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Resumo

Este trabalho apresenta os fundamentos da Transformada da Incerteza (Unscented Trans-
form) e do método computacional das Malhas Esparsas (Sparse Grids) para aplicação em
simulações de alta dimensionalidade sujeitas a incertezas. O algoritmo proposto é aplicado
na obtenção da assinatura de ruído de uma turbina de avião comercial sujeito a alterações
nos ângulos nominais das pás (problema com 16 dimensões) com velocidade supersônica
da ponta das pás relativamente ao ar em escoamento, sendo a primeira vez que tal técnica
é aplicada em aeroacústica, até onde vai o conhecimento do autor. A simulação obtém
com sucesso a assinatura de ruído em tempo inferior à uma hora em máquina GNU/Linux
com 8GB de memória e processador de 2.5GHz, mostrando a eficácia da técnica em lidar
com problemas de alta dimensionalidade. Perspectivas de aprimoramento da técnica e
pesquisas futuras são discutidas ao final.

Palavras-chave: Unscented transform, Sparse grids, Aeroacústica
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Abstract

This work presents the foundations of the Unscented Transform and of the computational
method of Sparse Grids for applications in high-dimensional simulations subject to uncer-
tainty. The proposed algorithm is applied in obtaining the noise signature of a commercial
airplane turbine subject to changes in the blades angles (a 16 dimensional problem) with
supersonic speed of the blade tips relative to the air flow, being the first time this tech-
nique is applied in this context, as far as the author knows. The simulation successfully
obtained the noise signature with time inferior to an hour in a GNU/Linux machine with
8GB of RAM and a processor @ 2.5GHz, showing the technique effectiveness in deal-
ing with high dimensional problems. Perspectives for improvement of the technique and
future researches are discussed at the end.

Keywords: Unscented transform, Sparse grids, Aeroacoustics
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Chapter 1

Introduction

In various branches of Engineering, there is the ever present design problem, that is, given
project specifications (a problem to solve with constraints), build a solution which solves
the problem. This contrasts with simulation and testing: the given data is a model or
concrete object, which is set under (controlled) conditions and the corresponding response
recorded. In this way, they are inverse problems of each other (as in the design problem
I know what answer I want, but have to create a way to obtain it).

In this work, we’ll be using a Sparse Grid implementation of the Unscented Transform
(UT) to solve a particular simulation problem: given a model of an airplane turbine with
blade angles as parameter, determine the noise generated by supersonic rotor cascades.
Such problem can be solved (maybe in a more computationally efficient way) with methods
alternative to ours, for instance those mentioned in [2]. However, there are two main
reasons for solving this problem with this particular implementation of the Unscented
Transform: 1) to mitigate the curse of dimensionality problem in computations involving
high dimensions (16 in our case) while preserving the probabilistic moments of a random
continuous distribution, and 2) the prospective of solving the inverse problem: given the
requisites, generate the design specifications (see [3] for a successful example relating to
Analog-Digital Converters using a different implementation of the UT called Extended
UT ). Of course, the design considering the noise generated by the turbine is important,
for example, because in residential areas there is a noise threshold that should not be
exceeded and “reducing aircraft noise has been seen as a priority for the civil aircraft
industry” [2].

Note that, although we have this particular problem in mind, the solution method is
quite general: we take as input a continuous random variable x and a “black box” model
f and use the Unscented Transform to generate a discrete distribution X with the same
moments as x (up to a certain order). We then generate a range of responses with f

according to the uncertainty X. As the Unscented Transform generates a linear system
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of equations [3] (in contrast with a nonlinear behavior), it is hoped that it’ll be possible
to use this to solve the inverse problem (the design problem). This work is expected to
provide a first step towards this goal in subsequent works. In our particular application,
f is the turbine model and x describes the blade angles variability (for instance due to
manufacturing tolerances or fatigue). This general situation is illustrated in Figure 1.1,
while a more detailed depiction will be provided in Chapter 4. The UT takes as input
the number of desired sigma-points and the random variable x (often in the form of a
probability distribution function) and output N pairs (s, w) corresponding to the discrete
distribution X (s is a selected point and w the corresponding probability weight). The
points s are presented to the model f and the weights w are later used in the analysis
step.

Figure 1.1: Simplified flow showing the use of the Unscented Transform (UT): x is the
random variable, N is the number of desired sigma-points, (s,w) are the sigma-points and
f is a model or function.

This work aims in introducing the Sparse Grid method in the context of the Unscented
Transform as a way to understand complex systems (in the sense of number of parameters)
subject to uncertainty in a computationally feasible way and presenting a case study in
the area of aeroacoustics showing the applicability of such technique in a novel way. In a
sense, it is a sequel to the work started by de Medeiros in [3], where the unidimensional
Unscented Transform was thoroughly studied and applied to the design of a Quantizer in
the context of analog-to-digital and digital-to-analog converters, as we extend the realm
of applications as well as surpass the dimensional limitation of that work.

The path of this work is the following: we begin Chapter 2 by talking about the
application, then we revise the bibliography related to the Unscented Transform in 1 di-
mension (definition, equations, UT as quadrature, interpolation, orthogonal polynomials,
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etc). Then, in Chapter 3, we tackle the UT in the general n-dimensional setting, with a
discussion of Sparse Grids and it’s use in the implementation of the multidimensional UT.
Finally, we will implement this for the specific problem of determining the noise signature
of the turbine according to the blades angle (Chapter 4), giving concluding remarks in
Chapter 5.
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Chapter 2

Unscented Transform

It is desirable to be able to give a certain probability distribution (e.g. Gaussian distribu-
tion) relating to the different possible configurations, say of the turbofan engine, and from
this predict the noise signature. In what follows, we will use the simplifying assumption
that the only attribute subject to change are the blade angles. Details about the complete
model are discussed in [2].

Thus, we want to determine as precisely as possible how much variations in the blade
angles affect the noise signature of the engine. Even with this simplifying assumption,
simulations are mostly unfeasible due to the high number of dimensions involved: there
are 16 blades, so we need 16 probability distributions and then simulate each of the
possible combinations of the blade angles, which simple combinatorical estimates show to
be completely unfeasible from a computational point of view.

If we could, however, reduce the number of points needed in this computation while
preserving the probabilistic attributes of the distributions (i.e. the moments), we would
be closer to a feasible simulation proposal. This is where our first main tool appears: the
Unscented Transform.

2.1 Unidimensional Unscented Transform

The Unscented Transform is a functional that takes as input a continuous random variable
and returns a discrete version preserving a certain number of probabilistic moments. This
transformation appeared in the context of Kalman Filtering and nonlinear approximation
[4], giving an idea of the applicability of this tool. In fact, “The unscented transformation
(UT) was developed to address the deficiencies of linearization by providing a more direct
and explicit mechanism for transforming mean and covariance information.” [4]
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Let’s begin by defining the Unscented Transform, according to [3]. In what follows,
RV will stand for Random Variable, UT for Unscented Transform, boldface small letters
stand for continuous RV and boldface capital letters stand for discrete RV.

Definition 1 [3] The α-order Unscented Transform of a continuous RV x with
probability density function px(x) is a set of n pairs {(si, wi)}ni=1 (called sigma-points)
characterizing a discrete probability density function Fx(X) such that

E{Xk} =
n∑
i=1

skiwi =
∫ +∞

−∞
xkpx(x)dx = E{xk} (2.1)

for all k = 1, . . . , α, that is, both the discrete and the continuous distributions have
the same moments up to the α-th order. By abuse of notation we also call each si a
sigma-point, while the wi are the associated weights.

