

Universidade de Brasília - UnB UnB - Faculdade de Tecnologia Engenharia Mecânica

Aplicação de Extensometria a Suspensão de Protótipo de Fórmula SAE com Auxílio de Análise por Elementos Finitos

Autor: Luiz Felipe Morais Pereira Orientador: Jorge Luiz de Almeida Ferreira

> Brasília, DF 2019

Luiz Felipe Morais Pereira

Aplicação de Extensometria a Suspensão de Protótipo de Fórmula SAE com Auxílio de Análise por Elementos Finitos

Monografia submetida ao curso de graduação em (Engenharia Mecânica) da Universidade de Brasília, como requisito parcial para obtenção do Título de Bacharel em (Engenharia Mecânica).

Universidade de Brasília - UnB
UnB - Faculdade de Tecnologia

Orientador: Jorge Luiz de Almeida Ferreira Coorientador: Luís Augusto Conte Mendes Veloso

> Brasília, DF 2019

Luiz Felipe Morais Pereira

 $107~\mathrm{p.}$: il. (algumas color.) ; 30 cm.

Orientador: Jorge Luiz de Almeida Ferreira

Trabalho de Conclusão de Curso – Universidade de Brasília - Un
B \mbox{UnB} - Faculdade de Tecnologia , 2019.

1. Palavra-chave
01. 2. Palavra-chave
02. I. Jorge Luiz de Almeida Ferreira . II. Universidade de Brasília. III. Faculdade Un
B Gama. IV. Aplicação de Extensometria a Suspensão de Protótipo de Fórmula SAE com Auxílio de Análise por Elementos Finitos

CDU 02:141:005.6

Aplicação de Extensometria a Suspensão de Protótipo de Fórmula SAE com Auxílio de Análise por Elementos Finitos/ Luiz Felipe Morais Pereira. – Brasília, DF, 2019-

Luiz Felipe Morais Pereira

Aplicação de Extensometria a Suspensão de Protótipo de Fórmula SAE com Auxílio de Análise por Elementos Finitos

Monografia submetida ao curso de graduação em (Engenharia Mecânica) da Universidade de Brasília, como requisito parcial para obtenção do Título de Bacharel em (Engenharia Mecânica).

Trabalho aprovado. Brasília, DF, 27 de novembro de 2019:

Jorge Luiz de Almeida Ferreira Orientador

Eder Lima de Albuquerque Membro da Banca Examinadora

Edgar Nobuo Mamiya Membro da Banca Examinadora

> Brasília, DF 2019

Agradecimentos

Gostaria de agradecer a minha família, amigos e namorada por terem sempre oferecido um apoio incondicional e todo o suporte para que eu pudesse manter minha saúde física bem como mental no decorrer da minha formação.

Também devo reconhecer a enorme diferença que a Apuama fez na minha graduação, tornando-me um profissional mais completo, crítico, preparado e, sem dúvidas, mais apaixonado. Além desses, todos os agradecimentos ao Professor Luís Augusto Conte Mendes Veloso, que sem o seu apoio, incentivo e parceria este trabalho definitivamente não existiria.

Resumo

A análise de tensões em um projeto é de suma importância para um funcionamento pleno de um sistema mecânico. Para tal, foram desenvolvidos inúmeros recursos para a comparação dos valores de tensão obtidos em cálculos e formulações teóricas com os valores encontrados nas estruturas quando submetidas aos esforços reais. Alguns deles têm aplicação antes da finalização do projeto, enquanto outros têm seu uso posterior à fabricação, a fim de confirmar a solução proposta. Através deste trabalho buscam-se as aplicações dos métodos citados para o estudo de confiabilidade estrutural do subsistema de suspensão de um protótipo de FSAE (Apuama). Com o auxílio de análises por elementos finitos foi criado um modelo numérico computacional para a distribuição de esforços nos componentes. Posteriormente, esse modelo é comparado com as tensões adquiridas experimentalmente utilizando-se extensometria. Assim, é possível validar o modelo computacional proposto e verificar os pontos que requerem maior atenção no desenvolvimento de projetos futuros. Com base nos resultados, pretende-se ainda a confecção de um novo conjunto mais leve, otimizado e que atenda com mais sucesso aos requisitos no âmbito da competição de Fórmula SAE.

Palavras-chaves: análise de tensões. suspensão. elementos finitos. extensometria.

Abstract

Stress analysis in a project is a major factor for the optimal performance of a mechanical system. For such, countless methods were designed to compare the stress values obtained over calculations and theoretical formulations with those experienced by the structures when submitted to the real loads. Some of those methods are used before the completion of the project while others have their application afterwards, in order to validate the proposed solution. Through this work the methods mentioned before are applied to study the suspension subsystem of a Formula SAE prototype (Apuama). With the help of Finite Element Analysis are computational numerical model it is created for the distribution of loads in the components that will later be compared to the stresses acquired experimentally by extensometry. Thereby, it is possible then to validate the computational model and also verify the area that requires more focus in the development of future projects. All these data are intended to be applied in the manufacturing of a new, lighter, optimized set which will more satisfactorily fulfill the requirements present in the Formula SAE competition.

Key-words: stress analysis. suspension. Finite Element Analysis. extensometry.

Lista de ilustrações

Figura 1	_	Competição Alemã, Formula Student Germany, 2012	3
Figura 2	_	AF17, Protótipo desenvolvido para a temporada de 2017	5
Figura 3	_	Exemplo de maquinário utilizado para testes em pneus do FSAE TTC	9
Figura 4	_	Esquematização de um sistema com 1 grau de liberdade sem forçamento	
		externo.	11
Figura 5	_	Esquematização de um sistema com 1 grau de liberdade (a) forçamento	
		externo e (b) submetido a um deslocamento	11
Figura 6	_	Representação do modelo de suspensão	12
Figura 7	_	Exemplo de estrutura interna de um acelerômetro ICP . ^[1]	15
Figura 8	_	Exemplo de deformação.	16
Figura 9	_	Exemplo de um extensômetro. ^[2]	16
Figura 10	0 -	Esquema de montagem do sistema de um extensômetro.	17
Figura 1	1 –	Exemplo de análise de deslocamentos de pontos em um corpo qualquer	
		[3]	19
Figura 12	2 -	Caracterização de deformações normais.	19
Figura 13	3 -	Caracterização de deformações cisalhantes	19
Figura 14	4 -	Visualização das componentes do tensor de tensões ^[4]	20
Figura 1	5 -	Representação de alguns elementos utilizados no MEF. ^[3]	21
Figura 10	6 -	Esquema de montagem possível para o dispositvo EVO4S	26
Figura 1'	7 –	Imagem retirada do $site$ da Lynx Tecnologia referente ao modelo $ADS1800$	26
Figura 18	8 -	Vista superior da suspensão do AF18	28
Figura 19	9 -	Vista lateral da suspensão do AF18	28
Figura 20	0 -	Vista frontal da suspensão do AF18	28
Figura 2	1 –	Demonstração dos Pontos de Interesse escolhidos	31
Figura 22	2 -	Foto do conjunto dianteiro direto do AF18	32
Figura 23	3 -	Foto após finalizada a instalação do lado esquerdo do eixo dianteiro $\ .$	33
Figura 24	4 -	Esquema de montagem dos sistema de aquisição, onde as linhas repre-	
		sentam os cabos utlizados: azuis - rede, verdes - energia, amarelas -	
		aquisição de extensômetro \ldots \ldots \ldots \ldots \ldots \ldots \ldots	34
Figura 2	5 -	Fotografia do esquema real instalado no protótipo AF18 $\ \ldots\ \ldots\ \ldots$	34
Figura 20	6 -	Localização dos Testes (Imagem retirada do $Google Maps$)	37
Figura 2'	7 –	Manobra 1 - Trajetória Circular definida	37
Figura 28	8 -	Manobra 1 - Trajetória Retilínea definida	38
Figura 29	9 –	Representação da posição GPS nas Baterias de Teste Circulares (a) 1, $\hfill \hfill \$	
		(b) 2 e (c) 3	39
Figura 30	0 -	Escala utilizada no gradiente das trajetórias (valores em $g)$	39

Figura 31 –	Representação da posição GPS nas Baterias de Teste Retílineos (a) 1,	
	(b) 2, (c) 3 e (d) 4	40
Figura 32 –	Visualização inicial do esquema de simulação	46
Figura 33 –	Visualização inicial no $Mechanical$ para a (a) Dianteira e $\rm (b)$ Traseira $% A_{\rm c}$.	47
Figura 34 –	Visualização inicial no $Mechanical \ {\rm com} \ {\rm a} \ {\rm representação} \ {\rm das} \ {\rm se}$ ções trans-	
	versais para a (a) Dianteira e (b) Traseira	47
Figura 35 –	Opção de corpos não-deformáveis para o Rocker e a Knuckle	48
Figura 36 –	Exemplo de junta universal modelada	49
Figura 37 –	Modelos de mola desenvolvidos para a (a) Dianteira e a (b) Traseira	49
Figura 38 –	Identificação dos pontos remotos para a $Print$ na (a) Dianteira e na (b)	
	Traseira	50
Figura 39 –	Condições de contorno para a $Print$ na (a) Dianteira e (b) Traseira $\ .$.	50
Figura 40 –	Visualização da Parametrização de uma condição	51
Figura 41 –	Named Selections para a (a) Dianteira e a (b) Traseira	51
Figura 42 –	Exemplo de Solução escolhida para o problema	52
Figura 43 –	Visualização do Project Schematic no WorkBench	53
Figura 44 –	Visualização da tabela de Parametrização do <i>WorkBench</i>	53
Figura 45 –	Detalhe de como selecionar certo passo da parametrização para uma	
	abordagem mais completa	55
Figura 46 –	Detalhe da malha desenvolvida para a solução	55
Figura 47 –	Detalhe de como selecionar certo passo da parametrização para uma	
	abordagem mais completa	56
Figura 48 –	Detalhe de como selecionar certo passo da parametrização para uma	
	abordagem mais completa	57
Figura 49 –	Esquema utilizado para explicar o conceito do Ângulo de Deriva \hdots	78
Figura 50 –	Exemplo de Círculo de Atrito encontrado no Livro <i>Milliken</i>	79
Figura 51 –	Instruções de pré-processamento, passo 1	81
Figura 52 –	Instruções de pré-processamento, passo 2	82
Figura 53 –	Instruções de pré-processamento, passo 3	82
Figura 54 –	Instruções de pré-processamento, passo 4	83
Figura 55 –	Instruções de pré-processamento, passo 5	83
Figura 56 –	Instruções de pré-processamento, passo 6	83
Figura 57 –	Instruções de pré-processamento, passo 7	84
Figura 58 –	Instruções de pré-processamento, passo 8	84
Figura 59 –	Resultados de Aceleração Lateral e Longitudinal - Bateria 1, Testes	
	Circulares	87
Figura 60 –	Resultados de Aceleração Lateral e Longitudinal - Bateria 2, Testes	
	Circulares	87

Figura 61 –	Resultados de Aceleração Lateral e Longitudinal - Bateria 3, Testes Circulares	8
Figura 62 –	Resultados de Aceleração Lateral e Longitudinal - Bateria 3, Testes	U
	Circulares	8
Figura 63 –	Resultados de Aceleração Lateral e Longitudinal - Bateria 1, Testes Betilíneos	8
Figure 64	Regultados de Aceleração Lateral o Longitudinal Bateria 2 Tostos	0
rigura 04 –	Retilíneos	9
Figura 65 –	Resultados de Aceleração Lateral e Longitudinal - Bateria 3. Testes	
0	Retilíneos	9
Figura 66 –	Resultados de Aceleração Lateral e Longitudinal - Bateria 4, Testes	
	Retilíneos	9
Figura 67 –	Deformações experimentadas no Braço Superior Dianteiro no tubo (a)	
	Anterior (b) Posterior	0
Figura 68 –	Deformações experimentadas Push Rod Dianteira	1
Figura 69 –	Deformações experimentadas no Braço Inferior Dianteiro no tubo (a) Anterior (b) Posterior	1
Figura 70 –	Deformações experimentadas no Braco Superior na Traseira no tubo	
0	(a) Anterior (b) Posterior	1
Figura 71 –	Deformações experimentadas Push Rod Traseira	2
Figura 72 –	Deformações experimentadas no Braço Inferior na Traseira no tubo (a)	
	Anterior (b) Posterior	2
Figura 73 –	Deformações experimentadas no Braço Superior Dianteiro no tubo (a)	
	Anterior (b) Posterior	3
Figura 74 –	Deformações experimentadas Push Rod Dianteira	3
Figura 75 –	Deformações experimentadas no Braço Inferior na Dianteira no tubo	
	(a) Anterior (b) Posterior	3
Figura 76 –	Deformações experimentadas no Braço Superior na Traseira no tubo	
	(a) Anterior (b) Posterior	4
Figura 77 –	Deformações experimentadas Push Rod Traseira	4
Figura 78 –	Deformações experimentadas no Braço Inferior na Traseira no tubo (a)	
	Anterior (b) Posterior	4
Figura 79 –	Deformações experimentadas no Braço Superior Dianteiro no tubo (a)	
	Anterior (b) Posterior	5
Figura 80 –	Deformações experimentadas Push Rod Dianteira	5
Figura 81 –	Deformações experimentadas no Braço Inferior na Dianteira no tubo	
	(a) Anterior (b) Posterior	5
Figura 82 –	Deformações experimentadas no Braço Superior na Traseira no tubo	
	(a) Anterior (b) Posterior	6

