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RESUMO

Com o aumento des pesquisas em métodos de compressão point clouds, uma variedade de algoritmos
foram desenvolvidos adotando uma particular abordagem com o objetivo de gerar codificadores mais per-
fomáticos, isto é, com melhores taxas de compressão. Um dos algoritmos desenvolvidos trata-se do Sil-
houette 3D (S3D), criado pelo trabalho do Peixoto, que utiliza-se de técnicas de compressão de imagens.
A versão inicial feita em Matlab apresenta resultados superiores comparado à maioria dos encoders de
point cloud, inclusive o GPCC codec; indicando a eficiência do método. Para a submissão do algoritmo ao
MPEG para considerarem a sua proposta, o codificador deve ser migrado para uma linguagem mais comum
a codecs, além de aprimorar sua performance utilizando-se de linguagem compilada. Assim, uma equipe
foi formada para iniciar o processo de migração do código original Matlab para C++, em que cada membro
foi responśavel por uma parte específica do processo. Esse trabalho explana tanto o processo de mode-
lagem quanto implementação das principais classes e abstrações de dados do algoritmo S3D, além disso
avalia sua performance considerando sua taxa de compressão e tempo de execução, cujo valor pode ser
reduzido. Os resultados mostram que a nova versão migrada apresenta uma taxa de compressão superior
assimilar à versão original, e um significativa redução do seu tempo de execução.

ABSTRACT

With the increase on point cloud compression methods research, a variety of algorithms was developed
with a particular approach in order to propose a more performative encoder, i.e, a better compression rate.
One of these algorithms is the Silhouette 3D(S3D), developed by Peixoto’s work, using image compression
techniques on the process. The initial version implemented in Matlab presented outperforming results
compared to the most encoders and the GPCC codec, indicating efficiency of the method. In order to
submit this algorithm to MPEG for consideration, the encoder had to be migrated to a more usual language
to codecs and improving its performance using a compiled language. Thus, a team was formed to start
the process of migrate the original Matlab implementation to C++, where each member was responsible
for a specific part of this process. This work explains the process of modelling and implementing the
main classes and data abstractions from the S3D algorithm, and assess its performance considering its
compression rate and execution time, which value should be reduced. The results shows that the new
migrated version presents a similar compression rate as the original, and a significantly reduction on the
algorithm’s time execution.
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1 INTRODUCTION

1.1 CONTEXT

Technology improvements based on three dimensional (3D) objects scanning and detecting from spe-
cial cameras is a history landmark that is a trend on the industry recently. With the development of more
consumer accessible devices, 3D models application is not restricted only on research, but at industry
and consumers market. We could cite: virtual reality (VR) broadcasting, 3D videos, robotics, autonomous
navigation based on 3D large-scale dynamic maps, geographic information system (GIS) applications, tele-
immersive applications [1], as at work [2], animations, gaming e scientific visualization applications [1].
In the paper [3] we can observe a montain rendering example.

An interesting example is free viewpoint views and videos, where active people and objects being cap-
tured and conveyed in real time to remote locations can be seen as 3D motion data in multiples positions
and angles. Furthermore, this 3D objects rendering to remote locations allows collaboration as if all par-
ties were co-located. All this captures are made by multiple cameras (infrared and regular) arrangement,
where the real time capturing and rendering are made possible by using powerful graphics processing
units (GPUs). Finally, the rendering are visible through special render glasses [4]. Because of the re-
search development on this area, and its growing consumption since its introduction in the market due to
recent discoveries, there was an emergence of alternative methods for capturing and representing the data
of these captured geometric volumes. Each of these developed methods seek to solve problems related to
predecessor standard and optimize the representations, along with the development of hardware power.

With recent advances in 3D sensing and high-performance computing, point clouds gained more atten-
tion [1]. For example, mobile devices, such as Apple’s iPhone X, and Sony’s Xperia XZ1, have supported
point-cloud representation at the level of a few hundred thousand points. However, along with point cloud
technology advances and improvements, permitting representation of well defined complex objects, a bot-
tleneck increase. Overall, the point clouds raw data representation occupies huge amount of memory
storing size. And this intensifies mainly because of the more demanding larger representations, as we can

(a) The Cow mesh model (b) The Horse mesh model

Figure 1.1: 3d Mesh models.
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observe in figure 1.2, 1.3 [5]. With high-qualities models, more data are stored with. Geometry (meaning
more points), color, normal, reflectance, and other attributes [1]. Considering that many systems and appli-
cations demands on using these large and high-quality point clouds, by storing, transmissing, processing
and rendering [6], specially on real-time applications, it is of utmost importance to efficiently compress the
data in order to perform those process. Consequently, the development of compression technologies for
point cloud has been a field of intensive investigation in the research community [1].

One of the main concerns is decoding efficiency, ensuring that end users have a coding scheme whose
compressed models reconstruction time is fairly good. This also requires that the decoders are simple
to implement. Another important concern is the memory usage on the codec as an important parameter,
providing a high compression ratio [6]. The technique of 3D model coding has been studied for more
than a decade. Previously, 3D mesh compression was a main topic in graphics compression. But with the
point cloud advance, point cloud data compression has been a recently an intensive research area. One of
the coding algorithms developed that we could cite is the compressors at the works [7], [6], [4]. In 2014,
MPEG began an exploration activity on Point Cloud Compression (PCC). In 2017, MPEG made a call
for proposals (CfP) for PCC in order to attend the fast-growing interest of point-cloud-based applications
industry. From that, a set 13 technical proposals was evaluated in October 2017. As an outcome, three
different technologies were chosen as test models for three disparate content categories [1]. Since then, a
great number of papers and methods proposals for point cloud compression has been studied last years, as
this area research becomes more important on industry and academically.

1.2 MOTIVATION

Among the researches and papers published proposing point cloud compression techniques, in 2019
a paper published at IEEE VCIP by the professor Eduardo Peixoto and Rodrigo Rosário proposed an
Intra-frame geometry compression method based on JBIG and an important technique based on Boolean
Decomposition [8]. Following this paper, another technique was developed inspired on the Boolean De-
composition from the previous work, published on 2020 by Peixoto [9], proposing a Lossless Intra-Frame
Compression of Point Cloud Geometry Using Dyadic Decomposition. In this work, the technique proposed
a recursive splitting of the father point cloud in children halves, and for each point cloud child half a sil-
houette from the volume occupied is obtained on a given axis. Using the father and children’s silhouettes, a
similar decomposition to the previously proposed Boolean Decomposition is made as in figure 1.4 [10], but
now based on Silhouette Decomposition. Additionally, the silhouette decomposition encoding is made by a
Context Adaptive Binary Arithmetic Coder and a single mode option on the dyadic decomposition process.
This technique is called Silhouette-3D (S3D). Later on literature review section, it will be explained more
clearly.

Comparing the compression rate, bits per occupied voxel (bpov), analysed on two public databases, the
S3D outperforms all state-of-art intra coders tested, including MPEG G-PCC TMC13 v7.0. Futhermore,
it outperforms a recent state-of-art inter coder Parent Node Inheritance plus Super-Resolution P (Full) [9].
Another approach was developed using lossy approach, using downsampling and skipping a certain number
of consecutive slices. Similarly, it outpeforms TMC13 v7.0 Trisoup and Octree for bitrates greater than 0.3

2



Figure 1.2: Large point cloud example 1 - St. Gallen Cathedral point cloud 3d model (32.342.450 points).
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Figure 1.3: Large point cloud example 2 - Marketplace Feldkirch point cloud 3d model (22.760.334 points)
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Figure 1.4: Dyadic decomposition on a single point cloud ilustrated.
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Figure 1.5: S4D decomposition process and context gathering.

bpov in point-to-point error (C2C) metrics [10].

Evolving the S3D to dynamic point clouds, where there’s an additional time domain expressing motion
frames on the point cloud videos, an inter-frame lossless geometry coder of dynamic voxelized point clouds
was developed and published on the same year. This new method is based on S3D algorithm but also adding
a fourth pixels context on the encoding process. Because of that this new technique is called Silhouette-4d
(S4D). Thus, in addition to the pixels contexts from current silhouette, the brother silhouette and father,
the pixels from another frame is used assisting on the encoding, as depicted in 1.5. And from its results, it
presents best compression performance of lossless comparing with well known techniques on JPEG Pleno
Database [11].

All these new method proposals and great performance results, based on Dyadic Decomposition ap-
proach and S3D basis technique, presented a great perspective and opportunities to develop further works
and studies on this algorithm. By these studies, it was sought optimize this technique and explore in more
deep details the algorithm, allowing refined versions with better results and performance. Both the S3D
algorithm, developed by professor Eduardo Peixoto, and S4D algorithm, developed by professors Eduardo
Peixoto and José Edil Guimarães, have been build on Matlab platform. Because of the facilities, tools —
such as debugging, data states, and a local shell — and its Data Structures with its simple syntax on matrix
and vectors manipulation, its platform served as a good environment to develop the initial versions of the
algorithm, mainly based on these 2D (images and tables from S3D) and 3D (point clouds) matrix entities
and its operations, such as boolean OR operations and iterating each element from the entity. Moreover,
Matlab offers libraries and functions that are attractive to the signal processing community, providing pre-
built functions such as filters, transforms, and matrix operations ending up being an well known language
on engineering community [12] [13].

6



1.3 PROBLEM

On the other hand, the Matlab, being run by a interpreter, has a slow execution, a characteristic typical
from interpreted languages. Besides, its garbage collector [14] and automatic allocation and memory man-
agement on the data structures and variables diminish the memory control by the user. As a consequence,
the execution time on the program gets longer, and the storage usage during the execution is underutilized.
Furthermore, as bigger point clouds are used on the algorithm, more time is spent and depending on how
much increase on the point cloud size input is, it can be impracticable time. Because of these limits the
algorithm analysis could not be done in a satisfactory depth and close to it real performance, exploring its
scope limits capacity.

Based on this issue, a migration of this original Matlab code to a C++ was motivated, considering
its qualities. The first quality is its own characteristically performance, thanks to its compiled language.
This allows even a extensive program like the S3D algorithm be executed on a interesting fast time once
translated to machine language, compared to a interpreted language. Besides that, C++ allows a direct user
management of the storage, giving more control to arbitrary free and allocate memory when the algorithm
requires, in order to explore the best capabilities of the storage. Without the use of a garbage collection and
lesser language’s own memory management reduces the time overhead too, considering that the garbage
collection is an additional program that adds an overhead on the program execution time. It’s important to
mention the C++ syntax and structures inspired on Object Oriented Programming (OOP) facilitates on the
code development and fit the abstract structures from the algorithm to a real implementation using classes
and data structures provided by the C++ libraries. For example, High Efficiency Video Codec (HEVC) and
Versatile Video Coding (VVC) codes are made in C++, reinfocing the importance of this language.

Hence, professor Eduardo Peixoto and José Edil Guimarães started to write a C++ code migration of
the original Matlab S3D algorithm in 2020, and during the development, a team was selected in order to
support and accomplish this migration considering the complexity of this task process and concerning a
code with a satisfactory performance. At the beginning of the work of this new team, some classes and its
function templates was already developed.

1.4 PURPOSE

The main goal of this project it to develop an initial and functional code, migrating the original Mat-
lab S3D program and adapting its main data structures to the C++ environment and the language’s data
structures. This first version does not cover some features from the original algorithm, as the single mode.

As a member of this project, this work is focused on the project part responsible for design, modelling
and implementing the API of the main data structures and classes required to the S3D algorithm, adapting
the original code and adding new features to optimize the performance and usability on the S3D code
development.

As experimental results measures that will allow to assess the C++ program migration and compare
to the original Matlab code, the execution time and data compression rate will be compared in order to
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verify the validity and correctness of the code migration. It’s expected that the time will be reduced and the
compression rate doesn’t be much different from the original. With this new migrated S3D implementation
version, our purpose on this project is to submit the S3D algorithm to the MPEG’s G-PCC for consideration,
considering the out-performing result from the original Matlab implementation. Once the C++ version is a
optimization over the original, a time performance improvement is expected.

CONCLUSION

We’ve seen the point cloud importance on the industry and different commercial applications. More-
over, how the coders to these new kind of data is a high demanding matter to its compression to a more
efficient and practicable storing, processing and rendering. Aiming to offer a solution that gets better for
each new coder proposal, different kind of strategies and approaches is being studied and developed in the
academic and research field. One of these proposal is the S3D technique, whose results outperforms the all
state-of-art intra coders tested, and is implemented on Matlab. This work aims to migrate this Matlab algo-
rithm to a C++ implementation, a more usual language on the codec developing, with a more performative
execution.