One important aspect of the UT is that “the sigma points are not drawn at random;
they are deterministically chosen so that they exhibit certain specific properties (e.g., have
a given mean and covariance). As a result, high-order information about the distribution
can be captured with a fixed, small number of points.” [4] This contrasts with Monte-Carlo
methods, which are probabilistic in essence [5].

Definition 2 [3] Given a Riemann-Stieljes integrable function over a compact
interval [a, b], let P = a = t1 < t2 < · · · < tn = b be a partition of [a, b] and λ1, . . . , λn

real numbers, then
Qn(f) =

n∑
i=1

λif(ti) (2.2)

is called a mechanical quadrature of f with Cotes numbers λ1, . . . , λn [3].

The mechanical quadrature is an arbitrary process that maps sums of weighted samples
of a function f(x) into numbers. Of special interest for this work is the special case for the
mechanical quadrature in which the Cotes numbers λn are defined such that Eq.(2.2) holds
if f(x) is an arbitrary polynomial πn−1 of order up to n− 1 and u(x) is a non-decreasing
function (giving a measure for the integral). In this case Qn(f) is called a quadrature of
the interpolatory type for reasons we explicit in the following sections. Thus, the UT as
per Definition 1 is a special case of this interpolatory quadrature in which we recognize
that f(x) = xk are monomials, the sigma points si = xi are the abscissas of the mechanical
quadrature, the weights wi = λi are the Cotes numbers and du(x) = px(x)dx relates to
the probability density function that characterizes the RV of interest [3].
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By the strong law of large numbers and the relative frequency interpretation of prob-
abilities, one sees that the expectancy yields an approximation for a given integral (via
uniform distribution and the appropriate constant of proportionality) on the real line.
On the other hand, the UT gives a mechanical quadrature of the first moment, which
also approximates the integral. Thus, we see the UT as an alternative method for the
Monte-Carlo method (which numerically samples random numbers in a domain and apply
them to the function, computing the average to give the integral approximation) [3].

The problem is that, according to numerical simulations done in [3, p.35], the UT
approximates very poorly the probability function, even though it accurately estimates
the moments. The Extended Unscented Transform of Menezes [6] improves in this issue.
Algorithm 3.3.1 of [3, p.37] gives a direct method of calculation of the ExUT. However,
for the purposes of this work we do not need the ExUT. Instead, we calculate the UT
sigma-points and weights via an algorithm based on the Gaussian quadrature, as the
following subsection shows.

2.1.1 Interpolatory Quadrature and Orthogonal polynomials

The process of constructing a function which takes on given data values at given data
points is called interpolation [7].

To better work with this concept, we define the interpolation problem as in [3].

Definition 3 [3] The interpolation problem consists of determining a set of pa-
rameters ai so that for n + 1 given real or complex pairs (xi, yi), i = 0, . . . , n, with
xi 6= xk for i 6= k,

Φ(xi; a0, . . . , an) = yi (2.3)

holds for i = 0, . . . , n in which Φ(x; a0, ..., an) is a family of single variable functions
completely defined by the parameters ai. We call the pairs (xi, yi) interpolation
support points, the locations xi support abscissas and the values yi support ordinates.

Of particular interest for this work is the classical polynomial interpolation problem
[3], in which

Φ(xi; a0, . . . , an) ≡ a0 + a1x+ · · ·+ anx
n. (2.4)

The classical polynomial interpolation method is stated in the following

Theorem 2.1.1 Given n+1 pairwise distinct data points x0, . . . , xn and associated values
y0, . . . , yn, there is a unique polynomial of degree at most n which takes on these values.

This theorem gives the existence of a solution to the polynomial interpolation problem.
In fact, it’s proof even gives an algorithm for constructing a solution, known as Lagrange’s
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Interpolation formula, given by Eq.(2.5). Via integration, one can establish the weights
in (2.1) for a given set of sigma-points by Eq.(2.6). It does not indicate, however, how to
choose a suitable set of sigma-points. This is where the Gaussian Quadrature comes in
[3].

L(x) =
n∑
i=0

yi
n∏
k 6=i
k=0

x− xk
xi − xk

. (2.5)

wi = λi =
∫ b

a

n∏
k 6=i
k=0

x− xk
xi − xk

du(x). (2.6)

First, let’s recall the definition of scalar product on L2([a, b]) with respect to a non-
decreasing non-constant weight function u(x) [3]:

〈f, g〉 =
∫ b

a
f(x)g(x)du(x). (2.7)

If u(x) is absolutely continuous, which is the case treated in the scope of this work, the
scalar product reduces to

〈f, g〉 =
∫ b

a
f(x)g(x)px(x)dx, (2.8)

where px(x) is the continuous probability density function of interest in the UT compu-
tation.

The existence of a sequence of orthogonal polynomials associated with the distribution
px(x) is established in the following

Theorem 2.1.2 There exist orthogonal polynomials ρj ∈ πj j = 0, 1, 2, . . . , such that
〈ρi, ρk〉 = 0, for i 6= k. These polynomials are uniquely determined by a three term
recurrence relation given by

ρ0(x) = 1 = ρ−1(x) (2.9)

ρi+1(x) = (x− αi+1)ρi(x)− βi+1ρi−1(x) (2.10)

for i ≥ 0 and
αi+1 = 〈xρi(x), ρi(x)〉

‖ρi(x)‖2
L2

for i ≥ 0 (2.11)

β0 = 1, β2
i+1 = ‖ρi(x)‖2

L2

‖ρi−1(x)‖2
L2

for i ≥ 1 (2.12)

where
‖f‖L2 :=

√
〈f, f〉. (2.13)
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The following result is what is sometimes called Gauss’ interpolation, whose proof gives
an explicit way of calculating Cotes’ numbers, while Theorem 2.1.4 shows optimality in
the sense of the polynomial degree.

Theorem 2.1.3 If x1 < x2 < · · · < xn denote the zeros of ρn(x), there exist real numbers
λ1, . . . , λn such that

∫ b

a
p(x)du(x) =

n∑
i=1

λip(xi) (2.14)

whenever p(x) is an arbitrary polynomial of degree at most 2n−1. The distribution du(x)
and the integer n uniquely determine these numbers λn.

Theorem 2.1.4 It is not possible to find numbers xi, i = 1, . . . , n, such that Eq. (2.14)
holds for all polynomials p(x) ∈ π2n.

Finally, we state two theorems which provide a practical way for computing the sigma-
points and weight pairs {(si, wi)} based on the theory of the Gaussian quadrature.

Theorem 2.1.5 The roots xi, i = 1, . . . , n, of the orthogonal polynomial ρn(x) are the
eigenvalues of the tridiagonal matrix

Jn =



α1
√
β2 0 0 0 . . . 0

√
β2 α2

√
β3 0 0 . . . 0

0
√
β3 α3

√
β4 0 . . . 0

. . . . . . . . .
0 0 . . .

√
βn−2 αn−2

√
βn−1 0

0 0 . . . 0
√
βn−1 αn−1

√
βn

0 0 . . . 0 0
√
βn αn


(2.15)

where αi and βi are the coefficients of the three term recurrence relation defined in
Eq.(2.11-2.12).

Theorem 2.1.6 Let v(i) = (v(i)
1 , . . . , v(i)

n )T be an eigenvector of Jn defined in Eq.(2.15)
for the eigenvalue Xi, i.e., Jnv(i) = xiv

(i). Suppose v(i) is scaled in such a way that

v(i)Tv(i) = 〈ρ0, ρ0〉 =
∫ b

a
du(x).

Then the weights wi are given by

wi = (v(i)
1 )2, i = 1, . . . , n. (2.16)
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We are now in position to give an Algorithm that calculates the Unscented Transform.
It should be noted that, by Definition 1 of the UT, different outputs X are possible for
a given input x (as is seen by explicit examples in [3]), so the following outputs only a
particular solution.

