

UNIVERSIDADE DE BRASÍLIA INSTITUTO DE QUÍMICA PROJETOS DE ENGENHARIA QUÍMICA 2

ARTHUR DE SOUZA TOMÉ - 15/0118538 MANUELLA TAVARES SILVEIRA PORTILHO - 15/0138709 VANDRESSA PEREIRA AMORIM - 15/0150512

TRABALHO DE CONCLUSÃO DE CURSO DE ENGENHARIA QUÍMICA

ORIENTADOR: PROF. DR. JOSÉ JOAQUIN LINARES LEÓN

BRASÍLIA 2020

UNIVERSIDADE DE BRASÍLIA INSTITUTO DE QUÍMICA PROJETOS DE ENGENHARIA QUÍMICA 2

ARTHUR DE SOUZA TOMÉ - 15/0118538 MANUELLA TAVARES SILVEIRA PORTILHO - 15/0138709 VANDRESSA PEREIRA AMORIM - 15/0150512

PROJETO DE TROCADOR DE CALOR, BOMBAS E INSTRUMENTAÇÃO E CONTROLE

Trabalho acadêmico apresentado à disciplina de Projetos de Engenharia Química 2 do Instituto de Química da Universidade de Brasília com propósito de avaliação final.

ORIENTADOR: PROF. DR. JOSÉ JOAQUIN LINARES LEÓN

ÍNDICE DE FIGURAS

Figura 1. Esquema básico do processo Claus.	9
Figura 2. Detalhamento do fluxograma de um dos condensadores.	10
Figura 3. Relação entre D_b e o diâmetro do casco, D_s .	16
Figura 4. Gráfico da relação entre D_b e o diâmetro do casco, D_s .	16
Figura 5. Esquema básico do sistema de bombeamento do refluxo.	22
Figura 6. Esquema do sistema de bombeamento do refluxo.	29
Figura 7. Diagrama de instrumentação e controle (I&C).	30
Figura 8. Diagrama simplificado do processo.	41

ÍNDICE DE TABELAS

Tabela 1. Propriedades físicas dos fluidos usados no processo.	10
Tabela 2. Tabela de coeficiente global de transmissão de calor de fluidos.	10
Tabela 3. Velocidade de escoamento do fluido dentro do tubo a partir do númer	0
de passes.	13
Tabela 4. Constantes usadas para analisar o pitch.	13
Tabela 5. Diâmetro correspondente a cada número de passes.	14
Tabela 6. Diâmetro do casco de acordo com o número de passes.	15
Tabela 7. Números admissionais e o coeficiente individual de transmissão de	
calor.	16
Tabela 8. Números admissionais para calcular o h _o .	17
Tabela 9. Valores dos U_0 .	18
Tabela 10. Valores de perda de pressão do tubo.	19
Tabela 11. Valores de perda de pressão do casco.	20
Tabela 12. Custos do Equipamento.	20
Tabela 13. Informações referentes à torre de destilação C-1.	22
Tabela 14. Informações referentes ao vaso pulmão C-2.	22
Tabela 15. Propriedades Físicas do fluido de processo.	22
Tabela 16. Dados de perda de carga necessários para o projeto.	23

SUMÁRIO

1.	Objetivo do projeto de trocador de calor	7
2.	Descrição do projeto de trocador de calor	7
3.	Desenvolvimento do projeto	9
	3.1. Especificações	9
	3.2. Propriedades físicas	9
	3.3. Coeficiente global de transmissão de calor (U)	9
	3.4. Área de troca de calor	10
	3.5. Layout e tamanho do tubo	11
	3.6. Número de tubos	11
	3.7. Diâmetro da carcaça	12
	3.8. Coeficiente individual de transmissão de calor do tubo (h _i)	15
	3.9. Coeficiente individual de transmissão de calor da carcaça (h_0)	16
	3.10. Coeficiente global de transmissão de calor da carcaça (U_0)	17
	3.11. Perda de pressão tubo (ΔP_t)	18
	3.12. Perda de pressão casco (ΔP_s)	19
	3.13. Custos do Equipamento	19
4.	Objetivo do projeto de bombas	20
5.	Descrição do projeto de bombas	20
6.	Desenvolvimento do projeto	21
	6.1. Especificações	21
	6.2. Propriedades Físicas	22
	6.3. Perda de Carga	22
	6.4. Pressão de Aspiração	22
	6.5. Pressão de Impulsão	23
	6.6. Vazão Mínima	25
	6.7. Vazão de Projeto	25
	6.8. Consumo Elétrico	26
	6.8.1. Potência Absorvida	26

	6.8.2. Potência Hidráulica	26
	6.8.3. Potência Real Consumida	27
	6.9. NPSH Disponível	27
7.	Objetivo do projeto de instrumentação e controle	27
8.	Descrição do projeto de instrumentação e controle	27
9.	Desenvolvimento do projeto	28
	9.1. Diagrama de instrumentação e controle	28
	9.2. Instrumentação	29
	9.3. Controle	30
10	. REFERÊNCIAS BIBLIOGRÁFICAS	31
11	. ANEXO I	32
12	. ANEXO II	37
13	. ANEXO III	40
14	. ANEXO IV	40
15	. ANEXO V	40
16	. ANEXO VI	41
17	'. ANEXO VII	42
18	. ANEXO VIII	44

1. Objetivo do projeto de trocador de calor

O processo Claus é o processo padrão na indústria de petróleo e gás natural para a eliminação do enxofre dos produtos e sua recuperação por meio do processo de dessulfurização. Após os conversores catalíticos, existem condensadores para permitir liquefazer o enxofre produzido e extraí-lo do sistema. O presente trabalho visa projetar um desses condensadores, baseado nos resultados de uma simulação feita através do software Aspen Hysys.

2. Descrição do projeto de trocador de calor

O processo Claus é corriqueiramente utilizado em usinas termelétricas para a purificação de correntes contendo sulfeto de hidrogênio. A base deste é uma reação química inicial de conversão do H_2S a SO_2 , com uma posterior recombinação do SO_2 produzido com H_2S para obter como produto final enxofre elementar.

- 1) $H_2S + 3/2 O_2 \hat{U} 3/4 SO_2 + H_2O$
- 2) $2 H_2 S + 3/4 SO_2 \hat{U} 3/x S_x + 2 H_2 O$

Um esquema básico do processo se apresenta na Figura 1.

Figura 1. Esquema básico do processo Claus.

Como pode ser observado, após os conversores catalíticos, existem condensadores para permitir liquefazer ao S produzido e extraí-lo do sistema.

O foco do presente projeto será trabalhar com um desses condensadores, com base nos resultados de uma simulação feita com ajuda de simulador comercial.

Figura 2. Detalhamento do fluxograma de um dos condensadores.

A partir de simulação através do software Aspen Hysys, foi possível mensurar uma série de valores para as correntes de materiais, suas propriedades e em diferentes fases. Desse modo, têm-se os valores referentes às especificações das correntes do processo, que são apresentadas na Tabela 1 na parte de Anexos. Do mesmo modo, detalha-se as especificações dos trocadores de calor na Tabela 2.