In order to migrate the Matlab original code, it’s important not only to examine its project structure and
how it’s implemented, but also understand all the theory background behind the concepts involved on the
S3D implementation. Thus, the Literature Review chapter purpose is to cover all the concepts required
to understand the S3D algorithm. With a better comprehension on the algorithm, we are able to implement
it by availing and pursuing all the performance and advantages that C++ can bring, which will be covered
on Implemented Solution chapter. It’s performance and execution will be assessed in Results chapter and
then discussed and concluded in the Conclusions chapter. Some examples from the Literature Review
can be verified on the Appendix chapter, bringing a better understanding on the concepts involved.
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2 LITERATURE REVIEW

2.1 POINT CLOUDS

A point cloud can be defined as a set V of points [1]. A common process called voxelization delimits
the point cloud’s points in a 3D discrete grid, where each unit volumetric cube space from this grid is called
voxels, which is used on the codec implemented on this work. The voxels are a 3D equivalent to image
pixels, thus representing index triples corresponding to a 3D spatial location within a 3D grid dimension
2k × 2k × 2k, where k is the level within a voxel hierarchy Vk. Each voxel can have multiple attributes
associated, as color, normal, reflectance. The voxelized point clouds are captured by special cameras
and processed by a special method called voxelization, assigning the attributes values and its geometry
information. The number of voxels from a point cloud can be denoted as |Vk| notation. This measure is
proportional to the object surface area. The maximum number of levels is called depth, which is determined
by the number of bits used on the coordinate representations [15].

The point clouds can be classified as static or dynamic type, depending on their captured environment.
The static type represents a static data point cloud time, i.e., doesn’t express motion and time change.
On the other hand, the dynamic type adds the time attribute domain, expressing motion and point cloud
changing by its frames, crucial information to 3D videos, autonomous navigation based on 3D large scale
dynamic maps and VR broadcasting [1]. By these types, MPEG PCC has separated the point cloud in three
categories, in order to explore compression technologies according to the corresponding 3D applications,
which each one has its own particular requirement, figure 2.1. The category 1 classifies static point clouds,
the category 2 the dynamic point clouds, and finally the category 3 consists of dynamically acquired or
fused point clouds [1].

Based on MPEG PCC standards, the point clouds files are represented by Polygon File Format (PLY) [1].
In this file type format, each voxel has its position (geometry information) and associated attributes. In gen-
eral, these attributes describes the voxels properties such as colors and reflectance. We can observe that in
the figure 2.1 [1], each category requires certain attributes. In order to visualize the point clouds pattern,
an interesting free and open source software used to render point clouds, specially .ply files types, is the
Meshlab. The PLY format 3D objects as a collection of vertices, edges and - depending on the volume rep-
resentation - other elements. Each one of these collection may have properties as mentioned. Typically, a
PLY file describing a point cloud contains a list (X,Y, Z) triples for vertices, along with its fixed properties
specified on the header. The basic point cloud PLY file structure is similar to:

ply

format ascii 1.0

element vertex 213609 {we have a point cloud of 213609 voxels}

property float x

property float y

property float z
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property uchar red

property uchar green

property uchar blue

end_header

223 255 215 96 63 46

223 255 216 108 75 58

223 255 217 128 83 60

This point cloud is a piece of the third frame from Ricardo9 file sample file from the JPEG Pleno
Database [16]. This file begins with the header. The first line is the standard characters for the PLY format.
The second line specifies the file format, an alternative format could be binary file. The next line describes
the elements from the object. In this case, the element described is the vertex followed by its amount on
the file, which is 213609. Then, a list of properties are described, indicating its type and the property name.
Since the object described is a point cloud, no more elements are listed. Then the header is delimited by
the end_header line. Thus, the following lines lists the elements described on the header following its
declaration order, assigning the properties values corresponding for each element type. In this case, the
following 213609 describes the point cloud’s voxel. And for each one, its position determined by (X,Y, Z)

coordinates and its color attributes (R,G,B) are described [17].

Figure 2.1: The three point cloud categories and its representation requirements. The not-yet-supported functionali-
ties are outside of ellipse shapes.

2.2 SIGNAL COMPRESSION

This section will cover signal compression fundamentals and important concepts in order to understand
the proposed point cloud compression algorithm steps and its performance results analysis in the next
sections. Its content will be based on Sayood’s book Introduction to Data Compression [18].

In the case of compression algorithms, we can consider that we are referring to two algorithms that
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composes it. There is the compression algorithm that takes as an input X , carrying data, and generates a
representation Xc representing the same data with fewer bits, i.e., a compressed data. Generally, we can
refer to it as Encoder. And paired with this algorithm, we have a reconstruction algorithm that operates on
the compressed data Xc to generate the reconstruction Y . For this, we can refer as Decoder. Based on the
requirements of the reconstruction and depending on its application, the data compression can be classified
in two classes: lossless algorithms, where Y is identical to X , and lossy, which Y is different from X , but
on the other hand generally provides higher compression than lossless. Considering the development of
data compression algorithms for a variety of data, we can divide the process in two phases. The first one is
the modelling, which we try to identify redundancies that exist on the data and describes these redundancies
in the form of model. Following the modelling, we have to describe the model and how this encoded model
differs from the original data, phase called coding. This model is encoded generally by a binary alphabet.
Besides, the difference between the data and the model is often referred to as the residual.

The main measures that is focused on concerning to compression analysis is the amount of compression
and how closely the reconstruction resembles the original data. The compression rate express the ratio
between the size of the original data before compression to the size occupied by the new compressed data.
We can also represent the compression ratio by expressing the reduction in amount of data required as a
percentage of the size of the original data:

CR =
So
Sc

(2.1)

or

CR = 1− Sc
So

(2.2)

where CR is the compression rate, So is the original data size in bits and Sc it the compressed data size.

Another important metric is rate, which express the average number of bits required to represent a
simple sample. In the case of point clouds context, a notable metric is the bits per voxel occupied, that is
calculates the ratio between the number of bits occupied by the compressed file and the number of voxels
occupied by the point cloud’s file.

R =
Sc
N

(2.3)

where R is rate, Sc it the compressed data size and N is the amount of voxels occupied.

In lossy compression context, the reconstruction differs from the original data. Therefore, in order
to determine the efficiency of the compression algorithm in reconstruct the data qualifying the difference
between the original data and the reconstructed data, we measure the distortion between the data.

In order to analyse and have a further study on the point cloud compression method, it’s important to
understand the concepts and principles from the information theory. We can recognize the information
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theory as a mathematical basis for compression methods. An important concept from this study area is
the quantity called self-information. Suppose we have an event A, which is a set of samples of some
experiment. If P (A) is the probability that the event A will occur, then the self-information associated
with A is given by:

i(A) = logb
1

P (A)
= − logb P (A) (2.4)

The base b determines the unit of the self-information. If its value is 2, the unit is bits; e, for nats
and 10 for the unit hartleys. The idea behind this logarithm function is to express that when a certain
event has a high probability to happen, it adds little information from what we already know and expect
from a case. But if the event has low probability, it adds a lot of information from the analysis, i.e., it
contains high self-information associated. This is because when a certain event that we don’t have a lot of
expectation to occur happens, it indicates in the sampling analysis that a new information is added to the
amount of information that shares a common idea or a specific tendency around a value or event. And this
new information is an occurrence that differs from the past common events.

Given a set of independent events Ai, which are a set of outcomes of some experiment S, such as:

⋃
Ai = S (2.5)

where S is the sample space, then the average self-information associated with the random experiment is
given by:

H =
∑

P (Ai)i(Ai) = −
∑

P (Ai) logb P (Ai) (2.6)

This average is called the entropy associated with the experiment. Shannon noted that if we have an
experiment as a source that put out symbols Ai from a set A, then the entropy is a measure of the average
number of binary symbols needed to code the output of the source. Moreover, the entropy of a source data
express the best number of bits average of an encoded output that a lossless compression algorithm can do
on a given source.

Having a good modelling for the data can be useful in estimating the entropy of the source. Besides,
good models leads to more efficient compression algorithms. Thus, in order to develop techniques that
manipulates that by mathematical operations, a mathematical model for the data is crucial. Considering
this, the better the model matches with the aspects of reality of the data represented, the more likely
the technique will present a satisfactory technique. The main approaches possible are a Physical Model,
Probability Model and Markov models.

The characters representation of a given source data is referred to a symbol. And from a given set of
symbols A, its called alphabet, and the symbols as letters. Using this alphabet, the coding phase performs
an assignment of binary sequences, called codewords to the letters from the alphabet. This set of binary
sequences is called code.
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2.2.1 Geometry compression

Given a brief overview on the main signal compression area concepts, its adequate with all this basis
apply this comprehension on the problem that will be studied. It’s been already explained that with a
compression algorithm a data can be compressed to a file with lesser bits, and reconstructed from this
compressed file; and this algorithm can be divided in two main phases: the modelling and coding process.
By the model adopted, the coding process converts the data source’s letters (from a given alphabet) to
a associated sequence of binary sequences called codewords (from a given code). With the algorithm
modelled and implemented, in order to examine its performance, a set of important measures can be used to
its analysis and benchmark with other algorithms. One of them is entropy, in the case of lossy compression
algorithms, distortion. But in the point clouds case, based on all this signal compression theory, which
data is being compressed, considering that it may carry a diversity of information? Depending on which
category the point cloud are being used as input to the algorithm, different attributes is crucial to be encoded
on the compression. We could mention the color, geometry, reflectance. In the case of the algorithm that
will be addressed, only the geometry will be the object of compression. Thereafter, its convenient to
comprehend what a geometry compression is about.

When a point cloud is rendered, its volume shape and its surface contour can be visualised and de-
scribed. This description can explore some similarities between certain sections of the volume, the amount
of space occupied, and the empty space. Furthermore, these set of observations and its exam allows the
discovering of side information and, from them, ways that they can implicitly express by the context of
the volume being analysed some other information from the volume. Besides, there’s the possibility of the
existence of some information that can be removed from the 3D model without compromising the origi-
nal content. It’s a well known technique used beyond the point cloud compression as in image and video
encoding.

Thereby, the geometry compression focus on comprising the 3D shape and contour occupied, in the
case of the work, by the point cloud. And this compression explores the information and redundancies
present on the 3D object associated with the algorithm approach adopted. It’s important to note that the
geometry compression not restricts only to point clouds, but to other kinds of 3D objects representations
as meshes. In this case, the algorithm can explore more information concerning to the volume, as the
connectivity between the vertices. An important and notable geometry compression algorithm example to
mention is the octree approach [7], where recursively the point cloud is divided in 8 cubes, until it reaches
the voxel level. The structure of the decomposition is a extension of 3d quad-tree [4]. For each volume
occupied, its marked as 1 in the tree, and where is empty, as 0. These empty volumes are treated as leafs
from the tree, figures 2.2a and 2.2b [4].

2.3 CABAC

Once a geometry compression is made on a given volumetric object model, a significant amount of
bits is saved to represent it’s data. Nonetheless, only the geometric compression usually is not sufficient in
order to make a efficient compression. Given the bits that represent the point cloud geometry, it’s possible
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(a) Unit cube divided into 8 sub-cube. (b) The volume encoding process.

Figure 2.2: The octree geometry compression approach illustration [4]

to explore classic signal compression algorithms that can be performed on the geometry compressed bits.
From these classic algorithms, two main types of code can be generated from them. Those are: fixed-
length code and variable-length code. The fixed length code express all the codes where all symbol from
the alphabet is represent by codewords with a same amount of bits. On the other hand, the variable length
codes represent the codes where each symbol has it’s own amount of bit, some of them is represented with
less bits, reducing the overall compressed size.

An important classic variable length compression algorithm used on the proposed point cloud com-
pression is the Context Adaptive Binary Arithmetic Coder. This algorithm will be covered and clarified on
this section. It will start from the basic implementation, and then scaled to the algorithm that is aimed.

2.3.1 Arithmetic Coding

The arithmetic coding is a variable length coding useful when dealing with small alphabets, such as
alphabets with highly skewed probabilities and binary sources, as the case of the geometry compressed
bitstream on this work. Moreover, it’s useful approach when it’s required to separate the modelling and
coding aspects from a lossless compression.

The idea behind the arithmetic coding is an important property that allows a more efficient coding.
When the codewords is generated for groups and sequences of symbols rather than to each separated sym-
bol in a sequence, it will result in a more efficient compression on the final encoded sequence. Futhermore,
concerning a more viable way to assign codewords to particular sequences without having to generate
codes for all sequences, a particular approach that would result in a huge amount of side data; the arith-
metic coding proposes an unique identifier. This identifier is called tag. This tag is a unique value that will
be used to help the encoding and decoding process. Thus, first the tag is generated from a given sequence
of symbols, then it’s assigned an unique binary code. From this unique binary code, it can be deciphered,
and recover the original sequence.

