

TRABALHO DE GRADUAÇÃO

DESENVOLVIMENTO E IMPLEMENTAÇÃO DE UM SISTEMA DE CONTROLE DE EQUILÍBRIO PARA UM ROBÔ QUADRÚPEDE

Bruno Rodolfo de Oliveira Floriano

Brasília, dezembro de 2017

UNIVERSIDADE DE BRASÍLIA

FACULDADE DE TECNOLOGIA

UNIVERSIDADE DE BRASILIA Faculdade de Tecnologia

TRABALHO DE GRADUAÇÃO

DESENVOLVIMENTO E IMPLEMENTAÇÃO DE UM SISTEMA DE CONTROLE DE EQUILÍBRIO PARA UM ROBÔ QUADRÚPEDE

Bruno Rodolfo de Oliveira Floriano

Relatório submetido ao Departamento de Engenharia Elétrica como requisito parcial para obtenção do grau de Engenheiro Eletricista

Banca Examinadora

Prof. Geovany Araújo Borges, ENE/UnB Orientador Prof. Alexandre Ricardo Soares Romariz, ENE/UnB Co-orientador Prof. Ricardo Zelenovsky, ENE/UnB Examinador interno

Dedicatória

Dedico este trabalho aos meus pais, Lúcia e Juscelino, ao meu irmão, Vinícius, e à minha namorada, Jéssica.

Bruno Rodolfo de Oliveira Floriano

Agradecimentos

Gostaria de agradecer aos meus pais pelo grande e constante incentivo aos estudos e à aquisição de conhecimentos, e pela dedicação em sempre me fornecer o melhor possível. Agradeço ao meu irmão, Vinícius, por me incentivar a seguir a área de Engenharia e por seus conselhos, e à minha namorada, Jéssica, pelo enorme incentivo e ajuda durante os períodos mais difíceis do curso.

Por fim, agradeço ao professor Geovany, pelo conhecimento transmitido e pela disponibilidade para ajudar e aconselhar no desenvolvimento do trabalho.

Bruno Rodolfo de Oliveira Floriano

RESUMO

O presente trabalho tem o objetivo principal de desenvolver um sistema de controle de equilíbrio para a plataforma quadrúpede do LARA. Neste sentido, deseja-se que o robô seja capaz de manter a sua estabilidade frente à aplicação de distúrbios que, do contrário, o fariam cair. Dessa forma, o robô poderia ser capaz de manter uma marcha constante, desenvolvida em trabalhos anteriores, mesmo com a presença de perturbações. Para implementar o sistema proposto adotou-se, incialmente, um controlador baseado em ganhos de velocidades, isto é, em que cada pata responderia com uma velocidade proporcional ao distúrbio sofrido. Devido a algumas limitações dos componentes, modificou-se esta concepção para o uso de posições. Ao final, com o controle implementado, adotou-se um sistema com paralelismo de modo que o robô voltasse à sua marcha após a correção do distúrbio, em regime permanente.

ABSTRACT

The main purpose of this project is to develop a balance control system for LARA's quadruped platform. In such way, the robot should be capable of mantaining it's stability in response to disturbances that might make it fall. Hence, the robot could be able to keep a regular gait, developed in previous projects, even with the presence of perturbations. To implement the proposed system it was used, at first, a controller based in speed gains, i.e., each leg would respond with an angular speed proportional to the received disturbance. Due to some component limitations, the initial conception was modified for the use of positions. In the end, with the controller implemented, a system with paralelism was used in a way that the robot would return to its gait after the correction of the disturbance, in steady state.

SUMÁRIO

1	Intro	DUÇÃO	1
	1.1	Contextualização	1
	1.2	Motivação	2
	1.3	Objetivos do projeto	3
	1.4	Resultados obtidos	4
	1.5	Apresentação do manuscrito	5
2	Funda	AMENTAÇÃO TEÓRICA	7
	2.1	Introdução	7
	2.2	Estabilidade Estática	7
	2.2.1	Métodos Geométricos	8
	2.2.2	Métodos Energéticos	8
	2.3	Estabilidade Dinâmica	10
	2.3.1	Método do Centro de Pressão	10
	2.3.2	Margem de Estabilidade Dinâmica	11
	2.3.3	Margem Normalizada de Estabilidade Dinâmica por Energia	11
	2.4	Algoritmo de Posicionamento de Pata	12
	2.4.1	Algoritmos de Uma Perna	12
	2.4.2	Marcha de uma pata	14
	2.4.3	Pernas Virtuais	15
	2.4.4	Exemplo de Aplicação	16
	2.5	Controle de Balanço Dinâmico	19
	2.6	Taxa de Concordância de Aterrissagem	21
	2.6.1	Controle e Planejamento de Marcha	22
	2.7	Modelo Cinemático e Cinemático Inverso	24
	2.7.1	Modelo Geométrico	25
	2.7.2	Modelo Cinemático	26
	2.7.3	Modelo Cinemático Inverso	27
	2.7.4	Aplicações	27
	2.8	Controle de Estabilidade Empírico	31
	2.9	Conclusão	32
3	Desen	VOLVIMENTO	34

	3.1	Introdução	34
	3.2	Arquitetura do Robô	34
	3.2.1	Motores	35
	3.2.2	Sistema Embarcado	37
	3.3	gDataLogger	38
	3.4	Thread Periódica	38
	3.5	Controle de Estabilidade	40
	3.5.1	Abordagem Inicial	42
	3.5.2	Filtro	43
	3.5.3	Torque no Modo Velocidade	43
	3.5.4	Controle de Estabilidade no Modo Posição	44
	3.5.5	Determinação dos Ganhos K_i	44
	3.5.6	Sentido de Movimentação das Patas	47
	3.5.7	Juntas do Tipo Joelho	48
	3.5.8	Associação do controle de equilíbrio com uma posição desejada	49
	3.6	Estrutura Geral do Código	53
	3.7	Conclusão	54
4	RESUL	rados Experimentais	56
	4.1	INTRODUÇÃO	56
	4.2	Modo Velocidade	56
	4.2.1	Medição	56
	4.2.2	Posição Inicial	58
	4.2.3	Teste de Sustentação	59
	4.3	Modo Posição	62
	4.3.1	Teste de Sustentação	63
	4.3.2	Determinação das constantes K_{up} e K_{down}	63
	4.3.3	Determinação das constantes de rolagem K_R e K_L	65
	4.3.4	Determinação dos ganhos de arfagem $K_B \in K_F$	69
	4.4	Associação do controle de equilíbrio com uma posição desejada	72
	4.4.1	Determinação das constantes $ au_d$ e $ au_p$	72
	4.4.2	Testes finais	77
	4.4.3	Aplicação de Marchas	81
	4.5	Conclusões	83
F	Conci	USÕDS	85
J	5 1	CUCESTOES DE TRADALHOS EUTUROS	86
	0.1	SUGESIDES DE TRABALHOS FUTUROS	00
\mathbf{R}	EFERÊ	NCIAS BIBLIOGRÁFICAS	87
A	NEXOS		89
Ι	Descr	IÇÃO DO CONTEÚDO DO CD	90

LISTA DE FIGURAS

1.1	Robô quadrúpede $BigDog$ desenvolvido pela empresa Boston Dynamics (Fonte: [1])	2
1.2	Robô quadrúpede HyQ	3
1.3	Robô quadrúpede de entretenimento AIBO da Sony	4
1.4	Plataforma quadrúpede do LARA (Fonte: [2])	5
2.1	Polígonos de suporte de um robô quadrúpede durante sua caminhada (Adaptado de	
	[3])	9
2.2	Margens de Estabilidade Longitudinal e de Caranguejo (Adaptado de [4])	10
2.3	Forças e momentos atuantes em um robô prestes a tombar (Fonte: [4])	11
2.4	Esquemático dos parâmetros geométricos durante o tombo (Adaptado de [4])	13
2.5	Robô de uma perna	14
2.6	CG Print de um robô de uma perna (Fonte: [5])	15
2.7	Representação de uma Perna Virtual (Fonte: [5])	15
2.8	Pernas virtuais para cada marcha (Adaptado de [5])	16
2.9	Vistas do quadrúpede com 6 graus de liberdade (Adaptado de $[6]$)	17
2.10	Modelo SLIP (Fonte: [6])	18
2.11	Modelo de forças e torques para controle de arfagem e rolagem (Fonte: [6])	19
2.12	Modelo de quadrúpede apoiado em pernas diagonais (Adaptado de [7])	20
2.13	Esboço das relações de ângulo entre perna e corpo (Fonte: [7])	21
2.14	Estrutura do sistema de controle em malha fechada no espaço de estados (Fonte: [7])	21
2.15	Sincronia em marcha quadrúpede (Fonte: [8])	22
2.16	Representação da Dessincronização das Pernas (Fonte: [8])	22
2.17	Diagrama de blocos do sistema de controle de equilíbrio e trajetória (Adaptado de	
	[8])	23
2.18	Parâmetros de um quadrúpede em instabilidade (Adaptado de [8])	23
2.19	Algoritmo para controle de estabilidade utilizando o LAR (Adaptado de [8])	24
2.20	Modelo utilizado por Featherstone (Fonte: [9])	28
2.21	Quadrúpede com total de 16 graus de liberdade (Fonte: [10])	29
2.22	Sistema de realimentação para controle de marcha e de postura (Adaptado de [10])	30
2.23	Modelo geométrico de uma perna com 4 graus de liberdade (Fonte: [10])	31
2.24	Medições Empíricas e suas Respectivas Respostas (Adaptado de [11])	32
3.1	Representação gráfica da plataforma quadrúpede do LARA (Fonte: [2])	35
3.2	Motor Rx-28 da Dynamixel (Fonte: [2])	36

3.3	Configurações do Modo Posição	37
3.4	Orientações detectáveis pelo acelerômetro	38
3.5	Arquitetura do Sistema Embarcado (Fonte: [2])	39
3.6	Vista de cima do sistema embarcado	40
3.7	Diagrama de Blocos do Sistema no Modo Velocidade	42
3.8	Diagrama de Blocos do Sistema no Modo Velocidade com Filtro	43
3.9	Diagrama de Blocos do Sistema no Modo Posição	44
3.10	Motores de rolagem em sincronia	45
3.11	Motores de arfagem em sincronia	46
3.12	Movimento do Centro de Gravidade durante o distúrbio	47
3.13	Configurações das juntas tipo joelho no plano longitudinal durante a aterrissagem	49
3.14	Diagrama de blocos para adição da posição desejada	50
3.15	Diagrama do código desenvolvido	54
4.1	Angulos de rolagem e arfagem medidos com o robô parado	57
4.2	Velocidades antes e depois da filtragem	59
4.3	Robô na sua posição inicial	61
4.4	Teste de Sustentação do Robô no Modo Velocidade	62
4.5	Velocidade do Motor 11	63
4.6	Teste de Sustentação do Robô no Modo Posição	64
4.7	Postura após distúrbio com $K_{down} = -1$	65
4.8	Postura após distúrbio com $K_{down} = -0, 4$	66
4.9	Teste de Queda para a direita com $K_R = 1$	67
4.10	Teste de Queda para a direita com $K_R = 1, 5$	68
4.11	Posição do robô após a correção do distúrbio	69
4.12	Teste de Queda para a frente com $K_F = 1, 5$	70
4.13	Teste de Queda em todos os sentidos	71
4.14	Teste de Queda com $\tau_d = 0,01s$	73
4.15	Teste de Queda com $\tau_d = 0,05s$	74
4.16	Teste de Queda com $\tau_d = 0, 1s$	74
4.17	Teste de Queda com $\tau_d = 0, 3s$	75
4.18	Teste de Queda com $\tau_p = 0, 1s$	76
4.19	Teste de Queda com $\tau_p = 0, 3s$	77
4.20	Teste de Queda com $\tau_p = 0, 5s$	77
4.21	Teste de Queda com $\tau_p = 0, 7s$	78
4.22	Teste de Queda para a direita com adição da posição desejada	79
4.23	Teste de Queda para a esquerda com adição da posição desejada	79
4.24	Teste de Queda para frente com adição da posição desejada	80
4.25	Teste de Queda para a trás com adição da posição desejada	80
4.26	Teste de Queda para a diagonal com adição da posição desejada	81
4.27	Teste de marcha no sistema com adição da posição desejada	82
4.28	Marcha do robô adicionada ao sistema de controle de equilíbrio	83

LISTA DE TABELAS

3.1	Identificação dos motores	35
4.1	Ângulos mínimo, máximo e médio medidos	58
4.2	Velocidades mínima, máxima, média e sua amplitude	60
4.3	Posição Inicial dos Motores	60
4.4	Tempo de Acomodação e Magnitude de Oscilação em testes de τ_d	75
4.5	Tempo de Acomodação em testes de τ_p	78

LISTA DE SÍMBOLOS

Símbolos Latinos

S	Margem de estabilidade	[m]
В	Valor quantizado de uma quantidade	
u	Função degrau	
V	Tensão	[V]
T	Tempo	$[\mathbf{s}]$
q	Velocidade de uma junta	$[^{o}/\mathrm{s}]$
K	Ganho	
d	Valor do distúrbio	
r	Valor de referência	
m	Valor medido	
k	Numero de períodos de amostragem decorridos	
f	Frequência	[Hz]
s	Frequência complexa	[rad/s]
G	Função de transferência	
A	Valores de entradas e saídas do filtro / Magnitude do ganho	
	quando diferente de zero	
D	Distúrbio no domínio s	
H	Função de transferência	
x	Função genérica do tempo	
P	Amplitude da posição desejada em regime permanente	[⁰]

Símbolos Gregos

θ	Ângulo de rolagem, arfagem ou de algum motor	$\begin{bmatrix} o \end{bmatrix}$
ω	Velocidade angular de rolagem, arfagem ou de algum motor	$[^{o}/\mathrm{s}]$
ϵ	Variação normalizada da projeção vertical do COG em relação	
	ao seu valor em repouso	
Θ	Ângulo no domínio s (ou de Laplace)	$\begin{bmatrix} o \end{bmatrix}$
au	Constante de tempo	$[\mathbf{s}]$
α	Constante	
β	Constante	
γ	Constante	
η	Constante	
λ	Constante	

Subscritos

SM	Margem de estabilidade estática - Static stability margin
i	Identificação numérica da junta
θ	Quantidade referente a ângulos
max	máximo
ω	Quantidade referente a velocidades angulares
roll	Referente à rolagem
pitch	Referente à arfagem
am	amostragem
roll/pitch	Referente à rolagem ou à arfagem
r	Valor de referência
С	Frequência de corte
filtro	Referente ao filtro
out	Saída do filtro
in	Entrada do filtro
R	direita - Right
L	esquerda - <i>Left</i>
F	frente - Front
В	traseira - Back
up	Referente a uma junta do tipo não-joelho
down	Referente a uma junta do tipo joelho
j	Referente ao sentido j
k	Referente à amplitude do distúrbio
d	Referente à resposta ao distúrbio
p	Referente à resposta desejada em regime permanente

Sobrescritos

•	Variação temporal
*	Valor desejado em regime permanente
	Dupla variação temporal

Siglas

UnB	Univeridade de Brasília
LARA	Laboratório de Automação e Robótica
CPU	Unidade Central de Processamento - Central Processing Unit
COG	Centro de Gravidade
COP	Centro de Pressão
EMC	Centro de Massa Efetiva - Effective Mass Center
ZMP	Ponto de Momento Zero - Zero Moment Point

Capítulo 1

Introdução

1.1 Contextualização

Nas últimas décadas, o estudo e desenvolvimento de robôs com patas, especialmente de quadrúpedes, tem avançado consideravelmente. Devido às suas características bio-inspiradas, estes veículos apresentam alta mobilidade em terrenos irregulares, manejam obstáculos e podem se locomover em superfícies inclinadas tornando-os uma alternativa mais eficaz para a exploração e navegação de diversos terrenos quando comparados com veículos movidos a rodas, por exemplo [1, 6]. Isso faz com que estes robôs possam ser utilizados em diversas aplicações.

Neste sentido, os robôs quadrúpedes podem, por exemplo, ser amplamente utilizados no transporte de cargas, devido à possibilidade de distribuição de peso em suas pernas de suporte. Dentre outros, este é um dos objetivos do desenvolvimento de alguns destes robôs por parte da empresa norte-americana Boston Dynamics, desenvolvedora do *BigDog*, um robô quadrúpede criado para a locomoção em diversos terrenos, incluindo solos irregulares e superfícies inclinadas, capaz de suportar até 154 kg em terrenos horizontais [1]. Na Figura 1.1 podemos ver o *BigDog* se locomovendo sobre uma superfície com neve e inclinada.

Outra possível aplicação desta tecnologia é a substituição de seres humanos em atividades de risco tais como busca e resgate, construção, recuperação de ambientes em que houve desastre e exploração de ambientes inóspitos ou de difícil acesso. Estes são alguns objetivos traçados pelo Instituto Italiano de Tecnologia ¹(Istituto Italiano di Tecnologia) no desenvolvimento do HyQ, um robô quadrúpede com atuadores hidráulicos e elétricos [12]. A Figura 1.2 mostra tal robô construído.

Por fim, os quadrúpedes podem, ainda, ter como finalidade o entretenimento. Robôs como o AIBO, desenvolvido pela empresa japonesa Sony, são animais de estimação virtuais que visam o lazer [11]. Podemos observar uma imagem do AIBO na Figura 1.3.

Porém, para que um robô quadrúpede possa desenvolver as aplicações acima mencionadas, cumprindo os requisitos de suas funções, é necessário que, além de conseguir se movimentar de

 $^{^{1}}$ http://new.semini.ch/research/hyq-robot/

Figura 1.1: Robô quadrúpede BigDog desenvolvido pela empresa Boston Dynamics (Fonte: [1])

forma não cadenciada, isto é, assegurando um movimento contínuo, ele mantenha o equilíbrio de seu corpo, evitando o tombamento e garantindo a estabilidade. Dessa forma, manter a estabilidade permite que o sistema seja robusto contra distúrbios externos como empurrões ou ventos e contra irregulares no terreno como buracos e rugosidades.

Justamente pela importância da análise de estabilidade em robôs quadrúpedes que seu estudo começou logo em 1968 com os trabalhos de McGhee e Frank [3] sobre estabilidade estática e vêm se estendendo até os dias atuais com novos modelos e experimentos para análise de como robôs quadrúpedes podem se manter estáveis ainda que em alta velocidade ou em terrenos irregulares.

Desde 2005, alunos e professores de Engenharia Elétrica e de Engenharia Mecatrônica da Universidade de Brasília (UnB) vêm desenvolvendo e aprimorando uma plataforma quadrúpede no Laboratório de Robótica e Automação (LARA). Desde então, várias abordagens já foram trabalhadas na plataforma, passando por diversas modificações em seus componentes [13]. A Figura 1.4 mostra o estado da plataforma após suas últimas atualizações antes de ser utilizada neste trabalho.

O robô quadrúpede construído no LARA teve trabalhos de reestruturação nos últimos anos, em que foram adicionados novos componentes como acelerômetro, placas de Arduino e Raspberry Pi, sensores de força e novos motores para as juntas. Além disso, o último trabalho nele desenvolvido adicionou quatro diferentes estilos de marchas de locomoção, baseados em algoritmos genéticos [2].

1.2 Motivação

Como mencionado anteriormente, o controle de estabilidade em uma plataforma tal qual o quadrúpede é de grande importância para que esta seja utilizada em aplicações reais. Isto se dá pois, em condições reais de aplicação, o robô pode se deparar com vários obstáculos que o impeçam

Figura 1.2: Robô quadrúpede HyQ (Fonte: ²)

ou dificultem sua locomoção, ou mesmo que o faça tombar. Desta forma, o controle de equilíbrio é fundamental para aplicações reais.

No entanto, não foi trabalhado, até então, o controle de equilíbrio da plataforma do LARA. Uma vez que este controle é de fundamental importância para a utilização da plataforma em ambientes reais, suscetíveis a distúrbios e irregularidades, o presente trabalho busca desenvolver e implementar um sistema que permita que o robô se estabilize frente a tais perturbações. Além disso, a reestruturação realizada em trabalhos anteriores a este possibilitou que o controle aqui desenvolvido fosse implementado de forma mais significativa. Em especial a adição do acelerômetro e de motores mais robustos foram essenciais neste desenvolvimento.

Portanto, este trabalho foi concebido com o intuito de desenvolver e implementar um controle de estabilidade que permita que o robô corrija possíveis perturbações seja durante a sua marcha, seja enquanto esteja parado.

1.3 Objetivos do projeto

Atualmente a plataforma quadrúpede do LARA apresenta um movimento balístico satisfatório, baseado em algoritmos genéticos, desenvolvido por Porphirio e Santana [2], isto é, o robô apresenta capacidade de se locomover de forma não cadenciada, mas não possui um sistema de controle de equilíbrio que permita a este manter-se estável perante a aplicação de distúrbios externos, seja

 $^{^{2}}$ http://new.semini.ch/research/hyq-robot/

Figura 1.3: Robô quadrúpede de entretenimento AIBO da Sony (Fonte: ³)

durante o movimento, seja parado.

O principal objetivo deste trabalho é utilizar os recursos já presentes na plataforma quadrúpede do LARA para desenvolver e implementar um controle de equilíbrio que permita a este manter a sua estabilidade, sem tombar, mesmo na presença de distúrbios externos, como empurrões. Fundamentalmente, espera-se que a utilização do acelerômetro do robô permita fazer as medições necessárias para a detecção do distúrbio e aplicar estes dados para a determinação da resposta mais adequada de cada perna para a correta correção das perturbações.

Além disso, como estamos pensando em ambientes reais de funcionamento do robô, deseja-se que a estabilidade seja mantida não apenas enquanto o robô esteja parado mas também que este mantenha sua marcha inalterada, mantendo, assim, o seu movimento após a correção do distúrbio.

Por fim, espera-se que os parâmetros de controle possam ser determinados empiricamente através de testes reais na plataforma, visando a adequação do controle ao ambiente real de aplicação e aos dispositivos e configurações presentes no robô.

1.4 Resultados obtidos

Os resultados obtidos ao final do presente trabalho estão em conformidade com a maioria dos objetivos traçados anteriormente. Foi possível desenvolver um controle de equilíbrio apropriado para a plataforma quadrúpede trabalhada garantindo, dessa forma, que o robô efetivamente corrigisse os distúrbios nele aplicados. Apesar de algumas alterações terem sido necessárias durante o desenvolvimento deste trabalho, a concepção original do controlador gerou os parâmetros fundamentais para a correção das perturbações.