Algorithm Gaussian quadrature method for the Unscented Transform [3].

1. Start with the desired continuous probability distribution px(x) and the desired
number of sigma-points n. Compute the αn and βn , n = 1, ..., n, terms in the three
term recurrence relation using equations (2.10)-(2.12).

2. Build the Jacobi Jn matrix in equation (2.15)

3. Use any known method to compute the eigenvalues of Jn and make them the quadra-
ture abscissas xi.

4. Use any known method to compute the eigenvectors of Jn and scaled them as in
Theorem 2.1.6. Use the first eigenvector components as the λi quadrature weights.

5. Scale the quadrature abscissas xi and weights λi according to the desired probability
distribution function and use them as the sigma-points si and weights wi of the UT.

For an elucidating example demonstrating the calculations of the above algorithm, see
the second chapter of [3].

2.2 Multidimensional UT

The multidimensional UT is formally identical to the one-dimensional case, changing the
Random Variable to a Random Vector X subject to a measurable function f and the
single integral to the appropriate multidimensional integral, for instance the expectancy
is [8, 9]:

E{f(X)} =
∫
Rn
f(ξ)pX(ξ)dξ =

∑
wi1 · · ·winf(xi1 , . . . , xin) = E{f(x)} (2.17)

As for the computation, the multivariate case can be obtained by first using a stochas-
tic decoupling technique X ′ = (

√
PXX)−1(X − X̃), where X ′ is a multivariate stan-

dard Gaussian RV and PXX represents the covariance with respect to X [10]. Then, for
f̃(X) := f(

√
PXX

T
X + X̃), the Gauss-Hermite-Quadrature is applied on the form

EX′{f̃(X ′)} =
∫
Rn
f̃(ξ)pX′(ξ)dξ ≈

∑
wi1 · · ·win f̃(xi1 , . . . , xin) (2.18)

and EX{f(X)} is obtained from EX′{f̃(X ′)}. An alternative to solving the multivariate
Gaussian case is to use the spherical cubature rule along with the Gaussian Quadrature

9



after performing a Cartesian-to-spherical coordinate transformation. In fact, consider the
Gaussian case pξ(ξ) = exp(−ξξT ) and let ξ = ρy, with yTy = 1, ρ ∈ [0,∞). In this case,
(2.17) becomes E{f(X)} =

∫∞
0 S(ρ)ρn−1 exp(−r2)dρ, S(ρ) :=

∫
Sn−1 f(ρy)dφ(y) and φ(·)

is the spherical surface measure of Sn−1. The spherical integral S(ρ) is solved by the
spherical cubature rule, while the expectation by a Gaussian Quadrature rule [8].

For our particular application, we consider the random variables to be independent
of each other and the function f to be a multivariable polynomial (as in [11]), consider-
ably simplifying the calculation of the moments. In fact, we have the following general
probability result [9]:

Theorem 2.2.1 If X1, . . . , Xn are independent integrable random variables, then ∏n
i=1Xi

is integrable and

E(X1X2 · · ·Xn) =
n∏
i=1

E(Xi). (2.19)

Another alternative for obtaining (2.17) is by approximating pX(x). We can classify
this type of suboptimal approximation into two categories, namely Monte Carlo methods,
and sigma-point methods. Monte Carlo (MC) methods consist of randomly taking a very
large quantity of samples xi ofX (the method gets more accurate as the number of samples
N → +∞). Sigma point methods, on the other hand, consist on analytically choosing
finite N samples si and weights wi. These approaches can be viewed as generalized
(negative weights are admitted) discrete approximations of pX(x) [8].

A different classification is given by [11], where numerical methods for moment in-
tegrals are classified as product and non-product rules. Sparse grids, Monte-Carlo and
Quasi-Monte-Carlo are all non-product rules, thus alternative to each other. Again, a
key difference is the probabilistic nature of the latter methods, while the former is deter-
ministic. The next chapter details the Sparse Grid construction and applies it to our UT
problem, underlying it’s importance in damping the high dimensionality cost of compu-
tation.
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Chapter 3

Sparse Grids

The general approximation problem can be easily described for normed vector spaces [7,
p.136]: let (V, ‖·‖) be a normed vector space and T ⊂ V . Given v ∈ V and ε > 0,
an ε-approximation for v is an element u ∈ T such that ‖u− v‖ < ε. The smaller
the ε, the better the approximation (in the sense of the norm). In this work, we’ll be
mainly interested in function spaces (such as Lp and Sobolev Space’s), which are infinite
dimensional vector spaces and the natural language for studying those spaces comes from
Functional Analysis (see for instance [12]).

Our problem reduces to finding an element of a suitable class which is close enough
to the precise element v. To achieve this, we must find a way of constructing such
approximation. For instance, if v is the integral of a function, we could approximate it by
a partial Riemann sum. In this case, the computational cost is related to the number of
summation terms, the choosing of the points in the interval’s partition and the calculation
of the function in those points.

In the Sparse Grid method, our approximation space will be a subset of a Sobolev
Space, with norm related to the function’s (higher order) derivatives. The motivation for
the Sparse Grid method is breaking the curse of dimensionality of classical approximation
schemes, that is

‖f − fn‖ = O(n−r/d) (3.1)

where r denotes the isotropic smoothness of the function f and d the problem’s dimension.
At first glance, it seems that an obvious solution would suffice: just increase the regularity
of the function to r = O(d) and obtain directly ‖f − fn‖ = O(n−c) for a positive constant
c. However, such assumptions are unrealistic and a different approach is necessary [1].

In this following four sections, a formal justification of how Sparse Grids arise naturally
as solution to an optimization problem (related to the number of grid points, of course)
and it’s essential properties are given. We’ll be closely following the remarkable paper [1]
of Bungartz-Griebel, but ignoring the energy-norm, as it won’t be used for our purposes.
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3.1 Piecewise linear interpolation on sparse grids

As a first approach to sparse grids and their underlying hierarchical multilevel setting, we
discuss the problem of interpolating smooth functions with the help of piecewise d-linear
hierarchical bases. For that, we introduce a tensor product-based subspace splitting and
study the resulting subspaces. Starting from their properties, sparse grids are defined via
an optimization process in a cost–benefit spirit closely related to the notion of n-term
approximation. Out of the variety of norms with respect to which such an optimized
discretization scheme can be derived, we restrict ourselves to the L2- and the L∞-norm,
and thus to the respective types of sparse grids. After presenting the most important
approximation properties of the latter, a short digression into recurrences and complexity
will demonstrate their asymptotic characteristics and, consequently, their potential for
problems of high dimensionality.

Let us start with some notation and with the preliminaries that are necessary for a
detailed discussion of sparse grids for purposes of interpolation or approximation, respec-
tively. On the d-dimensional unit interval Ω̄ := [0, 1]d, we consider multivariate functions
u : Ω̄ → R, u(x) ∈ R, x := (x1, . . . , xd) ∈ Ω̄, with (in some sense) bounded weak mixed
derivatives

Dαu = ∂|α|1u

∂xα1
1 · · · xαdd

(3.2)

up to some given order r ∈ N0. Here, α ∈ Nd
0 denotes a d-dimensional multi-index with

the two norms

|α|1 :=
d∑
i=1

αj and |α|∞ := max
1≤j≤d

αj.

