABS expansion during the

printing process, all the holes had to be adjusted with a drill, which removed a lot of material

from the final parts, which explains the difference in weight between the model and the real

one. Unfortunately, we couldn’t compare the real inertial moment with the calculated one since

we don’t have any measuring equipment.

Despite the structure mass being only 58% of the available payload, it is mainly distributed far

from the center of mass, which makes the inertial moment increase considerably. When we

compare the estimated inertial moment of the structure, shown in Equation (1), to the one of

the Crazyflie [17], we can see that the moment of inertia of the drone with the structure is twice

the one of the quadrotors alone. Therefore, it is very likely that the drone control loop has to

be adjusted in order to fly with the new structure. Indeed, when we try fly without modifying the

controller, the drone falls to one side and fails to takeoff. Therefore, we realized that the

parameters of the proportional–integral–derivative (PID) controller were no longer enough for

the drone takeoff and fly.

With this problem comes two possible solutions. We could choose to remake the controller

using a more modern one, or we could simply adjust the parameters of the original controller.

During this work, we always try to use the practicality and speed of development as the criterion

of choice to reach the goal of juggling the quadrotor as soon as possible. Given that we don’t

have a model of the Crazyflie flying dynamics, or the components parameters to make our own

model, remaking the controller would not be a fast solution. Therefore, we chose to recalibrate

the control algorithm already implemented on the Crazyflie.

10

CHAPTER 3 – CONTROLLER ALGORITHMICS
A drone without a control algorithm is an unstable system, meaning that it will not stay in the

air effortlessly, much like an untrained person in a rola-bola (Figure 11).

Figure 11 - Illustration of a rola-bola with an 𝜃 angle to be compensated.

Modified image from [18].

Hence, to continue with our analogy, we will consider the simplified blocks diagram of the rola-

bola problem as shown in Figure 12. The muscle memory of a well-trained artist is the

Controller, that allows him to stand on the rola-bola. His body on the rola-bola is the Plant. And

the inner ear balance system is the sensor. How much the artist must move his muscle will

depend on how much he is tilted, we call this error, 𝑒. The error is the difference between the

perceived value and the desired value of the variable to be controlled 𝑒 = 	𝜃$ − 	𝜃, hence, in

the rola-bola example, the error would be the angle between the board and the floor, since the

desired position would be zero degrees (parallel to the ground).

Figure 12 – Simplified blocks diagram of rola-bola

However, in the drone case, the organic muscles are replaced by electrical motors, the inner

ear balance system is replaced by an electronic gyroscope sensor and the neural network is

replaced by a control algorithm running in a microcontroller.

One of the most common control algorithms is the PID, Figure 13, in which, integrator is an

integral operator and Derivative is a derivative operator. PID will multiplies the error by a

constant usually called K%, multiplies the error integral by another constant usually called K&,

11

multiplies the error derivative by a third constant, K', adds all these values and uses the result

as the control value for the actuators, hence the name.

Figure 13 – PID blocks diagram
Just like an untrained person would fall from the rola-bola, a PID controller with wrong

constants values will not be able to follows the reference signal. Then, when we say that the

control needs to be calibrated or tunned, that means we need to find the correct values (correct

enough) of the K%, K& and K' constants for the controller to work properly.

Another commonly used technique for controlling more complex systems is to concatenate

several PID controllers, where one gives the reference value for the next one, in a struct called

PID cascade. The Crazyflie control algorithm is a cascaded PID and can be seen in Figure 14.

Figure 14 – Block diagram of a simplified version of the Crazyflie cascaded PID control

structure [19].

In this cascaded PID the Position PID receives the desired and actual positions and calculate

the velocity needed to arrive at the desired position as quickly as possible. Although, note that,

even if the desired position is constant, the desired velocity will change over time, since the

Position PID goal is to arrive at the desired position and stay there, and not zip through the

position at a constant speed. Similarly, the Velocity PID receives that desired velocity and the

current velocity to calculate a desired attitude (angle), since the vertical velocity of a drone is

proportional to its angle. The attitude PID calculate the attitude rate (angular velocity) and

finally the Attitude Rate PID sends the desired thrust to each motor. The figure simplifies the

representation of a three-dimensional system, since the drone is able to move and rotate in all

three directions each one of these blocks actually represents three PID controllers. Therefore,

there are 12 PID controllers in total and 36 parameters that can be adjusted. In the next

sections we will discuss a strategy to tunning such a complex system, but we still need to name

12

those dimensions in order to understand further this control structure and we need to define

our referential systems and how they are associated.

3.1 REFERENCE FRAMES
We have two coordinate frames related to explain. One is the local coordinate that is in the

body of Crazyflie, the other is the global coordinate attributed to the room, this is illustrated in

figure 14 in a simplified way. Hence, when two coordinate frames are related it means there is

a successive sequence of rotations about the coordinate axes that will make their attitudes be

the same. The angle of rotation about a coordinate axis is called a Euler Angle and a sequence

of such rotations is often called a Euler Angle Sequence. The rotational sequence is an

essential information for the Euler Angles, in Crazyflie firmware the sequence is XYZ. The

sequence be XYZ means to turn the attitude of the first frame into the second one, first rotate

angle about the X-axis (pitch) then a rotation angle on the new Y-axis (roll) and finally a rotation

angle in the new Z-axis (yaw) [20].

Figure 15 – Bottom of the Crazyflie main board, that also is the main structural component of

que drone.

The body of the Crazyflie is a single Printed Circuit Board (PCB), as can be seen in Figure 15.

The plane on which it is contained is defined as the xy-plane of the body reference frame.

Since this quadrotor has a cross-configuration, the x and y axis are rotated 45 degrees in

relation to the lines that connect the opposite-sided propellers [21]. The x-axis goes from back-

to-front, where the back is the side that contains the large battery cable. The z axis direction

is bottom-up placing the Crazyflie on the ground with its propellers facing upwards, in takeoff

position. The y axis completes the cross product 𝑥⃗ 	× 	 𝑦⃗ = 𝑧, with its direction pointing from

right to left, as illustrated in Figure 16. Furthermore, marks with this body frame orientation are

printed in the main board as well as in all the extra boards that can be coupled to the Crazyflie.

In Figure 15 one of this marks can be seen on the top, just above the name “bitcraze”, the

13

arrow indicates the front of the drone, positive x direction, and the circle with the cross indicates

that the z-axis is entering the PCB.

Figure 16 - Crazyflie body reference frame [22].

We will consider the room as our inertial reference system, since the room moves only with

the rotation and translation of the earth, which is a negligible for the distance and durations of

ours flights. That means the Newtons laws of motion will be valid in this reference frame [23].