Dessa forma, o desenvolvimento, concomitante com os experimentos reais no robô, permitiu a adequação do controle proposto com as condições do ambiente e da plataforma através de parâmetros determinados empiricamente.

 $^{^{3}}http://www.sony-aibo.com/$

Figura 1.4: Plataforma quadrúpede do LARA (Fonte: [2])

Além disso, adaptou-se o controle proposto para que o robô volte a uma determinada posição desejada, após o fim da correção do distúrbio. Isso permite que, após a estabilidade ser alcançada, o robô se mantenha em uma mesma posição de sustentação ou mesmo que a marcha de locomoção se mantenha constante. O que determina qual cenário será aplicado em regime permanente é a posição desejada (referência) a cada instante de tempo.

Tal sistema foi implementado inicialmente considerando a posição desejada como a posição inicial. Dessa forma, ao final de cada distúrbio o robô volta à postura inicialmente adotada e assim se mantêm parado. Os experimentos neste cenário foram bem sucedidos pois o robô foi capaz de voltar adequadamente à posição inicial após o distúrbio.

No entanto, ao realizar experimentos para efetivamente fazer a integração com as marchas desenvolvidas em trabalhos anteriores, não obtivemos resultados positivos. O motivo disto, em grande parte, se deu pelo tempo de amostragem utilizado no controlador, incompatível, a princípio, com a marcha desenvolvida.

1.5 Apresentação do manuscrito

No capítulo 2 é apresentada a fundamentação teórica relacionada com o estudo de controle de equilíbrio de robôs quadrúpedes. Além disso, apresentar-se-á os trabalhos relacionados a este tema na literatura estudada, incluindo os casos que foram interpretados como os mais relevantes para a concepção adotada neste trabalho assim como os desenvolvimentos mais recentes nesta área. Em

seguida, o capítulo 3 descreve a metodologia empregada no desenvolvimento do projeto, incluindo a apresentação dos equipamentos mais relevantes que foram utilizados e da formulação do controle em si. Resultados experimentais são discutidos no capítulo 4, com a indicação de como foram realizados tais procedimentos. Por fim, as conclusões do trabalho são discutidas no capítulo 5. Os anexos contém material complementar.

Capítulo 2

Fundamentação Teórica

2.1 Introdução

Como mencionado no Capítulo 1, os estudos de estabilidade em robôs com pernas, em especial de robôs quadrúpedes, começaram em 1968 com os trabalhos de McGhee e Frank com a definição de estabilidade estática [3]. Com o passar do tempo, novas definições para a estabilidade estática foram sendo desenvolvidas, ao mesmo tempo que os estudos de estabilidade dinâmica começaram a ser concebidos [4].

Desde então, diversos métodos de controle de estabilidade tem sido trabalhados na construção de robôs quadrúpedes, desde modelos cinemáticos, utilizando apenas as posições e velocidades do robô, até modelos dinâmicos mais complexos, que analisam as forças e momentos atuantes sobre ele.

Neste capítulo, apresentaremos os principais trabalhos já desenvolvidos nesta área que foram encontrados na literatura. Selecionou-se os trabalhos que se mostraram mais relevantes para o projeto concebido para ser implementado no robô do LARA, incluindo artigos com desenvolvimentos similares ou com abordagens teóricas pertinentes para serem estudadas sobre assunto.

Além disso, selecionou-se trabalhos que, apesar de não serem utilizados diretamente neste projeto, demonstram a situação passada e atual do estado da arte do controle de equilíbrio de robôs quadrúpedes.

2.2 Estabilidade Estática

A estabilidade estática tem como principal característica a independência de fatores dinâmicos, isto é, ela não considera a atuação de forças externas, com exceção da gravidade, de momentos resultantes ou de componentes inerciais. Porém, conforme o robô aumenta sua velocidade os efeitos dinâmicos sobre o mesmo passam a ficar cada vez mais relevantes, de forma que a estabilidade estática não garante o equilíbrio da máquina. Da mesma forma, o aumento de carga sobre o robô ou a presença de superfícies irregulares ou inclinadas tornam este tipo de controle mais ineficiente. Contudo, estudar a estabilidade estática ainda é de suma importância no controle de equilíbrio de quadrúpedes, seja para o melhor entendimento de todo o escopo deste estudo, seja para aplicações restritas em que a estabilidade estática é suficiente para cumprir os requisitos propostos.

2.2.1 Métodos Geométricos

Os métodos geométricos utilizam a geometria proveniente da configuração das patas do robô a cada instante para definir a sua estabilidade e o quão perto dele se tornar instável (a margem de estabilidade).

Segundo McGhee e Frank [3] um robô movido a patas sobre uma superfície horizontal é estaticamente estável se e somente se a projeção vertical do centro de gravidade (COG) da máquina está dentro do polígono de suporte. Este, por sua vez, é definido como o polígono convexo formado pela conexão das patas em contato com o solo. Podemos observar na Figura 2.1 alguns possíveis polígonos de suporte formados por um robô quadrúpede durante sua caminhada. Na Fig. 2.1(a) uma das patas não está em contato com o solo, de forma que o polígono resultante é um triângulo. Na Fig. 2.1(b), todas as patas estão em contato com o solo, mas as patas 1 e 3 se encontram mais próximas, formando um trapézio. Por fim, na Fig. 2.1(c), todas as patas estão em contato com o solo mas 1 e 3 estão mais afastadas, formando, dessa forma, um paralelogramo.

Em todos os casos da Fig. 2.1, a projeção do centro de gravidade está dentro do polígono, indicando que o robô encontra-se estaticamente estável.

Além da definição de estabilidade, McGhee e Frank apresentam em [3] a definição de margem de estabilidade. Para este caso, ela é definida como a menor distância entre a projeção do COG e qualquer ponto da fronteira do polígono. Dessa forma, por exemplo, a margem de estabilidade da Fig. 2.1(a) é menor que da Fig. 2.1(c) pois no primeiro caso a projeção do COG se encontra bem mais próxima de uma das fronteiras do polígono.

Posteriormente, novas difinições foram feitas para a margem de estabilidade estática baseada neste trabalho de McGhee e Frank [4]. A Margem de Estabilidade Longitudinal (S_{LSM}) , por exemplo, é definida como a menor distância entre a projeção vertical do COG e a fronteira dianteira ou traseira do polígono de suporte, ou seja, a menor distância deve ser tomada apenas no eixo longitudinal do polígono. Isto é um método que facilita os cálculos da margem de estabilidade.

Um outro exemplo é a Margem de Estabilidade Longitudinal de Caranguejo (S_{CLSM}) onde, ao invés de se considerar o eixo longitudinal, deve-se considerar o eixo de direção do movimento do robô. Este método leva em conta a não-idealidade dos veículos, que não necessariamente se locomovem através de seu eixo longitudinal. A Figura 2.2 mostra uma representação da diferença das margens Longitudinal e de Caranguejo.

2.2.2 Métodos Energéticos

Os métodos energéticos calculam a energia necessária para tombar o robô para definir sua margem de estabilidade e, consequentemente, se ele se encontra instável ou não.

(c) Todas as pernas sobre o solo com patas afastadas

Figura 2.1: Polígonos de suporte de um robô quadrúpede durante sua caminhada (Adaptado de [3])

Proposto em 1985 por Messuri, a Margem de Estabilidade por Energia (S_{ESM}) é definida como a energia potencial mínima necessária para tombar o robô ao redor de uma das fronteiras do polígono de suporte [4]. Dessa forma, podemos escrever matematicamente essa relação como

$$S_{ESM} = \min_{i}^{n_s} (mgh_i), \tag{2.1}$$

em que m é a massa do robô, g é a gravidade, i denota qual segmento do polígono de suporte é considerado, n_s é o número de pernas de suporte e h_i é a variação da altura do COG durante o tombamento.

É interessante notar que, como este método ainda trata de estabilidade estática, apenas a gravidade é considerada e, por isso, para este caso, a energia potencial é a única componente energética que contribuiria para o tombamento do robô.

Em 1998, Hirose *et al.* definiram a Margem de Estabilidade por Energia Normalizada (S_{NESM}) como a S_{ESM} normalizada com o peso do robô, de forma que a unidade mantenha-se igual à proposta pelos métodos geométricos (unidade de comprimento) [4]. Por conseguinte, a margem normalizada pode escrita como

$$S_{NESM} = \frac{S_{ESM}}{mg} = \min_{i}^{n_s}(h_i).$$
(2.2)

A S_{NESM} tem se mostrado como a mais eficiente medida de margem de estabilidade estática, mas ainda não comporta os efeitos dinâmicos que surgem em aplicações de maiores velocidades ou com distúrbios externos [4].

Figura 2.2: Margens de Estabilidade Longitudinal e de Caranguejo (Adaptado de [4])

2.3 Estabilidade Dinâmica

A estabilidade dinâmica, diferentemente da estática, é caracterizada por incluir os efeitos dinâmicos que atuam sobre o robô, tais como as ações de forças resultantes e torques. O estudo da estabilidade dinâmica tem como propósito a modelagem de situações mais concretas existentes em aplicações reais. Desta maneira, a inclusão de efeitos inerciais, forças e momentos externos ao estudo de estabilidade permite ao sistema de locomoção trabalhar com velocidades maiores, em terrenos mais irregulares e com condições mais adversas.

2.3.1 Método do Centro de Pressão

Analogamente ao método geométrico da projeção do centro de gravidade definido para a estabilidade estática, Orin definiu em 1976 o método do Centro de Pressão (COP) [4]. Neste método, define-se como dinamicamente estável o robô cuja projeção do centro de gravidade (COG) ao longo da direção da força resultante agindo sobre o COG encontra-se dentro do polígono de suporte. Da mesma maneira que no caso estático, a margem de estabilidade será a menor distância desta projeção e qualquer uma das bordas do polígono.

Esta definição foi modificada posteriormente assim como a sua nomenclatura. Kang *et al.*, em 1997, renomearam o COP como Centro de Massa Efetiva (EMC) e o definiram como o ponto no plano em que o momento resultante é nulo. Esta definição é similar à definição de Ponto de Momento Zero (ZMP) utilizado em robôs bípedes [4].

2.3.2 Margem de Estabilidade Dinâmica

Quando o robô porventura sofre a ação de um distúrbio suficientemente forte para fazê-lo iniciar um processo de tombamento, algumas patas podem perder o contato com o chão e provocar uma rotação ao redor de um eixo, como pode ser observado na Figura 2.3. Quando isto acontece, o sistema de controle deve gerar uma força resultante F_R e um momento resultante M_R para poder contrabalancear os distúrbios externos que provocaram o desequilíbrio inicial. Dessa forma, o momento total, M_i , gerado através de F_R e de M_R , deve ser suficiente para garantir essa compensação, caso contrário o sistema será considerado instável.

Desse modo, Lin e Song, em 1993, definiram como Margem de Estabilidade Dinâmica (S_{DSM}) como o menor momento M_i dentre os eixos de rotações possíveis, normalizado com o peso do robô, onde *i* descreve cada eixo [4]. Portanto, podemos descrever essa relação como

$$S_{DSM} = \min\left(\frac{M_i}{mg}\right) = \min\left(\frac{e_i \cdot (F_R \times P_i + M_R)}{mg}\right),\tag{2.3}$$

na qual P_i é o vetor de posição do COG até a i-ésima pata e e_i é o vetor unitário que circunda o polígono de suporte na direção horária. Estes parâmetros podem ser observados com maior clareza na Figura 2.3.

2.3.3 Margem Normalizada de Estabilidade Dinâmica por Energia

Assim como foi feito no caso estático, podemos analisar a estabilidade dinâmica por uma perspectiva energética. Porém, para este modelo, considera-se, além da força gravitacional, forças e momentos aplicados externamente, além da energia cinética representando a inércia do sistema. Do mesmo modo, a Margem Normalizada de Estabilidade Dinâmica por Energia (S_{NDESM}) é definida como a menor energia necessária para se tombar o robô ao redor do polígono de suporte, ou seja

Figura 2.3: Forças e momentos atuantes em um robô prestes a tombar (Fonte: [4])

$$S_{NDESM} = \frac{\min(E_i)}{mg},\tag{2.4}$$

em que E_i é a energia necessária para se tombar o robô através da i-ésima borda do polígono de suporte. Ela pode ser calculada através da seguinte equação:

$$E_i = mg|R|(\cos(\phi) - \cos(\varphi))\cos(\Psi) + (F_{RI} \cdot t)|R|\theta + (M_R \cdot e_i)\theta - \frac{1}{2}I_i\omega_i^2.$$
(2.5)

Nessa relação, R é o vetor ortogonal à i-ésima borda do polígono de suporte que aponta para o COG, F_{RI} é a componente não gravitacional das forças resultantes F_R , I_i é o momento de inércia do robô ao redor da i-ésima borda, ω_i é a velocidade angular do COG, Ψ é o ângulo de inclinação da i-ésima borda do polígono de suporte, φ é o ângulo de rotação necessário para posicionar o COG no plano vertical, ϕ é o ângulo entre o plano vertical e o plano crítico, θ é a soma de φ e ϕ , e t é o vetor unitário tangencial à trajetória do COG. A Figura 2.4 mostra o esquemático geométrico para a determinação de tais parâmetros.

Estes foram, portanto, alguns dos estudos inicialmente desenvolvidos para analisar a estabilidade de um robô quadrúpede. Nestes trabalhos, foram concebidas e formuladas definições fundamentais para este estudo, incluindo abordagens geométricas e energéticas, assim como dinâmicas.

As seções a seguir apresentam alguns outros métodos dinâmicos para a análise da estabilidade. Eles são classificados como tal por considerarem a aplicação de forças externas e momentos resultantes, porém não utilizam, necessariamente, os métodos de análise de margem de estabilidade como os descritos nesta seção.

Além disso, as propostas a seguir não apenas discutem a estabilidade do robô como sugerem e desenvolvem técnicas para o seu controle.

2.4 Algoritmo de Posicionamento de Pata

Em 1986, Raibert *et al.* propuseram uma abordagem diferente para o controle de estabilidade de robôs movidos a pernas [5, 7]. O Algoritmo de Posicionamento de Pata (*Foot Placement Algorithm* - *FPA*) utiliza os algoritmos de robôs com uma perna, já desenvolvidos anteriormente, e os estende para múltiplas patas através do conceito de perna virtual. Um exemplo de robô com uma perna pode ser visto na Figura 2.5. Dessa forma, o controle de equilíbrio pode ser dividido em três partes: altura de pulo, postura do corpo e velocidade direta de corrida, conceitos advindos do controle de robôs com uma perna. Até os dias atuais, este conceito é utilizado em robôs como o *BigDog* [1].

2.4.1 Algoritmos de Uma Perna

Em robôs de uma perna como o da Figura 2.5, o sistema é dividido em corpo e perna, com um quadril tipo dobradiça separando-os. Um atuador gera um torque no quadril e outro proporciona

Figura 2.4: Esquemático dos parâmetros geométricos durante o tombo (Adaptado de [4])

movimento axial na perna. Uma mola é adicionada em série com o atuador axial de modo que o sistema de controle possa excitar o sistema massa-mola gerando o movimento desejado. Dessa forma, podemos dividir o controle de equilíbrio em três:

Altura de Pulo: O sistema de controle entrega um impulso vertical, através do atuador axial, regulando a altura que a máquina atinge. Dessa forma, pode-se regular a amplitude do movimento e, consequentemente, manter o ciclo de oscilação governado pelo sistema massa-mola. Assim, parte da energia para cada salto é recuperada pela mola.

Postura do Corpo: O sistema de controle gera um torque sobre o quadril (entre o corpo e a perna) durante a fase de contato com o solo para manter o corpo numa posição ereta. O torque aplicado será dado por

$$\tau = -k_p(\phi - \phi_d) - k_v(\dot{\phi}), \qquad (2.6)$$

em que τ é o torque aplicado na dobradiça do quadril, k_p e k_v são ganhos, ϕ é a inclinação do corpo, ϕ_d é a inclinação desejada do corpo e $\dot{\phi}$ é a taxa de variação da inclinação do corpo.

Velocidade Direta de Corrida: Durante a fase de voo, o sistema de controle manipula a posição que a pata irá atingir o solo possibilitando, dessa forma, o controle da velocidade de corrida. Definindo *CG Print* como o conjunto de pontos no chão por quais o centro de massa do corpo irá passar durante o contato com o solo podemos identificar que, se a pata pousar no centro

Figura 2.5: Exemplo de robô de uma perna (Fonte: 1)

do *CG Print* (o chamado ponto neutro), não haverá aceleração. Do contrário, um posicionamento da pata após o ponto neutro irá causar uma desaceleração e, com a pata posicionada antes do ponto neutro, o robô sofrerá uma aceleração. Podemos observar uma imagem do *CG Print* na Figura 2.6. Esta relação pode ser descrita por

$$x_f = \frac{\dot{x}T_S}{2} + k_{\dot{x}}(\dot{x} - \dot{x_d}), \qquad (2.7)$$

de modo que x_f é o posicionamento do pé na direção do movimento, com relação à projeção do centro de gravidade, \dot{x} é a velocidade atual do movimento, $\dot{x_d}$ é a velocidade desejada, T_S é a duração do período de suporte (enquanto a pata ainda está em contato com o solo) e $k_{\dot{x}}$ é um ganho de velocidade.

Obtido x_f , uma transformação cinemática calcula o ângulo que a junta deve fornecer para atingir tal posição.

2.4.2 Marcha de uma pata

Considerando um robô com mais de uma pata, podemos definir Marcha de uma Pata (*One foot gait*) como uma marcha em que apenas uma perna oferece suporte por vez de modo que as fases de suporte e de voo ocorrem de forma alternada entre elas. Para o caso de quadrúpedes, por exemplo, tal alternância é utilizada de forma que a perna atualmente em contato com o solo proporcione o impulso vertical para manter o movimento enquanto sua respectiva dobradiça providencia o torque para correção da postura. Concomitantemente, a pata em voo se prepara para aterrissar no local adequado à velocidade desejada. Dessa forma, o sistema estaria provendo as três partes do controle.

 $^{^{1}}$ http://www.ritsumei.ac.jp/se/ gen/Kenken/kenken_en.htm

Figura 2.6: CG Print de um robô de uma perna (Fonte: [5])

O problema que surge com esta configuração é que as pernas devem estar muito próximas do ponto neutro, o que, além de dificultar o projeto do robô, pode causar interferências de uma perna com outra. A solução adotada por Raibert *et al.*, foi de utilizar o conceito de pernas virtuais.

2.4.3 Pernas Virtuais

Podemos definir pernas virtuais como a coordenação de pares de pernas funcionando ao mesmo tempo, de forma que pode-se representar tal par como uma única perna equivalente. O par de pernas e a perna virtual, por definição, exercem a mesma força e momento sobre o corpo, portanto, ambas as configurações geram os mesmos efeitos sobre este. A Figura 2.7 demonstra a representação de um par de pernas em uma perna virtual.

Nos quadrúpedes, a coordenação de pares de pernas pode ser feita em três diferentes maneiras: pernas diagonais, gerando o movimento conhecido como trote, pernas laterais, gerando o passo e pernas traseiras e dianteiras, gerando o salto. Podemos ver na Figura 2.8 as pernas virtuais equivalentes para cada tipo de marcha.

Por conseguinte, utilizando o conceito de pernas virtuais, podemos estender a equação (2.7) para o movimento de quadrupedes que, por sua vez, possuem duas pernas virtuais e pode se mover em duas dimensões, obtendo, dessa forma as expressões

Figura 2.7: Representação de uma Perna Virtual (Fonte: [5])

Figura 2.8: Pernas virtuais para cada marcha (Adaptado de [5])

$$x_{f,d} = \frac{\dot{x}T_S}{2} + k_{\dot{x}}(\dot{x} - \dot{x_d}), \qquad (2.8)$$

$$y_{f,d} = \frac{\dot{y}T_S}{2} + k_{\dot{y}}(\dot{y} - \dot{y}_d), \qquad (2.9)$$

em que $x_{f,d}$ e $y_{f,d}$ são os posicionamentos das patas virtuais na direção de cada dimensão, com relação à projeção do centro de gravidade, $\dot{x} \in \dot{y}$ são as velocidades atuais do movimento, $\dot{x_d} \in \dot{y_d}$ são as velocidades desejadas, T_S é a duração do período de suporte (enquanto a pata ainda está em contato com o solo) e $k_{\dot{x}} \in k_{\dot{y}}$ são ganhos de velocidade.

Para controlar a postura do corpo, o sistema atua nos ângulos de rolagem e arfagem aplicando torques sobre os quadris virtuais durante o período de suporte usando servos lineares, através das expressões

$$u_x = -k_{p,x}(\phi_P - \phi_{P,d}) - k_{v,x}(\phi_P) - k_{f,x}(f_x), \qquad (2.10)$$

$$u_y = -k_{p,y}(\phi_R - \phi_{R,d}) - k_{v,y}(\dot{\phi_R}) - k_{f,y}(f_y), \qquad (2.11)$$

de modo que u_x e u_y são os sinais de saída dos atuadores, $\phi_P e \phi_R$ são os ângulos de arfagem e rolagem, respectivamente, $\phi_{P,d} e \phi_{R,d}$ são os ângulos desejados de arfagem e rolagem, respectivamente, $f_x e f_y$ são as forças entregues pelos atuadores do quadril e k_p , $k_v e k_f$ são ganhos.

2.4.4 Exemplo de Aplicação

Este modelo já foi utilizado na modelagem de robôs quadrúpedes de diversas maneiras [7] e um exemplo pode ser encontrado nos trabalhos de Li *et al.* [6]. Nestes, os modelos de Raibert são utilizados em conjunto com o modelo do Pêndulo Invertido com Massa-Mola (*Spring Loaded* *Inverted Pendulum*) para poder obter mais detalhes dinâmicos, como por exemplo, para robôs com 6 graus de liberdade. Ao fazer isso, pode-se aumentar a robustez do trote além de suavizar e estabilizar a corrida do quadrúpede. A Figura 2.9 mostra diversas vistas do modelo deste robô.

