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ABSTRACT

Recent literature suggests that circular statistics presents itself as a powerful tool in filtering
algorithms that involve angular quantities, allowing a correct treatment of their distributions.
In this context, this work aims to provide a performance analysis of a circular statistics based
filter algorithm for indoor pedestrian tracking. The measurements for the localization scheme are
provided by low cost sensors based on direction of arrival (DOA) techniques. Hence, a correct
treatment to the uncertainty of the measurements will be addressed. Simulation experiments
carried out in MATLAB indicate that the presented filter outperforms EKF and UKF approaches
when the uncertainty is high. Therefore, results inspire the use of the presented filter for physical
implementations.

RESUMO

A literatura recente sugere que a estatística circular se apresenta uma ferramenta valiosa em algo-
ritmos de filtragem que envolvem quantidades angulares, permitindo um tratamento correto das
distribuições dessas. Nesse contexto, esse trabalho almeja proporcionar uma análise da perfor-
mance de um de um algoritmo de filtragem, baseado em estatística circular, para rastreamento
de pedestres em ambientes fechados. As medidas para o esquema de localização são oriundas de
um sensor de baixo custo baseado em técnicas de direção de chegada (DOA). Dessa forma, um
tratamento correto da incerteza nas medidas será abordado. Simulações realizadas no MATLAB
indicam que o filtro apresentado possui, quando a incerteza é alta, uma performance superior à
abordagens que utilizam EKF e UKF. Portanto, os resultados inspiram o uso do filtro apresentado
para implementações físicas.
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Chapter 1

Introduction

1.1 Motivation

For a long time now, humankind has developed techniques to deal with circular nature problems.
The compass and the clock were extremely important tools for navigation, for instance. Where
typical observations that are measured by the compass include directions of migrating birds and
wind directions [2]. Therefore, not only providing a sense of orientation, but allowing studies for
scientific fields such as biology or even geology (magnetic pole).

That aforementioned sense of orientation also arises in the ability of locating acoustic sources.
For instance, when searching for a concert in a unknown area, the direction of higher noise or music
patterns will act as guidelines. Inspired by this capacity of estimating a direction for the acoustic
waves, sensors based on time difference of arrival (TDOA) have been presented on the literature
[3], [4]. That way providing angular information that can be used on tracking experiments, for
instance [5].

The problem of tracking based solely on angular measurements has been well developed and
addressed on the literature [6], [7], [8]. Solutions based on nonlinear Kalman filters [9] or more
elegant ones considering pseudomeasurements [10] have been presented to approach this kind of
problem. However, most solutions fail to consider correctly the statistics of the measured angles,
assumed to be associated to a gaussian distribution. A correct treatment to those angles must
consider the mathematical background provided by directional statistics [11]. The filters proposed
in [12], [5] and [13] consider circular distributions in order to improve their performances given
highly uncertain measurements.

In [1] a low-budget sensor based in the time difference of arrival (TDOA) was presented and
implemented. However, the sensor only provides static angular estimation, i.e., the acoustic source
does not move while measurements are made. Therefore, the aim of this work is to evaluate the
performance of traditional filtering algorithms (EKF and UKF) and a filter based on circular statis-
tics, given measurements provided by the aforementioned sensor, for pedestrian indoor tracking.
Hence, the goal of this work is to argue in favor of circular statistic considerations for angular
measurements to improve pedestrian tracking in indoor environments. The analysis provided by
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this work can easily be extended to other applications where angular measurements are considered.

1.2 Problem Statement

The position over time of a pedestrian walking in a room is an information of interest. Two
low cost DOA sensors, each containing two omnidirectional microphones in a linear uniform array,
are capable of estimating angular directions of an acoustic source and sending it to a processing
unit (robot). The processing unit is embedded with a filtering algorithm capable of estimating the
pedestrian position at each time step. The objective of the robot is to determine the pedestrian
path considering the angular uncertainty of the measurements. In order to provide a reliable
ground truth for the estimated positions, the chosen path considered aspects such as ease of
implementation and evaluation. Therefore, the pedestrian route was assumed to be a straight line.
Figure 1.1 provides a better visualization of the problem.

Figure 1.1: Visualization of the stated problem to be approached.

In [1], DOA sensors capable of estimating an acoustic source direction were developed and eval-
uated. As an extension of that work, since the sensors were only tested for fixed source directions,
it is proposed a filtering approach to perform the tracking of a moving acoustic source. Since
the sensors were motivated and developed considering the problem of detecting the orientation of
a human whistle, the pedestrian is assumed to be whistling in a room, or emitting the whistle
frequency artificially.

Since the sensor measurements are directions, their circular nature had to be considered. There-
fore, an approach that made use of directional statistics to model and deal with the uncertainties
in the measurements had to be fused with the filtering algorithm. In order to do so, traditional
filtering algorithms and circular filtering algorithms had to be studied and evaluated. Since tradi-
tional solutions for bearings only measurements consider EKF or UKF [9], those filters were also
implemented for comparison purposes.

To predict the future position of the pedestrian based on a current estimate, two slightly
different constant velocity models were employed in the simulations. The first model was a Lavegin
model, that seemed to portrait well the time-varying locations of a person in a room [14][15]. The
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second model was a simpler one, considering that the pedestrian motion would be over a straight
line, considering regular variations in position for each time step.

A series of simulations were performed taking into consideration the problems described herein
in order to provide good filtering approximations for the pedestrian position. Different filters and
models were simulated and compared so an evaluation for a real implementation could be made.

1.3 Outline

The following chapters are presented as follows:

Chapter 2 collects some basics on circular statistics [11], [2], defining the manifold and the
problems when dealing with circular data. Initially, a new definition of mean is presented to
consider the inherent problems of angular direction. Then, a definition for the circular probability
distributions is given, describing some of their properties. Subsequently, the most relevant models
to represent circular data are described with their respective characteristics. In the sequence, the
definition of trigonometric moments is stated and some results for given distributions are presented.
At last, the circular equivalent result for the central limit theory is mentioned.

Chapter 3 presents an introduction to estimation theory, in order to provide some mathematical
background for the development of the filters. First, maximum likelihood and bayesian estimation
methods are presented. In the sequence, a discussion about scalar an vector valued data for the
development of the Kalman filter is made. Subsequently, linear and nonlinear Kalman filters are
described and their algorithms are introduced. Finally, a circular filter based on moment matching
was derived and their algorithms presented.

Chapter 4 presents the topic of DOA estimation, describing the low-budget sensors that will
be considered and a brief discussion on implementation is given.

Chapter 5 introduces a discussion in measurement equations, developing conditions for a non
traditional approach in pedestrian tracking. In addition, a model for pedestrian motion is pre-
sented.

In Chapter 6, a treatment is given for the sensor noisy measurements and results for simulations
of different kinds of filters are presented. Besides, their performances are compared for numerous
cases and implementation in real time estimation is evaluated.

At last, Chapter 7 provides remarks concerning the simulations, their results and limitations,
proposing further developments for future works.
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Chapter 2

Topics in Circular Statistics

This chapter aims to introduce some concepts of directional statistics that will be of great
use in the development of the circular filter. First, we will start with the definition of the unit
circle manifold and circular random variables. Then, some circular distributions of interest will be
presented and properties will be derived. The content of the following subsections were inspired
by the approach given in [16],[11] and [2].

2.1 The Unit Circle

Circular statistics is a specialization of a branch of statistics called Directional statistics, which
studies angles or directions. The manifold our discussion will be focusing is the unit circle S1. A
very intuitive and useful definition for S1 would be {x ∈ C : |x| = 1}, the subset of all complex
numbers with unit norm. In order to construct a bijection, consider the mapping l1 : C 7→ [ 0, 2π)

with
l1 : x 7→ Arg(x).

Where the Arg(·) function is the argument of a complex number and can be defined as

Arg : C\{0} 7→ [ 0, 2π) , x 7→ atan2(Im(x),Re(x)).

The atan2 function is the well known four-quadrant inverse tangent. This function is a necessary
extension since the ordinary arctan function is only defined in intervals of length π. The formal
definition of atan2 : R2 7→ [ 0, 2π) is given bellow

atan2(y, x) =



arctan(y/x), x > 0, y ≥ 0

arctan(y/x) + 2π, x ≥ 0, y < 0

π/2, x = 0, y > 0

3π/2, x = 0, y < 0

undefined, x = 0, y = 0

arctan(y/x) + π, x < 0
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The function l1 has a natural inverse mapping:

l−11 : x 7→ cos(x) + i sin(x)

Thus, exists a bijection between S1 and [ 0, 2π) and allow us to parametrize the circle as the
interval [ 0, 2π) ⊂ R. This definition is very appealing since S1 with the topology induced by l1
has addition and inversion as continuous functions. Moreover, addition on [ 0, 2π) modulo 2π is
comparable to multiplication in C

α+ β = l1(l
−1
1 (α)×C l

−1
1 (β)).

Where ×C is complex multiplication in C. More details are given in [16].

2.2 Circular Data

When dealing with circular data, it is of interest to characterize the data by its statistics such
as mean and variance. However, the direct use of mean in a set of angular values might lead to
wrong results in terms of the mean direction, since it depends on the choices of zero direction and
sense of rotation [11]. To get a proper analysis, it is more interesting to work with transformations
from polar coordinates to rectangular ones, i.e., given a set of n circular observations α1, . . . , αn,
obtain their coordinates in terms of sines and cosines

(cos(αi), sin(αi)), i = 1, . . . , n

The resultant vector of these n unit vectors is given by

R = (
n∑
i=1

cosαi,
n∑
i=1

sinαi) = (C, S).