3. Desenvolvimento do projeto

3.1. Especificações

As especificações das correntes de entrada e saída do resfriador podem ser analisadas no Anexo 1 e 2, respectivamente, e foram obtidas por meio de um simulador comercial.

Uma corrente de água será utilizada como fluido refrigerante cuja temperatura de entrada no trocador será de 28 °C e de saída de 45 °C.

3.2. Propriedades físicas

		Á	gua		
	Temperatura (°C)	c _p (kJ/kgK)	Condutividade Térmica (W/mK)	Densidade (kg/m³)	Viscosidade (kg/ms)
in	28,0	4,1788	0,6118	996,4000	0,0008
out	45,0	4,1800	0,6370	990,1000	0,0006
		Fluid	do Hot		
	Temperatura (°C)	Fluid Cp (kJ/kgK)	do Hot Condutividade Térmica (W/mK)	Densidade (kg/m³)	Viscosidad (cP)
in	Temperatura (°C) 1149,0	Fluid c _p (kJ/kgK) 1,2950	do Hot Condutividade Térmica (W/mK) 0,0796	Densidade (kg/m³) 0,6349	Viscosidado (cP) 0,0451

Tabela 1. Propriedades físicas dos fluidos usados no processo.

3.3. Coeficiente global de transmissão de calor (U)

Como esse projeto trata-se de um caso muito específico, foi utilizada uma tabela retirada do livro do Towler[1]. Para o cálculo do coeficiente global de transmissão de calor U, foi considerada a média do intervalo em destaque na Tabela 2.

Tabela 2. Tabela de coeficiente global de transmissão de calor de fluidos.

12.3. OVERALL HEAT TRANSFER COEFFICIENT

797

 Table 12.1.
 Typical Overall Coefficients

Shell and Tube Exchangers						
Hot Fluid Cold Fluid U (W/m ² Heat exchangers						
Organic solvents	Organic solvents	100-300				
Light oils	Light oils	100-400				
Heavy oils	Heavy oils	50-300				
Gases	Gases	10-50				
Coolers						
Organic solvents	Water	250-750				
Light oils	Water	350-900				
Heavy oils	Water	60-300				
Gases	Water	20-300				
Organic solvents	Brine	150-500				
Water	Brine	600-1200				
Gases	Brine	15-250				

Após a conversão de unidades, o valor encontrado para U é igual a 137,67 kcal/h m² °C.

3.4. Área de troca de calor

Para o cálculo da área de troca, é preciso calcular a variação de temperatura, conforme a equação abaixo:

$$\Delta T_{ml} = \frac{(t_1 - T_2) - (t_2 - T_1)}{\ln \frac{(t_1 - T_2)}{(t_2 - T_1)}}$$

onde T1 corresponde à temperatura de entrada do fluido refrigerante (água), T2 corresponde à temperatura de saída do fluido refrigerante e t₁ e t₂ correspondem à entrada e saída de vapor, respectivamente. Logo,

$$\Delta Tml = \frac{(1149 - 45) - (148,9 - 28)}{\ln\frac{(1149 - 45)}{(148,9 - 28)}}$$

$\Delta Tml = 444.49^{\circ}C$

Por fim, é necessário calcular o calor para que a área de troca seja definida. O cálculo foi feito a partir da equação a seguir e os dados foram retirados das especificações obtidas a partir da simulação no Aspen.

0

$$Q = m \times cp \times \Delta T$$

 $Q = 4575 \times 1,2165 \times (1149 - 148,9)$

$$Q = 5566044,05 \text{ kJ/h}$$

Q = 1330316,46 kcal/h

Com todos os parâmetros calculados, a área de troca é representada pela equação abaixo.

$$Q = U_m \cdot A \cdot \Delta T_{ml}$$

Dessa forma, a área de troca encontrada é igual a 21,75 m².

3.5. Layout e tamanho do tubo

A partir do tamanho especificado para a troca de calor é possível estabelecer o modelo de trocador, sendo então casco-tubo.

Por se tratar de um fluido corrosivo, o diâmetro externo do tubo d_o é igual a 1 polegada, que corresponde a 25,4 mm e o comprimento L é igual a 20 pés , que corresponde a 6096 mm. Para tubos de 1", usa-se uma BWG12, cuja espessura é igual a 2,7mm.

3.6. Número de tubos

A área de um tubo é calculada da seguinte forma:

A de um tubo = $L \times do \times \pi$ A de um tubo = 6096 × 25,4 × π A de um tubo = 486192,58 mm²

O número de tubos N_t é calculado pela razão entre a Área de Troca Térmica e a Área de um Tubo.

$$Nt = \frac{A \ troca \ térmica}{A \ de \ um \ tubo}$$

$$Nt = \frac{21750599,43 \ mm^2}{486192,58 \ mm^2}$$

$$Nt = 44,74$$
 tubos

A partir do número de tubos calculado anteriormente é necessário especificar a área por passe. Esses são calculados por:

Área por passe = (Nt/número de passes) * área da seção transversal do tubo onde,

Área da seção transversal do tubo =
$$(\pi/4) * (di)^2$$

sendo,

di = (do) - (2 * espessura do tubo)

Por meio da razão entre o fluxo volumétrico e a área por passe é possível calcular a velocidade de escoamento do fluido dentro do tubo. Os valores obtidos podem ser consultados na Tabela 3.

N° de Passes	N _t por Passe (tubos)	Área por Passe (mm²)	Fluxo Volumétrico (m³/s)	Velocidade de Escoamento Fs (m/s)
1	44,74	13851,32	1,11	80,45
2	22,37	6925,66	1,11	160,90
4	11,18	3462,83	1,11	321,80
6	7,46	2308,55	1,11	482,69
8	5,59	1731,41	1,11	643,59

Tabela 3. Velocidade de escoamento do fluido dentro do tubo a partir do nº de passes.

3.7. Diâmetro da carcaça

Uma vez calculado o número de tubos Nt, analisa-se o pitch, parâmetro que define disposição dos tubos entre si referidos à distância entre centro e geometria de um corte transversal. Como o fluido do processo é sujo, utiliza-se a geometria quadrada (Square Pitch) e o cálculo de D_b é feito a partir das equações e dos dados apresentados na Tabela 4.

Tabela 4. Constantes usadas para analisar o pitch.

Triangular Pitch, $p_t = 1.25d_o$							
No. passes	1	2	4	6	8		
K ₁	0.319	0.249	0.175	0.0743	0.0365		
>n1	2.142	2.207	2.285	2.499	2.675		
Square Pitch, p _t = 1.25d _o							
No. passes	1	2	4	6	8		
K ₁	0.215	0.156	0.158	0.0402	0.0331		
n ₁	2.207	2.291	2.263	2.617	2.643		

Table 12.4. Constants for Use in Equation 12.3

$$N_t = K_1 \left(\frac{D_b}{d_o}\right)^{n_1},\tag{12.3a}$$

$$D_b = d_o \left(\frac{N_t}{K_1}\right)^{1/n_1},$$
 (12.3b)

where

 N_t = number of tubes; D_b = bundle diameter, mm; d_o = tube outside diameter, mm.