Figura	83 -	Deformações experimentadas Push Rod Traseira.	96
Figura	84 -	Deformações experimentadas no Braço Inferior na Traseira no tubo (a)	
		Anterior (b) Posterior	96
Figura	85 -	Deformações experimentadas no Braço Superior Dianteiro no tubo (a)	
		Anterior (b) Posterior.	. 97
Figura	86 -	Deformações experimentadas Push Rod Dianteira	97
Figura	87 -	Deformações experimentadas no Braço Inferior na Dianteira no tubo	
		(a) Anterior (b) Posterior	. 97
Figura	88 -	Deformações experimentadas no Braço Superior na Traseira no tubo	
		(a) Anterior (b) Posterior	98
Figura	89 -	Deformações experimentadas Push Rod Traseira.	98
Figura	90 -	Deformações experimentadas no Braço Inferior na Traseira no tubo (a)	
		Anterior (b) Posterior.	98
Figura	91 -	Deformações experimentadas no Braço Superior Dianteiro no tubo (a)	
		Anterior (b) Posterior.	99
Figura	92 -	Deformações experimentadas Push Rod Dianteira	99
Figura	93 -	Deformações experimentadas no Braço Inferior na Dianteira no tubo	
		(a) Anterior (b) Posterior.	99
Figura	94 -	Deformações experimentadas no Braço Superior na Traseira no tubo	
		(a) Anterior (b) Posterior.	100
Figura	95 -	Deformações experimentadas Push Rod Traseira.	100
Figura	96 -	Deformações experimentadas no Braço Inferior na Traseira no tubo (a)	
		Anterior (b) Posterior.	100
Figura	97 –	Deformações experimentadas no Braço Superior Dianteiro no tubo (a)	
		Anterior (b) Posterior.	101
Figura	98 -	Deformações experimentadas Push Rod Dianteira	101
Figura	99 -	Deformações experimentadas no Braço Inferior na Dianteira no tubo	
		(a) Anterior (b) Posterior	101
Figura	100-	Deformações experimentadas no Braço Superior na Traseira no tubo	
		(a) Anterior (b) Posterior	102
Figura	101-	Deformações experimentadas Push Rod Traseira.	102
Figura	102-	Deformações experimentadas no Braço Inferior na Traseira no tubo (a)	
		Anterior (b) Posterior.	102
Figura	103-	Deformações experimentadas no Braço Superior Dianteiro no tubo (a)	
		Anterior (b) Posterior.	103
Figura	104-	Deformações experimentadas Push Rod Dianteira	103
Figura	105-	Deformações experimentadas no Braço Inferior na Dianteira no tubo	
		(a) Anterior (b) Posterior.	103

Figura 106–Deformações experimentadas no Braço Superior na Traseira no tubo	
(a) Anterior (b) Posterior	104
Figura 107–Deformações experimentadas Push Rod Traseira	104
Figura 108–Deformações experimentadas no Braço Inferior na Traseira no tubo (a)	
Anterior (b) Posterior	104

Lista de abreviaturas e siglas

- CAD Computer Assisted Drawing
- FEM Finite Element Method
- FSAE Formula SAE
- MR Motion Ratio
- SAE Society of Automotive Engineers
- SI Sistema Internacional de Medidas
- TTC Tire Test Consortium
- UAF Upper Arm Fore, Braço Superior Dianteiro Tubo Anterior
- UAA Upper Arm After, Braço Superior Dianteiro Tubo Posterior
- PR Push Rod, Tubo de Acionamento
- LAF Lower Arm Fore, Braço Inferior Dianteiro Tubo Anterior
- LAA Lower Arm After, Braço Inferior Dianteiro Tubo Posterior

Lista de símbolos

x	Coordenada de Deslocamento
\dot{x}	Coordenada de Velocidade
\ddot{x}	Coordenada de Aceleração
m	Massa de um sistema
k	Constante Elástica de uma mola
С	Coeficiente de Amortecimento
F_0	Forçamento Arbitrário
S_{o}	Referencial do Solo
ϕ	Ângulo de Fase
ω	Coordenada de Velocidade
Ω_0	Frequência Natural
ξ	Coeficiente de Amortecimento
γ	Letra grega Gama
ζ	Letra grega Zeta

Sumário

I.	INTRODUÇÃO	1
1	CONTEXTUALIZAÇÃO	3
1.1	Formula SAE	3
1.2	Apuama Racing	4
2	OBJETIVOS	7
3	FUNDAMENTAÇÃO TEÓRICA	9
3.1	Modelo de Pneu	9
3.2	Conceitos Básicos de Vibrações	10
3.2.1	Sistema de Vibração Livre e Forçada	10
3.2.2	Modelagem da Suspensão	12
3.2.3	Transmissibilidade e Ressonância	13
4	EXPLICAÇÃO DE MÉTODOS	15
4.1	Acelerometria	15
4.2	Extensometria	16
4.3	Elementos Finitos	18
		^ 2
	DESENVOLVIMENTO	23
5	FERRAMENTAS UTILIZADAS	25
5.1	<i>AiM</i>	25
5.2	ADS1800 da Lynx Tecnologia	25
5.3	MATLAB	27
5.4	SolidWorks	27
5.5	Ansys	29
6	ANÁLISE DE EXTENSOMETRIA	31
6.1	Instalação e Cuidados inciais	32
6.2	Instruções para sincronismo de 2 <i>ADS1800</i>	35
6.2.1	Calibração por meio do <i>AqDados</i>	35
6.2.2	Carregar as configurações e calibrações feitas nos 1800	36
6.3	Testes em Pista	36
6.3.1	Protocolo de Testes	36
6.3.2	Resultados dos testes em pista	38

6.3.2.1	Aferições do <i>AiM</i>	38
6.3.2.2	Leituras dos Extensômetros	40
7	MÉTODO DE ELEMENTOS FINITOS	43
7.1	Tire Model e as Condições de Entrada	43
7.2	Design Modeler e Pré-Processamento	45
7.3	Mechanical	45
7.3.1	Apresentação dos resultados por Elementos Finitos	54
8	APRESENTAÇÃO E ANÁLISE DE RESULTADOS	59
8.1	Discussão dos Resultados	66
ш	CONCLUSÃO	69
9	CONCLUSÃO	71
9.1	Sugestões para Trabalhos Futuros	71
	DEEEDÊNCIAS	70
	REFERENCIAS	73
	APÊNDICES	75
	APÊNDICE A – MODELAGEM DE PNEU	77
	APÊNDICE B – CRIAÇÃO DA GEOMETRIA DE SIMULAÇÃO	81
C –	ANEXOS	85
C .1	Tabela de resultados dos testes	85
C.2	Gráficos do AiM	87
C.3	Gráficos provenientes dos Extensômetros	90
C.3.1	Manobra Reta 1	90
C.3.2	Manobra Reta 2	93
C.3.3	Manobra Reta 3	95
C.3.4	Manobra Reta 4	97
C.3.5	Manobra Circular 1	99
C.3.6	Manobra Circular 2	101
C.3.7	Manobra Circular 3	103
C.4	Tabelas da Parametrização do Ansys	105

Parte I

Introdução

1 Contextualização

1.1 Formula SAE

A competição Fórmula SAE BRASIL, assim como as outras provas promovidas pela SAE, tem como objetivo propiciar aos estudantes de Engenharia a oportunidade de aplicar na prática os conhecimentos adquiridos em sala de aula, desenvolvendo um projeto completo e construindo um carro tipo Fórmula. Os trabalhos são realizados em grupo.

Criada em 2004, em 2016 envolveu mais de 1030 inscritos, número que cresce significativamente a cada ano. As equipes melhor classificadas ganham o direito de representar o Brasil em duas competições internacionais realizadas nos EUA.

Durante três dias de evento, os carros passam por provas estáticas e dinâmicas, avaliando a performance de cada projeto na pista, assim como as apresentações técnicas das equipes, que incluem projeto, custo, e uma apresentação de marketing. Meses antes da competição, os estudantes enviam para o comitê organizador relatórios de custos, estrutura, atenuador de impacto e projeto. Os relatórios são avaliados por engenheiros especialistas, e já valem como a primeira parte da avaliação dos protótipos. Já durante a

Figura 1 – Competição Alemã, Formula Student Germany, 2012.

competição, nas provas estáticas, as equipes devem demonstrar mais detalhadamente se o carro apresentado no evento equivale ao apresentado no evento. As provas dinâmicas são realizadas no segundo dia do evento. Todas as provas são pontuadas de maneiras diferentes, para garantir que o melhor conjunto de projeto e carro vença a competição.

A competição teve início nos Estados Unidos em 1981, substituindo uma versão anterior chamada Mini-Indy, alavancada pela carência de engenheiros especializados em veículos de alta performance. Foi impulsionada pelas três grandes montadoras estadunidenses, General Motors, Ford e Chrysler, que viram nessa competição uma oportunidade única de garimpar novos engenheiros para suas equipes. Esse apoio se fortaleceu com o tempo e as empresas ficaram plenamente satisfeitas com os estudantes que eram contratados. Com o passar dos anos, diversas empresas se uniram às "Três Grandes"e, além de contratar alunos, ainda desenvolveram produtos específicos para o Fórmula SAE.

No Brasil, a 1^a competição do Fórmula SAE ocorreu no ano de 2004. Atualmente, a competição acontece na Austrália, Itália, Inglaterra, Alemanha, Brasil e Estados Unidos, onde são reunidas as melhores equipes de cada país.

A competição, além de divertida e desafiadora, é uma oportunidade de crescimento. Os trabalhos são realizados em grupo com intuito de estimular e desenvolver o trabalho em equipe. Além disso, propiciam aos estudantes de Engenharia a oportunidade de aplicar na prática os conhecimentos adquiridos de forma teórica, desenvolvendo um projeto completo e construindo um carro tipo Fórmula. Os estudantes também ganham visibilidade por parte das grandes empresas e oportunidade de reconhecimento. Os alunos que se destacarem, podem acabar contratados pelas grandes montadoras que apoiam a competição^[5].

1.2 Apuama Racing

A Apuama Racing é a equipe de Fórmula SAE Combustão da Universidade de Brasília. Fundada em 2004 por alunos de Engenharia, contribui desde então para uma melhor formação prática ao longo da graduação. Contando com o apoio de professores, lançou o primeiro protótipo em 2005, ano de sua primeira participação na competição Fórmula SAE BRASIL.

Havendo uma descontinuidade na sua participação na categoria, a equipe voltou a sua configuração atual em 2011 e desde então vem obtendo grande reconhecimento em cenário nacional.

Tendo, em seu elenco, cerca de 50 alunos anualmente, a equipe conta com 13 áreas em diferentes frentes de atuação que cobrem diversas competências no desenvolvimento de um projeto mecânico, bem como uma estrutura organizacional composta por Capitães,

Figura 2 – AF17, Protótipo desenvolvido para a temporada de 2017.

Diretores, Líderes e Consultores, sendo esses membros, em grande parte, dos cursos de Engenharia. No entanto, para melhor distribuição e execução do trabalho, a Equipe conta também com integrantes de outros cursos, a exemplo da área de Comunicação.

Anualmente, diversos projetos são desenvolvidos com base nos conhecimentos aprendidos em sala de aula. Há também, entre os membros, a transmissão de conhecimento de assuntos específicos relativos ao automobilismo e sua problemática. Munidos desse entendimento é possível garantir a constante melhoria no desenvolvimento de protótipos futuros.

2 Objetivos

Em um âmbito de competição é natural que se desenvolvam, se empreguem, técnicas para se sobressair a seus adversários. No mundo do automobilismo não seria diferente. A fim de conceber um projeto que logre resultados expressivos, é necessário um acompanhamento minucioso de seus detalhes desde a sua criação, com forte embasamento em literatura já estabelecida; passando pelo dimensionamento apropriado; posteriormente utilizando técnicas confiáveis para a manufatura e, por fim; validando o produto final com aquele que foi idealizado.

Este trabalho terá um enfoque no dimensionamento e validação do sistema.

Iremos nos propor a analisar os parâmetros iniciais que serão levados em conta para um modelo de solução. Com este modelo em mãos, faremos uso de modelos matemáticos para determinar o quão satisfatórios são os resultados alcançados até então.

Finalmente, sabemos que de nada vale uma solução ideal, porém teórica. Dada a confecção física dos componentes, iremos garantir uma relação destes com o modelo previamente proposto. Para que então possa ser finalizado o ciclo de projeto e este sirva para trabalhos subsequentes de melhoria de performance.

Haja vista isso, o presente trabalho tem como objetivos fundamentais:

- Definir parâmetros iniciais para a modelagem do problema proposto;
- Desenvolver modelos computacionais para a interação do sistema com o meio em que está submetido;
- Elaborar procedimentos para instrumentação do sistema para verificar a coerência dos parâmetros iniciais;
- Analisar os esforços solicitantes presentes nos componentes;
- Examinar os resultados obtidos para uma retroalimentação e otimização do primeiro modelo; e

3 Fundamentação Teórica

Para podermos compreender melhor as funções dos componentes presentes na suspensão de um automóvel, introduzimos aqui conceitos relativos a pneus e ao tópico de Vibrações.

3.1 Modelo de Pneu

Ao analisarmos um carro em movimento numa corrida, entendemos a problemática deste como a tentativa de um corpo em descrever da forma mais eficiente e rápida um trajeto sobre uma pista. Isso é verdade para carros, navios, aviões, o que diferencia esses meios de transportes é o ambiente em que estes têm de batalhar para transpor seu movimento. Por mais eficiente e potente que um navio seja, ele perderá uma corrida para um carro funcional em terra firme. Isso se dá pelo fato de que a forma com que o automóvel interage com os elementos a seu redor é o limitante da sua performance. Toda entrega de potência do motor é limitada pela capacidade do pneu em transformar essa energia em movimento. Portanto, por ele ser o único componente, no caso ideal, em contato com o solo, ele passa a ser o principal fator do sucesso em uma corrida^[6].

