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Abstract
In the last decade, Artificial Intelligence (AI) appears to be in many different areas in
human lives. Many times those AI models are based on complex algorithms and neural
networks, also called as black boxes. In recent years, tools have emerged with the objective
of explaining the operation of black boxes, i.e, SHAP. Studies have shown that these tools
can be used as a feature selection tool, which can improve the accuracy of the models
and reduce the computational costs of model training. The main objective of this work
is to understand how much explainability tools can assist in the feature selection process
from three perspectives: Performance, Training Time; and Accuracy. Those metrics were
evaluated based on two practical experiments. The first one using the Cancer Breast
Dataset and the second one using the Credit Card Fraud dataset. Each experiment was
carried out for the following models: Random Forest, XGBoost, Catboot, and LightGBM.
As result, we were able to conclude that SHAP, in addition to bringing explanability, can
bring performance gains in a machine learning model.

Key-words: Explainable AI. SHAP. Feature Selection.
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Introduction

In the last decade, Artificial Intelligence (AI) appears to be in many different areas
in human lives. Today, this technology is used in different scenarios, such as: self-driving
cars; insurance claim; analyses of tumours; credit card claim; and many others.

Thus, many times those AI models are based on complex algorithms and neural
networks, also called as black boxes. Black box is a term used to refer to a system for
which we can only observe the inputs and outputs, but not the internal workings.

The lack of transparency of black boxes create questions about trust of those
models and applications in real life. In that context, Explainable Artificial Inteligence
(XAI) provides insights about how to understand the outputs provided by those models.

In recent years, tools have emerged with the objective of explaining the operation
of black boxes, i.e, SHapley Additive exPlanations (SHAP).

Moreover, studies have shown that these tools can be used as a feature selection
tool, which can improve the accuracy of the models and reduce the computational costs
of model training.

Therefore, the main objective of this work is to understand how SHAP, an explain-
ability tool can assist in the feature selection process from three perspectives: Training
Time; Storage; and Performance. In this work, SHAP was used because it is a model
agnostic tool based on concepts and theories that are widespread in game theory, Math
Research Field.

Those metrics were evaluated based on two practical experiments. The first one
using the Cancer Breast Dataset and the second one using the Credit Card Fraud dataset.
Cade experiment was carried out for the following models: Random Forest, XGBoost,
Catboot, and LightGBM. The methods and materials section provides more details about
the experiments.

0.1 Problem
Deciding which features to select in machine learning models can be a tricky task,

since it can affect different perspectives, not restricting only the understanding of a specific
domain. In this way, feature engineering has two main objectives:

• Preparing the proper input dataset

• Improving the performance of machine learning models.
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This step is within the data preparation, second, this stage can include up to 80 per-
cent of the efforts required in the development of a machine learning process (SHEARER,
2000).

The main idea of this work is to understand the use of Shapley values as a feature
selection tool, using studies case using SHAP as the base.

0.2 Research Goals
The main objective of this work is to understand how SHAP, an explainability tool,

can assist in the feature selection process from the following perspectives: Performance;
training time; and storage.

In order to make these results more comprehensive, different datasets and models
were used. The next subsection is going to present in detail the specific research objectives.

0.3 Specific Objectives
As mentioned before, to understand how SHAP work as a feature selection tool,

this work focused on the following perspectives:

• Training time: According to Marcílio and Eler (MARCÍLIO; ELER, 2020), one of
the biggest benefits of the feature selection is the training time in which the model
is executed in the dataset. In this sense, the training time without feature selection
was compared to that with feature selection in order to understand the impact of
the feature selection on the training time.

• Storage: The storage concerns with the size of the dataset. In this case, the dataset
size is often loaded into memory, that is, large datasets may require a lot of compu-
tational power.

• Performance: According to Bellmann (BELLMAN; KALABA, 1959), for some
models of feature selection it can improve the degree of assertiveness of the model,
that is, Accuracy, Precision, Recall, and F1 Score.
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1 Background

1.1 Black Boxes
Recent advances of AI allow us to realize the provided achievements of accurate

machine learning models (SAMEK; WIEGAND; MÜLLER, 2017). Major keys of this
development were earlier improvements in support vector machines and more recent im-
provements in deep learning methodology (LECUN et al., 2012).

These results allowed many advances in different knowledge areas. A research de-
veloped by Samek, Wiegand and Muller (SAMEK; WIEGAND; MÜLLER, 2017), defines
this improves in AI as: "With the availability of large databases and recent improvements
in deep learning methodology, the performance of AI systems is reaching or even exceeding
the human level on an increasing number of complex tasks. Impressive examples of this
development can be found in domains such as image classification, sentiment analysis,
speech understanding or strategic game playing."

Regardless of this advance, models are usually complex and have comprehension
gaps, impairing people’s understanding. For this reason, these models are known as Black
boxes and its representation includes an input which is submitted into a complex and
hierarchical level of interaction, followed by an output (Figure 1).

Black box models provide an opaque and non-intuitive accuracy value, impairing
the understanding (GUNNING, 2017). This raises questions to the final user, as follows:

1. Why did you do that?

2. When can I trust you?

3. When do you succeed?

4. When do you fail?

5. How do I correct an error?

The next subsections are going to approach some methods and XAI tools.

1.2 Explainable Artificial Intelligence
Explainable AI (XAI) is an area of artificial intelligence research related to the abil-

ity in which humans can understand AI solutions. It contrasts with the concept of "black
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Figure 1 – E.g Black Box - Source: XenonStack

box", presented in the last subsection. Thus, Explainability is required in many systems
where prediction should not fail: Transportation; Finances, Security; Legal; Medicine and
Military. (SAMEK; WIEGAND; MÜLLER, 2017).

In this sense, Herlocker, Jonathan, Konstan, Joseph, Riedl, and John in their re-
search introduce how relevant trust is for the final user. That research presented that when
the user knows how the movie’s recommendation works (How the prediction model works)
they accept more that advice, as consequence, they watch more movies (HERLOCKER;
KONSTAN; RIEDL, 2000).