In the context of multi-indices, we use component-wise arithmetic operations, see [1]
for details. We will use the following notation for the special multi-indices

0 = (0, . . . , 0), 1 = (1, . . . , 1) and 2 = (2, . . . , 2)

In the following, for q ∈ {2,∞} and r ∈ N0 , we study the spaces Xq,r(Ω̄) of all
functions of bounded (with respect to the Lq-norm) mixed derivatives up to the order r,
and Xq,r

0 (Ω̄) will be the subspace of Xq,r(Ω̄) consisting of those u ∈ Xr(Ω̄) vanishing on
the boundary ∂Ω. Note that, for the theoretical considerations, we shall restrict ourselves
to the case of homogeneous boundary conditions. Furthermore, note that we omit the
ambient dimension d when clear from the context. Concerning the smoothness parameter
r ∈ N0 , we need r = 2 for the case of piecewise linear approximations which, for the
moment, will be in the centre of interest. Finally, for functions u ∈ Xq,r

0 (Ω̄) and multi-
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indices α with |α|∞ ≤ r, we introduce the seminorms

uα,∞ := ‖Dαu‖∞,

uα,2 := ‖Dαu‖2 =
(∫

Ω̄
|Dαu|2dx

)1/2
.

(3.3)

Now, with the multi-index l = (l1, . . . , ld) ∈ Nd , which indicates the level in a mul-
tivariate sense, we consider the family of d-dimensional standard rectangular grids Ωl

on Ω̄ with mesh size hl = (hl1 , . . . , hld) := 2−l = (2−l1 , . . . , 2−ld). That is, the grid Ωl

is equidistant with respect to each individual coordinate direction, but, in general, may
have different mesh sizes in the different coordinate directions. The grid points xl,i of grid
Ωl are just the points xl,i := (xl1,i1 , . . . , xln,in) := i · hl,0 ≤ i ≤ 2l. Figure 3.1 shows a
clear image of the grid and this terminology for l = (2, 1).

Figure 3.1: Grid Ω(2,1) with mesh size hl = (1/4, 1/2). The grid points xl,i are simply the
intersection of the straight lines parallel to the square sides.

Thus, here and in the following, the multi-index l indicates the level (of a grid, a point,
or, later on, a basis function, respectively), whereas the multi-index i denotes the location
of a given grid point xl,i in the respective grid Ωl.

Next, we have to define discrete approximation spaces and sets of basis functions that
span those discrete spaces. In a piecewise linear setting, the simplest choice of a 1D basis
function is the standard hat function φ(x) (see top graph of Figure 3.3),

φ(x) =

 1− |x|, if x ∈ [−1, 1]
0, otherwise.

(3.4)

This mother of all piecewise linear basis functions can be used to generate an arbitrary
φlj ,ij(xj) with support [xlj ,ij − hlj , xlj ,ij + hlj ] = [(ij − 1)hlj , (ij + 1)hlj ] by dilation and
translation, that is,

φlj ,ij(xj) := φ

(
xj − ij · hlj

hlj

)
. (3.5)
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The resulting 1D basis functions are the input of the tensor product construction
which provides a suitable piecewise d-linear basis function in each grid point xl,i, as in
Figure 3.2:

φl,i(x) =
d∏
j=1

φlj ,ij(xj). (3.6)

Figure 3.2: Tensor product approach for piecewise bilinear basis functions. Source:
Bungartz-Griebel [1]

.

Since we deal with homogeneous boundary conditions (i.e., with Xq,2
0 (Ω̄)), only those

φl,i(x) that correspond to inner grid points are taken into account for the definition of

Vl := span{φl,i : 1 ≤ i ≤ 2l − 1} (3.7)

the space of piecewise d-linear functions with respect to the interior of Ωl. By definition
of span of a set of vectors, the φl,i form a basis of Vl, with one basis function φl,i of a
support of the fixed size 2 · hl for each inner grid point xl,i of Ωl , and this basis {φl,i} is
just the standard nodal point basis of the finite-dimensional space Vl.

Additionally, we introduce the hierarchical increments Wl,

Wl := span{φl,i : 1 ≤ i ≤ 2l − 1, ij odd for all 1 ≤ j ≤ d} (3.8)

for which the relation
Vl =

⊕
k≤l

Wk (3.9)

can be easily seen. The Vl can be seen as the union of the solid and dashed line
functions in Figure 3.3, while Wl represents only the solid lines. Note that the supports
of all basis functions φl,i spanning Wl are mutually disjoint. Thus, with the index set

Il := {i ∈ Nd : 1 ≤ i ≤ 2l − 1, ij odd for all 1 ≤ j ≤ d} (3.10)
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we get another basis of Vl , the hierarchical basis,

{φk,i : i ∈ Ik, k ≤ l} (3.11)

which generalizes the well-known 1D basis shown in Figure 3.3 to the d-dimensional
case by means of a tensor product approach. With these hierarchical difference spaces
Wl, we can define

V :=
∞∑
l1=1
· · ·

∞∑
ld=1

W(l1,...,ld) =
⊕
l∈Nd

Wl (3.12)

with it’s natural hierarchical basis

{φl,i : i ∈ Il, l ∈ Nd} (3.13)

Figure 3.3: Piecewise linear hierarchical basis (solid) vs. nodal point basis (dashed).
Source: Bungartz-Griebel [1]

.

Except for completion with respect to theH1-norm, V is simply the underlying Sobolev
space H1

0 (Ω̄), i.e., V̄ = H1
0 (Ω̄). Analytically, this means that any function in our space can

be approximated by an element of V with arbitrary precision. For the Electrical Engineer
and those familiar with Fourier Series, this is exactly like a Fourier representation of a
function in L2, in the sense that the trigonometric series are dense in L2.

Later we shall deal with finite-dimensional subspaces of V . Note that, for instance,
with the discrete spaces

V (∞)
n :=

⊕
|l|∞≤n

Wl (3.14)
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the limit
lim
n→∞

V ∞n = lim
n→∞

⊕
|l|∞≤n

Wl :=
∞⋃
n=1

V (∞)
n = V (3.15)

exists due to V (∞)
n ⊂ V

(∞)
n+1 . Hence, any function u ∈ H1

0 (Ω̄) and, consequently, any
u ∈ Xq,2

0 (Ω̄) can be uniquely split by

u(x) =
∑
l

ul(x), ul(x) =
∑
i∈Il

vl,i · φl,i(x) ∈ Wl, (3.16)

where the vl,i ∈ R are the coefficient values of the hierarchical product basis represen-
tation of u also called hierarchical surplus.

Before we turn to finite-dimensional approximation spaces for Xq,2
0 (Ω̄), we summarize

the most important properties of the hierarchical subspaces Wl, still following closely [1].

3.2 Basic properties of hierarchical subspaces

Concerning the subspaces Wl, the crucial questions are how important Wl is for the
interpolation of some given u ∈ Xq,2

0 (Ω̄) and what computational and storage cost come
along with it. From Eqs.(3.8) and (3.10), we immediately learn the dimension of Wl, i.e.,
the number of degrees of freedom (grid points or basis functions, respectively) associated
with Wl:

|Wl| = |Il| = 2|l−1|1 . (3.17)

Equation (3.17) already answers the second question.
The following discussion of a subspace’s contribution to the overall interpolant ac-

cording to Eq.(3.16) will be based upon two norms: the maximum norm ‖ · ‖∞ and the
Lp-norm ‖ · ‖p (p = 2 in general). First we look at the different hierarchical basis func-
tions φl,i(x). The following Lemma is simply a straightforward calculation based on the
definitions given:

Lemma 3.2.1 For any piecewise d-linear basis function φl,i(x), the following equations
hold:

‖φl,i‖∞ = 1,

‖φl,i‖p =
(

2
p+ 1

)d/p
· 2−|l|1/p, p ≥ 1.

