—

Universidade de Brasilia — UnB
Faculdade UnB Gama — FGA

Engenharia de Software

Assuring the Evolvability of Legacy Systems in
Devops transformation/adoption: Insights of an
experience report

Autor: Alax de Carvalho Alves

Orientador: Carla Silva Rocha Aguiar

Brasilia, DF
2020

Alax de Carvalho Alves

Assuring the Evolvability of Legacy Systems in Devops

transformation/adoption: Insights of an experience report

Monografia submetida ao curso de graduagao
em Engenharia de Software da Universidade
de Brasilia, como requisito parcial para ob-
tencao do Titulo de Bacharel em Engenharia
de Software.

Universidade de Brasilia — UnB
Faculdade UnB Gama — FGA

Orientador: Carla Silva Rocha Aguiar

Brasilia, DF
2020

Alax de Carvalho Alves
Assuring the FEvolvability of Legacy Systems in Devops transforma-
tion/adoption: Insights of an experience report/ Alax de Carvalho Alves. - Brasilia,
DF, 2020-
43 p. : il. (algumas color.) ; 30 cm.

Orientador: Carla Silva Rocha Aguiar

Trabalho de Conclusdo de Curso — Universidade de Brasilia — UnB
Faculdade UnB Gama — FGA ;| 2020.

1. DevOps. 2. Refactoring. I. Carla Silva Rocha Aguiar. II. Universidade
de Brasilia. III. Faculdade UnB Gama. IV. Assuring the Evolvability of Legacy
Systems in Devops transformation/adoption: Insights of an experience report

CDU 02:141:005.6

Alax de Carvalho Alves

Assuring the Evolvability of Legacy Systems in Devops
transformation/adoption: Insights of an experience report

Monografia submetida ao curso de graduagao
em Engenharia de Software da Universidade
de Brasilia, como requisito parcial para ob-
tencao do Titulo de Bacharel em Engenharia
de Software.

Trabalho aprovado. Brasilia, DF, 18 de dezembro de 2020 — Data da aprovagao do
trabalho:

Carla Silva Rocha Aguiar
Orientador

Prof. Dr. Renato Coral Sampaio
Convidado 1

Prof. MSc. Joenio Marques da Costa
Convidado 2

Brasilia, DF
2020

Resumo

DevOps has changed the software industry to enable continuous delivery. While many
studies have investigated on how to introduce DevOps into a software product from the
organizational perspective, less is known about the technical challenges developers and
practitioners face when transforming legacy codes into DevOps, despite the undisputed
importance of this topic. In this paper, throughout the context of web applications, we
report the results of a study case with the adoption of four legacy open-source projects into
DevOps to understand which refactoring techniques and strategies influence developers’
decisions. We analyze two dependent variables: the technique used and how they are
applied to the project. After every implementation, there was an overview of the process
that just occurred and later a written report on how the strategies have been applied,
their respective order, which strategy has been more fruitful, and such. Those reports
have been the foundation of this study. The main findings of such study are that some
strategies are more efficient when viewed from the evolution aspect and the sequence these

techniques are employed matter.

Key-Words: Devops, Refactoring, Program Comprehension, Experience Report, Guide-
line, Legacy.

Resumo

DevOps mudou a industria de software para permitir a entrega continua. Embora muitos
estudos tenham investigado como introduzir DevOps em um produto de software do ponto
de vista organizacional, menos se sabe sobre os desafios técnicos que os desenvolvedores e
profissionais enfrentam ao transformar c6digos legados em DevOps, apesar da importancia
indiscutivel deste topico. Neste artigo, através do contexto de aplicagoes web, relatamos
os resultados de um estudo de caso com a adoc¢ao de quatrp projetos legados de codigo
aberto em DevOps para entender quais técnicas e estratégias de refatoragao influenciam
as decisoes dos desenvolvedores. Analisamos duas variaveis dependentes: a técnica usada
e como sao aplicadas ao projeto. Apoés cada implementagao, havia uma visao geral do
processo acabado de ocorrer e posteriormente um relatério escrito sobre como as estra-
tégias foram aplicadas, sua respectiva ordem, qual estratégia foi mais vantajosa e afins.
Esses relatérios foram a base deste estudo. As principais conclusoes desse estudo sdo que
algumas estratégias sdo mais eficientes quando vistas do ponto de vista da evolucao e a

sequéncia em que essas técnicas sao empregadas importa.

Key-words: Devops, Refatoragao, Compreensao de Programa, Relatério de Experiéncia,

Guia, Legado.

Tabela 1
Tabela 2
Tabela 3
Tabela 4
Tabela 5
Tabela 6

Lista de tabelas

Study Cases information 27
Strategies per study case 30
Noosfero Comparative: Before DevOps and After DevOps. 30
Mapknitter Comparative: Before DevOps and After DevOps. 32

Spectral Workbench Comparative: Before DevOps and After DevOps. . 33
Salicml Comparative: Before DevOps and After DevOps. 34

Lista de abreviaturas e siglas

DevOps Development and Operations
OSS Open Source Software

CI Continuous Integration

CD Continuous Deploy/Delivery

cT Continuous Testing

SW Software

WIP Work In Progress

CMS Content Management System
RSS Rich Site Summary

VM Virtual Machine

2.1
2.2
221
2.2.2
2.3
23.1
2.3.2
2.3.3
2331
2.4
24.1
2.4.2
2421
2422
2.5
251
252
253
254
2.6
2.7

Sumario

INTRODUCTION AND MOTIVATION 15
GENERAL ASPECTS e e e e e e e e e e e 19
Related works 19
Background 20
DevOps - Practices and Strategies 20
Legacy Software and its challenges 21
Strategies to Bring DevOps into Legacy Code 23
Legacy inthebox o 23
Testing, Integrating and Deploying Continuously 24
Architecture 25
Micro-services Lo e 25
Thecasestudy 26
Open Source Software (OSS) 26
Study Design 27
Methodology 27
Contextualized Methodologyo 28
Results 29
Noosfero 30
Mapknitter L 31
Spectral Workbench 33
Salicml 34
Discussion 35
Conclusion 39

REFERENCIAS e e e e e e e e s s, 41

15

1 Introduction and Motivation

DevOps combines cultural philosophies, practices, and tools that increase an or-
ganization’s ability to deliver applications and services at high velocity: evolving and
improving products faster than organizations using traditional software development and
infrastructure management processes. This speed enables organizations to serve their cus-
tomers better and compete more effectively in the market (AMAZON, 2020).

As more companies adopt DevOps to improve their workflow and productivity,
many challenges related to the infrastructure and the legacy software systems have ari-
sen. DevOps is about people and processes (LEITE et al., 2019). It is a methodology that
enables organizational groups to communicate with each other across silos and to coor-
dinate their activities. Thus, it is not surprising that established cultural habits are the
number one challenge to DevOps, especially barriers to cross-organizational collaboration,
the critical element of successful DevOps practice (INCORPORATED, 2014).

Legacy codes are usually characterized by the following: use of outdated fra-
meworks, no test (neither unit nor integration), no containerization, no automation tools,
nonexistence of technical documentation, monolithic architecture, no continuous integra-

tion, no automation at all.

The professionals working on a legacy system have to put in extra effort to refactor
it, especially legacy systems. There are no strategies in place for implementation of refac-
toring techniques. No plans designed to guide the developers with the same. Developers

performing with their own knowledge and sometimes ended up messing with the code
(KHANAM, 2018).

Outdated legacy applications usually work tied to running a production service
that tends to be manual, repetitive, automatable, tactical, devoid of enduring value, and
that scales linearly as a service grows (MURPHY, 2016). While cloud applications are
needed for quick application delivery, some legacy systems cannot be integrated, leaving
the IT infrastructure out of sync and incapable of operating at a fast pace (VASSIT, 2016).
The solutions to such legacy challenges are often time-consuming, or costly (VASSIT,

2016). All this is stated still considering the web applications spectrum.