Interpretability and Accuracy are considered one of the major factors of a suc-
cessful predictive model (CHOI et al., 2016). However, many applications present the
impossibility of understanding and validating the decisions of an AI model, and that is a
strong penalty (SAMEK; WIEGAND; MÜLLER, 2017).

A research proposed by Samek, Wiegand and Muller (SAMEK; WIEGAND; MÜLLER,
2017), defines this trust as: "If the users do not trust a model or a prediction, they will
not use it. It is important to differentiate between two different (but related) definitions
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of trust: (1) trusting a prediction, i.e. whether a user trusts an individual prediction suf-
ficiently to take some action based on it, and (2) trusting a model, i.e. whether the user
trusts a model to behave in reasonable ways if deployed."

Nevertheless, for Samek, explainable artificial intelligence presents other relevant
characteristics (SAMEK; WIEGAND; MÜLLER, 2017):

• Verification of the system: Provide information that justify the output of a
model. As mentioned before a user should not trust in a black box by default.

• Improvement of the System: Understand its weakness. For instance, it is more
difficult to analyze black box models than interpretable models. Detecting biases
on data sets and models making it easier to understand the results provided from a
specific input.

• Learning from the system: Many AI Systems are trained with millions of exam-
ples, for this reason it can recognize patterns intangible for people. However, When
using an explainable AI system it is easier to access information about the model,
thus acquiring new insights about the model.

• Compliance to legislation: Recently, countries have increased attention in legis-
lation that approach AI Systems, for example autonomous car laws. Many times,
those models are black boxes, which makes it quite complicated to explain their
results. Withal, it’s difficult to assign responsibility for wrong predictions. Accord-
ing to Martins (MARTINS, ), cites the implications of Brazilian law 13.709 / 2018
on AI models. One of the implications is that the IA models must be transparent,
understandable and explainable

As mentioned before, there was a common belief that a trade off must be done in
favour of interpretability or accuracy (CHOI et al., 2016). the image 2 below represents
this concept, where represents models and its accuracy related with interpretability.

However, recent studies have shown that these tools can improve the accuracy
of the models, reduce the computational costs of model training and most of all add
interpretability to those systems.

This work covers post-hoc explainability techniques, that is models do not meet any
of the criteria imposed to declare them transparent, a separate method must be devised
and applied to the model to explain its decisions. These techniques aim to present how
an already developed model produces its predictions for any given input. Model-agnostic
techniques for post-hoc explainability could be classified:

• Explanation by simplification: These techniques consist of fragmenting the ex-
planation of a model or prediction into parts or fragments. Among the most known
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Figure 2 – XAI Initial Concept - Source: DARPA XAI

contributions to this approach we encounter the technique of Local Interpretable
Model-Agnostic Explanations (LIME) (RIBEIRO; SINGH; GUESTRIN, 2016a) and
all its variations (MISHRA; STURM; DIXON, 2017), (RIBEIRO; SINGH; GUESTRIN,
2016b). LIME builds locally linear models around the predictions of an opaque model
to explain it.

• Feature relevance explanation: These techniques aim to describe the functioning
of an opaque model by measuring or ranking the influence, relevance or importance
each feature has in the prediction output by the model to be explained. One of the
most known contributions to this approach we encounter the SHAP technique of
(LUNDBERG; LEE, 2017).

• Visual explanation techniques: These techniques consist in presenting a portfo-
lio of visualization techniques to help in the explanation of a black-box ML. That
are important works in this research area such as (CORTEZ; EMBRECHTS, 2011)
and (CORTEZ; EMBRECHTS, 2013).

1.2.1 SHAP

SHAP is a tool that allows understanding the output of any machine learning
model based on a game theoretic approach. This technique connects optimal credit al-
location with local explanations using the classic Shapley values from game theory and
their related extensions. Shap is defined as post hoc and model agnostic XAI, that is, it
can be applied to any model and its applied post modelling training step (MUELLER et
al., 2019)

In this work, SHAP was used as a feature selection tool due to the following reasons
(SHAP, ):
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• SHAP is a model agnostic tool

• SHAP is Based on mathematical concepts, i.e, Shapley values

• SHAP is a Global approach, it’s not exclusively a local approach, i.e, LIME

• SHAP is post-hoc technique

1.2.1.1 General Idea

Suppose you had to explain a machine learning model that calculates the value of
an apartment. There are several attributes that can set your price, for example, covered
parking, swimming pool, pets friendly, size, location, etc.

For a linear model it is not such a complicated task, as each resource has a weight
that defines its importance in the final prediction. However, for other models, it can be a
complex task.

There is a solution based on the game theor. In this context, the Shapley value
is a method for allocating payments to players depending on their contribution to the
total payment. Players cooperate in a coalition and receive a certain profit from that
cooperation. In machine learning, it is understood that players are the features of a model,
and the gain is the final prediction of the model. Thus, The Shapley value represents the
average marginal contribution of a resource value across all possible coalitions.

For example, to calculate the weight of a feature F, the value of that feature is
replaced by a value from another instance of the model and all possible possibilities are
taken in order to compare the original prediction with this new prediction. The avarage
value between the random value and the original represents the weight of this features to
the final prediction.

This calculation is repeated for all possible coalitions. Since this theory is based on
comparisons, the computation time increases exponentially with the number of resources.

1.2.1.2 Definition

𝑔(𝑧′) = 𝜑0 +
𝑀∑︁

𝑗=1
𝜑𝑗𝑧

′
𝑗 (1.1)

where g is the explanation model, 𝑧′ ∈ {0, 1}𝑀 is the coalition vector, M is the
maximum coalition size and 𝜑𝑗 ∈ 𝑅 is the feature attribution for a feature 𝑗, the Shapley
values
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1.2.1.3 Library

SHAP is an open Source project maintained by Scott Lundberg, a microsoft re-
searcher, and it’s available under MIT License. Today, this tool is available as a framework
and could be installed using PIP (SHAP, ). The project repo has accomplished some re-
sults in XAI community, such as:

• More than twelve thousand of stars on Github;

• More than 120 contributors;

• More than 45 releases;

The image 3 below presents the SHAP open source repository:

Figure 3 – SHAP Repository - Source: SHAP

In addition, the library provides a clear explanation of the relevance of each feature
in the final prediction. In the image below 4, the pink part defines the one with the greatest
impact, while the blue part presents the one with the least impact. The example was taken
from the Boston Houses dataset, a very popular dataset.