Utilizando a equação 12.3b, o diâmetro externo do tubo d_o é igual a 25,4 mm, o número de tubos N_t igual a 44,74 e os dados K_1 e n_1 presentes na tabela, foi possível encontrar o D_b correspondente a cada número de passes. Os valores encontrados estão representados na Tabela 5.

N° de Passes	Kı	n ₁	D _b (mm)
1	0,215	2,207	285,25
2	0,156	2,291	300,28
4	0,158	2,263	307,86
6	0,0402	2,617	370,62
8	0,0331	2,643	388,52

Tabela 5. Diâmetro correspondente a cada número de passes.

A Figura 3 apresenta a relação entre o D_b e o diâmetro do casco D_s , o espaçamento entre tais diâmetros podem ser obtido pelo gráfico apresentado na Figura 4.

Figura 3. Relação entre Db e o diâmetro do casco, D_s.

Figura 4. Gráfico da relação entre Db e o diâmetro do casco, D_s.

Na Tabela 6, estão representados os resultados encontrados.

N° de Passes	Gráfico	Ds (mm)
1	12	297,25
2	12	312,28
4	12	319,86
6	14	384,62
8	14	402,52

Tabela 6. Diâmetro do casco de acordo com o número de passes.

3.8. Coeficiente individual de transmissão de calor do tubo (h_i)

O cômputo do coeficiente individual de transmissão de calor é calculado por meio da equação de Dittus-Boelter, já que se trata de um escoamento turbulento completamente desenvolvido em tubos lisos, expressa como:

$$Nu = 0,023 * Re^{0,8} * Pr^{n}$$

onde n = 0,4 para aquecimento e 0,3 para resfriamento do fluido que escoa através do tubo. Sendo que,

$$Nu = \frac{h D}{k}$$
$$Re = \frac{DV\rho}{\mu}$$
$$Pr = \frac{c_{\rho}\mu}{k} :$$

Os valores encontrados para tais números admissionais e o coeficiente individual de transmissão de calor para o caso do escoamento da água pelo tubo podem ser consultados na Tabela 7.

Velocidade Fs (m/s)	Re	Nu	Pr	h _i (kW/m²°C)
80,45	80821,43	173,47	0,69	0,35
160,90	161642,87	302,03	0,69	0,61
321,80	323285,73	525,87	0,69	1,05
482,69	484928,60	727,37	0,69	1,46
643,59	646571,47	915,60	0,69	1,83

Tabela 7. Números admissionais e o coeficiente individual de transmissão de calor.

3.9. Coeficiente individual de transmissão de calor da carcaça (h_o)

Inicialmente, é necessário especificar a área para o fluxo cruzado A_s, essa é expressa por:

$$A_s = \frac{(p_t - d_o)D_s l_B}{p_t}$$

where

 p_t = tube pitch; d_o = tube outside diameter; D_s = shell inside diameter, m; l_B = baffle spacing, m.

Considerando l_B como 0,9Ds.

A razão entre o fluxo volumétrico e As resulta na velocidade de escoamento do fluido dentro do tubo.

O diâmetro hidráulico do lado do casco para um arranjo quadrado dos tubos é dado por:

$$d_e = \frac{4\left(\frac{p_t^2 - \pi d_o^2}{4}\right)}{\pi d_o} = \frac{1.27}{d_o}(p_t^2 - 0.785d_o^2)$$

Por meio desses dados é possível calcular os números adimensionais para o cômputo do coeficiente individual de transmissão de calor do lado da casca. O resultado pode ser analisado na Tabela 8.

Tabela 8. Números admissionais para calcular o h_{o.}

Ds (mm)	/ _B (mm)	A _s (m²)	Velocidade (m/s)	Re	Nu	Pr	h₀ (kW/m²°C)
297,25	267,53	0,02	1,38	47953,94	239,06	4,79	5,95
312,28	281,05	0,02	1,25	43449,87	220,93	4,79	5,50
319,86	287,87	0,02	1,19	41414,79	212,61	4,79	5,29
384,62	346,16	0,03	0,82	28642,61	158,29	4,79	3,94
402,52	362,27	0,03	0,75	26152,19	147,18	4,79	3,66

3.10. Coeficiente global de transmissão de calor da carcaça (U_o)

A relação entre os coeficientes individuais e o coeficiente global de transmissão de calor é dado por:

$$\frac{1}{U_o} = \frac{1}{h_o} + \frac{1}{h_{od}} + \frac{d_o \ln\left(\frac{d_o}{d_i}\right)}{2k_w} + \frac{d_o}{d_i} \times \frac{1}{h_{id}} + \frac{d_o}{d_i} \times \frac{1}{h_i}$$

where

 U_o = the overall coefficient based on the outside area of the tube, W/m²°C; h_o = outside fluid film coefficient, W/m²°C; h_i = inside fluid film coefficient, W/m²°C; h_{od} = outside dirt coefficient (fouling factor), W/m²°C; h_{id} = inside dirt coefficient, W/m²°C; k_{uv} = thermal conductivity of the tube wall material, W/m°C; d_i = tube inside diameter, m; d_o = tube outside diameter, m.

Como se trata de um fluido corrosivo, tem que escolher um material caro resistente à corrosão, como aço inoxidável ou mesmo titânio. Por conta do custo, escolheu aço inoxidável para o revestimento da parede do tubo, sendo $k_w = 16 W/m^{2o}C$, conforme pode ser consultado no Anexo 3.

Os valores obtidos de U_o podem ser consultados na Tabela 9.

N° de Passes	U _o (W/m²°C)	Desvios
1	177,91	0,11
2	245,78	0,54
4	314,82	0,97
6	344,22	1,15
8	364,45	1,28

Tabela 9. Valores dos U_{0.}

Como se pode observar, apenas para a primeira interação, com número de passes igual a 1, que o desvio de U_0 em relação à primeira estimação, se encontra abaixo de 30%.

3.11. Perda de pressão tubo (ΔP_t)

A perda de pressão do lado dos tubos é dado por:

$$\Delta P_t = N_p \left[8j_f \left(\frac{L}{d_i} \right) \left(\frac{\mu}{\mu_w} \right)^{-m} + 2.5 \right] \frac{\rho u_t^2}{2}$$

where

 ΔP_t = tube-side pressure drop, N/m² (Pa); N_p = number of tube-side passes; u_t = tube-side velocity, m/s; L = length of one tube.

Negligenciando o fator de correção da viscosidade, obtemos os dados apresentados na Tabela 10.

N° de Passes	u _t (m/s)	L (m)	ΔP_t (kg/cm ²)
1	80,45	6,10	0,37
2	160,90	6,10	2,67
4	321,80	6,10	6,02
6	482,69	6,10	20,32
8	643,59	6,10	48,17

Tabela 10. Valores de perda de pressão do tubo.