Consistently, the core teams introduce new features to frameworks and languages.
Most of the time, these changes result in performance gains and overall reliability in terms
of security - but not limited to it. Embracing such performance and security gains could

result in a faster app, which is very motivational to upgrade.

Upgrading a particular app is not limited to the language or the framework itself.

16 Capitulo 1. Introduction and Motivation

That is made very clear when we acknowledge that many projects have been widely taking
advantage of container-based architectures tools, such as Docker, to make contributing
easier. Grasping such DevOps aspects are helpful to such upgrades since it is a growing

concept in Open Source Software projects.

Evolvability is a vital software aspect, and fundamental to its existence. It motiva-
tes software engineering researches, and practices (RAJLICH, 2018). "Evolution consists
of repeated software changes. Defined software change processes lead to improved pro-
ductivity and quality of software evolution’ (RAJLICH, 2018).

Microservices is an important architectural style that prioritizes evolvability. Evol-
vability is especially crucial for software with frequently changing requirements, internet-
based systems for instance. Software professionals apply a set of numerous activities that
we refer to as evolvability assurance (BOGNER et al., 2014). These activities are usually
of analytical nature to identify issues or a constructive nature to remediate issues. That
includes techniques like code review or refactoring, standardization, guidelines, conscious
technical debt management, and tools, metrics, or patterns (BOGNER et al., 2014).

Thus, in the appropriate context, migrating monolithic architectures to microser-
vices could bring in many benefits including, but not limited to, flexibility to adapt to the
technological changes in order to avoid technology lock-in, and more importantly, reduced
time-to-market (BALALAIE; HEYDARNOORI; JAMSHID, 2016).

Legacy apps are typically harder to adopt DevOps due to a blend of technology,
process and cultural issues. The cultural issue regard to the initial resistance from teams
to move into DevOps ways is due to reluctance to change, emerging from an inertia of
doing things a certain way for years if not decades. Most of these systems were not built for
the agile workflows that focus on incremental and iterative deliveries. Amidst challenges
like too much technical debt, tightly integrated hardware components, fragile codebase,

it is tough to select specialised approach like DevOps.

While designing and developing a greenfield project, architects and developers start
afresh and have the opportunity to take into consideration the requirements of DevOps
(RAO, 2018). In case of legacy systems, which have evolved over a period of time without
any consideration of automation, the adoption of the DevOps approach may result in
large-scale refactoring or redesign. It may prove to be a significant challenge to automate

the vast amount of legacy code and processes (RAO, 2018).

Considering tests and their automation, Legacy systems tend to have low code
coverage due to few or no unit tests. Testing is typically done in higher environments
and is manual. As more features are added to a legacy system, the manual testing effort
increases drastically, eventually slowing down feature delivery. This problem is amplified

when there are multiple teams working on the same code base (RAO, 2018).

17

Microservices is also observed as a growing concept (BALALAIE; HEYDARNO-
ORI; JAMSHID, 2016). Although DevOps practices can also be used for monolith archi-

tecture, using them in the context of microservices enables practical implementation of

DevOps (BALALAIE; HEYDARNOORI; JAMSHID, 2016).

In the context of an upgrade, microservices are strongly recommended because they
bring up some desired advantages that can be very useful to certain context. Although we
have a set of favorable concepts and tools at our disposal, there is still no standardized
collection of steps to be followed; in other words, it has no pattern defined when upgrading

software. Actually, it seems to be an empirical-like process.

This could represent a considerable challenge to teams when performing an up-
grade, because since there is very-well defined tools and appropriate concepts, one could
think that embracing any of those tools and concepts will result in a successful, or even

a painless upgrade process.

The challenge is identifying which tool and concept are adequate to the context.
As in any software process improvement initiative, the path to a successful DevOps im-
plementation is unique to each organization. Still, it is possible to learn from challenges
experienced during other process adoptions in order to plan future initiatives (SMEDS;
NYBOM; PORRES, 2015).

In this work, we report the results of a study case with the adoption of four legacy
open-source web projects into DevOps to understand which refactoring techniques and
strategies influence developers’ decisions. We map the refactoring techniques used, the se-
quence they were employed, the benefits perceived by the organization, and the challenges
faced by developers when deploying each refactoring technique. We analyse the project
repositories, the commits, the issues discussions, the communication channels. We present
a set of lessons learned, with the DevOps benefits for each refactoring technique experi-
mented, the impact of the order the techniques are employed from developers perspective

and some guidelines for legacy projects aiming at adopting DevOps .

19

2 General Aspects

2.1 Related works

Although there have been several discussions on DevOps practices and how they

benefit one’s project, applying such practices to an existing project is often painful.

When it comes to refactoring legacy code with focus on DevOps, S.A.M. Rizvi
and Zeba Khanam have proposed methodology (S.A.M.RIZVI; KHANAM, 2011). Their
article proposes a methodology that can be employed to apply the refactoring activities on
the legacy system, employing the aspect-oriented techniques. Considering the refactoring
activities that are more likely to improve the software design and quality, the developers
should adopt an approach that would focus on a restricted set of refactoring patterns. Thus
allowing the developers to choose their desired set of strategies (S.A.M.RIZVI; KHANAM,
2011).

Gangadhar Hari Rao proposes a roadmap for implementing DevOps in a legacy
software, with focus on building a CD pipeline with the supporting capabilities. With this
roadmap Rao concludes that the successful adoption of the DevOps methodology for a
legacy system is possible only if the teams working on legacy systems also change their
processes and mindset towards Agile and CD. In each stage of the roadmap he considers
the challenges and proposes actions to overcome them, always with a great focus on CD
- what could involve great costs, depending on the legacy system to be considered (RAO,
2018).

Chia-Chu Chiang and Coskun Bayrak propose a refactoring strategy that consists
of converting legacy systems into component-based systems. The process involves program
understanding, business rules extraction, and software transformation. In their paper, they
present a semi-automated program slicing technique for business rules extraction from
legacy code and convert the reusable code into a component conforming to the protocols
of a component interconnection model (CHIANG; BAYRAK, 2006).

Errickson-Connor (ERRICKSON-CONNOR, 2003) also proposed a strategy that
consisted of steps of a software modernization process where a legacy code is transformed
into new languages and new environments. She suggests that a legacy code needs to be
cleaned up, such as removing program anomalies before being transformed. The next stage
involves software restructuring tasks such as isolating business rules, identifying business
rules, and extracting business rules as reusable services. When the code corresponding to
a business rule is extracted, it is ready for transformation into components in stage three.

The final stage is to manage these reusable components in a software environment.

20 Capitulo 2. General Aspects

Regarding implementing certain levels of DevOps in legacy software, the SmartSheet
website ensures Virtualization and, consequently, Microservices as core practices. Working
with small, reusable building blocks of code ensures that the application under develop-
ment is not affected by the increase in deployments’ velocity in the DevOps environment.
Containers are the next evolutionary step in virtualization technology (SMARTSHEET,
2020).

Finally, Leonardo Leite, Carla Rocha, Fabio Kon, Dejan Milojicic, and Paulo Mei-
relles in their work A Survey of DevOps Concepts and Challenges outline a conceptual
framework to guide engineers, managers, and academics in the exploration of DevOps
tools, implications, and challenges. The conceptual framework is composed of conceptual
maps, which are diagrams structured as graphs in which nodes depict concepts and arrows

represent relationships among concepts(LEITE et al., 2019).

Their survey investigates the DevOps concepts and challenges from multiple pers-
pectives: engineers, managers, and researchers. Also explores a much broader range of
sources. More up-to-date concepts of DevOps and its tools are analyzed, categorized and
correlates to the DevOps concepts, and discuss which roles in the organization should

use which tools. It concludes by summarizing and discussing some of the main DevOps
challenges (LEITE et al., 2019).