1.3 Feature Selection
In the paper, A Survey on Feature Selection methods, the authors relate the dimen-

sionality of the dataset to redundancy problems (CHANDRASHEKAR; SAHIN, 2014).
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Figure 4 – Example SHAP Output - Source: SHAP

This problem occurs because each data point appears to be equidistant from each other
(MARCÍLIO; ELER, 2020). One of the ways to solve or reduce this problem is through
the selection of data, that is, remove data that does not directly impact the machine
learning solution.

This concept of selecting features that are relevant to an AI model is called feature
selection. The features selection algorithms can be classified as:

• Filter: This consists of selecting a subset of the most important features of a dataset.
This procedure is performed as a pre-processing step. (CHANDRASHEKAR; SAHIN,
2014)

• Wrapper: This method consists of removing and / or replacing a set of features that
least impact the predictive power of a model, i.e, the model’s output. (BELLMAN,
2015)

• Embedded: his method occurs during training, so they are specific to each type of
model. E.g, one of the most common models is the removal of neurons in which the
weights approach zero. (BOLÓN-CANEDO et al., 2014)

In summary, feature selection provides great benefits, such as:

• Reduces Overfitting: By decreasing the amount of redundant data decreasing the
likelihood of making decisions based on noise.

• Improves Accuracy: By decreasing the amount of misleading data it could benefit
the accuracy of a model.

• Reduces Training Time: By decreasing the amount of data points the training
time is shorter, since the algorithm’s complexity is decreased.
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Recent studies demonstrated that XAI tools can be used as a feature selection
mechanism. In this context, SHAP obtained better results as a feature selection tool
than other quite common techniques, such as Mutual Information, RFE and ANOVA
(MARCÍLIO; ELER, 2020). As mentioned before, this work aims to apply XAI technique
as a feature selection tool, measuring and analyzing in different contexts.

1.4 Models
As mentioned in the introduction, this work aims to understand feature selection

using SHAP through different perspectives. One of the most important perspectives is to
understand how it works by multiple models. Thus, this section is going to present each
used model.

1.4.1 Catboost

CatBoost is an algorithm for gradient boosting on decision trees. It is developed
by Yandex researchers and engineers, and is used for search, recommendation systems,
personal assistant, self-driving cars, weather prediction and many other tasks at Yandex
and in other companies, etc. It is in open-source. (PROKHORENKOVA et al., 2017)

1.4.2 Random Forest

Random forests or random decision forests are an ensemble learning method for
classification, regression and other tasks that operates by constructing a multitude of
decision trees at training time and outputting the class that is the mode of the classes.
(SCIKIT-LEARN, 2021) . Although the Random Forest model presents tools that allow
us to understand the relevance of each feature, this model was used as a way to understand
how TREE SHAP works, an explainer made for this type of model (SHAP, ).

1.4.3 LightGBM

LightGBM is a gradient boosting framework that uses tree based learning algo-
rithms. It is designed to be distributed and efficient. One of the main characteristics is
the support to distributed of parallel. It was purposed by microsft. (LIGHTGBM, )

1.4.4 XGBoost

XGBoost is an optimized distributed gradient boosting library designed to be
highly efficient, flexible and portable. It implements machine learning algorithms under
the Gradient Boosting framework (XGBOOST, ).
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2 Material and Methods

2.1 Methods
In order to meet the purposed objectives. A sequence of key activities was created.

As already mentioned, SHAP is a post-hoc technique, that is, it is always applied after
training a model.

In the experiments of this work, in the initial interaction the model is executed
with all the features and the SHAP is applied on it in order to identify the relevance of
each feature.

After this first interaction, the next ones consist of performing the training of the
model with a set of features in their order of priority according to the data obtained
by SHAP in the initial stage. This process happens as follows: In the first interaction,
the model is executed with only the most relevant feature, in the second interaction, the
model is executed with the first and second most relevant features, and so on. The image
5 represents represents the experiments activities. Throughout this section, each of these
activities will be presented in detail.

Figure 5 – Experiments Methodology

2.1.1 Manipulate Dataset - Data Preparation

In many cases, most of the data used in data mining are collected and used for other
purposes, and consequently, they are of some kind of refinement before being modeled. In
this activity, two very important tasks are performed. (SHEARER, 2000)

The first is known as data cleaning, this task consists in make changes, perhaps
tracking down sources to make specific data corrections, excluding some cases or items of
data, or replacing some items of data with default values or replacements selected by a
more sophisticated modeling technique.
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The second is known as data formatting, it consists in to manipulate the data type
to another format that fits better to modeling purposes.

2.1.2 Select Features

One of the most important aspects of a model is selecting the features that fit
better into a particular domain. As previously presented, all features were selected in
order to achieve their importance in the model’s output using Shapley values.

In the first interaction, no feature removal is performed, in relation to the data
preparation step. However, from the second interaction, the first and second most relevant
features are selected, and so on.

2.1.3 Train Model

In this step, the model is trained with the selected features, the dataset was split
in 70 percent to training and 30 percent to data validation. As presented before, each
experiment is based on a specific model. The next subsections are going to present the
models approached in this research and their configurations.

2.1.3.1 XGBoost

In classification experiments was used the XGBClassifier and its default values, in
the package version 1.4.1 for python (XGBOOST, 2021).

The table 1 presents the value for each XGBoost property.

Table 1 – XGBoost Classifier - Model’s Properties Values
Property Value
base_score 0.5
booster gbtree
colsample_bynode. 1
colsample_bytree 1
gamma 0
learning_rate 0.1
max_delta_step 0
max_depth 3
min_child_weight 1
n_estimators 100
n_jobs 1
objective multi:softprob
random_state 0
reg_lambda 1
scale_pos_weight 1
Verbosity 1
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2.1.3.2 Random Forest

In classification experiments was used the RandomForestClassifier and its defaults
values, in the version 0.24.1 (SCIKIT-LEARN, 2021).