With this overview, it will be explained the coding process. In order to distinguish the sequence of
symbols, we need a tag with an unique identifier. A possible set of values to be assigned to a tag is the
numbers in the interval [0, 1). Since it contains an infinite amount of different numbers, it allows to assign
an unique tag, in this case a decimal value, for each different sequence of symbols. But for this process, it’s
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firstly required a function that maps a sequence symbols to a value from this unit interval. In the case of the
arithmetic coding, the cumulative distribution function (cdf ) comply with this requirement, establishing
the association between the random variable representing the symbol and its probability.

Hence, given an alphabet A = a1, a2, ..., am for a discrete source and X a random variable:

X(ai) = i, ai ∈ A (2.7)

we have a probability model P that express the probability density function for the random variable:

P (X = i) = P (ai) (2.8)

and the cumulative density function defined as:

FX(i) =

i∑
k=1

P (X = k) (2.9)

With this given notation, we can describe the tag generating process, which corresponds to the en-
coding process to the arithmetic coding. The tag generating process works by reducing the interval size in
which the tag is being generated as more the elements of the sequences is received. First, we divide the
unit interval into sub-intervals of the form [FX(i − 1), FX(i)), i = 1, ...,m. We can remember that the
unit interval ranges [0, 1), thus this partition divides exactly between this interval. For each symbol ai the
sub-interval [FX(i − 1), FX(i)) is associated. Then the source elements is consumed. For each element
received, for example ak, the corresponding interval [FX(k−1), FX(k)) is divided in the same proportions
as the original interval, and the tag is restricted on this new interval. This process repeats as each symbols
from the source is received.

For example, consider a three letter alphabet A = {a1, a2, a3} with P (a1) = 0.5, P (a2) = 0.2 and
P (a3) = 0.3. Thus FX(1) = 0.5, FX(2) = 0.7 and FX(3) = 1. And consider a sequence {a1, a2, a3}.
Following the algorithm steps described above, the intervals obtained would be Figure 2.3. It’s important
to note that the intervals generated are disjoints from all possible intervals obtained when encoding other
sequences.

We can denote the source sequence with length n as (x1x2...xn). And the sequence has been codified
as x = (x1x2...xk), where the coding has been made until the kth element. Thus, the lower bound of the
interval where the tag resides l at kth element is denoted by:

l(k) = l(k−1) + (u(k−1) − l(k−1))FX(xk − 1) (2.10)

and similarly, the upper bound u at kth symbol :

u(k) = l(k−1) + (u(k−1) − l(k−1))FX(xk) (2.11)
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Figure 2.3: Arithmetic coding tag’s interval generating for sequence {a1, a2, a3}

Being the tag restricted on the final interval determined by the last symbol, we can denote the tag value
as the midpoint of the interval for the tag. Then, the tag value TX(x) is:

TX(x) =
u(n) + l(n)

2

We can overview the encoding as:

1. Initialize l(0) = 0 and u(0) = 1.

2. For each k consumes source elements and obtain l(k) and u(k)

3. update l(k) and u(k)

4. Continue until the entire source n length sequence has been encoded

5. Computes tag value as TX = (u(n) + l(n))/2

In order to generate the encoded source data, the tag value is truncated and converted to an fixed point
binary representation. Then, this is the encoded data result.

Given the tag generating process, equivalent to the encoding of arithmetic coding, we can now recover
the original data sequence with this given tag. Thus, the tag deciphering will be described, which is
equivalent to the decoding. The decoding is a reproduce of the encoding steps. It’s important to note that

16



the interval containing the tag value is a sub-interval of every intervals obtained in the encoding. That
being so, the strategy behind the decoding is to decode the source elements such way that its consequent
interval, u(k) and l(k), contains the tag value for each kth element, xk.

We can overview the decoding as:

1. Initialize l(0) = 0 and u(0) = 1.

2. For each k find t∗ = (tag − l(k−1))/u(k−1) − l(k−1).

3. Find the value of xk for which FX(xk − 1) ≤ t∗ < FX(xk).

4. updade u(k) and l(k).

5. Continue until the entire sequence has been decoded.

It has been shown in Sayood[18] that:

lA < H(X) +
2

m
(2.12)

Having a rate close to entropy as the source sequence length increases.

The shown implementation, however, is very limited. Considering the limit of values allowed to a
computer in the range [0, 1), the unlimited set of unique values that a tag can assume when encoded as
fixed point representation does not remain valid when its value is not supported by the computer decimal
number limit precision. Besides, the bounds, limited by these restrictions, is prone to converge by the
truncation. Under those circumstances, an possible strategy is rescale the intervals when its needed. This
approach satisfies an synchronized rescaling - rescale preserving the information being transmitted - and
incremental encoding - transmit portions of the code as its read, instead of wait until the entire sequence is
read.

This approach has three possibilities as the interval gets narrower:

1.

2. The interval is entirely confined to the lower half of the unit interval [0, 0.5).

3. The interval is entirely confined to the upper half of the unit interval [0.5, 1.0).

4. The interval straddles the midpoint of the unit interval.

The idea is remap the sub-interval to an new interval with range [0, 1). For each case we do the
following:

1. Send bit 1 to decoder, and remap E1 : [0, 0.5) −→ [0, 1); E1(x) = 2x

2. Send bit 0 to decoder, and remap E2 : [0.5, 1) −→ [0, 1); E2(x) = 2(x− 0.5)

3. Just proceed

17



2.3.2 Context Arithmetic Coding

A possible improvement can be added on the Arithmetic coding. Let’s consider for example a sequence:

(a1, a2, a2, a2, a1, a3, a3, a1.a4, a1, a3, a1)

If we analyse a2 frequency on this sequence, we can observe it’s presence only 25% of the total oc-
currence. But if we already know the previous symbol, it gives more precision on the probability of its
occurrence. In this sequence, the a2 occurs on two cases: preceding by a1 or a2. Moreover, the first case
occurs 33% of the occurence, while the second 66%. Thus, if it’s known in advance that the preceding
symbol is an another a2, the probability of a2 increases from 25% to 66%. It’s adding information on the
probability estimate is called context. Thus, with this adding information, more data can be saved consid-
ering the data that has already been encoded/decoded and it’s probability relation, giving a more power of
self-deduction by the algorithm to predict the next symbol based on the previous symbols. An example is
well explained in Appendix section 6.2.

2.3.3 Context Adaptive Arithmetic Coding

In the above example, we’ve assumed that the context probability table is already available and com-
puted. But in the most cases, that’s an information that actually is not available to the encoder. Thereby,
the algorithm must be adapted to new learnt distribution as the coding progresses. A simple strategy is
initialize the table with all elements as counters initialized with 1. So at the beginning, few information
about the source is known. For each symbol encoded, the counter is associated with the context is in-
cremented. The same mechanism is reproduced on decoder. After each symbol encoded, the counter is
updated accordingly.

For example, let’s consider a source with an alphabet A = a1, a2, a3 and we need to decode the
message:

(a1, a1, a2, a1, a3)

The context table is initialized as, where each line is a context:

Context/Symbol a1 a2 a3 Total
None 1 1 1 3
a1 1 1 1 3
a2 1 1 1 3
a3 1 1 1 3

After encoding the first symbol a1, the table doesn’t change since it’s the first symbol with no contexts.
Then after the second symbol a1 we have 2.1.

The process repeats until all symbols are decode, having the table at the end 2.2
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Table 2.1: Table after encoding a1

Context/Symbol a1 a2 a3 Total
None 1 1 1 3
a1 2 1 1 4
a2 1 1 1 3
a3 1 1 1 3

Table 2.2: Table after encoding all symbols

Context/Symbol a1 a2 a3 Total
None 1 1 1 3
a1 2 2 2 6
a2 2 1 1 4
a3 1 1 1 3

At the end all the contexts are updated, with its probabilities adapting for each symbol encoded.

2.3.4 Context Adaptive Binary Arithmetic Coding

With all the arithmetic encoding covered until now, the theoretical basis is sufficient to introduce the
main encoder that is crucial to the encoding of the binary point cloud geometry encoded sequence on the
S3D approach. We now will cover the Context Adaptive Binary Arithmetic Coder(CABAC).

Not just to the point cloud case, but in many applications the alphabet is itself binary, such as bilevel
documents, or binary representation of nonbinary data, as in the case of H.264 CABAC. And the main
advantage of having a probability model with only two letters in the alphabet is that the probability model
consists of a single number, consisting the probability of just one of the symbols. Having this value, the
other symbol probability is just 1 minus this probability. As a consequence of this, the requirement of less
values to represent the probability model allows the use of multiple contexts to encode the source sequence,
which gives a better compression method.

This arithmetic coder combines the Context Adaptive approach mentioned and the binary arithmetic
coder. The Context Adaptive part of the algorithm follows the same mechanism. Thus, the first thing in
this algorithm we have to decide is the word length to be used. Given a word of length of m, the values of
interval [0, 1) is mapped to the range of 2m binary words. The 0 is equivalent to 00...00 m times, and 1 to
11..11 m times, and the value 0.5 as 100..000, with m-1 zeros. For example, if we have a word of 8 bits,
0000000 corresponds to 0, and in the interval 0.0. And for 10000000, 128, and in the interval 0.5. And
for 11111111, 255, corresponding to 1 in the interval. Thus, the bound will assume these mapping values
during the algorithm.

Since we do not know previously the message length - the total count - most of the cases, and using an
Adaptive Case approach; we have to pick the word length m independent of the message length. Also, it’s
demonstrated on Sayood that given a word of length m we can only accommodate a total count of 2m−2

or less. Thus, when the total count of symbols encoded approaches 2m−2, we have to rescale the interval.
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This can be performed dividing all numbers by 2 and rounding up the results so that no value is rescaled
to zero. Besides, this periodic rescaling can have benefits on the count table by refreshing and reflecting
better the local statitic of the source.

The interval computation, by consequence of having only 2 value, can be simplified by updating only
one endpoint and the interval’s size. Thus, storing the lower end of the interval ln and the size of the
interval An, where:

A(n) = u(n) − l(n) (2.13)

the tag for a sequence is the binary representation of l(n). And instead of treating the values as 0s and 1s,
it’s common to deal with these values as More Probable Symbol (MPS) and Least Probable Symbol (LPS).
If we denote the probability of occurrence of the LPS for the context C by qc and mapping the MPS to the
lower subinterval, the occurrence of a MPS symbol results in the update equations:

l(n) = l(n−1) (2.14)

A(n) = A(n−1)(1− qc) (2.15)

and for the occurrence of LPS symbol, the update is described as:

l(n) = l(n−1) +A(n−1)(1− qc) (2.16)

A(n) = A(n−1)qc (2.17)

Considering the mapping of the [0, 1) interval values to binary words, an important property to note
is that if the two bounds, l(0) and u(0), are in either on the upper half or lower half, they shares the same
most significant bit (MSB). Where, if the bit is 1, it’s in the upper half; and the bit is 0, lower half. With
knowledge of this property, the mapping E1, E2 and E3 becomes a bit shift operation. So, encoding steps
becomes:

1. If MSB from both bounds is equal, shifts each bound 1 bit to the left.

If it’s 0, we will perform E1

If it’s 1, we will perform E2

2. If the 2nd MSB from u(n) is 0 and l(n) is 1, we will perform E3. Shifts each bound 1 bit to the left,
then complement the MSB.

For every case, add bit 0 at right at l(n) and bit 1 at u(n).

The bounds updating equations becomes:
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l(n) = l(n−1) + b(u
(n−1) − l(n−1) + 1)× Cum_count(xn − 1)

Total_count
c (2.18)

u(n) = l(n−1) + b(u
(n−1) − l(n−1) + 1)× Cum_count(xn)

Total_count
c − 1 (2.19)

With Total_count being the amount of symbols read on a given context, and Cum_count the amount
of times that a specific symbol occurred on the last read symbols on a given context.

The decoding follows the same logic from previous coders, except that the t∗ value is given by:

t∗ =
(t− l + 1)× Total_Count− 1

u− l + 1

Where t is the tag value. To a more clear explaining of each step of the algorithm and its mechanism
cases, an example is illustrate in Appendix section 6.3.

2.4 SILHOUETTE 3D

Once we had an overview on the main topics and concepts involving signal compression and under-
standing the CABAC, an important algorithm that will be used on this work; we will finally cover the main
algorithm responsible to the point cloud compression. But, before we study in more details the geometry
compression part of the algorithm, it’s important to review some other Point cloud geometry compressors.