Sabendo disso, diversos estudos e experimentos foram desenvolvidos para uma melhor compreensão dos fenômenos presentes na interação solo-pneu. Estes testes requerem um maquinário complexo, como visto na Figura 3, devido à enorme quantidade de variáveis envolvidas e da precisão exigida nos dados.

Figura 3 – Exemplo de maquinário utilizado para testes em pneus do FSAE TTC

Dada a falta de orçamento para tais feitos por equipes universitárias, foi concebido um consórcio de teste de pneus, o *TTC* (*Tire Teste Consortium*). Este tem o propósito de fornecer dados de qualidade sobre os pneus aplicados na categoria Fórmula SAE a fim de gerar melhores projetos e otimizações de pista para as equipes. Através do pagamento de um ingresso vitalício é possível ter acesso a todos os testes que já foram e serão realizados. O FSAE TTC é uma iniciativa administrada pela *Milliken Research Associates Inc.*, que disponibiliza os resultados para as universidades participantes.

Os parâmetros analisados e as suas influências nas respostas trativas do pneu são inúmeros. Alguns exemplos são dados a seguir, como:

- Ângulo de Deriva, sendo o principal fator associado à força lateral atuante na Impressão do Pneu;
- Dimensões físicas de largura e raio da roda;
- Carga vertical sobre o pneu;
- Velocidade;
- Condições de pista e clima;
- Pressão interna;
- Temperatura;
- Características construtivas do Pneu;
- Inclinação do eixo de rotação;

Através da compilação destes dados é possível criar um modelo matemático que corresponda ao comportamento do pneu, a este é dado o nome de *Tire Model*. Com a previsibilidade estabelecida, é possível extrapolar manobras e situações críticas que serão vivenciadas pelo pneu, assim determinar as forças e momentos gerados e por fim apontar os esforços presentes em todo o automóvel.

No presente trabalho se faz uso do modelo conhecido por MF5.2 (*Pacejka's Magic Formula 5.2*)^[7]. Este servirá para a obtenção de carregamentos atuantes em nosso sistema que serão usados como valores de entrada no modelo de Elementos Finitos discutido em breve.

Uma análise mais profunda sobre a confecção deste modelo será apresentado no Apêndice.

3.2 Conceitos Básicos de Vibrações

3.2.1 Sistema de Vibração Livre e Forçada

Um sistema oscilante em que não há a presença de forças externas apresenta a resposta a seu movimento em Vibração Livre. Dadas condições iniciais de deslocamento,

x, e velocidade \dot{x} , o sistema irá vibrar tendo sua energia mecânica oscilando entre energia cinética da massa m e energia potencial elástica do elemento de rigidez k. Como pode ser observado na Figura 4, devido a presença do amortecedor, representado pelo componente c, haverá a dissipação de energia.^[8]

Figura 4 – Esquematização de um sistema com 1 grau de liberdade sem forçamento externo.

Podemos então, através do somatório de forças atuantes de Newton, determinar a equação governante do sistema como a Equação 3.1:

$$m\ddot{x} + c\dot{x} + kx = 0 \tag{3.1}$$

Caso haja a atuação do meio externo por um forçamento, Figura 5(a), poderemos ter a Equação 3.2 como modelo matemático. Caso seja por um deslocamento, Figura 5(b), a Equação 3.3, representa a formulação governante para o sistema.

Figura 5 – Esquematização de um sistema com 1 grau de liberdade (a) forçamento externo e (b) submetido a um deslocamento.

$$m\ddot{x} + c\dot{x} + kx = F_0 cos(\omega t) \tag{3.2}$$

$$m\ddot{x} + c\dot{x} + kx = ks + c\dot{s} \tag{3.3}$$

Figura 6 – Representação do modelo de suspensão

O coeficiente c representa a componente de dissipação de energia, logo um sistema que apresenta c = 0, não apresentará perda de energia. Este tipo de proposta só existe no âmbito teórico, sabendo que a dissipação de energia está sempre presente e se dá das mais diversas maneiras. O mecanismo responsável pela componente c é o amortecedor, que tem como forma de dispersão de energia o atrito, representado pela resistência viscosa do fluido contido em seu interior, como é comum em automóveis ^[9]. Estes também cumprem a função de alterar a transmissibilidade de movimento para o chasis do carro para diversas faixas de velocidade ^[??].

3.2.2 Modelagem da Suspensão

Tratamos, em suma, neste trabalho a modelagem da suspensão como o modelo de 1/4 de carro, ou seja, analisaremos cada roda individualmente.

Para tal, analisamos um sistema submetido a um deslocamento de sua extremidade como na Figura 5(b). Entretanto agora devemos associar um novo elemento de rigidez, devido à contribuição do pneu. Contudo, não será considerado um elemento de amortecimento, pois este é irrisório no pneu ^[10]. A esquematização pode ser visualizada na Figura 6:

Devido a geometria complexa da suspensão, percebemos que nem todo deslocamento na roda se torna compressão do amortecedor e mola, para isso definimos a grandeza do Motion Ratio^[10], ou Razão de Movimento, que é a razão da movimentação da roda com a deformação experimentada pelo conjunto mola-amortecedor.

$$MR = \frac{S}{X - Y} \tag{3.4}$$

Onde *MR*, representa o *Motion Ratio* Esse novo fator é essencial para a progressão de um projeto de suspensão, pois as grandezas do conjunto mola-amortecedor devem ser divididas por ele para obtermos um relação entre a força gerada por eles com o deslocamento experimentado.

A geometria de suspensão comumente utilizada em protótipos da categoria FSAE, e também pela Apuama, é chamada de *Double Wishbone*, ou Duplo-A em português, pela geometria de seus componentes.

3.2.3 Transmissibilidade e Ressonância

Chamamos de transmissibilidade a relação entre o deslocamento y_0 , da massa suspensa, com o deslocamento s_0 do solo (a partir da análise da Figura 6), essa relação é dada pela Equação 3.5:

$$\frac{x_0}{s_0} = \sqrt{\frac{1 + [2\xi\frac{\omega}{\Omega_0}]^2}{[1 - (\frac{\omega}{\Omega_0})^2]^2 + (2\xi\frac{\omega}{\Omega_0})^2}}$$
(3.5)

Em que ξ representa o fator de amortecimento adimensional, ω a frequência natural de resposta e Ω_0 a frequência de excitação do sistema ^[8]. Fazendo a substituição por z = x - s, para descrever a relação do movimento da massa em relação à base ^[8], podemos escrever a nova equação do movimento como:

$$m\ddot{z} + c\dot{z} + kz = -m\ddot{s} = m\omega^2 Ssen\omega t \tag{3.6}$$

Podemos resolver a Equação 3.6, da seguinte forma:

$$z(t) = \frac{m\omega^2 Ssen\omega t - \phi}{[k - m\omega^2]^2 + (c\omega)^2]^{1/2}}$$
(3.7)

Onde ϕ determina o ângulo de fase do movimento. E é definido como:

$$\phi = \tan^{-1}\left[\frac{c\omega}{k - m\omega^2}\right] = \tan^{-1}\left[\frac{2\xi\frac{\omega}{\Omega_0}}{1 - (\frac{\omega}{\Omega_0})^2}\right]$$
(3.8)

Finalmente, ao substituir Equação 3.6 na Equação 3.7 teremos:

$$Z = \frac{m\omega^2 S}{[k - m\omega^2]^2 + (c\omega)^2]^{1/2}} = S \frac{(\frac{\omega}{\Omega_0})^2}{((1 - (\frac{\omega}{\Omega_0})^2)^2) + ((2\xi(\frac{\omega}{\omega_0})^2)^2)^{1/2}}$$
(3.9)

Portanto, podemos perceber que a razão Z/S é máxima quando $\omega/\Omega_0 = 1$, ou seja, na frequência de ressonância^[8].

Então, podemos obter nosso valor de ξ como na Equação 3.10

$$\xi = \frac{1}{2\left(\frac{Z}{S}\right)_{max}} \tag{3.10}$$

A fundamentação apresentada neste capítulo serve de base para o entendimento do funcionamento básico de um conjunto de suspensão veicular. A aplicação para o presente trabalho se dá na elaboração das rotinas computacionais desenvolvidas.

4 Explicação de métodos

4.1 Acelerometria

O acelerômetro é um dispositivo utilizado para se medir aceleração, grandeza fundamental para se compreender o comportamento de um sistema dinâmico. Sabendo as acelerações presentes, é possível, por meio de integrais sucessivas do sinal, evidenciar-se as velocidades e deslocamentos a que este foi submetido no tempo.

O modelo mais comum de acelerômetro é o do tipo piezelétrico, porém o que será o utilizado no presente experimento é do tipo *ICP*. A sigla significa "*Integrated Circuit Piezoelectric*", que em tradução livre fica "Piezoelétrico de Circuito Integrado. Estes apresentam precisão, durabilidade e facilidade de manipulação, desejáveis para a aplicação.

Seu funcionamento se baseia na propriedade de materiais piezelétricos que ao sofrerem um carregamento externo geram uma tensão que é proporcional a essa força. A esquematização de um acelerômetro pode ser visto na Figura 7:

Figura 7 – Exemplo de estrutura interna de um acelerômetro ICP.^[1]

Dada sua informação de saída em tensão elétrica, alguns condicionamentos de dados são necessários para se obter a medida na grandeza de aceleração. Todo esse processamento já é realizado pelo equipamento AiM que será mais aprofundado em capítulos futuros.

4.2 Extensometria

Quando sujeito a um forçamento externo este sofre tensões que são correspondentes à força aplicada. O corpo então irá experimentar mudanças em seu formato em múltiplas direções. Com base nas deformações e nas dimensões originais do corpo, pode-se definir o conceito de deformação:

Figura 8 – Exemplo de deformação.

Deformação linear é definida como a razão entre a variação de comprimento de um material e o seu comprimento não deformado. A partir de então, pode-se definir a relação presente na Equação 4.1

$$\varepsilon = \frac{\Delta L}{L} \tag{4.1}$$

Assim, um extensômetro, conhecido em inglês como *strain gage*, é comumente formado por um fio muito fino ou por folhas metálicas dispostas em um padrão de grade. A resistência elétrica dos filamentos de um strain gage varia à medida em que são estirados, e esse alongamento segue a superfície do corpo de prova.

Figura 9 – Exemplo de um extensômetro.^[2]

Analisando essa variação de resistência a um pontencial elétrico e depois associandose a uma Ponte de Wheatstone, com resistores com valores previamente conhecidos, tornase possível determinar a resistência instantânea do extensômetro. Com base nesses dados, é possível determinar as tensões presentes no corpo de prova. Se um força externa é aplicada causando compressão ou tração no componente e consequentemente no extensômetro, sua resistência irá aumentar ou diminuir proporcionalmente. Sendo a resistência original R, mudança sofrida $\Delta R \in \varepsilon$ a deformação, podemos montar a Equação (4.2).

$$\frac{\Delta R}{R} = K_s.\varepsilon \tag{4.2}$$

onde, K_s representa o coeficiente de sensibilidade do extensômetro (com valor de aproximadamente 2 para ligas de Cobre-Níquel e Níquel-Cromo^[11]).

A fim de elucidar a obtenção dos valores de tensão encontrados no extensômetro, iremos explorar o processo neste tópico.

Figura 10 – Esquema de montagem do sistema de um extensômetro.

Com base na Figura 10, podemos notar que a lógica aplicada é a comparação entre uma tensão de excitação e uma tensão resultante de saída. Conhecendo-se as resistências dos componentes R_2 , R_3 e R_4 , é possível, com a análise das tensões presentes, determinar o valor de R_1 .

As formulações utilizadas serão explicitadas na Equações (4.3), (4.4), (4.5) e (4.6):

$$e_0 = \frac{R_1 R_3 + R_2 R_4}{(R_1 + R_2)(R_3 + R_4)}.E$$
(4.3)

em que as R_1 representam a resistência do extensômetro, R_2 , R_3 e R_4 são resistores conhecidos, E é a tensão nominal de entrada do sistema e e_0 é a tensão de saída.

Supondo que R_1 tem uma variação de ΔR proveniente da deformação do extensômetro:

$$e_0 = \frac{(R_1 + \Delta R)R_3 - R_2R_4}{(R_1 + \Delta R + R_2)(R_3 + R_4)}.E$$
(4.4)

Sabendo que os resistores R_2 , $R_3 \in R_4$, tem o mesmo valor de resistência, podemos afirmar que:

$$e_0 = \frac{R^2 + R\Delta R - R^2}{(2R + \Delta R)2R} \cdot E \tag{4.5}$$

Como R é significativamente maior que ΔR :

$$e_0 \approx \frac{1}{4} \cdot \frac{\Delta R}{R} \cdot E \tag{4.6}$$

Com base na Equação (4.2):

$$e_0 \approx \frac{1}{4} K_s.\varepsilon.E \tag{4.7}$$

Aplicando a Equação (4.7) podemos perceber que a tensão de saída é proporcional ao coeficiente de sensibilidade do extensômetro, a deformação sofrida e a tensão de entrada, sendo, assim, fácil de determiná-la.

4.3 Elementos Finitos

O Método de Elementos Finitos (MEF), conhecido em inglês como *Finite Element Method* (FEM), é um método que se utiliza de um modelo computacional e numérico para resolução de problemas de engenharia. Atualmente, as aplicações deste recurso cobrem as mais diversas áreas, como análise estrutural, transferência de calor, escoamento de fluido, potencial eletromagnético. No presente trabalho, o foco será em análise estrutral, sendo essa a fonte original do recurso.

Para uma melhor compreensão do método, é feita a seguir uma breve revisão de conceitos chaves de forma qualitativa.