The table 2 below presents those values.

Table 2 – Random Forest Classifier - Model’s Properties Values
Property Value
n_estimators gbdt
criterion squared_error
min_samples_split 2
min_samples_leaf 1
min_weight_fraction_leaf 0
max_features auto
min_impurity_decrease 0.
bootstrap True
oob_score False
verbose 0
warm_start False
ccp_alpha 0.0

2.1.3.3 LightGBM

In classification experiments was used the LGBMClassifier and its defaults values,
in the version 3.2.1. (MICROSOFT, 2021).

The table 3 below presents those values.

2.1.3.4 CatBoost

In classification experiments was used the CatBoostClassifier and its defaults val-
ues, in the version 0.25.1.

In Catboost, the defaults values are None for every property, in this case. Please
check the documentation for more details (CATBOOST, 2021).

2.1.4 Model Evaluation

In this step, the results found in the training of a model (M) with resources f are
measured. As was presented at the beginning of the work, this work aims to measure
different perspectives of the training process of a model, not just looking at the precision
or accuracy of the models.

For classification problems, the concept of confusion matrix is used as a basis
for different metrics that aim to identify different perspectives of the assertiveness of a
machine learning model.
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Table 3 – LightGBM Classifier - Model’s Properties Values
Property Value
boosting_type gbdt
num_leaves 31
max_depth -1
learning_rate 0.1
n_estimators 100
subsample_for_bin 200000
min_split_gain 0.0
min_child_weight 0.001
min_child_samples 20
subsample 1.0
ubsample_freq 0
colsample_bytree 1.0
reg_alpha 0.0
reg_lambda 0.0
n_jobs -1
silent True
importance_type split

In this project, we are based on the following metrics: Storage (bytes); Training
time (ms); Precision (%), Precision (%), Reccall (%), and F1 Score (%). In the metrics
section, we’ll go into detail for each one.

2.1.5 Apply Shap

As previously presented, the shap is a post-hoc technique, that is, it is performed
after the training phase of a model. From the output vector of the trained model it is
possible to use the SHAP explainers, that is, an interface that allows to calculate the shap
values in an optimized way. From these shap values, we can interpret the data in different
ways (graphs and manipulations).

In this experiment, a csv file was created with the shap values of each feature in
descending order. From the shap values, we can understand the importance of each feature.
This step that provides the sequence of the applied feature selection. In addition, this
phase is only performed in the first interaction of the experiment, the other interactions
are based on the csv with the priorities created in the first interaction.

2.1.6 Feature Selection

As mentioned in the beginning of this section, the features are selected and grouped
according to shap values.

In this step, the table is with features relevance (shap values) and the features are
grouped in a interactive way.
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In the first interaction, the model is executed with only the most relevant feature,
in the second interaction, the model is executed with the first and second most relevant
features, and so on. Mathematically, this could be understood as:

1. First Interaction: 𝐼1 = 𝑓1

2. Second Interaction: 𝐼2 = 𝑓1, 𝑓3

3. Third Interaction: 𝐼3 = 𝑓1, 𝑓2, 𝑓3

4. N Interaction: 𝐼𝑛 = 𝑓1, 𝑓2, 𝑓3, ..., 𝑓𝑛

2.2 Metrics

2.2.1 Performance

As previously mentioned, machine learning is used in different applications in our
daily lives, some of them in scenarios where an unexpected result can generate major
impacts. In this context, it is essential to understand performance metrics that seek to
explain the assertiveness of a model from different perspectives.

In this work, classification problems were used, which means that the output is the
segmentation into two or more classes. In this type of problem, the following metrics are
used: Accuracy; Precision; Recall; and F1-Score. These metrics are based on the concepts
of True Positives (TP), True Negative (TN), False Positive (FP), and False Negatives
(FN) which can be understood as:

• True Positives (TP): True positives are the cases when the current class of the data
point was 1 (True) and the predicted is also 1 (True).

• True Negatives (TN): True negatives are the cases when the current class of the
data point was 0 (False) and the predicted is also 0 (False)

• False Positives (FP): False positives are the cases when the current class of the data
point was 0 (False) and the predicted is 1 (True). False is because the model has
predicted incorrectly and positive because the class predicted was a positive one
(1)/

• False Negatives (FN): False negatives are the cases when the current class of the
data point was 1 (True) and the predicted is 0 (False). False is because the model
has predicted incorrectly and negative because the class predicted was a negative
one (0).
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Thus, the Confusion Matrix is used as the basis for these metrics, since its values
represent TP; TN, FP, FN. Thus, from the confusion matrix, we were able to understand
these metrics.

In this section, we are going yo explain how these metrics were calculated and
what they mean.

2.2.1.1 Accuracy

In classification problems, accuracy is the number of correct predictions made by
the model over all kinds of predictions made. it is calculated as:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(2.1)

2.2.1.2 Precision

Precision is the fraction of the correctly classified instances from the total classified
instances. Precision is defined as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2.2)

2.2.1.3 Recall

Recall is the fraction of the correctly classified instances from the total classified
instances. The following equation represents recall:

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2.3)

2.2.1.4 F1 Score

F1 score represents both Precision(P) and Recall(R). Its aim is to balance between
two other metrics: recall and precision. The F1-Score is calculated as:

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 · 1
1

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
+ 1

𝑟𝑒𝑐𝑎𝑙𝑙

(2.4)

2.2.2 Training Time

According to Marcílio and Eler (MARCÍLIO; ELER, 2020), one of the biggest
benefits of the feature selection is the training time in which the model is executed in the
dataset. In this way, feature selection was performed in different conditions in order to
understand how they work according with the amount of features. Those measure were
obtained by the time library in python.
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2.2.3 Storage

The storage concerns about the size of the dataset. In this case, the dataset’s size
often is loaded into memory, that is, large datasets may require a lot of computational
power. In this case, this metric was measured using the python standard library. The filter
was applied according to the proposed methodology.