One of the main compressors for point cloud is the octree based, which consists in recursively cut the
point cloud in little 8 cubes composing the entire volume [7]. The MPEG G-PCC geometry compression
is based on the octree proposal, using a arithmetic coder over the geometry compression. Others codecs
variations explore the octree approach using different kinds of arithemtic encoders[4]. Another approach
we could cite is using volumetric functions, based on B-spline wavelet [19] to code those volumetric func-
tions representing both geometry and attributes. Also, some approaches uses the deep learning, processing
over the raw data into codewords [6]. We can observe from these approaches that most of them are based
on explore volumetric attributes and properties on the point cloud representation that can be removed con-
sidering its redundancies or relations between parts from the volume. Or on the case of the deep learning
approach, we can abstract the point cloud as a sequence of symbols that can be encoded as any other sym-
bols sequence, but also availing the point cloud symbols sequence characteristics on compression. The
S3D proposal has its particularity. Different from the previous approaches that explores the volumetric
properties and pattern over raw data describing point clouds, the S3D uses the silhouettes from point cloud
slices as a source of coding. Using those silhouettes as source of the geometry coding, and considering
that those silhouettes generated along the process is binary images, it’s very appropriate to apply binary
images compression based techniques on this approach. That’s a notable characteristic that is applicable
on the compressing process and gives efficient compression rate results [9], outperforming the G-PCC
performance. We will explore the theory behind this technique on this section.
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2.4.1 Silhouette

The main idea behind the dyadic decomposition approach is explore the geometry of the point cloud as
a 3D occupancy array N ×N ×N , where the coordinates occupied coordinates is 1, and 0 otherwise. For
this reason, it’s appropriate to treat it as an 3D boolean array G(x, y, z).

If we start so slice the point cloud along a given axis, and for each slice project on a N ×N image all
the points occupied on this region, we obtain an image similar to a sillhouette of this region from a point
cloud. Thus, we can define a sillhouete as:

I(i, j) = silhouette(G, axis, iStart, iEnd)

=



∑iEnd
n=iStartG(axis, start, end) if axis = x

∑iEnd
n=iStartG(start, axis, end) if axis = y

∑iEnd
n=iStartG(start, end, axis) if axis = z

Where G is the point cloud represented by an 3D boolean array, the summation
∑

is done by through
OR operation. By this operation, all slices in the interval [iStart, iEnd] from the point cloud is merged
into a single bitmap image I(i, j). We can observe this ilustrated at Fig. 2.4

2.4.2 Silhouette tree

Having this silhouettes as elements describing the point cloud geometry from its slices, the algorithm
works upon a recursive basis. In the beginning, the point cloud is sliced in two smaller intervals. And each
slice is also divided in two intervals. On the case of this algorithm, the range of this intervals are the halves
from the original slice. Thus, the point cloud is recursively divided in halves. This process is repeated until
the slice does not contain any points inside, or the slice atomically has a width 1, being so a bitmap image.

Picturing this process, we get a binary tree. In this binary tree, each node is a slice from the point cloud,
from which we can build a N × N silhouette projected by this slice, as we can see on Fig. 2.5a [10]. In
this figure, each node represents a slice and the red shade a silhouette projection from the slice along the
vertical axis.

2.4.3 Silhouette decomposition

Given the binary tree constituted by silhouettes describing the point cloud on each interval, the ge-
ometry compression based on silhouette decomposition initiates encoding each node’s bitmap image from
the tree in order to transmit the images that constitutes the entire point cloud. This decomposition takes
advantage of one property from the silhouette generating process, concerning about the unoccupied voxels.
If there’s a blank pixel on a specific coordinate from the silhouette, that’s because along the interval projec-
tion, none of the slices that composes the silhouette has that pixel occupied. We can deduce this from the
OR summation process property, where if at least 1 slice has the pixel occupied, the projection will have
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(a) ricardo9 point cloud rendered (b) ricardo9 sillhouette along axis X

(c) ricardo9 sillhouette along axis Y (d) ricardo9 sillhouette along axis Z

Figure 2.4: Ricardo9 point cloud and its silhouettes projections along entire axis

23



(a) Binary tree derived from the point cloud recursive slices.
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this pixel occupied as well.

In the context of the tree, all the subtrees generated from a node silhouette will not have pixels occu-
pied where this parent node hasn’t. Besides, this decomposition takes advantage of the similarities shared
between the neighbours node’s silhouettes. These neighbours are the parent node and the other half gen-
erated from the slicing from the same parent, a "brother node". That’s why the technique is called dyadic
decomposition. It’s important to note that this decomposition does not occur on the root node, since he has
not parent node neither a brother node.

Given a node from the tree YC , and its children nodes YL (left child) and YR (right child) we will make
the transmission of both children, and consider that YC was already transmitted. Then we do the following
steps to transmit both images:

1. In the YL transmission, given the parent image YC as the mask of the decomposition, only the bits
where the YC’s value is 1 we send the from YL.

2. In the YR transmission, given the parent image YC and YL as the masks of the decomposition, only
the bits where the YC’s and YL’s values is 1 we send the from YL.

The reason of we can do the 1st decomposition is remember that YC = YL + YR, where the sum is an
OR operation. The only possibility where YC is 0 is when both values YL and YR is 0. Considering that
YC was already transmitted, we can deduce these values to both children silhouettes. Thus we only send
the bits where YC is 1. Furthermore, the explanation of the second decomposition is - considering that as
YC , YL was already sent - we know that where YC = YL + YR ⇒ 1 = 0 + YR = YR, i.e, the bits where
the parent is 1 and the left child is 0, the right child’s bit should be 1. Thus we send only the bits where the
parent and the right child is 1.

For a more clear understanding, consider the example in the figure 2.6

Figure 2.6: A simple silhouette decomposition ilustration

Having the blue pixels as the occupied pixels, the white pixels as empty and the red contour the bits
where should be transmitted, we observe that the contour outlines only the bits where the mask delimit,
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Figure 2.7: A silhouette decomposition example with 3 levels

which is the occupied pixels on the parent or left node silhouette. The entire decomposition from this
example would be figure 2.7, where silhouette 1 is the root from the binary tree. Knowing that only the
root silhouette is sent entirely, and the remnant silhouettes from the tree is sent by the decomposition, the
bitstream sent from each node is:

1. 1: 0011001101110101

2. 2: 111011010

3. 3: 001111

4. 4: 1010

5. 5: 110000

6. 6: 11100

7. 7: 111

The final bitstream becomes 0011001101110101111011010001111101011000011100111, following
the number ordering. This sequence occupies 49 bits, compared to send all the four 4×4 images, occupying
64 bits. It’s important to note that the silhouette decomposition process mentioned follows a preorder tree
traversal, decomposing and encoding from the parent node, to left child node and then right child node,
recursively. Thus, the images from the point cloud are sent following this order.

2.4.4 Encoding

As the geometry encoding is done for each node from the binary tree, the idea to optimize the com-
pression rate is perform a second level of encoding upon the bitstream generated from the previous step, in
this case, using the CABAC.

26



The CABAC has 16 bits precision, and all its contexts are initialized only once with value 1. When the
first image is transmitted and compressed with CABAC, the contexts used are the 10 pixels from the image
itself as in Fig. 2.8 (a). These pixels contexts are called 2D contexts. The image YL, following the tree
notation, is encoded with the 2D contexts - 5 pixels - plus 9 pixels contexts from an additional image: the
YC . Those are referred as 3D contexts, as in Fig. 2.8 (b) [9]. And finally the image YR is encoded using
the 2D contexts, with the additional 3D contexts provided by the YL pixels. These contexts is ilustrated
at Fig. 2.9. This process is repeated until all nodes are covered, in preoder traversal, resulting in the final
encoded bitstream.

Figure 2.8: Contexts used to encode pixel p: (a) 2D Contexts and (b) 3D Contexts

2.4.5 Decoding

The decoding process is the inverse to the encoding steps. First, the bitstream are decoded using the
CABAC. With the knownledge of the tree traversal, it’s possible to the decoder deduce which image from
the tree is being decoded, and so use the correct 3D contexts from outside image’s pixels. Recovered the
geometry bitstream, it’s possible to deduce the silhouettes from the point cloud that fill it’s occupancy
voxels, and once the leaf nodes are the slices - with width 1 - that when lined up and merged constitutes
the entire point cloud, as depicted in fig.2.10, we can already recover the original point cloud without loss
of voxels.

Conclusion

With this theory background covered, a deeper understanding on the S3D algorithm can be examined.
Furthermore, a better notion of the algorithm mechanism and its concepts allows a more comprehensive
analysis on its Matlab implementation, matching the abstractions, functions and modules derived from the
code developing process with these concepts involved on the algorithm. Therefore, with all this basis, we
are able to migrate its main ideas and design to a C++ perspective, availing its features and making some
modifications in order to have a better performance, more structured project and befitting implementation
with the original ideas proposed by the algorithm.

In the next chapter the C++ project will be described, covering an overview on its structure and focusing
on the data abstractions and classes API design - this work main proposal. In addition, an explanation on
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(a) YC encoding

(b) YL encoding

(c) YR encoding

Figure 2.9: The binary tree node’s encoding process using contexts. The slices are along axis z. The read contour
denotes the current node being encoded and the blue contour the image whose 3D contexts is extracted.
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Figure 2.10: An illustrative purpose image depicting slices images from decode - leaf nodes - merged and reconsti-
tuting the original point cloud on axis Y.

the data structures design and C++ language syntax and properties choices will be discussed, making
more clear the C++ language capabilities and power on developing the S3D algorithm implementation.
An additional important topic briefly discussed is the Doxygen documentation of this migrated code, a
crucial part of software projects. It will be shown its advantages on IDEs environments and how this
documentation was made, along with its resulting document generated.
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3 IMPLEMENTED SOLUTION

Given a broad overview on the theory basis that explains the whole mechanism of the S3D algorithm,
from the geometry encoding/decoding process until the CABAC using the different contexts depending on
the silhouette being encoded, now we will focus on the code implementation of the encoder using the C++
(based on the compiler g++, version c++11 ). First, we will overview the Matlab project structure and main
function modules. Then, with a sufficient understanding and inspiration based on the original code, we will
describe the C++ migration project.

3.1 MATLAB PROJECT

Before we describe and have a brief analysis on the Matlab project, it is important to remember some
Matlab language’s characteristics and qualities compared to C++. First, the Matlab is a language that
strongly aims matrix operations and plotting, and user own defined data’s structure design. This means
that the language’s data structure is restricted to few options to user choice. In C++ STD library, instead,
there’s a plenty built-in data structures options to choose when we implement a specific class data attribute
- such as Set, Vector, Array, Queue - offering a more user’s freedom choice in favor of most advantageous
data structure according to the classes specification. This advantage will make a big difference when we
describe the C++ project classes design. Beyond that, all the memory allocation and management is all
in charge of the Matlab’s interpreter. Due to this, all the data structure’s memory occupied during the
algorithm’s processing which can be freed to other allocations required is not allowed by manually by the
user - differently from C++ using Delete and New command - but depending on the interpreter decision.

With this explained, we will start to analyse the project structure:

|_/ArithmeticCoding

|_/Bitstream

|_/Decoder

|_/Encoder

|_/PlyTools

|_/Structs

|_/Utils

As we can see above, each folder from this project correspond to a module from the project. Inside each
folder, there’s the files associated to its respective module, implementing either one specific function or one
data structure. This approach presents an advantage: each file composing the module describes a specific
function that interacts with the main program flow, allowing short files expressing a important role on the
algorithm, and a concise code once all commands from this functions is expressed by its call. On the other
hand, when a module presents a lot of functions, the module folder is filled with a plenty of files composing
each functionality from the module. For instance, in the ArithmeticCoding folder, there’s 27 files. Most
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of them could be clustered in classes or libraries from this main module. In this case, we could create a
BACEncoder(Binary Arithmetic Coder Encoder) class and a BACDecoder(Binary Arithmetic Coder
Decoder) class, each one incorporating this module functions as methods and its returns values as attributes
- not requiring to get manipulate a constantly used value as return value and passing it as argument for each
function, but accessing directly as object’s attribute instead. The class absence also exposes some values
that should not be manipulated by other program’s modules. For example, the point cloud’s dimension
should not be allowed to be modified by the Arithmetic Coder. This could be simply avoided by the use of
private attributes on classes.

Moreover, the S3D algorithm’s entities such as the Point Cloud and Silhouette images does not have a
interface and a encapsulation abstraction mechanism incorporated on their implementation, but as pure
data structures instances. As explained, it turns these data structures during the program flow vulnerable
to be accessed and unduly modified by not allowed modules, and possibly complicating a maintenance
and modification only on the parts manipulating its data since it’s directly accessed over all the program,
requiring to modify each access occurrence. Instead of it, using a methods such as getters and setters
facilitates the maintenance process, requiring only to modify the method implementation, in consequence,
saving to modify all the access occurrence over the code. We can observe that all these problems could be
solved using class implementation.

Another important issue on this project, which is caused mainly by the Matlab’s language characteris-
tics, is the data structure choice. When we need for example a binary tree structure in order to sort a set
of elements such as pixels or voxels, the standard Matlab library does not provide binary tree structure, but
needing to implement manually. This bring 2 main problems: a additional code to implementing or import
the data structure that may be crucial to the algorithm, and the cost of the user defined implementation of
the data structure not be sufficient to explore the language’s low levels resources - such as threads - as the
built-in functionalities that have directly access to these kind of artifices, specially in proprietary softwares.