Apenas para Np = 1, a pressão atende a especificação por estar abaixo de $1kg/cm^2$.

3.12. Perda de pressão casco (ΔP_s)

A perda de pressão do lado dos cascos é dado por:

$$\Delta P_s = 8 \ j_f \left(\frac{D_s}{d_e}\right) \left(\frac{L}{l_B}\right) \frac{\rho u_s^2}{2} \left(\frac{\mu}{\mu_w}\right)^{-0.14}$$

where

$$L =$$
 tube length;
 $l_B =$ baffle spacing.

Negligenciando o fator de correção da viscosidade, realizou-se o cômputo da perda de pressão do lado da carcaça para o caso atendido nas especificações anteriores, Np=1, obtemos os dados apresentados na Tabela 11.

Tabela 11. Valores de perda de pressão do casco.

N° de	Ds	I _B	Velocidade us	ΔP_s
Passes	(mm)	(mm)	(m/s)	(kg/cm ²)
1	297,25	267,53	1,38	0,73

Atendendo a especificação por estar abaixo de $1kg/cm^2$.

3.13. Custos do Equipamento

Os custos foram calculados conforme a equação abaixo:

$$C = a + bS^n$$

e os valores correspondentes aos parâmetros *a*, *b* e *n* para cada tipo de equipamento foram retirados do Livro Chemical Engineering Design.

Os custos foram feitos com base em U.S. Gulf Coast para 2007 e estão apresentados na Tabela 12.

Tabela 12.	Custos	do	Equipamento.
------------	--------	----	--------------

Equipamento	Área (m²)	а	b	n	Custo 2007 (k\$)
Carcaça e Tubos em U	21,75	24000	46	1,2	25,85
Tubo Duplo	21,75	1600	2100	1	47,28
Termosifão	21,75	26000	104	1,1	29,08
Caldeira de Tubos em U	21,75	25000	340	0,9	30,44
Placas e Marcos	21,75	1350	180	0,95	4,71

4. Objetivo do projeto de bombas

O presente trabalho visa projetar uma bomba centrífuga que tem como função formar o refluxo de uma torre de destilação para separar uma mistura de $n-C_6$, $n-C_7$ e $n-C_8$.

5. Descrição do projeto de bombas

O sistema do projeto é composto por uma torre que recebe a alimentação em formato de líquido em ponto de bolha e é introduzida em uma torre de fracionamento. Pelo fundo, extrai-se uma corrente enriquecida em n-octano. Pelo topo, obtém-se um destilado líquido rico em n-hexano.

O sistema é composto por um vaso separador-pulmão que constitui o destilado e o refluxo, a entrada da bomba centrífuga, uma válvula de controle na saída da bomba para controlar a vazão de refluxo e a subida até o topo da torre. A bomba centrífuga a ser projetada é responsável por bombear a corrente de refluxo da torre.

Um esquema básico do sistema de bombeamento do refluxo se apresenta na Figura 1, sendo C-1 a torre de destilação e C-2 o vaso pulmão.

Figura 5. Esquema básico do sistema de bombeamento do refluxo.

6. Desenvolvimento do projeto

6.1. Especificações

As informações relevantes da torre de destilação C-1 e do vaso pulmão C-2 necessárias para o projeto do sistema de bombeamento estão representadas nas Tabelas 1 e 2, respectivamente.

Torre	e de Destilação	(C-1)
Diâmetro (m)	Altura (m)	ΔP (kg/cm²)
1,6	12,3	1,35

 Tabela 13. Informações referentes à torre de destilação C-1.

Tabela 14. Informações referentes ao vaso pulmão C-2.

	Vaso Pulmão (C-2)	
Diâmetro (m)	Comprimento (m)	ΔP (kg/cm ²)
1,0	5,0	1,00

6.2. Propriedades Físicas

 Tabela 15. Propriedades Físicas do fluido de processo.

Q Refluxo	Densidade	Temperatura
(m³/h)	(kg/m³)	(°C)
13,1104	616,5120	80,588

6.3. Perda de Carga

Os dados de perda de carga necessários para o projeto da bomba centrífuga estão representados na Tabela 4.

ΔP Tubo In	ΔP Tubo Out	∆P Válvula
(kg/cm²/km)	(kg/cm²/km)	(kg/cm²)
0,5	2,0	0,25

Tabela 16. Dados de perda de carga necessários para o projeto.

6.4. Pressão de Aspiração

Para calcular a pressão de aspiração, é necessário estimar o comprimento do tubo Lin em metros.

$$L_{in} = 1,3 \times 3 m$$
$$L_{in} = 3,9 m$$

A perda de carga na admissão é calculada da seguinte forma:

$$\Delta P_{Tubo \ ln} = 0.5 \ kg/cm^2/km \times (3.9 \ m \times 10^{-3})$$
$$\Delta P_{Tubo \ ln} = 0.00195 \ kg/cm^2$$

Vale lembrar que a perda de carga na admissão é negativa. As perdas de carga estática do tubo, estática do líquido e estática do líquido total são calculadas a partir da equação abaixo.

$$H(m) = \Delta P \left(\frac{kg}{cm^2}\right) \cdot \frac{1}{\rho \left(\frac{g}{cm^3}\right)} \cdot 10$$

 $\Delta P_{\text{Estática Tubo}} = 3 \ m \times 616,512 \ kg/m^3 \div 10^4$ $\Delta P_{\text{Estática Tubo}} = 0,18495 \ kg/cm^2$

 $\Delta P_{Estática Liq} = \frac{1m}{2} \times 616,512 \ kg/m^3 \div 10^4$ $\Delta P_{Estática Liq} = 0,03083 \ kg/cm^2$ $\Delta P_{Estática Liq Total} = 1 \ m \times 616,512 \ kg/m^3 \div 10^4$

 $\Delta P_{\text{Estática Líq Total}} = 0,06165 \ kg/cm^2$

A pressão de aspiração é calculada da seguinte forma:

$$\Delta P_{Aspiração} = \Delta P_{Pulmão\ c2} + \Delta P_{EstáticaTubo} + \Delta P_{EstáticaLíq} - \Delta P_{TuboIn}$$

 $\Delta P_{Aspiração} = 1,00 + 0,18495 + 0,03083 - 0,00195\ kg/cm^2$
 $\Delta P_{Aspiração} = 1,21383\ kg/cm^2$

A pressão máxima de aspiração é calculada da seguinte forma:

$$\Delta P_{Maxima} de Aspiração = \Delta P_{Max} + \Delta P_{Estática Tubo} + \Delta P_{Estática Líq Total} - \Delta P_{Tubo In}$$

 $\Delta P_{Maxima} de Aspiração = 3,5 + 0,18495 + 0,06165 - 0,00195 kg/cm^2$
 $\Delta P_{Maxima} de Aspiração = 3,74465 kg/cm^2$