2.3 Materials

2.3.1 Datasets

In order to understand SHAP as feature selection tool, it was used different
datasets in the experiment. This subsection is going to present each dataset and its prop-
erties.

2.3.1.1 Breast Cancer Dataset

The Breast Cancer dataset is very common in the AI community. This dataset is
associated with health, more specifically breast cancer, the features were computed from
digitalized images of of a fine needle aspirate (FNA) of a breast mass. They represent
characteristics of the cell nuclei present in the image (DUA; GRAFF, 2017). This dataset
is one of the most used to test and apply concepts. It’s available in scikit learn and also
known as toy dataset.

The table 4 presents some dataset’s properties.

Table 4 – Cancer Breast Dataset Properties
Data Set Characteristics Multivariate
Attribute Characteristics Real
Associated Tasks Classification
Number of Instances 569
Number of Attributes 32
Missing Values No
Area Life
Date Donated 01-11-1195
Number of Web Hits 1485620

2.3.1.1.1 Breast Cancer - Dataset Classes

The Breast Cancer Dataset is used to detect breast cancer, classifying tumors
between malign and benign. In this case, from the total of 569 instances, 357 were classified
as benign tumors and 212 as malignant tumors (breast cancer).
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The following table 5 presents the dataset segmentation according to classes (Be-
nign and Malign):

Table 5 – Cancer Breast Dataset - Number of Instances x Classes
Class Number of Instances
Benign 357
Malign 212

2.3.1.2 Credit Card Fraud Dataset

The Credit Card Fraud dataset contains transactions made by credit cards in
September 2013 by European cardholders. This dataset is related with finance, more
specifically credit card fraud, it has 31 features, most of them are opaque, that is, their
names and meaning are not readable due to confidentiality issues (MLG, 2013). This
dataset has been collected during a research collaboration of Worldline and the Machine
Learning Group of ULB (Université Libre de Bruxelles) on big data mining and fraud
detection.

The table 6 presents some dataset’s properties.

Table 6 – Credit Card Fraud Dataset Properties
Data Set Characteristics Multivariate
Attribute Characteristics Real
Associated Tasks Classification
Number of Instances 284807
Number of Attributes 31
Missing Values No
Area Finance
Date Donated 12-09-2013
Number of Web Hits N.A.

2.3.1.2.1 Credit Card Fraud - Dataset Classes

The Credit Fraud Dataset is used to detect credit card fraud. As already men-
tioned, this dataset is based on real data, which means, only a small sample of the
dataset’s instances are expected to be classified as fraud. In this case, from the total
of 284807, 492 were classified as fraud and 284315 as normal transactions (non-fraud).

The following table 7 presents the dataset segmentation according to classes (Fraud
and Non-Fraud):

2.3.2 Hardware

The experiments were performed with a laptop with the following configurations:
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Table 7 – Cancer Breast Dataset - Number of Instances x Classes
Class Number of Instances
Fraud 492
Non Fraud 284315

• Processor: Intel Core i5 (10th generation), 4 cores and 2.0 GHz, Turbo Boost up
to 3.8 GHz, with 6 MB shared L3 cache

• RAM memory: 16GB LPDDR4X integrated memory with 3733 MHz

• Graphics Chip: Intel Iris Plus Graphics

• Storage: 512 GB SSD

• Operating System: macOS Big Sur 11.2.3
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3 Results

In this section, we will cover the experiments developed according to the method-
ology and techniques presented in the previous section. In this way, this chapter can be
divided into two subsections. The first subsection presents the results for the experiment
with the breast cancer dataset. The second subsection addresses the experiment carried
out in the credit card fraud detection dataset.

3.1 Experiment 1 - Breast Cancer

3.1.1 Feature Relevance

One of the most interesting results of the experiment was the understanding of
the relevance of each feature in each model. It was possible to see that each model works
in a different way and this is reflected in different weights for each of the features.

Some features, for example, concave points, perimeter_worst, concave points_mean
are very relevant in all models, alternating between the top 5 most relevant. However,
others such as area_se proved to be relevant for a specific model, in this case, the fourth
more relevant in the XGBoost, but the thirteenth in the Catboost model.

The Appendix A presents in detail the value and weight of each of the features for
each model.

3.1.2 Performance

In order to evaluate the model’s performance, it was used the following metrics:
Accuracy; Precision; Recall; and f1 score. For this experiment, the accuracy values followed
the other performance metrics, for example, In the Catboost model, the highest accuracy
was obtained with 29 features, but also with this feature number, the highest precision,
recall, and F1 score were obtained.

Using the Catboost model it was possible to obtain the highest performance with
29 features, presenting accuracy, precision, recall, and f1 score of approximately 99.41.
Using one feature as the base, 85.9% were obtained for the same metrics. Using two
features as the base, the model presented a great performance gain, about 6% for all
performance metrics. Between 5 and 15 features, the results obtained varied between 94
to 98%.

In the LightGBM Model, it was possible to obtain the highest performance with
29 features, the metrics of accuracy, precision, recall, and f1 score presented a result
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of approximately 97.6%. Using only one feature as a base, approximately 91.8% was
obtained for the same metrics. From 5 features, the model found many different results
to performance metrics.

For Random Forest it was possible to obtain the highest performance with 25
features, presenting accuracy, precision, recall, and F1 Score with approximately 98.2%.
With only one feature, 88.8% were obtained for the same metrics. For two features the
model showed a great performance gain, about 5%. From 4 to 25 features, the results
varied considerably for performance metrics, between 92% and 98%.

The XGBoost Model, on the other hand, did not need many features to achieve
its greatest metrics of accuracy, precision, recall, and f1 score. Only the 7 most relevant
features were needed to achieve accuracy, precision, recall, and f1-score of approximately
98.8%. Using only the most relevant feature, the model obtained 89.4%

Figure 6 – Cancer Breast Experiment - Accuracy x Number of Features

3.1.3 Training Time

The breast cancer dataset is not a very extensive dataset, as it has just over 500
instances and 30 features. Thus, the training time of the model for the hardware used is
relatively fast. There is a hypothesis that due to the short training time on all models, the
results are more sensitive to any change in computer performance, for example, thread
management, queues, etc. For XGBoost, LightGBM and Random Forest the training
time values remained constant for different amounts of features. The Catboost presented
a interesting result, even with a small dataset, the time was longer than the other models
and grew progressively with the increase in features.