3.2 PROJECT STRUCTURE

The original’s project overview gives a better idea of the changes that will be observed on the new C++
project. First, we could cite the folders structure. Instead of grouping a set of functions and structures files
inside a module folder, each class file incorporates the structures and functions associated with. This design
clusters all the modules functionalities inside a file. In one hand, we have a bigger files than the original’s
project. On the other hand, each module shares variables and functions that is used only inside the module,
not anywhere else. Thus, on this work the project’s files arrangement is more simple and concise, at the
cost of bigger files.

Another important change is the C++ compiled characteristic that forces a code that separates the
classes and functions declarations from their definition in different files - header file and source files. This,
in addition to simplify the codes analysis and overview by reading only the classes and functions prototypes
on the header files, the files size is reduced by separating the declaration code blocks from the definition and
implementation code. With this changes understanding, we can now examine the project’s characteristics.
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Once the project is complex enough by having multiples files and libraries, the compiling process was
made using the makefile utility. Thus, the project structure was made so that the compiling process and
scripting could be more simplified and pragmatic to test and execute, beyond the fact that the code could
be more modularized. Therefore, the project structure is:

|_/include

|_/obj

|_/src

|_/test

|_Makefile

|_README.md

Where the header files are located in include, the source files in src, test files on test and ob-
ject files generated from the compiling on obj. In each folder we have the main corresponding modules
that composes the project: the arithmetic encoder (CABAC) module, configuration module, the data struc-
tures module and the encoder/decoder module. Each module is represented by the file name pattern:
prefix_file_name, where the prefix denotes the module which it belongs.

The arithmetic encoder module covers the mentioned Context Adaptive Binary Arithmetic Coder, deal-
ing with the binary source coding and decoding implementation. It’s design follows exactly the implemen-
tation explained on section 2.3.4, however storing more contexts than the 1 bit context exemplified. The
configuration module is responsible for define the S3D parameters that will be used as input on the al-
gorithm execution, as input file, output file and single mode option (although not implemented yet). The
data structures covers all the abstract structures that will be required to represent each data object used
on the algorithm and their essential operations to be used on the main algorithm, such as images, point
cloud, voxel and pixel. It’s important to mention that this data structures design aimed to be a general API,
allowing its use and operation on other coders than S3D. Finally, the encoder module is responsible for the
silhouette decomposition, applying the corresponding masks to each silhouette node on the binary tree and
performing the geometry coding process.

As mentioned, this project was developed by a students and professors team from Universidade de
Brasília, where each person focused a specific module or project feature. At this work, the role was mainly
focused on design the data structures API required on the development of the S3D algorithm, inspired
on the previous matlab work, but with some adaptation. This project followed the Google C++ Style
Standard on the variables, functions, namespaces and classes naming, in order to have a more consistent
and organized project. More information about this standard is available on the Google Standard’s site [20].

In order to verify the functions behaviour and it’s correctness, the project classes was developed along
with tests cases, making sure that its methods and attributes presents the results expected from different
scenarios. The test framework used was GoogleTest by using it’s library gtest.h [21]. Thus, these test cases
was developed to ensure a correct, consistent and robust code on the data structures developed implemen-
tation, allowing a more reliable API not only to this S3D algorithm implementation, but as a library that
can be used on other projects.
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3.3 C++ MODELING

Here we will describe the design of the data structures used in the algorithm performing and the main
motivations that conduced the developed version. It’s important to mention that the original Matlab S3D
implementation most of the data abstractions from the algorithm was implemented as raw data structures
such as matrix or vectors. Thus, in order to fit each data abstraction from the algorithm with the C++
data structures, all the Standard Template Library (STL) pre-built data structures chosen were thought in
terms of performance (memory and time), usability by the developers to implement the functions required
and attend the design which they were based on. Therefore, besides the language difference between the
Matlab to C++ and original data structures migration, this new implementation aims to use and avail all the
qualities provided by the C++ features that is useful and advantageous to the algorithm implementation,
that includes the STL library. With these choices, the API library provides a consistent module with a
good usability, and consequently, helps its use on others modules development that composes the S3D
implementation.

It’s important to note that this algorithm version does not implement the single mode choice on the
encoding, compared to the original algorithm [9]. Besides, the context table are all initialized with values
as 1, adapted along the encoding process. The modelling can is ilustrated on Fig. 3.1

3.3.1 Pixel and Voxel

The classes Pixel and Voxel are the basic classes that is intensively used on the Silhouette Image and
Point Cloud data abstraction. Each one shares several operations similarities between them, differing only
on the dimension to which they are applied. In the case of Pixel, 2D images, and Voxel, 3D objects, i.e.,
point clouds.

Being for general purpose, they accept the coordinate system values assume arbitrarily developer de-
fined types, by the use of templates. The coordinate values are represented by an short array, with dimen-
sion coinciding with its real dimension.

The most important from the Pixel and Voxel classes are its operations, that allows a more expres-
siveness and simplified code. The basic algebraic operations such as summing, subtracting, multiplying,
dividing, compare (less, greater, less or equal, greater or equal), all of them are overwritten to these classes,
allowing to the compiler interpret them as their own operations, and automatically, adapt by itself the C++
pre-built functions to work with these new defined operations. For instance, let’s consider a vector of
pixels. Using the defined operations of comparison less (<) and less or equal (≤), determining as prior
compare the first dimension, then the second and finally the third, the C++ sorting algorithm automatically
adapts its value comparison with these new comparison mechanism on which it will be based.

Consequently, a significant amount of code implementation and writing is saved by simply defining
these atomic operations from these classes. Given that, larger classes that encompass these classes are
benefited availing these operations, instead of redefine the operations criteria for each class abstraction
application. This will become more clear, on the next classes description. The main functions from these
classes are overwriting of basic algebraic operations such as arithmetic operations +, −, ∗, /, and boolean

33



Figure 3.1: S3D data structures classes and it’s relations

operations ==, <, <=, > and >=, which enables the properties described. Other functions are syntactic
sugar that describes these functions, such as + = on C++.

3.3.2 IImage

In order to represent the silhouettes that are obtained during the recursive slicing of the point cloud, the
general class IImage was created. The idea of this class is to represent the general and basic operations
that is expected from a silhouette during the algorithm mechanism, which in more practical terms is a
bitmap 2D image. These basic operations include add a pixel, remove, and verify occupancy of a specific
coordinate from the image.

This general image class, having this basic functions, designs the abstraction that all different image
representation on the program should have. Thus, this class acts as a superclass of these derived classes:
the ImageSparse and ImageRaster, fig 3.2. Each one of these different implementation of the same abstrac-
tion bitmap image has a particular executing performance purpose, such as speed and memory allocation,
once this algorithm process thousands of 1024x1024 images. As the program needs only carry the image
data and not access operations, thus requiring storage saving and less speed performance, the image Im-
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ageSparse representation is used during the program. In the other hand, if there’s several image access
operations and speed is a priority, only requiring few images - and because of that ocupying less storage
-, not requiring memory saving, the ImageRaster is directed for this purpose. In these classes description,
this will be explained more clearly. Therefore, the main point of having these subclasses is to have a better
performance on the running of the algorithm, availing its best advantages in favor of use less storage and
more speed depending on which step of the algorithm these properties are required.

Figure 3.2: The IImage superclass and its subclasses ImageSparse and ImageRaster

This class has no attribute, describing only the templates functions to the images representations. The
main functions from the IImage class are listed:

1. addPixel (int x, int y): Receives a (x, y) coordinate and adds a pixel at that coodinate.

2. removePixel (int x, int y): Receives a (x, y) coordinate and removes a pixel at that
coodinate.

3. PixelPresent (int x, int y): Receives a (x, y) coordinate and returns a boolean indi-
cating the occupancy at that coordinate.

4. Size (): Returns the image’s Height×Width dimension

5. NumberOccupiedPixels (): Returns the amount of pixels occupied on the image

3.3.3 ImageSparse

The class ImageSparse is the silhouette representation using a Set of Pixels instances, from the class
Pixel mentioned, as a data structure of the bitmap image. Before we proceed explain the ImageSparse class
mechanism, it’s important to have a overview of what a C++ STL’s Set data structure is.
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The Set is a pre-built data structure from the C++ STL that represent containers that store unique
elements following a specific order. This specific order follows the type or class comparison convention
defined. This data structure is implemented by a binary search tree (BST), ensuring the sorting of elements
through performative operations on creation and updating the set, most of them in O (log n) complexity. At
this particular case of Set of Pixels, the comparison of Pixel is predefined on the class definition, prioring
the 1st and then 2nd value as comparison. Thus, the library will automatically sort the Pixels following
this convention.

Having a basic notion of set, we can now understand the mechanism behind the ImageSparse class.
Considering that this class stores a set of Pixels, where each Pixel represent a coordinate on a 2D plan,
the idea is store only the information that we need from the image. If the image is a bitmap representing
basically whether the pixel is occupied or not, each pixel from the image can represent only two cases: a
occupied pixel, or a empty pixel. Besides, in the algorithm application the images will not be processed
all the time, instead only in required moments. Thus, if the algorithm necessity is only store the image
and not access it content, and beyond that, actually requiring only the minimum information capable to
reconstruct the original image, it’s convenient to store only the occupied pixels from the silhouette. Using
this approach, the memory usage will be significantly reduced, in view of the fact that a great percentage
of needless pixels will be discarded. That’s why it is a sparse version of the image.

This memory performance allied to the SLT Set advantage of sorting the Pixels automatically and
ensuring unique elements makes the pixels access and arrangement of the image more consistent and
structured for further usage on the algorithm. One drawback from this representation is the elements -
Pixel - access, once the operations upon this data structure is a BST operations, requiring a time complexity
around log n for the value searching on the tree, where n is amount of data. Consequently, the purpose of
this representation is more storing than processing.

The ImageSparse class, being a sublclass, has the same functions as the IImage class, by the use of its
own Set implementation. Its main attributes are:

1. pixel_list_: A set of all occupied pixel’s coordinates.

2. dimension_: Height and Width of the image silhouette

3. current_pixel_: A iterator pointing to the current pixel on the set traversing

The additional functions are related to operations on its iterator on the pixels set:

1. CurrentPixel (): Returns the current_pixel_ iterator. O(1) time complexity

2. NextPixel (): Moves the current_pixel_ one ahead. If it’s the last pixel, returns to the
beginning. O(1) time complexity

3. PreviousPixel (): Moves the current_pixel_ one back. If it’s the first pixel, goes to the
last pixel on the set. O(1) time complexity
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3.3.4 ImageRaster

Explained the ImageSparse representation, now we will describe the ImageRaster representation. This
class is a classical 2D bitmap matrix representation of the silhouette, using the STL Vector data structure.
Thus, the class holds the data about the image by using vector<vector<uint8_t», i.e, a vector of
vector(2D matrix) of 8 bits integers, and the image’s dimension.

Once this representation stores the whole image, containing each pixel from the image, this consumes
more runtime memory usage than the ImageSparse. But in the other hand, being each pixel coordinate
associated with two index (y, x) directly, its access can be directly made through the dereference provided
by the indexing, don’t requiring a searching. This direct access is of time complexity constantO(k), which
gives more speed performance on the image processing. Using more storage but saving time are properties
that best fits on the case of perform all the encoding operations on the silhouette, seeing that this algorithm
step needs thousands of access on the image’s pixel. For instance, let’s consider a given operation that
needs to run over all the pixels from the image. For the ImageSparse case, we would have a given ρ
percentage of occupied pixels of the whole image with n data. If each operation on each pixel is given by
the time complexity O(log n), we would have a resulting time complexity around O(ρn log n), which is
equal to O(n log n). Now considering a ImageRaster image representing the same amount of data n. If
each operation on the pixel is O(k), we have a total complexity of O(kn), which is equal to O(n). Thus,
we can conclude that the ImageRaster have a better performance than the ImageSparse, being a better
option on the image processing steps.

The ImageRaster being a 2D matrix representation of the silhouette, it contains the data related to this
matrix and its description:

1. location_: The 2D matrix, where each element is 1 byte integer. Represents the silhouette image.

2. dimension_: Describes the image silhouette’s Height and Width.

3. occupied_pixels_quantity_: Describes the image silhouette’s Height and Width.

Its functions template is equal to the IImage description, differing only in the data structure based on
the 2d matrix, and consequently, its implementation.

3.3.5 PointCloud

Finally, we have the Point Cloud class. This class is very similar to the ImageSparse, being, instead of
a Set of Pixel, a Set of Voxels, based on the same data structure Set from C++ STL. This implementation
choice was motivated by the reason that the point cloud, at the S3D algorithm, is not much processed or
manipulated on the encoding, being required only to obtain the silhouettes from it. Once the knowledge of
the voxels occupied on the volume is sufficient to generate the silhouette images, just storing these voxels
attend to the algorithm purpose. By the same way as on ImageSparse, the voxels is sorted following the
priority on 1st, 2nd and then 3rd dimension on the Set.

