
TRABALHO DE GRADUAÇÃO

COMPARISON BETWEEN THE IMPLEMENTATIONS OF A BCH
DVB-S2X DECODER IN FPGA AND IN ASIC

Thiago Queiroz Holanda
Brasília, dezembro de 2019

UNIVERSIDADE DE BRASILIA
Faculdade de Tecnologia

Curso de Graduação em Engenharia de Controle e Automação

TRABALHO DE GRADUAÇÃO

COMPARISON BETWEEN THE IMPLEMENTATIONS OF A BCH
DVB-S2X DECODER IN FPGA AND IN ASIC

Thiago Queiroz Holanda

Relatório submetido como requisito parcial de obtenção

de grau de Engenheiro de Controle e Automação

Banca Examinadora

Prof. José Camargo da Costa, ENE/UnB
Orientador

Prof. José Edil Guimarães de Medeiros,
ENE/UnB

Eng. Ana Ravena Alcântara da Costa

Brasília, dezembro de 2019

FICHA CATALOGRÁFICA

THIAGO, QUEIROZ HOLANDA
COMPARISON BETWEEN THE IMPLEMENTATIONS OF A BCH DVB-S2X DECODER IN
FPGA AND IN ASIC,

[Distrito Federal] 2019.

x, 101p., 297 mm (FT/UnB, Engenheiro, Controle e Automação, 2019). Trabalho de Graduação
– Universidade de Brasília.Faculdade de Tecnologia.

1. BCH 2.ASIC
3. Comunicação Satelital

I. Mecatrônica/FT/UnB II. Título (Série)

REFERÊNCIA BIBLIOGRÁFICA

HOLANDA, THIAGO, (2019). Comparison between the implementations of a BCH DVB-S2X
decoder in FPGA and in ASIC. Trabalho de Graduação em Engenharia de Controle e Automação,
Publicação FT.TG-n◦022, Faculdade de Tecnologia, Universidade de Brasília, Brasília, DF, 101p.

CESSÃO DE DIREITOS

AUTOR: Thiago Queiroz Holanda

TÍTULO DO TRABALHO DE GRADUAÇÃO: Comparison between the implementations of
a BCH DVB-S2X decoder in FPGA and in ASIC.

GRAU: Engenheiro ANO: 2019

É concedida à Universidade de Brasília permissão para reproduzir cópias deste Trabalho de
Graduação e para emprestar ou vender tais cópias somente para propósitos acadêmicos e científicos.
O autor reserva outros direitos de publicação e nenhuma parte desse Trabalho de Graduação pode
ser reproduzida sem autorização por escrito do autor.

Thiago Queiroz Holanda

SQN 206, Bloco H, Apt 602

70844-080 Brasília – DF – Brasil.

Aknoledgements

First I need to thank my mother Elizabeth Queiroz who raised me into the person I am
today. She taught me meaning of hardwork, dedication and perseverance, showed me that
even in the toughest times there is a way and gave me every opportunity to grow. Then
I need to thank my brother Matheus Queiroz Holanda who aided me whenever I was in
need, who was an incredible role model and an extremely caring brother. Without the
both of them I would not be the person I am today. I must also thank my father Adriano
Holanda, my grandfathers Edelmo Queiroz and Nilson Holanda for helping my mother
to give me these opportunities. I must thank my grandmothers Silvia, Iolanda and my
aunt Elisângela for all the love and support that they have given me.
I must thank my advisor José Camargo da Costa for giving me such an amazing op-
portunity to learn and develop during this project. I must also thank my other advisor
Guilherme Shimabuko who took the time to teach me everything I needed, who helped me
through all the project, who advised me through every step. Without his help I could not
have gotten so far and accomplished so much I am incredibly grateful for everything. I
must also thank everyone in the LPCI, Laboratório de Projeto de Circuitos Integrados,
for all the help and support they gave me during this period especially Rafael Lima who
helped me learn and develop more in this area and many others.
Now I must thank my girlfriend Sarah Maria de Albuquerque Sousa who has been with
me even before I started my graduation, who helped me through every step of the way,
stood by me and supported me whenever I needed. You are the most important person in
my life and I am incredibly lucky to have found someone so amazing as you to call my
partner. I must also thank my incredible friends who helped me through so many things,
Danilo Li, Jorge Simeão, Ricardo Bauchspiess, Daniel Ervilha and Ada Carine you are
all my family and I love you very much.
Last but not least I must thank DROID for teaching me how to work, giving me the
opportunity to learn and grow. I must thank Alexandre Crepory for accepting me into
this incredible team, teaching me so much about development and leadership and being
an amazing friend. I must also thank Rodrigo Werberich and Leticia Porto you are
both incredible people, incredible role models, incredible friends and have shown me that
through dedication and hard work I can accomplish so much. Another person I need to
thank is Sara Gomes Cardoso, you are incredible and managed to make my experience
in this team even more amazing. Artur, Camila, João, Gabriel, Abdullah, Lucas S,
Rafael, Carlos, Daniel Bauchspiess, Rodrigo, Vanessa, Rebeca, Rosana, Isabella, Bianca,
Thamires you were all very important for my development and growth.

Thiago Queiroz Holanda

RESUMO

Comunicação satelital é uma parte muito importante no sistema de comunicação global, por-
tanto padrões que garantam seu funcionamento devem ser aplicados por meio de especificação de
comportamentos e algoritmos. Entre esses padrões está o Digital Video Broadcasting - Satellite
Second Generation Extended, DVB-S2X, uma evolução do Digital Video Broadcasting - Satellite,
DVB-S. Nesse padrão, para corrigir as mensagens recebidas que podem sofrer erros durante a
transmissão, são utilizados códigos de correção de erro tais como o Low Density Parity Check,
LDPC, e o Bose-Chauduri-Hoquenghem, BCH. A implementação desses algoritmos em um sis-
tema digital é realizada através de uma plataforma apropriada. Para isso podem ser utilizados
Field Programmable Gate Arrays, FPGAs, ou um sistema Application Specific Integrated Circuit,
ASIC. Ao utilizar uma implementação ASIC, ferramentas Electronic Design Automation, EDA, e
Computer Aided Design, CAD, são usadas para poder auxiliar o desenvolvimento. Neste trabalho,
tomando como ponto de partida uma implementação em FPGA de um decodificador BCH previ-
amente realizada, foi feita uma adaptação para fluxo de projeto de ASIC digital e sua validação
por simulação com emprego do framework do Cadence Design Systems. Para isso utilizou uma
especificação de 100MHz de clock buscando consumo menor do que a implementação da FPGA.
Para auxiliar o desenvolvimento foi criado um script em Bash para automatizar a síntese lógica
de várias tecnologias e configurações de metais. A comparação de consumo de potência, tem-
porização e área foi feita utilizando os resultados da síntese lógica nas tecnologias de 180nm da
XFAB. A partir dos dados analisados foi encontrada uma implementação em ASIC com uma fre-
quência máxima de clock de 490MHz com um consumo abaixo de 960 mW ocupando uma área de
aproximadamente 101 mm2. O modelo em FPGA apresentou uma frequência nominal de 100MHz
com um consumo de 620 mW. O modelo em ASIC para a mesma frequência teve um consumo de
175 mW. Comparando os dois modelos conclui-se que uma implementação em ASIC pode levar
a ganhos consideravéis no consumo e em desempenho. Para a especificação todas as soluções em
ASIC tiveram um consumo menor e todas as tecnologias permitem aumentar o desempenho total
do sistema.

Palavras Chave: BCH, ASIC, Comunicação Satelital

ABSTRACT

Satellite communication is a very important part of the global communication system. There-
fore, standards that ensure its operation must be applied through the specification of behaviors
and algorithms. Among these standards there is the Digital Video Broadcasting - Satellite Second
Generation Extended, DVB-S2X, an evolution of the Digital Video Broadcasting - Satellite, DVB-
S. Within this standard, to correct the received messages that can suffer errors during transmission,
error correction codes such as the Low Density Power Converter, LDPC, and the Bose-Chauduri-
Hoquenghem, BCH, are utilized. The implementation of these algorithms in a digital system is
performed through an adequate platform. For that, Field Programmable Gate Arrays, FPGAs,
can be utilized, or an Application Specific Integrated Circuit, ASIC, can be created. In the ASIC
implementation, Eletronic Design Automation, EDA, tools and Computer Aided Design, CAD,
are used to facilitate the development. In this work, utilizing a previously made implementation
in FPGA of a BCH decoder, an adaptation for the ASIC digital design flow and itsvalidation
through simulation with the use of the Cadence Design System framework. The comparison be-
tween power consumption, timing and area were made using the results of the logical synthesis in
XFAB technologies. From the analysed data, an ASIC implementation with maximum frequency
of 490MHz with a power consumption below 960 mW occupying an area of approximately 101
mm2 was found. The FPGA model presented a nominal frequency of 100MHz and power con-
sumption of 620 mW. The ASIC model for the same frequency presented power consumption of
175 mW. Comparing these two models, it can be seen that the ASIC implementation can lead to
considerable gains in power consumption and performance.

Keywords: BCH, ASIC, Satellite Communication

SUMMARY

1 Introduction . 1
1.1 Contextualization ... 1
1.2 Objectives.. 2

2 Literature Review . 3
2.1 Satellite Communication Standards ... 3
2.2 Error Correction Codes .. 4
2.3 IC Digital Design Flow .. 6
2.4 IC EDA Tools ... 7
2.5 IC Fabrication Technology ... 8
2.6 System Specifications... 10

3 Methodology . 13
3.1 Design Flow ... 13

4 Experimental Results . 17
4.1 ASIC Code Adaptation ... 17
4.2 ASIC Timing ... 18
4.3 ASIC Power Consumption ... 20
4.4 ASIC Area.. 23
4.5 ASIC x FPGA Comparison ... 25

5 Conclusions and Future Works . 28
5.1 Conclusions .. 28
5.2 Future Works... 28

REFERENCES . 29

Anexos. 31

iii

LIST OF FIGURES

2.1 Basic Structure of Channel Coding of ISDB-S [1].. 4
2.2 Overview of a DVB-S2X. ... 4
2.3 BCH Decoder Flowchart [2].. 5
2.4 Reed-Solomon Decoder Flowchart [3] ... 6
2.5 Steps in IC Fabrication [4] ... 9
2.6 Camadas de Metais para roteamento [5].. 9
2.7 Clock Skew [6] ... 11
2.8 Input Delay [7] .. 11
2.9 Output Delay [7] .. 11