The image 10 below present those results.
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Figure 7 – Cancer Breast Experiment - Precision x Number of Features

Figure 8 – Cancer Breast Experiment - Recall x Number of Features

3.1.4 Storage

As all instances of the model have the same number of features, it was expected
that the storage would exhibit a linear behavior, which was possible to report. For all
models, storage has shown an identical behavior, since this topic is much more related to
the number of features than a specific property of any of the models.

For the dataset with only one feature selected, 11509 bytes were stored, a big
difference in relation to the dataset with all the features that presented 128323 bytes. The
image 11 presents those results.
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Figure 9 – Cancer Breast Experiment - F1 Score x Number of Features

Figure 10 – Cancer Breast Experiment - Training Time x Number of Features

3.2 Experiment 2 - Credit Card Fraud

3.2.1 Feature Relevance

One of the objectives of this research is to understand the relevance of features
in different models. In this sense, the order of priority varied across all models. For some
models there was not so much variation, for example, the most relevant feature for the
Random Forest, XGBoost, and Catboost models was the same, V14. In other features,
such as the V1 feature, the relevance for different models varied considerably. In this case,
V1 was the most relevant for the LigthGBM model, but it was the twentieth most relevant
for XGBoost.

From this we can understand how the models work, making it easier to understand
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Figure 11 – Cancer Breast Experiment - Storage x Number of Features

what is taken into account in the final prediction.

In appendix B, there are details on the value and weight of each of the features
for each model.

3.2.2 Performance

In order to evaluate the performance of the model, the following metrics were used:
Accuracy; Precision; Recall; and f1 score. In this case, they varied in the same proportion,
presenting very similar results between the metrics, this is clear when analyzing the charts.
Each model obtained the highest values of its metrics with a different set and number of
features.

For Catboost, using only the most relevant feature as a basis, approximately 99.8%
accuracy, precision, recall and f1 score were obtained. Although there were not many per-
formance gains with the increase of the feature, the highest values of accuracy, precision,
recall, and f1 score were obtained using the 19 most relevant features, in this scenario
approximately 99.9%.

Using the LigthGBM Model, it was possible to find an interesting result, the
metrics of recall, accuracy, f1 score, and precision did not vary with the same proportion.
For this model, the highest accuracy and recall were obtained using only the most relevant
feature, approximately 99.8% were obtained for these metrics. However, 5 features were
necessary to obtain the highest values of f1-score and precision, in this case, approximately
99.85% was obtained.

The Random Forest model obtained the highest accuracy using the 8 most relevant
features, for this scenario 99.95% was obtained for the metrics of accuracy, precision,
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recall and f1-score. Using only the most relevant feature, 99.85% was obtained for the
same metric.

The XGBoost, obtained the highest accuracy using the 30 most relevant features, a
little different in relation to the other models. In this scenario, approximately 99.9% were
obtained for these metrics. Using only the most relevant feature, 99.8% were obtained for
the same metrics.

Figure 12 – Credit Card Fraud Experiment - Accuracy x Number of Features

Figure 13 – Credit Card Fraud Experiment - Precision x Number of Features

3.2.3 Training Time

The training time presented specific characteristics for each of the models. For
XGboost there was a small progressive increase in the training time according to the
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Figure 14 – Credit Card Fraud Experiment - Recall x Number of Features

Figure 15 – Credit Card Fraud Experiment - F1 Score x Number of Features

number of features. For the ligthGBM model, the training time remained practically
constant, regardless of the number of features. On the other hand, at Random Forest
there was a considerable and progressive increase according to the number of features. In
Catboost, the model was not very sensitive in relation to the variation in the number of
features.

The following image 16 shows the relationship between the training time and the
number of features:

3.2.4 Storage

The Credit Card Fraud dataset is a dataset with thousands of instances, and all of
them presenting the same number of features. The increase in the storage of the dataset
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Figure 16 – Credit Card Fraud Experiment - Training Time x Number of Features

was supposed to vary linearly, which has been proven. However, it is interesting to see the
variation. For a feature, the data set had approximately 7.2 mb of storage, almost 150 mb
more than the dataset with all the features, a huge difference.

The following image 17 shows the relationship between storage and the number of
features:

Figure 17 – Cancer Breast Experiment - Storage x Number of Features

3.3 Summary

From the experiments carried out it was possible to find some interesting points
about the use of SHAP as a feature selection tool.



3.3. Summary 47

The first point concerns the coherence of the features, in the two experiments,
although each model works differently, and as a consequence of changing the order of
importance of the features, it can be observed that the group of the most relevant features
has changed little.

Another interesting aspect was that in some models, the relevance of a feature or
group of features was so high for the model that the highest performance metrics were
obtained with only a part of the dataset, it means, the amount of data is not necessarily
implies performance gains. In experiments with the Credit Card Fraud dataset, the dataset
with hundreds of thousands of instances, it became clear that it is possible to save large
hardware processing from the selection of features using SHAP.

Initially, one of the hypotheses of the work was that decreasing the number of
features would imply a shorter training time. However, this hypothesis has not been
proven. For the Credit Card Fraud dataset, this hypothesis was confirmed for the .Random
Forest model.

Finally, one of the biggest gains, is to understand the functioning of the model, that
is, the explicability. From the understanding of how a model works, it is possible to identify
points for improvement, validate with specialists in a knowledge area the functioning, and
even assist in homologation processes. In the same vein, As already mentioned, stricter
rules regarding the use of AI in different contexts have now come into force, the use of
tools such as SHAP, which is based on scientific theories, can greatly assist in the approval
and auditing of Machine Learning models.
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4 Conclusion

In the last few years, some XAI tools have emerged in order to explain Machine
Learning models. Recently, some studies have started using these tools for different pur-
poses.