Besides being fixed to the room, the xy-plane of the inertial reference frame will always be

perpendicular to the Earth’s gravitational field, that fixes two of the three orientations. The other

orientation (around z), as well as the coordination system origin, will depend on the sensors

that are coupled to the drone. If no additional sensor boards are used the z orientation and the

origin position of the reference frame will be set to be equal to the body reference frame in the

moment that the State Estimator is reset, which happens every time the drone is turned on

and whenever we send the reset state estimator command by radio. State Estimator in our

case is the extended Kalman filter showed in Figure 4. However, if the Flow deck sensor is

coupled, the distance between the drone and the ground is measured using the laser distance

sensor included in the deck. With this information and assuming that the floor of the room is

leveled (perpendicular to the Earth’s gravitational field) the xy-plane of the inertial reference

frame is defined as the plane that contains the floor. And, finally, if the Lighthouse positioning

deck is coupled to the Crazyflie and the base stations are set on the room, the position and

orientation of the inertial reference frame will be the same as the body reference frame of the

drone in the moment of the Lighthouse system setup, which only need to be done when the

position of the bases change in relation to which other. This last setup is more convenient,

14

since the inertial frame is preserved between power cycles, but is the only one that requires

external hardware to the drone, what would mean not being able to use the equipment on a

stage that was not pre-prepared. Thereby, the reference for all the measurements of position

and velocity (angular and linear) mentioned on this, and the following sections is the inertial

frame.

3.2 CONTROLLER FIRMWARE
To understand in more detail the control structure implemented in the Crazyflie, represented

in a simplified way in the Figure 14, we reverse engineered the firmware code and represented

how it works on a block diagram that can be seen in Figure 17. In this diagram each one of the

PID(z) block represents different calls of the same function in the code, therefore all the

controller blocks have the same implementation. The PID source code excerpt, Algorithm 1,

show the PID implemented in Crazyflie, from it we calculate the transfer function that’s

represent it in the Z domain that is express in Eq. 2. The full open-source code can be found

on the Bitcraze’s GitHub page [24].

𝐶()* 	= 	𝐾+ 	+ 	𝐾'
(1	 −	𝑧!,)

𝑇 	+	𝐾& 	
𝑇

(1	 −	𝑧!,)	 .
(2)	

...
pid->outP = pid->kp * pid->error;
output += pid->outP;

float deriv = (pid->error - pid->prevError) / pid->dt;
...
pid->deriv = deriv;
...
pid->outD = pid->kd * pid->deriv;
output += pid->outD;

pid->integ += pid->error * pid->dt;
...
pid->outI = pid->ki * pid->integ;
output += pid->outI;
...
pid->prevError = pid->error;

return output;
...

Algorithm 1 - Excerpt of the Crazyflie firmware’s PID code implementation [24].

15

Figure 17 - Block diagram of the detailed operation of the firmware controller. This diagram is

not available from the manufacture, it was made by us through a reverse engineering of the

Crazyflie firmware.

3.3 TUNING METHODS
In the future of this project, we intend to update the hardware. Perhaps changing the rotors for

more efficient ones and/or upgrading the cage. Actions that will require re-adjusting the

controller. Thus, the tuning of the PID controller parameters will be a recurring task. Therefore,

the tuning method of choice should be something practical that can be easily repeated for each

new upgrade of the quadrotor, whence we discard methods like the Ziegler Nichols, that’s

require individual analysis each time we run it. With this requirement in mind, we analyzed

some direct design methods based on input-output measurements without a plant model. A

measurement of input-output contains expressive information about the plant and with the

correct algorithm it can generate results as good as or even better than those obtained through

models [25].

Some of those methods are the iterative feedback tunning (IFT) [26], the fictitious reference

iterative tuning (FRIT) [25] and the virtual reference feedback tuning (VRFT) [27]. Among

these methods, we will exclude the IFT, because it requires a new input-output measurement

for each new iteration of the algorithm. The VRFT and FRIT methods require only one

individual experiment in the plant. Despite those two last methods being based on similar ideas

[28], the VRFT is suboptimal for restricted controller classes [27] and FRIT gives a better tuning

parameter [29].

Initially, we chose the FRIT method and afterwards we changed to the extended fictitious

reference iterative tuning (E-FRIT). The differences between those two methods will be

explained in upcoming sections, for the time being is sufficient to know that both methods

consider a time invariant, one-degree-of freedom, single-input single-output (SISO) closed

loop system. However, considering the system represented in Figure 17 it is clear that the

16

complete Crazyflie controller is a multiple-input multiple-output (MIMO) system, therefore we

must restrict and isolate each PID what will be discussed later.

3.4 FRIT
To explain how FRIT works let’s use as an example the generic control system shown in Figure

18. Denoting the plant model as P(𝑠), the controller as C(𝑠, ρ), 𝜌 is the vector controller

parameter, 𝑟(𝑠) is the reference signal, u(𝑠, ρ) is the controller signal and y(𝑠, ρ) is the system

output signal. 𝑠 is the complex variable used in Laplace transform, since it is not influencing

the results, it will be omitted from now on in order to result in a clear notation.

Figure 18 – Diagram block of a generic closed loop system.

The controller C may be any controller parametrized by 𝜌, in our case C is a PID controller and

𝜌 is a vector defined by Eq. 3:

𝜌 = Q
𝐾+
𝐾&
𝐾'
R . (3)	

The transfer function, 𝑇(𝜌), of the this closed loop system in given by

𝑇(𝜌) =
𝑃. 𝐶(𝜌)

1 + 𝑃. 𝐶(𝜌)
	 , (4)	

its output y(𝜌),	

𝑦(𝜌) = 𝑇(𝜌). 𝑟. (5)	

The output signal of the controller C(ρ), can be express by:

𝑢(𝜌) = 𝑇(𝜌). U𝑟 − 𝑦(𝜌)V. (6)	

The objective of the method is to find a configuration that makes the closed loop system

achieve the desired behavior. Therefore, it is necessary to define in advance this behavior

through a transfer function that we will call 𝑇'. The output of the 𝑇' will be 𝑦'with an input

signal, 𝑟,

𝑦' = 𝑇' . 𝑟. (7)	

Our objective is to find the parameters, 𝜌∗, that makes the output, 𝑦(𝜌∗), match with the

reference model output, 𝑦', i.e., 𝑦(𝜌∗) = 	𝑦'. Hence, if the optimal controller 𝐶(𝜌∗) really exists,

17

we expect 𝑇(𝜌∗)	to be identical to the desired model 𝑇' as shown by Eq. 10. Ergo, if we know

the plant model it is possible to find 𝜌∗ by minimizing the performance index,		𝐽(𝜌):

𝜌∗ 	= 𝑎𝑟𝑔𝑚𝑖𝑛.	 𝐽(𝜌), (8)	

in which, argmin/	is the arguments of the minimum, which gives the value of ρ at which J(ρ)

attains the minimum value. The minimized function,	𝐽(ρ), is defined as:

𝐽(𝜌) = 	b (𝑦(𝜌) − 𝑦')#	𝑑𝑡
0

1
. (9)

Therefore, if 𝐽(𝜌∗) = 0, we expect that 𝑦' = 𝑦(𝜌∗), hence we conclude

𝑇' =
𝑃. 𝐶(𝜌∗)

1 + 𝑃. 𝐶(𝜌∗)
. (10) 𝑦' = 𝑦(𝜌∗) ⇒ 	𝑇(𝜌)𝑟 = 𝑇' 	𝑟 ⇒ 	𝑇' =

𝑃	𝐶(𝜌∗)
1 + 𝑃	𝐶(𝜌∗)

. (10) 𝑦' = 𝑦(𝜌∗) 	 ∴ 	𝑇(𝜌)𝑟 = 𝑇' 	𝑟	 ∴ 		 𝑇' =
𝑃	𝐶(𝜌∗)

1 + 𝑃	𝐶(𝜌∗)
. (10)	

We can find 𝜌∗ with Eq. 8 through a nonlinear approach method, such as the Gauss-Newton

method [28] [29]. A standard approach would be one of the following two options:

1) If we have the model plant, 𝑃, we could use the iterative optimization method by

simulating the system. This approach is valid even if the system is nonlinear. But we

do not have the 𝑃 and it is not in the scope of this work modelling 𝑃;

2) Same as before, but instead of simulating the response in each iteration, we run a test

in the real system. This way we avoid the need to know the plant model. But this would

result in a new collection of data at each iteration to estimate 𝜌∗.

Neither approach is attractive for us to use in Eq. 8. The FRIT method can overcome the need

for multiple data collections as it only needs a single data, and also don’t need to know 𝑃. Let's

understand how this is done.

First, we will denote the value of the parameter 𝜌 used during the data collection as 𝜌1, note

that the only requirement for choosing 𝜌1 is 𝑇(𝜌1) must be a stable system, even if it is not well

tuned. The collected output signal and control signal will be called 𝑦1 and 𝑢1 and will be

denoted, respectively, by:

𝑦1 = 𝑇(𝜌1). 𝑟1, (11)	

𝑢1 = 𝐶(𝜌1). (𝑟1 − 𝑦1), (12)	

in which, 𝑟1 is the input signal used, that can be arbitrary.

Let's start by assuming that in fact there is an optimal controller, 𝐶(𝜌∗) like showed in Eq. 10.

The FRIT method uses a fictitious reference, 𝑟∗, input to overcome the need for multiple

experiments. The 𝑟∗ is defined as the reference signal that when applied to the closed loop

system parameterized by 𝜌∗, 𝑇(𝜌∗), will produce the output system equal to 𝑦1, i.e.,

18

𝑦1 = 𝑇(𝜌1). 𝑟1 	= 𝑇' . 𝑟∗ = 𝑇(𝜌∗). 𝑟∗, (13)	

and since 𝑃 has not been changed and output remains 𝑦1 the control signal must be equal to

𝑢1 [27], therefore

𝑢1 = 𝐶(𝜌∗). (𝑟∗ − 𝑦1). (14)	

From Eq. 14 we can isolate 𝑟∗ and express it as:

𝑟∗ =	𝐶(𝜌∗)!,. 𝑢1 + 𝑦1. (15)	

Replacing Eq. 15 in y1 = T(ρ∗). r∗ from Eq. 13, we have

𝑦1 =	𝑇' . 𝐶(𝜌∗)!,. 𝑢1 + 𝑇' . 𝑦1. (16)	

Last’s pause for a second to understand the meaning of all those expressions, get a cup of

coffee if you will. The parameter 𝜌∗ is what we want to find, it is the controller parameters that

will make the close-loop system behave as desired, this is the idea expressed in Eq. 10. As

can be seen in Eq. 3, in our particular case finding the 𝜌∗ means to find the correct values of

the 𝐾+, 𝐾&, and 𝐾' constants for the controller to give the appropriate response, which is our

goal after all. To avoid making a new experiment every time we change the controller

parameters, we work with this clever idea of fictitious reference 𝑟∗. From Eq. 15 it is simple to

see that if we have the 𝑟∗ we could find the 𝜌∗ with only one-shot experiment. Thus, now the

problem become to find 𝑟∗. For this we could apply a similar no linear approach as before, but

as we see in the rest of this section, we now have all the variables need for the calculation in

each iteration.

FRIT identifies the optimal controller parameter, 𝜌∗, based on Eq. 16. Then, in order to use an

iterative optimization method to find the 𝜌∗, we need to define some variables, 𝑟̂& and ŷ&. 𝑟̂& is

the i-th candidate of the optimization algorithm to be 𝑟∗,	

𝑟̂& = 𝐶(𝜌&)!,. 𝑢(𝜌1) + 𝑦(𝜌1), (17)	

and ŷ& is the output of 𝑇' using 𝑟̂& as input in the i-th round of the optimization algorithm, i. e.,

ŷ& = 𝑇' . 𝑟̂& , → ŷ& = 𝑇' . 𝐶(𝜌&)!,. 𝑢1 + 𝑇' . 𝑦1. (18)	

Remember that we want ŷ& to be equal to 𝑦1.	

Since we can calculate 𝐶(ρ&)!, and we have 𝑇', 𝑢1 and 𝑦1, then, we can find 𝜌∗ minimizing

the performance index introduced by FRIT, 𝐽2(𝜌). We define the error 𝑒(𝜌&) as:

𝑒(𝜌&) ≔ 𝑦1 −	ŷ& , (19)	

then, we define 𝐽2(𝜌) as	

19

𝐽2(𝜌) = 	b 𝑒(𝜌)#	𝑑𝑡
0

1
.		 (20)	

Now we can find 𝜌∗ using Eq. 21:	

𝜌∗ 	= 𝑎𝑟𝑔𝑚𝑖𝑛.	𝐽2(𝜌) . (21)	

To show that we can use Eq. 21 instead of Eq. 8 we will assume that Eq. 10 is satisfied. Using

Eq. 10, Eq. 7, Eq. 5 and Eq. 4 we can rewrite Eq. 8 as:

𝐽(𝑝) = 	b (𝑦(𝜌) − 𝑦$)#	𝑑𝑡
0

1
= b m

𝐶(𝜌∗) − 	𝐶(𝜌)
1 + 𝑃	𝐶(𝜌∗)

∙
𝑃

1 + 𝑃	𝐶(𝜌)
𝑟o

#

𝑑𝑡
0

1
, (22)

and, using Eq. 10, Eq. 13 and Eq. 18 we can rewrite Eq. 20 as:

𝐽2(𝜌) = 	b 𝑒(𝜌)#𝑑𝑡
0

1
	= 	b U𝑦1 − 	ŷ(𝜌)V

#𝑑𝑡
0

1
= b m

𝐶(𝜌∗) − 	𝐶(𝜌)
1 + 𝑃	𝐶(𝜌∗)

∙
1

𝐶(𝜌)
𝑦1o

#

𝑑𝑡
0

1
. (23)	

We can see that 𝐶(𝜌∗) in 𝐽(𝜌) is equal to 𝐽2(ρ), thus the controller 𝐶(𝜌∗) can be derived from

the minimization of 𝐽2(𝜌) through an iterative nonlinear optimization approach instead of

minimizing 𝐽(𝜌) [29]. And even if there is no 𝐶(𝜌∗) to satisfy Eq. 16, 𝐽(𝜌) could be sufficiently

approximated to 𝐽2(𝜌) using a pre-filter in 𝑦1 and 𝑢1 [30].