Os cálculos tem como base a análise dos deslocamentos da estrutura. Essas deformações correspondem a uma medida normalizada dos deslocamentos relativos de pontos em um corpo. Estes deslocamentos são considerados apenas como relativos dentro dos componentes. Quando não há esse tipo de deslocamento é considerado um movimento de corpo rígido, onde a deformação é nula. Por exemplo, na Figura 11, os deslocamentos dos pontos imaginários $A, B \in P$ podem ser definidos pelos vetores $(A.A'), (B.B') \in (P.P')$.

Analisando a Figura 12, podemos obter a Equação (4.8), que descreve a função das deformações normais.

$$\varepsilon_x = \frac{\partial u}{\partial x} \tag{4.8}$$

De forma análoga, podemos analisar a Figura 13 e obter as Equações 4.9, 4.10 e 4.11, que servem para demonstrar as deformações cisalhantes.

Figura 11 – Exemplo de análise de deslocamentos de pontos em um corpo qualquer $^{[3]}$.

Figura 12 – Caracterização de deformações normais.

Figura 13 – Caracterização de deformações cisalhantes.

$$\alpha \approx \tan \alpha \approx \frac{\partial v}{\partial x} \tag{4.9}$$

$$\beta \approx \tan \alpha \approx \frac{\partial u}{\partial y} \tag{4.10}$$

$$\gamma_{xy} \approx \alpha + \beta \approx \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}$$
(4.11)

Como consequência, é possível relacionar os valores obtidos para a deformação por meio de uma equação constitutiva para a direção normal, (4.12), e uma para a direção cisalhante, (4.13).

$$\varepsilon_x = \frac{1}{E}(\sigma_x - v\sigma_y + v\sigma_z) \tag{4.12}$$

onde ε_x representa a deformação na direção x, E o módulo de elasticidade do material, σ_x , $\sigma_y \in \sigma_z$ representam respectivamente as tensões nas direções x, $y \in z$, e v o coeficiente de Poisson. As deformações nas direções $y \in z$ podem ser obtidas de forma análoga.

$$\tau = G\gamma \tag{4.13}$$

onde τ representa tensão cisalhante no componente, G o módulo de cisalhamento do material e γ a deformação cisalhante experimentada por ele.

Tipicamente, o estado geral de deformações e tensões em um ponto qualquer, com base em uma orientação cartesiana e nas Equações (4.12) e (4.13), podem ser descritos por tensores, como mostrado na Figura 14.

Figura 14 – Visualização das componentes do tensor de tensões ^[4].

Dada a continuidade da matéria, diferentes componentes de deformação devem obedecer equações de compatibilidade, que as relaciona. Porém, analisar os inúmeros pontos de uma estrutura real é uma tarefa impraticável. Para isso o MEF se apoia em uma metodologia antecessora e similar em diversos quesitos, a Análise Funcional. Alguns pontos em comum a serem apontados são:

- Conceito de discretização da estrutura
- Modelo matemático empregado
- Formulação Funcional das equações diretas
- Métodos de solução numérica

Em resumo, o intuito do método é discretizar o meio contínuo em pequenas regiões, chamadas de elementos, e descrever o comportamento de todo o sistema com a superposição dos comportamentos individuais de cada elemento para podermos analisar situações de geometrias mais complexas. Os elementos podem apresentar as mais diversas formas, como observado na Figura 15, sendo cada uma mais apropriada para um aspecto de aplicação. A associação desses elementos e sua representação na forma do sistema a ser estudado é a chamada malha de elementos.

Figura 15 – Representação de alguns elementos utilizados no MEF.^[3]

Logo, o software *Ansys*, que será o compilador do modelo, utiliza métodos que se apoiam nas soluções anteriormente mencionadas, em específico o Método Direto, que se utiliza do Princípio dos Trabalhos Virtuais.

Parte II

Desenvolvimento

5 Ferramentas Utilizadas

Nesta seção do trabalho são apresentadas todas as ferramentas necessárias para a execução do projeto, com um histórico de utilização e aplicação para o caso em estudo.

5.1 *AiM*

A *AiM Tech* é uma líder mundial em aquisição de dados, tendo uma enorme presença no âmbito do automobilismo. Seus dispositivos são capazes de identificar as mais diversas características de um automóvel durante sua performance, para que possamos analisar seu comportamento e otimizar os resultados.

Há presente no AF18 o componente EVO4S da companhia. Ele possui 5 canais analógicos para as mais diversas medidas, tais como de temperatura, pressão, potenciômetros para suspensão, entre outros. Existem também dois canais dedicados à medição de velocidades, para se monitorar os diferentes comportamentos da roda. Uma entrada para rotações por minutos do motor, provenientes tanto da unidade central do motor, como os advindos das bobinas eletrônicas (baixa tensão). Este também apresenta acelerômetros ICP de 3 eixos, bem como um giroscópio^[12].

Pode-se também fazer uso de suas demais entradas para a instalação de câmeras, GPS e extensões de canais. Isso pode ser visto na Figura 16, e extraída do site da companhia ^[12]

O dispositivo será utilizado para medir as acelerações presentes no trajeto e assim alimentar o Modelo de Pneu.

5.2 ADS1800 da Lynx Tecnologia

A Lynx é uma empresa de tecnologia brasileira com atuação mundial e uma das líderes do mercado brasileiro em sua área de atuação. Utiliza-se um modelo de seus módulos neste trabalho para a obtenção dos dados provenientes dos extensômetros.^[13]

O módulo ADS1800, Figura 17, é um sistema de aquisição de dados de alta performance com entradas analógicas universais configuráveis individualmente por *software*. Possibilita a montagem de um sistema distribuído de aquisição de dados, o que reduz drasticamente os gastos com cabeamento, uma vez que os módulos podem ficar próximos aos pontos de medição. O gabinete compacto do ADS1800 possibilita sua utilização nas mais diversas aplicações, até mesmo naquelas onde o espaço é um fator limitante.

Figura 16 – Esquema de montagem possível para o dispositvo EVO4S

Figura 17 – Imagem retirada do site da Lynx Tecnologia referente ao modelo ADS1800

O modelo *ADS1800* selecionado foi disponibilizado pelo Departamento de Engenharia Mecânica através do professor Luís Augusto Veloso. Mais informações técnicas e no que tange a aplicabilidade do aparelho podem ser encontradas no endereço eletrônico da Lynx Tecnologia.^[13]

5.3 MATLAB

MATLAB (*matrix laboratory*, ou laboratório de matrizes) é um aplicativo de programação com alcance global e muito utilizado no âmbito de engenharia, devido a sua facilidade de codificação.

Com linguagem própria e intuitiva, o programa já vem sendo utilizado pela Apuama há anos e portanto diversos *scripts* (nome dado ao arquivo código gerado) foram desenvolvidos em todas as áreas da equipe.

Logo, a composição da equipe responsável pelo projeto de suspensão tem sua própria biblioteca de *scripts* e faz uso dessa para a definição de diversos parâmetros de projeto.

Como introduzido previamente em 3.1, a modelagem do Pneu requer cálculos extremamente complexos e necessitam de uma plataforma para este tratamento, devido a sua dependência de inúmeras variáveis e resultados complexos.

Há também a análise cinemática da suspensão, além da questão dinâmica de cargas presentes no funcionamento do protótipo.

Tendo em vista que a construção de tais *scripts* não é o escopo fundamental do projeto em questão, estes são apenas referenciados como provenientes do MATLAB, porém temos parte do processo de criação explicado no Apêndice A.

5.4 SolidWorks

O SolidWorks, produto desenvolvido pela *Dassault Systems*, é uma ferramenta de desenvolvimento de *CAD* (*Computer Assisted Drawing*), difundida mundialmente.

No mercado desde 1993, milhares de empresas e milhões de engenheiros utilizam o *software* para a solução de seus problemas de desenhos técnicos.

Dada a notória qualidade demonstrada, este foi o aplicativo selecionado para a elaboração de nossos componentes de maneira virtual.

Todo ano, o protótipo, previamente ao início de qualquer processo de manufatura, é inteiramente concebido nos computadores dos membros, utilizando o SolidWorks. Isso é feito para uma melhor visualização do projeto e principalmente para evitar a superposição de componentes e previnir problemas futuros com os componentes físicos, assim, antecipando qualquer detalhe que pudesse passar despercebido na idealização do carro como um todo.

Apesar de possuirmos os CADs do protótipo completo, o foco aqui será dado apenas ao subsistema de suspensão. E para melhor entendimento das partes deste subsistema, as Figuras 18, 19 e 20, ilustram-nos os modelos em CAD desenvolvidos no programa:

Figura 18 – Vista superior da suspensão do AF18

Figura 19 – Vista lateral da suspensão do AF18

Figura 20 – Vista frontal da suspensão do AF18

5.5 Ansys

O Ansys é uma ferramenta de engenharia desenvolvida para automatizar o cálculo por elementos finitos, anteriormente feitos à mão. Dada a complexidade de diversos problemas, tornou-se inviável este tipo de solução analítica. O software abrange, em sua tela principal (conhecido como *WorkBench*) os mais diversos casos encontrados nas áreas de engenharia, desde análise estrutural, até problemas térmicos e de fluidos.

No Brasil, o *Ansys* é oferecido pela empresa *ESSS*, que possui parceria com a Equipe Apuama, fornecendo o software e patrocínios para a participação de cursos sobre suas ferramentas.

Para a utilização do software é necessária a criação de um modelo computacional, conhecido como *CAD* (*Computer Assisted Drawing*), desenvolvido como mostrado na Seção 5.4. Porém, decidiu-se ainda utilizar outro software presente na plataforma que também é capaz de confeccionar e desenvoler *CADs*, o *Design Modeler*. Mas, devido a esta ferramenta ser embarcada em um *software* de elementos finitos, esta apresenta diversas funcionalidades voltadas para a otimização de geometrias para simulações estruturais. Portanto as geometrias serão apenas refinadas no *Design Modeler*.

Com posse dos *CADs*, utilizamos a plataforma *Workbench* do *Ansys* para a inserção das condições de contorno.

6 Análise de Extensometria

Munidos das informações obtidas no desenvolvimento do capítulo anterior, podemos desenvolver os pontos ótimos para a instalação dos extensômetros e iniciar a bateria de testes para validação dos resultados obtidos.

Foram selecionados os pontos médios dos tubos de aplicação por serem os pontos mais distantes das irregularidades presentes nas extremidades. Dessa forma, visa a uma redução na interferência das anomalias devido ao processo construtivo. Na Figura 21 são mostrados os pontos definidos previamente nos componentes da suspensão. Além disso, estão indicados também o Balancim e a Manga, pois sua identificação é necessária para a compreensão deste trabalho.

Figura 21 – Demonstração dos Pontos de Interesse escolhidos

Os 5 pontos escolhidos são nomeados de acordo com o componente em que se encontram e a sua posição em relação a longitudinal do veículo (onde *Fore* se refere ao tubo mais próximo à frente do carro e *After* mais à traseira). Logo, temos no Braço Superior da Suspensão (*Upper Fore, Upper After*), Braço Inferior da Suspensão (*Lower Fore, Lower After*) e o Tubo de Alavanca (*Push Rod*).

Figura 22 – Foto do conjunto dianteiro direto do AF18

6.1 Instalação e Cuidados inciais

Para a instalação dos extensômetros foram tomados os cuidados recomendados pela própria produtora das peças, KYOWA^[14]. Na Figura 22, vemos o lado direito na dianteira do carro que não teve extensômetros aplicados devido à simetria do protótipo.

Para se instalar os extesômetros no lado esquerdo foram sucedidos os seguintes passos:

- Marcação inicial do ponto de aplicação dos extensômetros e proteção da vizinhança com fita crepe;
- Lixação dos tubos para retirar a tinta (incialmente com Lixa nº 100 para então se fazer um acabamento com uma Lixa nº 320);
- Higienização local com pano úmido e álcool;
- Aplicação de fita adesiva no extensômetro em superfície lisa;
- Retirada do extensômetro da superfície para aplicação final;
- Posicionamento na direção a pegar deformação longitudinal ao tubo;
- Aplicação parcial da fita adesiva seguida de introdução de cola;

Figura 23 – Foto após finalizada a instalação do lado esquerdo do eixo dianteiro

- Pressão aplicada até atingir o tempo de cura da cola;
- Retirada cuidadosa da fita;
- Elevação dos terminais e aplicação de fita isolante embaixo para evitar curto circuito com o tubo de aço;
- Soldagem de fios de extensão partindo do terminal para alcançar o aquisitor de dados;
- Aplicação de fita isolante líquida para garantir a estabilidade e integridade dos eletrônicos envolvidos.

O processo foi repetido para todos os tubos que se encontram no *POI*. A Figura 23, mostra o resultado após a instalação dos extensômetros.

O processo descrito previamente então é reproduzido para o eixo traseiro.

É necessária a instalação dos *softwares Lynx@Net* e *ADS1800Assistant* disponíveis no endereço digital da empresa Lynx (Www2.lynxtex.com.br)

Para garantir um sistema mais seguro e confiável, foi decidido por dedicar uma bateria extra (12 Volts) apenas para o acionamento dos ADS. Isso se deve ao isolamento dos demais componentes elétricos do carro, uma vez que alguma oscilação na tensão demandada por eles poderia vir a interferir nos resultados obtidos ou danificar os aquisitores.

Dado o fato de que o modelo do *ADS1800* possui apenas 8 entradas para canais de aquisição, foi necessária a utilização de dois aquisitores funcionando em paralelo (para que tivéssemos os 10 canais necessários). Portanto, para que haja uma conexão entre os dois aparelhos, precisamos inserir no sistema um *switch*, para que houvesse uma rede criada entre eles e pudéssemos ligá-la ao computador.