3.1 Digital Design Work Flow. ... 14
3.2 Generic Genus Work Flow. [7] .. 15

4.1 Implemented BCH Decoder Block Diagram ... 18
4.2 Timing 100MHz without delay .. 19
4.3 Timing 100MHz with delay .. 20
4.4 Timing 490MHz with delay .. 20
4.5 Power 100MHz without delay ... 21
4.6 Power 200MHz without delay ... 21
4.7 Power 100MHz with delay.. 22
4.8 Power 300MHz with delay.. 22
4.9 Power 490MHz with delay.. 23
4.10 Area 100MHz without delay ... 24
4.11 Area 200MHz without delay ... 24
4.12 Area 100MHz with delay ... 25
4.13 Area 300MHz with delay ... 25
4.14 Area 490MHz with delay ... 26

iv

LIST OF TABLES

4.1 Number to Metal Configuration .. 18
4.2 Comparisson Between FPGA and ASIC Implementations 26

1 LPMOS Timing fifo_FSM2 100MHz without delay ... 31
2 MOSLP Timing fifo_FSM2 100MHz without delay ... 31
3 MOSST Timing fifo_FSM2 100MHz without delay ... 32
4 LPMOS Timing fifo_FSM2 200MHz without delay ... 32
5 MOSLP Timing fifo_FSM2 200MHz without delay ... 32
6 MOSST Timing fifo_FSM2 200MHz without delay ... 32
7 LPMOS Timing fifo_FSM2 100MHz with delay ... 33
8 MOSLP Timing fifo_FSM2 100MHz with delay ... 33
9 MOSST Timing fifo_FSM2 100MHz with delay ... 33
10 LPMOS Timing fifo_FSM2 300MHz with delay ... 33
11 MOSLP Timing fifo_FSM2 300MHz with delay ... 34
12 MOSST Timing fifo_FSM2 300MHz with delay ... 34
13 LPMOS Timing fifo_FSM2 490MHz with delay ... 34
14 MOSLP Timing fifo_FSM2 490MHz with delay ... 34
15 MOSST Timing fifo_FSM2 490MHz with delay ... 35
16 LPMOS Power fifo_FSM2 100MHz without delay .. 35
17 MOSLP Power fifo_FSM2 100MHz without delay .. 35
18 MOSST Power fifo_FSM2 100MHz without delay... 35
19 LPMOS Power fifo_FSM2 200MHz without delay .. 36
20 MOSLP_Power_fifo_FSM2 200MHz without delay .. 36
21 MOSST_Power_fifo_FSM2 200MHz without delay .. 36
22 LPMOS Power fifo_FSM2 100MHz with delay... 36
23 MOSLP Power fifo_FSM2 100MHz with delay... 37
24 MOSST Power fifo_FSM2 100MHz with delay ... 37
25 LPMOS Power fifo_FSM2 300MHz with delay... 37
26 MOSLP Power fifo_FSM2 300MHz with delay... 37
27 MOSST Power fifo_FSM2 300MHz with delay ... 38
28 LPMOS Power fifo_FSM2 490MHz with delay... 38
29 MOSLP Power fifo_FSM2 490MHz with delay... 38
30 MOSST Power fifo_FSM2 490MHz with delay ... 38
31 LPMOS Area fifo_FSM2 100MHz without delay .. 39

v

32 MOSLP Area fifo_FSM2 100MHz without delay .. 39
33 MOSST Area fifo_FSM2 100MHz without delay .. 39
34 LPMOS Area fifo_FSM2 200MHz without delay .. 39
35 MOSLP Area fifo_FSM2 200MHz without delay .. 40
36 MOSST Area fifo_FSM2 200MHz without delay .. 40
37 LPMOS Area fifo_FSM2 100MHz with delay .. 40
38 MOSLP Area fifo_FSM2 100MHz with delay .. 40
39 MOSST Area fifo_FSM2 100MHz with delay... 41
40 LPMOS Area fifo_FSM2 300MHz with delay .. 41
41 MOSLP Area fifo_FSM2 300MHz with delay .. 41
42 MOSST Area fifo_FSM2 300MHz with delay... 41
43 LPMOS Area fifo_FSM2 490MHz with delay .. 42
44 MOSLP Area fifo_FSM2 490MHz with delay .. 42
45 MOSST Area fifo_FSM2 490MHz with delay... 42

vii

LIST OF SYMBOLS

Acronyms

ARIB Association of Radio Industries and Business
ASIC Application Specific Integrated Circuits
BCH Bose-Chaudhuri-Hocquenghem codes
CAD Computer Aided Design
CD Compact Disk
CMOS Complementary Metal Oxide Semiconductor
DTH Direct to Home
DVB Digital Video Broadcasting
DVB-S Digital Video Broadcasting - Satellite
DVB-S2X Digital Video Broadcasting - Satellite Second Generation Extension
DVB-S2 Digital Video Broadcasting - Satellite Second Generation
EDA Electronic Design Automation
ESL Eletronic System Level
ETSI European Telecomunications Standards Institute
FEC Forward Error Correction
FIFO First In First Out
FPGA Field Programmable Gate Array
FSM Finite State Machine
HAL HDL Analysis and Lynt
HDL Hardware Description Language
HV High Voltage
IC Integrated Circuit
IP Intelectual Property
ISDB-S Integrated Services Digital Broadcasting - Satellite
ISDB-S3 Integrated Services Digital Broadcasting - Satellite Version 3
LDPC Low Density Parity Check
LEF Library Exchange Format
LPMOS Low Power MOS
MHz Mega Hertz
MOSLP MOS Low Power
MOSST MOS Standard
MPW Multi-Project Wafer
mW MilliWatt
NCVHDL
RS Reed-Solomon
RTL Register Transfer Level
SDC Synopsys Design Constraints
SDO Standard Development Organization
TCL Tool Command Language
VHDL Very-High Speed Integrated Circuits Hardware Description Language
VHSIC Very-High Speed Integrated Circuits
VLSI Very Large Scale Integration

Chapter 1

Introduction
With the widespread use of wireless communica-
tion, the need for reliable sources of message cor-
recting becomes more present. With these needs,
many standards are established to guarantee the
proper communication between various technolo-
gies.

1.1 Contextualization

Satellite communication is an incredibly important part of the current communication system.
This form of communication has two basic steps: the uplink of information and the downlink of
the message. Both of these steps are susceptible to errors during the transmission. To ensure
that the information is correctly sent and received, procedures and standards are put in place to
guarantee the correct performance. One of the most recent additions to the standards of satellite
communication is the Digital Video Broadcasting - Second Generation Extended (DVB-S2X).

Given that this standard is an improvement from past implementations, it is essential to
create hardware able to accomplish all the demanding constraints. Therefore, each individual
part demands a focused approach. For the downlink, decoding of the received message demands
heavy processing algorithms like the Low Density Parity Check (LDPC) and the Bause-Chauduri-
Hoquenghem (BCH).

An efficient way to use these algorithms is through the implementation of a digital system. For
this, there are two different possibilities: the use of Field Programmable Gate Arrays (FPGA) or
Application Specific Integrated Circuits (ASIC). To determine which of these is the implementation
with the overall lowest power consumption and higher performance capabilities, a comparison
between them must be made.

The current work focuses on the digital implementation with ASIC technology of a BCH de-
coder based on DVB-S2X. This is based on an implementation of the BCH decoder system in
Very-High Speed Integrated Circuits Hardware Description Language (VHDL) with a focus on
FPGA developed in another work. With this implementation, a clock frequency of 100MHz is
specified with a processing capability of 5 megasymbols/second. With this specification it is inter-

1

esting to test different implementations to find the best alternatives regarding power consumption,
cost and timing.

1.2 Objectives

This work seeks to adapt the BCH codes, previously implemented for FPGA, in ASIC tech-
nology to pass the Hardware Description Language Analysis and Lint. After this it is necessary to
synthesize the codes to determine resource estimation and compare the results between different
technologies and FPGA implementation.

2

Chapter 2

Literature Review
.

2.1 Satellite Communication Standards

To guarantee that satellite communications will behave correctly, many standards need to be
put in place. To create these, Standard Development Organization (SDO) are necessary. Each
region has their own SDO, as seen with the Association of Radio Industries and Business (ARIB)
in Japan and with the European Telecommunications Standards Institute (ETSI) in Europe.

Among the many standards created by these SDOs, some of the most notable ones for satellite
communication are the Integrated Services Digital Broadcasting - Satellite (ISDB-S) regulated by
ARIB and the Digital Video Broadcasting - Satellite (DVB-S) regulated by ETSI.

The ISDB-S is a system that consists of a source coding section that converts video, audio
and data signals into digital signals; a multiplexing section that multiplexes the digital signals;
a conditional access section that scrambles the signals and distributes the unscrambling keys to
subscribers; and a channel coding section that performs signal processing. [8] The overview of the
channel coding can be viewed in Figure 2.1.

Originally for error correction, the ISDB-S utilized Reed-Solomon codes for outer coding cor-
rection [8]. In the current implementation, ISDB-S3, LDPC is utilized for inner coding and the
BCH for outer coding. The BCH is capable of correcting up to 12 errors. As for the LDPC, the
code length is of 44880 bits with 11 different code rates. [9]

The DVB-S became the most popular system for digital satellite television delivery in the late
1990’s to the early 2000’s. Over time, the system was replaced with the Digital Video Broadcasting
- 2nd Generation Satellite (DVB-S2), that brought gains of around 30 percent to the physical layer
for Direct To Home (DTH) transmission. The DVB-S2 system allows for quasi-error free operation
at 0,6 to 1,2 dB from the modulation constrained Shannon limit. This is achieved through a system
that utilizes LDPC codes, a large number of decoding iterations and a concatenated BCH outer
code. [10]

The standard Digital Video Broadcasting - Satellite Second Generation Extension is a specifi-
cation that provides additional technologies and features. It is based on the DVB-S2 and utilizes

3

Figure 2.1: Basic Structure of Channel Coding of ISDB-S [1]

the same architectural system while adding finer modulation and coding to provide additional ele-
ments such as a finer gradation and extension of the number of modulation and coding modes.[11]
An overview of the decoding process can be viewed in Figure 2.2. This image shows the path the
symbols take until they are corrected. It can be seen that many different steps are necessary and
that the LDPC and BCH codes are necessary. The BCH block is highlighted since it is the subject
of this work.

Figure 2.2: Overview of a DVB-S2X.

2.2 Error Correction Codes

Satellite communications are susceptible to errors, the change in value of information, during
transmission. An error occurs when a bit of information becomes altered assuming the value of
1 when it is originally 0 or assuming 0 when it is originally 1 by an external factor, leading to
misinformation. Errors can be classified into single bit errors and burst errors. Burst errors are

4

a number of bits in a sequence that suffer errors while single bit errors are individual errors. To
guarantee the correct information, it is necessary to utilize algorithms to correct such errors.