That way the length of the resultant vector is given by R =
√
C2 + S2 and the mean direction

ᾱ0 is given by
ᾱ0 = atan2(S/C).

Now that a proper treatment for the mean direction was given, it’s time to present some probability
distributions for circular random variables.

2.3 Circular Probability Distributions

A circular distribution, to put it simply, is a probability distribution which all probability
is allocated along the unit circle S1. Random variables with this kind of distribution are called
circular random variables in literature [11], [2]. In order to characterize such distribution we should
take a look at its distribution function F (·). Suppose an initial angle θ in S1 is chosen. Then the
distribution can be associated with that angle, and F (·) is defined as the function on the whole
real line given by

F (x) = Pr(0 < θ ≤ x), 0 ≤ x ≤ 2π,
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and
F (x+ 2π)− F (x) = 1, −∞ < x <∞,

which states that the probability in any arc of length 2π on S1 is equal to 1 [2].

Still according to [2], if the distribution F is absolutely continuous then it has a probability
density function f which satisfies:∫ β

α
f(θ)dθ = F (β)− F (α), −∞ < α ≤ β <∞

In addition, f satisfies 3 basic properties:

1. f(θ) ≥ 0;

2.
∫ 2π
0 f(θ) dθ = 1;

3. f(θ) = f(θ + k · 2π) , for all k ∈ Z, i.e, f is periodic.

2.3.1 Circular Models

In this section we aim to describe a few important distributions in S1. As presented so far, a
circle random variable can be expressed in terms of an angle θ or as a two dimensional unit vector
(X,Y ) where X = cos(θ) and Y = sin(θ). Some of the notorious circular distributions arise from
known probability distributions in R or R2. Therefore, a few general methods for generating such
distributions are presented in [11], [2] and are worth mentioning, such as:

(i) wrapping a distribution on the real line along the unit circle;

(ii) Characterizing properties such as maximum entropy;

(iii) Transforming a random variable in R2 to just its directional component, the so called offset
distributions.

2.3.2 Wrapped Normal

Any random variable in R can be transformed into a circular one by performing a reduction to
module 2π operation, i.e., we define:

θ = x(mod 2π). (2.1)

Such an operation corresponds to wrapping the real line around the unit circle radius, accumulating
overlapping points probabilities. Which means that for any θ ∈ [0,2π) the probabilities of θ ±
2π, θ ± 4π, . . . will be accumulated in θ. Therefore, a function that does such a mapping cannot
be injective, since an angle θ ∈ S1 will have a great number of preimages in the real line. Consider
that g(y) is a probability density function (p.d.f.) in the real line, we can define a circular one f(θ)

as it follows:

f(θ) =
∞∑

m=−∞
g(θ + 2πm), 0 ≤ θ < 2π. (2.2)
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If the function g(y) = N (µ, σ2), we can apply it directly in the equation 2.2 to obtain the so
called Wrapped Normal distribution.

f(θ) =
1

σ
√

2π

∞∑
m=−∞

exp

[
−(θ − µ− 2πm)2

2σ2

]
. (2.3)

A three-dimensional representation of this distribution can be observed in figure 2.1.

Figure 2.1: Three-dimensional representation of a wrapped normal distribution.

2.3.3 Von Mises or Circular Normal

The following distribution was first introduced as a statistical model by Von Mises in 1918 [11].
Also referred as circular normal, this distribution is characterized by its properties that resemble
the Normal distribution on the real line. For that reason this distribution has been extensively
studied and is the main model in applications involving circular data [17], [18], [19]. The Von
Mises probability density function is given by:

f(θ;µ, κ) =
1

2πIo(κ)
eκcos(θ−µ), 0 ≤ θ < 2π, (2.4)

where µ ∈ S1 and κ > 0 are the location parameter and concentration parameter, respectively. In
the normalization constant, Io(·) represents the modified Bessel function of order 0 and is defined
as:

Io(κ) =
1

2π

∫ 2π

0
exp(κcos(θ)) dθ =

∞∑
r=0

(
κ

2

)2r( 1

r!

)2

. (2.5)

The Von Mises distribution is obtained by restricting a two-dimensional Gaussian with mean
|µ| = 1 and covariance κ · I2x2, where I2x2 is the identity matrix, to the unit circle and remapping
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it to [ 0, 2π) . The main reason this distribution is so useful is that it is closed under bayesian
inference, that will later be presented in the development of the filter [20].

A 3D representation of this distribution is shown in figure 2.2. The 2D representation of both
mentioned distributions can be observed in the figure 2.3. It is important to notice the similarity
between those curves. For figure 2.3 the parameter µ was set to π for both distributions, and
parameters σ and κ were unitary.

Figure 2.2: Three-dimensional representation of a Von Mises distribution.

Figure 2.3: Representation of the similarity between a Von Mises and wrapped normal distributions
on the interval [0, 2π].
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2.3.4 Wrapped Dirac Mixture

Another important distribution that needs to be given some attention is the wrapped Dirac
mixture distribution. The definition of this distribution is very similar to a finite weighted impulse
train in the real line. The only difference from the Dirac mixture to the one described is that the
positions belong to S1. Therefore, we define the wrapped Dirac mixture (WD) with L components
as:

f(x; γ1, . . . , γL, β1, . . . , βL) =
L∑
j=1

γjδ(x− βj) (2.6)

with Dirac delta distribution δ(·), Dirac positions β1, . . . , βL ∈ S1, and weights γ1, . . . , γL > 0,
where

∑L
j=1 γj = 1. A representation of the aforementioned distribution can be observed in figure

2.4.

Figure 2.4: Wrapped Dirac Distribution.

The equation (2.6) emphasizes the discrete aspect of the WD. There is an interest in a discrete
probability distribution in a continuous domain since it can be used for sampling a continuous dis-
tribution in a particular manner. That way, a discrete approximation for continuous distributions
can be achieved which can be of use when facing non-linear systems.

2.4 Trigonometric Moments

Statistical moments always appear when dealing with estimation problems, since they provide
a characterization of the probability distribution. The mean and variance of a distribution are
respectively the first and second statistical moments and are indicators of the location and con-
centration (towards its mean) of a distribution. When dealing with circular statistics there also
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exist moments, they are called trigonometric or circular moments.

For a random variable x ∼ f(x) defined on S1, we define the n− th trigonometric moment of
x by:

mn = E{exp(ix)n} = E{exp(inx)}

=

∫ 2π

0
exp(inx)f(x)dx (2.7)

with i as the imaginary unit.

When dealing with distributions on the line, we characterize them by their mean and variance
(which are the first and second moments). However, equation (2.7) points to the fact that mn is a
complex number, therefore having a real and an imaginary part. Due to having two degrees of free-
dom, parameters that are equivalent to both those characterizing ones can be obtained from the first
trigonometric moment [11], [2]. The circular mean is defined as arg m1 = atan2(Im(m1),Re(m1)),
and the concentration (sometimes called circular variance) as |m1| =

√
(Re(m1))2 + (Im(m1))2. In

addition, the VM and WN distributions are uniquely defined by their first trigonometric moments
as presented in [2].

The trigonometric moments of the distributions presented so far are:

mWN
n = exp(inµ− n2σ2

2
); (2.8)

mVM
n = exp(inµ)

I|n|(κ)

I0(κ)
; (2.9)

mWD
n =

L∑
j=1

γjexp(inβj). (2.10)

Proofs can be found in [11], [2]. The term In(·) in equation 2.9 is the modified Bessel function of
order n [21]. The quotient of Bessel functions should be calculated numerically with the algorithm
by [22].

2.5 Circular Central Limit Theorem

2.5.1 Central Limit Theorem

When studying probability and statistics on the real line or when dealing with random vari-
ables in engineering problems (communications, information theory), the central limit theorem
(CLT) presents itself as very recurrent and useful result. Suppose a sequence of independent and
identically distributed (i.i.d.) random variables Xi are drawn from a distribution of mean µ and
(finite) variance σ2. The average sum of the terms of the sequence is given by:

An :=
X1 + · · ·+Xn

n
.

The law of large numbers states that An converges to µ when n −→∞ [23]. As n gets larger, the
distribution of the difference between the sample average Sn and its limit µ - when multiplied by
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the factor
√
n - approximates a normal distribution with zero mean and variance σ2. The central

limit theorem then states that as n approaches infinity:

√
n(An − µ) −→ N (0, σ2),

or, in terms of the sum of the terms of the sequence:

nAn√
n
− µ
√
n −→ N (0, σ2). (2.11)

2.5.2 Circular equivalent

It’s not surprising that such a result has an equivalent to the circular data case. Suppose
now that (α1, . . . , αn) is an i.i.d. sample from a common (non-lattice) circular distribution with
cumulative distribution function (cdf) G(θ). Then the distribution of the sum

Sn = (α1 + · · ·+ αn)(mod 2π)

converges to the uniform distribution on the circle as n approaches infinity, as presented in [11], [2].
For convenience, assume that the α′is are on the interval (−π, π) with E(αi) = 0 and E(α2

i ) = σ2.
By equation 2.11: ∑n

i=1 αi√
n

−→ N (0, σ2)

as n −→ ∞. That way, by performing a modulo 2π operation it yields the circular equivalent to
the CLT:

Sn∗ :=

∑n
i=1 αi√
n

(mod2π) −→WN(0, σ2) (2.12)

as n −→∞.
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Chapter 3

Topics in Estimation and Filtering
Algorithms

In the previous chapter we discussed about a field of directional statistics that focus on the unit
circle. Some distributions on that manifold were presented as well as some interesting properties.
This chapter aims to provide some basis on estimation theory and the theoretical development of
a suitable filter for position estimation in tracking problems with angular measurements.