Além disso, o *switch* deve ser alimentado por uma fonte de energia de 5 Volts (o que impossibilita o uso da bateria 12 Volts ligada aos ADS), então foi decidido por utilizar um

Figura 24 – Esquema de montagem dos sistema de aquisição, onde as linhas representam os cabos utlizados: azuis - rede, verdes - energia, amarelas - aquisição de extensômetro

Figura25– Fotografia do esquema real instalado no protótipo AF18

Power Bank (bateria externa de celular pessoal) para fazer essa alimentação. O esquema de montagem, bem como uma foto do sistema real montado, estão representados na Figura 24, e Figura 25, respectivamente.

Observemos ainda que algumas medidas adicionais foram implemtentadas para garantir a integridade física dos componentes do sistema de aquisição, como:

• A utilização de uma camada de isopor entre os aquisitores e o carro e também entre eles mesmo;

- A furação da placa do assoalho do carro para que se possa passar presilhas plásticas e manter o sistema imóvel;
- A cobertura do sistema com um tecido emborrachado para evitar qualquer dano por colisões na entrada e saída do piloto.

Recomenda-se ainda a identificação da fiação de cada canal de extensômetros para uma organização mais eficiente.

Para a aquisição com o protótipo em funcionamento é necessária a utilização do software Lynx AqDados, onde é possível fazer o sincronismo na medição de todos os dados.

A fim de proporcionar melhor entendimento do processo envolvendo a aquisição destes dados, a seguir apresentamos um passo-a-passo para uma instrução melhor.

6.2 Instruções para sincronismo de 2 ADS1800

A seguir, está descrito o processo de calibração e sincronia do módulo ADS1800.

6.2.1 Calibração por meio do AqDados

- 1. Conecte os dois aquisitores por meio de um *switch* a um computador com os devidos *softwares instalados*;
- 2. Execute o programa Lynx@Net;
- 3. Selectione os equipamentos a serem sincronizados e clique em "Conectar";
- 4. Execute o programa ADS1800Assistant
- 5. Na tela do *ADS1800Assistant* você verá os dois equipamentos, clique no botão "Relógio e Sincronismo"
- 6. Nas configurações, fizemos com que um dos equipamentos se tornasse o mestre na rede. Para isso, um dos equipamentos teve sua função Força BMC (Best Master Clock) alterada, de modo que ele seja forçado a ser o mestre. Para isso, clique no "Não Força", uma seta para baixo é exibida. Clique na seta e altere para "Força BMC;
- 7. Após efetuar a configuração, feche a janela do ADS1800Assistant e do Lynx@Net;
- 8. No AqDados, vá em Configuração do Driver de Aquisição;
- 9. Selecione o Driver de Aquisição: *LYNX@Net (LDTP)* : Hardware de aquisição de sinais via Ethernet e clique em "Configurar";

- 10. Clique no botão "Localizar equipamentos na rede";
- 11. Selecione os equipamentos a serem lidos e clique em "Conectar";
- 12. Os equipamentos aparecem listados e a comunicação com AqDados está configurada. Para facilitar a identificação dos sinais, recomenda-se marcar a última opção (Adicionar os dois últimos dígitos do número de série nos nomes do canais). Após isso, clique no botão "OK"e na tela seguinte clique em "OK"novamente.

6.2.2 Carregar as configurações e calibrações feitas nos 1800

- 1. Vá no menu "Ensaio Entradas Analógicas";
- 2. Clique no botão "Avançado";
- 3. Clique em "Importar Conf. dos Equipamentos";
- 4. Na janela de aviso, clique em "Sim"para importar as configurações feitas;

6.3 Testes em Pista

Nesta parte do experimento, inserimos o protótipo com a devida instrumentação instalada em condições controladas, que simulam aquela experimentada durante uma prova dinâmica.

Aqui analisamos as situações críticas a que o carro é submetido e às quais são mais suscetíveis a gerar alguma falha mecânica, primariamente no subsistema de suspensão. Estas situações ocorrem no pico de aceleração longitudinal, bem como no pico de aceleração lateral.

Dado que o pico de aceleração máxima do veículo é resultado da interação pneuasfalto e que não havia as perfeitas condições (temperatura e asfalto ideal) para atingirmos este pico, vamos avaliar, e alimentar os modelos teóricos, com a aceleração aferida pelo *AiM EVO*.

O local para a realização dos testes foi o estacionamento da Escola Cenecista de Brasília, voltado para a L3 Norte. A escolha do local foi baseada no baixo fluxo de veículos, espaço suficiente para o percurso adotado e proximidade do prédio ULEG (onde o protótipo é mantido) como pode ser visto na Figura 26.

6.3.1 Protocolo de Testes

No local indicado foram desenvolvidos dois tipos de manobra a fim de atingirmos diferentes condições críticas de funcionamento dos componentes da suspensão.

Figura 26 – Localização dos Testes (Imagem retirada do Google Maps)

A primeira manobra realizada consiste em percorrer uma trajetória circular inicialmente em sentido horário e inverter para sentido anti-horário para termos picos de acelerações laterais em ambos os sentidos. A trajetória escolhida pode ser observada na Figura 27

Figura 27 – Manobra 1 - Trajetória Circular definida

Após isto, nos interessa atingir picos de aceleração longitudinal máxima. Portanto, nada mais simples que percorrer um trecho em linha reta, procurando atingir a máxima velocidade e uma frenagem no menor tempo possível. Assim, obtém-se tanto a aceleração máxima longitudinal na saída positiva (aceleração do veículo) quanto a mínima longitudinal ao final (frenagem do veículo). A trajetória escolhida pode ser observada na Figura 28.

Figura 28 – Manobra 1 - Trajetória Retilínea definida

6.3.2 Resultados dos testes em pista

No dia 28 de setembro de 2019, foram realizados os testes previamente descritos. Por volta de 14h houve a locomoção para o local previsto e às 15h começou-se a performance das manobras previamente listadas.

Dessa forma, primeiramente se iniciou com as manobras circulares; então se seguiu para as retilíneas.

Aqui temos os resultados provenientes de duas fontes:

- do *Aim* que nos fornece as condições do veículo de forma global, mais especificamente as acelerações experimentadas;
- do *ADS1800* que produz os resultados no âmbito da deformação local que ocorre nos Pontos de Interesse na suspensão.

6.3.2.1 Aferições do AiM

A utilização do AiM serve para conseguirmos obter os valores de aceleração, tanto longitudinal quanto lateral, experimentados no decorrer do teste.

Como dito anteriormente, iniciamos os testes com uma trajetória circular, e devido a facilidade na execução dessa manobra foi possível obter diversos dados úteis.

Foram realizadas 3 baterias de voltas, cada uma com 7 voltas. Além disso, alternouse a orientação da rotação, para que pudéssemos obter picos de aceleração, e logo, carga máxima nos pneus, nos dois lados do carro. A seguir, na Figura, 29, apresentamos as trajetórias desenvolvidas nas baterias de 1 a 3 respectivamente, obtidas através da funcionalidade de GPS do AiM.

Figura 29 – Representação da posição GPS nas Baterias de Teste Circulares (a) 1, (b) 2 e (c) 3

O gradiente de cores presentes na trajetória representa os valores obtidos para aceleração lateral (dados em g, com base na medida de gravidade), e segue a escala presente na Figura 30.

> 1.20	
0.90 -/- 1.20	
0.60 -/- 0.90	
0.30 -/- 0.60	
0.00 -/- 0.30	
-0.30 -/- 0.00	Γ
-0.60 -/0.30	
-0.90 -/0.60	
-1.20 -/0.90	
< -1.20	

Figura 30 – Escala utilizada no gradiente das trajetórias (valores em g)

Extraímos os valores de aceleração, e para isso cada bateria de testes foi dividida em 7 voltas. Assim podemos ter mais valores de picos e vales de aceleração. Os valores apresentados pelo *software* foram exportados para o Excel, para então organizá-los numa tabela, e os resultados estão expostos no Anexo C1.

De forma análoga apresentamos os resultados obtidos para as trajetórias retilíneas, inicialmente mostrando na Figura 108.

No caso da Figura 29, as cores representadas também seguem a tabela apresentada na Figura 30, porém aqui a representação gráfica é da aceleração longitudinal do veículo.

E assim como geramos uma tabela com os dados obtidos nas Baterias de Testes para trajetórias circulares, temos também para as trajetórias retilíneas. Porém, devido a

Figura 31 – Representação da posição GPS nas Baterias de Teste Retílineos (a) 1, (b) 2, (c) 3 e (d) 4

problemas técnicos como o aquecimento do motor e a questão da disponibilidade do local devido ao horário do dia, o teste retilíneo apresenta uma tabela mais sucinta. Outrossim, devido a simplicidade da manobra, os parâmetros de saída também são simplificados.

Os dados aqui obtidos foram utilizados para alimentar as rotinas de MATLAB, fornecendo forças e momentos atuantes na suspensão, que, por sua vez, integram as condições de contorno para as simulações em Elementos Finitos.

Gráficos que melhor apresentam os diversos dados aqui obtidos foram movidos para o Anexo C2, a fim de propiciar uma apresentação mais enxuta.

6.3.2.2 Leituras dos Extensômetros

Após a realização minuciosa da instalação dos extensômetros e da devida atenção a como se obter resultados sincronizados de mais de um ADS1800 pode-se prosseguir em sua análise.

Com auxílio do AqDAnalysis, converteu-se os resultados que se encontram na extensão ".LTX"(arquivo de leitura utilizado pela Lynx) para um simples ".txt"(arquivo de texto padrão).

Devido às altas frequências de leitura utilizadas (1000 Hz), os arquivos produzidos são extremamente extensos e, portanto, uma melhor visualização deles se dá por meio de gráficos.

Porém, pelo fato de que foram realizadas 7 manobras, e cada uma com 10 leituras distintas (10 extensômetros), isso resulta em um total de 70 gráficos. Para manter uma apresentação menos poluída, assim como feito na seção anterior, estes gráficos foram movidos para o Anexo C3.

Observemos ainda, devido à carga estática durante a instalação, foram necessários

alguns balanceamentos e mudanças de referenciais. Os valores apresentados devem ser corrigidos para que contemplem essa carga e compensem as deformações apresentadas.

7 Método de Elementos Finitos

Neste capítulo será discorrido como foi a abordagem na íntegra da Análise por Elementos Finitos. Para tal, é feita uma breve discussão dos valores introduzidos pelo *Tire Model*, através das rotinas de MATLAB e em sequência uma abordagem da problemática envolvendo o pré-processamento da geometria, através do aplicativo *Design Modeler*, embarcado na plataforma *WorkBench*. Por fim, tem-se a utilização da interface *Mechanical* como solucionador do problema.

7.1 *Tire Model* e as Condições de Entrada

De posse dos valores obtidos para a aceleração no trajeto com o *AiM*, podemos usufruir da biblioteca de *MATLAB* para que determinemos as forças e momentos atuantes no subsistema de suspensão. Essas rotinas foram desenvolvidas com base em modelos teóricos de pneus e são fruto de anos de testes como os exemplificados nos capítulos de fundamentação teórica. Uma vez que estas bibliotecas não cabem no escopo do trabalho presente, será feita uma utilização bem objetiva dos dados retornados e uma descrição melhor do processo no apêndice.

Primeiramente, analisamos as situações mais críticas a que esteve submetido o protótipo, tanto nos testes em trajetória circular quanto nos que foram feitos em linha reta.

Devido a larga extensão dos testes circulares, elencaremos apenas 10 pontos mais relevantes. Assim sendo, as cinco maiores acelerações positivas (em que a metade do carro com extensômetros se encontra na parte externa da curva) e as cinco maiores acelerações negativas (em que os extensômetros se encontram na parte interna). Os dados selecionados podem ser vistos na tabela da Figura 1.

			Aceleração) Lateral [g]			Ace		Velocidade [km/h]				
N ^o Volta	Minimo	Mávimo	Instante o	do Mínimo	Instante d	lo Máximo			Instante o	do Mínimo	Instante d	lo Máximo	Minimo	Mávimo
	WIIIIIII	WaxIIIIO	Relativo	Absoluto	Relativo	Absoluto	WIIIIIIO	Maximo	Relativo	Absoluto	Relativo	Absoluto	WIIIIIIO	IVIAXIIIIO
Volta 1.5	-0.500	1.328	8.355	66.161	1.484	59.290	-0.900	0.750	2.574	60.380	8.565	66.371	0.600	38.400
Volta 2.4	0.606	1.319	3.109	40.801	2.008	39.700	-0.250	0.240	4.569	42.261	2.818	40.510	31.200	38.800
Volta 2.6	0.260	1.366	6.872	58.221	0.552	51.901	-0.100	0.170	5.132	56.481	6.962	58.311	32.000	42.300
Volta 2.7	-0.886	1.339	7.385	65.991	1.544	60.150	-0.770	0.690	40.364	98.970	45.514	104.120	0.000	43.700
Volta 3.1	-1.112	0.112	46.081	46.081	3.341	3.341	-0.200	0.350	42.780	42.780	35.111	35.111	0.000	35.600
Volta 3.2	-1.239	0.188	5.258	52.041	6.658	53.441	-1.060	0.390	5.798	52.581	1.418	48.201	0.100	38.500
Volta 3.5	-1.048	-0.447	7.842	95.427	2.112	89.697	-0.150	0.210	7.502	95.087	4.132	91.717	29.500	38.800
Volta 3.6	-1.149	-0.602	4.062	99.577	4.902	100.417	-0.180	0.250	3.691	99.206	3.001	98.516	31.400	39.000
Volta 3.7	-1.207	1.432	0.299	103.437	26.088	129,226	-0.770	0.670	57.069	160.207	6,119	109.257	0.000	38,900

Tabela 1 – Seleção dos resultados obtidos para as trajetórias circulares

De maneira análoga, podemos analisar os resultados em trajetória retilínea. Porém,

devido à simplicidade e menor tempo de execução dos testes, foram selecionados todos os dados. Logo, são analisados 8 pontos; 4 de aceleração positiva máxima (de acordo com o referencial, isso apresenta situações de movimento acelerado) e 4 aceleração negativa máxima (situações de frenagem). A fim de melhor ilustrar a seleção, temos a tabela na Tabela 2

			Aceleração	Lateral [g]]	Ace	eleração Lo	[g]	Velocidade [km/h]			
Nº Volta	Tempo(s)	Mínimo	Máximo	Inst	ante	Mínimo	Mávimo	Instante		Minimo	Mávimo	
		WIIIIIIO	Maximo	Mínimo	Máximo	WIITIITIO	Maximo	Mínimo	Máximo	WIIIIIIO	WIAXITTO	
1	31.256	-0.285	0.347	26.031	26.541	-1.120	0.860	27.920	25.410	0.000	44.600	
2	20.832	-0.260	0.206	16.840	15.561	-1.190	0.890	16.881	15.061	0.000	56.100	
3	11.611	-1.106	0.207	11.441	9.531	-1.140	0.950	10.441	8.491	0.000	56.800	
4	27.947	-0.176	1.084	25.461	27.851	-1.130	0.850	27.160	24.971	0.000	58.800	

Tabela 2 – Seleção dos resultados obtidos para as trajetórias circulares

Portanto, temos aqui a seleção das "Voltas": 1.5; 2.4; 2.6; 2.7; 3.1; 3.2; 3,5; 3.6; 3.7; e 1; 2; 3 e 4. Onde o algarismo antes do ponto representa a bateria de teste; após o ponto, a ordem da manobra analisada; e caso não haja algarismo depois da vírgula, se refere a uma "volta"em trajetória retilínea.