3.5 E-FRIT
As mentioned earlier the FRIT approach requires that the reference model 𝑇' must be

determined beforehand. However, the FRIT will have an undesirable performance if we choose

a reference model faster than it is possible. To avoid this problem, we can add a delay

parameter 𝐿 to the reference model 𝑇', therefore, the new reference model, 𝑇3, becomes [29]:

𝑇3(𝑠, 𝐿) = 𝑇'(𝑠) ∙ 𝑒!34. (24)

The evaluation function proposed on Eq. 21 is still the same. However, choosing an

appropriate value of 𝐿 can become a complex task without any knowledge of the plant. Thus,

in order to determine the reference model properly, it is useful to provide a 𝐿 parameters that

can be optimize with the control parameters, then 𝜌 [31] used in Eq. 3 becomes:

𝜌5 = q

𝐾+
𝐾&
𝐾'
𝐿

r , (25)	

and ŷ& becomes

ŷ& =	𝑇3 ∙ 𝐶(𝜌&)!, ∙ 𝑢1 + 𝑇3 ∙ 𝑦1. (26)	

Therefore, we will use the E-FRIT instead FRIT.

20

Note that all this math could also be done in the discrete domain. Thus, considering that our

data will be given in vector forms, the E-FRIT performance index, 𝐽2#(𝜌), used will be:

𝐽2#(𝜌) =
1
𝑁
t{(𝑦1[𝑘] −	ŷ&[𝑘])# + 𝜆𝛥ũ(𝜌& , [𝑘])}
6

78,

, (27)

in which, λ is a weighting coefficient and it is recommended to be equal to 1 [31] and 𝛥ũ(𝜌& , 𝑘),

is a term added to penalize sudden variations in the controller signal, ũ, between two instants,

defined by.

𝛥ũ(𝜌& , 𝑘) = 	ũ(𝜌& , 𝑘) − 	ũ(𝜌& , 𝑘 − 1), (28)	

considering we are working in the discrete time,	ũ(𝜌& , 𝑘) can be calculate as:	

ũ(𝜌& , 𝑘) = 𝐶(𝜌& , 𝑍). (𝑟̂&[𝑘] − ŷ&[𝑘]). (29)	

Therefore, with the E-FRIT method we can change the values of 𝜌5, calculate 𝑟̂& and

consequently 𝑇3, ũ(𝜌& , 𝑡) and ŷ& hence we will have all the parameters of Eq. 27, thus, we can

use a nonlinear optimization method and we can find 𝜌∗ using the Eq. 27.

3.6 E-FRIT IMPLEMENTATION
To execute the E-FRIT method we use scripts in the MATLAB® software [32]. In this work we

use version R2020b update 5 with a student license running on a MacBook Air (M1, 2020).

Our goal is not to make the low-level implantation of e-frit in the MATLAB® language, hence

we will stick to a general explanation of how the implementation problem was addressed and

give an in-depth look at just two functions that we consider most important, lsim and

fmincon. We are inspired by the code available at [33], ergo, we wrote two scripts for

MATLAB® to be able to use the e-frit method. The first one is perfomance_index.m that we

write as a function to MATLAB®, and it will take the vector 𝜌 as an argument and execute all

the necessary equations to return the value of 𝐽2#(𝜌). The second script will be e_frit.m

(ANNEX I) which will pull the input-output data collected from the experiment, set the initial

variables and call the iterative optimization function, fmincon, that will use the function

perfomance_index.m as a cost function for optimization.

The two most relevant functions in the implementation, as already mentioned, are the lsim

function and the fmincon function. The “y = lsim(sys, rs) function returns the system

response y, sampled at the same times t as the input. For single-output systems, y is a vector

of the same length as t. This syntax does not generate a plot” [34]. In the syntax used, the

input arguments are sys and r, where sys is a dynamic system model, rs is the input signal

21

for simulation, specified as a vector, and t is omitted, hence its value is equal to the period

used in sys discretization. y is the simulated response data, returned as an array.

The algorithm is based on recursive digital filter [34]. Hence, considering the input argument

𝑠𝑦𝑠 defined by

𝑠𝑦𝑠(𝑍!,) = 	
𝑎, + 𝑎#𝑍!, +⋯+ 𝑎9𝑍!9

1 + 𝑏,𝑍!, +⋯+ 𝑏:𝑍!:
(30)	

then the k-th element of output y becomes

𝑦[𝑘] = 𝑠𝑦𝑠(𝑍!,)𝑟𝑠[𝑘], (31)	

replacing Eq. 30 in Eq. 31, we have

𝑦[𝑘] =
𝑎, + 𝑎#𝑍!, +⋯+ 𝑎9𝑍!9

1 + 𝑏,𝑍!, +⋯+ 𝑏:𝑍!:
	𝑟𝑠[𝑘] (32)	

hence, multiplying both sides by the denominator of sys(Z!,), we have

𝑦[𝑘] ∙ (1 + 𝑏,𝑍!, +⋯+ 𝑏:𝑍!:) = (𝑎1 + 𝑎,𝑍!, +⋯+ 𝑎9𝑍!9)𝑟𝑠[𝑘], (33)	

then, applying distributive property of multiplication, the Eq. 33 becomes 	

𝑦[𝑘] + 𝑏, ∙ 𝑦[𝑘] ∙ 𝑍!, +⋯+ 𝑏: ∙ 𝑦[𝑘] ∙ 𝑍!: = 𝑟𝑠[𝑘] ∙ 𝑎1 + 𝑎, ∙ 𝑟𝑠[𝑘] ∙ 𝑍!, +⋯+ 𝑎9 ∙ 𝑟𝑠[𝑘] ∙ 𝑍!9, (34)	

hence, isolating 𝑦[𝑘], we have the equation:

𝑦[𝑘] = 	𝑢[𝑘] ∙ 𝑎1 + 𝑎, ∙ 𝑟𝑠[𝑘] ∙ 𝑍!, +⋯+ 𝑎9 ∙ 𝑟𝑠[𝑘] ∙ 𝑍!9 − 𝑏, ∙ 𝑦[𝑘] ∙ 𝑍!, −⋯− 𝑏: ∙ 𝑦[𝑘] ∙ 𝑍!:. (35)	

We set all initial conditions to zero, in Eq. 35.