6.5. Pressão de Impulsão

Para calcular a pressão de impulsão, é necessário estimar o comprimento do tubo Lout em metros.

$$L_{out} = 1,3 \times (12,3+3) m$$

 $L_{out} = 19,89 m$

A perda de carga na impulsão é calculada da seguinte forma:

$$\Delta P_{Tubo \ Out} = 2 \ kg/cm^2/km \times (19,89 \ m \times 10^{-3})$$

 $\Delta P_{Tubo \ Out} = 0,03978 \ kg/cm^2$

Vale lembrar que a perda de carga na impulsão é positiva. A perda de carga estática é calculada a partir da equação abaixo.

$$H(m) = \Delta P \left(\frac{kg}{cm^2}\right) \cdot \frac{1}{\rho \left(\frac{g}{cm^3}\right)} \cdot 10$$

$$\Delta P_{\text{Estática}} = 15,3 \text{ } m \times 616,512 \text{ } kg/m^3 \div 10^4$$
$$\Delta P_{\text{Estática}} = 0,943245 \text{ } kg/cm^2$$

A pressão de impulsão é calculada da seguinte forma:

$$\begin{split} \Delta P_{Impulsão} &= \Delta P_{Torre\ de\ Destilação\ c1} + \Delta P_{Estática} + \Delta P_{Válvula} + \Delta P_{Tubo\ Out} \\ \Delta P_{Impulsão} &= 1,35 + 0,943245 + 0,25 + 0,03978\ kg/cm^2 \\ \Delta P_{Impulsão} &= 2,58303\ kg/cm^2 \end{split}$$

Para calcular a pressão máxima de impulsão, é necessário calcular a pressão de *shut-off* (impulsão fechada). Também é necessário calcular a pressão diferencial, de acordo com a equação a seguir:

$$\Delta P_{Diferencial} = \Delta P_{Impulsão} - \Delta P_{Aspiração}$$

 $\Delta P_{Diferencial} = 2,58303 - 1,21383 kg/cm^2$
 $\Delta P_{Diferencial} = 1,3692 kg/cm^2$

A partir do valor da pressão diferencial, a pressão de *shut-off* (impulsão fechada) é calculada a seguir.

$$\Delta P_{shut-Off} = 1,2 \times \Delta P_{Diferencial}$$
$$\Delta P_{shut-Off} = 1,2 \times 1,3692 \ kg/cm^2$$
$$\Delta P_{shut-Off} = 1,64304 \ kg/cm^2$$

A pressão máxima de impulsão é calculada fazendo a seguinte consideração

$$\Delta P_{max} = \Delta P_{Shut-Off}$$

e utilizando a equação abaixo.

$$P_{i\,max} = Pasp_{max} + \Delta P_{max}$$

$$\Delta P_{Maxima} de Impulsão = \Delta P_{Maxima} de Aspiração + \Delta P_{Shut-Off}$$

 $\Delta P_{Maxima de Impulsão} = 3,74465 + 1,64304 kg/cm^2$

 ΔP_{Maxima} de Impulsão = 5,38769 kg/cm^2

6.6. Vazão Mínima

A vazão mínima é calculada pela equação abaixo.

$$Q_{h \text{linima}} = 0,6 \times Q_{Refluxo}$$

 $Q_{h \text{linima}} = 0,6 \times 13,1 \, m^3/h$
 $Q_{h \text{linima}} = 7,86 \, m^3/h$

6.7. Vazão de Projeto

A vazão de projeto é calculada pela equação abaixo.

$$Q_{Projeto} = 1,2 \times Q_{Refluxo}$$

 $Q_{Projeto} = 1,2 \times 13,1 m^3/h$
 $Q_{Projeto} = 15,72 m^3/h$

6.8. Consumo Elétrico

Os cálculos de potências de projeto (absorvida, hidráulica e real consumida, respectivamente) estão representados a seguir.

6.8.1. Potência Absorvida

$$W_{a}(CV) = \frac{Q(m^{3}/h) \cdot \Delta P(kg/cm^{2})}{27,4}$$
$$W_{a} = \frac{15,72 \times 1,64304 CV}{27,4}$$
$$W_{a} = 0,94265 \times 0,736 \text{ kW}$$

6.8.2. Potência Hidráulica

$$W_{h} = \frac{W_{a}}{\eta_{h}} \cdot 100$$

$$W_h = \frac{0,69379}{0,45} \, \mathrm{kW}$$

$$W_h = 1,54176 \, \text{kW}$$

6.8.3. Potência Real Consumida

$$W_c = \frac{W_h}{\eta_m} \cdot 100$$
$$W_c = \frac{1,54176}{0,9} \text{ kW}$$
$$W_c = 1,71306 \text{ kW}$$

6.9. NPSH Disponível

O NPSH disponível para o projeto da bomba foi calculado a partir da equação abaixo.

$$NPSH_{disponível} = \frac{(P_{aspiração} - P_{vapor})}{\rho \times g}$$

$$NPSH_{disponivel} = \frac{(1,21383 - 1,033) kg/cm^2}{616,5 kg/m^3} \times 10^4$$
$$NPSH_{disponivel} = 2,93309 m$$

7. Objetivo do projeto de instrumentação e controle

O objetivo do projeto é adicionar e identificar os sistemas de instrumentação e controle no diagrama de processo da unidade de separação de n-hexano, n-heptano e n-octano projetada. Serão definidos os melhores locais para instrumentos de vazão, pressão, nível e temperatura e seus respectivos controladores e válvulas. As fichas de especificação correspondentes aos instrumentos e laços de controle estão preenchidas ao fim do projeto.

8. Descrição do projeto de instrumentação e controle

Na Fig. 1, apresenta-se o diagrama de processo da unidade de separação de n-hexano, n-heptano e n-octano projetada. O sistema é composto por uma torre que recebe a alimentação em formato de líquido em ponto de bolha e é introduzida em uma torre de fracionamento. Nela, pela parte inferior, extrai-se uma corrente enriquecida em n-octano, enquanto pelo topo, obtém-se um destilado líquido rico em n-hexano.

Figura 6. Esquema do sistema de bombeamento do refluxo.

9. Desenvolvimento do projeto

9.1. Diagrama de instrumentação e controle

Os instrumentos, controladores e válvulas foram adicionados ao sistema de bombeamento do refluxo e estão representados na imagem abaixo.

Figura 7. Diagrama de instrumentação e controle (I&C).

9.2. Instrumentação

Para medir a vazão, não é necessário monitorar todas as correntes. Monitorando a corrente 4, sabe-se que as correntes 2 e 3 resultam na somatória da corrente 4. O medidor de vazão FI-1 foi colocado na corrente 4 para medir a saída do tanque de n-hexano líquido destilado.

O controlador de vazão FIC-1 foi colocado na alimentação da coluna de destilação (corrente 1), que encontra-se na fase de mistura.