2.2 Background

2.2.1 DevOps - Practices and Strategies

DevOps is a software development and delivery process that helps in emphasizing
communication along with cross-functional collaboration between product management,
software development, and operations professionals. Also widely considered a collabora-
tive and multidisciplinary organizational effort to automate continuous delivery of new

software updates while guaranteeing their correctness and reliability (LEITE et al., 2019).

From the technical perspective, DevOps relies heavily on automation tools, inclu-
ding tools for container management, continuous integration, orchestration, monitoring,
deployment, and testing (ZHU; BASS; CHAMPLIN-SCHARFF, 2016). Automated de-
ployment pipelines and monitoring facilitate error detection. The micro-services archi-
tectural style is quickly becoming the standard for building continuously integrated and
deployed systems. DevOps aims to achieve some business outcomes, such as reducing
risk and cost, complying with regulations, and improving product quality and customer
satisfaction (LEITE et al., 2019).

DevOps is an evolution of the agile movement, it proposes a complementary set

of agile practices to enable the iterative delivery of software in short cycles effectively.

2.2. Background 21

Besides automating the delivery process, DevOps initiatives have also focused on using
automated runtime monitoring for improving software runtime properties, such as perfor-

mance, scalability, availability, and resilience (LEITE et al., 2019).

Using containers, one could run a single container to execute a small micro-service
or software process to a more extensive application (GOLDEN, 2019). Containers and
micro-services enable DevOps (LEITE et al., 2019). Considering a hypothetical context,
running a micro-service on bare metal is an attractive option, since multiple services on a
single operating system instance can lead to conflicting library versions; one micro-service

failure could affect others’ behavior.

Regarding DevOps practices, Continuous Testing (CT) highlights as the most fit-
ting concept with two of the core aspects of DevOps, continuity of the process of deve-
lopment and a source of uninterrupted feedback - despite being a relatively new concept
in Software Engineering. The practice of Continuous Testing pivots around test automa-
tion as well as early and frequent testing. Continuous Testing is a crucial component of
the software development cycle that includes continuous development, integration, and

deployment.

Whereas some authors say microservices facilitate effective implementation of De-
vOps, others say microservices require DevOps, since deployment automation minimizes
the overhead to manage a significant number of microservices. However, adopting mi-
croservices comes with several challenges. First, there is heterogeneity in non-functional
patterns such as “startup scripts, configuration files, administration endpoints, and log-
ging locations”. Technological heterogeneity can be a productivity barrier for newcomers
in the team. Second, microservices must be deployed to production with the same set of
versions used for integration tests (LEITE et al., 2019).

2.2.2 Legacy Software and its challenges

Legacy software is commonly defined as an application that is no longer updated
or supported by the developer. Likewise, the software can become legacy if the developer’s
operation ceases or bought by another entity that decides to throw it out (CHIMA, 2016).
The definition is not limited to that, Legacy software systems are also considered programs
that are still well used by the community or have some potential inherent value but were
developed years, days, or even hours ago (GREENOUGH; WORTH, 2003). A software
becomes legacy when its dependencies are not keeping up with the latest updates. That
could represent software developed a few days ago, which has a vast and active maintainer

community.

According to Sommerville (SOMMERVILLE, 2015), Legacy systems can be rawly

defined as old software systems that are used by an organization and usually rely on

22 Capitulo 2. General Aspects

obsolete technology but are still essential to the business. This definition is totally correct,
but coming to a wider definition legacy software also represents a software created one
day ago. That is justified given the rapid advances and the increased reliance on software-
related technologies (CASCIO; MONTEALEGRE, 2016).

Often legacy codes have been maintained and developed by hundreds of program-
mers. While many changes have been made to it, the supporting documentation may not
be current, and the programming style does not follow current standards (GREENOUGH;
WORTH, 2003). The challenges could get more prominent, as such software might offer
a volatile development environment - which makes contributing at any level very hard.
Those challenges could be not have a representative test coverage or an arduous setup of

the work environment.

A very proper example of legacy software is the web-based social platform Noosfero
(CONTRIBUTORS, 2007). Basically Noosfero is an open source framework for social
networking. Considering that its first versions are dated back to 2007 it has several legacy

practices and code.

Including DevOps into a large-scale legacy system day-to-day is a challenging
exercise since they often predate DevOps or may have been developed without taking

into account the unique characteristics of its practices.

DevOps principles, practices, and tools are changing the software industry. Howe-
ver, many industry practitioners, both engineers and managers, are still not aware of how
their daily work can be affected by such principles, practices, and tools. As well, some
legacy architectures might not be designed to run automated tests. Nonetheless, teams
must be aware that cultural factors, such as managers who say “This is the way we have

always done it”, can limit the adoption of continuous delivery more than technical factors.
(LEITE et al., 2019).

Although companies recognize the importance of automated testing, they still
struggle to implement it fully. Other factors that make automated testing complex are
hardware availability for load testing and user experiment assessment. The benefits deli-
vered by a deployment pipeline, that is continuous delivery, are many. However, engineers
must be aware that setting up the infrastructure for continuous deployment can demand
a considerable effort. Breaking down the system into microservices also requires building
multiple pipelines (LEITE et al., 2019).

There are still many open questions about how organizations should adopt De-
vOps. It is stated that DevOps adoption requires top-management support. Sometimes it
does not happen in the first moment, and an anti-organizational strategy can take place.
Moreover, arguments to encourage DevOps adoption can differ from engineers to mana-

gers - which is the organizational hierarchy structure of most legacy code teams (LEITE

2.8. Strategies to Bring DevOps into Legacy Code 23

et al., 2019).

2.3 Strategies to Bring DevOps into Legacy Code

Refactoring is the process of changing a software system so that it does not alter
the code’s external behavior yet improves its internal structure. It is a disciplined way
to clean up code that minimizes the chances of introducing bugs. In essence, when one
refactors actually is improving the design of the code after it has been written (FOWLER;
BECK, 2002).

In the context of Legacy Code involves embracing several strategies and practices.
Considering the challenges involved in refactoring legacy code, several organizations are

not rushing to adopt such practices properly.

It is important to mention that the techniques, or strategies, described below in
this work will not be considered refactoring strategies - analyzing through the spectrum
of SOLID and Clean Code set of techniques. In this context,F the following strategies
are considered to be strategies simply required to a legacy software team to adopt the

DevOps culture.

2.3.1 Legacy in the box

Legacy code, especially massive monoliths, is one of the most unsatisfying, high-
friction experiences for developers. Although there is always much caution involved in
extending and maintaining legacy monoliths, such upgrades continue to prove to be very

necessary, even though it takes a lot of work and money to keep maintaining such monolith.

To help reduce the friction, developers have used virtualized machine images or
container images with Docker containers to create immutable images of legacy systems
and their configurations. This technique, called "legacy in the box", contain the legacy code
in a box for developers to run locally and remove the need for rebuilding, re-configuring
or sharing environments. In an ideal scenario, teams that own legacy systems generate
the corresponding boxed legacy images through their build pipelines, and developers can

then run and orchestrate these images in their allocated sandbox more reliably.

Adopting Legacy in the Box practice is not only about wrapping the legacy code
in a container and ship it. It also features some other DevOps-related practices, such
as adopting Continuous Integration and Continuous Deploy (CI/CD) into the project

workflow - previously described.

For instance, when it comes to adopting Continuous Integration into the Legacy
project, a core practice consists of all developers committing to the mainline branch daily.

When a team makes changes in smaller increments and integrates them into the mainline

24 Capitulo 2. General Aspects

regularly. More minor changes, shipped to production quickly, are a lot easier to debug
when something breaks. Rather than living in branches for long chunks of time, changes
are continuously integrated (MEYER, 2014).

Beyond version control, a continuous integration server is one of the more essential
tools a development team can put to fair use. A continuous integration server is unbiased.
Its tasks boil down to telling the team whether the most recent changes still pass the
stages it is configured to run (MEYER, 2014).