Error correction codes are the means whereby errors can be corrected based on the data
received. Error detection codes are the means whereby errors can be detected based on the
data received. In conjunction, it leads to error control coding. The use of error control coding
can provide the difference between an operating system and a dysfunctional one [12]. The most
commonly used cyclic error correction codes are the BCH and the Reed-Solomon (RS) codes.
These codes are related and their decoding algorithms are similar. [12]

The BCH codes have a few important properties that make them desirable for digital imple-
mentation. One important property is the fact that "For any positive integers m and t, there is a
code in this class that consists of blocks of length 2m − 1, that corrects t errors, and that requires
no more than mt parity check digits." This means that, for any type of message and number of
errors, it is possible to use BCH codes to correct the errors [13]. As seen in Figure 2.3 for the BCH
algorithm a frame is received and with this frame syndromes are calculated. The syndromes are
the remainder of the division of the received message by the generator polynomial. The syndromes
then are used in the Berlekamp-Massey algorithm to determine the error locator polynomial. To
find the error locations, the Chien search is used and with the locations determined the errors are
corrected.

Figure 2.3: BCH Decoder Flowchart [2]

5

Reed-Solomon codes are also constructed and decoded through the use of finite fields. These
codes can be constructed through three different ways: the original approach through primitive
elements of finite fields, the generator polynomial approach and the Galois field Fourier transform
approach. The behavior of a Reed-Solomon decoder can be seen in Figure 2.4. Some of the
algorithms used in this process are the same as the ones used in BCH decoding, like the Chien
search and the syndrome calculations. [14]

Figure 2.4: Reed-Solomon Decoder Flowchart [3]

LDPC codes have great performance due to the fact that they possess iterative decoding
algorithms that are parallelizable in hardware while also being easy to implement. Also, LDPC
codes of almost any rate and blocklength can be created simply by specifying the shape of the
parity check matrix. [12]

2.3 IC Digital Design Flow

With complex systems, it is necessary to create dedicated hardware to accomplish specified
demands. To aid and simplify these tasks, the design changed to resemble coding with the help of
Hardware Description Languages. The use of these languages considerably reduces the necessary
time to create a system. One of the most utilized languages is the Very-High Speed Integrated
Circuit (VHSIC) Hardware Description Language, commonly referred to as VHDL.

For the digital design, it is necessary to specify the final platform to determine all the necessary
workflow and methodology. One of the most common forms of hardware implementation is through
the use of Field Programmable Gate Arrays, FPGA, in which there is a matrix of configurable logic
blocks connected via programmable interconnects. FPGAs can be reprogrammed to accomplish
different desired application or functionality requirements after manufacturing [15]. The other
form of hardware implementation is with Application Specific Integrated Circuit, ASIC. ASIC
projects are designed for a single purpose and cannot be repurposed after manufactured.

ASIC implementations are incredibly complex and time consuming. To implement such com-
plex systems, the use of powerful design programs such as Electronic Design Automation (EDA)
and Computer Aided Design (CAD) tools are essential. These tools end up being extremely

6

complex with elaborate workflows necessary to guarantee the final results. [16]

Each of these applications have different purposes, as well as advantages and disadvantages in
their implementation. A design with FPGA can take a few weeks, while an ASIC design will take
several months to accomplish all the necessary steps. Therefore, for fast prototyping, FPGAs are
the recommended platform. With more demanding timing and power consumption applications,
ASIC is regularly used due to the full control over the whole design, allowing for a more optimized
final result. The last important factor is the monetary cost between both designs. For small
scale designs, FPGAs are the desired design implementation since the cost is equivalent to the
number of FPGAs being used in the design. The cost for ASIC applications is based on the cost
of manufacturing a batch of chips. Therefore, large scale production is necessary to reduce the
cost of each individual chip. This means that, if it is necessary to create a large scale production
of an application, the FPGA implementation would have its cost increased for each product, while
with ASIC, the cost would be the same whether ten thousand or twenty thousand products are
manufactured.

After defining the platform for implementation, it is necessary to define the design method-
ology. There are many different ways for a digital design project to be implemented, with the
top-down and the bottom-up being the most commonly used. In bottom-up design, the designer
starts by building the basic gates for the technology being used. After these are built, they build
basic units (such as adders, flip-flops) with the gates. With the basic units, they build generic
modules that will be used in the project. With all of these components, the designer puts together
all the modules and checks to see if the resulting architecture is reasonable. This methodology is
usually used only in full custom designs with the use of no external Intellectual Properties (IP),
and is considered an old fashioned design methodology.

In contrast, the top-down design methodology starts by choosing the algorithm to be used and
implementing it. After the algorithm is implemented, the designer starts making the architecture
and optimizing it. This leads to a guaranteed desirable final architecture, given that the designer
has complete control of how it is going to turn out, while on the bottom-up, the architecture
depends on the modules previously created. After the architecture is defined, the designer starts
determining the functional modules and the design hierarchy. With these, the project is divided
into smaller blocks until the specification is met. When this is complete with the aid of EDA and
CAD tools, such as Genus and Innovus, the blocks are verified and the logical synthesis is made.
In the logical synthesis, the software determines the gates that will be used in the blocks created.
When this step is done, the layout is created from the physical synthesis [17].

2.4 IC EDA Tools

With the constant rise of hardware development complexity, there is an ever increasing need to
utilize EDA and CAD tools to aid in the process [16]. Given an electronic system modeled at the
electronic system level (ESL), an EDA automates the design and test processes of verifying the
correctness of the design against the specifications. The EDA will take the system through various

7

synthesis and verification steps, finally testing the manufactured electronic system to ensure that
it meets the specifications and quality requirements [18].

EDA comprises of hardware and software co-design, synthesis, verification, and test tools that
check the ESL design, translate to the register transfer level (RTL), and then takes the RTL design
through the synthesis and verification stages at the gate level to produce a physical design ready
for fabrication and manufacturing test [18].

There are many different distributors for EDA and CAD tools and they act at many different
parts of the design workflow. Among them, two of the biggest ones are Cadence Design Systems
and Synopsys. Cadence Design Systems is a company that provides tools, IPs and hardwares
necessary for the entire electronics design chain, from chip design to chip packaging to boards and
systems [19].

As mentioned above, to run the digital design workflow with Cadence Digital Systems, the
Genus and Innovus are utilized. Genus is the tool responsible for the synthesis for RTL. To run
the synthesis, a script is written in Tool Command Language (TCL). TCL is a standard language
syntax for writing tool scripts that is used by most CAD tools [16]. The TCL script contains
all the necessary commands for the tool to run the logical synthesis. To accomplish a complete
timing analysis, constraints need to be specified in the Synopsys Design Constraints (SDC) file.
This file contains the clock definitions, the delays that need to be accounted for in the chip as well
as many other timing restraints.

2.5 IC Fabrication Technology

IC fabrication can be separated in five major steps as seen in Figure 2.5. The first step is
purchasing the starting substrate wafer. The second step is the process fabrication of the IC on
the wafer. Third step is the wafer sort and test (in this step, bad die is discarded). Fourth step
is the packaging, where the good die are cut and packaged. The fifth step is the mark and final
test to guarantee that the ICs were not damaged during packaging [4].

To go through this process, first it is necessary to define the technology to be used in the
implementation. This is dependent on the type of application and the foundry that will produce
the hardware. XFAB is the largest analog/mixed signal foundry group, with a large variety of
technologies ranging from 1um to 0.13 um [20]. Among the many available technology libraries,
two were focused to test the applications XH018 and XC018.

The XH018 series is X-FAB’s 0.18 micron Modular Mixed Signal High Voltage (HV) Comple-
mentary Metal Oxide Semiconductor (CMOS) Technology. Based upon the industrial standard
single poly with up to six metal layers 0.18-micron drawn gate length Nwell process. This tech-
nology operates with low power 1.8V, 3.3V and can operate at temperatures of up to 175 Celsius
[21].

The XC018 series is XFAB’s 0.18 micrometer Modular Mixed Signal Technology. Based on
the industrial standard one-poly-three-metal process baseline, wide selection of options such as

8

Figure 2.5: Steps in IC Fabrication [4]

standard or low power, 1.8V core voltage with either 3.3V or 5.0V I/O voltage are easily integrated
through the modular approach [22].

Figure 2.6: Camadas de Metais para roteamento [5]

These technologies contain various different metal configurations differing in the number and
types of metal used. These metal layers are the metals that are available for routing the ASIC
system. A represententation of these metals can be viewed in Figure 2.6. The configurations
available in the XH018 and XC018 are MET2_METMID utilizing the metal layers up to M2,
MET3_METMID utilizing utilizing the metals up to M3, MET4_METMID utilizing up to
M4, MET5_METMID utilizing up to M6, MET2_METMID_METTHK utilizing up to M2
and the M7 layer, MET3_METMID_METTHK utilizing up to M3 and the M7 layers and
MET4_METMID_METTHK utilizing up to M4 and M7.

9

2.6 System Specifications

Timing is utilized to describe the speed of a digital system. In timing, the delay in the circuit
and the effects in the system are both analysed. Usually in the system, there will be a number of
paths that require attention, called critical paths [23].

To be able to define the timing, a few definitions are necessary. The first definition is the rise
time, which is the time for the waveform to rise from 20% to 80% of the steady-state value. The
fall time is the time it takes the waveform to fall from 80% to 20% of the steady-state time. The
propagation delay time is the maximum time for the input crossing 50% to the output crossing
50%. The contamination delay time is the minimum time from the input crossing 50% to the
output crossing 50% [23].

One of the most important timing definitions in digital design is the slack. The slack is the
remaining time after the information passes through the whole system. It is calculated through
equation

Slack = LaunchEdge−ArrivalT ime (2.1)

With this, we can see that the larger the slack the more the system the system remains in
idle and therefore the system can be improved in regards to the timing. Given a negative slack,
we can determine that the system is not completing the desired tasks in time before a new task
arrives, resulting in possible faulty behavior.

In the worst case scenario, clock skew is added. Clock skew, also called uncertainty, is the
difference between the arrival of clock signals at different registers in a clock domain, as seen in
Figure 2.7. The uncertainty can also be used to help adjust conservative constraints into more
realistic ones by utilizing a negative uncertainty. This affects the propagation time since the skew
and the flip-flop setup time are subtracted from the clock period to arrive at the time left for
propagation [7].

After defining these timing constraints in regards to the clock, it is necessary to define the
constraints in regards to the data. For this, we define input delays and output delays. "The input
delay is the arrival time of external paths at an input port relative to a clock edge. Meanwhile,
output delay represents the delay of an external timing path from an output port to a register
input." [7]. Input delay can be seen in Figure 2.8 and output delay can be seen in Figure 2.9.