3.1 Estimation Theory

3.1.1 Maximum Likelihood

The aim of statistical inference, to put it simply, is to make certain determinations with regard
to the unknown parameters figuring in the underlying distribution. In practical terms what we
want to do is to construct an estimator for θ, that is, a known function θ̂ of the the random
sample X1, . . . , Xn [24]. Clearly, if x1, x2, . . . , xn are the observed values of the random sample,
then the observed value of our estimate will be θ̂(x1, . . . , xn). One of the most accepted principle
for constructing this estimator is the maximum likelihood (ML).

The likelihood function is defined as

L(θ|x1, . . . , xn) =

n∏
i=1

f(xi|θ)

and represents a joint p.d.f. of the xi’s, for the observed values of the Xi’s as a function of θ. The
maximum likelihood principle consists in maximizing the likelihood function with respect to θ. The
maximizing point (assuming it exists and is unique) is a function of x1, . . . , xn, and is what we call
the Maximum Likelihood Estimate (MLE) of θ, as presented in [24], [23]. The common notation
used for the likelihood function is L(θ|x1, . . . , xn) and for the log-likelihood is l(θ|x1, . . . , xn). The
θ parameter can be a vector which we would like to estimate the mean and variance, or µ and σ
parameters for a WN distribution, for instance.
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3.1.2 Bayesian Estimation

In this section, a brief discussion is presented of still another approach to parameter estimation,
which, unlike the previous approach, is kind of penalty driven [24]. For the bayesian paradigm, θ
is considered to be a random variable with a given prior distribution fθ(θ). Consider, like in the
discussion of the likelihood function, that a vector of samples or measurements x = X1, . . . , Xn of
θ is taken. Therefore, by the Bayes rule it yields that

f(θ|x) =
f(x|θ)fθ(θ)
fx(x)

=
f(x|θ)fθ(θ)∫∞

−∞ fx(θ)fθ(θ)dθ
.

By the definition introduced in the previous section, it is clear that the term f(x|θ) is a
likelihood function. The term f(θ|x) is called posteriori density and represents the p.d.f. of θ for
given measurements. Assuming that fx(x) and θ are independent, we can rewrite the previous
equation as:

f(θ|x) = cf(x|θ)fθ(θ),

where c = 1
fx(x) . In addition, With the assumption that all the components x from x are indepen-

dent than f(x|θ) =
n∏
k=1

f(xk|θ), which can ease the process of computing f(θ|x).

In this kind of approach the bayesian estimate θ̂ can be given in different manners, being the
most common the use of the mean as the estimate. That implies that the estimate θ̂ is given by

θ̂ = E(θ|x) =

∫ ∞
−∞

θf(θ|x)dθ,

as referred in [23] and detailed in [24].

3.2 Filtering Algorithms

Aside from the methods presented in the previous section, there are other techniques that
can be applied to approach a solution for parameters or state estimations. In fact, when dealing
with linear estimation problems, Kalman filter based approaches are a far more common in recent
literature than bayesian ones.

3.2.1 Prerequisites

In [25] a discussion about scalar and vector-valued data is presented in order to provide the
mathematical background necessary to the development of the traditional Kalman filter. There,
an optimal estimator in the least mean squares (l.m.s.) sense is developed in order to minimize
the cost function E{(x− x̂)2}, where x is a random variable or vector and x̂ its estimate.

For an unobservable variable x given a measurement y, the estimator is a function of the
measurement x̂ = h(y). That works for x and y be either scalar or vector-valued and the problem

13



consists on minimizing the cost function:

min
h(.)

E{x− x̂}2.

The solution for the scalar case given in [25] to this problem is

x̂ = h(y) = E{x|y},

with minimum cost E{x− x̂}2 = σ2x − σ2y since it’s unbiased. Thus, for vector-valued data when x
and y are vectors: 

x̂(0)

x̂(1)

. . .

x̂(m− 1)

 =


h0(y(0), y(1), ..., y(n− 1))

h1(y(0), y(1), ..., y(n− 1))

. . .

hm−1(y(0), y(1), ..., y(n− 1))

 .
The problem consists in minimizing each component of x, which can be represented as

min
{hk(.)}

E{x̃∗x̃} and min
{hk(.)}

Tr(Rx̃)

where x̃ = x− x̂ and Rx̃ := E{x̃∗x̃} is the covariance matrix of x̃. The solution given in [25] is:

x̂ = E{x|y} :=


E{x(0)|y}
E{x(1)|y}

. . .

E{x(m− 1)|y}

 .
Even though that discussion about random variables and vectors may have given an closed optimal
solution for the estimation problem, it is not usually an easy task to find the conditional probability
between them. For that reason, a whole chapter about linear estimation is presented in [25] to give
a complete basis for the development of the Kalman filter. When considering linear estimation, a
restriction is implicit upon x̂ which is

x̂ = h(y) = Ky + b

where K is a m× n matrix and b is a m× 1 vector.

Derivations are made assuming that x and y are zero-mean random variables and the optimal
linear l.m.s. estimator is presented

x̂ = Koy,

where Ko represents any solution of the normal equations KoRy = Rxy with Ry and Rxy being
covariance matrices.

In the measurement of the state x, the r.v.’s x and y are related through the following linear
model:

y = Hx+ v,

where v is a random noise vector with covariance matrix Rv. It is assumed in [25] that the
covariance of x is known, that x and v are uncorrelated (as we would expect), and the matrices
Rx and Rv are positive definite.
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It is shown, by the positive definite assumption, that the solution Ko is unique for normal
equations and the estimator is given by

K0 = RxyR
−1
y → x̂ = RxyR

−1
y y.

Also, the covariance matrices can be expressed in terms of the matrices H,Rx and Rv

Ry = E{yy∗} = E{(Hx+ v)(Hx+ v)∗} = HRxH
∗ +Rv, since E{xv∗} = 0.

Then another expression for x̂ can be derived

x̂ = RxyR
−1
y y = RxH

∗[Rv +HRxH
∗]−1y,

and the resulting minimum square error for the estimate is

Rx̃ = [R−1x +H∗R−1v H]−1.

3.2.2 Kalman Filter

To motivate the discussion about the Kalman filter, let’s consider the following state-space
model:

xk+1 = Fkxk +Gknk, k ≥ 0, (3.1)

where xk is the state-vector, nk is the noise of the process and Fk and Gk are matrices that describe
the evolution of xk according to the previous value and the noise respectively. In addition, consider
the same measurement model presented for linear estimation approaches, i.e,

yk = Hkxk + vk, k ≥ 0 (3.2)

with measurement noise vk.

In [25] it is assumed that vk and nk are zero-mean white noises and have covariances and
cross-covariances as presented below:

E

[
nk

vk

][
nk

vk

]∗
=

[
Qk Sk

Sk∗ Rk

]
δij ,

where δ indicates the Kronecker delta. Also, the initial state x0 is assumed to have zero mean,
covariance Π0 and to be uncorrelated to the process and measurement noises.

The key for performing Kalman filtering is its innovations process. It is shown in [25] that
the problem of estimating x given y is equivalent to estimating x given e = Ay. Also, due to
orthogonality principles of l.m.s. estimations, it is derived an expression for each ek, that is

ek := yk − ŷk|k−1. (3.3)

Thus, the estimator itself can be written as

x̂|N = x̂|N−1 + (E{xe∗N})R−1e,NeN . (3.4)

15



Therefore, the innovations process for the system described in equation 3.1 will be

ek = yk − ŷk|k−1 = yk −Hkx̂k|k−1 ,

x̂k|k−1 = Fkx̂k|k−1 +Kp,kek,

where Kp,k := (E{xk+1e
∗
k})R

−1
e,k and Re,k := E{eke∗k} for k ≥ 0 with x̂0|−1 = E{x0} = 0. The state

covariance matrix is defined as
Πk := E{xkx∗k}.

Following from the state-space model that the evolution of Πk over time is

Πk+1 = FkΠkF
∗
k +GkQkG

∗
k.

In a similar way, it can be derived a recursive formula for the covariance matrix Σk :=

Ex̂k|k−1x̂∗k|k−1 as it follows:
Σk+1 = FkΣkF

∗
k +Kp,kRe,kK

∗
p,k,

with Σ0 = 0. By defining Pk|k−1 := E{x̃k|k−1x̃∗k|k−1}, it is demonstrated through orthogonality
arguments that the state covariance can be expressed as

Pk+1|k = Πk+1 − Σk+1,

which yields the famous Riccati recursion:

Pk+1|k = FkPk|k−1F
∗
k +GkQkG

∗
k −Kp,kRe,kK

∗
p,k. (3.5)

Since the cases that will be further approached consider that the process and measurement
noises are uncorrelated, we have:

E

[
nk

vk

][
nj

vj

]∗
=

[
Qk 0

0 Rk

]
δij .