The last step of a fully automated build is deploying to production, which requires
an automated deployment process that every developer should be able to run, just like
the continuous integration server. With an automated build in place, everyone can deploy
to staging or production, anytime (MEYER, 2014).

2.3.2 Testing, Integrating and Deploying Continuously

As previously said, CI/CD is a method to frequently deliver apps to customers
by introducing automation into the stages of app development. Such practices introduce
ongoing automation and continuous monitoring throughout the software life-cycle, from
integration and testing phases to delivery and deployment. Taken together, these connec-

ted practices are often referred to as a CI/CD pipeline (HAT,).

When Continuous Testing is adequately implemented, an organization can get a
constant insight into the robustness of the latest software build and ensure speedy delivery
of high-quality software. CI/CD is a method to frequently deliver apps to customers by
introducing automation into app development stages. Continuous Integration helps teams
work more efficiently because the different components of a complex system will more
assuredly work together. By having each piece of code verified by an automated build,
a team is allowed to develop cohesive software more rapidly. Leading to significantly
reduced integration problems and quick error detection. However, once this bottleneck is
overcome, CD presents several benefits that directly influence the end product. Since CD
- and CI - are all about automation, it allows teams to focus on the actual product and
testing. Also, make it possible to integrate teams and processes with a unified pipeline,

thus standardizing the entire project.

Continuous practices are expected to provide several benefits such as: getting more
and quick feedback from the software development process and customers; having frequent
and reliable releases, which lead to improved customer satisfaction and product quality;
through CD, the connection between development and operations teams is strengthened

and manual tasks can be eliminated.

In DevOps, CI/CD along with testing plays a vital role since it results in trustful

services due to the use of agile development methods and concepts - also embraced by

2.8. Strategies to Bring DevOps into Legacy Code 25

the DevOps practices. Continuous integration tools orchestrate several automated actions
that, together, implement the deployment pipeline pattern. Among the stages orchestra-
ted by the pipeline are: package generation, automated test execution for correctness
verification, and deployment to both development and production environments (LEITE
et al., 2019).

Continuous Delivery has been the approach to bring automation, quality, and
discipline to create a reliable and repeatable process to release software into production.

Pillars of DevOps : automated stages, quality, repeatable process, automated test stages,
and more (SATO; WIDER; WINDHEUSER, 2019).

Continuous delivery and continuous deployment will be used as synonyms, also
referred to as CD. CD usually means a developer’s application changes are automati-
cally bug tested and uploaded to a repository, where it can be later deployed to a live
production environment. Another approach to defining CD is that it can refer to automa-
tically releasing a developer’s changes from the repository to production, where it is made
available to customers. It addresses the problem of overloading operations teams with
manual processes that slow down app delivery. CI/CD is really a process, often visualized
as a pipeline, that involves adding a high degree of ongoing automation and continuous

monitoring to app development (HAT,).

2.3.3 Architecture

A Software Architecture is concerned with both structure and behavior, is concer-
ned with significant decisions only, may conform to an architectural style, is influenced
by its stakeholders and its environment, and embodies decisions based on rationale. Some
authors explore software design in the context of DevOps, continuous delivery, and con-
tinuous deployment. However, developers may still struggle with this in practice, since
achieving the desired architecture can be infeasible in a single first DevOps (LEITE et
al., 2019).

As well as defining structural elements, an architecture defines the interactions
between these structural elements. And are these interactions that provide the desired
system behavior (EELES, 2006).

2.3.3.1 Micro-services

When it comes to specifying among the various architectures, the micro-services
architecture stands out to aid the DevOps implementation. As the size of a software
systems increases, the computation algorithms and data structures no longer constitute
the major design problems. When systems are constructed from many components, the

overall system’s organization — the software architecture — presents a new set of design

26 Capitulo 2. General Aspects

problems (GARLAN; SHOW, 1993).

Micro-services is a style of architecture that emphasizes dividing the system into
small and lightweight services that are purposely built to perform a very cohesive business
function and is an evolution of the traditional service-oriented architecture style. This
architecture is an approach to developing an application as a set of small independent
services. Each of the services is running in its independent process (NAMIOT; SNEPS-
SNEPPE, 2014). As the software grows, it can be a great approach to achieve scalability.

2.4 The case study

The previous section described several handy concepts that, when explored, could
represent a great advantage when refactoring a legacy code. Such concepts obey a parti-

cular pattern when applied to the process of upgrading and also refactoring itself.

In order to successfully achieve this work’s goal, there should be defined as a

well-structured process, specifically, agile developing methodologies.

2.4.1 Open Source Software (OSS)

Open source software is software with source code that anyone can inspect, mo-
dify and enhance (OPENSOURCE.COM, 2019). Open source software can be defined as
software distributed under a licensing agreement which allows the source code (compu-

ter code) to be shared, viewed, and modified by other users and organizations (SINGH;
BANSAL; JHA, 2015).

Freedom with the source code allows developers to create unique solutions, which
can then be built upon by other community members. This process of "crowdsourcing'allows
for development shops to pull beyond their teams’ talents and access a repository of in-

formation compiled by the community at large.

Open source solutions geared toward the enterprise often have thriving communi-
ties around them, bound by a shared drive to support and improve a solution that both
the enterprise and the community benefit from (and believe in). The global communities
united around improving these solutions introduce new concepts and capabilities faster,
better, and more effectively than internal teams working on proprietary solutions. Not to

mention that this brings several benefits to the end-user as well.

Furthermore, utilizing DevOps solutions in the context of an open-source commu-
nity can be both time and cost-effective and also very practical to organizations in general.
DevOps is a newer and less mature software practice. It requires a new tool, process, and
solutions development; in other words, the developers will empirically implement the De-

vOps strategies according to its organizational needs. Leveraging open source solutions

2.4. The case study 27

can expedite that process. Many of the key DevOps tools used today either are or star-
ted as open-source solutions for DevOps problems, which certainly fits an open-source
software project’s objectives. While DevOps and open source are two entirely separate
things, though, the reality is that it’s difficult to separate the two at this point. Many
open source projects rely on DevOps tools and principles, and DevOps depends heavily
on open source applications as both the glue that binds it all together and the engine that
keeps everything moving (BRADLEY, 2016).

Open-source software development, particularly its core tenets of collaboration and
transparency, has always been an integral part of DevOps. This is one of the reasons that
DevOps tends to be an easier adjustment for developers, who tend to have experience

with open-source software and its concepts and technologies (LYMAN, 2020).

With OSS, community members have open access to the source code and can use
it in any way they see fit. Also, an open-source project can be altered and extended by any
developer familiar with the source code. This grants organizations freedom and long-term
viability because hundreds of developers supporting a widely adopted OSS project can be

called upon long into the future.

2.4.2 Study Design

Project Mapknitter | Noosfero | Spectral Workbench | Salicm]
Number of commits 2,012 commits | 16,78 commits | 1,271 commits 638 commits
Contributors 75 contributors | 25 contributors | 18 contributors | 14 contributors
Lines of source code 60.863 lines | 227.024 Lines | 46.201 lines 85,804 lines
Date of first commit 26/04/2000 | 27/06/2007 | 27/09/2010 27/03/2018
License GPL v3 GPL v3 GPL v3 GPL v3

Main Programming Language | Ruby Ruby Ruby Python
Framework version Rails322 | Rails424 | Rails 3.23 Django 2.2

Tabela 1 — Study Cases information

2.4.2.1 Methodology

Ethnography is a research method designed to describe and analyze the social life
and culture of a specific social system (EDMONDS; KENNEDY, 2013). The central tenet
of this approach is to understand values, beliefs, or ideas shared for a group under study

from the members’ point of view. For this, the ethnographer needs to become a member

28 Capitulo 2. General Aspects

of the group, observing in detail what people actually do and learning their language,

social norms, rules, and artifacts.