Para gerar uma melhor identificação, haja visto a duplicata da Volta 3.7 e a análise das retilíneas tanto em aceleração quanto em frenagem, foi desenvolvida a seguinte renomeação apresentada na tabela da Figura 3.

Tabela 3 – Nomenclatura estabelecida para melhor identificar as manobras.

P.QE
P.QI
RA
RF

Onde temos representados como:

- "P", bateria de testes circulares;
- "Q", ordem da volta na bateria de testes circulares;
- "R", bateria de testes retilíneos;
- "E", momentos em que os extensômetros estão no conjunto externo à curva;
- "I", momentos que os extensômetros estão no conjunto interno à curva;
- "A", análise retilínea para aceleração;
- "F", análise retilínea para frenagem;

Finalmente, munidos dos resultados anteriores, podemos aplicar as rotinas de MA-TLAB para obtermos forças e momentos. Cabe ainda notar que os resultados aqui apresentados demonstram aplicações na *Print* do Pneu (centróide do contato pneu-asfalto). O sistema de coordenadas referencial como X longitudinal a frente do carro e Y vertical para baixo. Nas Tabelas 4 e 5, vemos os dados obtidos pelas rotinas nos atentando à identificação das manobras e à aceleração aplicada na análise.

Volta 1.5	F (1.328g)		Forças [N]	Mor	mentos [N	l.m]	Volta 3.1	Volta 3.1I (-1.112g)		Forças [N]	Mor	nentos [N	l.m]	
	2 (2:0208)	Х	Y	Z	Х	Y	Z				Y	Z	Х	Y	Z	
Dianteira	Esquerda	-244.49	-1429.43	-1820.55	-33.52	-26.61	-49.74	Dianteira	Esquerda	-52.70	-277.73	-457.65	-0.57	-7.94	-3.69	
Diancena	Direita	-23.68	-172.21	-249.42	0.09	-5.78	-1.12	Diancena	Direita	-195.91	-1329.35	-1269.24	-18.14	-24.10	-46.39	
Traspira	Esquerda	65.19	-1516.85	-1840.31	-52.51	-20.67	-55.48	Traseira	Esquerda	28.45	-408.69	-630.45	-5.98	-9.78	-7.06	
hasena	Direita	33.89	-312.97	-514.97	-4.49	-8.18	-3.47	Hasena	Direita	24.14	-1415.69	-1344.22	-36.56	-21.04	-46.24	
	F (4 949-)	Forças [N]			Mor	mentos [N	l.m]				Forcas [N]			Momentos [N.m]		
Volta 2.4	E (1.319g)	х	Y	Z	х	Y	Z	Volta 3.2	I (-1.239g)	х	Y	Z	х	Y	Z	
Disstation	Esquerda	-242.43	-1425.42	-1789.29	-32.69	-26.50	-50.25	Distant	Diantoira Esquerda		-216.71	-355.67	-0.19	-6.73	-2.13	
Dianteira	Direita	-25.70	-176.79	-266.33	0.05	-5.88	-1.26	Dianteira	Direita	-227.33	-1389.09	-1574.99	-26.57	-25.63	-50.66	
Tracaira	Esquerda	62.63	-1512.46	-1818.97	-51.79	-20.71	-55.45	Tracaira	Esquerda	31.54	-351.51	-567.13	-5.08	-8.84	-4.91	
Iraseira	Direita	33.64	-316.80	-520.43	-4.54	-8.24	-3.62	Traserra	Direita	43.67	-1474.16	-1628.86	-45.52	-20.96	-53.35	
			Forças [N]	Mor	mentos [N	l.m]			Forças [N]			Mor	mentos [N	l.m]	
Volta 2.6	E (1.300g)	х	Y	Z	х	Y	Z	Volta 3.51 (-1.048g)		х	Y	Z	х	Y	Z	
Disstation	Esquerda	-275.03	-1447.00	-2132.16	-38.54	-27.24	-22.71	Disateira	Esquerda	-59.86	-307.75	-503.33	-0.78	-8.51	-4.62	
Dianteira	Direita	1.64	-153.59	-14.46	0.81	-5.29	-0.12	Dianteira	Direita	-176.99	-1298.61	-1118.56	-14.25	-23.29	-43.04	
Tracaira	Esquerda	75.03	-1534.71	-1916.11	-55.24	-20.51	-55.31	Tracaira	Esquerda	26.83	-438.14	-653.97	-6.42	-10.25	-8.13	
Trasetra	Direita	34.47	-296.17	-489.92	-4.22	-7.88	-2.91	Traseira	Direita	17.55	-1386.96	-1211.83	-32.54	-20.98	-41.99	
			Forcas [N]	1	Mor	nentos [N	l ml			Forces [N]			Momentos [N m]			
Volta 2.7	'E (1.339g)	×	v v	7	X	v	7	Volta 3.6	l (-1.149g)	×	v v	7	X	v	7	
	Esquerda	-236.33	-1449.24	-1795.03	-33.65	-26.69	-51.77		Esquerda	-48.44	-260.18	-429.73	-0.45	-7.60	-3.20	
Dianteira	Direita	-26.32	-182.39	-283.20	-0.11	-6.01	-1.31	Dianteira	Direita	-206.03	-1346.95	-1357.24	-20.49	-24.56	-48.01	
	Esquerda	74.53	-1506.47	-1903.31	-54.07	-20.34	-53.34		Esquerda	29.36	-391.83	-613.94	-5.72	-9.51	-6.43	
Traseira	Direita	33.41	-293.36	-481.10	-4.04	-7.85	-3.18	Traseira	Direita	28.82	-1432.50	-1424.39	-39.04	-21.05	-48.58	
			Forças [N]	Mor	mentos [N		V-h-2 7/ (1 207)			Forças [N]	Mor	mentos [N	l.m]	
Volta 3.7	E (1.432g)	х	Y	Z	х	Y	Z	Volta 3.7	l (-1.207g)	х	Y	Z	х	Y	Z	
	Esquerda	-227.30	-1471.18	-2006.27	-40.67	-26.99	-45.32		Esquerda	-41.54	-232.31	-383.28	-0.28	-7.05	-2.49	
Dianteira	Direita	-15.70	-114.41	-200.01	0.76	-4.38	0.52	Dianteira	Direita	-220.36	-1374.24	-1496.73	-24.35	-25.26	-49.97	
Tracaire	Esquerda	113.52	-1572.54	-2112.30	-62.01	-19.64	-48.40	Tracaire	Esquerda	30.76	-365.72	-584.67	-5.31	-9.08	-5.45	
rraserra	Direita	39.92	-273.33	-457.08	-3.99	-7.43	-1.75	rraserra	Direita	37.75	-1459.20	-1554.75	-43.14	-21.01	-51.85	

Tabela 4 – Resultados de Forças e Momentos para Trajetórias Circulares.

7.2 Design Modeler e Pré-Processamento

A utilização do *Design Modeler* tem a função de adaptar a geometria para melhor adequar às condições da simulação. No Apêndice B, estão descritos os passos necessários para se replicar a simulação feita. A demonstração é feita apenas para o eixo dianteiro do carro, ressaltando que de maneira análoga pode-se desenvolver para o eixo traseiro.

7.3 Mechanical

Continuando o método da seção anterior, é demonstrado, a princípio, a execução genérica da criação do modelo, e apenas quando necessário, dividi-los em Dianteira e Traseira.

(0.967)		Forças [N]		Mor	mentos [N	N.m]	Volta 15	Volta 1E (-1 12g)		Forças [N]		Momentos [N.m]		
(0.80g)	Х	Y	Z	Х	Y	Z	Volta IF	Volta 1F (-1.12g)		Y	Z	Х	Y	Z
Esquerda	0.00	-1016.20	0.00	0.00	0.00	0.00	Diantoira	Esquerda	-1249.80	-1115.90	0.00	0.00	0.00	0.00
Direita	0.00	-1016.20	0.00	0.00	0.00	0.00	Dianterra	Direita	-1249.80	-1115.90	0.00	0.00	0.00	0.00
Esquerda	1012.40	-1338.20	0.00	0.00	0.00	0.00	Trasoira	Esquerda	-1387.10	-1238.50	0.00	0.00	0.00	0.00
Direita	1012.40	-1338.20	0.00	0.00	0.00	0.00	Hasena	Direita	-1387.10	-1238.50	0.00	0.00	0.00	0.00
				_										
(0.89a)		Forças [N]		Mor	mentos [N	l.m]	Volta 2E	(_1 19g)		Forças [N]		Mor	nentos [N	N.m]
(0.85g)	X	Y	Z	х	Y	Z	Volta 21	(-1.1.)g)	Х	Y	Z	х	Y	Z
Esquerda	0.00	-1014.70	0.00	0.00	0.00	0.00	Dianteira	Esquerda	-1332.10	-1119.40	0.00	0.00	0.00	0.00
Direita	0.00	-1014.70	0.00	0.00	0.00	0.00	Dianteria	Direita	-1332.10	-1119.40	0.00	0.00	0.00	0.00
Esquerda	1047.70	-1339.70	0.00	0.00	0.00	0.00	Traseira	Esquerda	-1469.60	-1235.00	0.00	0.00	0.00	0.00
Direita	1047.70	-1339.70	0.00	0.00	0.00	0.00	musenu	Direita	-1469.60	-1235.00	0.00	0.00	0.00	0.00
(0.95g)		Forças [N]		Mor	mentos [N	l.m]	Volta 3E	(-1.14g)		Forças [N]		Mor	nentos [N	1.m]
(0.008/	X	Y	Z	Х	Y	Z		(8/	Х	Y	Z	Х	Y	Z
Esquerda	0.00	-1011.60	0.00	0.00	0.00	0.00	Dianteira	Esquerda	-1273.30	-1116.90	0.00	0.00	0.00	0.00
Direita	0.00	-1011.60	0.00	0.00	0.00	0.00		Direita	-1273.30	-1116.90	0.00	0.00	0.00	0.00
Esquerda	1118.30	-1342.80	0.00	0.00	0.00	0.00	Traseira	Esquerda	-1410.80	-1273.30	0.00	0.00	0.00	0.00
Direita	1118.30	-1342.80	0.00	0.00	0.00	0.00		Direita	-1410.80	-1273.30	0.00	0.00	0.00	0.00
(0.85g)		Forças [N]		Mor	mentos [N	l.m]	Volta4E	(-1,13g)		Forças [N]		Mor	nentos [N	1.m]
(0.008)	X	Y	Z	Х	Y	Z		(11208)	Х	Y	Z	Х	Y	Z
Esquerda	0.00	-1016.70	0.00	0.00	0.00	0.00	Dianteira	Esquerda	-1261.50	-1116.40	0.00	0.00	0.00	0.00
Direita	0.00	-1016.70	0.00	0.00	0.00	0.00		Direita	-1261.50	-1116.40	0.00	0.00	0.00	0.00
Esquerda	1000.60	-1337.70	0.00	0.00	0.00	0.00	Traseira	Esquerda	-1399.00	-1238.00	0.00	0.00	0.00	0.00
				1			I HUJCHO							
	(0.86g) Esquerda Direita Esquerda Direita (0.89g) Esquerda Direita Esquerda Direita Esquerda Direita Esquerda Direita Esquerda Direita Esquerda Direita Esquerda Direita	(0.86g) X Esquerda 0.00 Direita 0.00 Esquerda 1012.40 Direita 1012.40 X Esquerda 0.00 Sequerda 0.00 Esquerda 1047.70 Direita 1047.70 Direita 1047.70 A (0.95g) X Esquerda 0.00 Direita 0.00 Direita 1118.30 Direita 1118.30 N (0.85g) X Esquerda 0.00 Direita 0.00 Esquerda 0.00 Direita 0.00 Composition 0.00 Compos	Forças [N] X Y Esquerda 0.00 -1016.20 Direita 0.00 -1016.20 Esquerda 1012.40 -1338.20 Direita 1012.40 -1338.20 Direita 1012.40 -1338.20 (0.89g) Forças [N] K Y (0.89g) Forças [N] Consequerda 1047.70 Direita 0.00 -1014.70 Direita 1047.70 -1339.70 Direita 0.00 -1011.60 Direita 0.00 -1011.60 Direita 0.00 -1014.20 (0.95g) X Y Esquerda 0.00 -1011.60 Direita 0.00 -1014.20 Oireita 1118.30 -1342.80 Oireita 1118.30 -1342.80 Oireita 0.00 -1016.70 Direita 0.00 -1016.70 Direita 0.00 -1016.70	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c} & \mbox{Forças} [N] & \mbox{Mon} \\ \hline X & Y & Z & X \\ \hline Esquerda & 0.00 & -1016.20 & 0.00 & 0.00 \\ \hline Direita & 0.00 & -1016.20 & 0.00 & 0.00 \\ \hline Direita & 1012.40 & -1338.20 & 0.00 & 0.00 \\ \hline Direita & 1012.40 & -1338.20 & 0.00 & 0.00 \\ \hline Direita & 1012.40 & -1338.20 & 0.00 & 0.00 \\ \hline Direita & 1012.40 & -1338.20 & 0.00 & 0.00 \\ \hline Direita & 0.00 & -1014.70 & 0.00 & 0.00 \\ \hline Direita & 0.00 & -1014.70 & 0.00 & 0.00 \\ \hline Direita & 1047.70 & -1339.70 & 0.00 & 0.00 \\ \hline Direita & 1047.70 & -1339.70 & 0.00 & 0.00 \\ \hline Direita & 1047.70 & -1339.70 & 0.00 & 0.00 \\ \hline Direita & 1047.70 & -1339.70 & 0.00 & 0.00 \\ \hline Direita & 1047.70 & -1339.70 & 0.00 & 0.00 \\ \hline Direita & 1047.70 & -1319.70 & 0.00 & 0.00 \\ \hline Direita & 1047.70 & -1319.70 & 0.00 & 0.00 \\ \hline Direita & 1047.70 & -1319.70 & 0.00 & 0.00 \\ \hline Direita & 1047.70 & -1319.70 & 0.00 & 0.00 \\ \hline Direita & 0.00 & -1011.60 & 0.00 & 0.00 \\ \hline Direita & 1118.30 & -1342.80 & 0.00 & 0.00 \\ \hline Direita & 1118.30 & -1342.80 & 0.00 & 0.00 \\ \hline Oliceita & 1118.30 & -1342.80 & 0.00 & 0.00 \\ \hline Direita & 1118.30 & -1342.80 & 0.00 & 0.00 \\ \hline Direita & 1118.0 & -1347.70 & 0.00 & 0.00 \\ \hline Direita & 0.00 & -1016.70 & 0.00 & $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Forças [N] Momentos [N.m] Volta 1F Esquerda 0.00 -1016.20 0.00 0.00 0.00 0.00 Direita 0.00 -1016.20 0.00 0.00 0.00 0.00 Esquerda 1012.40 -1338.20 0.00 0.00 0.00 0.00 Direita 1012.40 -1338.20 0.00 0.00 0.00 0.00 Direita 1012.40 -1338.20 0.00 0.00 0.00 0.00 Direita 1012.40 -1338.20 0.00 0.00 0.00 0.00 .(0.89g) Forças [N] Momentos [N.m] Volta 2F Esquerda 0.00 -1014.70 0.00 0.00 0.00 Direita 1047.70 -1339.70 0.00 0.00 0.00 Dianteira Ibreita 0.00 -1011.60 0.00 0.00 0.00 Dianteira .(0.95g) Forças [N] Momentos [N.m] Volta 3F Dianteira Dir	Forças [N] Momentos [N.m] Volta 1F (-1.12g) Esquerda 0.00 -1016.20 0.00 0.00 0.00 Direita 0.00 -1016.20 0.00 0.00 0.00 0.00 Esquerda 1012.40 -1338.20 0.00 0.00 0.00 0.00 0.00 Direita 1012.40 -1338.20 0.00 0.00 0.00 0.00 0.00 Direita 1012.40 -1338.20 0.00 0.00 0.00 0.00 0.00 Joreita 1012.40 -1338.20 0.00 <t< td=""><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td></t<>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Tabela 5 – Resultados de Forças e Momentos para Trajetórias Retilíneas.