Where E{nkv∗j } = 0→ Sk = 0. And so the Kalman filter algorithm will be the following:
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Algorithm 1: Kalman Filter (Measurement-Time Update Form, Sk = 0)

Start with x̂0|−1 = Ex0, P0|−1 = Π0, R0, H0, y0, F0 and at every time instant k ≥ 0

compute:

1) Measurement Update:

Re,k = Rk +HkPk|k−1H
∗
k

Kf,k = Pk|k−1H
∗
kR
−1
e,k

ek = yk −Hkx̂k|k−1

x̂k|k = x̂k|k−1 +Kf,kek

Pk|k = Pk|k−1 −Kf,kHkPk|k−1

2) Time update:

x̂k+1|k = Fkx̂k|k

Pk+1|k = FkPk|kF
∗
k +GkQkG

∗
k

3.2.3 Nonlinear Filtering

The Kalman filter previously presented is the most usual approach when dealing with linear
systems. However, in various cases the measurement equations or the model (or both) are nonlinear
which makes Kalman filter algorithms not a direct solution. For that reason, a number of different
filtering techniques were presented over the years to approach these kind of situations [9], [14].
Among those different new methods, there are two Kalman based that deserves some special
attention.

3.2.3.1 Extended Kalman Filter

This first method approaches the nonlinearities by a Taylor’s series method. The key idea
consists in making a first order approximation of the nonlinear functions in order to match the
Kalman filter requirements and then apply its algorithm. To illustrate this, consider the following
model and measurement equation (both nonlinear):

xk+1 = f(xk) + nk, k ≥ 0

yk = h(xk) + vk, k ≥ 0.
(3.6)

In addition, we assume that the model and measurement noise processes are uncorrelated and
zero-mean the same way presented for the Kalman filter.
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If x is a scalar variable, the Taylor’s series approximation around a point x0 of f(x) is given by

f(x) ∼
∞∑
n=0

f (n)(x0)

n!
(x− x0)n,

and its first order approximation is

f(x) ≈ f(x0) + f ′(x0)(x− x0).

For the vector-valued case the result is similar, but instead of f ′(x0) we have F̄ (x0) which is
the Jacobian matrix of f(x) with respect to the random variables contained in the vector x. Then
the first order approximation around a point x0 of the space-state model given in equation (3.6) is

xk+1 ≈ f(x0) + F̄ (x0)(x− x0) + nk

yk ≈ h(x0) + H̄(x0)(x− x0) + vk,

where
F̄ (x0) =

∂f(x)

∂x

∣∣∣
x=x0

and H̄(x0) =
∂h(x)

∂x

∣∣∣
x=x0

.

In order to achieve an expression that resembles more the Kalman filter model and measurement
equations, we can introduce the following new variables:

ȳk(x0) = yk − h(x0) + H̄(x0)x0

ū(x0) = f(x0)− F̄ (x0)x0.

Then, the linearized state space model is given by:

xk+1 ≈ F̄ (x0)xk + nk + ū

ȳk(x0) ≈ H̄(x0)xk + vk,
(3.7)

and the algorithm for the linearized equations is presented bellow.
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Algorithm 2: Extended Kalman Filter (Measurement-Time Update Form,
Sk = 0)

Start with x̂0|−1 = Ex0, P0|−1 = Π0, and at every time instant k ≥ 0 compute:

1) Measurement Update:

Ĥk = H̄(x̂k|k−1)

Re,k = Rk + ĤkPk|k−1Ĥ
∗
k

Kf,k = Pk|k−1Ĥ
∗
kR
−1
e,k

ek = yk − Ĥkx̂k|k−1

x̂k|k = x̂k|k−1 +Kf,kek

Pk|k = Pk|k−1 −Kf,kĤkPk|k−1

2) Time update:

F̂k = F̄ (x̂k|k−1)

x̂k+1|k = f(x̂k|k)

Pk+1|k = F̂kPk|kF̂
∗
k +Qk

3.2.3.2 Unscented Kalman Filter

The previously presented method (EKF) has a few problems with its implementation in various
cases. Problems such as instability when timestep is not sufficiently small, or the complexity on
computing the Jacobian matrices made necessary a search for a new method [14]. This second
method introduces the use of the Unscented Transform, which is a deterministic sampling technique
that estimates the statistics of a variable that undergoes nonlinear transformation. That way, the
mean and covariance can be approximated and a Kalman filter approach is possible.

The key idea is to choose deterministically a set of points, called sigma points, in a way that
they have the same mean and covariance as the original distribution. That way, each sigma point
can be propagated through the nonlinear functions and a empirical mean and covariance can be
calculated. This process avoids the need for Jacobian calculations and can be applied in a broader
scope of systems. Consider that x is a n dimensional r.v. with mean x̄ and covariance Pxx. In
[14] it is shown that the statistics of that variable can be encoded by 2n− 1 weighted sigma points
given by:

X0 = x̄ W0 = κ/(n+ κ)

Xi = x̄+ (
√

(n+ κ)Pxx)i Wi = 1/(n+ κ)

Xi+n = x̄− (
√

(n+ κ)Pxx)i Wi+n = 1/(n+ κ),
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where i = 0, 1, ..., n, κ ∈ R, (
√

(n+ κ)Pxx)i is the ith row or column of the matrix square root of
(n + κ)Pxx and Wi is the weight related to the ith sigma point. So an Unscented transformation
cab be summarized by the following steps:

Step 1: Apply the nonlinear transformation f(x) to each sigma point Xi in order to generate
the set of transformed sigma points

Yi = f(Xi).

Step 2: The mean of the transformed points is given by

ȳ =

2n∑
i=0

WiYi.

Step 3: Compute the covariance of the transformed points

Pyy =
2n∑
i=0

Wi(Yi − ȳ)(Yi − ȳ)T .

That way an algorithm for the Unscented Kalman filter (UKF) can be derived, since the use
of the Unscented Transform can predict the observation and innovation covariance and the cross
covariance between the measurement the and the state estimate. Also, it can be used to predict
the state and its associated covariance. The algorithm for Unscented filtering for a model such as
3.6 is presented bellow.
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Algorithm 3: Unscented Kalman Filter (Measurement-Time Update Form)

Start with x̂0|−1 = Ex0, P0|−1 = Π0, and at every time instant k ≥ 0 compute:

1) Measurement Update:

• Calculate the sigma points Xi,k|k−1 around the predicted state x̂k|k−1

• Propagate the sigma points Xi,k|k−1 through the observation model

Yi,k|k−1 = h(Xi,k|k−1)

• Predict observation

ŷk|k−1 =
2n∑
i=0

WiYi,k|k−1

• Compute the innovation covariance and cross covariance

Pỹỹ =

2n∑
i=0

Wi(Yi,k|k−1 − ŷk|k−1)(Yi,k|k−1 − ŷk|k−1)T +R

Pxŷ =

2n∑
i=0

Wi(Xi,k|k−1 − x̂k|k−1)(Yi,k|k−1 − ŷk|k−1)T

• Estimate the state and its covariance matrix

K = PxŷP
−1
ỹỹ

x̂k|k = x̂k|k−1 +K(yk − ŷk|k−1)

Pk|k = Pk|k−1 −KPỹỹKT

2) Time update:

• Calculate the sigma points Xi,k|k around the estimate state x̂k|k

• Propagate the sigma points Xi,k|k through the process dynamics model

Xi,k+1|k = f(Xi,k|k)

• Predict the next state

x̂k+1|k =
2n∑
i=0

WiXi,k+1|k

• Predict the covariance

Pk+1|k =
2n∑
i=0

Wi(Xi,k+1|k − x̂k+1|k)(Xi,k+1|k − x̂k+1|k)
T +Q
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3.2.4 Circular Filtering

Now the problem of estimation is extended to the circular case. A lot of different method have
been proposed to treat circular random variables [26], [27]. Traditional filters such as the Kalman
Filter, EKF and UKF are unable to handle directional quantities explicitly, since they assume
that a representation in Rn is enough for state and measurements. However, such a representation
leads to poor approximations, since they don’t consider the inherent periodicity of those variables.
Often, those approximations have a strong dependency with the quality of the initial estimate and
fail the discontinuity between 0 and 2π is reached.

To avoid those kind of inconsistencies, directional statistics presents itself as a powerful tool.
In chapter 2 an introduction to circular statistics has been made. There we described how to
treat statistics for circular r.v.’s and some probability distributions were presented. An interesting
approach for the circular filtering problem is given by [16] where moment matching techniques are
applied to face nonlinear estimation.

Moment Matching This technique consists in approximating a circular distribution by an-
other circular distribution in a way that eases the process of filtering and parameter estimations.
The WD distribution is a discrete one, which makes it easier to propagate through nonlinear func-
tions. That way, the authors in [28] present a way of approximating the WN and VM distributions
by a number of Dirac components. This method resembles a lot the Unscented Transform previ-
ously presented for real line distributions. The trigonometric moments for the WN, VM and WD
were presented in chapter 2 and are given by

mWN
n = exp(inµ− n2σ2

2
);

mVM
n = exp(inµ)

I|n|(κ)

I0(κ)
;

mWD
n =

L∑
j=1

γjexp(inβj).

Both the VM and WN distributions are uniquely defined by their first trigonometric moment,
then positioning WD components to match it already gives a good approximation. In [26] deriva-
tions using L = 3 Dirac components are made and the WD distribution that matches a WN with
parameters µ and σ is given by:

fd(x) =
1

3
δ(x− (µ− α)) +

1

3
δ(x− (µ))

1

3
δ(x− (µ+ α)),

where α is obtained by matching mWN
1 and mfd

1 and is equal to

α = arccos(
3

2
exp(−σ

2

2
)− 1

2
). (3.8)

For the VM distribution the same procedure holds and its WD approximation is given by:

fd(x) =
1

3
δ(x− (µ− α)) +

1

3
δ(x− (µ))

1

3
δ(x− (µ+ α)),
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where
α = arccos(

3

2

I1(κ)

I0(κ)
− 1

2
). (3.9)

When given a WD distribution, it is important to perform the reverse process and obtain
the equivalent WN or VM p.d.f.. In both cases, the parameter µ is obtained by performing the
following operation

µ = atan2(

L∑
j=1

sin(βj),

L∑
j=1

cos(βj)). (3.10)

Now for the σ parameter in the WN and the κ parameter in the VM, they are obtained by matching
(once again) their first trigonometric moments:

σ =

√√√√−2 log(

L∑
j=1

)ωj exp(i(βj − µ)),

I1(κ)

I0(κ)
= exp(−iµ)

∑
j=1

Lωj exp(iβj).