Ethnographic research is a qualitative methodology which requires the researcher
to interpret the real world from the perspective of the informers in the investigation
(DOBBERT, 2013). And in software engineering context, it can strengthen investigations
of social and human aspects in the software development process since the significance of

these aspects of software practice is already well-established.

In this work, we acquire data by using the ethnographic research method of partici-
pant observation and documentation analysis. The participant observation method makes
it possible to explain and justify the meaning of the experiences through the experience
of the observer and allow the informant to judge what is important rather than what
he thinks is important. In addition to sensitivity, the observer needs to interpret what is

happening in the community around him.

Software developers find it easier to reveal the processes present in their thoughts
when communicating with other software developers, which makes this communication a
valuable opportunity to observe the development process. This justifies why in this work,
a method for data collection used was keep track of the various communication tools used

to exchange information regarding certain project.

2.4.2.2 Contextualized Methodology

This study methodology has been fundamental in the context of this work. Th-
rough it, it has been possible to collect every needed data that has been later used to build
the strategies/techniques. By observing and describing the entire process of implementing
the DevOps culture in a legacy project, it was possible to obtain very relevant data that

has been used to generate the DevOps strategies and their order of implementation.

There were four study cases conducted as shown in Table 1, each case had its
our peculiarities which has allowed us to apply a different approach at every study. Each
case study consisted in contributing to an open-source software community in terms of
applying certain strategies to get the community to embrace the DevOps culture and

practices.

The first case was Noosfero, an open-source framework for social networking that
has around fourteen years since its first commit, nearly two hundred and fifty thousand
lines of code, twenty thousand commits and twenty-five contributors - the most legacy of
all cases. The second case analyzed was Mapknitter, which is a project that is part of a
huge ecosystem of services provided by the PublicLab community, it allows geographical
data exporting and uploading, with around seventy-five contributors, sixty thousand lines

of code and eleven years old. The third study case conducted was Spectral Workbench,

2.5. Results 29

which is also part of the PublicLab ecosystem, a web based application to collect, archive,
share, and analyze spectral data. It has eighteen contributors, twelve hundred commits

and around forty-six thousand of lines.

In order to get a possible different point of view, the fourth case was conducted
mainly by Victor Moura. It consisted in the project Salicml, that has around eighty-five
thousand lines of code, fourteen contributors and over six hundred commits. Salicml is a
web application that processed business indicators from cultural projects and presented

them in a web dashboard.

In each project, the study has lasted 5-6 months, including the one conducted by
Victor Moura. The only exception to this has been the Noosfero case, in which the it has

lasted around a year - as it is the bigger project in number of lines.

As more studies have been conducted the pattern of strategies to be applied were
becoming more and more clear. During every case, it was noticed that before starting any
framework upgrade, it would be indispensable to cover the project of tests. However, to
test it properly, it would also be fascinating to know which parts of the code I would be
testing and how much of the project I would be testing, that is, in percentage. Also, a
smart idea would be automating the entire test process since it increases the number of

times exponentially one has to trigger the command to run the tests.

All of this empirical work done in various legacy projects leads us to conclude that
before adopting Continuous Integration, one should adopt Continuous Testing before it.
The interesting part is that every strategy has been obtained through this, making the

Case Study methodology very important for this work accomplishment.

It is also worth mentioning that after the first case study conducted - Noosfero -
there was already a solid set of practices to-become-strategies and their most adequate
usage order. As there were more study cases, the strategies became more and more evident

and their order.

After the completion of every study case every information source was analyzed, as
commits, issue reports, pull requests, informal communication tools and such. By analy-
zing that kind of resource it was possible building the set of practices, called Strategies in
this paper. These resources also made possible gathering the posthumous lessons learned

from the cases experiences, that would later become the foundation for this study.

2.5 Results

In Table 2, it is objectively pointed out which strategy and its order of usage to

every case during the study. The following sections details more about each case.

30 Capitulo 2. General Aspects
Techni Appli
Project Repository Link Description .ec nique Applied
(in order of usage)
An open-source framework
e . . for social networking with blogs, Continuous Integration,
Noosfero https://gitlab.com/noosfero/noosfero/ e-Portfolios, CMS, RSS, thematic discussion, | Legacy in the Box.
events scheduling, and more.
A free and open-source software created Legacy in the Box,
run by Public Lab. Contiﬁuous Integration
Mapknitter | https://github.com/publiclab/mapknitter/ . It 1e'ts people.upload their own aerl:al . Microservices archi toctﬁrc,
images in a web interface over some existing .
. . Continuous Deploy.
map data, share it, and export for print. ’
A web based application to collect, archive, Contlnu.o us Integration,
Spectral share, and analyze spectral data Legacy in the Box,
ps://gi .C iclab/spectral- benc i ‘ ’ Jonti s Testing,
Workbench https://github.com/publiclab/spectral-workbench for Public Lab DIY spectrometers and Cont%nuous esting
Continuous Deploy,
other spectrometers. . . s
Microservices architecture.
A web application that processed business
indicators from cultural projects and presented . .
them in a web dashboard to optimize the Continuous Integration,
Salicml https://github.com/lappis-unb/salic-ml/ o . P L Continuous Testing,
analysis of each project accountability by the .
h Continuous Deploy
technical team from the
Brazilian Ministry of Culture.

Tabela 2 — Strategies per study case

2.5.1 Noosfero

Noosfero

Before DevOps

After DevOps

Docker/Docker Compose

Misconfigured. Services were
properly split but with
several misconfigurations.
Not used in production.

Working properly for
development and
production environments.

Framework version

Rails 4.2.4 with several
deprecated dependencies
and vendors. A lot of
monkey-patches.

Updated to Rails 5.1.6
with latest features.

Continuous Integration

GitLabClI builds took
too long to finish and
had important
pipelines missing.

Implemented caching to
speed things up and
added missing builds to
the pipeline executor.

Continuous Deploy

None.

None.

Coding stylesheet

None. Every developer
had its own technique.

Configured a stylesheet
and integrated it with
the CI pipelines, and
fixed all of the linting
erTors.

Tabela 3 — Noosfero Comparative: Before DevOps and After DevOps.

Noosfero is a vast system, with over 70 database tables. Since there was a stable

Continuous Integration tool set up and microservices have been widely made use of, there

were only a couple of DevOps related improvements to do.

2.5. Results 31

During the Noosfero study, which has been done first, there was a limited imple-
mentation for containers and continuous integration. Since it was the first upgrade of this
kind that it has been worked on, a few errors have resulted in valuable learnings. When
the Rails framework upgrade started, it was noticed that some steps should have been

taken before, which would make the upgrade less painful.

In the middle of the refactoring, the Continuous Integration pipeline could have
been improved by adding other testing stages, which could have identified some issues
that appeared later. For instance, by previously adding a stage that tested out the Docker
image building, we could assure every time that we included a change, this part of the
project could remain stable, we should have improved the pipeline before starting to fix
the broken tests, what would’ve had provided a better visibility of next steps. Also by
including a code quality and stylesheet compliance stage we could also assure that our
code refactoring was changing the code for the better, by making it more maintainable

for example.

The project was also not properly wrapped in a container image, which should
have been done before the upgrade started. By wrapping up the monolith through the
concept of Legacy in the box, there was a homogeneous environment for every developer
to work with. That has provided a consistent environment for the Noosfero application. In
a different approach, Docker containers ensure consistency across multiple development

and release cycles, thus standardizing the Noosfero environment.

Realistically, containerizing Noosfero before upgrading the Rails framework has
been of great advantage; that meant parity, meaning that the Noosfero images ran the
same no matter which server or whose laptop they were running on. The Noosfero study
case only involved me as developer for this task, even though the maintainers allowed me
to freely experiment the strategies, as in Mapknitter, due to the project complexity and
few resources, by the end of the study it was possible to apply only the Legacy in the Box

and Continuous Integration strategies.