Assim como em [5] o modelo proposto em [6] utiliza o conceito de pernas virtuais para implementar uma marcha de trote (pernas diagonais se movimentando em pares) atuando, virtualmente, como um bípede. Neste caso, o modelo dinâmico utilizado, baseado no modelo SLIP, pode ser descrito por:

$$M\ddot{r} + K(r - r_0) - Mr\dot{\theta}^2 = -Mg\cos\theta, \qquad (2.12)$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(Mr^{2}\dot{\theta}\right) = Mgr\sin\theta,\tag{2.13}$$

em que M é a massa do corpo, K é o coeficiente elástico da mola, r é o comprimento da perna, r_0 é o comprimento inicial da perna, θ é o ângulo em relação ao plano vertical, g é a gravidade e $\dot{\theta}$ é a velocidade angular da perna. O modelo utilizado para determinação de tais parâmetros pode ser visto na Figura 2.10.

Por sua vez, o algoritmo de controle utilizado para regular a corrida e o salto é uma variação do modelo de Raibert e é dado como

Figura 2.9: Vistas do quadrúpede com 6 graus de liberdade (Adaptado de [6])

Figura 2.10: Modelo SLIP (Fonte: [6])

$$\theta_s = \arcsin(\frac{v_x T_s}{2l_0}) + k_p (v_x - v_{xt}) + k_i \sum_{step} (v_x - v_{xt}), \qquad (2.14)$$

$$l_u = l_{u0} + C(v_z - v_{zt}), (2.15)$$

em que θ_s é o ângulo de toque (complemento de θ , da Figura 2.10), l_u é o comprimento do atuador, T_s é o período da fase de suporte, l_0 é o comprimento inicial da perna, v_x e v_z são as velocidades na direção do movimento e na direção vertical, respectivamente, v_{xt} e v_{zt} são as velocidades desejadas, l_{u0} é o comprimento inicial do atuador e k_p , k_i e C são parâmetros constantes.

Dessa forma, o algoritmo de controle utiliza a equação (2.14) para determinar os ângulos que devem ser aplicados em cada junta para proporcionar o movimento lateral e longitudinal desejado. A equação (2.15), por sus vez, determina a ação dos atuadores axiais, gerando movimento vertical.

Já o controle dos ângulos de rolagem e arfagem utiliza um modelo simplificado como o da Figura 2.11. Este modelo pode ser descrito por

$$J\ddot{\beta} = \tau_b + \tau_f + (F_2 - F_1) \cdot l_1/2, \qquad (2.16)$$

em que J é o momento de inércia do torso do robô, β é o ângulo de postura, $\ddot{\beta}$ é a aceleração angular de β , F_1 e F_2 são as forças de contato das patas, l_1 é a distância entre as duas juntas e τ_b e τ_f são os torque de saída das juntas.

Pode-se considerar o corpo como um sistema amortecido com mola de forma que o algoritmo de controle pode ser descrito como

$$J\ddot{\beta} = -k_{p\beta}(\beta - \beta_d) - k_{d\beta}\dot{\beta}, \qquad (2.17)$$

Figura 2.11: Modelo de forças e torques para controle de arfagem e rolagem (Fonte: [6])

de modo que $k_{p\beta}$ é a rigidez da mola equivalente, $k_{d\beta}$ é o amortecimento e β_d é o ângulo desejado. Este configura um sistema de segunda ordem e é dado pela função de transferência

$$\frac{\beta(s)}{\beta_d(s)} = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2} = \frac{2k_{p\beta}/J}{s^2 + 2k_{d\beta}s/J + 2k_{p\beta}/J},$$
(2.18)

sendo que ξ é a razão de amortecimento e ω_n é a frequência natural do sistema de segunda ordem.

2.5 Controle de Balanço Dinâmico

Em 2015, Meng *et al.* realizaram um estudo para analisar o balanceamento de um robô quadrúpede quando este se encontra apoiado em duas pernas diagonais [7]. Analisando robôs previamente construídos os autores deste estudo compreenderam que, para que estes veículos permanecessem estáveis, eles tinham que manter o movimento (como no desenvolvimento de Raibert) ou estaticamente sobre as quatro patas. Com isso em mente, foi proposto um modelo de controle dinâmico para este tipo de equilíbrio.

Em um quadrúpede apoiado em suas pernas diagonais podemos supor que as pernas sem contato com o solo fazem parte do corpo, facilitando a compreensão e desenvolvimento das equações. Dessa forma, o modelo utilizado tem o formato presente da Figura 2.12

Se θ_{corpo} é o ângulo de arfagem, θ_{FS} e θ_{HS} são, respectivamente, os ângulos da perna dianteira e traseira e todos podem ser medidos através de sensores, podemos definir uma relação com a forma

Figura 2.12: Modelo de quadrúpede apoiado em pernas diagonais (Adaptado de [7])

$$\theta_F = \theta_{FS} - \theta_{corpo},\tag{2.19}$$

$$\theta_H = \theta_{HS} - \theta_{corpo}, \tag{2.20}$$

em que θ_F é o ângulo entre a perna dianteira e a direção da gravidade e θ_H é o ângulo entre a perna traseira e a direção da gravidade. Esta relação pode ser exemplificada pela Figura 2.13.

O modelo dinâmico utilizado é baseado na equação de Lagrange, uma alternativa à Lei de Newton particularmente conveniente para sistemas com vários graus de liberdade ou com sistema de coordenadas muito complexo. Ela é dada por

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q} = S\tau, \qquad (2.21)$$

sendo que, para este caso, $q = \begin{bmatrix} \theta_F & \theta_H & \theta_{corpo} \end{bmatrix}$, $S = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \end{bmatrix}^T e \tau = \begin{bmatrix} \tau_F \\ \tau_H \end{bmatrix}$ de modo que τ_F e τ_H são os torques exercidos pelo atuador dianteiro e traseiro, respectivamente.

Dessa forma, o controle de balanço para este modelo será realizado com base na seguinte definição de variáveis de estado: $X = \begin{bmatrix} \theta_F & \dot{\theta}_F & \theta_H & \dot{\theta}_H & \theta_{corpo} & \dot{\theta}_{corpo} \end{bmatrix}^T$. Assim, a equação dinâmica linearizada pode ser dada por $\dot{X} = AX + B\tau$ e o estado de realimentação, baseado em Regulador Quadrático Linear (RQL) pode ser obtido por $\tau = -KX$. Dessa forma, a estrutura de controle pode ser arranjada conforme a Figura 2.14.

Figura 2.13: Esboço das relações de ângulo entre perna e corpo (Fonte: [7])

2.6 Taxa de Concordância de Aterrissagem

Uma forma alternativa de mensurar a estabilidade dinâmica em robôs quadrúpedes foi proposta em 2009 por Won *et al.*, denominada Taxa de Concordância de Aterrissagem (*Landing Accordance Ration - LAR*) [8].

Em uma marcha quadrúpede do tipo trote os membros diagonalmente dispostos se movem em pares, idealmente em sincronia, como pode ser exemplificado graficamente pela Figura 2.15. Nela, LF e RF referem-se, respectivamente, às pernas esquerda e direita da frente enquanto que LH e RH referem-se, respectivamente, às pernas esquerda e direita da parte traseira do robô. O gráfico mostra quais pernas estão em contato com o solo em função do tempo.

No entanto, durante a ação real do robô, pode haver um desacordo entre os pares de pernas de modo que as patas não se encontrem com o solo ao mesmo tempo como pode ser exemplificado

Figura 2.14: Estrutura do sistema de controle em malha fechada no espaço de estados (Fonte: [7])

Figura 2.15: Sincronia em marcha quadrúpede (Fonte: [8])

pela Figura 2.16, em que t_{td} é o tempo que um par de pernas fica dessincronizado para tocar o solo e t_{lo} é o tempo de desacordo para um par de pernas sair do chão.

Dessa forma, sabendo que em marchas tipo trote estáveis a aterrissagem deve ser bem sincronizada definiu-se a Taxa de Concordância de Aterrissagem (LAR) como

$$\lambda = \frac{t - t_{td}}{t},\tag{2.22}$$

em que λ representa o LAR e t é o período de suporte, ou seja, o tempo que aquele par de pernas fica em contato com o solo.

2.6.1 Controle e Planejamento de Marcha

O controle é feito baseado nas forças de reação em cada pata. Cada força, por sua vez, é dividida em uma componente para a geração da trajetória de caminhada (f_{vsd}) e outra para o equilíbrio dinâmico (f_{bal}) . Dessa forma o torque que deve ser exercido é dado por

$$\tau = J^T (f_{vsd} + f_{bal}\hat{k}), \tag{2.23}$$

em que J^T é a transposta da matriz Jacobiana dos pontos finais de cada pata em relação aos ângulos das juntas. O cálculo dessa matriz será melhor abordada nas seções seguintes. Já \hat{k} refere-se ao vetor unitário na direção vertical.

O sistema de controle, dessa forma, pode ser implementado conforme o diagrama de blocos da Figura 2.17.

Figura 2.16: Representação da Dessincronização das Pernas (Fonte: [8])

Figura 2.17: Diagrama de blocos do sistema de controle de equilíbrio e trajetória (Adaptado de [8])

Adotando o sistema de coordenadas e ângulos conforme o mostrado na Figura 2.18(a) podemos estabelecer as relações necessárias para os cálculos da dinâmica a ser controlada. A ideia do controle é redistribuir os torques aplicados de modo que o robô possa recuperar a postura corporal quando sofre um momento de instabilidade. Conforme ilustrado pela Figura 2.18(b) as forças de reação exercídas sobre as patas do quadrúpede geram um momento diferente de zero levando o robô à instabilidade. Este momento irá causar erros nos ângulos de rolagem e arfagem assim como em suas velocidades. Dessa forma, o sistema de controle pode ser modelado como um sistema com mola amortecido na forma de

$$\tau_{\phi} = k_{p,x} \Delta \phi + k_{d,x} \Delta \dot{\phi}, \qquad (2.24)$$

$$\tau_{\theta} = -(k_{p,y}\Delta\theta + k_{d,y}\Delta\dot{\theta}), \qquad (2.25)$$

de modo que τ_{ϕ} e τ_{θ} são os torques que devem ser aplicados para corrigir, respectivamente, os ângulos de rolagem e arfagem, $\Delta \phi$ e $\Delta \theta$ são os erros associados ao movimento de rolagem e arfagem, respectivamente, ou seja, o quanto eles diferem da situação de estabilidade. Por fim, $k_{p,x}$, $k_{p,y}$, $k_{d,x}$ e $k_{d,y}$ são ganhos.

Portanto a componente de força associada ao controle de equilíbrio do quadrúpede será dado

Figura 2.18: Parâmetros de um quadrúpede em instabilidade (Adaptado de [8])
pela soma das forças que gerarão o torque acima descrito. Dessa forma

$$f_{bal} = f_{\phi,l} + f_{\theta,l} = \frac{k_{p,x}\Delta\phi + k_{d,x}\Delta\dot{\phi}}{r_{y,l}} - \frac{k_{p,y}\Delta\theta + k_{d,y}\Delta\dot{\theta}}{r_{x,l}},$$
(2.26)

em que $f_{\phi,l}$ e $f_{\theta,l}$ são as forças de reação para compensar os ângulos de rolagem e arfagem, respectivamente, $r_{x,l}$ e $r_{y,l}$ são as componentes x e y, respectivamente, do vetor que vai do centro de massa do robô até a pata de índice l.

Por fim, um algoritmo é criado utilizando a medição do LAR para determinar a trajetória de caminhada que compensa a instabilidade do robô. Tal algoritmo tem a seguinte forma: caso o valor do LAR diminua procura-se a pata que está em desacordo. Em seguida, o controle de postura é acionado para corrigir a instabilidade. Caso o LAR não tenha aumentado, retorna-se para a busca pela pata em desacordo, caso contrário o algoritmo termina. Este processo pode ser descrito pelo diagrama mostrado na Figura 2.19.

2.7 Modelo Cinemático e Cinemático Inverso

O modelo cinemático e cinemático inverso são formas de relacionar as velocidades das juntas de cada perna com a posição da pata, o chamado efetuador final (*end effector*) [14]. Estes modelos não consideram forças nem momentos e são bastante úteis para o controle de quadrúpedes, uma vez que, podendo relacionar juntas com efetuadores finais, podemos controlar de forma precisa a posição dos atuadores rotacionais para gerar a posição de pata desejada. No entanto, para compreender estes modelos, deve-se, primeiramente analisar o modelo geométrico.

Figura 2.19: Algoritmo para controle de estabilidade utilizando o LAR (Adaptado de [8])

2.7.1 Modelo Geométrico

Considere dois sistemas de coordenadas, $X_1 \times Y_1 \times Z_1$ e $X_0 \times Y_0 \times Z_0$ ambos com a origem no mesmo ponto mas rotacionados entre si. Se p_1 é a representação de um determinado ponto em $X_1 \times Y_1 \times Z_1$, podemos representá-lo em $X_0 \times Y_0 \times Z_0$ atráves da seguinte matrix de rotação:

$$R_1^0 = \begin{bmatrix} x_1 \cdot x_0 & y_1 \cdot x_0 & z_1 \cdot x_0 \\ x_1 \cdot y_0 & y_1 \cdot y_0 & z_1 \cdot y_0 \\ x_1 \cdot z_0 & y_1 \cdot z_0 & z_1 \cdot z_0 \end{bmatrix}.$$
 (2.27)

Nesta relação, x_0 , y_0 e z_0 são vetores unitário referentes ao sistema de coordenadas $X_0 \times Y_0 \times Z_0$ e x_1 , y_1 e z_1 são vetores unitários referentes ao sistema de coordenadas $X_1 \times Y_1 \times Z_1$. Dessa forma, a representação rotacionada, p_0 , será dada por

$$p_0 = R_1^0 \cdot p_1. \tag{2.28}$$

Agora, considere que os dois sistemas de coordenadas referidos acima se encontram com a mesma orientação, ou seja $R_1^0 = I$, em que I é a matriz identidade, mas transladados entre si. Podemos representar o ponto p_1 no sistema de coordenadas $X_0 \times Y_0 \times Z_0$ como

$$p_0 = p_1 + d_1^0, \tag{2.29}$$

em que d_1^0 é o vetor que vai da origem O_0 até a origem O_1 de cada sistema de coordenadas.

2.7.1.1 Transformação Homogênea

Um ponto $p = \begin{bmatrix} p_x & p_y & p_z \end{bmatrix}^T$ pode ser descrito em coordenadas homogênas da seguinte forma:

$$\tilde{p} = \begin{bmatrix} \tilde{p}_x \\ \tilde{p}_y \\ \tilde{p}_z \\ \omega \end{bmatrix}, \qquad (2.30)$$

sendo que $p_x = \frac{\tilde{p}_x}{\omega}$, $p_y = \frac{\tilde{p}_y}{\omega}$ e $p_z = \frac{\tilde{p}_z}{\omega}$. A variável ω é um fator escalar que, para este caso, será considerado como unitário.

Isto posto, podemos unificar as relações de rotação e translação em uma única transformação homogênea, representada pela matriz

$$H = \begin{bmatrix} R & d\\ 0_{1\times3} & 1 \end{bmatrix},\tag{2.31}$$

em que R é a matriz de rotação, d é o vetor de translação e $0_{1\times 3}$ é o vetor linha $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$. Portanto, uma transformação homogênea, composta por rotação e translação, de um sistema de coordenadas S_1 para um sistema de coordenadas S_0 é dada por

$$\tilde{p}_0 = H_1^0 \tilde{p}_1, \tag{2.32}$$

em que \tilde{p}_0 é um ponto do sistema S_0 e \tilde{p}_1 , a representação deste mesmo ponto no sistema S_1 .

Podemos utilizar, ainda, uma notação simplificada H_i $(i \in \mathbb{Z})$ para representar uma transformação homogênea do sistema de coordenadas S_i para o sistema de coordenadas S_{i-1} .

2.7.1.2 Modelo Geométrico em Robôs Manipuladores

O modelo geométrico consiste na aquisição das posições dos efetuadores finais (neste caso, das patas do robô) em função das variáveis das juntas.

Considere que a matriz $H^0_m(q, \lambda)$ representa uma transformação homogênea que possibilita a aquisição das posições e orientações de um efetuador com m graus de liberdade em função do vetor (q), das varáveis de juntas e do vetor λ composto pelas dimensões físicas do robô. Dessa forma, desconsiderando a orientação do efetuador (supõe-se que esta é irrelevante para este estudo), podemos obter sua posição ξ , em coordenadas homogêneas, através da seguinte equação

$$\xi = g(q, \lambda) = H_m^0 \begin{bmatrix} 0 & 0 & 1 \end{bmatrix},$$
 (2.33)

sendo que g representa uma função do vetor q e dos parâmetros geométricos incluídos em λ .

2.7.2 Modelo Cinemático

O modelo cinemático relaciona as velocidades dos efetuadores como uma função das variáveis das juntas. Se derivarmos a equação (2.33) com respeito ao tempo, obteremos, pela regra da cadeia, que

$$\dot{\xi} = \frac{\partial g}{\partial q} \frac{\mathrm{d}q}{\mathrm{d}t}.\tag{2.34}$$

Se definirmos $\frac{\partial g}{\partial q}$ como a matriz Jacobiana J, obteremos o modelo cinemático

$$\dot{\xi} = J\dot{q},\tag{2.35}$$

de forma que a matriz Jacobiana será dada por

$$J = \frac{\partial g(q,\lambda)}{\partial q} = \begin{bmatrix} \frac{\partial x}{\partial q_1} & \frac{\partial x}{\partial q_2} & \cdots & \frac{\partial x}{\partial q_m} \\ \frac{\partial y}{\partial q_1} & \frac{\partial y}{\partial q_2} & \cdots & \frac{\partial y}{\partial q_m} \\ \frac{\partial z}{\partial q_1} & \frac{\partial z}{\partial q_2} & \cdots & \frac{\partial z}{\partial q_m} \end{bmatrix}.$$
 (2.36)

2.7.3 Modelo Cinemático Inverso

O modelo cinemático inverso busca descrever a velocidade das juntas como uma função da velocidade dos efetuadores. Para isso, deve-se modificar a equação (2.35) de modo a isolar \dot{q} . Como J não é, necessariamente, uma matriz quadrada, a aplicação de sua inversa não será possível. Para poder fazer isto utilizaremos a matriz pseudo-inversa de J da seguinte forma:

$$J\dot{q} = \dot{\xi},$$

$$J^T J\dot{q} = J^T \dot{\xi},$$

$$\dot{q} = (J^T J)^{-1} J^T \dot{\xi},$$

$$\dot{q} = J^{\dagger} \dot{\xi}.$$
(2.37)

Nestas relações, $J^{\dagger} = (J^T J)^{-1} J^T$ é a matriz pseudo-inversa de J.

A utilização da matriz pseudo-inversa, no entanto, pode apresentar graves problemas numéricos, especialmente caso haja singularidades em J. Isto decorre do fato de que este sistema pode apresentar mais de uma solução, especialmente considerando casos com redundância nos graus de liberdade de um segmento (por exemplo vários atuadores em uma perna). Nestas situações, mais de uma configuração dos efetuadores acarretaria na mesma posição do efetuador final [14, 10]. Na seção seguinte será apresentado, além de alguns exemplos de utilização dos modelos cinemático e cinemático inverso, algumas possíveis soluções para este problema.

2.7.4 Aplicações

Estes modelos, cinemático e cinemático inverso, já foram utilizados na modelagem de robôs e esta seção destina-se a exemplificar alguns casos encontrados na literatura.

Em 2016, Featherstone, desenvolveu um método de equilíbrio de robôs baseado em análises de ganho e utilizou o modelo cinemático para calcular o modelo proposto [9]. Segundo o autor, uma vez que o controle de equilíbrio tem como objetivo principal controlar o centro de massa mas tem como controle direto apenas os atuadores das juntas, pode-se dizer que, da perspectiva do controlador, a planta tem como entrada o movimento dos atuadores enquanto a saída é modelada como o movimento do centro de massa. Portanto, o desempenho deste controle pode ser mensurado através do ganho que carateriza essa relação de entrada e saída.

O exemplo utilizado por Featherstone tem como base o modelo da Figura 2.20, que consiste de duas juntas, uma próxima ao chão e uma mais acima.

Dessa forma, c representa o vetor que sai do ponto de contato com o solo até o centro de massa, ϕ representa a direção de c em relação ao solo, q_1 e q_2 são as variáveis das juntas de baixo e de cima, respectivamente, e b é o vetor unitário perpendicular a c na direção do aumento do ângulo ϕ .

O sistema de controle deve, para estes fins, levar c_x (a componente de c na direção x) para zero ou fazer com que o ângulo ϕ seja 90°. Dessa forma, podemos pensar na entrada do sistema como a junta q_2 e a saída podendo ser c_x ou ϕ . Portanto, o ganho associado a este sistema seria dado por

$$G_v = \frac{\Delta \dot{c}_x}{\Delta \dot{q}_2},\tag{2.38}$$

$$G_{\omega} = \frac{\Delta \dot{\phi}}{\Delta \dot{q}_2},\tag{2.39}$$

em que G_v é denominado de ganho de velocidade linear e G_ω é denominado de ganho de velocidade angular. O símbolo Δ indica uma variação tipo degrau da subsequente variável.

O autor aponta três métodos distintos para poder calcular a relação entre $q_2 e c_x$, possibilitando, assim, a determinação do ganho G_v . Para os propósitos deste estudo daremos foco apenas em um destes métodos, o Jacobiano do centro de massa.

Figura 2.20: Modelo utilizado por Featherstone (Fonte: [9])

Utilizando a equação (2.35) podemos mapear diretamente a velocidade do centro de massa com a velocidade das juntas se substituirmos ξ por c e utilizarmos uma matriz J adequada para tal mapeamento. Dessa forma, temos que

$$\Delta \dot{c} = J \Delta \dot{q} = J \begin{bmatrix} \Delta \dot{q}_1 \\ \Delta \dot{q}_2 \end{bmatrix}.$$
(2.40)

Se considerarmos uma variação unitária em \dot{q}_2 e soubermos o valor de $\Delta \dot{q}_1$, podemos calcular o vetor \dot{c} utilizando esta equação. O valor do ganho de velocidade linear será dado, dessa forma, pelo valor da variação da componente x de c, c_x .

Um exemplo da utilização do modelo cinemático inverso está nos trabalhos de RunBin *et al.* de 2013 [10]. Estes, especificamente, buscam modelar um sistema de controle para um quadrúpede com graus de liberdade redundantes (4 juntas em cada perna) baseado na cinemática inversa. O modelo do robô desenvolvido pode ser observado na Figura 2.21.