(3.18)
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Next, we consider the hierarchical coefficient values vl,i in more detail. They can be
computed from the function values u(xl,i) in the following way:

ul,i =
 n∏
j=1

[
−1

2 1 1
2

]
xlj ,ij ,lj

 =:
(

d∏
i=1

Ixlj ,ij ,lj

)
u =: Ixl,i,lu. (3.19)

This is due to the definition of the spaces Wl and their basis functions (3.8), whose
supports are mutually disjoint and do not contain coarse grid points xk,j, k < l, in their
interior. Definition (3.19) illustrates why vl,i is also called hierarchical surplus. In (3.19),
as usual in multigrid terminology, Ixl,i,l denotes a d-dimensional stencil which gives the
coefficients for a linear combination of nodal values of its argument u. This operator-
based representation of the hierarchical coefficients vl,i leads to an integral representation
of vl,i, as follows. The proof of the following three lemmas will also be omitted due to
their simplicity and purely computational nature. As always, details can be found in [1].

Lemma 3.2.2 Let ψlj ,ij(xj) := −2(lj+1) · φlj ,ij(xj). Further, let ∏d
j=1 ψl,i(x) := ψlj ,ij(xj).

For any coefficient value vl,i of the hierarchical representation (3.16) of u ∈ Xq,2
0 (Ω̄), the

following relation holds:
vl,i =

∫
Ω
ψl,i(x)D2u(x)dx. (3.20)

The above lemma (and its proof) show the close relations of our hierarchical basis
approach to integral transforms like wavelet transforms. Applying successive partial in-
tegration to (3.20), twice for d = 1 and 2d times for general dimensionality, we get,

vl,i =
∫

Ω
ψl,i(x)D2u(x)dx

∫
Ω
ψ̂l,i(x)u(x)dx, (3.21)

where ψ̂l,i equals D2ψl,i(x) in a weak sense (i.e., in the sense of distributions) and is a
linear combination of 3d Dirac pulses of alternating sign. Thus, the hierarchical surplus
vl,i can be interpreted as the coefficient resulting from an integral transform with respect
to a function ψ̂l,i(x) of an oscillating structure.

We are now able to give bounds for the hierarchical coefficients with respect to the
different seminorms introduced in Eq.(3.3).

Lemma 3.2.3 Let u ∈ Xq,2
0 (Ω̄) be given in its hierarchical representation. Then, the

following estimates for the hierarchical coefficients vl,i hold:

|vl,i| ≤ 2−d · 2−2|l|1 · |u|2,∞,

|vl,i| ≤ 2−d ·
(2

3

)d/2
· 2−(3/2)|l|1 · |u|supp(φl,i)|2,2,

(3.22)

where supp(f) denotes the support of the function f .
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Finally, the results from the previous three lemmata lead to bounds for the contribution
ul ∈ Wl of a subspace Wl to the hierarchical representation (3.16) of a given u ∈ Xq,2

0 (Ω̄).

Lemma 3.2.4 Let u ∈ Xq,2
0 (Ω̄) be given in its hierarchical representation (3.16). Then,

the following estimates for its components ul ∈ Wl hold:

‖ul‖∞ ≤ 2−d · 2−2|l|1 · |u|2,∞,

‖ul‖2 ≤ 3−d · 2−2|l|1 · |u|2,∞.
(3.23)

In the next section, the information gathered above will be used to construct finite-
dimensional approximation spaces U for V or Xq,2

0 (Ω), respectively. Such a U shall be
based on a subspace selection I ⊂ Nd,

U :=
⊕
l∈I

Wl (3.24)

with corresponding interpolants or approximants

uU :=
∑
l∈I

ul, ul ∈ Wl. (3.25)

The estimate
‖u− uU‖ = ‖

∑
l

ul −
∑
l∈I

ul‖ ≤
∑
l /∈I

ul‖ ≤
∑
l /∈I

b(l) · |u| (3.26)

will allow the evaluation of the approximation space U with respect to a norm ‖ · ‖ and a
corresponding seminorm | · | on the basis of the bounds from above indicating the benefit
b(l) of Wl.

Summarizing, what this technical section lays is the basis for constructing and de-
ducing formal properties of Sparse Grids, in particular what concerns the approximation
accuracy and computational cost.

3.3 Formal derivation and properties of sparse grids

The hierarchical multilevel splitting introduced in the previous section brings along a
whole family of hierarchical subspaces Wl of V . However, for discretization purposes, we
are more interested in decompositions of finite-dimensional subspaces of V or Xq,2

0 (Ω̄)
than in the splitting of V itself. Therefore, we now turn to finite sets I of active levels l in
the summation (3.8). For some n ∈ B, for instance, one possibility V (∞)

n has already been
mentioned in Eq.(3.14). The finite-dimensional Vn is just the usual space of piecewise
d-linear functions on the rectangular grid Ω(n,...,n) with equidistant mesh size hn = 2−n in
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each coordinate direction, with |V (∞)
n | = (2n − 1)d = O(2d·n) = O(h−dn ) inner grid points

in the underlying grid.
For the error u − un of the interpolant u(∞)

n ∈ V (∞)
n of a given function u ∈ Xq,2

0 (Ω̄)
with respect to the different norms we are interested in, the following lemma states the
respective results.

Lemma 3.3.1 For u ∈ Xq,2
0 (Ω̄), the following estimates hold:

‖u− u(∞)
n ‖∞ ≤

d

6d · 2
−2n · |u|2,∞ = O(h2

n),

‖u− u(∞)
n ‖2 ≤

d

9d · 2
−2n · |u|2,2 = O(h2

n).
(3.27)

Proof For the L2-norm, Eq.(3.23) provides

‖u− u(∞)
n ‖2 ≤

∑
|l|∞>n

‖ul‖2 ≤ 3−d · |u|2,2 ·
∑
|l|∞>n

2−2|l|1

from which we get

‖u− u(∞)
n ‖2 ≤ 3−d · |u|2,2 ·

∑
l

4−|l|1 −
∑
|l|∞≤n

4−|l|1


= 3−d · |u|2,2 ·
(1

3

)d
−
(

n∑
i=1

4−i
)d

= 3−d · |u|2,2 · 3−d · (1− (1− 4−n)d)

≤ d

9d · |u|2,2 · 4
−n.

The respective proof for the L∞-norm is analogous and can be found in [1]. �

It is important to note that we get the same order of accuracy as in standard ap-
proximation theory, although our regularity assumptions differ from those normally used
there.

This last lemma and the cardinality of V (∞)
n clearly reveal the crucial drawback of

such full grid, the curse of dimensionality discussed in the beggining of this chapter.
With d increasing, the number of degrees of freedom that are necessary to achieve an
accuracy of O(h) or O(h2), respectively, grows exponentially. Therefore, we ask how to
construct discrete approximation spaces that are better than V (∞)

n in the sense that the
same number of invested grid points leads to a higher order of accuracy. Hence, in the
following, we look for an optimum V (opt) by solving a restricted optimization problem of
the type
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max
u∈Xq,2

0 :|u|=1
‖u− uV (opt)‖ = min

U⊂V :|U |=w
max

u∈Xq,2
0 :|u|=1

‖u− uU‖ (3.28)

for some prescribed cost or work count w. The aim is to profit from a given work count
as much as possible. A way of interpreting Eq.(3.28) is that maximizing the accuracy of
our approximation is the same as minimizing the maximum error (upper bound) admitted
for each admissible subspace. Note that an optimization the other way round could be
done as well. Prescribe some desired accuracy ε and look for the discrete approximation
scheme that achieves this with the smallest work count possible. This is in fact the point
of view of computational complexity. Of course, any potential solution V (opt) of (3.28) has
to be expected to depend on the norm ‖ ·‖ as well as on the seminorm | · | used to measure
the error of u’s interpolant uU ∈ U or the smoothness of u, respectively. According to our
hierarchical setting, we will allow discrete spaces of the type U := ⊕

l∈IWl for an arbitrary
finite index set I ⊂ Nd as candidates for the optimization process only. Therefore, spaces
U , the respective grids, and the underlying index sets I ⊂ Nd have to be identified. There
are two obvious ways to tackle such problems: a continuous one based on an analytical
approach where the multi-index l is generalized to a nonnegative real one, and a discrete
one which uses techniques known from combinatorial optimization. Here, we’ll only show
the continuous method, while the reader interested in the combinatorial one can find the
details in [1].