It was also acknowledged that the Continuous Integration tool could be better used
in terms of performance, so all of the testing and integration pipelines have been split
to run in parallel since there was no inter-dependency between the suites. A style-sheet
guide has also been added to this pipeline using Rubocop in order to enforce and obtain

a more standardized code pattern.

2.5.2 Mapknitter

In Mapknitter the maintainers aimed to achieve a more compliant and stable
project, with that, more newcomers are attracted to contribute with the open-source

code.

32

Capitulo 2. General Aspects

Mapknitter

Before DevOps

After DevOps

Docker/Docker Compose

Misconfigured. Database and
services all wrapped in a
container. Only worked in
production.

Working properly for
development and
production environments.

Framework version

Deprecated Rails 3.2.2
with several deprecated
dependencies.

Updated to Rails 5.2.3
with latest features.

Continuous Integration

Misconfigured TravisCI,
worked poorly.

Improved to cached
pipelines with reduced
timeouts with more
stages running in parallel.

Continuous Deploy

Misconfigured JenkinsCI,
didn’t work.

Improved build and startup
steps arrangement in order
to have it working the best
way it could. Every
repository push would

trigger a build that could
be followed live.

Configured a stylesheet
and integrated it with
the CI pipelines, and
fixed all of the linting
errors. Thus, making the
project following the org’s
coding patterns.

None. Despite the other Org

Coding stylesheet repositories had it configured.

Tabela 4 — Mapknitter Comparative: Before DevOps and After DevOps.

The Mapknitter case study was a very challenging project. It includes various sub-
components; among them, there is the core application written in Rails and a Javascript
interface. At first, Docker has provided several benefits to the Mapknitter project itself
but mostly for the Rails framework upgrade. The time required to build the container was
very low, and in short time we had a working developing environment. During the contai-
nerization process, we could notice that the Travis CI tool had been using the production
environment. So it was necessary to split the development, test and production environ-
ments, which has been done. With a few more improvements, Travis had set parallel jobs

- what caused the builds to run twice as fast.

So by first adopting the concept of Legacy in the box, leads the update to take
a further step and adopt the microservice architecture. That has been achieved at first,
by splitting the MySQL database and the Mapknitter web app. Later we got also to

containerize the ForeGo service, thus having three independent services running alongside.

Later on the project, we also got to setup Rubocop linter and stylesheet, which
following the same standards used in Plots2 project - other project part of the PublicLab
community ecosystem. By doing this, now there was a more cohesive and uniform set of
projects in the organization. Also this linting tool has been integrated with the continuous

integration tool to keep track of the syntax changes.

2.5. Results 33

This refactoring involved two developers, me and another member of the commu-
nity, the maintainers let us work very freely through the process, what has given us the
chance to explore and try several ways of applying the strategies. And by the end of the
Mapknitter study it was possible to apply a wide set of strategies, which were, in order:
Legacy in the Box, Continuous Integration, Microservices architecture and Continuous

Deploy.

2.5.3 Spectral Workbench

Spectral Workbench

Before DevOps After DevOps

Working properly
for development
and production
environments.

Docker/Docker Compose | None

Rails 3.2.3 with several
Framework version deprecated dependencies
and vendors.

Updated to Rails 5.2.4
with latest features.

Improved to cached
Misconfigured TravisCI, | pipelines with reduced
worked poorly. timeouts with more
stages running in parallel.

Continuous Integration

Configured JenkinsCI
pipelines. Build and
startup steps arranged in
order to have it working
the best way it could.
Every repository push
would trigger a build that
could be followed live.

Continuous Deploy None.

Configured a stylesheet
and integrated it with the
CI pipelines, and fixed
all of the linting errors.

Coding stylesheet None.

Tabela 5 — Spectral Workbench Comparative: Before DevOps and After DevOps.

With the previous experience acquired from the other study cases, there was alre-
ady an implicit order of strategies to be applied. First the docker workflow of the project
was rewritten, since it was an "old"repository - with legacy code and practices, it required
some restructuring and refactoring on the configuration files. For instance, the MySQL
instance was not dockerized and there was no automation that aided a developer to easily

start coding.

The Continuous Integration tool needed to be configured to execute local builds, so
that we could obtain a testing environment that simulated faithfully both the development
and production environment. This same CI tool previously was configured to run all tests

at once - what caused the builds to take valuable coding time. So I had to split the test

34 Capitulo 2. General Aspects

running by groups, in a way that each test suite was executed separately, thus taking

advantage of the parallelism provided by the tool.

When it comes to testing, a main request of one of the maintainers was the con-
figuration and inclusion of system tests and increase of the test coverage. Both of the

requirements have been accomplished.

After the Rails framework upgrade was complete, it was required a staging envi-
ronment so that we could test out the changes that were made on the cloud, a staging
environment. So along with the help of PublicLab’s sysadmin this was set, in an auto-
mated manner. And with Rubocop we got to standardize the coding style among the
several contributors; the Rubocop settings used were the same as the ones used in Plots2,
Mapknitter and Spectral Workbench.

The Spectral Workbench study case only involved me as developer, the maintainers
let me work very freely through the process, what gave me the chance to explore and try
new strategies, besides the ones I had used in previous study cases, via Continuous Testing.
And by the end of the study it was possible to apply the greater set of strategies of all
study cases: Continuous Integration, Legacy in the Box, Continuous Testing, Continuous

Deploy, Microservices architecture.

2.5.4 Salicml

Salicml

Working properly in
development and
production
environments.

Included a private
database proxy to
abstract VPN
connections to
developers.

Multiple configurations
to reflect every existing
environment

Docker /Docker Compose | None.

Framework version Django 2.2 | Django 2.2

Configured Gitlab CI tool to
check on docker builds and
automated test running.
Integrated CI tool with
docker containers
management.

Continuous Integration None.

Configured properly.
Totally automated by using
Rancher and Watchtower
tools.

Continuous Deploy None.

Coding stylesheet None. None.

Tabela 6 — Salicml Comparative: Before DevOps and After DevOps.

2.6. Discussion 35

Salic is an open source Brazilian governmental project, written in PHP, mono-
lithic, with no tests or technical documentation. The maintainers wanted to include a
machine learning module in the project. Since most machine learning libraries are written
in python, we containerize the legacy source code, and we build this new module as a

microservice, already employing all DevOps good practices and automations.

In the Salicml study I have not worked directly in this project, so that I could
obtain a third-party point of view regarding the DevOps strategies to apply and their
respective order of application. This different approach was very useful, as it helped
reasserting certain practices applied in the previous studies, and thus it was possible

forming them into strategies.

First it was included a docker development workflow for both development and
production environments. A private database proxy to abstract VPN connections to de-

velopers was also included.

Also, the main application image was built from another custom image. In practice,
whenever a change was inserted into the codebase and it didn’t affect the application’s
dependencies, the requirements docker image didn’t have to be rebuilt, thus optimizing

the pipeline resources usage.

This refactoring involved Victor Moura, the maintainers allowed him to work very
freely through the process, what has given him the change to use a wide set of tools. And
by the end of the Salicml study it was possible to apply a great range of strategies, which
were, in order: Legacy in the Box, Continuous Integration, Microservices architecture and
Continuous Deploy. The main focus of this study in question was containerizing the legacy
software and assure evolvalibility of it through the implementation of the Microservices

architecture.

By the end of the Salicml study it was possible to apply a great range of stra-
tegies, which were, in order: Legacy in the Box, Continuous Integration, Microservices
architecture and Continuous Deploy. The main focus of this study in question was con-
tainerizing the legacy software and assure evolvalibility of it through the implementation

of the Microservices architecture.

2.6 Discussion

One of the most important things that could be extracted from those refactorings
is that the order of the strategies to apply matters a lot. For instance, if you choose to
implement Continuous Deploy in your legacy software before having Continuous Integra-
tion set up, you could be taking a lot of risks by pushing certain amount of untested code

to the cloud, or even be wasting a lot of precious time by manually testing it first and

36 Capitulo 2. General Aspects

then deploying.