In this work, we use SHAP as a feature selection tool. As a result, using one
or a small group of features it was possible to obtain excellent results that associate
performance (accuracy, precision, recall and F1 Score) with storage. In other words, in
some contexts we are able to understand what is really important for the model, and it
is not necessary to use the entire dataset. For some models, using few features can mean
great savings in computational resources.

Despite having each model use its own approach, almost all models presented a
similar group of more important features, presenting coherence on the part of SHAP.

Nevertheless, we can still use the shap as an explanability tool, its real purpose.
Thus, it is possible to use it as a tool that allows us to explain how the model works for
stakeholders of an ML project, company, or even in audits.

Therefore, we were able to conclude that SHAP, in addition to bringing explan-
ability, can bring performance gains in a machine learning model.

4.0.1 Future Work

Today, there are several methodologies that are used in mining and developing
machine learning models. However, there is no methodology that uses XAI tools as the
basis, such as SHAP.

Using this work as a basis, in future works, studies about how we can development
machine learning models based on SHAP could be performed, since SHAP can be used
in different ways. Thus, it’s possible to understand how SHAP can bring gains in the
development of AI models, even proposing a methodology centered on XAI.
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APPENDIX A – Cancer Breast Experiment

A.1 Random Forest Tree

Table 8 – Feature Relevance - SHAP Values - Cancer’s Breast Dataset - Random Forest

Unnamed: 0 feature_name importance_value
0 27 concave points_worst 26.566186
1 22 perimeter_worst 24.922345
2 23 area_worst 22.120229
3 7 concave points_mean 19.327713
4 20 radius_worst 18.165788
5 3 area_mean 11.098553
6 2 perimeter_mean 10.244782
7 0 radius_mean 9.617430
8 26 concavity_worst 8.732641
9 6 concavity_mean 7.201295
10 13 area_se 7.070465
11 21 texture_worst 4.364284
12 25 compactness_worst 4.340140
13 1 texture_mean 3.977649
14 10 radius_se 3.863066
15 24 smoothness_worst 3.463269
16 28 symmetry_worst 2.941480
17 12 perimeter_se 2.334336
18 5 compactness_mean 2.078270
19 16 concavity_se 2.043887
20 4 smoothness_mean 1.266888
21 18 symmetry_se 0.935642
22 15 compactness_se 0.832027
23 9 fractal_dimension_mean 0.771670
24 14 smoothness_se 0.718923
25 11 texture_se 0.695754
26 19 fractal_dimension_se 0.677671
27 29 fractal_dimension_worst 0.642576
28 17 concave points_se 0.561824
29 8 symmetry_mean 0.518114
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A.2 XGBoost

Table 9 – Feature Relevance - SHAP Values - Cancer’s Breast Dataset - XGBoost

Unnamed: 0 feature_name importance_value
0 22 perimeter_worst 1.101188
1 27 concave points_worst 0.974443
2 7 concave points_mean 0.939440
3 13 area_se 0.833870
4 21 texture_worst 0.817257
5 23 area_worst 0.723298
6 26 concavity_worst 0.694400
7 15 compactness_se 0.486687
8 20 radius_worst 0.448749
9 1 texture_mean 0.382153
10 18 symmetry_se 0.367454
11 28 symmetry_worst 0.366362
12 24 smoothness_worst 0.360021
13 16 concavity_se 0.272285
14 4 smoothness_mean 0.199590
15 17 concave points_se 0.194344
16 25 compactness_worst 0.150426
17 8 symmetry_mean 0.102595
18 11 texture_se 0.056790
19 14 smoothness_se 0.049512
20 10 radius_se 0.048950
21 3 area_mean 0.036825
22 6 concavity_mean 0.034707
23 12 perimeter_se 0.034166
24 19 fractal_dimension_se 0.029044
25 29 fractal_dimension_worst 0.028442
26 9 fractal_dimension_mean 0.000000
27 5 compactness_mean 0.000000
28 2 perimeter_mean 0.000000
29 0 radius_mean 0.000000
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A.3 LightGBM

Table 10 – Feature Relevance - SHAP Values - Cancer’s Breast Dataset - LightGBM

Unnamed: 0 feature_name importance_value
0 23 area_worst 693.576415
1 27 concave points_worst 665.362136
2 22 perimeter_worst 609.189908
3 26 concavity_worst 572.558205
4 7 concave points_mean 386.386723
5 21 texture_worst 244.280990
6 20 radius_worst 180.097799
7 24 smoothness_worst 162.563704
8 1 texture_mean 145.043682
9 13 area_se 131.548509
10 15 compactness_se 116.738775
11 9 fractal_dimension_mean 54.882406
12 25 compactness_worst 52.690447
13 18 symmetry_se 46.297387
14 10 radius_se 44.728723
15 17 concave points_se 40.917433
16 8 symmetry_mean 35.757749
17 6 concavity_mean 32.645883
18 28 symmetry_worst 27.367866
19 29 fractal_dimension_worst 24.207242
20 19 fractal_dimension_se 18.185502
21 3 area_mean 15.923575
22 5 compactness_mean 15.462100
23 0 radius_mean 10.687702
24 2 perimeter_mean 9.954175
25 14 smoothness_se 7.776548
26 4 smoothness_mean 5.529139
27 11 texture_se 4.130595
28 12 perimeter_se 3.564711
29 16 concavity_se 0.208021
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A.4 Catboost