An important method from the Point Cloud class that is crucial on algorithm mechanism is the silhou-
ette generation given an interval from the volume and axis along which the image is projected. Another
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important method is recover voxels from a given silhouette, getting all the pixels from the image and insert-
ing on a specific plan from the point cloud, and specific axis coordinate where this plan locates, as depicted
in Fig. 3.3.

Figure 3.3: Point Clouds methods: Slice a silhouette from point cloud and recover silhouette slice on point cloud.

The Point Cloud class main attributes are similar to the previously described Image classes:

1. voxel_list_: It’s the 2D matrix integer matrix, storing the values 0 or 1 denoting the pixels
occupancy.

2. point_cloud_voxel_count_: Amount of voxels occupying the volume.

3. dimension_: Describes the Height, Width and Depth from the point cloud volume

And its main functions, similar as well:

1. addVoxel (int x, int y, int z): Adds a voxel at the specified coordinate. O(log n)

time complexity

2. removeVoxel (int x, int y, int z): Removes a voxel at the specified coordinate. O(log n)

time complexity

3. VoxelPresent (int x, int y, int z): Verifies the occupancy at the given coordinate.
O(log n) time complexity

4. Size (): Returns the dimension of the point cloud. O(k) time complexity

5. SilhouetteFromPointCloud (int slice_start, int slice_stop, Axis axis):
From a given axis, slices a point cloud in a given range, and from this slice projects a silhouette along
the same axis. O(n log n) time complexity

6. RecoverVoxelsFromSilhouette (Axis axis, int coordinate, ImageRaster*

image): On a given axis and coordinate at this axis, inserts a image’s silhouettes. O(n log n) time
complexity
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3.4 DOCUMENTATION

An important concern on this project development is to ensure the readability, and the same time,
expressiveness that the data structures API provides to the user. These two properties was thought aiming to
encourage further works and optimizations on this code by the team and new incoming members. Thus, all
the project design was focused on attending these good practices, from the functions, classes, namespaces,
and its attributes names to the code’s comments. Another crucial artifact on the software development is
the documentation.

On the case of this project, all the documentation was made through the header files comments, de-
scribing the functions declaration and prototypes. These file comments was thought and written using
the Doxygen standard. This approach has 2 advantages on the developing. The first is advantage is the
Integrated Development Environments (IDE) facilities. The IDEs usually uses these comments on the
header files as a reference to the codes documentation, automatically providing to the user the description
of the functions when its needed for instance. In the Visual Studio Code, we have the following function
declaration written as:

1 //! Silhouette making

2 /*
3 * Returns a silhouette from a start and end slice,

4 * on a given axis selected

5 *
6 * \param slice_start start coordinate from silhouette

7 * \param slice_stop ending coordinate from silhouette

8 * \param axis axis along which the silhouette will be projected

9 * \return The silhouette generated

10 */

11 ImageSparse *SilhouetteFromPointCloud (

12 vox_t slice_start, vox_t slice_stop, Axis axis);

Using this comment pattern, Qt style [22], the IDE automatically indicates to the user the definition
described to this function as depicted in Fig. 3.4.

Figure 3.4: Comment documentation on Visual Studio Code

The second advantage is the Doxygen parser on these documenting comments. When the Doxygen
is run, these documenting comments syntax above the functions declaration is identified and a document
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describing all the codes documentation is generated. A variety of document types, styles and choices can be
made on the documentation generating. For example, a simple HTML front page folder can be generated
on this process. The above code comment generates the HTML doxygen documentation as in Fig.3.5. The
classes inheritance and relations is automatically illustrated as in 3.6.

Figure 3.5: Doxygen HTML documentation generated

Figure 3.6: Classes inheritance represented in the doxygen documentation

CONCLUSION

Here were covered all the data structures and S3D algorithms abstractions API implementations using
classes and the C++ STD library. We could cite the classes migrated from the Matlab as well as the
new classes created during the migration process considering its performance advantages acquired on the
data structures choices, such as IImage, ImageSparse and ImageRaster. Moreover, we have seen the C++
function overwriting and the possibility of a more flexible code developing using this feature, such as
sorting objects from a Set by overwriting the comparison operators.
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Now that all the code implementation was explained and its design choices detailed, it’s important to
remember that all this code was thought aiming a performative version of the S3D algorithm. This means
a algorithm implementation version with lesser execution time and similar compression rate, since it’s a
migrated code. Thus, the next chapter we will assess it’s performance results values and compare with
the original implementation, and other GPCC (Point cloud Coders), so that verifying if the project’s main
goals will be achieved by this work.
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4 RESULTS

Now that the C++ project was described and the algorithm’s background mechanism explained, the im-
plemented project is assessed in order to examine its performance. It’s important to remember the project’s
motivations that determines its main goal when it was originally planned: the requirement of a similar
performative algorithm as the S3D Matlab implementation, since it’s a reproduction of the original im-
plementation, and a time outperform over the original, allowing a further study and exploration on its
complexity and characteristics that may optimize its results.

It’s important to note that this S3D algorithm version has some technical differences that produces dif-
ferent bitstreams from the original. One of them is the decimal number rounding process from Matlab that
differs from the C++ on the arithmetic encoding. Another difference is the context initialization, where
on the new implementation does not preprocess the silhouettes but initialize all contexts as 1. Despite of
this fact, the algorithm performance is expected to present a similar result, considering that this differ-
ences doesn’t modify the algorithms original proposal of combining the silhouette decomposition with the
CABAC encoder.

In order to assess this work project, a set of public dynamic point clouds available in ply files was
used as input to the program. The dataset used was the "Microsoft Voxelized Upper Bodies - A Voxelized
Point Cloud Dataset", from JPEG’s plenodb [16]. Given this dataset as input, a set of measures of the
program’s performance was collected, examined and compared to the original implementation and other
codecs. The selected point clouds were those with 9 bits (512× 512× 512 dimension): Andrew9, David9,
Phil9, Ricardo9, Sarah9. Each one represents a dynamic Point Cloud with 318, 216, 245, 216, 207 frames,
respectively.

The measures concerning the Matlab and C++ execution time and rate was performed on a Desktop
computer with a Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz, 32.0 GB Installed RAM, x64-based
processor, running on OS Windows 10 Education Edition, as listed on the Tables 4.1, 4.2, 4.3, and
plots 4.2, 4.3, 4.4, 4.5, 4.6. The program profiling time data was collected in a notebook Intel® Core™
i7-7500U CPU @ 2.70GHz × 4, 7.6 GiB, x64-based processor, running on OS Linux distro Ubuntu
18.04 LTS, as in the tables 4.4, 4.5, 4.6, 4.7.

4.1 GATHERED RESULTS

Before we go further on the results analysis, briefly we will explain how the performance data from
the C++ implementation execution was collected. Consider the dynamic point clouds from the Microsoft
Voxelized Upper Bodies. For each one, the first 20 frames were picked, encoded, then, decoded. This
process was repeated 5 times, giving to each point cloud 100 measures. All the information concerning
compression rate over each axis, the time spent on each execution was collected and exported on a csv
format at each encoding-decoding measure. Thus, each frame having 5 repeating measures, we excluded
the outliers measures and computed the mean between the 3 left measures. With this process, each frame
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has the average time execution and rate data, which is used on the comparison process on the following
results depicted.

First, the analysis will be on the C++ project rate compression performance, measuring its bit per
occupied voxel results. Its values is compared with usual and well known GPCCs in Table 4.1. The data
result from the C++ S3D was collected in the first 20 frames, for each axis and selecting its best rate,
and the other GPCCs results on 200 frames. We can observe that the S3D performance, even though not
outperforming as in the Peixoto’s work [9], presents a result near as the MPEG’s TMC13 GPCC. This
can be explained by the fact that the amount of frames rate compression measures from the C++ S3D is
less than the others, being 10 times less, making the average rate not be precise as possible. Moreover,
the encoding was performed without the single mode, which could present a better performance. This
results shows that the C++ S3D can have optimized performance, nearly matching and even outperforming
state-of-art GPCCs.

Table 4.1: Compression algorithms rates comparisons:

Sequence
Average Rate(first 200 frames) Average Rate (first 20 frames)

Octree P(PNI) P(Full) BDC TMC13 S3D(Full) P-X P-Y P-Z S3D Best Rate

Andrew 2.58 1.83 1.36 1.70 1.14 1.12 1.23 1.24 1.21 1.21
David 2.62 1.77 1.33 1.68 1.08 1.06 1.23 1.23 1.23 1.23
Phil 2.64 1.88 1.43 1.71 1.18 1.14 1.25 1.29 1.26 1.25

Ricardo 2.59 1.79 1.34 1.66 1.08 1.04 1.11 1.13 1.11 1.11
Sarah 2.61 1.79 1.30 1.64 1.07 1.07 1.22 1.23 1.20 1.20

Average 2.61 1.81 1.35 1.68 1.11 1.08 1.21 1.22 1.20 1.20

Table 4.2: Matlab and C++ S3D implementation comparisons

Sequence
Rate(BPOV) Encoding Time(s) Decoding Time(s)

Matlab Matlab Init. C++ Matlab Matlab Init. C++ Matlab Matlab Init. C++

Andrew 1.31 1.23 1.21 28.20 27.58 5.78 29.28 29.52 3.30
David 1.32 1.24 1.22 36.53 32.40 6.86 40.75 36.37 3.63
Phil 1.34 1.27 1.25 40.91 39.24 7.31 43.35 42.40 3.57

Ricardo 1.21 1.12 1.10 24.38 23.78 3.14 27.07 26.83 2.28
Sarah 1.30 1.21 1.20 32.18 30.08 6.58 34.40 32.24 3.51

The second comparison assess the S3D compression rate and time performance between the different
versions, as depicted on Table 4.2. The Matlab is the original S3D implementation published, without the
single mode. The Matlab Init. is the original version with modification on the context Tables, initialized
with 1(in array representation, as [11]). And finally, the C++ is the migrated implementation using initial-
ized context as 1 as well. The Matlab and C++ times were obtained following the mechanism explained
before. But the Matlab Init. time measures was collected only one time per frame, not measured in average.
These result values shows that the Matlab compression rate is worse the Matlab Init and C++, indicating
that the context initialization with 1 produces a optimized performance. And comparing the Matlab Init.
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Table 4.3: C++ migration S3D gains over original implementation

Sequence
Rate Gain(%) Encoding Time(%) Decoding Time(%)

Matlab Init. C++ C++ C++

Andrew -6.06 -7.63 -79.50 -88.73
David -7.58 -7.58 -81.22 -91.09
Phil -6.72 -6.72 -74.82 -91.76

Ricardo -9.09 -9.09 -87.12 -91.58
Sarah -7.70 -7.69 -79.55 -89.80

Table 4.4: Encoding implementation profiling

Function % time cumulative seconds
CodecParameterBitstream::initContexts(unsigned int) 20.28 2.47

tinyply::...::read_header_property(std::istream&) 10.63 3.77
tinyply::...::request_properties_from_element(...) 4.02 6.46

gpcc::PointCloud::Load(std::__cxx11::basic_string<char,...) 5.83 5.36
gpcc::ImageRaster::CompareToRaster(gpcc::ImageRaster*) 5.01 5.97

tinyply::...::make_property_lookup_table() 5.01 5.97
gpcc::PointCloud::PointCloud(std::set<gpcc::Voxel<int>,...) 3.20 7.70

tinyply::PlyFile::get_info[abi:cxx11]()) 3.20 8.09
gpcc::ImageRaster::ImageRaster(std::__cxx11::basic_string<char,...) 3.12 8.47

Table 4.5: Encoding implementation profiling

Function self seconds calls
CodecParameterBitstream::initContexts(unsigned int) 2.47 1309

tinyply::...::read_header_property(std::istream&) 1.30 1113237908
tinyply::...::request_properties_from_element(...) 0.49 379487671

gpcc::PointCloud::Load(std::__cxx11::basic_string<char,...) 0.71 186881950
gpcc::ImageRaster::CompareToRaster(gpcc::ImageRaster*) 0.61 300572682

tinyply::...::make_property_lookup_table() 0.61 300572682
gpcc::PointCloud::PointCloud(std::set<gpcc::Voxel<int>,...) 0.39 325776962

tinyply::PlyFile::get_info[abi:cxx11]()) 0.41 318585181
gpcc::ImageRaster::ImageRaster(std::__cxx11::basic_string<char,...) 0.38 152041784

and C++ rates, they share similar performance values, having a small difference. This is explained con-
sidering that, even though both shares the same algorithm process, the functions that involves rounding
and truncation differs between the languages. These small difference can imply in a big modifications
on the arithmetic encoding step, which uses these operations. Following, the encoding time and decod-
ing time results allows to conclude that the C++ implementation saves significantly more time execution
than the Matlab implementation, considering the compiled mechanism from C++ language compared to
the interpreted mechanism from language’s as Matlab, which mostly spents more execution time. Given
the previous measures, the rate compression and encoding-decoding time gains is more clearly shown on
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Table 4.6: Decoding implementation profiling