Another important function used is fmincon, that find the minimum of constrained nonlinear

multivariable function [35]. Its syntax is:

[x,fval,exitflag,output]=fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,op

tions).

Input arguments are:

• fun: Function to minimize, in our case its performance_index.m, i.e., fmincon will

find the input argument of performance_index.m, 𝜌, that will return the minimal

value.

• x0: Initial point, 𝑥1 = [𝜌1		𝐿1], 𝜌1 used to collect eq. (11) and (12) and 𝐿1 is our initial

guess.

• A, b, Aeq, beq are linear inequality constrains and for our work they are all null.

• lb it is a lower bound and ub is an upper bound, i.e., this will limit the maximum and

minimum value that 𝜌 can be.

22

• nonlcon is nonlinear constraints, it is specified as a function name, nonlcon.m, which

receives as input argument a vector or array x and return 𝑐𝑒𝑞 and 𝑐, where, 𝑐𝑒𝑞 is an

array of nonlinear inequality constraints at, 𝑐𝑒𝑞(𝑥) ≤ 0, and 𝑐 is the array of nonlinear

equality constraints, 𝑐(𝑥) = 0 [35]. fmincon attempts to satisfy both 𝑐𝑒𝑞 and 𝑐, in our

work we have no need to define such limitations, hence our implementation of

nonlcon.m returns 𝑐𝑒𝑞 and 𝑐 as null vectors.

• Options is the optimization options parameters. We use the option Algorithm set on

interior-point [36] [37].

With the understanding of the FRIT method and its implementation in the ANNEX I scripts, we

will do the experiments and the calibration of the controller in the next chapter.

23

CHAPTER 4 – PERFORMANCE EVALUATION
As mentioned in the previous chapter, the first task is to choose the order in which each one

of the 12 SISO controllers in the diagram shown in Figure 17 will be calibrated, and if in fact

all 12 will need to be tuned. As the only significant characteristic of the Crazyflie altered by the

addition of the structure, besides the shape, was the inertial moment, we foresee that the six

most external controllers (left of the diagram) will not need tuning, since they control linear

velocity and positions and those are not influenced by the inertial moment, only by the mass.

Furthermore, we will not attempt to calibrate the yaw and yaw rate controllers at first, since the

yaw orientation isn’t critical to the flight stability and our most immediate goal is to make the

drone do a stable flight. Therefore, we start with the following four controllers: Attitude pitch,

attitude rate pitch, attitude roll and attitude rate roll.

Moreover, due to the symmetry of the structure and of the Crazyflie, we will only use data for

one axis to run the FRIT algorithm and we will use the result parameters in both axes. It is

highly likely that this assumption was also made in the calibration of the original firmware

controller since the controller constants of the pitch and row controllers are the same in the

firmware source code. Since there is no objective reason to choose one over the other between

those two axes, we chose to run the experiments on the pitch axis because it was easier to

attach the quadrotor in this orientation doe to the pins position in the PCB board. Finally, since

the dynamics of the attitude rate controller affects the dynamics seen by the attitude controller,

the inner controllers (attitude rate ones) need to be tunned first.

Figure 19 – Crazyflie, without the dodecahedron, in the test stand that’s restrain all the

degrees of freedom except the pitch one.

24

We assembled a test stand to constrain the drone movements other than the pitch, which can

be seen in Figure 19. Beyond that we also disabled the other controllers during the tests to

ensure that only the pitch PID controllers was contributing to the control signal 𝑢1.

Although we did not use step signal as an input to use the FRIT and E-FRIT algorithms, we

run some tests with step inputs to get a more intuitive sense of the current system response.

The response of the rate pitch controller of the drone without the dodecahedron structure is

shown in Figure 20 (A), and with the structure in Figure 20 (B). The rise time with the structure

is equal to 0.057 seconds and the response without the structure is equal to 0.110 seconds,

practically twice as slow, that is expected since the estimated inertial moment of one is twice

of the other. The overshooting has also been attenuated, from 70,5% with structure to 60,9%

without structure. Since changes in system response are caused by increased inertia, we have

concluded that there is no need to tunning the pitch rate PID since the only possible solution

in this case would be to increase the motor thrust capacity

Figure 20 – Response to a step input from the attitude pitch rate PID controller of the

quadrotor in the constrained test stand without the dodecahedron struct (in (A)) and with the

structure (in (B)), in both cases with the original PID parameters.

Moving on to the next controller in the PID cascade, Figure 14, the angle one, we also ran

some steps experiments to compere the system response with and without the dodecahedron

structure, the data are shown in Figure 21 (B) and (A), respectively. The response signal of

the Figure 21 (A) has an overshooting of 20.5%, a rise time of 0.173 seconds and a settling

time of 0.95 seconds with tolerance set in 15%. And the response signal of the Figure 21 (B)

has a overshooting of 31.57%, a rise time of 0.195 seconds and no settling time with tolerance

set in 15%. In this case we can see that the two responses are essentially different, the one

without the structure (Figure 21 (A)) is underdamped and eventually settle on the reference,

meanwhile the response with the structure is a undamped one (Figure 21 (B)), thus will

oscillate indefinitely, which is a very compelling reason for the drone to refused to fly.

25

Figure 21 – Response to a step input from the attitude pitch PID controller of the quadrotor in

the test stand without the dodecahedron structure (in (A)) and with the structure (in (B)), in

both cases with the original PID parameters.

Then we pursue to apply the E-FRIT method to better tune the attitude pitch PID. Inspired by

previous results we decided to use a pulse sequence with exponential decay as our input

reference signal [28]. The exact signal that we used is the 𝑟1 shown in Figure 22. In this figure

we can also see response to this input of the original system, the Crazyflie without the

dodecahedron structure with the original PID parameters 𝜌;$&<&9=>, in which:

𝜌;$&<&9=> =	 Q
𝐾+	
𝐾& 	
𝐾'
R =)

6
3
0
6 . (36)	

The high frequency component in the response of the original system, that can be seen in

Figure 21 and in Figure 22, is not present when the drone is freely flying, as can be seen in

Figure 28 (B) on the next chapter, therefore, this behavior must be induced by the test stand.