Outro controlador de vazão FIC-2 foi colocado na saída da bomba para medir o refluxo de n-hexano líquido destilado na saída da bomba (corrente 6). A corrente de saída da

torre é a somatória das correntes 7 e 9. Por isso, um medidor de vazão FI-2 foi colocado na corrente 9 para medir a corrente de saída de n-octano. É mais fácil medir a vazão de uma corrente líquida do que de uma corrente de vapor. Por fim, um medidor de vazão FI-3 foi colocado para controlar a vazão do vapor de aquecimento do trocador de calor.

Para medir o nível, foram adicionados controladores de nível no fundo dos dois vasos: um controlador de nível LIC-01 no vaso C-2, com fase L - L e outro LIC-02 na torre de destilação C-1, com fase L - V/G.

Para medir temperaturas, foram adicionados 8 medidores de temperatura no total, são eles: para a corrente de alimentação 1 (TI-1); para a corrente 2 de vapor no topo (TI-2); para a corrente 3 de entrada de n-hexano líquido (TI-3), devido à presença de um condensador; para a corrente 4 de saída de n-hexano líquido (TI-4); para a corrente 9 de saída de n-octano (TI-5); para o refluxo de vapor no fundo da torre na corrente 8 (TI-6); para o vapor de aquecimento do trocador de calor (TI-7) e, por fim, para a corrente 7 de líquido no fundo da torre (TI-8). Vale lembrar que na bomba P-1, a mudança de temperatura é mínima nas correntes 4, 5 e 6. Por se tratar de um líquido incompressível, as temperaturas são consideradas equivalentes.

Para medir a pressão, foram adicionados um medidor na corrente de alimentação 1 (PI-1) e um controlador de pressão na corrente 2 de vapor no topo (PIC-1).

A corrente 6 é a saída da bomba, portanto, monitoramos a pressão da saída para saber se o funcionamento da bomba P-1 está adequado. Por isso, um medidor foi adicionado na corrente de refluxo de n-hexano líquido na saída da bomba (PI-2).

Outro monitoramento importante de pressão foi na corrente 5 para saber a pressão diferencial que está sendo fornecida pela bomba P-1. Por isso, um medidor foi adicionado na corrente de refluxo de n-hexano líquido na entrada da bomba (PI-3).

Comparando as pressões das correntes 2 e 3, é possível monitorar o funcionamento do condensador. Por isso, foi adicionado um medidor de pressão na corrente 3 de entrada de n-hexano líquido (PI-4).

A pressão na corrente 9 de saída de n-octano também deve ser medida (PI-5), por se tratar de uma corrente de saída da unidade.

Pelo fundo da torre, também é interessante medir a pressão nas correntes 7 (PI-6) e 8 (PI-8), que representam a pressão de fundo da torre para verificar o estado do refervedor.

Por fim, o vapor de aquecimento do trocador de calor também contém um instrumento de pressão (PI-7).

A ficha de especificação dos instrumentos está anexada ao fim do projeto.

9.3. Controle

Para adicionar controladores, devemos analisar 3 pontos fundamentais: alimentação, topo e fundo.

Na alimentação, há um controle de vazão FIC-1 e sua correspondente válvula de controle. Esse primeiro laço de controle é feito para manter a alimentação constante, controlando as condições de entrada.

No topo, a primeira variável controlada é a pressão da coluna. Transformamos o indicador de pressão em um indicador controlador PIC-1. Como o esquema é um sistema de condensação total, é necessário adicionar um *bypass* com a sua respectiva válvula de controle, formando o segundo laço de controle.

Ainda no topo, o indicador de nível do vaso C-2 é transformado em um indicador controlador LIC-1 e uma válvula de controle é adicionada à corrente 4, formando o terceiro laço de controle.

Para controlar a taxa de refluxo, o indicador de vazão da saída da bomba P-1 é transformado em um indicador controlador FIC-2 e uma válvula de controle é adicionada à corrente 6, formando o quarto laço de controle.

No fundo, a variável controlada é a vazão de vapor alimentado ao fundo da torre. Há um indicador controlador FIC-3 e uma válvula de controle é adicionada à corrente de vapor de aquecimento, formando o quinto laço de controle.

Ainda no fundo, o indicador de nível é transformado em um indicador controlador LIC-2 para regular a vazão de resíduo que sai do sistema e uma válvula de controle é adicionada à corrente 9, formando o sexto laço de controle.

A ficha de especificação dos laços de controle está anexada ao fim do projeto.

10.REFERÊNCIAS BIBLIOGRÁFICAS

CENGEL, Yunus A.; GHAJAR, Afshin J. **Transferência de Calor e Massa**. Amgh Editora, p. 489, 506, 663, Tabela A-9, Tabela 12-1, Tabela 12-4, Figura 12.24 e Figura 12.30 2009.

KERN, Donald Quentin. Process heat transfer. Tata McGraw-Hill Education, 1997.

SOUZA, Monique Silveira. Análise Térmica de um Trocador de Calor do tipo Casco e Tubos para Resfriamento do Resíduo de uma Unidade de Destilação Atmosférica. 2013.

TOWLER, GAVIN. CHEMICAL ENGINEERING DESIGN: Principles, Practice and Economics of Plant and Process Design. 6. ed. San Diego, California: Elsevier, 2008.

11.ANEXO I

CORRENTES MATERIAIS			
Número de corrente	11		
Descrição	Entrada do fluido quente		
Pressão	2,7206	Kg/cm ² g	
Temperatura	1149	°C	
Vazão mássica	4575	Kg/h	
Vazão molar	162,6	Kmol/h	
Entalpia total	0,963	Mkcal/h	
Fração de sólidos	0,0		
Fração de vapor	1,0		
PROPRIEDADES DA FASE LÍQUIDA			
Vazão volumétrica @P e T de operação	0,0	m³/h	
Peso molecular	31,42	Kg/kmol	
Densidade	335,1	Kg/m ³	
Viscosidade	1,626e-03	сР	
Condutividade térmica	0,1225	W/m·°C	
Calor específico	0,7707	kJ/kg∙°C	
Tensão superficial	0,0	dinas/cm	

PROPRIEDADES DA FASE VAPOR/GÁS				
Vazão volumétrica @P e T de operação	6,454		m³/h	
Peso molecular	28,14		Kg/kmol	
Densidade	0,6349	9	Kg/m ³	
Viscosidade	4,509e-	02	сР	
Condutividade térmica	7,96e-0)2	W/m·°C	
Calor específico	1,295		kJ/kg·°C	
Fator de compressibilidade	1,0			
COMPOSIÇÃO				
Componente	Fração molar	Fração más	sica	
H_2S	0,0635	0,0769		
O_2	0,0000	0,0000		
SO ₂	0,0318	0,0723		
H ₂ O	0,2124	0,1360		
S	0,1770	0,2017		
N_2	0,5153	0,5130		
S ₂	0,0000	0,0000		