Function % time cumulative seconds
CodecParameterBitstream::initContexts(unsigned int) 19.75 2.41

tinyply::...::read_header_property(std::istream&)) 11.25 3.78
tinyply::...::request_properties_from_element(...) 7.23 4.66

gpcc::PointCloud::Load(...) 5.83 5.37
gpcc::ImageRaster::CompareToRaster(gpcc::ImageRaster*) 5.01 5.98

tinyply::...::make_property_lookup_table() 4.02 6.97
gpcc::PointCloud::PointCloud(...) 3.20 7.36

tinyply::PlyFile::get_info[abi:cxx11]() const 3.20 7.75
gpcc::ImageRaster::ImageRaster(...) 3.12 8.51

Table 4.7: Decoding implementation profiling

Function self seconds calls
CodecParameterBitstream::initContexts(unsigned int) 2.41 1309

tinyply::...::read_header_property(std::istream&)) 1.37 1113237908
tinyply::...::request_properties_from_element(...) 0.88 232763907

gpcc::PointCloud::Load(...) 0.71 186881950
gpcc::ImageRaster::CompareToRaster(gpcc::ImageRaster*) 0.61 294833409

tinyply::...::make_property_lookup_table() 0.49 379487671
gpcc::PointCloud::PointCloud(...) 0.39 325776962

tinyply::PlyFile::get_info[abi:cxx11]() const 0.39 238791114
gpcc::ImageRaster::ImageRaster(...) 0.38 152041784

Table 4.3. Here, we can observe that execution time could be reduced at least 79.50%, and a maximum
optimization of 91.58%, in the case of decoding. Therefore, a significant amount of time optimization to
the S3D was brought from the Matlab to C++ migration.

At the plots 4.2,4.3,4.4, 4.5, 4.6, it represented the compression rate over the 20 frames from each point
cloud. Each axis plot share similar shapes, indicating that there are certain frames that are naturally more
difficult to compress than others, as we can see in david 4.4. This frames represents those that have many
different movements from previous, difficulty that makes less efficient the context usage. Thus, we can
conclude that independent of the chosen axis, the variability pattern of the performance of the algorithms
compression rate according to the frame will remain the same. Besides, the black line representing the best
rate cross the lowest point from the three axis curves.

The last analysis will be about the implementation components time influence analysis on the entire
application. The profiling were performed over the encoding and decoding process, separately. The pro-
gram used was the gprof. The results on encoding are listed on 4.4 and 4.5. These results shows that
most part of the time spent on the process is from the ply file parsing to the point cloud data structure, not
just because its self time but also the amount of its call. The most time expensive consumes 10% of the
total execution time. Following we have the initContexts - which initializes the context tables - point
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clouds operations, such as PointCloud::Load - function that from a ply file generates a Point Cloud
instance - and its constructor, and Image related functions as CompareToRaster - image comparison
function - and its constructor.

Following we have the decoding profiling, Table 4.6 and 4.7. From the functions listed, we can infer
that the classes and functions that spend more time are the same as from the encoding, differing on the
percentage usage from the total execution time. And also, the main contributions to this result is the
self time and amount of calls of each function, which is around hundred million times. One possible
further work in order to solve this time performance is first analyse if the choice of Set as point cloud
representation is appropriate and advantageous compared to the time inefficience on atomic operations as
voxel access, considering other data structures alternatives. Another possible optimization is on the ply
file parsing, which is on the charge of a 3rd party library, opening an opportunity of a development of
a own implementation of parser. Futhermore, the image comparing function is another that is worth of
refactoring, considering it’s inneficient comparison as observed on the results on the tables 4.4 and 4.6.

CONCLUSION

This chapter has shown the performance results from the C++ S3D version and the time optimization
obtained from the language migration process. Its compression rate, even though not performative as the
Peixoto’s S3D work, shares values that is close to the MPEG’s TMC13 GPCC. The lack of efficiency in
comparison with the original work is resulted by the fact that this version do not uses the single mode,
and its measurements is not precise as the codec measurements since its less samples amount considered.
Furthermore, these measurements indicates the significant influence that the Context Initialization makes
on the final result, as depicted in table 4.2. Using this approach, a improvement observed of 1.30 to
1.20 bpov is reachable. We assessed as well the axis choice influence over the final result. Although
depending on the point cloud a specific axis brings better results, the variation on the frame compression
rate efficiency does not change between them. Thus, the axis choice will not optimize over the macroscopic
rate perspective, but influence on each frame compression value, making it more efficient at each frame.
Finally, a program profiling was analysed over the encoding and decoding. As concluded, the main classes
that influences on the total execution time is the codec context initialization, ply parser, Point Cloud and
Image Raster operations. These results reviewed on this project goals and possible optimizations that can
be made will be concluded and deliberate in the next chapter.
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(a) Andrew9 point cloud (b) David9 point cloud

(c) Phil9 point cloud (d) Ricardo9 point cloud

(e) Sarah9 point cloud

Figure 4.1: All point clouds used as input to assess the C++ S3D performance
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Figure 4.2: Andrew compression rate per frame.
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Figure 4.3: David compression rate per frame.
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Figure 4.4: Phil compression rate per frame.
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Figure 4.5: Ricardo compression rate per frame.
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Figure 4.6: Sarah compression rate per frame.
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5 CONCLUSIONS

The results chapter has shown the C++ S3D performance compared to other codecs and with its pre-
vious version on Matlab. Regarding the other codecs, this project’s work presented an outperforming
result on the compression rate, and a close performance to the MPEG’s TMC13 algorithm and S3D Mat-
lab version. On the other hand, in relation to the Matlab’s S3D the new version presented a significantly
outperforming performance when the time execution is compared. Both results - similar compression rate
and outperforming time execution - verifies the project’s goals, indicating the accomplishment on creating
a more performative version of the algorithm. It’s important to mention the comparison between the S3D
versions, which differs the context initialization approach. This analysis showed that initializing the con-
texts with 1 values makes a more performative algorithm than the not initialized, a result that can guide the
successor versions of the algorithm approach.

From these analysis, some issues observed worth a deeper study and testing on further works. These
issues concerns possible new features and approaches on the algorithm, and optimization work as well.
Moreover, remeasures is also interesting on a deeper analysis on this work, considering that the amount of
frames is less than other works measures, as in the Peixoto’s work [9]. The first possible and important fur-
ther work on the project is asses the algorithm performance using a single mode approach as reproduced on
the original’s S3D proposal. The Matlab and C++ versions comparison on the compression rate indicates,
but is not sufficient to infer, that the single mode can optimize the algorithm. Thus, new measures using
this approach are important result to answer these hypothesis. Another important possible work is get more
measures from the new migrated S3D implementation, around 200 frames as shown in the results chapter,
in order to measure more precisely its performance. An interesting proposal not covered on this work is
the possibility of using the multi threading on functions and process that can be executed independently. A
deeper analysis on this kind of programming approach applied on the S3D worth a deeper exploration on
the S3D algorithm’s potential. Finally, given the program profiling time measures, the parser, point cloud,
image classes and the Context initialization are functions and data abstractions that worth refactoring and
optimization process, thus reducing the total execution time.
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6 APPENDIX A

This chapter covers the Arithmetic Coder section’s 2.3 examples which illustrates how the coding and
decoding algorithm works, making more clear the steps involved in each algorithm explained.

6.1 ARITHMETIC CODING

Lets consider an encoding for the sequence with probabilities described in 6.1.

And its important to remember that X(ai) = i. Suppose we want to encode the sequence x =

(a3a3a1a2).

Table 6.1: Example 1 - Symbols probability table

Symbol Probability
a1 0.8

a2 0.02

a3 0.18

From the probability model, we know that:

FX(k) = 0, k ≤ 0, FX(1) = 0.5, FX(2) = 0.9, FX(3) = 1, FX(k) = 1, k > 3

By the equations 2.10 and 2.11, we performs the bounds computation sequentially to obtain the tag
interval. Initially, u(0) is 1 and l(0) is 0. The first element of the sequence is a3. Thus:

symbol = (a3),

l(1) = 0 + (1− 0)0.9 = 0.9

u(1) = 0 + (1− 0)1.0 = 1.0

the tag is then contained in [0.9, 1.0). Following the next element a3, we have:

symbol = (a3),

l(2) = 0.9 + (1− 0.9)0.9 = 0.99

u(2) = 0.9 + (1− 0.9)1 = 1.00

similarly, to a1:

symbol = (a1),

l(3) = 0.99 + (1− 0.99)0.0 = 0.990

u(3) = 0.99 + (1− 0.99)0.5 = 0.995
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and finally, to a2:

symbol = (a2),

l(4) = 0.990 + (0.995− 0.990)0.990 = 0.99250

u(4) = 0.995 + (0.995− 0.990)0.995 = 0.99450

Therefore, the resulting tag for the sequence (a3, a3, a1, a2) is:

TX(a3a3a1a2) =
0.99250 + 0.99450

2
= 0.9935

Then we have the tag 0.9935. The decoding is the reproduce process of the encoding steps. Thus, first,
as at encoding, we start with l(0) = 0 and u(0) = 1 and recovers the tag value which is 0.9935. After
decoding the first element of the sequence x1, upper and lower bound becomes:

l(1) = 0 + (1− 0)FX(x1 − 1) = FX(x1 − 1)

u(1) = 0 + (1− 0)FX(x1) = FX(x1)

The value of x1, from the alphabet, where its interval l(1) and u(1) contains tag is a3, because its interval
ranges [0.9, 1.0). Now the process is repeated with l(2) and u(2):

l(2) = 0.9 + (1.0− 0.9)FX(x2 − 1) = 0.9 + 0.1FX(x2 − 1) (6.1)

u(2) = 0.9 + (1.0− 0.9)FX(x2) = 0.9 + 0.1FX(x2)

In this case:

0.9 + 0.1FX(x2 − 1) ≤ 0.9935 < 0.9 + 0.1FX(x2)

0.1FX(x2 − 1) ≤ 0.0935 < 0.1FX(x2)

FX(x2 − 1) ≤ 0.9350 < FX(x2)

Testing for each x2 value, we verify that with a3 we have the same interval [0.9, 1.0), which contains
satisfies the inequation 6.1. Substituting the interval values at 6.1 and 6.1:

l(3) = 0.99 + (1− 0.99)FX(x3 − 1) = 0.99 + 0.01FX(x3 − 1)

u(3) = 0.99 + (1− 0.99)FX(x3) = 0.99 + 0.01FX(x3)

Solving the inequation:

0.99 + 0.01FX(x3 − 1) ≤ 0.9935 < 0.99 + 0.01FX(x3)

0.01FX(x3 − 1) ≤ 0.0035 < 0.01FX(x3)

FX(x3 − 1) ≤ 0.3500 < FX(x3)
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Table 6.2: Example with contexts - Symbols context probability table

Symbol
Previous a1 a2 a3

a1 0.4 0.2 0.4

a2 0.1 0.8 0.1

a3 0.25 0.25 0.5

Then, testing for all possibilities, we verify that a1, with interval [0.0, 0.5), satisfies the inequation 6.1.
Repeating the process, we obtain as x4 the symnol a2, decoding the entire sequence. Its important to note
that we stop the process because we already know the data length, consequently being that an important
information to be passed along with the tag.

6.2 CONTEXT ARITHMETIC CODING

Let’s observe an example of arithmetic encoding using contexts. Suppose that the message (a1, a3, a3)
will be encoded, and the its probabilities given a context is given in 2.8. In this example we will have an
additional rescaling case where if the interval is entirely confined in the interval [0.25, 0.75), the rescale is
E3 = 2× (x− 0.25). When a E3 happens, we increment a counter NE3 . When E1 case happens, we send
bit 0 plus NE3 bits 1 and reset NE3 . Otherwise, when E2 case happens, we send bit 1 plus NE3 bits 0 and
reset NE3 .