Data required time for a setup is the minimum time required for the data to get latched into
the destination register and can be described by

DataRequiredT ime(setup) = ClockArrivalT ime− Tsu (2.2)

The setup time, or the Tsu, is a fundamental requirement of all flip-flopped devices. The
data required time for hold is the minimum time required for the data to get latched into the

10

Figure 2.7: Clock Skew [6]

Figure 2.8: Input Delay [7]

Figure 2.9: Output Delay [7]

destination register [24].

DataRequiredT ime(hold) = ClockArrivalT ime+ Th (2.3)

11

CMOS technology is very power-efficient given that they dissipate nearly zero power when idle.
With a high number of transistors and a high clock frequency in a system, the power consumption
becomes an important factor to be analysed. To analyse power consumption, we need to take into
account the static dissipation and the dynamic dissipation.[23]

The static dissipation is due to secondary effects of the CMOS transistors. Some of these
effects are the subthreshold conduction through off transistors, tunneling current through gate
oxide and leakage through reverse-biased diodes. [23]

When a transistor is off, there is still a small amount of subthreshold current. This current is
exponentially dependent on the threshold current. Leakage current through the gate is dependent
on the oxide thickness. This becomes more important with gate oxides of 20A or thinner. There
is also a static dissipation from reverse biased diode leakage between diffusion regions, wells and
the substrate. In modern processes, diode leakage is much smaller than the subthreshold current
or the gate leakage [23].

The dynamic dissipation is due to charging and discharging load capacitance. The primary
component is the charging of load capacitance. To describe an equation where α is the activity
factor is utilized [23].

P = αCV 2
ddf (2.4)

The third specification, IC area, is based on fabrication cost. Given that the fabrication process
is long, demands a controlled enviroment and expensive machinery to accomplish, the cost for
fabrication and prototyping is high. To have an estimate for prototyping costs, an Europractice
schedule schedule was utilized and costs for Multi Project Wafers (MPW) from 2019 [25]. There
were 50 runs for XFAB technology and the cost for the XH018 technology is 1450 euros per
millimeter squared. Therefore, it is necessary to fit a large number of ICs in a single wafer to
dilute the price of each chip, which creates a demand for the smallest possible design.

Considering the timing and power consumption specifications, the current works seek to com-
pare the implementation of a BCH decoder in FPGA with ASIC, as described in the following
chapter.

12

Chapter 3

Methodology
The chosen methodology implemented in this
work is the top-down. As such, the process of im-
plementation followed a few work flows to guar-
antee greater efficiency and better end results
within the project.

3.1 Design Flow

The current work seeks to develop an ASIC implementation of a BCH decoder in accordance
with the DVB-S2X standard and compare it to the FPGA implementation developed in another
work. In this study, the minimum clock frequency specification was 100MHz, due to the maximum
processing of the LDPC of 5 megasymbols per second, with the smallest possible power consump-
tion. This BCH decoder embedded in FPGA utilized VHDL representation and was simulated in
software. This utilized many different aspects that couldn’t be transported for ASIC, such as the
use of IPs and base blocks with no direct equivalent. All of these codes were validated, and they
were all partially synthesizable, so the decision was made to bypass a revalidation of these codes
at the beginning of the project. This implementation, with adaptations, was applied in ASIC with
the help of the Cadence framework.

The VHDL codes implemented in FPGA were verified to see if they could be synthesizable
in the IC XFAB technology. After that verification, made with the Cadence - Incisive tool, it
was determined that the previous implementation was incompatible with Cadence guidelines.
Corrections on these codes were then required and alterations were made so that they could be
synthesized.

The project workflow is presented on Figure 3.1. Starting with the FPGA VHDL files, the
NCVHDl tool, was used to check for syntax errors. After this step, the code went through
elaboration with the NCElab tool and through Linting checks with the Cadence tool Hardware
Description Languag (HDL) Analysis and Lint (HAL). The HAL tool checks the codes for design
consistency, reusability, portability, synthesizability, testability and semantic correctness [26]. This
step is specially important due to the reusability and portability, since chip designs are usually
used in many different technologies and projects.

13

Figure 3.1: Digital Design Work Flow.

To have a thorough HAL analysis, another workflow is used, as seen in Figure 3.2, one that
is more focused in this part of the design. After the usage of HAL, the Genus tool was employed
to start performing an iterative process that runs a logical synthesis with the codes and checks
if they meet the specifications. In this step, XFABs technologies XC018[22] and XH018[21] were
utilized.

For each XFAB technology, there are many different types of metal configurations and cell
types. The technologies have high speed cells with low power consumption and contain a spe-
cific library with all the available cells to implement in digital circuits. In the XC018, there
were two different types of process versions (MOSST and MOSLP), while the XH018 only holds
one (LPMOS). In the XC018, each process modulation has seven different possibilities for metal
configuration. In the XH018, there are only five. This adds up to a wide number of possible con-
figurations with varied sizes and power consumption, dependent on the basic cells implemented
in each of these technologies process version.

To aid in the logic synthesis, a script was created in this work to automate this process.
Utilizing Bash[27], a script was created that accessed the folders for the specified technology and
gathered the LEF, tech and lib files. The Bash script then puts all the file paths in the template
TCL file, Template_Genus_Synthesis. The script then runs the TCL file for all the possible metal
configurations available in the technologies library. For each of these possibilities, detailed reports
for resource estimation are created in the log folder. The script creates an additional file with the
most relevant information to help identify and organize the results from the three detailed reports.

14

Figure 3.2: Generic Genus Work Flow. [7]

The gathered data for the same technology is stored in the files named timing report, power report
and cell report. In the timing report, the arrival time of the clock, the required time for the whole
system and the final slack are all informed. In the power report, the number of cells, the leakage
power, the dynamic power and the total power consumption in the system are informed. Lastly,
for the cell report, the instances of cells and the total area of the chip are informed. All these files
are in the .csv file format to facilitate the use of this information in softwares such as Octave[28].

The automation script was implemented due to the fact that each synthesis could take between
ten to forty minutes, and each technology holds five to seven different metal configurations, which
could amount to almost five hours of simulation. Through the automation, it is possible to run
these simulations on the background or during periods of time no other task is running. It also aids
in organizing desired results for different applications, and facilitates the process for the logical
synthesis. For the present work, the main focus was the comparison between the final resource
estimations. Therefore, the previously mentioned information was stored together. This script
can also be adapted to gather other information, depending on the application.

To specify the timing constraints, an evaluation of the system and standard requirements is
necessary. Given the clock specification of 100MHz, an input and output delay of 1% of the clock
was initially utilized. After verifying that the constraint was met, these delays were changed to
have a minimum of 0.1 ps and a maximum of 1 ps. With the delays fixed, the clock’s frequency
was then increased to reach the maximum that the system could accomplish.

To have a complete comparison with the FPGA implementation the same procedures need to

15

be utilized. The FPGA implementation did not take into account possible delays in the system.
Therefore the delays were discarded and only the clock was utilized to see the systems performance.
With this, different values for the clock were tested to see which was the highest possible clock
that fulfilled the timing constraints.

During the timing analysis, different implementations for the First In First Out (FIFO) mem-
ory block were created since the original FPGA implementation utilized an IP. After these im-
plementations were validated, they were synthesized with the rest of the system. For this, the
packages of each of these FIFO blocks had to be inserted to the original package blocks. After
this was completed, a few of these blocks were synthesized and a comparison between them was
made to determine which would be the most efficient block.

To optimize the FIFO, many five different architectures were implemented and verified. All of
these architectures considered that the message could be written eight bits at a time. The first one
was the fifo_v1 this architecture follows a combinational logic with two processes, but this version
led to high power consumption. The second implementation, fifo_v2, it also has combinational
logic but has three processes that help paralyze the tasks. The other three implementations are
based on finite state machines. The fifo_FSM_PAR allows the FIFO to be written and read at
the same time. The fifo_FSM allows only one action at a time, either writing or reading, and has
two different states. Meanwhile fifo_FSM2 can only perform one action at a time but has three
different states, one state to guarantee that the information will not be written in an inaccessible
location. All of these were validated and the fifo_FSM2 has the correct behavior and the lowest
power consumption.

Finally, after this part of the workflow is complete, and the synthesized codes meet the con-
straints, the resource estimation results are compared to the previously established results of the
FPGA design, to determine the benefits from using either design and determine which should be
implemented.

The final validations of the adapted codes were made in parallel with the resource estimation
step. This was due to the fact that the original codes were already validated, and the implemented
changes would be small enough that they would not imply in great changes to the system’s
behavior. Another reason for this was the necessity to acquire results that verified if there would
be considerable improvements through the implementation in ASIC.

16

Chapter 4

Experimental Results
The results are presented according to the previ-
ously stated objectives, and are organized in rela-
tion to code adaptation, timing, power consump-
tion and area. Given that the adapted code is syn-
thesizable, the resource estimation can be gath-
ered and analysed.

4.1 ASIC Code Adaptation

With the modification of the codes to fit the Cadence guidelines, four packages referenced by
the VHDL blocks remain. The GlobalConstantsPkg that holds all constants, the BchDecAlphaPkg
that holds the alpha values for future calculations, the BchDecPkg that holds the types, subtypes
and entity references for all blocks and the Dvbs2xPkg that contains types used in the toplevel of
the design.

Originally for the BCH decoder, many blocks were implemented and tested. The BchDecAl-
phaRomsCs is a memory that holds all the alpha values. The BchDecGalMult is the block that is
responsible for creating the polynomials base for future processing. The BchDecSyndPar and the
BchDecSyndGen are used together to calculate the syndromes. The BchDecSyndGenPar generates
all the syndromes in parallel. The BchDecRiBM_fsm implements the Berlekamp-Massey algo-
rithm to decode the BCH code. The BchDecChienSearch implements the Chien search for error-
correction procedures. The fifo_FSM2 block implements the memory. Lastly, the Dvbs2xBchDec
is the toplevel of the design and currently works as a controller for the FIFO.

During development, some of these blocks were altered or discarded. The toplevel was also
separated into two different files: Fifocontroler_8bit, that contains the logic for controlling the
FIFO, and the Dvbs2xBchDecLogic_8bit, that has only the toplevel logic. Figure 4.1 shows the
block diagram and the function of the implemented blocks. The circular blocks are memory, and
rectangle blocks are the necessary decoding algorithm blocks.