S ₃	0,0000	0,0000
S4	0,0000	0,0000
S ₅	0,0000	0,0000
S ₆	0,0000	0,0000
S ₇	0,0000	0,0000
S ₈	0,0000	0,0000

	CORRENTES MATERIAIS	CORRENTES MATERIAIS			
Número de corrente 21					
Descrição Saída do fluido quente					
Pressão	1,6866	Kg/cm ² g			
Temperatura	148,9	°C			
Vazão mássica	4575	Kg/h			
Vazão molar	162,6	Kmol/h			
Entalpia total	0,4593	Mkcal/h			
Fração de sólidos	0,1942				
Fração de vapor	0,8058				

Vazão volumétrica @P e T de operação	0,5670	m³/h				
Peso molecular	30,87	Kg/kmol				
Densidade	1817		Kg/m ³			
Viscosidade	7,570e+()4	cP			
Condutividade térmica	0,1403		W/m·°C			
Calor específico	1,086		kJ/kg·°C			
Tensão superficial	57,37		dinas/cm			
	PROPRIEDADES DA FASE	VAPOR/GÁS				
Vazão volumétrica @P e T de operação	5,887	m³/h				
Peso molecular	27,48	Kg/kmol				
Densidade	1,296	Kg/m ³				
Viscosidade	2,023e-(сР				
Condutividade térmica	3,056e-(W/m·°C				
Calor específico	1,152	kJ/kg·°C				
Fator de compressibilidade	1,0					
	COMPOSIÇÃO					
Componente	Fração molar	Fração más	sica			
H_2S	0,0635	0,0769				

O ₂	0,0000	0,0000
SO ₂	0,0318	0,0723
H ₂ O	0,2124	0,1360
S	0,1770	0,2017
N ₂	0,5153	0,5130
S ₂	0,0000	0,0000
S ₃	0,0000	0,0000
S ₄	0,0000	0,0000
S ₅	0,0000	0,0000
S ₆	0,0000	0,0000
S ₇	0,0000	0,0000
S ₈	0,0000	0,0000

12.ANEXO II

ESPECIFICAÇÕES TROCADORES DE CALOR								
Número do equipamento			30					
Des	criçã	0				Trocador de	e calor	
Tipo de trocador (casco-tubo, placas, tubos concêntricos)			IS,			Casco-tu	ıbo	
Para casco-tubo, o	lefini	r o tipo TEM	IA			AEU		
Disposição (ho	rizon	tal/vertical)				Horizon	tal	
Circulação (forç	ada,	termosifão))			Forçad	a	
Número de carcaças estimadas		Em série ou paralelo?			- 01			
CAR	АСТ	ERÍSTICAS	DOS	FLUÍD	OS E COND	IÇÕES DE O	PERAÇÃO	
Lado		C EXTERIO TROC	CASCO OR/FL ADOF	D/TUB(LUÍDO R DE PI	O FRIO DO LACAS	TUBO/TU QUENTI	BO INTERIO E DO TROCA PLACAS	R/FLUÍDO DOR DE
		Entrada	Sa	iída		Entrada	Saída	
Vazão total		78340,038			Kg/h	45	575	Kg/h
Fração de vapor/g	ás	0		0		1	0,8058	
Vazão de vapor/g	ás	0		0	Kg/h	4575	3600	Kg/h
Vazão de líquido)	78340,038	7834	0,038		0	974,5	
Temperatura		28	4	45	°C	1149	148,9	°C

Pressão	1,0	1,0	Kg/cm ² g	2,7206	1,6866	Kg/cm ² g
Perda de pressão permitida	1,0		Kg/cm ²	1,0		Kg/cm ²
Coeficiente individual de transmissão de calor	5120),964	Kcal / h m ² °C	299	,121	Kcal / h m ² °C
Fator de deposição	0,0	0003	h m² °C/ kcal	0,0	012	h m² °C/ kcal
Coeficiente global de transmissão de calor	137,6					Kcal / h m ² °C
ΔT_{ml}			444,493			°C
F _T		1				
Calor trocado	1,3303				Gcal/h	
	CONDI	ÇÕES DE PH	ROJETO ME	CÂNICO		
Pressão de projeto 3,5					Kg/cm ² g	
Temperatura de projeto	1179					°C
СА	CARACTERÍSTICAS CONSTRUTIVAS DO TROCADOR					
Área de tr	oca de calor			21,7506		m ²
Diâmetro	Diâmetro dos tubos 25,4					mm
Comprimento dos tubos 6096					mm	
Espessura dos tubos 12					BWG	
Espaçamento ent	Espaçamento entre centro dos tubos 31,75					mm
Tipo de disposição dos tubos (triangular, triangular Quadrada rotada, quadrangular, rômbica)						

Diâmetro do casco	297,25	mm

13.ANEXO III

Table 12.6. Conductivity of Metals

Metal	Temperature (°C)	k _w (W/m℃)	
Aluminum	0	202	
	100	206	
Brass	0	97	
(70 Cu, 30 Zn)	100	104	
	400	116	
Copper	0	388	
	100	378	
Nickel	0	62	
	212	59	
Cupro-nickel (10% Ni)	0-100	45	
Monel	0-100	30	
Stainless steel (18/8)	0-100	16	
Steel	0	45	
	100	45	
	600	36	
Titanium	0-100	16	

14.ANEXO IV

Figura 8. Diagrama simplificado do processo.

15.ANEXO V

Ε	ESPECIFICAÇÕES BOMBAS					
Identificação do equipamento operação / reserva		Operação Reserva			serva	
Descrição		Bomba para fluxo numa torre de desti			stilação	
Número de bombas operação / reserva			01a		()1b
Tipo de bomba (centrífuga, volumétrica				D1	Constra' Constra	
alternativa, volumétrica rotati	va)			Bomba	Centrifuga	
Funcionamento (contínuo ou desco	ntínuo /		Continuo		Car	
série ou paralelo)			Continuo		Cor	lunuo
CARACTERÍSTICAS	DOS FL	UIDOS H	E CONDIÇ	CÕES D	E OPERAÇÃ()
PARTE DA BOMBA		Aspi	ração		Impu	são
Vazão volumétrica de operação			13	,1		m³/h
Pressão	1,2	21383	kg/cm ²	g	2,58303	kg/cm ² g
Temperatura	80),588	°C		80,588	°C
Densidade	616	5,5120	kg/m ³		616,5120	kg/m ³
Viscosidade	0,2	20984	cP		0,20984	cP
Pressão de vapor	1	,033	kg/cm ²	g	1,033	kg/cm ² g
CARACTE	RÍSTICA	AS DE PF	ROJETO E	DA BON	IBA	
Vazão de projeto (110 ou 120%	da vazão	de opera	ação)		15,72	m ³ /h
Vazão mínima de processo (60%	da vazã	o de oper	ação)		7,86	,
Pressão na aspiração na	azão de	projeto			1,21383	$kg/cm^2 g$
Pressão na impulsão na v	azão de j	projeto			2,58303	
Pressão difere	ncial				1,3692	kg/cm ²
Altura diferen	icial				22,209	m
NPSH dispon	ível	~	_		2,93309	m
Máxima pressão diferencial	a impuls	ão fechad	la		1,64304	kg/cm ²
Pressão máxima na	aspiraçã	0			3,74465	kg/cm ² g
Pressão máxima na	impulsã	0			5,38769	
Diametro da tubulação as	oiraçao/ii	mpulsao		ÂNICO		polegadas
CONDI	ÇOES D	E PROJI	ETO MEC	ANICO		17 / 2
Pressao de projeto 5,38/69 Tomporatura da projeto 110.599						Kg/cm² g
Temperatura de projeto 110,588 °C						
CARAC Dotôngia glótriga a vazão do	LEKIST	ICAS DE	ACIONA		J	
projeto	_		1,71306		-	kW
ESQUEMA	DO SIS	TEMA D	DE BOMBI	EAMEN	ТО	
(1,3) kg/cr C-1			2 2	3 m		