For the continuous optimization, grid and its representation I (formerly a finite set
of multi-indices) is nothing but a bounded subset of Rd

+, and a hierarchical subspace Wl

just corresponds to a point l ∈ Rd
+.

First we have to formulate the optimization problem (3.28). To this end, and inspired
by (3.17), the local cost function c(l) is defined as a straightforward generalization of the
number of degrees of freedom involved:

c(l) := 2|l|1−d = 2l1+···+ld−d (3.29)

For the local benefit function b(l), we use the squared upper bounds for ‖ul‖ according
to Eq.(3.23). At the moment, we do not fix the norm to be used here. Obviously, the
search for an optimal I ⊂ Rd

+ can be restricted to I ⊂ I(max) := [0, N ]d for a sufficiently
large N without loss of generality. Based on the two local quantities c(l) and b(l), the
global cost C(I) and the global benefit B(I) of a grid I are defined by

C(I) :=
∫
I
c(l)dl, B(I) =

∫
I
b(l)dl. (3.30)
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This leads to the desired restricted optimization problem according to (3.28):

max
C(I)=w

B(I). (3.31)

All this means is that we would like to minimize the number of grid points (codified by
the cost function) while increasing the accuracy of our approximation (as per the benefit
function).

For the solution of (3.31), we start from an arbitrary I ⊂ I(max) that has a sufficiently
smooth boundary ∂I. With a sufficiently smooth mapping τ ,

τ : Rd
+ → Rd

+, τ(l) = 0 for l ∈ ∂Rd
+ (3.32)

we define a small disturbance φε,τ of the grid I:

φε,τ : I → Iε,τ ⊂ I(max), φε,τ (l) := l + ε · τ(l), ε ∈ R. (3.33)

For the global cost of the disturbed grid Iε,τ , we get

C(Iε,τ ) =
∫
Iε,τ

c(k)dk =
∫
I
c(l + ε · τ(l)) · | detDφε,τ |dl. (3.34)

Taylor expansion of c(l + ε · τ(l)) in ε = 0 provides

c(l + ε · τ(l)) = c(l) + ε · ∇c(l) · τ(l) +O(ε2), (3.35)

where ∇c(l) · τ(l) denotes the scalar product. Furthermore, a straightforward calcula-
tion shows

| detDφε,τ | = 1 + ε · divτ +O(ε2). (3.36)

Thus, since I ⊂ I(max) with I(max) bounded, Gauss’s theorem leads to

C(Iε,τ ) = C(I) + ε ·
∫
∂I
c(l) · τ(l)d~S +O(ε2). (3.37)

Consequently, for the derivative with respect to ε, we get

∂C(Iε,τ )
∂ε

∣∣∣∣
ε=0

= lim
ε→0

C(Iε,τ )− C(I)
ε

=
∫
∂I
c(l) · τ(l)d~S. (3.38)

Similar arguments hold for the global benefit B(I) and result in

∂B(Iε,τ )
∂ε

∣∣∣∣
ε=0

= lim
ε→0

B(Iε,τ )−B(I)
ε

=
∫
∂I
b(l) · τ(l)d~S. (3.39)
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Now, starting from the optimal grid I(opt), Lagrange’s principle for the optimization
under a constraint can be applied, and we get

λ ·
∫
∂I(opt)

c(l) · τ(l)d~S =
∫
∂I(opt)

b(l) · τ(l)d~S. (3.40)

Since τ vanishes on the boundary of Rd
+, i.e., τ(l) = 0 when any component of l

vanishes, (3.40) is equivalent to

λ ·
∫
∂I(opt)\∂Rd+

c(l) · τ(l)d~S =
∫
∂I(opt)\∂Rd+

b(l) · τ(l)d~S. (3.41)

Finally, since (3.41) is valid for all appropriate smooth disturbances τ ,

λ · c(l) = b(l) (3.42)

holds for all l ∈ ∂I(opt) \ ∂Rd
+.

This is a quite interesting result, because (3.42) says that the ratio of the local benefit
b(l) to the local cost c(l) is constant on the boundary ∂I(opt) \ ∂Rd

+ of any grid I(opt) that
is optimal in our sense. This means that the global optimization process (3.28) or (3.31),
respectively, in which we look for an optimal grid can be reduced to studying the local
cost–benefit ratios b(l)/c(l) of the subspaces associated with l. Therefore, if we come back
to real hierarchical subspaces Wl and to indices l ∈ Nd, all one has to do is to identify
sets of subspaces Wl with constant cost–benefit ratio in the subspace scheme. The grid
I(opt), then, contains the region where the cost–benefit ratio is bigger than or equal to the
constant value on the boundary ∂I(opt) \ ∂Rd

+."

3.4 L2 based sparse grids

Owing to Lemma 3.3.1, the L2- and L∞-norm of Wl’s contribution ul to the hierarchical
representation (3.8) of u ∈ Xq,2

0 (Ω) are of the same order of magnitude. Therefore there
are no differences in the character of the cost–benefit ratio, and the same optimal grids
I(opt) will result from the optimization process described above. According to the cost
and benefit functions above, we define

cbr∞(l) := b∞(l)
c(l) :=

2−4|l|1 · |u|22,∞
4d · 2|l−1|1

= 1
2d · 2

−5|l|1 · |u|22,∞ (3.43)

cbr2(l) := b2(l)
c(l) :=

2−4|l|1 · |u|22,2
9d · 2|l−1|1

=
(2

9

)d
· 2−5|l|1 · |u|22,∞ (3.44)
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as the local cost–benefit ratios. Note that we use bounds for the squared norms of ul for
reasons of simplicity, but without loss of generality. An optimal grid I(opt) will consist of
all multi-indices l or their corresponding subspaces Wl where cbr∞(l) or cbr2(l) is bigger
than some prescribed threshold σ∞(n) or σ2(n), respectively. We choose those thresholds
to be of the order of cbr∞(l) or cbr2(l) with l̄ := (n, 1, ..., 1):

σ∞(n) := cbr∞(l̄) = 1
2d · 2

−5(n+d−1) · |u|22,∞ (3.45)

σ2(n) := cbr2(l̄) =
(2

9

)d
· 2−5(n+d−1) · |u|22,∞ (3.46)

That is, we fix d subspaces on the axes and search for all Wl whose cost–benefit ratio
is equal or better. Thus, applying the criterion cbr∞(l) ≥ σ∞(n) or cbr2(l) ≥ σ2(n),
respectively, we get the relation

|l|1 ≤ n+ d− 1 (3.47)

that qualifies a subspaceWl to be taken into account. This result leads us to the definition
of a new discrete approximation space V (1)

n ,

V (1)
n :=

⊕
|l|1≤n+d−1

Wl, (3.48)

which is L∞- and L2-optimal with respect to our cost–benefit setting. The grids that
correspond to the spaces V (1)

n are just the standard sparse grids. In comparison with the
standard full grid space V (∞)

n , we now have triangular or simplicial sectors of subspaces,
as seen in Figure 3.4.