Considering that the addition of the dodecahedron structure does not change the effect

induced by the test stand, if we desire that the final version of the quadrotor controller have a

similar behavior to the original one outside the test stand, then they also must have similar

behavior in the test stand. Therefore, we must use a desired transfer function 𝑇', that has a

similar response to the one shown in Figure 22.

26

Figure 22- Response of the drone without the structure, System response, on the test stand

with input, r0, on the pitch attitude PID, with original factory control parameters. Contribution

of the roll and yaw rate attitude PID have been disabled.

To generate a desired transfer function 𝑇' that would have de desired effect we use the tfest,

function of MATLAB® [38], using the data shown in Figure 22 as input. The script can be seen

in Annex II and the result was the following:

𝑇' =	
8.5637	(𝑠 + 18.79)(𝑠 + 3.13)(𝑠 + 0.1996)(𝑠# − 279.3	𝑠 + 7.456 ∙ 10?)
(𝑠 + 58.44)(𝑠 + 14)(𝑠 + 3.53)(𝑠 + 0.2035)(𝑠# − 35.81	𝑠 + 1.293 ∙ 10?) .

(37)	

To confirm that the T@ has a behavior similar to the intended one we ran a simulation with the

same input 𝑟1, that can be seen in Figure 23. One can ask why we do not use the results shown

in equation (37) to identify the system model and use a traditional controller design, since the

controller transfer function is known. Besides the fact that the 𝑇' has not the same exact

response to the one of the real system, which can be seen by comparing the Figure 22 and

Figure 23, we have no way to separate the behavior caused by the test stand from our results.

Figure 23- Simulated response of the desired transfer function, Td response, in pitch axis.

To collect the initial data required to run the E-FRIT algorithm we have to chose 𝐾+ and 𝐾&

values lower than the original ones, because when we run the test with the original values the

system proves to be instable as can be seen in Figure 24, and as discussed in previous

chapters the E-FRIT and FRIT algorithm require a stable one.

27

Figure 24 - Response of the drone with the structure, System response, on the test stand

with input, r0, on the pitch attitude PID, with original factory control parameters, 𝜌;$&<&9=>.

Contribution of the roll and yaw rate attitude PID have been disabled.

We also decide to change the value of the 𝐾', that was zero previously, turning the controller

into a PI. We suspect that it could cause the algorithm to be trapped in a local minimum. Using

the new values shown on Eq. 36, we collect que data to be used in the algorithm, the data is

shown on Figure 25,

𝜌1A =	 Q
𝐾+	
𝐾& 	
𝐾'
R =)

1.7344
1.445
0.001

6 , (38)	

Note that as we defined in Eq. 25, we also need to define 𝐿 in addition to 𝐾+ 𝐾& 	and 𝐾' in

𝜌;$&<&9=>. In all test runs, we will use 𝐿 equal to 0.01 seconds, which was chosen arbitrarily.

Figure 25 - Response of the drone with the structure, System response, on the test stand with

input, r0, on the pitch attitude PID, with 𝜌1A control parameters. Contribution of the roll and yaw

rate attitude PID have been disabled.

We run the algorithm available, on the ANNEX I, it generated the estimated optimal parameters

𝜌�∗, shown on Equation (39).

𝜌�∗ =	 q

𝐾+
𝐾&
𝐾'
𝐿

r = Q	
4.2039
4.7822
0

0.0094

	R (39)	

28

Our interest is in the values that we will introduce in the PID in the Crazyflie firmware, i.e., 𝐾+

𝐾& 	and 𝐾'. Hence, note that, even with we force a non-zero start point for the 𝐾' it converges

to zero again. Which suggest that the optimal controller is indeed a PI.

We run the experiment one more time with the generated parameter for confirmation, and the

result is shown on Figure 26. As the answer obtained was very similar to the desired one, we

preceded to the flight tests.

Figure 26 - Response of the drone with the structure, System response, on the test stand

with input, 𝑟1, on the pitch attitude PID, with 𝜌�∗ control parameters. Contribution of the roll

and yaw rate attitude PID have been disabled.

As can be seen in Figure 27 the drone is able to fly in the structure using the new parameters

𝜌�∗ in the pitch and roll attitude PID controllers.

Figure 27 - Crazyflie in about 3 meters height, outdoor flight, with structure and using 𝜌�∗ as

controller parameters for the pitch and row attitude PIDs.

However, because we do not yet regulate the yaw controllers, it was interfering with the drone's

ability to fly as it saturates two of the engine's signals. Therefore, in all final flight tests we

disabled the yaw controller, including in the flights with the drone without the structure that we

29

made for comparison. Although the Crazyflie flights were stable, we basically have no steering

since the drone flew spinning in the z axis due to the missing yaw controller. Because of that,

we made the final flights outdoors and short-lived to prevent the drone to crash in a tree or a

wall.

Figure 28 shows the results of this work in form of reference and system responses of the

attitude pitch PID controller during outdoors flights and flights attempts. In Figure 28 (A) we

can see that even with the yaw controller disabled the drone is not able to fly in the

dodecahedron structure with the original PID parameters 𝜌;$&<&9=> (Equation (34)), since in the

presence of the smallest stimulus at the input of the pitch controller the system responds with

an increasing oscillation that causes the drone to fall in less than a fifth of a second. Then in

Figure 28 (C) we can see that with the new parameters 𝜌�∗ (equation (37)), the Crazyflie not

only is able to fly in the structure, but also the PID pitch controller response follows closely the

reference, in a very similar way to the response of the original controller in flight without the

structure, as can be seen in Figure 28 (B).

30

Figure 28 – Portion of data collected from drone pitch response in outdoor flight. (A) Drone

with structure and original factory control parameters 𝜌;$&<&9=>. (B) Drone without structure

and original factory control parameters 𝜌;$&<&9=>; (C) Drone with structure and control

parameters to 𝜌�∗.

31

CHAPTER 5 – CONCLUSIONS
In this work we aimed to transform a nano drone in a handleable flying object, as a first step

towards an ambitious goal of creating a revolutionary juggling prop. Then we peruse to resolve

the problem of creating a rigid and light-weight structure to be attached to the drone. Which

provoked the need to recalibrate the drone control algorithm.

Using carbon fiber rods and 3D print parts, we manage to design and build a structure that

weighs less than 7 grams and fits the chosen drone inside. It fulfilled the role of protect the

juggler hands and also protect the quadrotor form occasional crashes. Additionally, the

structure modular design makes very easy to turn it in a much denser structure once we have

the hardware with more lift capability.

And, using the E-FRIT algorithm, we menage to recalibrate the drone controllers hence it could

fly with the new structure. And because this algorithm doesn’t need a lot of experimental data,

it will be easily replicated for any future iteration of this project hardware.