All the implemented blocks passed through the HAL and were synthesized. A few errors that
the HAL points out remained due to the fact that the block could still be synthesized. Most of
these errors refer to the types of ports used and signals that aren’t the standard types(std_logic,

17

Figure 4.1: Implemented BCH Decoder Block Diagram

Number Metal Configuration Available Libraries
1 MET2_METMID MOSLP, MOSST
2 MET3_METMID LPMOS, MOSLP, MOSST
3 MET4_METMID LPMOS, MOSLP, MOSST
4 MET5_METMID LPMOS, MOSLP, MOSST
5 MET2_METMID_METTHK MOSLP, MOSST
6 MET3_METMID_METTHK LPMOS, MOSLP, MOSST
7 MET4_METMID_METTHK LPMOS, MOSLP, MOSST

Table 4.1: Number to Metal Configuration

std_logic_vector).In later stages of the project, these errors should be eliminated because they
could create portability issues. Warnings from the HAL were ignored due to the fact they do not
influence in the final synthesized result.

4.2 ASIC Timing

Through the timing analysis, three clock frequencies were specified with the use of delays, and
two clock frequencies without the use of delay. For the two clock frequencies without delay, a
toplevel block that could only alter one bit at a time of the FIFO was utilized. With that block,
came an analysis of 100MHz, the minimum system requirement, and 200MHz, the maximum
frequency. For the clock frequencies with the use of delay, as described in chapter 3, the toplevel
logic was the final implementation that could alter the FIFO eight bits at a time. With this,
there was an analysis of 100MHz, 300MHz, the maximum frequency for LPMOS, and 490MHz,
the maximum frequency that the MOSST technology could accomplish. The LPMOS was given
extra attention in this analysis, due to the fact that it would be possible to produce a prototype
in this technology.

The gathered data can be fully viewed in the tables located in the appendix. In the graphs
displayed in Figures 4.2 to 4.14, each number corresponds to one type of metal configuration as
shown in the Table 4.1.

For a clock frequency of 100MHz without delays for the LPMOS technology, all metal configura-
tions had a positive slack. The worst configurations were MET3_METMID andMET4_METMID,

18

with 17 ps of slack, while the best were the MET5_METMID, with a slack of 80 ps. For the
MOSLP technology all metal had a positive slack. The worst configuration was MET4_METMID,
with a slack of 4 ps. The best configuration was MET5_METMID, with a slack of 126 ps. For the
MOSST technology, all metal had a positive slack. The worst configuration was MET5_METMID,
with a slack of 2686 ps. The best configuration was MET2_METMID, with a slack of 4047 ps.
Given that all technologies had positive slack, there is a possibility of clock frequency increase, the
technology with the highest margin for improvement in timing is the MOSST. A direct comparison
between the slack of each technology can be seen in Figure 4.2.

Figure 4.2: Timing 100MHz without delay

Given the results presented for 100MHz, the clock frequency was then increased to 200MHz.
For this clock frequency, all the technologies had positive or null slack. Given that the highest slack
among them was of 2 ps, there was very little room for improvement, making this the maximum
frequency for this implementation.

For a clock frequency of 100 MHz, with the addition of delay, all metal configurations of
the LPMOS technology had positive slack. The worst configuration was, MET4_METMID with
slack of 5 ps, while the best configuration was MET5_METMID, with a slack of 49 ps.For the
MOSLP technology, all metal configurations had positive slack, with the MET4_METMID hav-
ing the smallest slack, 16 ps, and MET5_METMID having the largest, 186 ps. For the MOSST
technology, all metal configurations had a positive slack, with a much larger margin for improve-
ment. The smallest slack, 2631 ps, was from MET5_METMID, and the largest, 3849 ps, from
MET4_METMID. The comparison can be viewed in Figure 4.3

Given the clock frequency of 300 MHz, with delay, all technologies had positive or null slack.
This frequency is specified as being the maximum frequency for the LPMOS technology. All
technologies had a slack of 0 ps.

The largest clock frequency that could be achieved by one of the three technologies with delay

19

Figure 4.3: Timing 100MHz with delay

was 490MHz. In this frequency, only the MOSST technology maintained a null slack. The LPMOS
and MOSLP technologies had large negative slacks that can be viewed in Figure 4.4. This was
then specified as the maximum frequency achieved by designed system. With this, it can be seen
that the MOSST is the best for high speed designs.

Figure 4.4: Timing 490MHz with delay

4.3 ASIC Power Consumption

With the clock frequency of 100MHz, without delay, the best overall technology was the
MOSLP with the MET5_METMID with a power consumption of 177 mW. The MOSST was the

20

second best, with the same metal configuration consuming 182 mW. LPMOS technology had the
worst power consumption, with MET5_METMID consuming 202 mW. This data can be seen in
Figure 4.5

Figure 4.5: Power 100MHz without delay

For 200MHz, the best technology became the MOSST with MET5_METMID, and a power
consumption of 143 mW. The MOSLP was the second best implementation, with MET4_METMID
and a power consumption of 144 mW. The LPMOS technology had a power consumption of 175
mW with the MET3_METMID configuration. The comparison can be viewed in Figure 4.6

Figure 4.6: Power 200MHz without delay

21

For 100MHz with delay, there is an overall increase in the power consumption for all the
technologies. The best technology was MOSLP with MET5_METMID, consuming 183 mW. The
MOSST with MET3_METMID_METTHK consumed 188 mW, while LPMOS, with MET5_METMID,
consumed 208 mW. This can be seen in Figure 4.7.

Figure 4.7: Power 100MHz with delay

With 300MHz, the MOSST is the technology with the lowest power consumption, as seen in
Figure 4.8,with MET5_METMID consuming 554 mW. The second best technology is the MOSLP
with MET4_METMID_METTHK, consuming 573 mW. The LPMOS had a considerably larger
power consumption of 677 mW in the MET4_METMID_METTHK.

Figure 4.8: Power 300MHz with delay

22

With the clock frequency of 490MHz, with delay, both LPMOS and MOSLP could not complete
the tasks in this frequency, so only the MOSST is analysed for power consumption. For MOSST,
the best configuration was MET3_METMID_METTHK, with 940 mW of power consumption.
The comparison between these results can be seen in Figure 4.9

Figure 4.9: Power 490MHz with delay

As the power consumption increases, the viability of the LPMOS and MOSLP reduces. Both
of these technologies are focused on low power, while the MOSST is focused on high speed circuits.
Therefore, it is easier to optimize this technology.

4.4 ASIC Area

For 100MHz, the best technology was MOSST with MET5_METMID, occupying an area of
957048 µm2. The second best technology was the LPMOS with MET5_METMID, occupying
958711 µm2. The MOSLP occupies the largest area, 958966 µm2, with MET3_METMID.

For 200MHz, the best technology remained the MOSST with MET5_METMID, occupying
958511 µm2. The second best technology was MOSLP with MET3_METMID 968266 µm2. The
LPMOS with MET4_METMID_METTHK occupies 974280 µm2.

For 100MHz, with delay, the metal configuration of MET5_METMID was the best for all the
technologies. The MOSST occupied the least area, 957128 µm2, then the LPMOS, 958717 µm2,
and the MOSLP occupies the largest area, 958954 µm2.

For 300MHz, the best technology was MOSST with MET5_METMID, occupying 967489
µm2. The second best technology is MOSLP with MET5_METMID, occupying 1004701 µm2.
The LPMOS occupies 1014013 µm2 with MET3_METMID.

As previously stated, the LPMOS and MOSLP implementations in 490 MHz can not ac-

23

Figure 4.10: Area 100MHz without delay

Figure 4.11: Area 200MHz without delay

complish the timing constraints. Therefore only the MOSST will be analysed. The best metal
configuration is MET5_METMID, occupying 1009177 µm2, which is a small increase from the
other synthesized blocks.

For the system specification, clock frequency of 100 MHz, the best technology in regards to
the power would be the MOSLP with the MET5_METMID. On the other hand if the power
consumption became a secondary factor compared to the area the best implementation would be
with MOSST with MET5_METMID. The LPMOS consistently had the worst results among the
technologies making it the least desirable to implement the final system.

24

Figure 4.12: Area 100MHz with delay

Figure 4.13: Area 300MHz with delay

4.5 ASIC x FPGA Comparison

Two FPGA implementations were synthesized, one embedded with the original FIFO IP, FPGA
IP, and another with the FIFO developed for the ASIC system, FPGA FIFO. These implementa-
tions utilized a clock frequency of 100 MHz and both had slack of 0. The maximum frequency for
the FPGA implementations were of 120 MHz with delay. Comparing these results to the ASIC
implementations, there is a large difference between each maximum frequency.

25

Figure 4.14: Area 490MHz with delay

Technology Library/Model Maximum Frequency Power Consumption (100 MHz) Area (100MHz)

xh018 LPMOS 300 MHz 208.18 mW 958717 µm2

xc018 MOSLP 300 MHz 183.44 mW 958954 µm2

xc018 MOSST 490 MHz 188.01 mW 957128 µm2

FPGA IP Zynq Ultrascale 120 MHz 601 mW N/A

Table 4.2: Comparisson Between FPGA and ASIC Implementations

For the implementation with the FPGA IP the power consumption was of 601 mW while for
the implementation FPGA FIFO the power consumption was of 630 mW, this shows these archi-
tectures are comparable with the implemented FIFO having room for improvement. Comparing
these results to the worst of the ASIC implementations for the same frequency, the MOSLP con-
sumed 208 mW. This shows that there is considerable improvements in power consumption with
the implementation in ASIC.

Lastly, for the occupied area the FPGA has a constant area which is much larger than any of
the ASIC implementations. A table with this information is presented in Table 4.2

The results gathered from the synthesis demonstrated that it is possible to use XFABs tech-
nologies to implement this system. With the comparison between the ASIC and FPGA imple-
mentation, we see that the system can be improved with the use of ASIC.

For higher frequencies, the MOSST technology presented better overall results, as well as being
the only technology capable of operating in 490 MHz. For smaller frequencies, such as the 100
MHz specification, the MOSLP has better power consumption. The LPMOS had worse results
than the other technologies, which is expected considering it is an older technology. Even though
the LPMOS had the worse results, for lower frequencies, the results remained close to the other

26

options. Therefore, it is still a valid option for prototyping.

In terms of the metal configuration, the MET5_METMID had the better overall results,
consistently being one of the best options for the implementation. Other metal configurations,
such as MET3_METMID and MET4_METMID_METTHK, had the best results in specific
frequencies. Therefore, we can not specify one single metal configuration as being the ideal for
the system.

Analysing the system with the DVB-S2X standard specifications, we see that there needs to
be improvement in timing. The DVB-S2X standard requires a maximum clock frequency of 640
MHz, while the implemented system could only reach 490 MHz. The power consumption also
increased drastically with the increase of the clock period, which could be a liability in systems
that require low power.