Before moving foward, let’s stop and interpret what all this math means for our im-
plementation. First, the spaces Wl gives us the functions which compose the numerical
approximation. Then, equation (3.47) tells us which set of functions actually count, while
equation (3.48) defines the Sparse Grid exactly as the space of (unique) linear combina-
tions of the chosen subspaces. For our implementation purposes, we won’t need the actual
hat functions, but only the points in the grid they determine (Figure 3.4).

We are finally in position to show how well the Sparse Grid avoids the curse of dimen-
sionality.

Theorem 3.4.1 The dimension of the space V (1)
n , i.e., the number of degrees of freedom

or inner grid points, is given by

|V (1)
n | = O(h−1

n · | log2 hn|d−1). (3.49)
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Figure 3.4: The sparse grid of V3, d = 2, and the assignment of grid points to subspaces.
Source: Bungartz-Griebel [1]

.

Proof With |Wl| = 2|l−1|1 and (3.48), we get

|V (1)
n | =

∣∣∣∣∣∣
⊕

|l|1≤n+d−1
Wl

∣∣∣∣∣∣ =
∑

|l|1≤n+d−1
2|l−1|1 =

n+d−1∑
i=d

2i−d ·
∑
|l|1=1

1

=
n+d−1∑
i=d

2i−d ·
i− 1
d− 1


=

n−1∑
i=0

2i ·
d− 1 + i

d− 1



since there are
i− 1
d− 1

 ways to form the sum i with d nonnegative integers. Further-

more,

n−1∑
i=0

2i ·
d− 1 + i

d− 1

 = 1
(d− 1)! ·

n−1∑
i=0

(xi+d−1)(d−1)
∣∣∣
x=2

= 1
(d− 1)! · (x

d−1 · 1− xn
1− x )(d−1)

∣∣∣
x=2

= 1
(d− 1)! ·

d−1∑
i=0

(
d− 1

)
· (xd−1 − xn+d−1)(i) ·

( 1
1− x

)(d−1−i) ∣∣∣
x=2
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⇐⇒
n−1∑
i=0

2i ·
d− 1 + i

d− 1

 = (−1)d + 2n ·
d−1∑
i=1

n+ d− 1
i

 · (−2)d−1−i

= 2n
(

nd−1

(d− 1)! +O(nd−2)
)

from which the result concerning the order and the leading coefficient follows. �

The above theorem shows the order O(2n ·nd−1) or, with hn = 2−n, O(h−1
n | log2 hn|d−1),

which is a significant reduction of the number of degrees of freedom and, thus, of the
computational and storage requirement compared with the order O(h−dn ) of the fullgrid
V (∞)
n . This result will allow us to estimate the number of simulations required for the

engine blades problem in Chapter 4 (that is, how many times do we call f).
The other question to be discussed concerns the interpolation accuracy that can be

obtained on sparse grids. The following Theorem gives the appropriate estimates, and
whose highly arithmetic proof can be found in [1].

Theorem 3.4.2 For the L∞- and the L2-norm, we have the following upper bounds for
the interpolation error of a function u ∈ Xq,2

0 (Ω̄) in the sparse grid space V (1)
n :

‖u− u(1)
n ‖∞ = O(h2

n · nd−1), ‖u− u(1)
n ‖2 = O(h2

n · nd−1). (3.50)

Theorem 3.4.1 shows the crucial improvement of the sparse grid space V (1)
n in compar-

ison with V (∞)
n (lemma 3.3.1). The number of degrees of freedom is reduced significantly,

whereas the accuracy is only slightly deteriorated (according to theorem 3.4.2). This
lessens the curse of dimensionality, but it does not overcome it completely. Since this
result is optimal with respect to both the L∞- and the L2-norm, a further improvement
can only be expected if we change the setting, for instance the optimization process with
respect to the energy norm which we do not pursue here and can naturally be found in
[1].

Before moving on to the next section, we would like to reference the reader to [13] for
an implementation of a generic sparse-grid algorithm in the context of function integration
and which help the author developing his own algorithm in the context of the UT in the
Octave environment.

3.5 Sparse-grid implementation of the Multidimen-
sional UT

As we suppose the random variables have no correlation, calculating the multidimensional
UT would resume simply to a cartesian product of unidimensional transforms. However,
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as seen in the motivation for the Sparse Grid method, such approach is computationally
unfeasible due to the curse of dimensionality, and we instead reduce the number of (grid)
sigma-points necessary by applying such method and making the problem feasible for our
application with 16 dimensions.

The implementation consists simply of taking tensorial products of the sigma-points
and corresponding weights in each dimension and considering only the chosen sparse
grid points instead of the full grid (with the aid of Eq.(3.47)), giving a more feasible
computational selection of points while maintaining the probabilistic moments up to some
order of precision. For the unidimensional UT, we use the algorithm given at the end of
Chapter 2 to determine the sigma-points from a certain probability density function.

To illustrate the grid generated by such algorithm, we consider the probability density
function given by a Gaussian distribution, which will be used in the next chapter to
model the variability of the blades angles. Inserting two equal bell curves into the UT
and applying the sparse grid method for selecting the sigma-points in the plane, we obtain
the grid sequence (one for each level, with 5 levels) displayed in Figure 3.5.

Figure 3.5: Sequence of grid points for the Gaussian distribution in each axis given by
the Sparse Grid method. Levels increase from left to right.

The first level was chosen with 3 sigma-points (thus we end up with 32 = 9 points),
the second level with 7, and so on with 2level− 1 sigma-points, stopping at 63 points (5th
level).

Recalling Figure 1.1, we were able to input probability density functions and the
number of sigma-points desired per level in the Unscented Transform and generate the
corresponding set of sigma-points and weights at the output (although we did not plot
the weights). We are thus in position to generate the inputs to a model f and obtain
information about the system under uncertainty. That is exactly what we are going to
do in the next chapter with the case study of supersonic rotor cascades.
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Chapter 4

Noise signature evaluation

4.1 Noise generated by supersonic rotor cascades

In nominal operation and under perfect manufacturing conditions, the noise signature
produced by supersonic blades is characterized by a single tone at the blade-passing fre-
quency and its harmonics. It is associated with a circumferential pressure profile that
resembles a sawtooth pattern, shown in Figs. 4.1.a and 4.1.c [2]. Figure 4.1.a shows the
expansion waves as light gray lines while the shock wave is colored dark gray. Notice that
the expansion waves for all three blades are identical, as the blades poses the same ge-
ometry and same relative angle. Accordingly, Figure 4.1.c displays the pressure sawtooth
pressure profile with exact periodicity (that is, f(t + T ) = f(t) for all t, where T is the
period).

Figure 4.1: Uniform (left) and distorted (right) systems of shock and expansion waves at
the rotor tips. Source: Pimenta-Miserda [2].
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However, under more realistic conditions, due to manufacturing processes and ex-
tended usage, minimal blade-to-blade differences are produced in the stagger angle, cam-
ber, thickness, and blade spacing, slightly affecting the system of shock and expansion
waves in the rotor blades region, as shown in Figs. 4.1.b and 4.1.d. The upstream propa-
gation of this irregular shock waves system results in the generation of multiple pure tone
noise, characterized by spectra clearly dominated by the shaft order and its harmonics [2].
Figure 4.1.b shows divergence of the expansion waves compared to that of Figure 4.1.a
due to changes in the blades angles, manifested also in the changes of local maximum and
minimum pressures in the profile of Figure 4.1.d compared to 4.1.b.

With the break of the uniform pressure pattern at each blade stage, the fundamental
tonal frequency changes from the blade-passing frequency to the shaft rotation frequency,
where the resultant pressure pattern repeats only after a full shaft turn. The perceived
noise resultant from this interaction is commonly referred to as multiple pure tone (MPT)
noise, or buzz-saw noise, for its resemblance to the sound produced by a circular buzz saw.
These effects vary even from engines of the same model due to these slight rotor-to-rotor
blades differences, making it difficult to obtain a general method to predict this kind of
noise for a given turbofan engine [2].