However, even after we calibrated all the other controllers, we are not sure that the current

prop will be able to meet the performance needed for the proposed show. Meanwhile, the

versatility and modularity of the developed solutions will ensure that these solutions can be

used regards of the future hardware modifications that certainly will be made in order to active

the proposed performance. And even knowing that until this prop arrives on a stage that will

be a lot of effort, the progress developed during this work was a solid start for this project final

goal.

6.1 FUTURE WORKS
Definitely the next step of this project is regulating the yaw axis for the drone to recover its

steering capability. In order to do that, we will need to build another test stand to isolate the

yaw movement. However, now that the drone has regained its ability to fly, it may be possible

to acquire the yaw data during flight, therefor spare the creation of another test stand. Then, it

would be beneficial to mount the additional sensors already acquired, to investigate if the

Crazyflie remains with the same autonomous flight capability. If hence, investigate if the drone

has the trust capability to perform the maneuver illustrate on Figure 2. And surly, we could not

fail to mention the build of a more capable drone using the Crazyflie Bolt [7] and bigger motors

and battery.

We have a few suggestions for anyone how decides to build on this work. One could try to use

carbon fiber manufacture techniques to bend the rods and then make a spherical structure.

Would also be interesting to investigate if there is really no advantage in adjust the pitch and

row controllers with different parameters. In this work we were also assuming that the original

32

controllers of the drone were the optimal ones, this was translated in the way that we chose

the desired transfer function 𝑇', but this may not be the case, and would be interesting to

investigate others values for 𝑇' .

33

BIBLIOGRAPHY
[1] A. Lewbel, "History of Juggling," Boston College, March 2002. [Online]. Available:

https://sites.google.com/bc.edu/arthur-lewbel/history-of-juggling. [Accessed May 2021].

[2] Cirque du Soleil, ETH Zurich and Verity Studios, "SPARKED: A Live Interaction Between Humans and

Quadcopters," Set 2014. [Online]. Available: https://www.youtube.com/watch?v=6C8OJsHfmpI. [Accessed

December 2020].

[3] G. S. Warrington, "Juggling Probabilities," Taylor & Francis, Ltd. on behalf of the Mathematical

Association of America, pp. 105-118, February 2005.

[4] Bitcraze, "Crazyflie 2.1," [Online]. Available: https://www.bitcraze.io/products/crazyflie-2-1/. [Accessed

December 2020].

[5] Bitcraze, "Bitcraze," [Online]. Available: https://www.bitcraze.io/about/bitcraze/. [Accessed January 2020].

[6] Bitcraze, "Bitcraze Store," [Online]. Available: https://store.bitcraze.io. [Accessed January 2021].

[7] Bitcraze, "Crazyflie Bolt," [Online]. Available: https://store.bitcraze.io/products/crazyflie-bolt. [Accessed

December 2020].

[8] C. Chadehumbe and J. Sjöberg, "Autonomous flight of the micro drone Crazyflie 2.1 through an obstacle

course," Examensarbete 15 hp, Jun 2020.

[9] Bitcraze, "State estimation: To be or not to be!," [Online]. Available: https://www.bitcraze.io/2020/01/state-

estimation-to-be-or-not-to-be/. [Accessed December 2020].

[10] A. Kumar and A. Zheng, "Using Reinforcement Learning for Real-Time Trajectory Planning of Aerial Multi

Agent Systems," TJHSST Computer Systems Research Lab, 2019.

[11] W. Hönig and N. Ayanian, "Flying Multiple UAVs Using ROS," Springer International Publishing AG, pp.

83-118, 2017.

[12] J. A. Preiss, W. Hönig, G. S. Sukhatme and N. Ayanian, "Crazyswarm: A Large Nano-Quadcopter Swarm,"

IEEE International Conference on Robotics and Automation (ICRA), pp. 3299-3304, 3 June 2017.

[13] J. Xu, "Experiments of Constrained Distributed Optimization by Using UAVs," California Digital Library,

2020.

[14] Bitcreze, "Flow deck v2," [Online]. Available: https://store.bitcraze.io/collections/decks/products/flow-

deck-v2. [Accessed December 2020].

[15] Bitcraze, "Lighthouse positioning deck," [Online]. Available:

https://store.bitcraze.io/collections/decks/products/lighthouse-positioning-deck. [Accessed December

2020].

34

[16] B. Gabrich, D. Saldaña, V. Kumar and M. Yim, "A Flying Gripper Based on Cuboid Modular Robots".

[17] J. F. ̈orster, "System Identification of the Crazyflie 2.0 Nano Quadrocopter," Institute for Dynamic Systems

and Control Swiss Federal Institute of Technology (ETH) Zurich, 2015.

[18] M. A. C. Bortoleto, "Rola-bola: iniciação," Movimento & Percepção, vol. 4, no. ISSN 1679-8678, pp. 100-

109, 2004.

[19] Bitcraze, "Controllers in the Crazyflie," [Online]. Available:

https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/functional-areas/sensor-to-

control/controllers/. [Accessed January 2021].

[20] J. B. Kuipers, QUATERNIONS AND ROTATION SEQUENCES. A Primer with Applications to Orbits,

Aerospace, and Virtual Reality., Princeton, New Jersey: PRINCETON UNIVERSITY PRESS, 1999.

[21] R. Niemiec and F. Gandhi, "Multirotor Controls, Trim, and Autonomous Flight Dynamics of Plus- and

Cross-Quadcopters," Rensselaer Polytechnic Institute, Troy, New York, vol. 12180, no. DOI:

10.2514/1.C034165.

[22] Bitcraze, "The Coordinate System of the Crazyflie 2.X," [Online]. Available:

https://www.bitcraze.io/documentation/system/platform/cf2-coordinate-system/. [Accessed January 2021].

[23] F. L. Markley and J. L. Crassidis, "2.6.2 Inertial Reference Frames," in Fundamentals of Spacecraft Attitude

Determination and Control, SPACE TECHNOLOGY LIBRARY; Microcosm Press; Springer, 2014.

[24] Bitcraze, "crazyflie-firmware/src/modules/src/pid.c," [Online]. Available:

https://github.com/bitcraze/crazyflie-firmware/blob/master/src/modules/src/pid.c. [Accessed January

2021].

[25] S. Soma, O. Kaneko and T. Fujii, "A NEW METHOD OF CONTROLLER PARAMETER TUNING

BASED ON INPUT-OUTPUT DATA -FICTITIOUS REFERENCE ITERATIVE TUNING (FRIT)-," in

IFAC Workshop on Adaptation and Learning in Control and Signal Processing, and IFAC Workshop on

Periodic Control System, Yokohama, Japan, 2004.

[26] H. Hjalmarsson, M. Gevers, S. Gunnarsson and O. Lequin, "Iterative feedback tuning: theory and

applications," IEEE Control Systems Magazine, vol. 18, pp. 26-41, 8 1998.