Haja vista a gama de possibilidades de análise apresentadas pelo *Workbench*, escolhemos a análise *Static Structural* (Estrutural Estática em português). De modo que esta fornece um resultado aproximado por aplicar as condições de contorno de maneira estática, excluindo os fenômenos dinâmicos intrínsecos a um carro de corrida.

Observação importante que regiões de contato que envolvam soldas (como por exemplo a junção dos tubos constituintes dos braços) serão ignoradas por serem dimensionadas analiticamente e por não haver um controle confiável em sua manufatura.

Primeiramente, selecionamos a opção de *Static Structural* e atrelamos a geometria desenvolvida. O esquema inicial deve ser o mostrado na Figura 32.

Figura 32 – Visualização inicial do esquema de simulação.

Feito isso vemos que a linha com "Model" requer uma atualização. Abrindo o "Mo-

del", abre-se o ambiente do *Mechanical* onde são introduzidos as condições de análise da simulação. A Figura 33 mostra o que deve ser observado nas simulações de dianteira e traseira, enquanto na Figura 34 vemos como é a representação destes conjuntos, se visualizadas as seções transversais de seus componentes.

Figura 33 – Visualização inicial no Mechanical para a (a) Dianteira e (b) Traseira

Figura 34 – Visualização inicial no *Mechanical* com a representação das seções transversais para a (a) Dianteira e (b) Traseira

A primeira etapa aqui é, na *Outline*, selecionar os corpos que não queremos para a simulação, estes são basicamente o *Rocker* (Balancim, responsável pelo contato da *Push Rod* com o amortecedor) e a *Knuckle* (Manga, peça que acopla os dois braços e a barra de direção). Tendo em vista a falta de verificação por extensometria, essas peças são excluídas da simulação, a fim de simplificar o algoritmo. Para tal, deixamos os corpos presentes apenas com a função de manter a conexão dos demais corpos, porém definimos o seu corpo como rígido. Sendo assim, quaisquer forças aplicadas sobre elas serão transmitidas

Outline	
Filter: Name 🗸	
🛛 🔄 🐎 🗄 🗟	21
Project	
🖻 💮 Model (B4)	
Geometry	
X Line B	ody
Line b	ody
	ine Body
	line Body
	Line Body
AU 🚳	
E Knuck	le
-x > 1	Line Body
-x > 1	Line Body
-x > 1	Line Body
	Line Body
-x > 1	Line Body
X	Line Body
	ons
Details of "Multiple Selecti	ion"
Graphics Properties	
 Definition 	
Suppressed	No
Stiffness Behavior	Stiff Beam

Figura 35 – Opção de corpos não-deformáveis para o Rocker e a Knuckle

integralmente ao próximo componente sem gerar deformação nas mesmas. O processo descrito pode ser exemplificado na Figura 35, onde o "*Stiffness Beahavior*" se refere ao comportamente da peça, e a definição de "*Stiff Beam*" contempla um elemento de viga completamente rígido.

A suspensão, ao se locomover, desloca-se em torno de componentes que permitem sua livre rotação em algumas direções e as restringe em outras. Temos nesse caso a presença de rótulas esféricas nos braços e terminais rotulares nos tubos de alavanca. Estas peças possuem peculiaridades internas que permitem sua movimentação e estas devem ser informadas para o computador.

São criadas aqui relações similares àquelas encontradas no subsistema de suspensão. As transmissões de esforços não se opõem a quaisquer rotações entre os componentes, dado que são feitas por meio de terminais rotulares e rótulas esféricas. Portanto, devemos selecionar vértices vizinhos em que haja este tipo de relação e inserir, utilizando a opção de "*Connections*" e selecionando "*Joint*". Assim, como visto na Figura 36, devemos selecionar a opção de "*General*" pois esta nos permite mais livremente modelar o tipo de junta presente. Desse modo, devemos impedir qualquer translação relativa e permitir a rotação nas três direções.

É recomendável que neste ponto seja iniciada uma simulação preliminar para garantir que as relações entre os componentes sejam satisfatórias. Caso contrário, revisar os passos anteriores.

Nota-se na Figura 36, a presença de um elemento de rigidez, a mola do conjunto do amortecedor do carro. Utilizando esta função do *Ansys*, podemos simplificar a análise ao redor deste componente. Pelas informações do fornecedor e por testes externos, fomos capazes de determinar a rigidez longitudnal da mola presente no carro como de 96 N/mm. Os elementos criados podem ser observados na Figura 37.

Outline											
Filter: Name	•										
] 🗗 🗠 🔂 🕼	3 \$↓										
🚊 🖓 Conne	Ė, ∕∰ Connections										
	🚊 🛶 🔊 🖗 PR - Rocker										
. <u>.</u>	General - Line Body To Multiple										
	🖻 🖳 🖉 PR - LA										
L E.	🗓 🗸 🏟 General - Line Body To Line Body										
□ □ □ ···· √ @ □	🖻 🖉 LA - Knuckle										
	庄 🧹 🌀 General - Multiple To Multiple										
	Handreiche Body To Multiple										
	ongitudinal - Ground To Multiple										
🗄 🐨 🕅 Namer	Selections										
Details of "General -	Line Body To Multiple"										
Definition	Definition										
Connection Type	Body-Body										
Туре	Type General										
Suppressed	Suppressed No										
Translation X	Fixed										
Translation Y	Fixed										
Translation Z	Translation Z Fixed										
Potations	Potations Free All										

Figura 36 – Exemplo de junta universal modelada

Figura 37 – Modelos de mola desenvolvidos para a (a) Dianteira e a (b) Traseira

Partindo agora para as condições de contorno, criamos um "*Remote Point*", ou Ponto Remoto em tradução livre. Este serve para simular as forças que estão sendo aplicadas no centro do contato do Pneu-Asfalto (*Print*). Na Figura 38 podemos observar os pontos criados para a dianteira e traseira do carro.

Vale ressaltar aqui que os Pontos representados na Figura 38 foram condicionados ao vértice mais externo da Manga, e que este representa o contato da manga com o conjunto da roda. Ademais, agora temos claro que o Pneu, Roda e Cubo de Roda também foram excluídos da simulação e são tidos como rígidos.

Para a aplicação das condições de contornos, fixamos todos os pontos de contato com o chassi do protótipo (utilizando apoios livres de momentos em azul), como pode ser observado na Figura 39, e também devemos observar que para a aplicação da força

Figura 38 – Identificação dos pontos remotos para a *Print* na (a) Dianteira e na (b) Traseira

Figura 39 – Condições de contorno para a *Print* na (a) Dianteira e (b) Traseira

(vermelho) está na *Print*, pois é de lá que obtemos nossos dados. Já para os momentos (vermelho) resultantes, não é necessário este cuidado, pela natureza física da propriedade de equilíbrio de momentos.

Temos que nos atentar ainda, ao definir as componentes das forças e momentos, para que cliquemos nas "caixas" ao lado das entradas dos valores. Note que ao selecionar a "caixa", ela é preenchida com a letra "P", isso se chama Parametrizar. Detalhes disto podem ser vistos na Figura 40 e suas implicações serão discutidas mais tarde neste capítulo.

Agora que temos todas as condições de entrada definidas, devemos definir quais serão as respostas a pedir deste sistema. Haja vista a intenção de analisar as tensões encontradas nos braços e tubos do subsistema, criamos uma análise especial destes componentes através do uso de "*Named Selections*".

Named Selections (Seleções Nomeadas, em tradução livre) é uma funcionalidade interessante, pois nos permite criar recursos dependentes de seleção e alterar todos de uma única vez alterando diretamente a *Named Selection*. Utilizamos esse recurso aqui

0	utline		ņ
F	Filter: Name	•	
1	🕅 🔄 🐎 🖽 🧧	i <u></u> ≱	
-		Structural (B5) nalysis Settings AF AA AF AA R	^
		ocker oment emote Force olution (B6)	
		Solution Information Total Deformation Total Deformation UAF - Axial Force UAF - Total Rendment UAF - Total Rendment	, ,
De	etails of "Moment"		ą
=	Scope		
	Scoping Method	Geometry Selection	
	Geometry	1 Vertex	
-	Definition		
	Туре	Moment	
	Define By	Components	
	Coordinate System	Global Coordinate System	
	P X Component	-33520 N·mm (ramped)	
	P Y Component	-49740 N·mm (ramped)	
	P Z Component	26610 N·mm (ramped)	
	Suppressed	No	
	Advanced		

Figura 40 – Visualização da Parametrização de uma condição

Figura 41 – Named Selections para a (a) Dianteira e a (b) Traseira

para determinar os pontos onde devemos verificar as tensões, ou seja, nos pontos onde se encontram os extensômetros. Na Figura 41 podemos visualizar as definições destes pontos.