O controle do quadrúpede, de modo geral, pode ser dividido em duas partes: o controle de marcha e o controle de postura. O primeiro tem como objetivo principal o controle da velocidade direta do robô, de modo que suas saídas são as posições das pernas e do centro de massa. Já o controle de postura tem como finalidade principal a resolução do modelo cinemático inverso e tem como saídas os ângulos das juntas ou seus torques. Os dois são combinados utilizando um sistema de realimentação conforme pode ser observado na Figura 2.22. Para o trabalho realizado em [10] especificamente, utilizaram-se os ângulos das juntas (ao invés dos torques) como saída do sistema de controle de postura.

Para este trabalho, analisaremos apenas o controle de postura, em que é aplicado diretamente o modelo cinemático inverso. Para modelá-lo é preciso, primeiramente, analisar a geometria de cada perna, exposta na Figura 2.23.

Figura 2.21: Quadrúpede com total de 16 graus de liberdade (Fonte: [10])

Esta configuração nos dá que

$$\begin{bmatrix} x \\ z \end{bmatrix} = \begin{bmatrix} r_1 \cos \theta_1 + r_2 \cos(\theta_1 + \theta_2) + r_3 \cos(\theta_1 + \theta_2 + \theta_3) \\ r_1 \sin \theta_1 + r_2 \sin(\theta_1 + \theta_2) + r_3 \sin(\theta_1 + \theta_2 + \theta_3) \end{bmatrix},$$
(2.41)

em que x e z são as componentes das coordenadas do efetuador final, r_1 , r_2 e r_3 são segmentos da perna que vão de uma junta até outra e θ_1 , θ_2 e θ_3 são os ângulos das juntas. Deste modo, a matrix Jacobiana pode ser calculada como

$$J = \begin{bmatrix} J_{11} & J_{12} & J_{13} \\ J_{21} & J_{22} & J_{23} \end{bmatrix}.$$
 (2.42)

Nesta relação, os parâmetros da primeira linha serão iguais à derivada de x com relação a θ_1 , $\theta_2 \in \theta_3$, nessa ordem, e da segunda linha, iguais à derivada de z com relação a θ_1 , $\theta_2 \in \theta_3$, respectivamente.

Uma vez obtido o Jacobiano, os autores propõem três métodos distintos para calcular os ângulos das juntas. O primeiro é o cálculo da matriz pseudo-inversa, conforme foi abordado anteriormente, culminando na equação (2.37). No entanto, a expressão utilizada pelos autores é modificada para

$$\dot{\theta} = J^{\dagger} \dot{x} + k(I - J^{\dagger} J \cdot g), \qquad (2.43)$$

em que θ é o vetor dos ângulos das juntas, x é o vetor das posições dos efetuadores, I é a matriz identidade e g é uma velocidade de auto-locomoção. O novo termo, $k(I - J^{\dagger}J \cdot g)$, se trata da solução da equação linear homogênea enquanto que o primeiro termo é a solução normal mínima.

O segundo método é o da Menor Norma Ponderada (*Weighted least-norm - WLN*). Neste método, utilizado para minimizar a velocidade das juntas, define-se um novo vetor de velocidade das juntas ($\dot{\theta}_W$), normalizado por uma matriz simétrica e positiva W. Então, realizam-se algumas

Figura 2.22: Sistema de realimentação para controle de marcha e de postura (Adaptado de [10])

Figura 2.23: Modelo geométrico de uma perna com 4 graus de liberdade (Fonte: [10])

transformações de modo a obter uma nova matriz Jacobiana para o novo sistema. Com isso, o resultado final será dado por

$$\dot{\theta}_W = W^{-1} J^T [J W^{-1} J^T]^{-1} \xi.$$
(2.44)

Por fim, o terceiro método é proposto e utilizado de modo a estender a matrix Jacobiana atráves de uma função g que minimiza a velocidade das juntas e, dessa forma, tornar J uma matriz quadrada que, então, será invertível.

2.8 Controle de Estabilidade Empírico

Muitos dos trabalhos anteriores utilizam sistemas de realimentação para fazer com que o sistema de controle seja mais robusto e possa convergir mais rapidamente para o valor desejado. Dessa forma, o valor atual da variável (em sua maioria os ângulos das juntas dos atuadores), é utilizado para fornecer o erro associado com o valor desejado para aquela variável. Em geral, um ganho é associado ao erro correspondente para que a saída possa convergir rapidamente.

A ideia desta seção é discutir, com maior foco, sobre este controle, baseado em dados empíricos coletados.

Em 2010, Sousa *et al.* desenvolveram um sistema de controle de postura baseado na leitura de diversos sensores [11]. Com uma topologia inspirada nas respostas biológicas de animais, os autores deste estudo propuseram um sistema de controle de postura independente do sistema de locomoção, havendo interação apenas quando necessário. O controle de postura seria construído com base em cada estímulo medido e uma resposta adequada seria produzida para corrigir aquela variável. O modelo de controle é integrado com um *Central Pattern Generators (CPG)* para gerar a resposta desejada.

A plataforma quadrúpede AIBO, da Sony (que pode ser vista na Figura 1.3) é utilizada para o

estudo, uma vez que esta possui um acelerômetro de três eixos e um sensor de força em cada pata.

O controle de postura proposto se baseia na integração de diversos aspectos sensoriais e na produção de uma resposta apropriada para cada medição. Pode-se afirmar que cada dado sensorial é a entrada de um sistema específico e que sua saída é uma resposta de modo a corrigir a postura do robô. Ao final, todas as respostas produzidas são integradas para obter o movimento total desejado para a postura. Podemos ver, na Figura 2.24, as medições empíricas e suas respectivas respostas.

Desse modo, se $y_{i,p}$ é a resposta de correção total da junta p, da perna i, então este será a soma de todas as respostas:

$$y_{i,p} = f_{roll,i,p} + f_{pitch,i,p} + f_{COM,i,p} + f_{force,i,p} + f_{touch,i,p} + f_{disperser,i,p} + f_{reset,i,p}, \quad (2.45)$$

em que f é a resposta proveniente de cada dado sensorial apresentado na Figura 2.24.

Para este estudo, as respostas mais relevantes são as dos ângulos de rolagem e arfagem e são dadas por

$$f_{roll,i,p} = k_{roll} f_i(\phi_{roll}), \qquad (2.46)$$

$$f_{pitch,i,p} = k_{pitch} f_i(\phi_{pitch}), \qquad (2.47)$$

de modo que k_{roll} e k_{pitch} são ganhos estáticos que definem a velocidade de convergência da resposta à situação de equilíbrio, ϕ_{roll} e ϕ_{pitch} são os ângulos medidos de rolagem e arfagem, respectivamente, e f_i é uma função linear utilizada para eliminar o ruído do sensor e pode ser positiva ou negativa, dependendo da contribuição da junta para aquela variável.

2.9 Conclusão

Neste capítulo, foram apresentados os principais trabalhos estudados sobre o tema de controle de equilíbrio de robôs quadrúpedes. Dessa forma, foi possível apresentar o estado da arte no que

Resposta de Postura	Entrada sensorial	
Compensação de Rolagem	Ângulo de Rolagem do Corpo	
Compensação de Arfagem	Ângulo de Arfagem do Corpo	
Ajuste do Centro de Massa	Codificador e Ângulo do Corpo	
Distribuição de Carga	Carga das Juntas	
Controle de Toque	Toque dos Pés	
Dispersor de Pernas	Codificadores das Pernas	

Figura 2.24: Medições Empíricas e suas Respectivas Respostas (Adaptado de [11])

concerne este assunto na literatura e poderemos, ainda, situar o presente trabalho neste cenário. Apresentaram-se, também, desenvolvimentos concebidos desde o início do estudo deste tema até o cenário atual. Por esse motivo, várias abordagens diferentes foram estudadas, incluindo métodos empíricos, dinâmicos, cinemáticos e geométricos.

No entanto, o presente trabalho não abarcará todos os aspectos mencionados ao longo deste capítulo. Do contrário, apenas algumas fundamentações e implementações serão aproveitadas. A metodologia que será aplicada no desenvolvimento deste trabalho, como será melhor abordado no capítulo 3, apresenta uma abordagem composta, principalmente, por elementos cinemáticos. Além disso, a componente empírica também terá um foco fundamental ao longo do desenvolvimento do projeto.

Apesar de que o controle a ser implementado não considera fatores dinâmicos como torques e momentos, alguns dos conceitos utilizados nos trabalhos com estes modelos podem ser aplicados. Dessa forma, conceitos como respostas proporcionais ao distúrbio por ganhos de posição e velocidade, o uso de sensores para a detecção de perturbações e a sincronia de patas são exemplos de características aplicadas em trabalhos dinâmicos que serão aproveitadas.

O controle de estabilidade será realizado em grande parte com um controle de velocidades. Assim como em [5, 8, 9], a concepção inicial deste trabalho se baseou nas velocidades dos ângulos de rolagem e arfagem do corpo do robô para a caracterização do distúrbio gerador da instabilidade e, consequentemente, do seu uso para a determinação das respostas necessárias para a devida correção. Alguns destes trabalhos (e.g. [5, 8]) fazem tal correção através da aplicação de torques. Neste trabalho, porém, esta será realizada pela imposição de velocidades em cada junta, de forma proporcional à perturbação sofrida.

Assim como nos trabalhos já citados e em [11], a presença de ganhos relacionando as variáveis de rolagem e arfagem serão essenciais para a resposta de correção ao distúrbio. Em especial, o controle proposto neste trabalho se assemelha ao desenvolvido em [11], uma vez que a velocidade de cada junta deve ser proporcional ao distúrbio por um ganho específico e empiricamente determinado. Para tal, a medição da configuração do robô através de sensores, como o acelerômetro e sensores de força, é essencial para o desenvolvimento empírico do sistema de controle. Este último aspecto segue as mesmas características dos trabalhos de [1].

Os conceitos geométricos estudados neste capítulo não serão amplamente utilizados neste trabalho. No entanto, eles serão úteis para a determinação do sentido de movimentação de cada pata frente ao movimento total do robô. A amplitude que este movimento terá, contudo, será determinado empiricamente como foi mencionado anteriormente.

Por fim, a determinação de outras características do movimento de cada pata, como sincronia e direção, são implementadas com base na teoria desenvolvida em [3, 5]. Neste sentido algumas patas devem se locomover em sincronia, assim como nos conceitos de pernas virtuais, em uma direção determinada de modo a garantir uma margem de estabilidade estática suficiente para que o equilíbrio do robô seja mantido.

Capítulo 3

Desenvolvimento

3.1 Introdução

Os trabalhos desenvolvidos anteriormente na plataforma quadrúpede do LARA não apenas atualizaram-na com componentes adequados para o projeto, como motores mais robustos, *Raspberry Pi*, Arduino, sensores de força e acelerômetro, com também implementaram um movimento balístico que permite ao robô andar com marchas específicas.

O presente trabalho, por sua vez, consiste na implementação de um controle de estabilidade na plataforma que a permita responder a distúrbios externos, tais como empurrões ou irregularidades no terreno, de modo a manter-se na posição desejada, seja parado ou durante o movimento, sem tombar.

Para tal, o distúrbio é, primeiramente, detectado pelo acelerômetro da plataforma. Um controlador, posteriormente, utiliza deste sinal para determinar a resposta desejada de cada pata para a correção do distúrbio e, por fim, esta resposta é acoplada à posição desejada em regime permanente para determinar a posição de cada motor a cada período de amostragem.

3.2 Arquitetura do Robô

O robô quadrúpede possui um total de 12 motores, sendo 3 em cada pata, como pode ser observado na Figura 3.1. O motor representado mais acima, em cada pata, tem o objetivo de movimentá-la no sentido transversal, isto é, para a esquerda ou direita. Estes motores serão os responsáveis pela correção do distúrbio de rolagem. Os outros dois motores se movimentam no sentido sagital, ou seja, para frente e para trás e, portanto, irão corrigir o distúrbio que provocaria a arfagem. Um destes motores, o mais abaixo de cada pata, atua como um joelho, dividindo-a em duas partes e adicionando um grau de liberdade.

A identificação numérica (de 1 a 12) de cada motor pode ser organizada de acordo com sua pata e o distúrbio que corrige conforme a Tabela 3.1.

Figura 3.1: Representação gráfica da plataforma quadrúpede do LARA (Fonte: [2])

3.2.1 Motores

Os motores utilizados na plataforma são do modelo RX-28 da DYNAMIXEL como o da Figura 3.2 [13]. Este motor, conforme indicado em seu manual¹, possui dois modos de operação: o modo posição (*joint mode*) e o modo velocidade (*wheel mode*).

O modo posição possibilita a determinação da posição ângular de cada junta através da escrita dos bytes 30 e 31 da memória de cada motor. Como pode ser observado na Figura 3.3, dispõe-se de 10 bits (ou 1024 níveis de quantização) para representar ângulos de 0^{o} até 300^{o} (há uma zona inválida entre 300^{o} e 360^{o}). Dessa forma, pode-se escrever a posição angular desejada com uma resolução de aproximadamente $0, 2933^{o}$. Portanto, a relação entre a posição desejada, em graus, e o valor quantizado que deve ser escrito na memória é

Identificação do motor	Pata	Movimento de Correção
1	3	$\operatorname{Rolagem}$
2	3	Arfagem
3	3	Arfagem (joelho)
4	4	$\operatorname{Rolagem}$
5	4	Arfagem
6	4	Arfagem (joelho)
7	1	Rolagem
8	1	Arfagem
9	1	Arfagem (joelho)
10	2	Rolagem
11	2	Arfagem
12	2	Arfagem (joelho)

Tabela 3.1: Identificação dos motores

 $^{^{1}} http://support.robotis.com/en/product/actuator/dynamixel/rx_series/rx-28.htm\#Actuator_Address_06$

Figura 3.2: Motor Rx-28 da Dynamixel (Fonte: [2])

$$B_{\theta} = \frac{1023}{300} \theta_i = 3,41\theta_i, \tag{3.1}$$

em que B_{θ} é o valor quantizado que deve ser enviado em formato binário para a memória e θ_i é o ângulo desejado para o i-ésimo motor, em graus.

O modo velocidade, por outro lado, permite a escrita da velocidade que o motor irá aplicar à sua respectiva junta. Neste modo, 11 bits são utilizados para escrever a velocidade, sendo o bit mais significativo utilizado para a determinação do sentido de deslocamento (0 para anti-horário e 1 para horário) e os outros 10 para a determinação do módulo da velocidade. Ao contrário do modo posição, o valor máximo de velocidade não é fixo, mas varia conforme a tensão aplicada no motor. Segundo o manual², quando aplicados 16V, a velocidade máxima que pode ser atingida é de 79,4 rpm. Portanto, a velocidade máxima pode ser determinada por

$$\omega_{max} = V \frac{79, 4}{16},\tag{3.2}$$

em que ω_{max} é a velocidade máxima, em rpm, que pode ser aplicada a cada motor e V é a sua respectiva tensão. Os motores, na configuração atual da plataforma, trabalham com um nível de tensão de 13,3 V e, portanto, permitem uma velocidade de até 66 rpm, ou 6,91 rad/s. Dessa forma, se ω_i é a velocidade desejada do i-ésimo motor, em rad/s, o valor quantizado B_{ω} que deve ser enviado à memória (nos bytes 32 e 33) do motor é

$$B_{\omega} = \frac{1023}{6,91} |\omega_i| + 1024u(-\omega_i) = 148|\omega_i| + 1024u(-\omega_i), \tag{3.3}$$

em que u é a função degrau. Ou seja, no caso da equação (3.3), se ω_i for maior que 0 (sentido anti-horário) então o décimo bit de B_{ω} será igual a zero e se ω_i for menor que zero (sentido horário),

 $^{^{2}}$ http://www.crustcrawler.com/motors/RX28/docs/RX28 Manual.pdf

Figura 3.3: Configurações do Modo Posição (Adaptado de ³)

então adicionar-se-á 1024 ao valor que define o módulo, de forma que o décimo bit seja configurado como 1. O caso em que ω_i é igual a zero não afeta a análise da função degrau uma vez que, se os 10 bit menos significativos forem 0 o motor não irá gerar qualquer movimento, independentemente do valor do décimo bit.

Segundo o manual, para definir qual o modo de operação será utilizado, deve-se alterar os ângulos limites de cada motor, permitindo ou não que o movimento seja limitado. Dessa forma, para selecionar o modo velocidade, os ângulos mínimo e máximo devem ser ambos iguais a zero. Consequentemente, o sistema identifica que não deve haver restrição de movimento. Já para selecionar o modo posição, nenhum dos dois pode ser zero, havendo, dessa maneira, uma restrição do movimento. Para garantir a maior abrangência do movimento de cada motor no modo posição, pode-se definir o ângulo mínimo como 1 (valor quantizado) e o ângulo máximo como 1023. A definição dos ângulos mínimo e máximo pode ser realizada através dos bytes de 6 a 9 da memória.

3.2.2 Sistema Embarcado

Os principais dispositivos do sistema embarcado são o Raspberry Pi e o Arduino. O Arduino foi configurado, nos trabalhos anteriores com a plataforma, para receber os dados de sensoriamento do robô, que incluem os sensores de força presentes em cada pata e o acelerômetro. Ele, então, envia para o Raspberry Pi, via comunicação serial, estes dados já com um tratamento inicial [2]. No caso específico do acelerômetro, o Arduino envia não apenas os dados dos três eixos (X,Y e Z), mas também os ângulos correspondentes de rolagem e arfagem já calculados.

Tais ângulos possibilitam caracterizar a orientação do robô no espaço, indicando se há uma inclinação no sentido transversal ou sagital, como pode ser observado na Figura 3.4. Na Fig. 3.4(a), o robô em estado de equilíbrio (em cinza) é deslocado levemente para a direita (hachurado). Neste caso definimos o ângulo entre o plano horizontal e o plano da base do robô como θ_{roll} , o ângulo de rolagem. Já na Fig. 3.4(b) o robô em repouso é deslocado para frente, formando, dessa forma, o ângulo θ_{pitch} entre os dois planos, o ângulo de arfagem.

 $^{^{3}} http://support.robotis.com/en/product/actuator/dynamixel/rx_series/rx-28.htm\#Actuator_Address_06$

Figura 3.4: Orientações detectáveis pelo acelerômetro

O Raspberry Pi, por sua vez, é a CPU do sistema, recebendo as medições através da conexão com o Arduino, calculando a resposta desejada para cada instante de tempo e enviando as instruções para os motores, além de tratar os dados, salvá-los, definir as threads periódicas de controle, escrever as informações na tela e etc. Essas funções são definidas em código desenvolvido em C++, sendo utilizadas as bibliotecas da Dynamixel para escrita e leitura da memória de cada motor. A interação do usuário com o Raspberry Pi é feita via SSH, utilizando o software PuTTY. A Figura 3.5 ilustra as conexões do sistema embarcado acima descrito.

Podemos visualizar o sistema embarcado da plataforma, visto de cima, através da Figura 3.6. À esquerda da imagem está o Arduino enquanto o Raspberry Pi encontra-se ao centro.

3.3 gDataLogger

O gDataLogger é um código em C desenvolvido pelo professor Geovany Araújo Borges para que os dados adquiridos durante o processo (como os ângulos de rolagem e arfagem, a posição dos motores e etc) sejam armazenados em um arquivo com extensão .mat para a posterior leitura através do software *Matlab*.

O gDataLogger foi acoplado ao código desenvolvido para o recolhimento e análise dos dados de cada experimento do controle de estabilidade. As principais funções para realizar tal recolhimento são: declarar as variáveis, inserir um valor na variável, atualizar o programa e fechá-lo. Além disso, foi desenvolvido um código no próprio *Matlab* para recolher as informações de cada arquivo .mat, organizá-las e, por fim, plotá-las em um gráfico de forma adequada para a análise.

3.4 Thread Periódica

Segundo Laplante [15], "um sistema real é um sistema que deve satisfazer restrições explícitas e delimitadas de tempo de resposta ou sofrer consequências graves, incluindo a falha". Ainda pela mesma referência, tempo de resposta é o "tempo entre a apresentação das entradas ao sistema e o aparecimento das suas respectivas respostas". Dessa forma, o sistema real deve conseguir responder

Figura 3.5: Arquitetura do Sistema Embarcado (Fonte: [2])

de forma satisfatória às entradas, dentro de um período específico de tempo.

Dada esta definição de sistema em tempo real, nota-se que o sistema de equilíbrio do robô quadrúpede pode ser considerado como tal, uma vez que este necessita responder ao distúrbio (que, neste caso, é a entrada do sistema) dentro de certos limites de tempo, caso contrário haverá falha ou, no âmbito desta análise, a queda do robô.

Para lidar com tal sistema como um sistema real, implementou-se o controle de estabilidade como uma thread periódica, com período de amostragem T_{am} . Uma thread é um processo que é aberto pelo sistema de processamento (neste caso do Raspberry Pi), para ser rodado de forma paralela com outros. Isso permite que o processo não sofra a influência dos demais, especialmente no tempo de resposta (o processo não precisa esperar que outro termine para poder começar). Uma thread periódica, por sua vez, é uma thread que é chamada a cada período de tempo, neste caso, a cada T_{am} segundos.

Desta forma, a implementação do controle de estabilidade como uma *thread* periódica permite que este não seja influenciado por outros processos, de modo que o tempo de resposta para a correção dos distúrbios fique em limiares aceitáveis para que não haja falhas. No código desenvolvido, a função *main*, depois de configurar todos os parâmetros necessários, cria um timer com T_{am} se-

Figura 3.6: Vista de cima do sistema embarcado

gundos de periodicidade que, por sua vez, chama a *thread* de controle (responsável pelas medições e cálculo das respostas) sempre que o tempo de amostragem é atingido. Asssim, dois processos acontecem simultaneamente: a função *main*, que determina as condições de parada do código e escreve informações na tela, e a função de controle que lê os dados do acelerômetro, calcula as devidas respostas e as envia para os motores.