With this in mind, remember that we want to determine as precisely as possible how
much variations in the blade angles affect the noise signature of the engine. In this chapter
we’ll apply the multidimensional UT to generate sigma-points from given continuous
noise distributions (e.g. Gaussian noise) and from this generate noise responses from the
corresponding modified blade angles of the turbine at specific measuring points. The
following illustrates the general algorithm applied in the computations.

First, take as input a probability distribution (P) and the number of sigma-points
required (N), one pair (P,N) for each engine blade (16 in total), and the number of levels
L that will be constructed by the Sparse Grid. Apply the UT (modified with the Sparse
Grid for the multidimensional computation) to this input to obtain as output the sigma-
points (si, wi). Now take the sigma-points and modify the initial value pressures Pmin and
Pmax related to the blade angles. Apply the model for each of the modified initial values
and obtain a sequence of responses from the model f . Apply the Fast-Fourier Transform
(FFT) to obtain a frequency response and detect the dominant tones. Finally, calculate
the average of all responses and plot such curve together with error curves corresponding
to a number of deviations σ. This algorithm is illustrated in Figure 4.4.

As mentioned throughout the text, we interpret the probability distribution as the
possible variation of the blades angles from a certain ideal position (Figure 4.3). However,
we do not manipulate such values directly. Instead, we simplify the model and consider
only the shock wave pressures at the tip of the blades as indicative of the blade angles,
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Figure 4.2: Circumferential pressure-coeficient profiles measured 1m from the blades.
Source: Pimenta-Miserda [2].

which in [2] resulted from extensive and costly computations (see Figure 4.2). Then, to
transform the sigma-points to pressure, we take the formula ∆p = (1− s)∆(max)p, where
we take ∆(max)p := 25612Pa as the maximum amplitude pmax− pmin in Braulio’s [2] code
(so in our model we actually get twice the amplitude with null probability).

Remember that, although the input involves a random variable, the algorithm is de-
terministic. Thus, to obtain different results (for the purpose of testing, for example),
alterations must be made to the probabilistic distribution which is given as input, as for
each such distribution (and set of parameters) the sigma points will be uniquely deter-
mined.

Figure 4.3: Alteration of the blade angle α in function of the sigma-point s.

4.2 Simulation

Programmed and executed in Octave 6.0.1, the simulation presented here was conducted
in a sixteen dimensional space (one dimension for each blade of the engine), received as
input 3 levels for the sparse grid computation, and N = 1, 3, 5 for the number of sigma-
points in each dimension (one N for each level). All probability density functions were
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Figure 4.4: Schematic depiction of the simulation algorithm for determination of the noise
signature. N in the input is the number of sigma-points desired and L is the number of
levels in the sparse grid approximation.

normal distributions [9]
x 7→ 1

σ
√

2π
e−

1
2(x−µσ )2

(4.1)

with σ = 0.1 and µ = 0 and a code generously supplied by professor Braulio Pimenta
(ENM-Universidade de Brasília) was used as the model f for the pressure computations.
The whole simulation took approximately 30 minutes in a GNU/Linux machine with an
Intel i5 processor @ 2.5Ghz and 8GB of RAM. A total of sigma-points (16-tuples) in
the order of 8 · 104 were evaluated after the Sparse-Grid computation, which is close to
the estimated value given by Theorem 3.1.6 of 69 121 grid points (a difference which the
author believes is justified, at least in part, by the inclusion of boundary points which were
not taken into account in the mentioned theorem). Figure 4.5 shows the mean output of
f before entering the Fast-Fourier Transform.

Figure 4.6 shows in blue the modulus of the mean response obtained after the Fast-
Fourier Transform according to a given frequency, while the grey lines show the limits
of error according the two standard deviations, i.e. 2σ. A clear peak can be noticed
at the left of the graph, while the remaining plot has a clear central symmetry. We
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believe this geometric characteristic is due to the way the pressures were calculated from
the sigma-points, where the expression for pmax and pmin are highly symmetrical (one
simply adds or subtracsts ∆p from a fixed mean value p0). The probability weights were
applied pointwise for the graph construction, that is, the median m was calculated by
m = ∑

iwi × (corresponding si FFT output)/∑iwi in each point.
From this simulation, one observes that the techniques work and are computationally

feasible, specially in a well equipped computational environment (which was not the
case), while a high level sparse grid still demands a lot of memory and computational
time. In fact, the case L = 4 levels showed clearly that the curse of dimensionality was
not completely overcome, consuming more than 10GB of memory and taking more than
an hour before being manually stopped (the machine only had 8GB of memory, so a lot
of disk space was being used as virtual memory and constantly being accessed, rendering
the machine unresponsive).
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Figure 4.5: Mean pressure output of the model f for the determined sigma-points.

Figure 4.6: Graph of Pressure vs. Frequency giving the mean noise signature in blue and
corresponding tolerance band in gray according to two standard deviations.

32



Chapter 5

Conclusion

This work systematically exposed the fundamentals of the Unscented Transform and the
Sparse Grid approach to numerical integration, which was then applied to the character-
ization of the noise signature of supersonic rotor cascades under simplifying assumptions.
The algorithm ran as expected in a reasonable time (relatively speaking compared to
typical simulations in the area) and resulted in a response within the expected, however
unrealistic from a modeling point of view. As far as the author knows, this is the first
time such technique is used in this context. This work thus gives a step foward from the
work done by de Medeiros in [3], where the domain of applicability of the UT did not go
beyond the third dimension and the calculations were done with full grid, with the UT
being an alternative to Monte Carlo methods.

As surely grasped by the reader, this work is but a initial step in the application of
the Unscented Transform in the aeroacoustic realm of applications. This axiomatically
implies a great number of possible paths from here, which we specify a few in the section.

5.1 Future work

The weakest point of the overall simulation was the conversion of the sigma-points cal-
culated after the tensor product to a pressure profile at blades, represented by the green
block in Figure 4.2. Due to the shorter semester caused by the pandemic during the
preparation of this work, the author was unable to learn and interact more with Mechan-
ical Engineers so as to determine a faithful or realistic representation of the shockwave
pressures, as well as establish the relation between the blade angles and such shockwave
pattern. This is certainly a point to be worked on and that will prove invaluable for
applications, as it will hopefully fill a gap in the Aeroacoustic toolbox.
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As the technique described here is quite general, it surely can be used with few mod-
ifications to other applications and contexts, specially those afflicted by uncertainty in
high-dimensions, for instance economic or physical models [5].

It should be pointed out that, besides the Sparse Grid method, no other optimization
technique was explored, e.g. use of parallelism. Given the scope of application (high-
dimensional problems), implementation of optimized algorithms seem mandatory to show
the full potential of the techniques presented.

A number of simplifying hypothesis were used throughout this work, in particular
our assumption that the random variables are independent. Our approach here is not
directly applicable to the dependent case and poses interesting and challenging questions
for future research.

The literature concerning the Unscented Transform focus mostly on conservation of at
most 3 probabilistic moments [11, 4, 8], while our definition of the UT clearly indicates,
at least on the mathematical side, that such bound is artificial. There seems to be room
for both theoretical and practical developments concerning higher-order UTs, even at the
foundational level.

Finally, in the introduction we mentioned a key motivation for the use of the UT as
the possibility of obtaining a solution to the design problem (the inverse problem). Time
did not permit us to pursue this quest further, but it is a highly ambitious goal with
manifold applications in many areas of Engineering, if the proposal indeed works.
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