27

Chapter 5

Conclusions and Future Works

5.1 Conclusions

The use of the workflows aided in the adaptation of the FPGA codes to the Cadence framework.
With the final implementation, all the codes fit the Cadence requirements and were synthesizable.
There remained warnings and errors in the implementation, the correction of these could lead to
better final design, with better portability and reusability.

The final FIFO can be implemented utilizing two different ways, either through the use of
vectors or arrays. Utilizing arrays, the overall power consumption and area occupied was larger,
but the time required to synthesize was drastically reduced. The vector implementation is harder
to code, which demands longer periods of time to formulate the codes and to synthesize. Therefore,
there is a possibility of improvement in the synthesis with the implementation of vectors.

With the proposed changes to the architecture the implemented system was synthesized in the
180 nm technology and led to better results than the FPGA implementations. To reach the same
power consumption as the FPGA the system needs to run at frequencies higher than 300 MHz.
The ASIC system can also operate in higher clock frequencies than the FPGA implementation.

5.2 Future Works

For further works the first logical step towards prototyping would be the physical synthesis.
After this step it would be necessary to extract the circuit with the parasitics and run the Layout
Versus Schematic (LVS). With these steps concluded a prototype could be manufactured.

A second line of work would be the reevaluateion of the implemented system determine if it
can be optimized to meet the different specifications, such as DVB-S2X timing requirement or low
power applications focusing only on power consumption.

Another possible line of work would be the implementation of the other parts of the decoding
process, such as the LDPC, in ASIC. The LDPC would be the first block to evaluate, since it is
the largest block in the decoding process.

28

REFERENCES

[1] TRANSLATION, E. Transmission system for advanced wide band digital satellite broadcasting
association of radio industries and businesses. Jul, v. 31, p. 86, 2014.

[2] CHAVES, C. G.; LIMA, E. R. de; MERTES, J. G. A synthesizable bch decoder for dvb-s2
satellite communications. Journal of Integrated Circuits and Systems, v. 10, n. 3, p. 174–180,
2015.

[3] DAS, A. S.; DAS, S.; BHAUMIK, J. Design of rs (255, 251) encoder and decoder in fpga.
international journal of soft computing and engineering, v. 2, n. 6, p. 2231–2307, 2013.

[4] INTRODUCTION to Integrated Circuit Technology. shorturl.at/qwCFI. Accessed: 2019-11-
12.

[5] THE Platform Based SOC Design that Utilizes Structured
ASIC Technology. https://www.design-reuse.com/articles/9566/
the-platform-based-soc-design-that-utilizes-structured-asic-technology.html.
Acessed: 2019-12-10.

[6] INTRODUCTION and Source of Clock Skew. http://www.vlsi-expert.com/2016/01/skew.
html. Acessed: 2019-11-28.

[7] SYSTEMS, I. C. D. Genus Timing Analysis Guide for Legacy UI. [S.l.]: Cadence Design
Systems, Inc., December 2017.

[8] KATOH, H. Transmission system for isdb-s. Proceedings of the IEEE, IEEE, v. 94, n. 1, p.
289–295, 2006.

[9] INDUSTRIES, A. of R.; BUSINESSES. Transmission system for advanced wide band digital
satellite broadcasting. Jul, v. 31, p. 143, 2014.

[10] WHAT is DVB-S2? https://www.dvb.org/about. Acessed: 2019-08-21.

[11] EXTENDING DVB-S2 What is DVB-S2X? https://www.dvb.org/standards/dvb-s2x.
Acessed: 2019-08-21.

[12] MOON, T. K. Error correction coding: mathematical methods and algorithms. [S.l.]: John
Wiley & Sons, 2005.

29

[13] PETERSON, W. W.; BROWN, D. T. Cyclic codes for error detection. Proceedings of the
IRE, IEEE, v. 49, n. 1, p. 228–235, 1961.

[14] WICKER, S. B.; BHARGAVA, V. K. Reed-Solomon codes and their applications. [S.l.]: John
Wiley & Sons, 1999.

[15] WHAT is an FPGA? https://www.xilinx.com/products/silicon-devices/fpga/
what-is-an-fpga.html. Accessed: 2019-11-12.

[16] BRUNVAND, E. Digital VLSI chip design with Cadence and Synopsys CAD tools. [S.l.]:
Addison-Wesley, 2010.

[17] CHRISTIANSEN, J. IC design methodology and related tools. [S.l.]: CERN, November 2006.

[18] WANG, L.-T.; CHANG, Y.-W.; CHENG, K.-T. T. Electronic design automation: synthesis,
verification, and test. [S.l.]: Morgan Kaufmann, 2009.

[19] TRANSFORMING the Way People Design Next-Generation Systems. https://www.
cadence.com/content/cadence-www/global/en_US/home/company.html. Accessed: 2019-11-
12.

[20] ABOUT X-FAB. https://www.xfab.com/about-x-fab/. Acessed: 2019-11-12.

[21] 0.18 Micron Modular HT HV CMOS Technology. https://www.xfab.com/technology/
cmos/018-um-xh018/. Accessed: 2019-11-12.

[22] 0.18 Micron Modular CMOS Technology. https://www.xfab.com/technology/cmos/
018-um-xc018/. Accessed: 2019-11-12.

[23] WESTE, N. H.; HARRIS, D. CMOS VLSI design: a circuits and systems perspective. [S.l.]:
Pearson Education India, 2004.

[24] TIMING Analysis with Time Quest I. https://www.coursera.
org/learn/intro-fpga-design-embedded-systems/lecture/YE1wc/
9-timing-analysis-with-time-quest-i. Accessed: 2019-11-12.

[25] 2019GENERAL Europractice MPW runsSchedule and Prices. http://europractice-ic.
com/wp-content/uploads/2019/10/191007_MPW2019-general-v13.pdf. Accessed: 2019-11-
27.

[26] SYSTEMS, I. C. D. Incisive Enteprise Specman Elite Testbench e Linting with HAL. [S.l.]:
Cadence Design Systems, Inc., December 2016.

[27] GNU Bash. https://www.gnu.org/software/bash/. Acessed: 2019-11-28.

[28] GNU Octave. https://www.gnu.org/software/octave/. Acessed: 2019-11-28.

30

APPENDIX

Table 1 to 15 contain timing results,arrival time, required time and slack, for each possible
metal configuration. Table 16 to 30 contain power consumption results, leakage, dynamic and
total power, for each metal configuration. Table 31 to 45 contain area results, cell instances and
total area occupied, for each metal configuration.

Metal Configuration Arrival Required Time Slack
xh018_xx31_MET3_METMID 10000 9088 17
xh018_xx33_MET3_METMID_METTHK 10000 9089 22
xh018_xx41_MET4_METMID 10000 9088 17
xh018_xx43_MET4_METMID_METTHK 10000 9089 22
xh018_xx51_MET5_METMID 10000 9100 80

Table 1: LPMOS Timing fifo_FSM2 100MHz without delay

Metal Configuration Arrival Required Time Slack
xc018_xx10_MET2_METMID 10000 9226 22
xc018_xx11_MET3_METMID 10000 9218 5
xc018_xx12_MET4_METMID 10000 9218 4
xc018_xx13_MET5_METMID 10000 9219 126
xc018_xx14_MET2_METMID_METTHK 10000 9227 103
xc018_xx15_MET3_METMID_METTHK 10000 9219 124
xc018_xx16_MET4_METMID_METTHK 10000 9218 119

Table 2: MOSLP Timing fifo_FSM2 100MHz without delay

31

Metal Configuration Arrival Required Time Slack
xc018_xx10_MET2_METMID 10000 9472 4047
xc018_xx11_MET3_METMID 10000 9472 3306
xc018_xx12_MET4_METMID 10000 9472 3304
xc018_xx13_MET5_METMID 10000 9481 2686
xc018_xx14_MET2_METMID_METTHK 10000 9472 2961
xc018_xx15_MET3_METMID_METTHK 10000 9473 3128
xc018_xx16_MET4_METMID_METTHK 10000 9473 3128

Table 3: MOSST Timing fifo_FSM2 100MHz without delay

Metal Configuration Arrival Required Time Slack
xh018_xx31_MET3_METMID 5000 4553 0
xh018_xx33_MET3_METMID_METTHK 5000 4412 0
xh018_xx41_MET4_METMID 5000 3840 0
xh018_xx43_MET4_METMID_METTHK 5000 4400 0
xh018_xx51_MET5_METMID 5000 4550 0

Table 4: LPMOS Timing fifo_FSM2 200MHz without delay

Metal Configuration Arrival Required Time Slack
xc018_xx10_MET2_METMID 5000 4618 0
xc018_xx11_MET3_METMID 5000 4683 1
xc018_xx12_MET4_METMID 5000 4613 0
xc018_xx13_MET5_METMID 5000 4684 0
xc018_xx14_MET2_METMID_METTHK 5000 4765 1
xc018_xx15_MET3_METMID_METTHK 5000 4286 0
xc018_xx16_MET4_METMID_METTHK 5000 4717 0

Table 5: MOSLP Timing fifo_FSM2 200MHz without delay

Metal Configuration Arrival Required Time Slack
xc018_xx10_MET2_METMID 5000 4615 0
xc018_xx11_MET3_METMID 5000 4477 2
xc018_xx12_MET4_METMID 5000 4723 2
xc018_xx13_MET5_METMID 5000 4513 0
xc018_xx14_MET2_METMID_METTHK 5000 4620 1
xc018_xx15_MET3_METMID_METTHK 5000 4618 0
xc018_xx16_MET4_METMID_METTHK 5000 4513 1

Table 6: MOSST Timing fifo_FSM2 200MHz without delay

32

Metal Configuration Arrival Required Time Slack
xh018_xx31_MET3_METMID 10000 9357 6
xh018_xx33_MET3_METMID_METTHK 10000 9101 29
xh018_xx41_MET4_METMID 10000 9357 5
xh018_xx43_MET4_METMID_METTHK 10000 9101 29
xh018_xx51_MET5_METMID 10000 9102 49

Table 7: LPMOS Timing fifo_FSM2 100MHz with delay

Metal Configuration Arrival Required Time Slack
xc018_xx10_MET2_METMID 10000 9228 47
xc018_xx11_MET3_METMID 10000 9228 20
xc018_xx12_MET4_METMID 10000 9228 16
xc018_xx13_MET5_METMID 10000 9228 186
xc018_xx14_MET2_METMID_METTHK 10000 9228 137
xc018_xx15_MET3_METMID_METTHK 10000 9229 33
xc018_xx16_MET4_METMID_METTHK 10000 9229 31