O valor de T_{am} foi, a princípio, estipulado como 0,1 segundo. Porém, percebeu-se através de diversos testes, e com auxílio do gDataLogger para a medição do tempo, que a leitura da própria função de controle (linha a linha do código) durava cerca de 35 a 40 ms. Este tempo representa aproximadamente 40% do tempo de amostragem proposto sendo, dessa forma, uma valor bastante elevado e que pode prejudicar a dinâmica do sistema em tempo real. Por este motivo, estabeleceu-se que a leitura do código não deveria exceder em 20% o tempo de amostragem.

Após vários testes para tentar diminuir o tempo de leitura do código, descobriu-se que este tempo elevado ocorria devido às leituras e escritas na memória dos motores, utilizadas para obter os seus valores de posição e velocidade assim como aplicá-los. Uma vez que estas funções são essenciais para o desenvolvimento do projeto e, portanto, não podem ser eliminadas, decidiu-se por aumentar o tempo de amostragem T_{am} para 0,2 segundo. Neste caso, o tempo de leitura do código passa a ser aproximadamente 20% de T_{am} e, assim, um valor aceitável para o sistema em tempo real.

3.5 Controle de Estabilidade

O princípio do controle de estabilidade adotado pelo presente trabalho se baseia, em grande parte, no trabalho desenvolvido em [1] e em [11]. O princípio básico deste controle consiste na utilização de sensores para a aquisição das informações do estado atual do robô e a subsequente aplicação de respostas aos motores baseadas nestes dados. Mais especificamente, a resposta de cada motor i (em que i varia entre 1 e 12) será dada pela multiplicação do distúrbio detectado pelos sensores por um ganho K_i obtido empiricamente para cada junta.

Para a implementação do controle desejado, o sensoriamento será feito através do acelerômetro, responsável pela detecção de distúrbios no robô que possam gerar os movimentos indesejados de rolagem, d_{roll} (queda para direita ou esquerda) ou arfagem, d_{pitch} (queda para frente ou para trás). Então, a resposta da i-ésima junta para compensar tal movimento será dada por

$$q_i(t) = \pm K_i d_{roll/pitch}(t), \qquad (3.4)$$

em que q_i é a resposta do i-ésimo motor (sua posição ou velocidade), K_i é um ganho adimensional que será determinado empiricamente para cada junta e $d_{roll/pitch}$ é o distúrbio detectado pelo acelerômetro⁴.

O sinal de $q_i(t)$ será determinado empiricamente de modo que a resposta da i-ésima junta seja tal que gere um movimento final no robô que se oponha ao movimento gerado pelo distúrbio. Por exemplo, se o acelerômetro detecta uma queda para à esquerda do robô, as juntas responsáveis pela rolagem devem se movimentar no sentido tal que o robô sofra um movimento para a direita.

Podemos observar que a equação (3.4) é muito semelhante com as equações (2.46) e (2.47) de [11]. Como a abordagem a ser utilizada também é empírica na determinação de K_i , incorporaremos o sinal \pm ao ganho, supondo, dessa forma, que determinaremos o sinal através do parâmtero K_i . Assim, K_i será positivo ou negativo dependendo do sentido necessário de cada junta para corrigir o distúrbio.

O distúrbio, $d_{roll/pitch}$, por sua vez, será tratado no presente trabalho como a diferença entre o valor de referência desejado para aquela quantidade (posição ou velocidade) e o valor atual da mesma (medida pelo acelerômetro). Isto se representará como

$$d_{roll/pitch}(t) = r_{roll/pitch}(t) - m_{roll/pitch}(t), \qquad (3.5)$$

em que $r_{roll/pitch}$ é o valor de referência, que no geral será igual a zero, e $m_{roll/pitch}$ é o valor medido a cada instante de amostragem. A equação, portanto, que resume a ideia básica do controle proposto é

$$q_i(t) = K_i(r_{roll/pitch}(t) - m_{roll/pitch}(t)).$$
(3.6)

⁴A notação $x_{roll/pitch}$, que será utilizada neste trabalho, indica que o termo pode ser substituído por x_{roll} ou x_{pitch} dependendo do motor em questão. Por exemplo, o motor 1 corrige o movimento de rolagem então os termos $x_{roll/pitch}$ serão substituídos por x_{roll} .

3.5.1 Abordagem Inicial

A ideia inicial para o controle de estabilidade se baseia na utilização de velocidades e, portanto, do modo velocidade dos motores, ao invés de posições. Esta abordagem se justifica pela necessidade de uma resposta não cadenciada das juntas. Consequentemente, os termos da equação (3.6) serão caracterizados como velocidades, isto é, $r_{roll/pitch}$ será a velocidade angular desejada para a rolagem ou arfagem, ω_r , e $m_{roll/pitch}$, a velocidade atualmente medida para estes movimentos, que reescreveremos como $\omega_{roll/pitch}$. Da mesma forma, $q_i(t)$ será descrito como a velocidade do motor i no instante t, ou seja, $\omega_i(t)$. Remodelando a equação (3.4) para as novas definções tem-se

$$\omega_i(t) = K_i(\omega_r(t) - \omega_{roll/pitch}(t)). \tag{3.7}$$

Como deseja-se a estabilidade do robô, ω_r será estipulado como igual a zero, uma vez que movimentações que provocam rolagem ou arfagem podem levá-lo à queda. Dessa forma, a equação anterior resultará em

$$\omega_i(t) = K_i(-\omega_{roll/pitch}(t)). \tag{3.8}$$

Como o acelerômetro entrega apenas os ângulos de rolagem e arfagens medidos, deve ser feita uma derivação para obter as velocidades $\omega_{roll/pitch}$. Dessa forma

$$\omega_i(t) = -K_i \frac{\mathrm{d}}{\mathrm{d}t} \left(\theta_{roll/pitch}(t) \right), \qquad (3.9)$$

em que $\theta_{roll/pitch}$ é o ângulo de rolagem ou arfagem medido pelo acelerômetro. O diagrama de blocos resultante desta configuração pode ser visualizado na Figura 3.7.

Uma vez que o sistema está digitalizado, as equações devem ser discretizadas com o tempo de amostragem T_{am} . A equação (3.9) discretizada, portanto, resulta em

Figura 3.7: Diagrama de Blocos do Sistema no Modo Velocidade

3.5.2 Filtro

A derivação dos ângulos medidos pelo acelerômetro deixa o sistema suscetível a ruído, uma vez que as frequências mais elevadas (comum em ruídos) são destacadas com um ganho maior. Para mitigar este efeito, adicionou-se após a derivação um filtro passa-baixas com ganho DC unitário e frequência de corte de f_c . A função de transferência de tal filtro é dada por

$$G_{filtro}(s) = \frac{2\pi f_c}{s + 2\pi f_c}.$$
 (3.11)

A equação que descreve o filtro de forma discretizada é

$$A_{out}[k] = \frac{1}{1 + T_{am}2\pi f_c} A_{out}[k-1] + \frac{T_{am}2\pi f_c}{1 + T_{am}2\pi f_c} A_{in}[k].$$
(3.12)

em que A_{out} é a saída do filtro e A_{in} é a sua entrada.

Como a frequência de amostragem $f_{am} = \frac{1}{T_{am}} = 5Hz$, é razoável estipular a frequência de corte do filtro com o valor de 1Hz. Como $T_{am} = 0, 2$ e $f_c = 1$ a equação (3.12) resulta em

$$A_{out}[k] = 0,4431A_{out}[k-1] + 0,5569A_{in}[k].$$
(3.13)

O diagrama de blocos com filtro pode ser visualizado na Figura 3.8.

3.5.3 Torque no Modo Velocidade

Conforme será melhor aprofundado no capítulo 4, após alguns testes, percebeu-se que os motores no modo velocidade não exibem torque suficiente para sustentar o próprio peso. Nestes casos, as juntas se movem facilmente por ações externas ao invés de manter a posição fixa (para velocidades nulas). Isto resulta em casos em que, mesmo sem distúrbio, as juntas acabam se movendo pela ação do peso do robô sobre elas e gerando, como resultado, a queda do robô.

Figura 3.8: Diagrama de Blocos do Sistema no Modo Velocidade com Filtro

Por outro lado, o modo posição apresenta um torque elevado, de modo que ao determinar uma posição específica para cada junta, esta se mantém fixa e não cede facilmente a forças aplicadas externamente. Não foi encontrado ainda o motivo dessa diferença entre os dois modos de operação. Porém, uma vez reconhecida esta diferença, decidiu-se trabalhar no modo posição para obter um controle de estabilidade mais adequado.

3.5.4 Controle de Estabilidade no Modo Posição

Uma vez decidido pelo uso do modo posição dos motores em vez do modo velocidade, algumas alterações no modelo anteriormente proposto foram necessárias. A equação (3.10) determina qual a velocidade $\omega_i[k]$ que deve ser aplicada ao i-ésimo motor no instante k. No entanto, como passou-se a trabalhar no modo posição, a informação que deve ser enviada a cada motor é a sua posição e não a sua velocidade. Dessa forma, para obter a posição desejada de cada motor, basta integrar ω_i . No cenário discretizado em que estamos trabalhando, portanto, a posição angular $\theta_i[k]$ de cada motor no instante k será dada por

$$\theta_{i}[k] = \theta_{i}[k-1] + T_{am}\omega_{i}[k] = \theta_{i}[k-1] - T_{am}K_{i}\left(\frac{\theta_{roll/pitch}[k] - \theta_{roll/pitch}[k-1]}{T_{am}}\right).$$
 (3.14)

Dessa forma, o diagrama de blocos correspondente a esta nova estrutura adiciona um integrador ao final, como mostra a Figura 3.9.

3.5.5 Determinação dos Ganhos K_i

Com o sistema de controle de equilíbrio definido e as juntas capazes de sustentar o peso do robô, foi possível realizar os testes das respostas dos motores aos distúrbios. Dessa forma, pode-se determinar empiricamente o valor de K_i para cada motor de modo a corrigir o distúrbio da maneira mais eficiente possível.

Com a finalidade de auxiliar a determinação destes ganhos, utilizamos a simetria do robô para a agrupar os motores que devem responder de maneira simultânea e no mesmo sentido, como ilustrado nas Figuras 3.10 e 3.11. Isto permitirá que o ganho de vários motores possam ter a mesma resposta e, consequentemente, o mesmo K_i .

Figura 3.9: Diagrama de Blocos do Sistema no Modo Posição

Figura 3.10: Motores de rolagem em sincronia

No caso da correção do movimento de rolagem, por exemplo, podemos dividir os grupos em patas da direita e patas da esquerda, como na Fig. 3.10. Neste caso, os motores referentes às patas da esquerda que corrigem a rolagem (motores 1 e 10, com linhas verticais) terão um ganho $K_i = K_L$ enquanto os que são referentes às patas da direita (motores 4 e 7, com linhas horizontais) obedecerão à relação $K_i = K_R$, respondendo ao mesmo tempo e no mesmo sentido.

Da mesma forma, a correção do movimento de arfagem, como pode ser observado na Fig. 3.11(a), pode ser feita com as patas da frente (motores 8, 9, 11 e 12, com linhas horizontais), com um ganho K_F , ou com as patas de trás (motores 2, 3, 5 e 6, com linhas verticais), com um ganho K_B^5 .

No entanto, há uma diferença para o caso da arfagem uma vez que os motores que fazem a correção neste sentido podem, ainda, ser divididos em motores de juntas do tipo joelho e motores de cima (ou de juntas não-joelho). Aos motores de juntas do tipo joelho, ilustrados pela Fig. 3.11(b) com linhas verticais, serão atribuídos um ganho K_{down} , e aos motores de cima (com linhas horizontais), um ganho K_{up} . Dessa forma, o ganho referente aos motores que corrigem o movimento de arfagem terá duas componentes, uma indicando a localização da pata (na frente ou atrás) e outra indicando se a junta é ou não um joelho. O ganho será dado, portanto, pela multiplicação das duas componentes. Por exemplo, um motor da frente que não esteja em uma junta do tipo joelho, terá o ganho dado por $K_i = K_F K_{up}$.

Assim, observando a Tabela 3.1, podemos determinar cada K_i :

 $^{^{5}}$ No presente trabalho foram utilizados os subíndices R, L, B e F para indicar, respectivamente, os sentidos da direita (Right), esquerda (Left), para trás (Back) e para frente (Front).

$$K_{4/7} = K_R,$$

$$K_{1/10} = K_L,$$

$$K_{2/5} = K_B K_{up},$$

$$K_{3/6} = K_B K_{down},$$

$$K_{8/11} = K_F K_{up},$$

$$K_{9/12} = K_F K_{down}.$$
(3.15)

Nesta equação, a representação $K_{m/n}$ indica que ambos K_m e K_n , ganhos dos motores m e n, respectivamente, são iguais ao valor do outro lado da igualdade.

Para que cada par de motores acima agrupados possa seguir o movimento no mesmo sentido alguns valores de K_i devem ser corrigidos com um sinal de negativo, uma vez que alguns motores foram montados em configurações contrárias. Tais motores são: 5, 6, 8 e 9. O motor 7, por sua vez,

(a) Sincronia por patas

(b) Sincronia pelo tipo de junta

Figura 3.11: Motores de arfagem em sincronia

apresenta um amortecimento levemente maior em relação ao seu par e, portanto, foi multiplicado por 1,1 para a devida correção.

A definição do valor de cada uma dessas componentes será feita de forma empírica através de testes reais na plataforma, com distúrbios em cada direção estudada, e será melhor detalhada no capítulo 4.

3.5.6 Sentido de Movimentação das Patas

A análise seguinte que deve ser observada com relação aos ganhos se relaciona com a resposta desejada para cada grupo de patas em conformidade com o sentido de movimentação do robô. Observando a Figura 3.12, podemos analisar os movimentos de rolagem e arfagem e, assim, determinar o sentido mais adequado para a movimentação das patas. Nesta imagem, apresentam-se os casos em que, partindo da condição de repouso, o robô é empurrado para a direita (Fig. 3.12(a)) e para frente (Fig. 3.12(b)).

O círculo escuro no centro da base do robô é a representação do seu Centro de Gravidade (COG). Pela simetria e distribuição de massa que podemos supor presentes no quadrúpede, a projeção vertical do COG no solo, em condições de repouso, se encontra equidistante das patas tanto no plano sagital quanto no transversal. Dessa forma, tal projeção se localiza no centro do retângulo formado pelas patas. Por simplicidade, esta distância é normalizada para cada plano e, portanto, em repouso é igual a 1.

Na Fig. 3.12(a), apresenta-se o caso em que um distúrbio é aplicado na plataforma, anteriormente em repouso, de modo a movimentá-la para a direita do robô (movimento de rolagem). Podemos notar que essa perturbação resulta no deslocamento do centro de gravidade no plano transversal e, consequentemente, na movimentação de sua projeção para a direita. Como resultado, o valor da distância entre tal projeção e as patas da esquerda aumenta por um fator ϵ , enquanto essa relação com as patas da direita diminui pelo mesmo fator.

Dessa forma, considerando os teoremas abordados no item 2.2 deste trabalho, percebemos que a margem de estabilidade estática do robô é prejudicada, uma vez que ela passa a ser igual a $1 - \epsilon$. Além disso, nota-se que, para fazer com que essa margem seja corrigida e evitar a instabilidade do robô, as patas da direita devem se mover para a direita. Isso faz com que a distância entre a

Figura 3.12: Movimento do Centro de Gravidade durante o distúrbio

projeção do COG e as bordas da direita do retângulo formado pelas patas aumente e, com isso, a margem de estabilidade seja corrigida.

Cabe aqui ressaltar que a movimentação das patas da esquerda não influencia a estabilidade neste caso pois, se elas se movessem para a esquerda, a margem de estabilidade não mudaria (uma vez que esta é definida como a menor das distâncias descritas) e, se elas se movessem para a direita, haveria o risco de se criar uma nova margem, porém, ainda menor do que $1 - \epsilon$. Conclui-se, então, que apenas as patas da direita devem se mover e que têm de fazê-lo para a direita. O mesmo se aplica caso o movimento perturbador seja para a esquerda (caso em que apenas as patas da esquerda devem se mover para a esquerda).

A mesma análise pode ser realizada para o movimento de arfagem como pode ser observado na Fig. 3.12(b). Analogamente ao caso anterior, na ocorrência de um distúrbio para a frente do robô apenas as patas dianteiras devem se movimentar e para frente, enquanto uma perturbação para trás deve ser corrigida com um movimento para trás das patas traseiras.

Portanto, pode-se definir que as patas que devem corrigir o distúrbio devem ser apenas aquelas referentes à direção do mesmo e no mesmo sentido. Isso pode ser descrito através da equação

$$K_{j} = \begin{cases} A_{j} & \text{se } \omega_{roll/pitch} \text{ for no sentido j,} \\ 0 & \text{caso contrário.} \end{cases}$$
(3.16)

Isto é, se a velocidade detectada ocorrer no sentido j (em que j pode ser igual a R, L, F ou B, dependendo do sentido da queda do robô), o ganho referente a este sentido será diferente de zero e igual ao ganho de resposta, A_j , a ser caracterizado empiricamente. Caso não seja detectado nenhum distúrbio no sentido j o ganho referente àquela direção será igual a zero.

Como será melhor abordado no capítulo 4, os testes empíricos realizados na plataforma, com aplicação de distúrbios, indicaram que o valor de A_j mais adequado para o controle de estabilidade é igual a 1,5 para todos os sentidos.

3.5.7 Juntas do Tipo Joelho

As juntas do tipo joelho, diferem das outras no que diz respeito ao seu sentido de deslocamento (que se dá no plano longitudinal). Em tal caso, percebeu-se, que o mais adequado para estas juntas é que sigam o movimento contrário ao distúrbio. Isso ocorre porque, ao seguir este sentido, a junta do joelho orienta a pata a aterrissar na vertical. Podemos visualizar melhor os possíveis cenários de orientação desta junta durante a aterrissagem através da Figura 3.13.

A Fig. 3.13(a) mostra a pata em condição de sustentação, sem correção de distúrbio, como referência. A Fig. 3.13(b), por sua vez, apresenta o caso em que a junta do joelho não muda sua configuração durante a correção do distúrbio, ocasionando em uma aterrissagem diagonal. Dessa forma, a pata fica suscetível a deslizar horizontalmente, sob influência do peso do robô. Já a Fig. 3.13(c) indica a configuração aproximada da pata quando o joelho se move em oposição ao distúrbio. É possível notar que a pata tem uma possibilidade mínima de deslizamento neste caso,

Figura 3.13: Configurações das juntas tipo joelho no plano longitudinal durante a aterrissagem

devido à sua aterrissagem vertical. Por fim, na Fig. 3.13(d), é possível visualizar a posição da pata quando o joelho se desloca no sentido do distúrbio. Neste cenário, a pata também pode sofrer o deslizamento horizontal, cedendo ao peso do robô ocasionando em sua queda.

Dessa forma, a diferenciação entre juntas do tipo joelho e não-joelho é utilizada apenas para adequar o movimento em conjunto destes motores para que, durante a correção do distúrbio, a pata aterrisse da forma mais vertical possível. Deste modo, é razoável supor que a definição da resposta para a correção em si, seja dada apenas pelos fatores K_B e K_F , enquanto K_{up} e K_{down} são apenas ponderações deste movimento para cada tipo de junta. Portanto, por simplicidade, podemos supor $K_{up} = 1$, de forma que somente K_{down} deva ser encontrado empiricamente. Neste caso, K_{down} deverá ser negativo para seguir o movimento contrário ao motor de cima. Os testes para a determinação de seu valor serão abordados no capítulo 4.

3.5.8 Associação do controle de equilíbrio com uma posição desejada

Determinados os ganhos K_i de todos os motores, o controle de estabilidade está apto a corrigir os distúrbios, conforme será melhor abordado no capítulo 4. No entanto, o controle proposto até aqui, caracterizado pela equação (3.14), aplica uma determinada posição θ_i em cada junta e não a modifica mais até a ocorrência de um novo distúrbio. Isto resulta na permanência do robô na posição de correção, mesmo após o fim da perturbação.

A ação mais adequada para o quadrúpede é de, após a correção do distúrbio, cada junta voltar a uma posição desejada para o regime permanente. Dessa forma, se o robô estiver parado, deseja-se que ele volte à posição inicial após a correção. Da mesma maneira, caso a plataforma esteja em processo de marcha, ela deve continuar sua movimentação normalmente após a estabilidade ser alcançada.

À vista disso, podemos remodelar o controle de equilíbrio com um novo diagrama de blocos, como o da Figura 3.14. É possível notar que, neste novo modelo, a posição desejada para cada junta é a soma de duas componentes: uma determinada pelo controle de estabilidade $G_1(s)$, que tem como entrada o distúrbio detectado pelo acelerômetro e a outra, determinada pela posição desejada em regime permanente θ_i^* . Esta será definida pela geração de marchas da plataforma mas,

Figura 3.14: Diagrama de blocos para adição da posição desejada

inicialmente, será dada apenas pela posição inicial das juntas para que o robô permaneça parado.

Nesta remodelação, consideraremos $d_{roll/pitch}$ agora como o erro da posição angular dos ângulos de rolagem e arfagem detectados pelo acelerômetro e não mais suas velocidades. Consequentemente

$$d_{roll/pitch}(t) = \theta_r(t) - \theta_{roll/pitch}(t), \qquad (3.17)$$

em que θ_r é o ângulo de referência para rolagem e arfagem. Como se deseja a estabilidade do robô, considerar-se-á $\theta_r = 0$. Ou seja, o controle será a feito de modo a manter os ângulos de rolagem e arfagem próximos ou iguais a zero. Logo

$$d_{roll/pitch}(t) = -\theta_{roll/pitch}(t). \tag{3.18}$$

A posição do i-ésimo motor, no domínio s será

$$\Theta_i(s) = G_1(s)D(s) + G_2(s)\Theta_i^*(s).$$
(3.19)

Para determinar os controladores $G_1(s)$ e $G_2(s)$ mais adequados, analisaremos as condições de regime permanente desejadas através do teorema do valor final. Segundo este

$$\lim_{t \to \infty} \theta_i(t) = \theta_i(\infty) = \lim_{s \to 0} s\Theta_i(s) = \lim_{s \to 0} s(G_1(s)D(s) + G_2(s)\Theta_i^*(s)).$$
(3.20)

Deseja-se que $\theta_i(\infty) = \theta_i^*(t)$. Para tal, a componente referente ao distúrbio $sG_1(s)D(s)$ deve ser anulada quando s tende a zero, enquanto a componente $sG_2(s)\Theta_i^*(s)$ deve ser igual a P_i^* , a posição angular do motor i em regime permanente, nesta mesma condição. Para que a primeira condição seja satisfeita, consideremos um distúrbio do tipo degrau, ou seja, $D(s) = \frac{D_k}{s}$, em que D_k é a amplitude do degrau. Logo

$$sG_1(s)D(s) = D_kG_1(s).$$
 (3.21)

Para que esta equação seja nula no limite de s
 tentendo a zero, basta que $G_1(s)$ tenha um zero em s = 0. Isto é

$$G_1(s) = \frac{K_d s}{H_1(s)},$$
(3.22)

em que K_d é um ganho que será determinado posteriormente baseado nas abordagens anteriores e $H_1(s)$ é o denominador de $G_1(s)$. Podemos observar que a presença do termo s no numerador da função de transferência implica que a resposta ao distúrbio deve ser alocada em frequências maiores. Dessa forma, podemos caracterizar $G_1(s)$ como um filtro passa-alta, uma vez que a componente DC é desejada como nula e as frequências mais elevadas são utilizadas para corrigir o distúrbio. Além do mais, essa caracterização nos permite determinar o tempo de resposta do sistema para a correção do equilíbrio. Assim

$$G_1(s) = \frac{K_d s}{\tau_d s + 1},$$
(3.23)

em que τ_d é a constante de tempo do controlador de estabilidade.