(3.11)

The parameter κ, as it can observed in the expression above, needs to be calculated numerically.
Since the Bessel ratio I1(κ)

I0(κ)
is always in the interval [0, 1] as shown in figure 3.1 this function is not

difficult to invert numerically [26]. An algorithm to compute the ratio of Bessel functions is given
in [22].

Approaches with a higher number of Dirac components are presented in [28] and conditions
for the choice of parameters are established. The moment matching technique, however, does not
only consist in matches by Dirac mixtures. One can perform moment matching directly between
a WN and VM distributions, for example. An algorithm to compute WN approximations of VM
distributions or vice-versa is given in [26]. There, the loss of information in the approximations is
presented in terms of Kullback-Leibler divergence [26] which validates moment matching results.

Filtering

On the previous sections a few filtering algorithms were presented in order to estimate space
state variables. It is clear by now that two stages are necessary when filtering: prediction and
measurement update. In the prediction stage the goal is to predict the distribution of the state in
the next time step based on the system function, the estimated distribution of the current state and
the distribution of the system noise. Nevertheless, the measurement update consists in updating
the estimated distribution of the state based in the measurements, distribution of the measurement
noise and the predicted distribution of the state. An efficient algorithm for performing circular
filtering is present by the authors of [16], [29] [20].

Consider the following model and measurement equations:

θk+1 = a(θk) + ωk, k ≥ 0

zk = h(θk) + vk, k ≥ 0,
(3.12)

where θk ∈ S1 is the state at a timestep k, ωk is the process noise and vk is the measurement
noise, both assumed to be circular distributed.
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Figure 3.1: Bessel ratio I1(κ)
I0(κ)

plotted using the libDirectional toolbox.

To illustrate the prediction stage consider θk is WN-distributed with parameters µk and σk,
and that ωk is an additive also WN-distributed noise with parameters µωk

and σωk
. The prediction

consists at first in approximating the estimated WN density of the current state deterministicaly
with a wrapped Dirac mixture to propagate each component through the system function a(·).
Then, the resulting WD distribution is approximated with a WN one by the equations (3.10) and
(3.11). Afterwards, the noise ωk is added by calculating the convolution and result is presented.
The algorithm proposed by [26] is described below.
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Algorithm 4: Prediction stage on Circular Filtering

Start with µe0, σe0, µωk
, σωk

, and the system function a(·). At every time instant k ≥ 0

compute:

1) Dirac approximation:

α = arccos(
3

2
exp(−

(σek)
2

2
)− 1

2
);

2) Application of system function:

β1 = a(µek − α);

β2 = a(µek);

β3 = a(µek + α);

3) Conversion of Dirac components back to WN:

µ = atan2(
3∑
j=1

sin(βj),
3∑
j=1

cos(βj));

σ =

√√√√−2 log(
1

3

3∑
j=1

cos(βj − µ));

4) Convolution with noise:

µpk = (µ+ µωk
)mod 2π;

σpk =
√
σ2 + σ2ωk

;

For the measurement, the nonlinear case is presented in [29] which 3 methods for recursive
nonlinear measurement update are presented and their performances are compared. For the sake
of clearance and simplicity, we will only present the algorithm for the linear measurement update,
but the logic sticks to the nonlinear case with a few assumptions. Therefore, consider the following
measurement model:

ẑk = θk + vk.

With measurement ẑk, state θk and additive WN-distributed noise vk with parameters µvk , σvk ,
just as in [26].

The Bayes’ rule states that
f(θk|ẑk) = cf(ẑk|θk)f(θk),

with the normalization constant

c =
1∫ 2π

0 f(ẑk|θk)f(θk)dθk
.
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The term f(ẑk|θk) is the likelihood for additive noise and can be obtained by

f(ẑk|θk) =

∫ 2π

0
f(ẑk, vk|θk)dvk

=

∫ 2π

0
f(ẑk|θk, vk)fv(vk)dvk

=

∫ 2π

0
δ(ẑk − θk − vk)fv(vk)dvk

= fv(ẑk − θk).

Where fv is the distribution of the additive noise vk. Thus, the equation for the filtered density is
obtained

f(θk|ẑk) = cfv(ẑk − θk)f(θk).

Therefore, the filtering consists in multiplying the densities fv(ẑk − θk) and f(θk) and renor-
malizing afterwards if necessary. The WN distribution is not closed under multiplication, i.e., the
product of two WN-distributed variables is not WN-distributed. Then, an intermediate repre-
sentation by VM distributions is necessary to perform the multiplication. This operation on VM
densities is described in [27]. An algorithm for the measurement update is described in algorithm 5,
where the wnToV onMises and vonMisesToWn functions can be either implemented via moment
matching (indirect conversion) or by the algorithm presented in [26] for direct conversion between
WN and VM sitributions.
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Algorithm 5: Measurement Update on Circular Filtering

Start with µe0, σe0, µvk , σvk , and the measurement z0. At every time instant k ≥ 0 compute:

1) Shift fvbymeasurement:

µ̃vk = (ẑk − µvk)mod 2π;

σ̃vk = σvk ;

2) Convert to VM distribution:

µ1, κ1 = wnToV onMises(µpk, σ
p
k);

µ2, κ2 = wnToV onMises(µ̃vk , σ̃vk);

3) Multiplication of densities:

C = κ1 cosµ1 + κ2 cosµ2;

S = κ1 sinµ1 + κ2 sinµ2;

µ = atan2(S,C);

κ =
√
S2 + C2;

4) Convert back to WN distribution:

µek, σ
e
k = vonMisesToWn(µ, κ);
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Chapter 4

Direction of Arrival

Many applications use an array of sensors to estimate the position of wave emitting sources.
Those vary from acoustic localization to high precision medical equipment [4]. A DOA estimator
is a strong candidate as a measurement source for providing angular measurements in order to
a mobile robot perform indoor tracking. In this chapter, an introduction to direction of arrival
(DOA) techniques will be presented by analyzing experiments in recent literature, and it’s use in
a real indoor tracking situation will be evaluated.

4.1 Uniform Linear Array

Since the main objective is to develop a sensor to be fused with a robot to provide angular
measurements, the size and complexity of the DOA estimator have to be taken in consideration.
A complex but time consuming algorithm is not suitable for real-time estimation and should be
avoided in implementation. In addition, if the array or the processor is too large it can compromise
mobility of the robot and act as a limiting factor in tracking. Therefore, the kind of array that
will be of interest is one developed for embedded systems with a small number of sensors.

In [1] a low cost embedded system capable of estimating the DOA of an acoustic source is
developed. A few approximations are made in terms of the distance of the acoustic source (that
will be our pedestrian) to the sensors, the number of incident signals for each sensor, and electro-
magnetic coupling between transductors and electric channels in amplification and filtering. First,
it is assumed that the number of incident signals is finite, which leads to a unique solution. In
addition, in order to consider the acoustic signals as plane waves, the distance between the acoustic
source and the sensors should be 15 times the distance d between those [1]. At last, it is assumed
that the electrical channels for filtering and amplification and the transductors are identical and
there is no electromagnetic coupling between them.

It is reinforced the importance of the array configuration, since they allow systems to make
adaptive use of the spacial diversity [1], [3]. There are a lot of possible geometries for an array of
sensors. The circular geometry would be the most favorable since its resolution is of 2π rad, while
the linear array, in the other hand, has a resolution of π, which can lead to ambiguity for some

28



angles. However, for the sake of simplicity and ease of implementation the uniform linear array
was chosen. A uniform linear array consists in N sensors positioned in a straight line with equal
distance d from one another. The direction of arrival of the signal is equal to the azimuth angle θ.
A representation of this kind of array can be observed in the figure 4.1.

Figure 4.1: Uniform linear array representation (extracted from [1]).

When the assumed plane wave (from a narrow band signal) inflicts over the array, each trans-
ductor element will be sensitive to a different delayed version of that wave. Since the first sensor
will receive the wave first, there will be a time delay from its received signal and the one from the
second sensor. That way, the time delay can be calculated by

∆t =
∆d

v
.

Where ∆d is the distance travelled from the first to the second sensor by the wave and v is the
propagation velocity from the wavefront. The time delay can be translated into a phase difference
([3]) in terms of the distance of the sensors, the wavelength of the wave and the direction of the
source

φ = 2π
dsin(θ)

λ
.

Since the type of array chosen was the uniform linear, there is ambiguity in the estimation for
phase differences bigger than π radians in absolute value. Therefore, a condition for the maximum
distance of the sensors can be inferred

d ≤ λ

2
.

That relation is commonly referred as the spacial version of the Nyquist’s sampling theorem.
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4.2 DOA Estimation Method

The linear array proposed by [1] is composed of only two omnidirectional microphones, with a
distance d = 15cm between them. The acoustic source was defined as a human whistle since it has
a narrow band and it’s central frequency doesn’t vary much from person to person. The model
can be observed in figure 4.2.

Figure 4.2: Direction of Arrival model considered (extracted from [1]).