16. ANEXO VI

	CORRENTES MATERIAIS	
Número de corrente	01	
Descrição	Aspiraç	ao
Pressão	1,21383	Kg/cm ² g
Temperatura	80,588	°C
Vazão mássica	8082,72	Kg/h
Vazão molar	87,01	Kmol/h
Entalpia total	-0,4529	Mkcal/h
Fração de sólidos	-	
Fração de vapor	-	
	PROPRIEDADES DA FASE LÍQUI	DA
Vazão volumétrica @P e T de operação	13,1104	m³/h
Peso molecular	92.8941	Kg/kmol
Densidade	616,5120	Kg/m ³
Viscosidade	0,20984	cP
Condutividade térmica	0,10440	W/m·°C
Calor específico	0,56003	kJ/kg·°C
Tensão superficial	- dinas/cr	
	COMPOSIÇÃO	
Componente	Fração molar	Fração mássica
N-hexano	0,534	
N-heptano	0,453	
N-octano	0,013	

CORRENTES MATERIAIS					
Número de corrente	02				
Descrição	Impuls	ão			
Pressão	2,58303	Kg/cm ² g			
Temperatura	80,588	°C			
Vazão mássica	8082,72	Kg/h			
Vazão molar	87,01	Kmol/h			
Entalpia total	-0,4529	Mkcal/h			
Fração de sólidos	-				
Fração de vapor	-				
	PROPRIEDADES DA FASE LÍQUI	DA			
Vazão volumétrica @P e T	13 1104	m ³ /h			
de operação	15,1104	111 / 11			
Peso molecular	92,8941	Kg/kmol			
Densidade	616,5120	Kg/m ³			
Viscosidade	0,20984	cP			
Condutividade térmica	0,10440	W/m·°C			
Calor específico	0,56003	kJ/kg·°C			
Tensão superficial	-	dinas/cm			
	COMPOSIÇÃO				
Componente	Fração molar	Fração mássica			
N-hexano	0,534				
N-heptano	0,453				
N-octano	0,013				

17. ANEXO VII

ESPECIFICAÇÕES INSTRUMENTOS DE VAZÃO					
Identificação	Localização (núm. da tubulação)	Fase (L, G ou M)	Vazão normal / kg/h		
Alimentação da coluna de destilação (FIC-1)	1	Mistura	-		
Corrente de saída do tanque de n-hexano líquido destilado (FI-1)	4	Líquida	-		
Refluxo de n-hexano líquido destilado na saída da bomba (FIC-2)	6	Líquida	-		
Corrente de saída de n-octano (FI-2)	9	Líquida	-		
Vapor de aquecimento do trocador de calor (FI-3)	E-3	Vapor	-		

ESPECIFICAÇÕES INSTRUMENTOS DE NÍVEL					
Identificação	Localização (núm. do vaso)	Tipo de interfase (L-L ou L-V/G)	Nível normal / mm		
Vaso C-2 (LIC-1)	C-2	L - L	-		
Torre de destilação (LIC-2)	C-1	L - V/G	-		

ESPECIFICAÇÕES INSTRUMENTOS DE TEMPERATURA			
Identificação	Localização (núm. da tubulação ou vaso)	Fase (L, G ou M)	Temperatura normal / °C
Alimentação da coluna de destilação (TI-1)	1	Mistura	-
Corrente de vapor no topo da coluna (TI-2)	2	Vapor	-
Corrente de entrada do tanque de n-hexano líquido destilado (TI-3)	3	Líquida	-
Corrente de saída do tanque de n-hexano líquido destilado (TI-4)	4	Líquida	-
Corrente de saída e n-octano (TI-5)	9	Líquida	-
Refluxo de vapor no fundo da torre (TI-6)	8	Vapor	-

Vapor de aquecimento do trocador de calor (TI-7)	E-3	Vapor	-
Corrente de líquido do fundo da torre (TI-8)	7	Líquida	-

ESPECIFICAÇÕES INSTRUMENTOS DE PRESSÃO			
Identificação	Localização (núm. da tubulação ou vaso)	Fase (L, G ou M)	Pressão normal / kg/cm ² g
Alimentação da coluna de destilação(PI-1)	1	Mistura Líquida	-
Corrente de vapor no topo da coluna (PIC-1)	2	Vapor	-
Refluxo de n-hexano líquido destilado na saída da bomba (PI-2)	6	Líquida	_
Refluxo de n-hexano líquido destilado na entrada da bomba (PI-3)	5	Líquida	_
Corrente de entrada do tanque de n-hexano líquido destilado (PI-4)	3	Líquida	-
Corrente de saída e n-octano (PI-5)	9	Líquida	-
Corrente de líquido do fundo da torre (PI-6)	7	Líquida	-
Vapor de aquecimento do trocador de calor (PI-7)	E-3	Vapor	-
Refluxo de vapor no fundo da torre (PI-8)	8	Vapor	-

18. ANEXO VIII

ESPECIFICAÇÕES LAÇOS DE CONTROLE			
Identificação no diagrama mecânico	Localização (núm. da tubulação ou vaso)	Descrição da ação	Elementos vinculados (medidor, controle, acionador e válvula de controle)
FIC-1	1	Controle da vazão de entrada da torre de destilação fracionada	Medidor de vazão Controlador de vazão Transdutor elétrico pneumático Válvula de controle

PIC-1	2	Controle de pressão da torre de destilação fracionada	Medidor de pressão Controlador de pressão Transdutor elétrico pneumático Válvula de controle
LIC-1	C-2	Controle de nível do vaso C-2	Medidor de nível Controlador de nível Transdutor elétrico pneumático Válvula de controle
FIC-2	6	Controle da vazão da saída da bomba P-1 na corrente 6	Medidor de vazão Controlador de vazão Transdutor elétrico pneumático Válvula de controle
FIC-3	E-3	Controle da vazão de vapor alimentado ao fundo da torre de destilação fracionada	Medidor de vazão Controlador de vazão Transdutor elétrico pneumático Válvula de controle
LIC-2	C-1	Controle de nível do resíduo de saída da torre de destilação fracionada	Medidor de nível Controlador de nível Transdutor elétrico pneumático Válvula de controle