Já para que a segunda condição seja atendida também consideraremos $\Theta_i^*(s)$ como um degrau, ou seja, $\Theta_i^*(s) = \frac{P_i^*}{s}$, em que P_i^* é a amplitude do degrau e, portanto, o valor do ângulo desejado em regime permanente. Dessa forma,

$$sG_2(s)\Theta_i^*(s) = G_2(s)P_i^*.$$
(3.24)

Para que a equação acima seja igual P_i^* quando s tender a zero, $G_2(s)$ deve ser igual 1 nessas condições. Podemos concluir, portanto, que esta componente depende que um ganho unitário seja garantido em DC. A resposta em frequências maiores determina apenas o tempo de resposta do sistema para que este atinja o valor final desejado. Por isso, podemos implmentar $G_2(s)$ como um filtro passa-baixas com ganho DC unitário e frequência de corte variável, a ser determinada empiricamente para obtenção da resposta mais adequada. Portanto

$$G_2(s) = \frac{1}{\tau_p s + 1},\tag{3.25}$$

em que τ_p é a constante de tempo da resposta em regime permanente (ou então o inverso da frequência de corte).

Portanto, a posição de cada motor será determinada, no domínio s, por

$$\Theta_i(s) = \frac{K_d s}{\tau_d s + 1} D(s) + \frac{1}{\tau_p s + 1} \Theta_i^*(s).$$
(3.26)

Reorganizando a equação (3.26) e passando-a para o domínio do tempo, podemos obter a equação diferencial que representa o sistema proposto como

$$\ddot{\theta}_{i}(t)\tau_{d}\tau_{p} + \dot{\theta}_{i}(t)(\tau_{d} + \tau_{p}) + \theta_{i}(t) = K_{d}\tau_{p}\ddot{d}(t) + K_{d}\dot{d}(t) + \tau_{d}\dot{\theta}_{i}^{*}(t) + \theta_{i}^{*}(t).$$
(3.27)

Para obter a equação do sistema discretizado, representar-se-á uma quantidade x(t) (em que x pode ser θ_i , d ou θ_i^*) como x[k] e as suas derivadas como

$$\dot{x}(t) = \frac{x[k] - x[k-1]}{T_{am}}, e$$

$$\ddot{x}(t) = \frac{x[k] - 2x[k-1] + x[k-2]}{T_{am}^2}.$$
(3.28)

Dessa forma, a equação de diferenças do sistema discretizado será

$$\theta_i[k] (\alpha + \beta + 1) + \theta_i[k - 1] (-2\alpha - \beta) + \theta_i[k - 2] (\alpha) = b[k], \qquad (3.29)$$

em que b[k] será dado como

$$b[k] = d[k] (\gamma + \eta) + d[k - 1] (-2\gamma - \eta) + d[k - 2] (2\gamma) + \theta_i^*[k] (\lambda + 1) - \theta_i^*[k - 1]\lambda, \quad (3.30)$$

e os coeficientes α , β , γ , η e λ são dados por

$$\alpha = \frac{\tau_d \tau_p}{T_{am}^2},$$

$$\beta = \frac{(\tau_d + \tau_p)}{T_{am}},$$

$$\gamma = \frac{K_d \tau_p}{T_{am}^2},$$

$$\eta = \frac{K_d}{T_{am}},$$

$$\lambda = \frac{\tau_d}{T_{am}}.$$
(3.31)

Portanto, o ângulo $\theta_i[k]$ que deverá ser enviado para o i-ésimo motor no instante k é dado por

$$\theta_i[k] = \frac{b[k] - \theta_i[k-1]\left(-2\alpha - \beta\right) - \theta_i[k-2]\alpha}{\alpha + \beta + 1}.$$
(3.32)

Para determinar o parâmetro K_d do controlador, podemos observar comparativamente as equações (3.14) e (3.26). No primeiro caso, é possível observar que a posição final de cada motor é dado pela soma de uma posição prévia a uma velocidade multiplicada pelo tempo de amostragem e uma constante adimensional. A análise dimensional, portanto, confere para a dimensão de posição angular. Já para o segundo caso, como já foi mencionado anteriormente, o distúrbio D(s) é uma posição angular. A composição sD(s), dessa forma, é a velocidade angular do distúrbio, assim como $\omega_{roll/pitch}$ da primeira equação. Assim, para que a resposta do controlador seja similar ao determinado anteriormente, K_d deve ser a mesma constante multiplicando a velocidade, isto é, $K_i T_{am}$. Portanto,

$$K_d = K_i T_{am}.\tag{3.33}$$

Como já mencionado anteriormente, as constantes $\tau_d \in \tau_p$ serão determinada empiricamente através de testes reais na plataforma. Tais experimentos determinarão o tempo mais adequado de resposta para a correção de equilíbrio e para que o robô atinja a resposta em regime permanente. Uma vez que estes valores estiverem estipulados, todos os parâmetros da equação (3.31) estarão devidamente determinados.

3.6 Estrutura Geral do Código

Podemos, então, condensar as principais informações descritas nas seções anteriores para resumir a estrutura básica do código desenvolvido para o controle de estabilidade. O código foi escrito em C++ e possui as funções *main* e *controle* como os processos principais. A Figura 3.15 mostra o diagrama montado para ilustrar a estrutura geral do código.

A função *main*, em um primeiro momento, faz todas as inicializações necessárias. Isto inclui abrir a comunicação com os motores e com o *Arduino*, declarar as variáveis que serão alocadas no gDataLogger para aquisição de dados, ativar o modo posição dos motores, declarar a posição inicial e enviá-la para os motores. Em seguida, ela espera alguma tecla ser pressionada para seguir os próximos passos.

Uma vez detectada resposta do teclado, a função main cria um timer com tempo de amostragem T_{am} que é configurado para chamar a função de controle sempre que T_{am} segundos tiverem decorrido. Com isso, a thread de controle é criada e a função main, a partir de então, permanece em um loop apenas para verificar se a condição de parada foi satisfeita (neste caso a condição de parada é um novo toque em qualquer tecla) e atualizar o gDataLogger.

Figura 3.15: Diagrama do código desenvolvido

Se detectada a condição de parada, a função *main* para o *timer*, fecha o gDataLogger e a conexão com o *Arduino*, libera os motores e, se configurado, exporta os dados para um diretório no site *GitHub*, onde os dados podem ser acessados.

Já a função de controle, cada vez que é chamada, começa com a medição dos dados do acelerômetro. Em seguida ela passa os dados pelo filtro e calcula os ganhos K_i com base nos dados obtidos. Posteriormente, ela passa os dados para o controlador que, após os devidos cálculos, retorna a posição desejada para a i-ésima junta que, então, é enviada para seu respectivo motor. Por fim, os dados são atualizados para serem utilizados na próxima vez que a função for chamada. Para tal a maioria das variáveis são definidas como variáveis globais, assim elas podem ser armazenadas enquanto a *thread* não é chamada novamente.

3.7 Conclusão

O controle de estabilidade do quadrúpede sofreu modificações com relação à proposta inicial. No entanto, o princípio fundamental desta abordagem foi mantida ao longo do desenvolvimento do trabalho, sempre buscando a melhor resposta da plataforma através dos testes reais na mesma. A princípio, o controle foi pensado no modo velocidade, em que cada junta responderia com uma velocidade proporcional à do distúrbio. A constante de proporcionalidade K_i seria determinada empiricamente para cada motor. No entanto, a limitação do torque foi fundamental para reconsiderar este modo de operação.

Neste sentido, o uso do modo posição se mostrou bastante adequado para a finalidade do controle, uma vez que os motores apresentavam um torque bastante elevado para sustentar o peso do robô. Dessa forma, com uma leve modificação, a adição de um integrador, foi possível manter a abordagem inicial de resposta dos motores no modo posição. Assim, o sistema implementado se mostrou efetivo para o controle de equilíbrio e os ganhos K_i puderam ser determinados.

Por fim, fez-se necessário integrar a resposta de correção da estabilidade com a posição desejada do robô, seja para manter sua marcha ou para mantê-lo na mesma posição inicial. Para tal, utilizouse de dois controladores, um para lidar com o distúrbio e outro para tratar da resposta desejada em regime permanente. A resposta de cada motor seria dada, portanto, pela soma de cada uma dessas componentes.

O próximo capítulo apresenta os dados específicos que foram coletados durante estes procedimentos e analisa estas informações para justificar as modificações que foram necessárias durante o desenvolvimento do sistema de controle. Além disso, ele também versará sobre a aquisição dos coeficientes de forma empírica, isto é, dos ganhos K_i e das constantes de tempo τ_d e τ_p .

Capítulo 4

Resultados Experimentais

4.1 Introdução

Como foi abordado no Capítulo 3, o desenvolvimento do projeto sofreu modificações com relação à concepção inicial do controle de estabilidade. As principais mudanças, assim como a determinação dos coeficientes de resposta dos motores, foram baseadas em testes reais na plataforma, que serão mostrados e analisados neste capítulo.

Os experimentos consistiram na execução do programa elaborado para cada etapa do desenvolvimento do controle com o robô nos seguintes cenários: sustentado por um suporte, sem contato das patas com o solo; com o robô em pé se sustentando, mas sem nenhum distúrbio e, por fim, sendo empurrado para a esquerda, direita, para frente ou para trás.

Após cada experimento, os dados eram recolhidos e analisados através do software *Matlab*. Os gráficos que serão apresentados neste capítulo foram obtidos por tal programa.

4.2 Modo Velocidade

A primeira abordagem do controle de estabilidade foi a utilização dos motores no modo velocidade. Nesta seção serão apresentados os principais resultados obtidos neste modo de operação e analisadas as suas consequências para o controle de estabilidade.

4.2.1 Medição

O primeiro elemento a ser testado é a medição dos ângulos pelo acelerômetro. Além disso, pode-se obter a velocidade dos ângulos de rolagem e arfagem através da derivação e observar os efeitos do filtro passa-baixa desenvolvido.

O teste é feito com o robô parado, sustentado por um suporte que impede as patas de entrarem em contato com o solo, sem a adição de qualquer distúrbio e com a resposta dos motores desativada. Dessa forma, é possível observar o ruído produzido durante a medição, uma vez que os dados de velocidade, em um cenário ideal, deveriam ser iguais a zero e os ângulos, sempre constantes. Podemos observar a medição destes na Figura 4.1.

Os ângulos iniciam o teste com os valores iniciais de zero graus, devido à inicialização da conexão com o Arduino. No entanto, após 6 períodos de amostragem (ou 1,2 segundos) a aquisição de dados é estabelecida. A partir de então, podemos notar que os dados sofrem variações devido ao ruído. Utilizando os comandos max, min e mean do Matlab podemos identificar os ângulos mínimo, máximo e médio atingidos para cada medição. Tais valores são apresentados na Tabela 4.1.

Podemos observar que o valor médio das duas quantidades é diferente de zero, apesar de próximos deste valor, indicando uma pequena inclinação da superfície em que o robô é instalado. A rápida variação dos ângulos medidos a cada período de amostragem é um efeito do ruído de medição, caracterizado por altas frequências.

Após a medição, os ângulos são derivados e, em seguida, passados por um filtro passa-baixa, especificado pela equação (3.12). As velocidades resultantes após a derivação e após a filtragem podem ser visualizadas na Figura 4.2. Para poder analisar o efeito do filtro sobre a velocidade calculada, montou-se a Tabela 4.2. Nela foram organizados os valores mínimo, máximo e médio das velocidades assim como sua amplitude, ou seja, a diferença entre o máximo e o mínimo atingidos.

Dessa forma, podemos observar que, com a inclusão do filtro, a amplitude do ruído decaiu 45,7% para a medição da velocidade de rolagem e 52,5% para a arfagem. Isso indica que o efeito do filtro sobre a medição da velocidade se mostrou adequado para as necessidades para as quais ele foi desenvolvido. Isto é, ele é capaz de amenizar a ação do ruído em altas frequências.

Além disso, podemos analisar a variância das medidas com e sem filtragem para identificar o comportamento do filtro. No caso da velocidade de rolagem, encontrou-se uma variância de $2,2851graus^2/s^2$ antes do filtro, e de $0,5087graus^2/s^2$ após a filtragem. Da mesma forma,

Figura 4.1: Ângulos de rolagem e arfagem medidos com o robô parado

Tabela 4.1: Ângulos mínimo, máximo e médio medidos

Orientação	Valor mínimo (graus)	Valor máximo (graus)	Valor médio (graus)
Rolagem	$0,\!6663$	$1,\!3429$	$0,\!9947$
Arfagem	$-0,\!3531$	$0,\!3237$	-0,0849

a velocidade de arfagem apresentou uma variância de $0,9466 graus^2/s^2$ antes do filtro, e de $0,1968 graus^2/s^2$. Em ambos os casos, a variância diminui do caso não filtrado para o caso com filtro, indicando uma redução do ruído ao redor do valor de referência, conforme desejado.

Além disso, verifica-se que o filtro não foi responsável pela ocorrência de qualquer instabilidade na medição ou mesmo de atrasos de fase, ocorrências possíveis no caso da escolha da frequência de corte. Portanto, podemos concluir que o filtro implementado corresponde às necessidades do sistema desenvolvido.

Por fim, pode-se observar que o valor médio das velocidades obtidas encontra-se na ordem de 10^{-2} e 10^{-3} graus/s e, dessa forma, reduzidos o bastante para serem considerados próximos de zero. Como será visto mais adiante, um distúrbio no sentido de rolagem, por exemplo, permanece na ordem de 50 graus/s.

4.2.2 Posição Inicial

Um dos elementos fundamentais nos experimentos que serão realizados é que o robô inicie cada procedimento em uma posição inicial adequada. Determinou-se que tal disposição consistia nas patas perpendiculares à base do robô, sustentando-o através de um arranjo retangular.

Para obter tal posição realizou-se um breve procedimento em que os motores foram desprovidos de qualquer resposta (para tal, configurou-se o torque limite de todos os motores como zero) e, então, cada motor foi manualmente rearranjado de modo que as quatro patas ficassem perpendicular ao plano da base do robô. Em seguida, foi feita a leitura da posição de todos os motores. Essas leituras podem ser visualizadas na Tabela 4.3.

Com estes valores, foi possível adicionar na função *main* do código, comandos que, na inicialização do procedimento, coloquem cada motor na sua posição inicial. Para fazer isso no modo velocidade, criou-se as funções para acionar cada modo de operação (posição ou velocidade). Portanto, ao iniciar o código, a *main* aciona o modo posição, aloca cada junta na sua posição inicial e, em seguida, retorna ao modo velocidade para acionar o controle. Quando trabalharmos no modo posição, mais a frente, não será necessário retornar ao modo velocidade.

Podemos visualizar a posição inicial do robô na Figura 4.3.

Figura 4.2: Velocidades antes e depois da filtragem

4.2.3 Teste de Sustentação

Com as medições realizadas, os procedimentos seguintes envolvem o robô parado, sustentado pelas suas próprias patas e sem a aplicação de nenhum distúrbio externo. Para tal, o sistema implementado, inicialmente, impõe as posições iniciais encontradas anteriormente. Em seguida, a plataforma é posicionada sobre o solo e nenhum distúrbio (e.g. empurrão) é aplicado. Este experimento foi realizado, para fins de comparação, tanto para o controle desenvolvido para o modo velocidade, caracterizado pela equação (3.10), como para o controle adaptado para o modo posição, determinado pela equação (3.14), que será abordado mais adiante.
Orientação	Mínimo ($^o/\mathrm{s})$	Máximo ($^o/\mathrm{s})$	${\bf Amplitude} (^o/{\bf s})$	Média ($^o/\mathrm{s})$
Rolagem	-3,3289	6,7151	$10,\!0440$	$0,\!0405$
Rolagem filtrada	-1,7131	$5,\!4546$	$3,\!7414$	$0,\!0404$
$\operatorname{Arfagem}$	-2,2861	$2,\!3434$	$4,\!6295$	$4,7653\cdot 10^{-3}$
Arfagem filtrada	-1,0542	$2,\!2002$	$1,\!1459$	$1,6887\cdot 10^{-3}$

Tabela 4.2: Velocidades mínima, máxima, média e sua amplitude

O resultado obtido no modo velocidade pode ser visualizado pela Figura 4.4. Na Fig. 4.4(a) são mostrados os ângulos de rolagem e arfagem medidos. Já a Fig. 4.4(b) apresenta, em linha contínua, a velocidade de rolagem e, em linha traço e ponto, a velocidade dos motores utilizados para corrigir o distúrbio nesta direção (i.e. motores 1, 4, 7 e 10). Analogamente, a Fig. 4.4(c) contém a velocidade de arfagem e dos respectivos motores que a corrigem.

Podemos notar uma grande movimentação entre os instantes 1 e 3 segundos mas que se devem apenas à alocação do robô sobre o solo. A partir deste momento, nenhum distúrbio externo foi aplicado ao robô. Ainda assim, é possível observar, na Fig. 4.4(a), que o robô sofre uma queda, a partir de aproximadamente 8 segundos, quando o ângulo de arfagem caiu para -18,3 graus.

Para analisar o ocorrido podemos verificar a Fig. 4.4(c), representando a direção em que houve a queda (i.e arfagem). Nela, as linhas traço e ponto, representando as velocidades dos motores, começam a aumentar (em módulo) alguns segundos antes da queda brusca. Este é um indicador de que as juntas começaram a ceder inicialmente de forma lenta e foram aumentando sua velocidade até que o robô não foi mais capaz de se sustentar, gerando a queda.

Podemos, para melhor visualização, separar a resposta de um desses motores, como é feito na

Motor	Ângulo inicial (valor quantizado)	Ângulo inicial (graus)
1	497	145,7
2	498	146
3	503	$147,\!5$
4	132	38,7
5	543	$159,\!2$
6	521	$152,\!8$
7	540	$158,\!4$
8	527	$154,\!5$
9	347	$101,\!8$
10	497	$145,\!7$
11	549	161
12	500	$146,\! 6$

Tabela 4.3: Posição Inicial dos Motores

Figura 4.3: Robô na sua posição inicial

Figura 4.5. Nesta imagem, isolou-se a resposta, em módulo, do motor 11 (utilizado para corrigir a arfagem em uma junta do tipo não joelho). Constata-se que a velocidade do motor começou a aumentar cerca de 2 segundos antes da queda do robô, atingindo o seu ápice por volta de 8,4 segundos.

Como não houve distúrbios externos e a resposta dos motores havia sido configurada para 0 graus/s, conclui-se que os motores não apresentam torque suficiente no modo velocidade para mantê-la como tal e, consequentemente, deixam as juntas suscetíveis a serem movimentadas. O resultado disso foi o peso do robô movimentar as juntas até o ponto em que este não foi capaz de se sustentar mais.

No entanto, não foi encontrado o motivo pelo qual os motores apresentam um torque limitado no modo velocidade. Pode-se salientar que os motores foram configurados para apresentarem o torque máximo possível. Para tal, os bytes 14 e 15 da memória de cada motor definem o torque máximo permitido e, os bytes 34 e 35, o limite de torque que se deseja implementar. Nos dois casos foram aplicados os maiores valores possíveis para garantir que não houvesse limitações de torque. Ainda assim, os testes no modo velocidade apresentaram as limitações verificadas anteriormente.

A hipótese formulada para tal limitação é que o modo velocidade foi desenvolvido pelos fabricantes dos motores para ser utilizado em rodas ou outros elementos que giram constantemente por várias revoluções por minuto. Enquanto isso, o modo posição teria sido desenvolvido para aplicações em articulações e juntas, como é o caso do quadrúpede, uma vez que a determinação (e fixação) das posições desejadas implica em uma resolução de movimento mais adequada para tais finalidades. Por isso, este modo apresentaria um torque mais elevado para manter as posições fixas enquanto, em rodas e afins, esta imobilização não se faz necessária.

Como será visto na próxima seção, o modo posição apresenta um torque bastante elevado quando comparado ao modo velocidade. Neste caso, ao determinar uma posição para o motor (assim como configuramos uma velocidade de 0 graus/s no modo velocidade) este fixa tal localização e não cede facilmente a movimentos externos que tendam a mover a junta para uma posição

(c) Velocidade de Arfagem e dos seus motores

Figura 4.4: Teste de Sustentação do Robô no Modo Velocidade

diferente. Portanto, é mais vantajoso que trabalhemos no modo posição para que o robô possa se sustentar sozinho.

4.3 Modo Posição

Com o modo posição, podemos utilizar os motores de forma mais adequada para que o robô se sustente e corrija os distúrbios aos quais está suscetível. Da mesma forma que no modo velocidade, nesta seção abordar-se-á os resultados atingidos com os experimentos no modo posição analisando o que necessita de modificação e, principalmente, obtendo os dados empíricos para a determinação das constantes de controle.

Figura 4.5: Velocidade do Motor 11

4.3.1 Teste de Sustentação

Assim como foi realizado na seção 4.2.3, neste experimento realizou-se o teste de sustentação, com o robô em pé, parado, sem aplicação de distúrbios externos e com a velocidade dos motores configurada para zero. A diferença entre o presente experimento e o item mencionado é que para manter a velocidade de 0 graus/s em cada motor no modo posição, o sistema configura sua localização sempre com o mesmo valor enquanto, anteriormente, a própria velocidade era determinada.