Considering another hypothetical case, one could choose to split the various com-
ponents of the legacy software in several services - thus taking advantage of the Microser-
vices architecture strategy - but it does that before implementing the Legacy in the Box
technique. It may be very complicated to keep this architecture change flowing in a good
pace without taking advantage of the various benefits that a legacy in box tool, such as
Docker, could bring. Actually, making the refactoring way easier. In fact, it means that
choosing the right order of strategies to be applied could prevent one from taking several

extra hours, even days, of massive manual labor.

As the first strategy one should take to embrace DevOps in a legacy project is
having a Continuous Integration pipeline set up. With that - along with a minimum test
coverage - one can assure that the small pieces of code are still working, thus guarante-
eing a more trustful code base. It is also noticeable that implementing CI strategy first
will absorb the time a developer would take to run tests every time future integrations

happened.

After having the work environment Cl-friendly, the next step one should take
is wrapping the legacy app in a container. Every configuration, third-party packages,
and abstraction get to be explicitly defined in a container image, also being able to run

anywhere basically.

Continuous Deploy and Testing are desired strategies, especially when it comes to
testing, but needing to deploy and test are not a bottleneck - until a certain point, of
course, and this affirmation also depends on the size, developers, and business rules that
this legacy software goes by. If one has the chance and time to keep continuously testing
the legacy code and implement an integration to ship at every successful CI tool build,

then those are convenient strategies to adopt.

Moreover, implementing microservices is what one would call an utterly optional
strategy because it takes a lot of time and effort to do it correctly. If it is not done right,
you will only obtain a distributed monolith, with every said "micro"service executing heavy
operations. Furthermore, once one has adopted the previous strategies, it is considerably

less painful to implement it.

Continuous Testing is by far the broadest strategy, meaning that almost every
legacy should adopt it when embracing the DevOps practices; it holds great significance
for organizations using DevOps for the regular deployment of software into production.
Continuous Testing in DevOps essentially interweaves testing efforts into all stages of
designing, developing, and deploying the software. When it is adequately implemented,
an organization can get a constant insight into the robustness of the latest software build

and ensure speedy delivery of high-quality software.

2.6. Discussion 37

When it comes to Continuous Integration, we can not say it is as "mandatory"as
Continuous Testing. However, it certainly is beneficial, and, indeed, it will save a lot of the
developers time. Of course, it could be painful at first for the team, and adapting a legacy
software to such practices could be considerably expensive. Implementing a trustful CI
pipeline could involve completely change a software development culture, adapt the orga-
nization and workflow, automate the testing bulk, and even provide certain infrastructure.

Nevertheless, in the long term, the benefits are countless.

By having each piece of code verified by an automated build, a team is allowed
to develop cohesive software more rapidly. Leading to significantly reduced integration
problems and quick error detection. The main goal of Continuous Integration is to provide
rapid feedback so that if a bug is introduced into the codebase, it can be identified and

corrected as soon as possible.

As in Continuous Integration, Continuous Deploy, when done right, is full of be-
nefits, but implementing a trustful pipeline may be irksome as in CI. The technical parts
are more comfortable than the organizational and cultural parts when it comes to le-
gacy software. However, once this bottleneck is overcome, CD presents several benefits
that directly influence the end product. Certainly, Continuous Deploy, when done right,
is very fruitful - primarily when used along with Continuous Integration. Since failures
are detected faster and fixed faster, it leads to higher release rates, making it possible to
evaluate new code faster - and in smaller portions - thus allowing the developers to focus

on the product features themselves.

Containerization, or commonly legacy in the box, is by far the strategy that pre-
sents one of the most significant benefits of all strategies. It is the fastest and straight-
forward strategy to implement. It does not require special technical knowledge and gives
support to the other strategies. It is a common misconception that using containers only
makes sense if the app to be hosted is composed of microservices, but monolithic de-
ployments can benefit from containers. Using a container provider for the legacy code
immediately makes it easy to move the app from one host to another just by migrating
the previously generated container image. Every developer is using the same container
image - this means consistency. Several other benefits intrinsically appear with the men-
tioned aspects, such as scalability, bare-metal access to the hardware, easy distributing,

and much.

Two significant benefits are perceived by using containers as part of the Legacy
in the Box strategy. First, resource utilization is much more efficient. Second, containers
are cheap in man-hours to maintain and represent only a few costs a machine’s resources.
Container technology supports streamlined build, test, and deployment from the same
container images; it enables Continuous Integration and Deploy. By using a container

provider for the legacy code, one can immediately make it easy to move the app from one

38 Capitulo 2. General Aspects

host to another just by migrating the previously generated container image.

Packaging the legacy code as a container, distributing it through an image reposi-
tory is very facilitated. Anyone with access can pull the container image and run it. Every

developer is using the same container image - this means consistency.

In legacy apps context, the meaning of the word containerization needs to be
augmented to include all that is necessary to make an existing app ready to adopt Legacy
in the Box concept. That is, to an extent that is well balanced with technical feasibility and
expected business benefits. Choosing the right legacy containerization technique within
this spectrum is a matter of striking the right balance between investment, business

outcome, cost-effectiveness gain, technical feasibility, and risk appetite (HAASJES, 2020).

While this practice delivers some benefits, it does not offer the full benefits of mo-
dular, container-based application architecture. Using containerization to the fullest invol-
ves refactoring the existing applications to adapt to the containers thoroughly. That could
quickly scale out, thus providing better support for microservices architecture. Container
technology supports streamlined build, test, and deployment from the same container

images; it means better support for Continuous Integration and Deploy.

At last, the Microservices strategy provides many advantages, but to the right
contexts. One of the most significant advantages of a microservice over a monolithic
architecture is that a microservice architecture allows different components to scale at
different rates. The flexibility of microservices lets a system expand fast without requiring

a significant increase in resources.

Also talking about the benefits of it, we have that, for instance, we know that
every single microservice work independently and thus can be written with different te-
chnologies, and since all services are independent, developers are allowed to add, replace,

and remove different services without influencing the already existent services.

Nevertheless, sometimes, using different languages, libraries, frameworks, and data
storage technologies can be intimidating and paralyzing for organizations at first. They
could become a "Frankenstein'of services that a long term. Plus, not every team can handle
the autonomy, and independence microservices offer. Like any architectural approach,
Microservices are hard to design correctly, and one should plan a lot before adopting this

strategy.

Finally, one should consider these techniques or strategies just the plain basics the
would start permitting the evolution and maintainability of a legacy code with DevOps.
That means continuously and safely update the legacy project’s dependencies, keep re-
factoring the code so that its quality enhaces - by following the SOLID and Clean Code
premisses, this refactoring should also get done in a way that leads to the componentiza-

tion of the various parts of the code and when adding new features, assure that these are

2.7. Conclusion 39

matching the current language standards.

It is also important to mention that throughout this entire automation process
the very own team of the legacy project qualifies in DevOps technologies, thus adapting
the development (Dev) and operations (Ops) processes and premisses according to the

DevOps culture.

2.7 Conclusion

There were four study cases conducted as shown in 2, each case had its our pe-
culiarities which has allowed us to apply a different approach at every study. At every
study it was possible to apply Continuous Integration. The Legacy in the Box technique
was not only applied in Salicml, since the project already presented a stable container
environment. When it comes to Continuous Deploy it was not just possible to apply in the
Noosfero project and using Microservices was only achievable on Mapknitter and Spectral
Workbench. By far the techniques that immediately presented benefits were Continuous

Integration and Legacy in the Box, as of their easiness of execution.

Every study case was a different sequence of strategies implementation, by re-
gistering every bottleneck and benefits perceived and based on the experiences acquired
through the results achieved in this work, we found the following implementation sequence

reduce the technical complexities of adopting DevOps:

1. Continuous Integration

(\)

. Legacy in the Box
3. Continuous Testing
4. Continuous Deploy

5. Microservices architecture

The present work presented an experience report of DevOps adoption in four open

source web projects.