Table 8: MOSLP Timing fifo_FSM2 100MHz with delay

Metal Configuration Arrival Required Time Slack
xc018_xx10_MET2_METMID 10000 9472 2936
xc018_xx11_MET3_METMID 10000 9473 3848
xc018_xx12_MET4_METMID 10000 9472 3849
xc018_xx13_MET5_METMID 10000 9481 2631
xc018_xx14_MET2_METMID_METTHK 10000 9472 3081
xc018_xx15_MET3_METMID_METTHK 10000 9473 3655
xc018_xx16_MET4_METMID_METTHK 10000 9473 3654

Table 9: MOSST Timing fifo_FSM2 100MHz with delay

Metal Configuration Arrival Required Time Slack
xh018_xx31_MET3_METMID 3330 2926 0
xh018_xx33_MET3_METMID_METTHK 3330 2901 0
xh018_xx41_MET4_METMID 3330 3012 0
xh018_xx43_MET4_METMID_METTHK 3330 3002 0
xh018_xx51_MET5_METMID 3330 3001 0

Table 10: LPMOS Timing fifo_FSM2 300MHz with delay

33

Metal Configuration Arrival Required Time Slack
xc018_xx10_MET2_METMID 3330 2953 0
xc018_xx11_MET3_METMID 3330 3000 0
xc018_xx12_MET4_METMID 3330 3044 0
xc018_xx13_MET5_METMID 3330 3000 0
xc018_xx14_MET2_METMID_METTHK 3330 2923 0
xc018_xx15_MET3_METMID_METTHK 3330 3000 0
xc018_xx16_MET4_METMID_METTHK 3330 2950 0

Table 11: MOSLP Timing fifo_FSM2 300MHz with delay

Metal Configuration Arrival Required Time Slack
xc018_xx10_MET2_METMID 3330 2753 0
xc018_xx11_MET3_METMID 3330 3044 0
xc018_xx12_MET4_METMID 3330 2962 0
xc018_xx13_MET5_METMID 3330 2984 0
xc018_xx14_MET2_METMID_METTHK 3330 2984 0
xc018_xx15_MET3_METMID_METTHK 3330 3019 0
xc018_xx16_MET4_METMID_METTHK 3330 2984 0

Table 12: MOSST Timing fifo_FSM2 300MHz with delay

Metal Configuration Arrival Required Time Slack
xh018_xx31_MET3_METMID 2040 1737 -704
xh018_xx33_MET3_METMID_METTHK 2040 1736 -723
xh018_xx41_MET4_METMID 2040 1767 -710
xh018_xx43_MET4_METMID_METTHK 2040 1767 -698
xh018_xx51_MET5_METMID 2040 1716 -695

Table 13: LPMOS Timing fifo_FSM2 490MHz with delay

Metal Configuration Arrival Required Time Slack
xc018_xx10_MET2_METMID 2040 1750 -431
xc018_xx11_MET3_METMID 2040 1676 -416
xc018_xx13_MET5_METMID 2040 1746 -404
xc018_xx14_MET2_METMID_METTHK 2040 1751 -404
xc018_xx15_MET3_METMID_METTHK 2040 1755 -403
xc018_xx16_MET4_METMID_METTHK 2040 1786 -400

Table 14: MOSLP Timing fifo_FSM2 490MHz with delay

34

Metal Configuration Arrival Required Time Slack
xc018_xx10_MET2_METMID 2040 1790 0
xc018_xx11_MET3_METMID 2040 1841 0
xc018_xx12_MET4_METMID 2040 1862 0
xc018_xx13_MET5_METMID 2040 1867 0
xc018_xx14_MET2_METMID_METTHK 2040 1829 0
xc018_xx15_MET3_METMID_METTHK 2040 1848 0
xc018_xx16_MET4_METMID_METTHK 2040 1826 0

Table 15: MOSST Timing fifo_FSM2 490MHz with delay

Metal Configuration Leakage Dynamic Total
xh018_xx31_MET3_METMID 190.431 203185535.479 203185725.910
xh018_xx33_MET3_METMID_METTHK 190.488 202867719.429 202867909.917
xh018_xx41_MET4_METMID 190.451 203238161.723 203238352.175
xh018_xx43_MET4_METMID_METTHK 190.488 202909843.154 202910033.642
xh018_xx51_MET5_METMID 190.449 202685382.954 202685573.402

Table 16: LPMOS Power fifo_FSM2 100MHz without delay

Metal Configuration Leakage Dynamic Total
xc018_xx10_MET2_METMID 242.545 179224949.115 179225191.660
xc018_xx11_MET3_METMID 242.446 178294568.507 178294810.953
xc018_xx12_MET4_METMID 242.393 178911951.890 178912194.282
xc018_xx13_MET5_METMID 242.468 177865163.906 177865406.374
xc018_xx14_MET2_METMID_METTHK 242.539 179022387.152 179022629.691
xc018_xx15_MET3_METMID_METTHK 242.420 178588318.018 178588560.438
xc018_xx16_MET4_METMID_METTHK 242.388 178622225.728 178622468.116

Table 17: MOSLP Power fifo_FSM2 100MHz without delay

Metal Configuration Leakage Dynamic Total
xc018_xx10_MET2_METMID 671.839 186427255.618 186427927.457
xc018_xx11_MET3_METMID 671.120 183484953.124 183485624.245
xc018_xx12_MET4_METMID 671.120 183548164.120 183548835.240
xc018_xx13_MET5_METMID 670.759 182949046.418 182949717.177
xc018_xx14_MET2_METMID_METTHK 670.925 183527967.116 183528638.041
xc018_xx15_MET3_METMID_METTHK 670.772 183047528.828 183048199.599
xc018_xx16_MET4_METMID_METTHK 670.799 183100815.650 183101486.449

Table 18: MOSST Power fifo_FSM2 100MHz without delay

35

Metal Configuration Leakage Dynamic Total
xh018_xx31_MET3_METMID 180.716 175281796.995 175281977.711
xh018_xx33_MET3_METMID_METTHK 179.287 175848463.742 175848643.029
xh018_xx41_MET4_METMID 180.254 176465843.133 176466023.388
xh018_xx43_MET4_METMID_METTHK 179.264 176078540.259 176078719.523
xh018_xx51_MET5_METMID 179.778 179775480.835 179775660.612

Table 19: LPMOS Power fifo_FSM2 200MHz without delay

Metal Configuration Leakage Dynamic Total
xc018_xx10_MET2_METMID 239.802 145421394.659 145421634.460
xc018_xx11_MET3_METMID 240.180 144608337.632 144608577.812
xc018_xx12_MET4_METMID 240.225 144000902.441 144001142.666
xc018_xx13_MET5_METMID 239.245 147056931.933 147057171.178
xc018_xx14_MET2_METMID_METTHK 240.119 144666322.517 144666562.636
xc018_xx15_MET3_METMID_METTHK 240.095 145093419.443 145093659.538
xc018_xx16_MET4_METMID_METTHK 240.143 144469032.705 144469272.848

Table 20: MOSLP_Power_fifo_FSM2 200MHz without delay

Metal Configuration Leakage Dynamic Total
xc018_xx10_MET2_METMID 684.357 143883745.251 143884429.608
xc018_xx11_MET3_METMID 684.513 143854459.003 143855143.517
xc018_xx12_MET4_METMID 685.114 143894263.448 143894948.562
xc018_xx13_MET5_METMID 683.191 143745076.631 143745759.821
xc018_xx14_MET2_METMID_METTHK 685.217 143849705.194 143850390.411
xc018_xx15_MET3_METMID_METTHK 685.317 143969504.978 143970190.294
xc018_xx16_MET4_METMID_METTHK 684.841 143809345.434 143810030.276

Table 21: MOSST_Power_fifo_FSM2 200MHz without delay

Metal Configuration Leakage Dynamic Total
xh018_xx31_MET3_METMID 190.688 208724184.167 208724374.855
xh018_xx33_MET3_METMID_METTHK 190.749 208386361.715 208386552.464
xh018_xx41_MET4_METMID 190.706 208765773.771 208765964.477
xh018_xx43_MET4_METMID_METTHK 190.749 208429055.147 208429245.896
xh018_xx51_MET5_METMID 190.719 208179057.602 208179248.321

Table 22: LPMOS Power fifo_FSM2 100MHz with delay

36

Metal Configuration Leakage Dynamic Total
xc018_xx10_MET2_METMID 242.267 185435463.877 185435706.144
xc018_xx11_MET3_METMID 242.177 183953056.525 183953298.702
xc018_xx12_MET4_METMID 242.107 184729182.947 184729425.054
xc018_xx13_MET5_METMID 242.227 183435639.517 183435881.744
xc018_xx14_MET2_METMID_METTHK 242.196 184686381.022 184686623.218
xc018_xx15_MET3_METMID_METTHK 242.128 184332198.315 184332440.442
xc018_xx16_MET4_METMID_METTHK 242.130 184375841.673 184376083.803

Table 23: MOSLP Power fifo_FSM2 100MHz with delay

Metal Configuration Leakage Dynamic Total
xc018_xx10_MET2_METMID 671.860 189097045.290 189097717.149
xc018_xx11_MET3_METMID 671.327 188403244.287 188403915.614
xc018_xx12_MET4_METMID 671.411 191695068.913 191695740.324
xc018_xx13_MET5_METMID 671.069 191088332.018 191089003.087
xc018_xx14_MET2_METMID_METTHK 671.322 191734681.526 191735352.848
xc018_xx15_MET3_METMID_METTHK 671.068 188012062.359 188012733.427
xc018_xx16_MET4_METMID_METTHK 671.061 188051010.352 188051681.413

Table 24: MOSST Power fifo_FSM2 100MHz with delay

Metal Configuration Leakage Dynamic Total
xh018_xx31_MET3_METMID 197.412 677582479.479 677582676.892
xh018_xx33_MET3_METMID_METTHK 197.563 687321079.475 687321277.037
xh018_xx41_MET4_METMID 198.022 679800316.824 679800514.846
xh018_xx43_MET4_METMID_METTHK 197.532 677360403.347 677360600.879
xh018_xx51_MET5_METMID 197.349 681871723.316 681871920.665

Table 25: LPMOS Power fifo_FSM2 300MHz with delay

Metal Configuration Leakage Dynamic Total
xc018_xx10_MET2_METMID 241.005 602666714.792 602666955.797
xc018_xx11_MET3_METMID 241.300 587025414.892 587025656.192
xc018_xx12_MET4_METMID 241.703 581760058.850 581760300.553
xc018_xx13_MET5_METMID 240.484 574629499.099 574629739.582
xc018_xx14_MET2_METMID_METTHK 240.690 593096073.103 593096313.793
xc018_xx15_MET3_METMID_METTHK 241.298 576237550.804 576237792.103
xc018_xx16_MET4_METMID_METTHK 242.048 573654990.185 573655232.233