Os dados obtidos para tal teste podem ser analisados pela Figura 4.6. Podemos observar que o experimento foi possível de ser realizado por mais tempo que anteriormente pois não houve a queda do robô. Dessa forma, tais figuras apresentam apenas ruído, uma vez que não houve distúrbios externos e nem movimento da juntas.

Desta maneira, comparando com os dados obtidos na seção 4.2.3, podemos concluir que a sustentação no modo posição é mais adequada para a plataforma do que no modo velocidade, uma vez que possibilita que o robô fique em pé parado.

4.3.2 Determinação das constantes K_{up} e K_{down}

As constantes $K_{up} \in K_{down}$, no escopo de correção do movimento de arfagem, têm a finalidade de diferenciar as respostas dos motores de juntas do tipo joelho (com o ganho K_{down}) das demais (K_{up}) . Como mencionado na seção 3.5.5, cada um deses motores terá, ainda, uma segunda componente que será a responsável pelo movimento de correção em si (i.e. $K_B \in K_F$). Dessa forma, $K_{up} \in K_{down}$ são apenas ponderações da resposta para a diferenciação das juntas do tipo joelho.

Por esse motivo e para simplificação, considerou-se, inicialmente, que $K_{up} = 1$. Assim, podemos determinar empiricamente o ganho K_{down} em conformidade com o movimento do motor de cima,

(c) Velocidade de Arfagem e dos seus motores

Figura 4.6: Teste de Sustentação do Robô no Modo Posição

para que o deslocamento da pata no sentido sagital seja tal que esta aterrisse da forma mais vertical possível como mostrado na Fig. 3.13(c). Assim, a correção da estabilidade do robô será determinada unicamente pelos ganhos K_F e K_B , abordados mais adiante.

O teste para se determinar K_{down} ocorrerá da seguinte forma: aplicaremos um distúrbio no sentido que faria o robô cair para a frente. Então, com o controlador desenvolvido até este ponto, a correção deve ser feita através dos motores da frente. Testaremos, aos poucos, diferentes valores de K_{down} baseados na resposta final das juntas do tipo joelho em conformidade com o motor de cima. Isto é, se ao final da correção do distúrbio, as patas da frente apresentarem uma configuração de aterrissagem com um ângulo muito distante do eixo vertical, modificar-se-á o valor de K_{down} , diminuindo-o ou aumentando-o, de forma que esta aterrissagem seja o mais próxima do eixo vertical possível.

Os testes foram realizados com os valores das constantes K_F e K_B iguais a 1,5. Estes valores foram determinados empiricamente através de testes que serão descritos mais adiante, mas em suma, eles garantem que a resposta do robô seja de tal forma a mantê-lo equilibrado frente a distúrbios aplicados na direção de arfagem.

O primeiro valor testado para K_{down} foi de -1. Cabe lembrar que o valor negativo de K_{down} se justifica pelo movimento contrário desejado para as juntas tipo joelho em relação ao imposto pelos motores de cima. Dessa forma a pata pode aterrissar de forma vertical. Ao final do distúrbio aplicado com este valor, observou-se que a postura da plataforma se encontrava conforme a Figura 4.7.

Podemos observar, através desta imagem, que o movimento dos joelhos do robô deslocou as patas muito para trás, fazendo com que o ângulo entre a parte de baixo da pata e a linha vertical atingisse um valor muito elevado. Conclui-se, então, que o valor de $K_{down} = -1$ possui um módulo bastante elevado, gerando um movimento amplo demais para as necessidades de correção.

Desejando diminuir este movimento, sugeriu-se $K_{down} = -0, 4$ reduzindo em mais da metade o deslocamento provocado pelas juntas tipo joelho. Após o mesmo teste ser realizado com este novo valor, observou-se a postura do robô conforme a Figura 4.8.

É possível notar que este novo valor permitiu que as patas da frente aterrissagem de forma vertical, com um ângulo entre a parte de baixo das patas e a linha vertical muito próximo de zero, conforme desejado. O movimento e aterrissagem observados se enquadram perfeitamente nas necessidades do controlador e, portanto, é coerente determinar $K_{down} = -0, 4$.

Portanto, ao final desta etapa podemos confirmar os valores das constantes K_{up} e K_{down} como 1 e -0,4, respectivamente.

4.3.3 Determinação das constantes de rolagem K_R e K_L

Os ganhos referentes à rolagem, $K_R \in K_L$, foram testados em ensaios com a presença de distúrbio. Para tal, o robô foi posicionado em pé sobre o solo com todas as juntas na posição inicial. Quando o controle foi acionado, aplicou-se manualmente empurrões no robô, para a sua esquerda ou sua direita, com um intervalo de tempo entre eles. Então, é observada a resposta dos motores 1, 4, 7 e 10 e a postura do robô a cada instante para verificar sua sustentação.

Figura 4.7: Postura após distúrbio com $K_{down} = -1$

Figura 4.8: Postura após distúrbio com $K_{down} = -0, 4$

Baseados nessas observações, os ganhos são modificados de forma a adequar o movimento desejado das patas para a correção adequada do distúrbio. Por exemplo, se for notado que a resposta precisa ser mais rápida, aumentamos o ganho; caso se verifique uma sensibilidade muito elevada da resposta, diminuímos tal valor.

Como abordado na seção 3.5.6 e condensado na equação (3.16), os ganhos dependem do sentido de movimentação causado pela perturbação e são iguais a zero caso o sentido não corresponda àquela junta. Portanto, as quantidades aqui testadas são referentes ao caso diferente de zero, ou seja, A_R e A_L . No entanto, manteremos a nomenclatura como K_R e K_L para melhor identificação do que estas variáveis representam.

Inicialmente, foi realizado tal ensaio com o distúrbio apenas para a direita, ou seja, foram aplicados empurrões na direção que pudesse fazer o robô tombar para a direita. O valor de K_R foi inicialmente configurado para 1 e as respostas obtidas com este valor podem ser observadas na Figura 4.9.

Podemos observar neste dados, que diversos distúrbios foram aplicados em intervalos de aproximadamente 2 segundos entre eles, com uma amplitude, em módulo, de até 40 graus/s. Em grande parte das respostas subsequentes, percebe-se que o ângulo de rolagem volta ao seu valor inicial assim como a velocidade volta a ser de 0 graus/s, indicando a estabilidade. No entanto, o último distúrbio verificado causa a instabilidade do robô, como pode ser visto na Fig. 4.9(a). Neste caso, o ângulo de rolagem cai para aproximadamente 30° , indicando a queda do robô.

Além disso, a Fig. 4.9(b) indica que as velocidades dos motores (em linhas tipo traço e ponto) estavam bem reduzidas neste experimento e, portanto, quase não responderam ao distúrbio. Dessa forma, pode-se concluir que a estabilização dos primeiros distúrbios não teve relação com a resposta dos motores, mas sim com a própria geometria de distribuição das patas e da magnitude do distúrbio, insuficiente para fazê-lo cair. Apenas a última perturbação imposta na plataforma teve amplitude suficiente para fazê-lo tombar e, como as respostas dos motores estavam em patamares insuficientes, a queda do robô ocorreu.

(b) Velocidade de Rolagem e dos seus motores

Figura 4.9: Teste de Queda para a direita com $K_R = 1$

Portanto, o ganho de K_R foi insuficiente para corrigir o distúrbio, indicando uma necessidade de aumentar tal valor para que o controle possa responder adequadamente a tal. O próximo valor a ser testado neste mesmo experimento é de $K_R = 1, 5$. Os dados referentes a este valor se encontram na Figura 4.10.

Neste caso, foram aplicados dois distúrbios maiores em aproximadamente 7,5 e em 15 segundos e um menor em 6 segundos. Nota-se, na Fig. 4.10(b), que as respostas dos motores se encontram bem mais significativas do que no experimento anterior. Nesta situação, o ângulo de rolagem chega em valores de até 15^{o} (Fig. 4.10(a)) e retorna à sua posição inicial e velocidade zero. Isto foi

(c) Velocidade de Arfagem e dos seus motores

Figura 4.10: Teste de Queda para a direita com $K_R = 1, 5$

possível devido à ação de resposta dos motores, que se deslocaram com uma velocidade suficiente para corrigir a perturbação e impedir a queda do robô. Assim, pode-se estabelecer que o valor de 1,5 foi bastante adequado para a correção da estabilidade no sentido de rolagem para direita.

Em uma análise mais detalhada da Fig. 4.10(a), constata-se que, ao final do último distúrbio, os ângulos de rolagem e arfagem se acomodam em valores ligeiramente diferente do valor inicial. Isto é uma consequência do controle de estabilidade ter sido desenvolvido, até o presente experimento, sem a consideração do retorno à posição inicial. Deste modo, as patas, após corrigirem a perturbação, continuam na mesma posição que terminaram o movimento de correção. Em outras palavras, a posição de cada pata em regime permanente é dada pela posição que ela atinge ao final do deslocamento de correção. Isto faz com que os ângulos de rolagem e arfagem possam se acomodar em valores distintos do inicial.

Podemos observar melhor este fenômeno através da Figura 4.11, que ilustra o momento ao final do experimento, em que o robô já se estabilizou mas manteve a posição fixa ao invés de voltar à posição inicial. É perceptível que o robô tem as patas dispostas para os lados enquanto sua posição

Figura 4.11: Posição do robô após a correção do distúrbio

inicial é com as quatro patas perpendiculares à base.

Por fim, podemos notar na Fig. 4.10(c), que o distúrbio aplicado não teve componentes apenas no movimento de rolagem conforme desejado, mas também foi aplicado na direção de arfagem. No entanto, este movimento não influenciou a análise da rolagem, uma vez que não gerou a queda do robô e o movimento de rolagem pode ser caracterizado de forma independente.

Devido à simetria da plataforma e do fato de estarmos utilizando os mesmos motores, consideraremos que K_L será também igual a 1,5. Mais ao final deste capítulo será apresentado um experimento em que todas as direções são testadas com os valores de K_i determinado para todos os motores.

4.3.4 Determinação dos ganhos de arfagem K_B e K_F

Para determinar os ganhos K_B e K_F seguiu-se os mesmos procedimentos descritos anteriormente para o caso da rolagem. Isto é, o robô será posicionado sobre o chão na posição inicial e, após a ativação do sistema de controle, serão aplicadas perturbações para frente e para trás do robô. Em seguida, os dados serão analisados para verificar a necessidade de aumentar os ganhos, caso a resposta esteja muito lenta, ou diminuí-lo em caso de uma sensibilidade muito elevada nas respostas dos motores.

O primeiro teste foi feito para a aquisição de K_F . Apesar das dimensões longitudinais do robô serem maiores do que suas extensões transversais (o robô tem base retangular), é razoável admitir inicialmente tal ganho como 1,5, valor este que garantiu uma resposta adequada no movimento de rolagem. Alterações finas podem ser requeridas caso o experimento com este valor não seja conveniente, mas supõe-se que esta quantia deva ter uma ordem de grandeza semelhante à necessária para a estabilização do distúrbio da arfagem.

Os resultados obtidos neste experimento são ilustrados na Figura 4.12. Podemos observar

(c) Velocidade de Arfagem e dos seus motores

Figura 4.12: Teste de Queda para a frente com $K_F = 1, 5$

na Fig. 4.12(c) que os motores responderam bem aos distúrbios impostos, com uma magnitude levemente maior que as próprias perturbações. Na Fig 4.12(a), por sua vez, podemos observar que o experimento termina com os valores dos ângulos não tão próximos de zero, como se esperaria para um posição horizontal da base do robô (os valores finais são cerca de 6 graus na arfagem e 1 grau na rolagem). Contudo, isto indica apenas que, após a correção do distúrbio, o robô permaneceu na posição do final do movimento, não havendo o retorno à sua posição inicial. Neste caso, não houve queda do robô, caso em que tais ângulos estariam na faixa de pelo menos 15 graus.

O distúrbio foi, dessa forma, corrigido e a plataforma se manteve equilibrada conforme desejado. A resposta dos motores durante a correção se mostrou, então, conveniente para os propósitos deste trabalho e, assim, firmou-se que $K_F = 1,5$ sem a necessidade de alteração.

Assim como foi feito para o caso da rolagem, podemos generalizar o valor obtido para a arfagem no sentido para frente e aplicá-lo também às respostas traseiras. Dessa forma, $K_B = 1, 5$.

Por fim, é apresentado um último experimento com o controlador proposto. Neste teste, todas as direções e sentidos são perturbados e todos os ganhos aqui determinados são aplicados para fornecer a resposta a este estímulo. Tal procedimento gerou os dados expressos na Figura 4.13.

Podemos observar que, ao final do experimento, o robô manteve-se equilibrado, sem queda. Os valores encontrados de K_i se mostraram eficientes na correção do distúrbio para todos os sentidos de movimentação.

Como já observado anteriormente, nota-se que os ângulos finais de rolagem e arfagem não estão próximos de zero indicando uma leve inclinação causada pela postura do robô ao final do experimento. Como não há qualquer controle implementado, neste caso, que o faça voltar para uma certa posição, esta é determinada pela última postura aplicada para corrigir o distúrbio. Portanto, há ainda a necessidade de se implementar um sistema que faça a plataforma retornar a um valor desejado após o distúrbio.

Figura 4.13: Teste de Queda em todos os sentidos

4.4 Associação do controle de equilíbrio com uma posição desejada

Na seção anterior determinou-se todas as constantes de velocidade K_i e, com isso, foi possível obter um controle de estabilidade satisfatório que corrigia o movimento do robô face a um distúrbio externo aplicado. No entanto, conforme foi mencionado, uma vez que o robô retornava à condição de estabilidade, as patas não voltavam à posição inicial. Este comportamento não é adequado considerando o cenário em que o robô se estabiliza ao mesmo tempo que mantém uma marcha constante. Neste caso, é desejado que, uma vez corrigido o distúrbio, o robô continue a se movimentar normalmente.

Com isso em mente, foi proposto e implementado o controle de equilíbrio em associação com uma posição desejada como explicado na seção 3.5.8. Esta seção, por sua vez, realizará os testes do controle proposto. Em um primeiro momento, o controlador foi testado com a posição desejada para cada motor em regime permanente configurada para a posição inicial. Desta forma, espera-se que robô seja capaz de corrigir o distúrbio e voltar para a posição inicial, permanecendo parado a partir daí. Se os testes forem bem sucedidos, adicionar-se-á a marcha desenvolvida em [2] para determinar a posição em regime permanente.

4.4.1 Determinação das constantes τ_d e τ_p

Na nova concepção do controle de estabilidade, em associação com uma posição desejada, duas novas constantes surgiram para serem determinadas, isto é, $\tau_d \in \tau_p$. A primeira é a constante de tempo da resposta ao distúrbio do controle de equilíbrio enquanto a segunda é a constante de tempo para que cada junta retorne à posição desejada. Estas constantes também serão determinadas empiricamente através de testes na plataforma.

Tais valores não podem ser muito elevados, caso contrário, a resposta do sistema será muito lenta, prejudicando a resposta ao distúrbio (no caso de τ_d) e o retorno à posição desejada assim como as possíveis marchas a ela relacionada (no caso de τ_p). Da mesma forma, não se deseja que tais valores sejam muito reduzidos pois a resposta poderia ser muito repentina, gerando mais instabilidade e oscilações. Por esse motivo, é preciso observar o comportamento do sistema a diversos valores para, então, configurar tais constantes com a quantidade mais adequada.

Para determinar empiricamente tais constantes, realizou-se diversos testes com distúrbios na plataforma, como nos testes anteriores, para diferentes valores de τ_d e τ_p . A determinação de qual valor é mais adequado foi, então, baseado no tempo para as respostas retornarem aos patamares de referência e a oscilação da resposta (considerando o pior caso).

4.4.1.1 Determinação de τ_d

Como a correção ao distúrbio é mais crítica do que a resposta em regime permanente, começouse com os teste para determinar τ_d . Para tal, configurou-se τ_p como igual a 1s. Nestes testes foram impostas perturbações tanto na rolagem quanto no arfagem, e a análise a ser feita deve ser com relação ao comportamento destes ângulos frente à resposta de correção dos motores. Como τ_d representa a resposta ao distúrbio, é razoável pensar que ele deve assumir valores mais reduzidos, uma vez que o distúrbio deve ser corrigido mais rapidamente do que a posição deve convergir à desejada. Dessa forma, os valores testados para τ_d foram 0,01, 0,05, 0,1 e 0,3 segundos.

Para $\tau_d = 0,01s$, obtivemos as respostas da Figura 4.14. Os dados para esta concepção do controlador são fornecidos em posição, ao invés de velocidade, e por esse motivo tem um formato diferente dos anteriores. Na Fig. 4.14(a) é apresentado o sinal de distúrbio na direção de rolagem enquanto a Fig. 4.14(b) ilustra a arfagem. Na determinação de τ_d omitiremos os dados referentes às posições dos motores para auxiliar na visualização dos gráficos e na análise dos resultados, uma vez que esta será feita com base nas características da correção do distúrbio.

Neste caso os dados de rolagem e arfagem foram obtidos em procedimentos distintos, mas sem impactos para a análise a ser realizada. Podemos observar pela Fig. 4.14(a), que a perturbação de rolagem demorou cerca de 8 segundos (de 26s a 34s) para ser corrigida, enquanto a de arfagem, na Fig. 4.14(b), demorou cerca de 3 segundos (de 15s a 18s).

Além disso, percebe-se uma oscilação duradoura do distúrbio de rolagem, que permanece por 5 segundo em patamares iguais a aproximadamente 1/3 do valor máximo da perturbação. A arfagem, por sua vez, não apresenta muita oscilação, caindo para o valor de referência como um sistema super-amortecido.

Para $\tau_d = 0,05s$, obteve-se as respostas ilustradas na Figura 4.15. Estes resultados apontam para uma característica mais amena de resposta. Na Fig. 4.15(a), observa-se que o maior distúrbio aplicado na rolagem é corrigido em aproximadamente 5 segundos e com uma oscilação pequena quando comparada com o valor máximo, uma vez que a oscilação se dá com uma magnitude menor que 1/4 da perturbação máxima. Outro distúrbio menor aplicado posteriormente é corrigido em 3,5 segundos com uma mínima oscilação.

Da mesma forma, na arfagem observada na Fig. 4.15(b), a maior perturbação detectada é corrigida em 1,8 segundos com uma oscilação um pouco maior, mas que decai rapidamente.

(a) Ângulos de Rolagem e dos seus motores

(b) Ângulos de Arfagem e dos seus motores

Figura 4.14: Teste de Queda com $\tau_d = 0,01s$

Figura 4.15: Teste de Queda com $\tau_d = 0,05s$

Portanto, as respostas obtidas para $\tau_d = 0,05s$ se mostraram bastante satisfatórias, com um tempo de resposta adequado para a correção do distúrbio e sem a presença de oscilações muito elevadas que possam prejudicar a marcha do robô.

Para $\tau_d = 0, 1s$ a resposta obtida é dada pela Figura 4.16. Neste caso, nota-se que o distúrbio na rolagem sofre oscilações que perduram por aproximadamente 6 segundos sem serem amortecidas. Na arfagem, a perturbação passa a ser corrigida em 2,5 segundos.

Por fim, para $\tau_d = 0, 3s$, obtivemos os dados ilustrados na Figura 4.17. Neste caso, nota-se que a correção do distúrbio na rolagem (Fig. 4.17(a)) se prolonga por aproximadamente 10 segundos enquanto a arfagem também alcança este número, como pode ser visto na Fig. 4.17(b)

Para condensar as informações aqui apresentadas, construiu-se a Tabela 4.4, que descreve, para cada τ_d testado, os valores de tempo de acomodação e magnitude da oscilação, considerando o pior caso atingido tanto para rolagem quanto para arfagem. Para determiná-los, consideramos tempo de acomodação como o tempo de início do distúrbio até o momento em que ele volta a 0 graus e assim permanece por 2 segundos (10 tempos de amostragem) e a magnitude de oscilação como o

(a) Ângulos de Rolagem e dos seus motores

(b) Ângulos de Arfagem e dos seus motores

Figura 4.16: Teste de Queda com $\tau_d = 0, 1s$

Figura 4.17: Teste de Queda com $\tau_d = 0, 3s$

valor do segundo maior pico do distúrbio, em módulo, normalizado pelo maior valor atingido.

Observa-se que, de modo geral, a direção de rolagem sofre com mais oscilações. Isto pode ser explicado pelo comprimento reduzido da base do robô nesta dimensão (menor lado do retângulo) o que gera uma margem de estabilidade estática menor.

Podemos observar pela tabela, que o valor de τ_d que gera um menor tempo de acomodação, tanto na rolagem quanto na arfagem é 0,05 segundos. Além disso, este valor também gera o melhor comprometimento entre a magnitude de oscilação de rolagem e de arfagem uma vez que apresenta o menor valor da primeira e o segundo menor valor da segunda. Portanto $\tau_d = 0,05s$.

4.4.1.2 Determinação de τ_p

Com o parâmetro τ_d determinado pode-se realizar os testes para a obtenção de τ_p . Este foi utilizado até então como igual a 1s para que fosse determinado o tempo de resposta ao distúrbio. Agora, testaremos o mesmo cenário, i.e. a resposta da plataforma a perturbações na direção de rolagem e de arfagem, para determinar o valor de τ_p mais adequado para que as posições de cada junta voltem à posição desejada.

Como anteriormente, a posição desejada é configurada para a posição inicial de forma que

	Tempo de Acomodação (s)		Magnitude de Oscilação (°)	
$ au_d$ (s)	Rolagem	Arfagem	Rolagem	$\operatorname{Arfagem}$
0,01	8,4	3,6	0,729	0,109
0,05	5,2	1,8	$0,\!249$	$0,\!436$
0,1	6,4	2,8	$0,\!999$	$0,\!250$
0,3	10	10,2	$0,\!412$	$0,\!814$

Tabela 4.4: Tempo de Acomodação e Magnitude de Oscilação em testes de τ_d

o robô fique parado em regime permanente. Uma vez que a constante τ_d já foi determinada, utilizaremos tal valor para a realização dos testes. Os valores de τ_p a serem testados são: 0,1, 0,3, 0,5 e 0,7 segundos. Estes valores foram escolhidos pois a resposta em regime permanente não necessita ser tão rápida quanto a correção do distúrbio.