Table 11 – Feature Relevance - SHAP Values - Cancer’s Breast Dataset - Catboost

Unnamed: 0 feature_name importance_value
0 27 concave points_worst 0.740244
1 22 perimeter_worst 0.669129
2 20 radius_worst 0.658063
3 23 area_worst 0.610135
4 7 concave points_mean 0.590276
5 21 texture_worst 0.352823
6 26 concavity_worst 0.337185
7 1 texture_mean 0.307245
8 13 area_se 0.303341
9 3 area_mean 0.285331
10 0 radius_mean 0.255972
11 6 concavity_mean 0.243867
12 2 perimeter_mean 0.211958
13 24 smoothness_worst 0.182216
14 28 symmetry_worst 0.139773
15 25 compactness_worst 0.114145
16 12 perimeter_se 0.110660
17 10 radius_se 0.107240
18 4 smoothness_mean 0.063675
19 29 fractal_dimension_worst 0.059282
20 5 compactness_mean 0.055388
21 8 symmetry_mean 0.048001
22 15 compactness_se 0.047225
23 16 concavity_se 0.046898
24 17 concave points_se 0.039364
25 9 fractal_dimension_mean 0.028292
26 18 symmetry_se 0.028099
27 14 smoothness_se 0.027675
28 11 texture_se 0.022075
29 19 fractal_dimension_se 0.021249
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APPENDIX B – Credit Card Fraud
Experiment

B.1 Random Forest Tree

Table 12 – Feature Relevance - SHAP Values - Credit Card Fraud Dataset - Random
Forest

Unnamed: 0 feature_name importance_value
0 14 V14 178.540740
1 17 V17 138.214021
2 12 V12 116.735307
3 4 V4 80.975493
4 10 V10 73.854558
5 1 V1 69.409760
6 11 V11 64.872522
7 2 V2 53.458866
8 16 V16 47.702313
9 3 V3 31.618076
10 7 V7 28.742319
11 29 Amount 26.028112
12 19 V19 23.369754
13 9 V9 22.087690
14 20 V20 19.178026
15 18 V18 18.984821
16 21 V21 18.598131
17 26 V26 17.896018
18 0 Time 16.489262
19 13 V13 15.010573
20 6 V6 14.088459
21 15 V15 13.587823
22 8 V8 13.001889
23 23 V23 12.677521
24 28 V28 10.965329
25 25 V25 10.779406
26 27 V27 10.497737
27 5 V5 10.375139
28 24 V24 10.231140
29 22 V22 9.036302
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B.2 XGBoost

Table 13 – Feature Relevance - SHAP Values - Credit Card Fraud Dataset - XGBoost

Unnamed: 0 feature_name importance_value
0 14 V14 1.114405
1 4 V4 0.966266
2 12 V12 0.555716
3 29 Amount 0.387997
4 10 V10 0.311767
5 11 V11 0.299570
6 19 V19 0.271064
7 20 V20 0.247851
8 3 V3 0.223351
9 22 V22 0.223130
10 16 V16 0.222293
11 8 V8 0.215675
12 7 V7 0.210741
13 5 V5 0.209147
14 13 V13 0.205142
15 0 Time 0.182314
16 25 V25 0.181492
17 26 V26 0.172901
18 28 V28 0.165343
19 2 V2 0.157619
20 21 V21 0.148308
21 24 V24 0.132269
22 6 V6 0.126853
23 1 V1 0.123816
24 15 V15 0.120010
25 9 V9 0.105844
26 23 V23 0.103325
27 18 V18 0.092280
28 17 V17 0.089707
29 27 V27 0.088435
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B.3 LightGBM

Table 14 – Feature Relevance - SHAP Values - Credit Card Fraud Dataset - LightGBM

Unnamed: 0 feature_name importance_value
0 1 V1 7.434911e+09
1 12 V12 1.810319e+09
2 26 V26 7.792542e+08
3 14 V14 7.395059e+08
4 16 V16 7.129183e+08
5 20 V20 7.027402e+08
6 5 V5 6.751558e+08
7 15 V15 6.458956e+08
8 3 V3 6.069165e+08
9 7 V7 5.344268e+08
10 13 V13 5.257495e+08
11 22 V22 5.226141e+08
12 10 V10 5.100766e+08
13 18 V18 5.091284e+08
14 9 V9 5.089845e+08
15 8 V8 3.873433e+08
16 17 V17 3.493250e+08
17 21 V21 3.475735e+08
18 28 V28 3.198095e+08
19 23 V23 2.826331e+08
20 4 V4 2.263139e+08
21 0 Time 2.166006e+08
22 27 V27 1.724407e+08
23 24 V24 1.308633e+08
24 25 V25 1.101273e+08
25 11 V11 8.126164e+07
26 19 V19 6.437499e+07
27 29 Amount 5.708457e+07
28 2 V2 5.237114e+07
29 6 V6 3.519177e+07



62 APPENDIX B. Credit Card Fraud Experiment

B.4 Catboost

Table 15 – Feature Relevance - SHAP Values - Credit Card Fraud Dataset - Catboost

Unnamed: 0 feature_name importance_value
0 1 V1 0.610696
1 14 V14 0.575734
2 4 V4 0.512862
3 8 V8 0.416447
4 13 V13 0.370410
5 10 V10 0.368462
6 11 V11 0.336685
7 19 V19 0.328266
8 25 V25 0.280274
9 12 V12 0.275883
10 18 V18 0.246081
11 26 V26 0.216451
12 28 V28 0.199943
13 6 V6 0.197276
14 24 V24 0.185735
15 17 V17 0.182155
16 29 Amount 0.180362
17 0 Time 0.177253
18 22 V22 0.171437
19 7 V7 0.138809
20 16 V16 0.136536
21 3 V3 0.135688
22 2 V2 0.132959
23 20 V20 0.118468
24 15 V15 0.114412
25 23 V23 0.109098
26 9 V9 0.106141
27 5 V5 0.089899
28 27 V27 0.074293
29 21 V21 0.071447
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APPENDIX C – Source Code

The source code of each experiments are available in the public repository: <https:
//github.com/miguelpimentel/shap_feature_selection>

The experiments were developed from python notebooks. For each experiment, a
notebook was created for each of the used models, that is, for the Cancer Breast dataset,
four python notebooks were created, one for each model. The same process was introduced
in the Credit Card Dataset.

When running each notebook the results are saved in the result folder for each of
the experiments. A CSV file is created with the result of the metrics for each scenario of
the experiment (number of features), and the charts are created for each of the metrics.

For each experiment, there is a notebook with the objective of gathering the results
obtained for each model and creating reports and charts about the experiment as a whole.

Last but not least important, for any questions, read the README.md file and
feel free to open an issue.