In the beginning we assume that all the symbols are equiprobable. Thus, for a1:

x = (a1), code = (0),

l(1) = 0 + (1− 0)0.0 = 0

u(1) = 0 + (1− 0)0.33 = 0.3333

The interval is contained in the 1st half. Then a E1 remap is performed and we send the bit 0:

x = (a1), code = (0),

l(1) = 2× 0 = 0

u(1) = 2× 0.33 = 0.6666

For a3, now given that a1 precedes the symbol(FX(a3|a1)):

x = (a1, a3), code = (0),

l(2) = 0 + (0.6666− 0)0.6 = 0.4

u(2) = 0 + (0.6666− 0)1 = 0.6666
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Rescaling using E3, we increment the NE3 :

NE3 = 1, x = (a1, a3), code = (0),

l(2) = 2× (0.4− 0.25) = 0.3

u(2) = 2× (0.6666− 0.25) = 0.8332

For a3, using the context FX(a3|a3):

NE3 = 1, x = (a1, a3, a3), code = (0),

l(3) = 0.3 + (0.8332− 0.3)0.5 = 0.5666

u(3) = 0.3 + (0.8332− 0.3)1 = 0.8333

Applying E2, we send a bit 1 followed by NE3 0’s:

NE3 = 0, x = (a1, a3, a3), code = (010)

l(2) = 2× (0.5666− 0.5) = 0.1332

u(2) = 2× (0.8333− 0.5) = 0.6666

Finishing the symbols encoding. Then, we send the tag status, a value residing on the last interval
obtained. Most of the times, the value of tag status is l(n). But in the interval [0.1332, 0.6665), the
most convenient value is 0.5, in fixed point being 10..00, having as many 0 as the word length of the
implementation used. In this case, sending bit 1 suffices. Then, the final code is (0101).

From this code, we can decode it similarly by mimic the encoding process and guiding by the code
sent, removing the most significant bit for each remaping occurrence. Thus, decoding this original data,
we initialize u(0) and l(0), and starts to decode the sequence code = (0101). In this process, we assume
that the decoder knows: the probability context table, the first symbol probability is equiprobable, the code
sequence length is 3, and the code. Initializing l(0)=0 and u(0)=1, the decoding process follows:

tagbin = 0101, tag = 0.3125,

t∗ = 0.3125, l(0) = 0, u(0) = 1.

With FX(0) = 0, FX(1) = 0.33, FX(2) = 0.66, FX(3) = 1. Because t∗ = 0.3125 is between
[0, 0.33), the first symbol is a1. Thus:

tagbin = 0101, tag = 0.3125, t∗ = 0.3125,

l(1) = 0 + (1− 0)0 = 0

u(1) = 0 + (1− 0)0.33 = 0.33

Rescaling using E1 and consuming one bit 0:

tagbin = 101, tag = 0.625, t∗ = 0.3125,

l(1) = 2× 0 = 0

u(1) = 2× 0.3333 = 0.6666
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and:

t∗ =
tag − l(1)

u(1) − l(1)
=

0.625− 0

0.6666− 0
= 0.9375

We know that t∗ = 0.9375 ∈ [FX(2|a1), FX(3|a1)) = [0.6, 1), then the symbol decoded is a3. The
new interval is:

l(2) = 0 + (0.6666− 0)0.6 = 0.4

u(2) = 0 + (0.6666− 0)1 = 0.6666

which is confined in [0.25, 0.75), requiring a E3 remapping:

tagbin = 101, tag = 0.625, t∗ = 0.3125,

l(2) = 2× (0.4− 0.25) = 0.3

u(2) = 2× (0.6666− 0.25) = 0.8332

It‘s important to note that as E3 does not send any bit in the encoding, as well will not consume any bit
on the decoding, but count the times it occurs. Thus, updating t∗:

t∗ =
tag − l(2)

u(2) − l(2)
= 0.6095

which is confined in [FX(2|a3), FX(3|a3)) = [0.5, 1). Finally, the last symbol is a3, decoding all the
message. If we proceeded the interval updating we would obtain:

tagbin = 101, tag = 0.625, t∗ = 0.3125,

l(3) = 0.3 + (0.8332− 0.3)0.5 = 0.5666

u(3) = 0.3 + (0.8332− 0.3)1 = 0.8333

that resides in the upper half, remaping using E2 to

tagbin = 1, tag = 0.5, t∗ = 0.3125,

l(3) = 2× (0.5666− 0.5) = 0.1332

u(3) = 2× (0.8333− 0.5) = 0.6666

It’s important to note that we remaped E3 followed by a E2. Because of that, we consumes 2 bits
representing the E3 remap effect. In result, we have tag as 0.5. A interesting fact is that the tag value
resides on this last interval range, satisfying and confirming the tag value interval. Therefore, the decoding
was performed correctly synchronized and consistent with the encoding.
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6.3 CONTEXT ADAPTIVE BINARY ARITHMETIC CODING

Given a overview about the CABAC that is implemented on this work and after used on the geometry
code binary bitstream, a example will clarify the algorithm mechanism. A data sequence is defined as
(000011), we must encode this message having a word length m equals 6, and 1 bit of context, i.e.,
previous bit as 0 or 1. Thus we first initialize the bounds l(0) and u(0), as 000000 and 111111 respectively.
Updating the bounds:

Context/Symbol 0 1 Total
0 1 1 2
1 1 1 2

message = (000011), bit = 0,

l(0) = 000000 l(0) = 0

u(0) = 111111 u(0) = 63

l(1) = 0 +

⌊
(63− 0 + 1)0

2

⌋
= 0 l(1) = 000000

u(1) = 0 +

⌊
(63− 0 + 1)1

2

⌋
− 1 = 31 u(1) = 011111

E1 : l
(1) = 000000 u(1) = 111111 code = (0)

Being the first one, the context can’t be updated yet. Proceeding to 2nd bit:

message = (00011), bit = 0,

l(1) = 000000 l() = 0

u(1) = 111111 u(1) = 63

l(2) = 0 +

⌊
(63− 0 + 1)0

2

⌋
= 0 l(2) = 000000

u(2) = 0 +

⌊
(63− 0 + 1)1

2

⌋
− 1 = 31 u(2) = 011111

E1 : l
(2) = 000000 u(2) = 111111 code = (00)

From this bit, we can update the context, having a 0 precending 0. Thus, to 3rd bit:

Context/Symbol 0 1 Total
0 2 1 3
1 1 1 2
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message = (0011), bit = 0,

l(2) = 000000 l(2) = 0

u(2) = 111111 u(0) = 63

l(3) = 0 +

⌊
(63− 0 + 1)0

3

⌋
= 0 l(3) = 000000

u(3) = 0 +

⌊
(63− 0 + 1)2

3

⌋
− 1 = 41 u(3) = 101001

code = (00)

4th bit:

Context/Symbol 0 1 Total
0 3 1 4
1 1 1 2

message = (011), bit = 0,

l(4) = 0 +

⌊
(41− 0 + 1)0

4

⌋
= 0 l(4) = 000000

u(4) = 0 +

⌊
(41− 0 + 1)3

4

⌋
− 1 = 30 u(4) = 011110

code = (000)

5th bit:

Context/Symbol 0 1 Total
0 4 1 5
1 1 1 2

message = (11), bit = 1,

l(5) = 0 +

⌊
(61− 0 + 1)4

5

⌋
= 49 l(5) = 110001

u(5) = 0 +

⌊
(61− 0 + 1)5

5

⌋
− 1 = 61 u(5) = 111101

2× E2 : l
(5) = 000100 u(5) = 110111 code = (00011)

Finally, the 6th bit:
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Context/Symbol 0 1 Total
0 4 2 6
1 1 1 2

message = (1), bit = 1,

l(6) = 4 +

⌊
(55− 4 + 1)1

2

⌋
= 30 l(6) = 011010

u(6) = 4 +

⌊
(55− 4 + 1)2

2

⌋
− 1 = 55 u(6) = 110111

code = (00011)

where we have the tag value residing between [30, 55]. Thus, as tag status value we send 32, which is
100000. So the final tag value becomes code = (00011100000).

Then with the code generated, the decoding process follows. Having a word of length 6, the tag initial-
ize with the 6 first bits from the code. As the rescaling happens, the t value is shifted to the left, and proceed
appending at LSB the MSB bits from the code. Here we assume that F (−1) = Cum_Count(−1) = 0.
Thus, being the decoding similar to reproduce the steps from the coder, we have to the first bit decoded:

Context/Symbol 0 1 Total
0 1 1 2
1 1 1 2

t = 000111 = 7 code = 00000 Cum_Count =

[
1

2

]
(6.2)

l(0) = 0 u(0) = 63 (6.3)

t∗ =

⌊
(7− 0 + 1)× 2− 1

63− 0 + 1

⌋
= 0 (6.4)

Analysing the tag value in the Cum_Count interval:

F (−1) ≤ t∗ < F (0) (6.5)

Then, the 1st bit from the original message is 0. Therefore, the updating is according to this decoded
bit:
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l(1) = 0 +

⌊
(63− 0 + 1)Cum_Count(−1)

2

⌋
= 0 l(1) = 000000 (6.6)

u(1) = 0 +

⌊
(63− 0 + 1)Cum_Count(0)

2

⌋
− 1 = 31 u(1) = 011111 (6.7)

(6.8)

E1 : l
(1) = 000000 u(1) = 111111 (6.9)

Proceeding:

Context/Symbol 0 1 Total
0 1 1 2
1 1 1 2

t = 001110 = 14 code = 0000 Cum_Count =

[
1

2

]
(6.10)

l(0) = 0 u(0) = 63 (6.11)

t∗ =

⌊
(14− 0 + 1)× 2− 1

63− 0 + 1

⌋
= 0 (6.12)

F (−1) ≤ t∗ < F (0)⇒ message = (00) (6.13)

l(2) = 0 +

⌊
(63− 0 + 1)0

2

⌋
= 0 l(2) = 000000 (6.14)

u(2) = 0 +

⌊
(63− 0 + 1)1

2

⌋
− 1 = 31 u(2) = 011111 (6.15)

E1 : l
(1) = 000000 u(1) = 111111 (6.16)

Updating the context table, and proceeding the decoding, we have:

Context/Symbol 0 1 Total
0 2 1 3
1 1 1 2
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t = 011100 = 28 code = 000 message = (00) Cum_Count =

[
2

3

]
(6.17)

l(0) = 0 u(0) = 63 (6.18)

t∗ =

⌊
(28− 0 + 1)× 3− 1

63− 0 + 1

⌋
= 1 (6.19)

F (−1) ≤ t∗ < F (0)⇒ message = (000) (6.20)

l(3) = 0 +

⌊
(63− 0 + 1)0

3

⌋
= 0 l(3) = 000000 (6.21)

u(3) = 0 +

⌊
(63− 0 + 1)2

3

⌋
− 1 = 41 u(3) = 101001 (6.22)

(6.23)

The same process is repeated. At the fourth step:

Context/Symbol 0 1 Total
0 3 1 4
1 1 1 2

t = 011100 = 28 code = 000 message = (000) Cum_Count =

[
3

4

]
(6.24)

l(0) = 0 u(0) = 63 (6.25)

t∗ =

⌊
(28− 0 + 1)× 4− 1

41− 0 + 1

⌋
= 2 (6.26)

F (−1) ≤ t∗ < F (0)⇒ message = (0000) (6.27)

l(4) = 0 +

⌊
(41− 0 + 1)0

4

⌋
= 0 l(4) = 000000 (6.28)

u(4) = 0 +

⌊
(41− 0 + 1)3

4

⌋
− 1 = 30 u(4) = 011110 (6.29)

E1 : l
(4) = 000000 u(4) = 111101 (6.30)

Fifth bit to decode:

Context/Symbol 0 1 Total
0 4 1 5
1 1 1 2
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t = 111000 = 56 code = 00 message = (0000) Cum_Count =

[
4

5

]
(6.31)

l(0) = 0 u(0) = 63 (6.32)

t∗ =

⌊
(56− 0 + 1)× 5− 1

61− 0 + 1

⌋
= 4 (6.33)

F (0) ≤ t∗ < F (1)⇒ message = (00001) (6.34)

l(5) = 0 +

⌊
(61− 0 + 1)4

5

⌋
= 49 l(5) = 110001 (6.35)

u(5) = 0 +

⌊
(61− 0 + 1)5

5

⌋
− 1 = 61 u(5) = 111101 (6.36)

2× E1 : l
(5) = 000100 u(5) = 110111 (6.37)

Finally, we know that the last decoded bit was:

Context/Symbol 0 1 Total
0 4 2 6
1 1 1 2

t = 100000 = 32 code = message = (00001) Cum_Count =

[
1

2

]
(6.38)

l(0) = 0 u(0) = 63 (6.39)

t∗ =

⌊
(32− 4 + 1)× 2− 1

55− 4 + 1

⌋
= 1 (6.40)

F (0) ≤ t∗ < F (1)⇒ message = (000011) (6.41)

l(6) = 4 +

⌊
(55− 4 + 1)1

2

⌋
= 30 l(6) = 011110 (6.42)

u(6) = 4 +

⌊
(55− 4 + 1)2

2

⌋
− 1 = 55 u(6) = 110111 (6.43)

(6.44)

Which recovers our original message (000011). It’s important to note that through the decoding pro-
cess, the decode should happen before the Adaptive Context update step, otherwise its context table will
not be the same as the encoder at each step. With this example and explanation, we can know understand
it’s application on S3D.
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