We present a realistic analysis of the DevOps strategies that might help several
teams aiming to modernize their legacy systems. It could give them guidance to consider

the upcoming steps to take and provide an overview of the importance of certain things.

Based on real-world experience, we set out the strategies, benefits, and counterme-
asures for each team with a specific condition or need. This work consisted of obtaining

abstract information from previous experiences when upgrading legacy software. We have

40 Capitulo 2. General Aspects

extracted data based on two of those experiences and mashed into the strategies that

have been portrait in previous sections.

Of course, the DevOps culture of practices presents several other practices and
mindsets to make beneficial strategies. However, the strategies presented here were con-
sidered more relevant, and the ones that present the most impact in outdated legacy

software.

41

Referencias

AMAZON. What is DevOps. 2020. <https://aws.amazon.com/devops/what-is-devops/
ncl=h_ls>, accessed on October 2020. Citado na pagina 15.

BALALAIE, A.; HEYDARNOORI, A.; JAMSHID, P. Microservices architecture enables
devops: An experience report on migration to a cloud-native architecture. International
Journal of Open Information Technologies, 2016. Citado 2 vezes nas paginas 16 e 17.

BOGNER, J. et al. Assuring the evolvability of microservices: Insights into industry
practices and challenges. 2019 IEEE International Conference on Software Maintenance
and Evolution (ICSME), Cleveland, OH, USA, 2014. Citado na pégina 16.

BRADLEY, T. The Symbiotic Relationship of DevOps and Open Source. 2016.
<https://techspective.net/2016,/06/01/symbiotic-relationship-devops-open-source/>,
accessed on December 2020. Citado na pagina 27.

CASCIO, W.; MONTEALEGRE, R. How technology is changing work and organizations.
The Business School, University of Colorado, Denver - Colorado 80217, 2016. Citado na
pagina 22.

CHIANG, C.-C.; BAYRAK, C. Legacy software modernization. 2006 IEEE Conference
on Systems, Man, and Cybernetics - Taipei, Taiwan, 2006. Citado na pagina 19.

CHIMA, R. Legacy Software: How To Tell If Your Software Needs Replacing. 2016.
<https://www.bbconsult.co.uk/blog/legacy-software>, accessed on December 2019.
Citado na pagina 21.

CONTRIBUTORS, N. Noosfero. [S.1.]: GitHub, 2007. <https://gitlab.com/noosfero/
noosfero>. Citado na pagina 22.

DOBBERT, M. L. Ethnographic research: Theory and application for modern schools and
societies (Praeger studies in ethnographic perspectives on American education). 1st. ed.
Nova Southeastern University, USA: Praeger (January 1, 1982), 2013. ISBN 0030614732,
978-0030614736. Citado na pagina 28.

EDMONDS, W. A.; KENNEDY, T. D. An applied guide to research designs :
quantitative, qualitative, and mired methods. 2nd. ed. Nova Southeastern University,
USA: SAGE Publications, Inc; Second edition (May 30, 2016), 2013. ISBN 1483317277,
978-1483317274. Citado na pagina 27.

EELES, P. What is a software architecture? USA, 2006. Citado na pagina 25.

ERRICKSON-CONNOR, B. Truth or consequences. Z/Journal, 2003. Citado na péagina
19.

FOWLER, M.; BECK, K. What is refactoring? In: Refactoring: Improving the Design of
Ezisting Code. [S.1.: s.n.], 2002. v. 1, p. 9. Citado na pagina 23.

GARLAN, D.; SHOW, M. An interoduction to software architecture. World Scientific
Publishing Co Pte Ltd, 1993. Citado na pagina 26.

42 Referéncias

GOLDEN, B. & reasons why you should always run microservices

apps in containers. 2019. <https://techbeacon.com/app-dev-testing/
3-reasons-why-you-should-always-run-microservices-apps-containers>, accessed
on December 2019. Citado na pagina 21.

GREENOUGH, D. C.; WORTH, D. D. The transformation of legacy software: Some
tools and a process. EngiUniversity of New South Wales, Sydney, Australianeering and
Physical Sciences Research Council, 2003. Citado 2 vezes nas paginas 21 e 22.

HAASJES, G.-W. Containerization of legacy applications. 2020. <https://developer.
ibm.com/technologies/containers/articles/containerization-of-legacy-applications/ >,
accessed on December 2020. Citado na pagina 38.

HAT, R. What is CI/CD? <https://www.redhat.com/en/topics/devops/what-is-ci-cd>,
accessed on December 2019. Citado 2 vezes nas paginas 24 e 25.

INCORPORATED, S. T. Why devops matters: Practical insights on managing complex
continuous change. Saugatuck Technology Inc., 2014. Citado na péagina 15.

KHANAM, Z. Analyzing refactoring trends and practices in the software industry. Saudi
Electronic University - Dammam, KSA, 2018. Citado na pagina 15.

LEITE, L. et al. A survey of devops concepts and challenges. ACM Computing Surveys,
2019. Citado 6 vezes nas paginas 15, 20, 21, 22, 23 e 25.

LYMAN;, J. Open source leads to DevOps success. 2020. <https://techbeacon.com/
devops/open-source-leads-devops-success>, accessed on December 2020. Citado na
pagina 27.

MEYER, M. Continuous integration and its tools. IEEE SOFTWARE, 2014. Citado na
pagina 24.

MURPHY, N. Site Reliability Engineering book. 1st. ed. Google Ireland: O’Reilly Media;
1st edition (April 26, 2016), 2016. ISBN 149192912X, 978-1491929124. Citado na pagina
15.

NAMIOT, D.; SNEPS-SNEPPE, M. On micro-services architecture. International
Journal of Open Information Technologies, 2014. Citado na pagina 26.

OPENSOURCE.COM. What is open source software? | Opensource.com. 2019.
<https://opensource.com /resources/what-open-source>, accessed on December 2019.
Citado na péagina 26.

RAJLICH, V. Five recommendations for software evolvability. Department of Computer
Science, Wayne State University - Detroit, MI, U.S.A., 2018. Citado na pagina 16.

RAO, G. H. Devops for legacy systems — the demand of the changing applications
landscape. Infosys Limited, Bengaluru, India, 2018. Citado 2 vezes nas paginas 16 e 19.

S.A.M.RIZVI; KHANAM, Z. A methodology for refactoring legacy code. Department of
Computer Science; Jamia Millia Islamia - New Delhi, India, 2011. Citado na pagina 19.

SATO, D.; WIDER, A.; WINDHEUSER, C. Continuous delivery for machine learning.
USA, 2019. Citado na pagina 25.

Referéncias 43

SINGH, A.; BANSAL, R.; JHA, N. Open source software vs proprietary software. Guru
Kashi University - Talwandi Saboo, Bathinda, 2015. Citado na pagina 26.

SMARTSHEET. The Way of DevOps: A Primer on DevOps Principles and Practices.
2020. <https://www.smartsheet.com/devops>, accessed on November 2019. Citado na
pagina 20.

SMEDS, J.; NYBOM, K.; PORRES, I. Devops: A definition and perceived adoption
impediments. Lecture Notes in Business Information Processing vol 212 Springer Cham,
2015. Citado na pagina 17.

SOMMERVILLE, 1. Software Engineering, Tenth Edition. 10th. ed. USA: Pearson; 10th
edition (March 24, 2015), 2015. ISBN 0133943038. Citado na pagina 21.

VASSIT. 6 Key Challenges of DevOps Implementation. 2016. <http://blog.vassit.co.
uk /6-key-challenges-of-implementing-a-devops-strategy >, accessed on January 2020.
Citado na péagina 15.

ZHU, L.; BASS, L.; CHAMPLIN-SCHARFF, G. Devops and its practices. IEEE
SOFTWARE, 2016. Citado na pagina 20.