The same whistle is received as two signals m1(t) and m2(t) with a phase difference that can
be expressed as

m1(t) = A1s(t) + n(t);

m2(t) = A2s(t− τ) + n(t).

where n(t) is an additive white gaussian noise (AWGN) and A1 and A2 represent the signal gains.

The received signals are subsequently converted into discrete signals via an analog-digital con-
version process with sample rate fsmp. In [1] the formal treatment to obtain the azimuth angle θ is
presented by computing the time delay of the discrete signals and applying the time delay relation
previously derived

θ = sin−1(
kv

d fsmp
), (4.1)

where v ∼ 340 m/s, d = 15 cm. Therefore, a correct estimation of the delay k leads to a correct
estimation of the DOA.

4.3 Implementation

The author of [1] proposed an low-budget implementation of a DOA estimator in order to
evaluate the theory previously presented. An Arduino Mega was used to receive the microphone
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data and perform the analog to digital conversion. Then, the digital data was collected and
uploaded to MATLAB to be filtered and estimate the orientation of the source. The sampling
frequency was set in 16 KHz for the A/D converter and a cubic spline interpolation was used to
increase fsmp to 32 KHz for the architecture proposed in the previous section. A resolution of 4, 06◦

for the estimated angle was achieved which is not that much considering the hardware limitations.

However, for the purpose of pedestrian tracking, that limitation in resolution has to be consid-
ered as an uncertainty about the true direction. In order to make inferences about the probability
distribution of the measured angle, a careful study considering measurements of the sensor had to
be developed and will be presented on chapters 5 and 6.

4.3.1 Reproducing previous implementation

It would be of interest to reproduce the results obtained by [1] and make further measurements
and tests. Also, reproducing the previous implementation would allow us to validate the proposed
filters in real time applications. Therefore, a few components were acquired in order to construct
the sensors and can be checked in the following list:

• 2x Arduino Nano’s V 3.0 ATMega328p;

• 2x External Static Random Access Memories (SRAM) Winbond W25Q128FV;

• 2x sop8 to dip8 adapters;

• 6x 220Ω resistances;

• 6x 330Ω resistances;

• 8x 1.5V batteries.

The prior amplification circuit for the microphones as well as the omnidirectional microphones
themselves were obtained from previous projects on DOA estimation, such as [1]. The flash memory
adopted and the Arduino type were different from the considered in [1]. The Arduino Nano cheaper
and smaller than the Mega one previously implemented, which reduces even more the cost of the
embedded sensors. In addition, the memories acquired also differ from the latter case. That way,
a direct implementation using the codes from [1] was not possible, since the data acquired by the
Arduino was stored in the external memory to provide longer measurement periods. Therefore, a
study on the serial peripheral interface (SPI) of the Arduino, specifications of the chosen memory
and how to write, read and delete data form it had to be made.

The SPI communication of the Arduino is based on a master/slave configuration. There are
three important pins that need to be used to perform SPI communication: MOSI, MISO and SS.
The MOSI (master out slave in) reefers to when the data output comes from the master and the
slave reads it. Meanwhile, the MISO (master in slave out) the opposite process occurs. The SS is a
slave select, since the master can have multiple slaves and it carries the information of which slave
is selected to perform the operation. More details on how that process works on Arduino can be
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found in [1]. The circuit for the SPI communication and the microphone with its pre amplification
circuit can be observed in figures 4.3 and 4.5, respectively. A detail on the connection between the
Arduino Nano and the external memory is presented in figure 4.4.

Figure 4.3: Arduino Nano connected to external memory.

Figure 4.4: Arduino Nano and external memory connection circuit.

Figure 4.5: Omnidirectional Microphone and its pre amplification circuit.
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The external SRAM memory is of vital importance to avoid saturation in the internal memory
of the Arduino microprocessor. However, as the memory adopted for implementation is different
from the one in [1], the codes for memory access had to be adapted. Due to problems in that
adaptation, the sensor could not be finished in time to produce new results and test the filtering
algorithms in a real situation. In addition, even if the sensors were operating, there would be a need
to study a method to calibrate them and to acquire a ground truth measurement so the results could
be validated. For those reasons, the physical implementation of the pedestrian tracking was not
covered in this work. Nevertheless, simulations for different filters considering diverse positioning
of the sensors were performed in order to provide a solid basis to the actual implementation.
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Chapter 5

Simulation Models

5.1 Measurement Equation

As discussed in the previous chapter, an uniform linear array is capable of estimating the
direction of arrival of an acoustic source. The acoustic source chosen was a pedestrian whistle for
its similarity between different pedestrians and narrow band frequency. That way the pedestrian
position can be computed if there is more than one DOA estimator, since one DOA estimator
can only provide the pedestrian relative orientation. Consider than that two DOA estimators are
positioned in a room and provide an angle measurement for a central processing unit (robot). The
measurement for each DOA estimator at a time k can be described as follows:

θi,k = hi(pk) + ωi,k, (5.1)

Where pk is the augmented state vector [xk yk ẋk ẏk]
T , and θi,k is the relative angle between the

DOA estimator i ∈ {1, 2} and the pedestrian. The noise ωi,t is WN-distributed with parameters
µ = 0 and σ = σi. The estimators are stationary an their positions s1 and s2 are known exactly.

Our goal is to make some sort of transformation on the angular measurements in order to ade-
quate the measurement equation to be implemented in a linear Kalman filter algorithm. Therefore,
the measurements of the two estimators must be transformed into positions measurements in the
Euclidean plane. Usually, angular based pedestrian tracking make use of EKF or UKF techniques
since the measurement equations have nonlinear functions such as atan2(θ). An approach using
RFID to model measurement equations is given in [15]. However, a similar approach using cir-
cular statistics as the one proposed by [13] can provide a solution that doesn’t require nonlinear
measurement update and give a correct treatment to the measurement noise.

In order to obtain position measurements at each time step, the noise density of the angular
measurements must be deterministicaly approximated by a wrapped Dirac mixture via moment
matching. That can be done by making use of equation 3.8. Then, the resulting WD components
placed around the measurement of the respective estimator, can be treated as the uncertainty
about the true relative direction of the pedestrian. The problem now is: given a pair of angular
measurements and the sensors positions, how can one determine the source location?
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By simple geometry, the location can be determined by solving a linear system (since the
measurements θ1,k and θ2,k are known) considering each coordinate as it follows:s1,x + akcos(θ1,k) = s2,x + bkcos(θ2,k)

s1,y + aksin(θ1,k) = s2,y + bksin(θ2,k)

where (s1,x, s1,y) = s1 and (s2,x, s2,y) = s2 are the positions in the Euclidean plane for the first
and second sensors respectively. A representation of the geometry aforementioned is presented in
figure 5.1. Therefore, directional unit vectors for each estimator can be determined

u1,k =

[
cos(θ1,k)

sin(θ1,k)

]
, u2,k =

[
cos(θ2,k)

sin(θ2,k)

]
.

Figure 5.1: Representation of the geometrical strategy to obtain the pedestrian position at time k.

Since there are 3 Dirac components for each θi,k, there will be 3 directional unit vectors for
each true measurement. The computation of ak, bk ∈ R that satisfy the linear system can be made
by defining the following matrix E =

[
−u1,k u2,k

]
. Then, ak and bk are obtained by[

ak

bk

]
= E−1(s1 − s2).

The joined measurement zk can be defined as

zk := s1 + aku1,k = s2 + bku2,k, (5.2)

and its distribution can be obtained by

f(zk) =

∫ 2π

0

∫ 2π

0
f(z, θ1,k, θ2,k)dθ1,kdθ2,k

=

∫ 2π

0

∫ 2π

0
f(z|θ1,k, θ2,k)f(θ1,k, θ2,k)dθ1,kdθ2,k.
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Since zk is a position measurement, its density should to be approximated by a gaussian
distribution. In order to perform such approximation, we approximate f(θ1,k, θ2,k) by a mixture
of Dirac delta components. For each of the 3 possible matrices u1,k and u2,k, we compute all the
nine possible values for zk for each pair (u1,k, u2,k) by equation 5.2. The mean of this samples is
taken as our joined measurement zk and their empirical covariance as our predicted uncertainty of
the joined measurement Rk [13].

By this approach the circular nature of the DOA estimator noise is taken into count for the
calculations of zk and Rk by assuming it’s WN-distributed. However, for the measured position the
traditional Gaussian model is preserved. The position measurements obtained from the previous
angular ones, by the procedure described above, allow a new formulation for the measurement
equation:

zk = Hpk + vk. (5.3)

Where vk ∼ N (0, Rk) and H is the matrix defined bellow

H =

[
1 0 0 0

0 1 0 0

]
.

5.2 Pedestrian Motion

5.2.1 Lavegin Model

In [30], pedestrian indoor tracking based on the time difference of arrival (TDOA) of an acoustic
source is presented. In addition, a model based in a Lavegin process to represent pedestrian motion
is considered as the system equation. The results obtained by assuming this model in [30] and
[15] support its use for pedestrian position estimation and tracking. A Lavegin process for the
x coordinate is specified by d2x

dt2
+ βx

dx
dt = Fx [30], with βx the rate constant and Fx a thermal

excitation process that will be considered a gaussian noise nx. A description for a discrete process
in the Cartesian plane is given bellow:

xk+1 = xk + ∆T ẋk

yk+1 = yk + ∆T ẏk

ẋk+1 = asẋk + bsnx

ẏk+1 = asẏk + bsny.