Table 26: MOSLP Power fifo_FSM2 300MHz with delay

37

Metal Configuration Leakage Dynamic Total
xc018_xx10_MET2_METMID 698.869 558739806.635 558740505.504
xc018_xx11_MET3_METMID 695.334 556104682.431 556105377.764
xc018_xx12_MET4_METMID 695.688 557859677.026 557860372.715
xc018_xx13_MET5_METMID 694.334 554591021.872 554591716.206
xc018_xx14_MET2_METMID_METTHK 697.529 557950770.337 557951467.865
xc018_xx15_MET3_METMID_METTHK 696.610 556721213.463 556721910.073
xc018_xx16_MET4_METMID_METTHK 695.256 557640926.249 557641621.505

Table 27: MOSST Power fifo_FSM2 300MHz with delay

Metal Configuration Leakage Dynamic Total
xh018_xx31_MET3_METMID 261.713 1448446587.004 1448446848.717
xh018_xx33_MET3_METMID_METTHK 258.896 1439149595.924 1439149854.820
xh018_xx41_MET4_METMID 264.140 1448661184.294 1448661448.433
xh018_xx43_MET4_METMID_METTHK 255.188 1426753837.242 1426754092.430
xh018_xx51_MET5_METMID 261.318 1453849138.751 1453849400.069

Table 28: LPMOS Power fifo_FSM2 490MHz with delay

Metal Configuration Leakage Dynamic Total
xc018_xx10_MET2_METMID 290.363 1258801431.775 1258801722.138
xc018_xx11_MET3_METMID 282.218 1187433811.353 1187434093.571
xc018_xx12_MET4_METMID 282.238 1209002868.574 1209003150.812
xc018_xx13_MET5_METMID 287.752 1248255705.441 1248255993.193
xc018_xx14_MET2_METMID_METTHK 290.150 1244974923.197 1244975213.348
xc018_xx15_MET3_METMID_METTHK 278.612 1214219715.034 1214219993.646
xc018_xx16_MET4_METMID_METTHK 283.003 1198988106.355 1198988389.357

Table 29: MOSLP Power fifo_FSM2 490MHz with delay

Metal Configuration Leakage Dynamic Total
xc018_xx10_MET2_METMID 813.544 958922427.528 958923241.072
xc018_xx11_MET3_METMID 818.323 956583006.600 956583824.923
xc018_xx12_MET4_METMID 812.287 958984858.300 958985670.587
xc018_xx13_MET5_METMID 790.621 941948232.152 941949022.772
xc018_xx14_MET2_METMID_METTHK 814.065 956136488.495 956137302.560
xc018_xx15_MET3_METMID_METTHK 793.050 940944730.370 940945523.420
xc018_xx16_MET4_METMID_METTHK 791.593 945695928.688 945696720.281

Table 30: MOSST Power fifo_FSM2 490MHz with delay

38

Metal Configuration Instances Area
xh018_xx31_MET3_METMID 28746 958991.443
xh018_xx33_MET3_METMID_METTHK 28845 958899.211
xh018_xx41_MET4_METMID 28743 959040.634
xh018_xx43_MET4_METMID_METTHK 28845 958899.211
xh018_xx51_MET5_METMID 28839 958711.673

Table 31: LPMOS Area fifo_FSM2 100MHz without delay

Metal Configuration Instances Area
xc018_xx11_MET3_METMID 28752 958966.848
xc018_xx12_MET4_METMID 28752 959182.056
xc018_xx13_MET5_METMID 28769 959034.485
xc018_xx14_MET2_METMID_METTHK 28747 959474.124
xc018_xx15_MET3_METMID_METTHK 28753 959268.139
xc018_xx16_MET4_METMID_METTHK 28752 959169.758

Table 32: MOSLP Area fifo_FSM2 100MHz without delay

Metal Configuration Instances Area
xc018_xx10_MET2_METMID 28695 957654.079
xc018_xx11_MET3_METMID 28816 957334.342
xc018_xx12_MET4_METMID 28816 957334.342
xc018_xx13_MET5_METMID 28803 957048.422
xc018_xx14_MET2_METMID_METTHK 28804 957777.055
xc018_xx15_MET3_METMID_METTHK 28805 957395.830
xc018_xx16_MET4_METMID_METTHK 28806 957411.202

Table 33: MOSST Area fifo_FSM2 100MHz without delay

Metal Configuration Instances Area
xh018_xx31_MET3_METMID 29623 974932.207
xh018_xx33_MET3_METMID_METTHK 29707 974507.940
xh018_xx41_MET4_METMID 29661 974741.594
xh018_xx43_MET4_METMID_METTHK 29652 974280.434
xh018_xx51_MET5_METMID 29580 974384.964

Table 34: LPMOS Area fifo_FSM2 200MHz without delay

39

Metal Configuration Instances Area
xc018_xx10_MET2_METMID 29460 970142.292
xc018_xx11_MET3_METMID 29448 968266.908
xc018_xx12_MET4_METMID 29464 968525.158
xc018_xx13_MET5_METMID 29372 970286.789
xc018_xx14_MET2_METMID_METTHK 29388 968405.256
xc018_xx15_MET3_METMID_METTHK 29397 968371.438
xc018_xx16_MET4_METMID_METTHK 29319 967132.454

Table 35: MOSLP Area fifo_FSM2 200MHz without delay

Metal Configuration Instances Area
xc018_xx10_MET2_METMID 28789 959200.502
xc018_xx11_MET3_METMID 28775 959142.089
xc018_xx12_MET4_METMID 28779 959471.050
xc018_xx13_MET5_METMID 28774 958511.837
xc018_xx14_MET2_METMID_METTHK 28804 959495.645
xc018_xx15_MET3_METMID_METTHK 28823 959351.148
xc018_xx16_MET4_METMID_METTHK 28821 959114.419

Table 36: MOSST Area fifo_FSM2 200MHz without delay

Metal Configuration Instances Area
xh018_xx31_MET3_METMID 28706 958748.566
xh018_xx33_MET3_METMID_METTHK 28802 958776.235
xh018_xx41_MET4_METMID 28705 958763.938
xh018_xx43_MET4_METMID_METTHK 28810 958819.277
xh018_xx51_MET5_METMID 28800 958717.822

Table 37: LPMOS Area fifo_FSM2 100MHz with delay

Metal Configuration Instances Area
xc018_xx10_MET2_METMID 28708 959452.603
xc018_xx11_MET3_METMID 28739 958979.146
xc018_xx12_MET4_METMID 28739 959154.386
xc018_xx13_MET5_METMID 28747 958954.550
xc018_xx14_MET2_METMID_METTHK 28715 959292.734
xc018_xx15_MET3_METMID_METTHK 28735 959206.651
xc018_xx16_MET4_METMID_METTHK 28735 959197.428

Table 38: MOSLP Area fifo_FSM2 100MHz with delay

40

Metal Configuration Instances Area
xc018_xx10_MET2_METMID 28670 957718.642
xc018_xx11_MET3_METMID 28806 957445.020
xc018_xx12_MET4_METMID 28795 957417.350
xc018_xx13_MET5_METMID 28791 957128.357
xc018_xx14_MET2_METMID_METTHK 28776 957730.939
xc018_xx15_MET3_METMID_METTHK 28789 957315.895
xc018_xx16_MET4_METMID_METTHK 28789 957315.895

Table 39: MOSST Area fifo_FSM2 100MHz with delay

Metal Configuration Instances Area
xh018_xx31_MET3_METMID 32321 1014013.980
xh018_xx33_MET3_METMID_METTHK 32464 1018524.125
xh018_xx41_MET4_METMID 32463 1015852.471
xh018_xx43_MET4_METMID_METTHK 32306 1015677.230
xh018_xx51_MET5_METMID 32409 1015932.406

Table 40: LPMOS Area fifo_FSM2 300MHz with delay

Metal Configuration Instances Area
xc018_xx10_MET2_METMID 31470 1017921.542
xc018_xx11_MET3_METMID 31514 1008756.756
xc018_xx12_MET4_METMID 31466 1010386.188
xc018_xx13_MET5_METMID 31542 1004701.622
xc018_xx14_MET2_METMID_METTHK 31513 1014093.914
xc018_xx15_MET3_METMID_METTHK 31327 1007013.571
xc018_xx16_MET4_METMID_METTHK 31350 1006051.284

Table 41: MOSLP Area fifo_FSM2 300MHz with delay

Metal Configuration Instances Area
xc018_xx10_MET2_METMID 29256 968808.002
xc018_xx11_MET3_METMID 29315 967578.242
xc018_xx12_MET4_METMID 29334 967608.986
xc018_xx13_MET5_METMID 29334 967489.085
xc018_xx14_MET2_METMID_METTHK 29282 968500.562
xc018_xx15_MET3_METMID_METTHK 29374 968300.726
xc018_xx16_MET4_METMID_METTHK 29307 967630.507

Table 42: MOSST Area fifo_FSM2 300MHz with delay

41

Metal Configuration Instances Area
xh018_xx31_MET3_METMID 44821 1294073.374
xh018_xx33_MET3_METMID_METTHK 44684 1281994.056
xh018_xx41_MET4_METMID 44853 1302577.164
xh018_xx43_MET4_METMID_METTHK 44516 1280327.731
xh018_xx51_MET5_METMID 44894 1283669.604

Table 43: LPMOS Area fifo_FSM2 490MHz with delay

Metal Configuration Instances Area
xc018_xx10_MET2_METMID 42619 1278172.577
xc018_xx11_MET3_METMID 41314 1232016.610
xc018_xx12_MET4_METMID 41451 1236499.085
xc018_xx13_MET5_METMID 43037 1264516.092
xc018_xx14_MET2_METMID_METTHK 42702 1270234.476
xc018_xx15_MET3_METMID_METTHK 41524 1226910.031
xc018_xx16_MET4_METMID_METTHK 42241 1231294.126

Table 44: MOSLP Area fifo_FSM2 490MHz with delay

Metal Configuration Instances Area
xc018_xx10_MET2_METMID 31846 1016368.970
xc018_xx11_MET3_METMID 32022 1017623.326
xc018_xx12_MET4_METMID 31803 1016983.850
xc018_xx13_MET5_METMID 31931 1009177.949
xc018_xx14_MET2_METMID_METTHK 31888 1017211.356
xc018_xx15_MET3_METMID_METTHK 32097 1012894.898
xc018_xx16_MET4_METMID_METTHK 32094 1012984.056

Table 45: MOSST Area fifo_FSM2 490MHz with delay

42