[27] M. C. Campi, A. Lecchini and S. M. Savaresi, "Virtual reference feedback," Automatica, pp. 1337-1246,

2202.

[28] A. JULKANANUSART, “Quadrotor Tuning for Attitude Control based on PID Controller using Fictitious

Reference Iterative Tuning (FRIT),” Sirindhorn International Institute of Technology - Thammasat

University, p. 105, 2016.

35

[29] S. Masuda and Y. Yasuda, "A PID Gain Tuning Using Fictitious Reference Iterative Tuning Approach with

Simultaneous Tuning for the Delay Parameter of the Reference Model," in SICE Annual Conference, The

University Electro-Communications, Japan, 2008.

[30] O. Kaneko, K. Yoshida, K. Matsumoto and T. Fujii, "A New Parameter Tuning for Controllers Basead on

Least-Squares Method by using One-Shot Closed Loop Experimental Data - An Extension of Fictitious

Reference Iterative Tuning," Transactions of the Institute of Systems, Control and Information Engineers,

pp. 400-409, 2005.

[31] M. Kano, K. Tasaka, M. Ogawa, S. Ootakara, A. Takinami, S. Takahashi and S. Yoshii, "Practical Direct

PID/I-PD Controller Tuning and Its Application to Chemical Processes," in 2010 IEEE International

Conference on Control Applications Part of 2010 IEEE Multi-Conference on Systems and Control,

Yokohama, Japan, September 8-10, 2010, 2010.

[32] "What Is MATLAB?," MathWorks, [Online]. Available: https://www.mathworks.com/discovery/what-is-

matlab.html. [Accessed May 2021].

[33] M. Kano and M. Ogawa, "E-FRIT MATLAB Toolbox/Program," JSPS PSE 143rd committee, 22 May 2010.

[Online]. Available: http://e-frit.chase-dream.com/matlab-ENG.html. [Accessed February 2021].

[34] "lsim," MathWorks, [Online]. Available: https://www.mathworks.com/help/control/ref/lti.lsim.html.

[Accessed May 2021].

[35] "fmincon," MathWork, [Online]. Available:

https://www.mathworks.com/help/optim/ug/fmincon.html?s_tid=doc_ta. [Accessed May 2021].

[36] "Constrained Nonlinear Optimization Algorithms," MathWorks, [Online]. Available:

https://www.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html#brnox01.

[Accessed May 2021].

[37] "Choosing the Algorithm," MathWorks, [Online]. Available:

https://www.mathworks.com/help/optim/ug/choosing-the-algorithm.html#brppuoz. [Accessed May 2021].

[38] MathWorks, "tfest," [Online]. Available: https://www.mathworks.com/help/ident/ref/tfest.html. [Accessed

May 2021].

[39] M. Hassanalian and A. Abdelkefi, "Classifications, applications, and design challenges of drones: A review,"

Progress in Aerospace Sciences, 2017.

[40] L. Brooke-Holland, "Unmanned Aerial Vehicles (drones): an introduction," International Affairs and

Defence, no. SN06493, 2012.

36

ANNEX I - THE E-FRIT SCRIPT

clear
global y0 Tds T u0 z lambda fs

load("data/e_frit_data.mat");
T = 1/500;
z = tf([1 0], 1, T);
lambda = 1;

I/O data use in the e-frit:

plot(r0)
hold on
plot(y0)
plot(u0)
legend("r_0","y_0","u_0")

37

Desired transfer function used undelayed:

Tds
Tds =

 From input "u1" to output "y1":
 8.564 s^5 - 2202 s^4 + 5.862e05 s^3 + 1.397e07 s^2 + 4.031e07 s + 7.493e06

 s^6 + 112 s^5 + 1.675e04 s^4 + 1.027e06 s^3 + 1.42e07 s^2 + 4.021e07 s + 7.601e06

Continuous-time identified transfer function.

Parameterization:
 Number of poles: 6 Number of zeros: 5
 Number of free coefficients: 12
 Use "tfdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:
Estimated using TFEST on time domain data "data".
Fit to estimation data: 86.54%
FPE: 2.05, MSE: 2.026
Initial Kp, Ki, e Kd values:

ro0(1:3)
ans = 1×3
 1.7344 1.4450 0.0010

Call the optimization function to find the best ro value:

ro = ro0;
options = optimset();
[ro, fval, exitflag, output] =
fmincon('performance_index',ro,[],[],[],[],[0, 0, 0, 0.0001],300*[1, 1, 1,
1],'funcon',options);
Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than
the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.

<stopping criteria details>
Estimated optimal parameters:

ro(1:3)
ans = 1×3
 4.2039 4.7822 0.0000

38

Function that will calculate the performance index of the E-FRIT method.

This value will be used in the nonlinear optimization function:

function [J] = performance_index(ro)
 global Tds y0 T u0 z lambda

 Tdsd = Tds * tf(1,1,'ioDelay',ro(4));
 Tdd = c2d(Tdsd,T,'zoh');
 C = ro(1) + ro(3)*(1 - z^(-1))/T + ro(2)*T/(1 - z^(-1));
 ri = lsim(1/C,u0) + y0;
 yi = lsim(Tdd,ri);
 e = y0 - yi;
 Je = (e' * e) / length(y0);
 ei = ri - yi;
 ui = lsim(C,ei);
 dui = ui - [0; ui(1:end-1)];
 Ju = (lambda * (dui' * dui)) / length(dui);
 J = Je + Ju;
end

Nonlinear constraints used by the optimization function:

function [c, ceq] = funcon(theta)
 c = []; % no constraints
 ceq = []; % no constraints
end

39

ANNEX II - CHOOSING TD

clear
load("data/dataset_to_find_Td.mat")
T = 1/500;

Loaded data:

plot(r)
hold on
plot(y)
legend("y","r")

Estimated Td:

data = iddata(y,r,T);
Tds = tfest(data,6)

Tds =

 From input "u1" to output "y1":
 8.564 s^5 - 2202 s^4 + 5.862e05 s^3 + 1.397e07 s^2 + 4.031e07 s + 7.493e06

 s^6 + 112 s^5 + 1.675e04 s^4 + 1.027e06 s^3 + 1.42e07 s^2 + 4.021e07 s + 7.601e06

40

Continuous-time identified transfer function.

Parameterization:
 Number of poles: 6 Number of zeros: 5
 Number of free coefficients: 12
 Use "tfdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:
Estimated using TFEST on time domain data "data".
Fit to estimation data: 86.54%
FPE: 2.05, MSE: 2.026
Td response:

vecT = 0:T:T*(size(r, 1) - 1);
Yd = lsim(Tds,r,vecT);
figure
plot(r)
hold on
plot(Yd)