(5.4)

The parameter ∆T is the time-step, as = exp(−βs∆T ), and bs = v̄s
√

1− a2s). Also, the
parameter v̄s is the steady state root-mean-square velocity and βs is the former mentioned rate
constant. In addition, is taken into consideration that the movements in each axis are independent
[30]. The noise nk is assumed to be normally distributed with null mean and covariance Q, i.e.,
nk ∼ N(0, Q), where

nk =


0

0

nx

ny

 and Q =


0 0 0 0

0 0 0 0

0 0 b2s 0

0 0 0 b2s

 .
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A space state equation can be described by the augmented vector col(xk, yk, ẋk, ẏk) as described
bellow:

xk+1 = Fxk + nk, (5.5)

where

F =


1 0 ∆T 0

0 1 0 ∆T

0 0 as 0

0 0 0 as

 .

Equations 5.5 and 5.3 a traditional Kalman filter approach can be used, not requiring nonlinear
state estimation as it did in [15].

5.2.2 Constant Velocity Model

The second model is also a constant velocity model, but a simpler one, since the pedestrian
is assumed to cross the room in a straight line. Simulations with a simpler model should provide
good performances and can be useful to make comparisons to the Lavegin ones. We will address
this second model as the constant velocity model, and its equations of motion are described bellow
[9].

pk+1 = Apk + ωk,

where pk = [xk, yk, ẋk, ẏk]
T is the augmented state vector, ωk ∼ N (0, Q) is the process gaussian

noise and the matrix A is defined as

A =


1 0 ∆T 0

0 1 0 ∆T

0 0 1 0

0 0 0 1

 .

A simple diagram is presented for the linear Kalman filter operation in the constant velocity
model in figure 5.2. The diagram is equivalent for the Lavegin model.
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Figure 5.2: Simple diagram is presented for the linear Kalman filter operation in the constant
velocity model.
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Chapter 6

Simulation Results

6.1 Angular Distribution

In order to evaluate the performance of the presented filter in chapter 5 for pedestrian tracking,
first it had to be made a study related to the distribution of the angular measurements acquired
by the DOA estimators. In [1], after the implementation of the proposed sensor a few tests were
performed to evaluate the similarity of the measured azimuths to the real direction. That way a
couple of histograms could be plotted considering the frequency of occurrence of each angle. Since
we are interested in circular distributions to describe the probability of the angular measurements,
an attempt to fit the histograms presented in [1] in some of the previously discussed circular p.d.f.s
has been made.

The choice of which circular distribution to fit the histograms was made considering what has
already been approached in the literature and computational effort. Speaker tracking with particle
filters assuming Von Mises distributions for the measurements was presented in [5]. Since working
with VM distributions requires the computation of Bessel functions and ratios, it was preferred
to assume that the measurements would be WN distributed. The figure 6.1 shows the wrapped
distributions obtained for different angular measurements.

Another possible representation for those distributions that can provide better visualization is
presented in figure 6.2. The parameters of each resulting distribution associated with its measured
angle can be observed in table 6.1.

Angle (◦) Angle (rad) µ σ

0 0 6.280 0.0629
30 0.524 0.442 0.143
-30 5.759 5.832 0.114
40 0.698 0.463 0.4368

Table 6.1: Comparison of the WN parameters obtained for different angles.
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Figure 6.1: Wrapped Normal approximations for measured angles 30◦, −30◦, 0◦ and 40◦.

Figure 6.2: Three-dimensional representation of Wrapped Normal approximations for measured
angles 30◦, −30◦, 0◦ and 40◦.

The first point to be noticed in figures 6.1 and 6.2 is that the mean direction of some estimated
angles is very close to the actual direction of the acoustic source. Since the representation is made
in the interval [0, 2π], the negative values for angular data are presented as their equivalent positive
angles, as can be observed for the −30◦ curve. Nevertheless, by the values presented in table 6.1,
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the spread of the curves are not that alike so we can make an inference about its value for any
given measurement. The uncertainty about a measurement depends on the actual orientation of
the source, i.e., for angles within a certain range the spread of the equivalent p.d.f. appear to be
far lower than for angles above that range. That can be observed comparing the WN distributions
for θ = 0◦ and θ = 40◦. That way, the problem consists in determining a value for the parameter σ
that can be used in the filtering process as the dispersion presented in each angular measurement.

There are a couple approaches to deal with this issue. The first one would be to create a list
of angles and consider the different p.d.f.s for each one. The choice of σ would be according to
proximity of the true direction to one of the angles in that list. That way we would work with a
noise that its characteristics vary with the source direction. On the other hand, a simpler approach
would be to consider that the measurements are within a certain range so that an assumption of
a fixed value for σ will result in good approximations for the sensor uncertainty. That assumption
is plausible considering the position of the sensor and the path available for the acoustic source
to move. That way the environment can guarantee that the source orientation will be within a
certain range from the DOA estimator.

Considering aspects such as ease of implementation and correct portrait of the acquired data,
the second approach is the main choice in the following simulations. The value of σ is set to 0.25
for the WN distributions of each measured angle in order to consider a reasonable uncertainty for
the pedestrian estimated direction.

6.2 Environment

In order to evaluate the performance of the Kalman filter described in algorithm 1, and its
nonlinear versions described in algorithms 2 and 3 for pedestrian indoor tracking, a simulated
room environment can be considered. The room dimensions are 7 × 7m and the route of the
pedestrian set to be a straight line vertically crossing the room. A representation in the Cartesian
plane of the environment and pedestrian route is presented in figure 6.3.

6.3 Linear Kalman Filter Approach

This section aims to apply the transformation proposed in chapter 5 for the measurement
equation in order to implement a traditional Kalman filter. In section 6.1, a treatment for the
estimated angular measurement of the sensor has been presented so an inference about the σ
parameter of the associated WN distribution could be made. However, before the actual filter
implementation, a careful analysis of the transformation of angular measurements to pedestrian
positions according to position and distance between sensors has to be made.
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Figure 6.3: Room with dimensions 7X7 and positioned sensors.

6.3.1 Positioning the sensors

The measurements of the DOA sensors are angles referring to the orientation of the source.
However, a transformation of those angular measurements considering their uncertainty to position
measurements with Gaussian noise was proposed in chapter 5. Therefore, in order to validate the
measurements provided by that method, a few simulations were run out to verify how the position
of the sensors and distance between them interfere with the resulting measurements. The most
relevant results can be observed in figures 6.4 to 6.7.

Figure 6.4: Measurements for sensor 1 at (1,1.15) and sensor 2 at (1,1).

From figure 6.4 an immediate problem urges: if the sensors are too close to one another,
the angular measurements from both sensors are also too close and the result is similar as if we
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Figure 6.5: Measurements for sensor 1 at (3,1.15) and sensor 2 at (3,1).

Figure 6.6: Measurements for sensor 1 at (2,3) and sensor 2 at (2,1).

had only one sensor. For one sensor only, since there is an absence of distance measurement,
the sensor cannot differ if the pedestrian is close walking at a low speed or distant walking at a
fast one, resulting in the observed measurements for position. Also, when the Dirac components
of the approximated angular distributions are too close, as illustrated in figure 6.8, the position
measurements tend to be outliers. That limitation persists even if the sensors are put closer to the
pedestrian, actually the measurements get even worse, as illustrated by 6.5.

The solution then would be to increase the distance between the sensors, in order to work
with considerably different angles for each sensor. With a distance of 2 meters between them the
resulting measurements already improved as can be seen on figure 6.6. Nevertheless, a portion of
the pedestrian path yields bad measurement estimates for the pedestrian true position. Increasing
the distance to 4m provided measurements that are really close to the actual path. The results for
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Figure 6.7: Measurements for sensor 1 at (2,5) and sensor 2 at (2,1).

Figure 6.8: Dirac components for two measured angles.

a distance of 4m between sensors can be observed in figure 6.7.

Therefore, the initial objective that was to implement the sensors in a mobile robot so it could
perform the tracking of the moving source (pedestrian) is an impossibility for this kind of mea-
surements, since the distance between the sensors would be far superior to the robot dimensions.
The following simulations considered then that exists a wireless communication between the robot
and sensors and the measured angles are transmitted in real time for the processing unit (robot).
The problems related to the links such as time delays, package losses and sychronism are not on
the scope of this work, despite being limitations for the filtering process.
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6.3.2 Filter Performance

The performance of the proposed filter will be evaluated in terms of the root mean square error
(RMSE) and is defined by:

RMSE =

√∑N
n=1 |P̂n − Pn|2

N

where P̂n is the estimated pedestrian position by the filter and Pn is the true position at a time n.

Two different models, introduced in chapter 5, were considered for the simulation and the
results of the simulation for both models with different conditions is presented from figure ?? to
6.10.

Figure 6.9: State estimation of the pedestrian position with fixed R, linear Kalman filter and
Constant Velocity model.

Figure 6.10: State estimation of the pedestrian position with varying R, linear Kalman filter and
Constant Velocity model.
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Figure 6.11: State estimation of the pedestrian position with linear Kalman filter and Lavegin
model.

The estimation results for the constant velocity model can be observed in figures 6.9 and
6.10. This model seems to describe well the pedestrian walking a straight line at constant velocity,
which yield reasonably accurate results for the pedestrian position. The case presented in figure 6.9
considers that the covariance matrix R for the measurements is the same during the whole filtering
process, in that case the RMSE for the estimated position is 60.11cm. That might be a surprising
result considering that a visually figure 6.9 seem to describe well the motion of the pedestrian.
So how can the RMSE be so high? Well that can be explained considering the outlier points
mentioned because of proximity between Dirac components. Even if the angular measurements θ1
and θ2 are not that close, when their WN distributions are matched to Dirac components, if there
is a pair of those components that is too close, the estimated position for that pair tend to be
completely different from the actual position. Those measurements can produce wrong estimated
positions by the filter that are being considered in the RMSE calculation.