A análise das respostas será feita com base no tempo de acomodação, uma vez que não foram observadas oscilações significativas nas juntas que pudessem gerar adversidades. O tempo de acomodação é aqui definido como o maior tempo entre o início do movimento de alguma junta e o instante em que sua posição entra e se mantém, por 2 segundos, na faixa de mais ou menos 2% do seu valor inicial.

O primeiro valor a ser testado foi de $\tau_p = 0, 1s$ e a resposta obtida é ilustrada na Figura 4.18. Na Fig. 4.18(a) apresenta-se os ângulos dos quatro motores de correção da rolagem sendo, em linha tipo traço e ponto, os da esquerda e, em linha contínua, os da direita. Na Fig. 4.18(b), são ilustrados os ângulos dos 8 motores de rolagem sendo, em linha traço e ponto os correspondentes da frente, e em linha contínua, os de trás.

Observando a resposta da rolagem, notamos que o maior valor do tempo de acomodação foi de 2,9 segundos enquanto, na arfagem, este valor foi de 8,8 segundos.

Para $\tau_p = 0,3s$ obteve-se o resultado da Figura 4.19. Neste caso, podemos observar uma resposta, na rolagem, de 2,8 segundos para que o sistema volta à posição inicial. Já na arfagem este valor é de 3 segundos.

Para $\tau_p = 0, 5s$, as respostas dos motores podem ser visualizadas através da Figura 4.20. Nela, percebemos que o valor de maior tempo de resposta na direção da rolagem foi de 2,5 segundos. No entanto, para a arfagem percebeu-se que tal valor chegou a 9,1 segundos.

Por fim, para $\tau_p = 0,7s$ obteve-se a resposta indicada pela Figura 4.21. Neste caso, o tempo de acomodação da resposta à rolagem foi de 6,7 segundos enquanto da arfagem foi de 6,2 segundos.

Portanto, podemos condensar as informações obtidas acima na Tabela 4.5. Analisando os valores comparativamente, nota-se que o cenário com melhor comprometimento entre as resposta

(a) Ângulos de Rolagem e dos seus motores

(b) Ângulos de Arfagem e dos seus motores

Figura 4.18: Teste de Queda com $\tau_p = 0, 1s$

Figura 4.19: Teste de Queda com $\tau_p = 0, 3s$

de rolagem e arfagem é $\tau_p = 0, 3s$. Este valor apresenta o menor tempo de acomodação da arfagem e segundo menor da rolagem. Dessa forma, o robô apresenta uma resposta adequada ao desejado, retornando à posição inicial rapidamente. Portanto, $\tau_p = 0, 3s$.

4.4.2 Testes finais

Com todos os K_i determinados assim como todas as constantes de tempo $\tau_d \in \tau_p$, o controle de equilíbrio em associação com uma posição desejada se encontra completo. Dessa forma, é possível testar perturbações em todas as direções e sentidos da plataforma e espera-se que a correção seja realizada de forma adequada, assim como a retorno à posição inicial.

Desta maneira, foram aplicados distúrbios para os quatro sentidos individualmente e analisados os resultados advindos destes procedimentos. Ao final será realizado um último teste com distúrbios aplicados em diagonal de modo a obter uma resposta conjunta da rolagem e da arfagem.

O primeiro teste foi realizado na direção de rolagem, para a direita. Os dados referentes a este

(a) Ângulos de Rolagem e dos seus motores

(b) Ângulos de Arfagem e dos seus motores

Figura 4.20: Teste de Queda com $\tau_p = 0, 5s$

(a) Ângulos de Rolagem e dos seus motores

(b) Ângulos de Arfagem e dos seus motores

Figura 4.21: Teste de Queda com $\tau_p = 0, 7s$

caso são ilustrados na Figura 4.22.

A Fig. 4.22(a) apresenta, em amarelo, a posição dos motores que corrigem a rolagem da esquerda, em azul, os da direita e, em vermelho, o distúrbio lido pelo acelerômetro, em graus. A Fig. 4.22(b), por sua vez, retrata o comportamento do ângulo de arfagem, em vermelho, e dos motores a ele relacionado, sendo em amarelo os motores da frente e em azul, os de trás.

Neste gráfico, podemos observar que todos os motores respondem de forma bem sincronizada à perturbação, de forma que os dois motores da direita apresentam uma curva de resposta muito similar, assim como os da esquerda também estão em sintonia.

Da mesma forma, é possível notar que, mesmo que a perturbação tenha sido realizada para a direita, os dois lados apresentaram alguma resposta. Isto se deve ao fato de que o movimento criado pelo distúrbio gera uma oscilação no robô, isto é, este é inicialmente lançado para a direita, mas após a correção pelas patas neste sentido, a plataforma tende a se movimentar para a esquerda e assim por diante até que o movimento seja amortecido pelo controlador. É possível observar essa oscilação através da linha vermelha da Fig. 4.22(a) representando o distúrbio oscilante.

Após a correção do distúrbio e o fim da oscilação do robô, notamos que as juntas voltam à posição inicial. Conforme havia sido concebido, o controle com adição da posição desejada foi capaz não apenas de corrigir o distúrbio externo, como também de retornar à posição desejada

	Tempo de Acomodação (s)		
$ au_p$ (s)	$\operatorname{Rolagem}$	$\operatorname{Arfagem}$	
0,1	2,9	8,8	
0,3	2,8	3	
0,5	2,5	$_{9,1}$	
0,7	6,7	6,2	

Tabela 4.5: Tempo de Acomodação em testes de τ_p

Figura 4.22: Teste de Queda para a direita com adição da posição desejada

para o regime permanente.

Neste experimento, quase não houve movimentação na direção da arfagem, com exceção de uma pequena perturbação por volta dos 16 segundos, provavelmente consequência de uma irregularidade no momento da aplicação do distúrbio, mas que não foi significativa para causar influência no experimento.

O mesmo procedimento foi realizado com os distúrbios para a esquerda, resultando nos dados da Figura 4.23. Nota-se que esta resposta é bem similar ao obtido na Fig. 4.22, mesmo que as perturbações tenham sido aplicadas no sentido oposto. Isto se deve à mesma oscilação descrita anteriormente que acaba gerando movimento tanto para a direita quanto para a esquerda. Deste modo, as resposta de todos os motores se faz necessária para o amortecimento do deslocamento de rolagem.

Já para a direção de arfagem realizou-se, primeiramente, o teste com o distúrbio para a frente, resultando nos dados apresentados pela Figura 4.24. A Fig. 4.24(b) apresenta, em amarelo, as posições das juntas da parte da frente do robô que corrigem a arfagem. A curva em azul representa os motores de trás e, em vermelho, o distúrbio apresentado.

(a) Ângulos de Rolagem e dos seus motores

(b) Ângulos de Arfagem e dos seus motores

Figura 4.23: Teste de Queda para a esquerda com adição da posição desejada

Figura 4.24: Teste de Queda para frente com adição da posição desejada

A análise da curva do distúrbio, em vermelho, evidencia mais a oscilação do movimento de arfagem, que persiste por mais tempo até a acomodação no valor de referência. Além disso, notamos que alguns motores seguem uma orientação contrária aos outros, indicando o movimento das juntas dos joelho que se opõe aos demais motores. Neste caso, as posições das juntas também retornam à posição inicial, conforme desejado.

As respostas dos movimentos de rolagem, na Fig. 4.24(a), são inferiores em magnitude e, portanto, não influenciaram neste procedimento.

Para perturbações para trás do robô, obtivemos os resultados ilustrados na Figura 4.25. Novamente percebemos a semelhança com o caso anteriorer devido à oscilação do movimento na direção da arfagem. Assim, os motores têm um comportamento bem similar, de modo a amortecer tal oscilação até que o valor de referência (0 graus) seja atingido e o robô, estabilizado.

Por fim, realizou-se um experimento com distúrbios aplicados em diagonal, para poder analisar a resposta conjunta da direção da rolagem e da arfagem. As respostas obtidas podem ser visualizadas pela Figura 4.26.

Podemos observar a similaridade da resposta obtida com os experimentos anteriores, isto é, os

(a) Ângulos de Rolagem e dos seus motores (b) Ângul

(b) Ângulos de Arfagem e dos seus motores

Figura 4.25: Teste de Queda para a trás com adição da posição desejada

Figura 4.26: Teste de Queda para a diagonal com adição da posição desejada

motores respondem em conjunto para corrigir o distúrbio retornando ao final de cada perturbação aos seus valores iniciais. Os distúrbios, por sua vez, são amortecidos com oscilações até que atinjam o valor de referência. Dessa forma, conclui-se que o controle de estabilidade desenvolvido é capaz de responder adequadamente às perturbações aplicadas, mesmo que em diagonal e retornar às posições iniciais.

4.4.3 Aplicação de Marchas

Com o controle capaz de corrigir às perturbações externas e retornar a uma posição inicial, pode-se, então, aplicar uma marcha de locomoção neste sistema.

Para tal, deve-se igualar a posição desejada em regime permanente, $\theta_i^*[k]$, à posição requerida pela marcha a cada instante k. Utilizaremos uma das marchas desenvolvidas em [2] para esta implementação. As marchas estão contidas em um arquivo com extensão *.txt* já com os valores quantizados que devem ser enviados para cada motor, a cada leitura deste arquivo. Neste trabalho, utilizou-se a marcha 1.

Com a finalidade de testar a adequação da marcha ao sistema desenvolvido, desativou-se o controle de equilíbrio (ao fazer $K_d = 0$), deixando apenas a componente de resposta em regime permanente. O robô foi mantido em cima de uma caixa, sem contato com o solo, para verificar o progresso das juntas.

O resultado obtido pode ser verificado na Figura 4.27. Nela, são mostrados os ângulos referentes aos motores de arfagem que aplicam uma marcha com o propósito de fazer o robô se deslocar para a frente.

Percebe-se, no entanto, que o tempo de duração do ciclo de uma junta (o tempo entre um pico e outro, por exemplo) pode chegar a 8 segundos. Esta duração é muito elevada para a plataforma trabalhada, uma vez que um tempo desta magnitude pode gerar instabilidades. Uma perna, por exemplo, pode ficar muito tempo sem contato com o solo, diminuindo a margem de estabilidade e, possivelmente, gerando a queda do robô.

Figura 4.27: Teste de marcha no sistema com adição da posição desejada

Além disso, percebeu-se, durante o experimento, que o movimento das juntas ocorria de forma muito cadenciada, isto é, não se deu de maneira contínua. Do contrário, a locomoção das juntas ocorreu de forma brusca entre um ponto de amostragem e outro. O comportamento da marcha pode ser visualizado na Figura 4.28, adquirida através de 9 segundos de gravação do experimento descrito. Percebe-se que o movimento das patas não está em acordo com a marcha de deslocamento proposta em [2]. Dessa forma, o sistema com adição da posição desejada afeta diretamente a marcha implementada.

Estes dois fatores (lentidão de resposta e movimento cadenciado) podem ser explicados pelo tempo de amostragem adotado neste trabalho. Quando desenvolvido em [2], a marcha utilizada não foi implementada com um período específico de amostragem, como no sistema desenvolvido. Como mencionado anteriormente, a marcha está contida em um arquivo e o tempo entre uma movimentação e outra era antes definido apenas pelo tempo do processamento para realizar tal leitura.

No entanto, o sistema desenvolvido trabalha com um tempo de amostragem fixo e preciso, de modo que a leitura deste arquivo só pode ser realizada a cada T_{am} segundos. Isto desconfigura o padrão desenvolvido para aquela marcha deixando-a lenta e cadenciada.

Dessa forma, tal marcha, implementada como foi originalmente concebida, não está adequada aos parâmetros do sistema proposto. No entanto, a adequação deste sistema com as marchas ainda pode ser realizada se a leitura do arquivo for feita com saltos. Isto é, ao invés de fazer a leitura do arquivo valor por valor, pode-se avançar a cada dois ou mais valores. Isto poderia garantir que a velocidade das juntas aumentasse, uma vez que o deslocamento seria mais amplo no mesmo período de amostragem. Esta implementação não foi possível de ser realizada neste trabalho, mas será uma proposta para trabalhos futuros.

Figura 4.28: Marcha do robô adicionada ao sistema de controle de equilíbrio

4.5 Conclusões

O controle de estabilidade proposto no capítulo 3 foi pensado com base em uma análise empírica, isto é, composta de testes reais na plataforma e da construção de um controlador de forma simultânea aos experimentos. Isto se reflete, desde a concepção inicial do projeto, na determinação dos ganhos K_i , proposta para ser realizada empiricamente com base nas respostas reais dos motores durante a correção de um distúrbio.

No entanto, a abordagem inicial teve que sofrer algumas modificações para se adequar ao cenário encontrado no quadrúpede. Devido especialmente à limitação do torque no modo velocidade, foi necessária a mudança para o modo posição, mas mantendo a concepção de que a velocidade de cada junta seria, basicamente, a velocidade do distúrbio vezes K_i . Com o novo modo de operação, capaz de sustentar o robô nas condições de repouso, foi possível aplicar testes com o controlador proposto e, concomitantemente, adequar os ganhos K_i até que se observasse a melhor resposta às perturbações.

Descobertos os valores dos ganhos que melhor corrigem os distúrbios, estávamos em posse de um controlador efetivamente capaz de manter a plataforma equilibrada a perturbações externas. No entanto, ainda era necessário aliar o controle proposto ao desenvolvimento de marchas para que o robô conseguisse se equilibrar durante a caminhada sem prejudicar a mesma. Para tal foi proposto o sistema com adição da posição desejada.

Com o controlador desenvolvido com esta associação, foi possível realizar os testes que determinassem os valores adequados de τ_d e τ_p que resultassem em um tempo de resposta condizente com os distúrbios sofridos. Dessa forma, foi possível adequar os tempos de resposta para atingir o regime permanente e para responder ao distúrbio.

Por fim, foi possível realizar os testes finais de verificação do controle de equilíbrio, avaliando a sua capacidade de responder aos distúrbios de forma efetiva, em todas as direções e retornar à posição inicial desejada. O alinhamento com as marchas desenvolvidas em [2], no entanto, não foi possível de ser realizado, uma vez que as marchas se encontravam muito lentas com o tempo de amostragem proposto. Contudo, ressalta-se que esta possibilidade não foi descartada e será incluída como sugestão para trabalhos futuros no capítulo seguinte.

Capítulo 5

Conclusões

O controle de estabilidade proposto neste trabalho foi fundamentado nos trabalhos desenvolvidos em [1] e [11]. Tais propostas seguem um modelo empírico baseados em medições de dados através de sensores como acelerômetro e sensores de força, para a implementação de um controle formado pela contribuição conjunta de diversos atuadores para que a resposta final do robô seja de tal forma a manter o equilíbrio do quadrúpede. Além disso, tal contribuição seria diretamente relacionada com os dados mensurados, isto é, cada atuador i teria um ganho individual K_i , de modo que a resposta de tal atuador seja igual aos dados medido vezes seu ganho. Então, cada K_i é determinado empiricamente de forma a contribuir da forma mais efetiva para a manutenção da estabilidade do robô.

Neste sentido, o controle proposto no Capítulo 3 foi baseado em velocidades. Isto é, a velocidade de cada motor seria igual à velocidade do distúrbio sofrido vezes um ganho individual K_i . Algumas teorias foram estudadas para auxiliar em sua determinação mas, de modo geral, cada ganho devia ser encontrado através de testes na plataforma, com perturbações reais.

O modo velocidade do motor, no entanto, demonstrou-se inadequado para as funcionalidades desejadas devido à limitação do torque no momento de sua sustentação. Apesar de não ter sido descoberto o motivo para tal, formulou-se a hipótese de que este modo teria sido desenvolvido para utilização em rodas, de modo que a fixação em um determinado ângulo não seja adequada para tal finalidade.

Neste sentido o modo posição foi utilizado para implementar o controlador proposto e, para tal, bastou-se aplicar uma integração no mesmo. Com isso foi possível não apenas garantir a sustentação do robô como também que pudéssemos determinar os ganhos K_i . Dessa forma, os testes na plataforma forneceram dados satisfatórios para análise, verificação e modificação de cada ganho. Quando todos os valores foram estabelecidos, o controle de equilíbrio foi capaz de efetivamente corrigir os distúrbios em todas as direções e, dessa forma, garantir a estabilidade do robô.

Contudo a necessidade de associar o controle de estabilidade com movimentos de marchas, ou mesmo com uma posição fixa, trouxe a precisão de se criar um paralelismo entre o controle proposto e a posição em regime permanente. Por este motivo, foi criado o sistema com paralelismo. Neste caso, novas constantes surgiram para serem determinadas empiricamente, $\tau_d \in \tau_p$. Estes parâmetros são responsáveis pelo tempo de resposta em regime permanente e foram configuradas de maneira a garantir o melhor tempo de resposta para os distúrbios aplicados com a menor oscilação possível.

Ao final, o controle com paralelismo desenvolvido e empiricamente determinado possibilitou que o robô corrigisse as perturbações sofridas em todas as direções e voltasse à posição inicial após a estabilização ser alcançada. No entanto, não foi possível, neste trabalho, aliar tal controle com as marchas desenvolvidas anteriormente.

Portanto, pode-se concluir que os principais objetivos deste trabalho foram atingidos, uma vez que o controle desenvolvido foi capaz de realizar a correção do distúrbio e manter o robô equilibrado. Além disso, o controle em paralelo permite que novas marchas sejam aplicadas em conformidade com este sistema. O objetivo não alcançado refere-se à integração deste controle com marchas previamente criadas, mas que pode ser desenvolvida em trabalhos futuros.

5.1 Sugestões de trabalhos futuros

Como sugestões para trabalhos futuros propõe-se que novas tentativas sejam realizadas para a utilização do modo velocidade com um torque adequado para a sustentação. Neste trabalho, o uso do modo velocidade serviu de base para a concepção original do projeto de controle de estabilidade, mas após alguns testes percebeu-se que tal modo de operação não fixava a posição das juntas como desejado, fazendo com que as patas não sustentassem o peso do robô, gerando quedas mesmo que sem distúrbios.

A sugestão para os próximos trabalhos é a investigação mais detalhada dos motores, verificando se há algum modo de fazê-los trabalharem no modo velocidade com um torque adequado para a sustentação.

Além disso, uma outra proposta é a integração do controle de estabilidade com uma marcha de deslocamento do robô. Ao final do presente trabalho obteve-se um sistema que não apenas mantém a estabilidade do robô como também o faz retornar para uma posição desejada $\theta_i^*[k]$ de cada motor i, no instante k. Os trabalhos futuros a serem desenvolvidos na plataforma podem definir uma marcha adequada, ou utilizar a desenvolvida em [2], e utilizá-la no presente sistema para definir o parâmetro $\theta_i^*[k]$. Os tempos de amostragem e de resposta das patas, neste caso, deverão ser analisados e possivelmente modificados para se adequar melhor às necessidades de cada marcha.

REFERÊNCIAS BIBLIOGRÁFICAS

- [1] RAIBERT, M. et al. Bigdog, the rough-terrain quaduped robot. Boston Dynamics.
- [2] PORPHIRIO, C. de F.; SANTANA, P. H. M. Geração de marchas para a plataforma quadrúpede utilizando algoritmo genético. Junho 2017.
- [3] MCGHEE, R. B.; FRANK, A. A. On the stability properties of quadruped creeping gaits. Mathematical Biosciences, v. 3, p. 331–351, 1968.
- [4] SANTOS, P. G. de; GARCIA, E.; ESTREMERA, J. Quadrupedal Locomotion: an introduction to the control of four-legged robots. Berlin, Germany: Springer, 2007.
- [5] RAIBERT, M. H.; CHEPPONIS, M.; BROWN, H. B. Running on four legs as though they were one. *IEEE Journal of Robotics and Automation*, RA-2, n. 2, p. 70–82, Junho 1986.
- [6] LI, M. et al. Control of a quadruped robot with bionic springy legs in trotting gait. Journal of Bionic Engineering, v. 11, n. 2, p. 188–198, 2014.
- [7] MENG, J.; LI, Y.; LI, B. A dynamic balancing approach for a quadruped robot supported by diagonal legs. *International Journal of Advanced Robotic Systems*, v. 12, n. 142, 2015.
- [8] WON, M.; KANG, T. H.; CHUNG, W. K. Gait planning for quadruped robot based on dynamic stability: landing accordance ratio. *Intel Serv Robotics*, v. 2, p. 105–112, Março 2009.
- [9] FEATHERSTONE, R. Quantitative measures of a robot's physical ability to balance. The International Journal of Robotics Research, v. 35, n. 14, p. 1681–1696, 2016.
- [10] RUNBIN, C. et al. Inverse kinematics of a new quadruped robot control method. International Journal of Advanced Robotic Systems, v. 10, n. 46, 2013.
- [11] SOUSA, J.; MATOS, V.; SANTOS, C. P. dos. A bio-inspired postural control for a quadruped robot: an attractor-based dynamics. *IEEE/RSJ International Conference on Intelligent Robots* and Systems, p. 5329–5334, Outubro 2010.
- [12] SEMINI, C. et al. Design of hyq a hydraulically and electrically actuated quadruped robot. Journal of Systems and Control Engineering, v. 225, p. 831–849, Agosto 2011.
- [13] SANTOS, J. H. S. Plataforma quadrupede: Uma nova estrutura para robo quadrupede do lara. Julho 2016.

- [14] SOUTO, R. F. Modelagem cinemática de um robô quadrúpede e geração de seus movimentos usando filtragem estocástica. Julho 2007.
- [15] LAPLANTE, P. A. Real-Time Systems Design and Analysis : an Engineer's Handbook. New York, United States: iEEE Press, 1993.

ANEXOS

I. DESCRIÇÃO DO CONTEÚDO DO CD

- 1. Programas em C++ para inicializações, definição da thread de controle, filtragem, medição e comandos. A execução do arquivo "main" executará estas funções na ordem correta.
- 2. Programa em C para implementação do gDataLogger
- 3. Diretório com os arquivos do Matlab ".mat" obtidos para a aquisição de dados
- 4. Arquivos do Matlab ".m" para a análise dos dados. O arquivo "analise_vmotores_new.m" analisa os dados dos sistemas sem paralelismo (tanto do modo posição quando do modo velocidade). O arquivo "analise_pmotores.m" trata os dados do sistema com paralelismo