For the result presented in figure 6.10 the noise covariance matrix for the measurements R
is considered as stated in chapter 5, i.e., by taking the covariance of the possible values for the
measurement. For this scenario the RMSE obtained for the estimated positions is around 39.7cm
in contrast to a RMSE of 72.23cm for the measurements. This improvement of almost 50% in the
RMSE of the measurements for a σ factor of 0.25 indicates that the filtering algorithm can provide
good approximations for uncertain angular measurements. However, in terms of actual pedestrian
tracking, an RMSE of 39.7cm is still high when compared to other approaches such as in [15].

For the Lavegin model, the linear Kalman filter still provides a good performance when consid-
ering the transformation detailed in chapter 5. Figure 6.11 presents its estimations for pedestrian
position. Considering that the Lavegin model is more complex than the constant velocity one, it
should describe more accurately the motion of a real pedestrian, therefore it should be adopted
for physical implementations. The RMSE for the estimated position was around 24.17cm for a
measurement RMSE of 72.39cm, which is better than the constant velocity case.
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6.4 EKF and UKF Approaches

In order to compare the obtained results for traditional Kalman filtering to more sophisticated
filtering techniques, an implementation of the same problem for a EKF and UKF filters was
approached. For this kind of approach, the measurement equation would be different than the
presented in chapter 5 and is described at it follows:

zk = h(pk) + vk, (6.1)

where pk is the pedestrian position (xk, yk) at instant k, vk is a gaussian noise with mean 0 and
covariance R (assumed constant). The function h(xk, yk) is given by

h(xk, yk) =

[
atan2(yk − s1y, xk − s1x)

atan2(yk − s2y, xk − s2x)

]
. (6.2)

Where (s1x, s1y) and (s2x, s2y) are the known positions of the first and second sensor respectively.
Therefore, for the EKF implementation, the Jacobian of h(xk, yk) is given by

∂h(xk, yk)

∂pk
=

[
− yk−s1y

(xk−s1x)2+(yk−s1y)2
xk−s1x

(xk−s1x)2+(yk−s1y)2

− yk−s2y
(xk−s2x)2+(yk−s2y)2

xk−s2x
(xk−s2x)2+(yk−s2y)2

]
. (6.3)

The linear approximation of h(xk, yk) is performed at each new predicted position, since they
are the operation points for the system at each time step. Both the Lavegin and constant velocity
models are considered for EKF and UKF evaluations and their performances can be visualized at
figures 6.12 and 6.15.

Figure 6.12: State estimation of the pedestrian position with EKF and Lavegin model.

From figures 6.12 and 6.13 it can be observed that the EKF filter performs reasonably well with
only angular measurements. For the straight line case the constant velocity model assumption does
not provides better results than the Lavegin one. The RMSE in the estimated position is around
27.54cm for the constant velocity model given a measurement RMSE of 37.29cm. On the other
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Figure 6.13: State estimation of the pedestrian position with EKF and Constant Velocity model.

Figure 6.14: State estimation of the pedestrian position with UKF and Lavegin model.

hand, for the Lavegin model a estimated position RMSE of 32.03cm for measurement RMSE of
48.95cm which is a similar performance considering the position RMSE even for a higher uncer-
tainty on the measurements. That way, the Lavegin model provides similar performance results
given a higher RMSE on measurements, which speaks in favor of its use in a physical implemen-
tation. The Q matrices have been tuned heuristically in order to obtain valid approximations.
Nevertheless, since its not our main focus to obtain the best possible estimate for the EKF fil-
ter, the RMSE of the constant velocity model already serves the purpose for comparing with the
designed traditional Kalman filter of the previous section. The Q matrices for the Lavegin and
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Figure 6.15: State estimation of the pedestrian position with UKF and Constant Velocity model.

constant velocity models in the EKF approach are presented bellow:

QConstant Velocity =


0 0 0 0

0 0 0 0

0 0 0.4197 0

0 0 0 0.4197

 QLavegin =


0 0 0 0

0 0 0 0

0 0 0.4460 0

0 0 0 0.4460


The UKF filters performs really similar to the EKF for both models, their performances can

be verified in figures 6.15) and 6.14. The RMSE for the UKF estimated position in the constant
velocity model is 35.52cm in contrast with an measurement RMSE of 44.43cm. As for the Lavegin
model the RMSE of the estimated position was around 32.39cm for ma measurement RMSE of
49.13cm. Hence, the Lavegin model provides better approximations for all the considered filters,
presenting itself as a more suitable choice for physical implementations. An optimization of matrix
Q values will certainly provide better approximations but, as mentioned before, is not the main
focus of this work since those filters were only implemented to validate their use in pedestrian
tracking based on the discussed sensor measurements. It’s important to point out that just repli-
cating Q matrices values from similar experiments such as [15], where the same model was chosen
with only different measurement equations, does not result in similar results, therefore the need
for tuning. Therefore, heuristic values for those matrices had to be chosen considering the new
situation.

6.5 Comparison of the Filters Performances

The most relevant results from simulations for both models described in the previous sessions,
are presented in tables 6.2 and 6.3. Initial comparison suggests that the three filter implementations
can perform reasonably good tracking of pedestrians in indoor environments with the presented
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sensors. For the straight line motion, the constant velocity model is expected to result in more
accurate approximations for simple tuning attempts of the Q matrices, however the Lavegin model
provided even better approximations being the main choice for physical implementations. The
uncertainties considered for the angular measurements were based on our studies on the histograms
provided by [1]. However, the uncertainties considered to the EKF and UKF case seem to be far
lower considering the measurements RMSEs due to not dealing with the problems related to the
transformation.

For a RMSE of 38.12cm the RMSE of the linear Kalman filter is around 24.5cm, being lower
than the EKF equivalent for the constant velocity model. Since the angular uncertainty is not
very high, the treatment provided by circular statistics doesn’t assure much better estimations
than traditional nonlinear Kalman methods. However, when the RMSE for measurements are
elevated to 71.2cm the correspondent RMSE of the EKF is 48.86cm, which is almost 10cm greater
than the linear Kalman one. Both results for the low (Linear/EKF A) and high (Linear/EKF B)
angular uncertainty cases are presented o table 6.2. On the other hand, the drawbacks caused by
large measurement errors when the Dirac components of the possible angle values are too close can
lead to really poor approximations for the discussed filter. Therefore, the precision of the tracking
is limited by the arrangement of the sensors, a correct modeling of the measurement uncertainty
and a careful tuning of the Q covariance matrix, which the latter can yield really poor performance
in filtering.

Filter Estimated RMSE (cm) Measurement RMSE (cm)

Linear A 39.7 72.23
Linear B 24.5 38.12
EKF B 27.54 37.29
EKF A 48.86 71.2
UKF 35.52 44.43

Table 6.2: Comparison of the RMSEs obtained for the different filter approaches considering the
constant velocity model.

Filter Estimated RMSE (cm) Measurement RMSE (cm)

Linear 24.17 72.39
EKF 32.03 48.95
UKF 32.39 49.13

Table 6.3: Comparison of the RMSEs obtained for the different filter approaches considering the
Lavegin model.
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Chapter 7

Concluding remarks

In this work, a performance analysis on filters to improve pedestrian tracking was carried.
The problem of determining the uncertainties of the measured angles could be addressed through
circular statistics approximations. The transformation of the measured angles to position ones,
discussed in chapter 5, results is a viable solution considering a correct treatment of angular uncer-
tainties. Through simulations, we made clear the problems in positioning of the sensors to acquire
valid data for the acoustic source true position. The need of distance between sensors requires
reevaluation on communication between the its microprocessors and the central unit (robot). In
addition, simulations provided insights with respect to position outliers due to close Dirac com-
ponents in the method provided by [13]. A comparison in the performance of the filters for both
presented models shows that a Kalman filter with a correct treatment of angular quantities of the
DOA sensors can provide results as good as EKF and UKF filters when the uncertainty is not high.
For higher uncertainty levels the linear Kalman filter outperforms EKF providing estimations with
lower RMSE. The Lavegin model provides better results for sub-optimal Q matrices, therefore be-
ing a suitable model to be considered on indoor pedestrian tracking problems . In conclusion, the
filter discussed in chapter 5 considers the circular nature of the measurements and provide a more
reliable estimation for the true pedestrian position than sensor measurements only. Even though
EKF or UKF approaches can provide good estimations, for higher measurement uncertainties the
proposed filter provides better results. Therefore, the proposed filter would be a valid choice for
implementation in a real time estimation problem.

7.1 Future Work

A theoretical development and simulations were presented, however the physical implementa-
tion of the suggested filter to validate simulation results is yet to be done. Implementation of
the filter in a mobile robot and configuring its communication with the Arduino to acquire real
time results would be a valuable contribution. In addition, considerations regarding information
loss and link failure will provide more accurate results and improved performance of the physical
implementation. Also, considerations due to reverberation on the environment and synchronism
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of measurements provided by the DOA sensors was not on the scope of this work and presents a
valid analysis for future works.

Furthermore, the scenario analyzed in this work only concerns position estimation in the Carte-
sian plane. The source’s location and microphones positions are assumed to be at the same height.
However, this assumption places a constraint on the applications. Therefore, a relevant contribu-
tion would be a extension of the suggested filtering algorithm to the three dimensional space.

Finally, an extension of the study developed in this work to distributed filtering case is at
hand. The task would consist in considering a larger network of sensors combined with multiple
processing units that are capable of communicating with each other to provide more accurate
estimations.
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