Onde temos representados os extensômetros por:

- LAF Lower Arm Fore, Braço Inferior Dianteiro Tubo Anterior;
- LAA Lower Arm After, Braço Inferior Dianteiro Tubo Posterior;
- *PR Push Rod*, Tubo de Alavanca (*Push Rod*);
- UAA Upper Arm After, Braço Superior Dianteiro Tubo Posterior;
- UAF Upper Arm Fore, Braço Superior Dianteiro Tubo Anterior;

Por fim, selecionamos os pontos definidos nas *Named Selections* para mostrar nossos resultados. Lembrando que aqui também é necessária a marcação da "caixa" ao lado

0	utline	
F	ilter: Name	•
]	🕼 🕢 🏷 🗄 🗟	<u>A</u>
	^	Total Deformation
		UAF - Axial Force
		UAF - Total Bending Moment
		UAA - Axial Force
	®	UAA - Total Bending Moment
	^®	PR - Axial Force
		PR - Total Bending Moment
		LAF - Axial Force
		LAF - Total Bending Moment
	- <u>*</u>	LAA - Axial Force
	····/••	LAA - Total Bending Moment
De	etails of "UAF - Axial Fo	rce"
Ξ	Scope	
	Scoping Method	Named Selection
	Named Selection	UAF
Ξ	Definition	
	Туре	Directional Axial Force
	Ву	Time
	Display Time	Last
	Coordinate System	Solution Coordinate System
	Calculate Time History	Yes
	Identifier	
	Suppressed	No
Ξ	Integration Point Resu	lts
	Display Option	Unaveraged
Ξ	Results	
	Minimum	75.301 N
	P Maximum	75.301 N

Figura 42 – Exemplo de Solução escolhida para o problema.

para a parametrização dos valores. Na Figura 42 vemos as métricas utilizadas para a solução.

Nota-se que foram selecionados tanto a Força Axial nos componentes como o Momento Fletor Total.

Desta maneira, será necessário um cuidado extra para caracterizar como estes esforços são combinados nos pontos em análise e ainda na sua conversão em deformações.

Enfim, para exemplificar as seleções das "caixas" de Parametrização podemos ver que nosso ambiente de esquema de projeto se encontra agora como na Figura 43.

Pode-se perceber agora a presença de uma nova aba no topo para acessar, ou pode-se simplesmente clicar duas vezes em "*Parameter Set*". Ao fazer isso, é aberta a aba de Parâmetros e aqui podemos inserir os resultados de forças e momentos provenientes do MATLAB da Tabela ??, nos atentando a mudar quaisquer unidades que se façam necessárias. Após isto, teremos uma tabela como a da Figura 44.

Figura 43 – Visualização do Project Schematic no WorkBench

Table of	Design Points																
	A	в	с	D	E	F	G	н	I	J	к	L	м	N	0	P	Q
1	Name 💌	P4 - R F X C	P5 R F Y C	P6 R F Z C	P7 M▼ X C	P8 M ▼ Y C	P9 ▼ Z C	P10 - UAF - Axial Force Maximum	P11 - UAF - Total Bending Moment Maximum	P12 - UAA - Axial Force Maximum	P13 - UAA - Total Ben Mo Ma	P14 - PR - Axial Force Maximum	P15 - PR - Total Bending Moment Maximum	P 16 - LAF - Axial Force Max	P17 - LAF - Total Ben Mom Max	P18 - LAA - Axial Force Max	P19 - LAA - Total Ben Mo Ma
2	Units	N 💌	N 💌	N	Nm 💌	Nm 💌	Nm 💌	N	N mm	N	N mm	N	N mm	N	N mm	N	N mm
3	DP 0 (Current)	-244.49	-1429.4	-1820.6	-33.52	-49.74	26.61	75.301	29.259	742.16	28.854	-1680.5	0.00013343	-1008.7	20951	-2079.5	19455
4	DP 1	-242.43	-1425.4	-1789.3	-32.69	-50.25	26.5	🗲 62.454	🗲 28.143	🗲 724.74	Arr 27.753	🥖 -1678.9	0.0001333	🥖 -978.61	Arr 20932	🥖 -2044.6	🗲 19437
5	DP 2	-275.03	-1447	-2132.2	-38.54	-22.71	27.24	🗲 244.57	🗲 43.61	🅖 961.71	🅖 43.005	🥖 -1668.6	Ø.0001316	🥖 -1204.2	Arr 20803	Arr -2355.2	🗲 19318
6	DP 3	-263.33	-1449.2	-1795	-33.65	-51.77	26.69	A 39.912	Arr 27.653	🗲 735.54	🏓 27.27	🥖 -1709.1	0.0001348	🥖 -945.77	Arr 21309	🥖 -2093.7	🕖 19787
7	DP 4	-227.3	-1471.2	-2006.3	-40.67	-45.32	26.99	🗲 184.54	🗲 36.678	🅖 831.95	🅖 36.17	🥖 -1711.8		🥖 -1229.8	🗲 21342	🥖 -2214.4	🏓 19818
8	DP 5	-52.7	-277.73	-457.65	-0.57	-3.69	7.94	🅖 35.859	🗲 8.5152	🕖 200.77	🕖 8.3973	🗲 -320.09	🕖 2.4938E-05	🥖 -241.29	🅖 3990.7	A89.53	🅖 3705.8
9	DP 6	-37.57	-216.71	-355.67	-0.19	-2.13	6.73	7 28.982	<i>∲</i> 6.7165	🗲 157.6	🕖 6.6235	Arr -250.1	🏓 1.9571E-05	🥖 -185.13	🅖 3118.1	🥖 -371.69	🕖 2895.4
10	DP 7	-59.86	-307.75	-503.33	-0.78	-4.62	8.51	🗲 37.499	🍠 9.2457	🅖 219.56	🏓 9.1177	🥖 -354.97	🗲 2.762E-05	🥖 -265.2	A425.6	🗲 -543	🗲 4109.6
11	DP 8	-48.44	-260.18	-429.73	-0.45	-3.2	7.6	🗲 34.393	🗲 8.044	🗲 189.09	🗲 7.9326	🗲 -299.83	🅖 2.3381E-05	🗲 -226.33	🅖 3738.1	🥖 -457.08	🍠 3471.2
12	DP 9	-41.54	-232.31	-383.28	-0.28	-2.49	7.05	🅖 31.285	🕖 7.2265	🗲 169.45	🕖 7.1264	🥖 -267.84	🥖 2.0928E-05	🥖 -200.82	A 3339.3	🥖 -403.45	🅖 3100.9
13	DP 10	0.0001	-1016.2	0.0001	0.0001	0.0001	0.0001	🗲 -200.27	🅖 15.09	🥖 -206.56	🗲 14.881	🥖 -1343.5	Ø.0001144	🗲 591.28	🗲 16751	A 525.3	🗲 15553
14	DP 11	0.0001	-1014.7	0.0001	0.0001	0.0001	0.0001	🗲 -199.97	🗲 15.068	🦩 -206.26	🗲 14.859	🗲 -1341.5	0.0001142	🗲 590.41	🗲 16726	🗲 524.52	🗲 15530
15	DP 12	0.0001	-1011.6	0.0001	0.0001	0.0001	0.0001	🗲 -199.36	A 15.022	-205.63	🕖 14.814	🥖 -1337.4	Ø.0001139	A 588.6	🗲 16675	🗲 522.92	🗲 15483
16	DP 13	0.0001	-1016.7	0.0001	0.0001	0.0001	0.0001	🥖 -200.36	🗲 15.098	🥖 -206.67	🗲 14.889	🥖 -1344.1	Ø.0001144	🗲 591.57	🗲 16759	🗲 525.56	🗲 15561
17	DP 14	-127.39	-1115.9	0.0001	0.0001	0.0001	0.0001	🗲 -331.1	🗲 18.116	🆩 -149	🗲 17.865	🗲 -1475.2	0.0001193	🅖 858.56	🗲 18394	A 301.83	🗲 17079
18	DP 15	-135.79	-1119.4	0.0001	0.0001	0.0001	0.0001	🗲 -339.12	🗲 18.27	🦩 -144.58	🕖 18.017	🥖 -1479.9	Ø.0001192	🗲 874.4	🗲 18452	A 285.5	🗲 17132
19	DP 16	-129.79	-1116.9	0.0001	0.0001	0.0001	0.0001	🗲 -333.39	🍠 18.16	🦩 -147.74	🕖 17.908	🦩 -1476.6	Ø.0001193	A63.09	🗲 18411	🏓 297.16	🗲 17094
20	DP 17	-128.51	-1116.4	0.0001	0.0001	0.0001	0.0001	🗲 -332.17	🗲 18.137	🗲 -148.42	🗲 17.886	Arr -1475.9	0.0001193		🗲 18402	<i>₹</i> 299.67	🗲 17086

Figura 44 – Visualização da tabela de Parametrização do WorkBench

Repare ainda que a ordem de seleção das "caixas" determina a posição das colunas. Na própria aba de parametrização é possível fazer essa mudança, ou simplesmente resselecionando as "caixas" na ordem correta. E que as colunas em cinza não são editáveis, obviamente, por serem colunas de resultados.

O "raio" presente em algumas células denota processos que ainda precisam ser avaliados, e após feita essa análise, podemos clicar com o botão direito na tabela para importála para Excel e tratarmos os dados de maneira mais agradável.

Por fim, podemos discutir sobre a malha presente. A fim de garantir confiabilidade dos resultados, foi feita uma convergência de malha onde se alterou o tamanho dos elementos e verificou-se a variação dos resultados obtidos.

Devido à simplicidade do modelo, uma convergência logo foi obtida, com elementos de 5 mm. Mais informações das estatísticas podem ser vistas na Tabela 6.

Malha	Nós	Elementos
Dianteira	1337	668
Traseira	1293	646

Tabela 6 – Estatísticas das Malhas das simulações.

Os elementos selecionados foram BEAM189, elementos de viga quadráticos (que apresentam 3 nós).

Com esta configuração está sendo possível rodar as 18 simulações parametrizadas em 9 minutos, gastando em média 30 segundos por simulação. O processo foi executado em um notebook com processador i7 de 2,60 GHz, 8 GB de RAM.

7.3.1 Apresentação dos resultados por Elementos Finitos

Levando em conta que no total temos neste trabalho 36 simulações, é inconcebível representar todas com imagens que abranjam todo o escopo da solução. Portanto, aqui selecionamos uma dessas 36 simulações para esminçar alguns detalhes que possam parecer terem sido negligenciados.

Antes de tudo, deve-se saber como visualizar toda e qualquer uma das simulações. Esse acesso é feito através da aba de parametrização. Inicialmente deve-se verificar se a linha, que representa as condições de contorno, está marcada com a opção "*Retain Data*", que em tradução livre significa "salvar dados". Caso essa opção não esteja selecionada, o software apresenta os dados na tabela, mas descarta qualquer interação gráfica que o usuário possa vir a querer realizar. Selecionar as opções de "*Retain Data*" fornece esse tipo de interação, porém aumenta o custo computacional e pode causar atrasos dependendo do quão grande esteja sua parametrização.

Se a opção estiver selecionada, devemos clicar na linha com o botão direito e escolher a opção "*Set as Current*", para que a linha selecionada seja a que será apresentada no *Mechanical*. Este processo pode ser visualizado na Figura 45.

Selecionando esta linha e abrindo o *Mechanical*, pode-se analisar estas condição como se fosse única.

Olhando para primeiro a malha formada, ressalta-se que esta visualização é apenas para ser mais agradável ao usuário, o sistema está resolvendo na verdade um elemento unidimensional.

Em seguida pode-se analisar, na Figura 47, o comportamento e as relações estabelecidas entre os corpos com a deformação total. Por mais que esta solução não afete diretamente os resultados, ela importante para uma análise qualitativa do sistema e deve ser atenciosamente avaliada, principalmente nos primeiros estágios da simulação. Note como nenhum dos corpos apresenta uma relação de "engaste", e todas as conexões se dão

Table of	Table of Design Points																			
	A		в	С	D	E	F	G	н	I	J	к	L	м	N	0	Р	Q	R	S
1	Name	•	P4 - R F ▼ X C	P5 - R F Y C	P6 - R F Z C	P7 M ▼ X C	P8 ▼ Y C	P9 - M ▼ Z C	P10 - UAF - Axial Force Ma	P11 - UAF - Total Ben Mom Max	P12 - UAA Axial Fo M	P13 - UAA - Total Ben Mo Ma	P14 - PR - Axial Force Ma	P15 - PR - Total B M M	P16 - LAF - Axial Force Max	P17 - LAF - Total Ben Mom Max	P18 - LAA - Axial Force Max	P19 - LAA - Total Ben Mo Ma	Retain	Retained Dat
2	Units		N 💌	N 💌	N 💌	Nm 💌	Nm 💌	Nm 💌	N	N mm	N	N mm	N	N mm	N	N mm	N	N mm		
3	DP 0		-244.49	-1429.4	-1820.6	-33.52	-49.74	26.61	75.301	29.259	742.16	28.854	-1680.5	0.0001334	-1008.7	20951	-2079.5	19455		\checkmark
4	DP 1 (Curren	nt)	-242.43	-1425.4	-1789.3	-32.69	-50.25	26.5	62.454	28.143	724.74	27.753	-1678.9	0.0001333	-978.61	20932	-2044.6	19437	V	1
5	DP 2		-275.03	-1447	-2132.2	-38.54	-22.71	27.24	244.57	43.61	961.71	43.005	-1668.6	0.0001316	-1204.2	20803	-2355.2	19318	V	×
6	DP 3	Ð	Сору				-51.77	26.69	39.912	27.653	735.54	27.27	-1709.1	0.0001348	-945.77	21309	-2093.7	19787	1	~
7	DP 4		Set Upd	ate Order I	ov Row		-45.32	26.99	184.54	36.678	831.95	36.17	-1711.8	0.0001375	-1229.8	21342	-2214.4	19818	V	 Image: A second s
8	DP 5		Show Ur	odate Orde	r	t i	-3.69	7.94	35.859	8.5152	200.77	8.3973	-320.09	2.4938E-0	-241.29	3990.7	-489.53	3705.8	V	~
9	DP 6		Ontimize	Lindate O	rder	t t	-2.13	6.73	28.982	6.7165	157.6	6.6235	-250.1	1.9571E-0	-185.13	3118.1	-371.69	2895.4	V	1
10	DP 7		opunize	. opublic o	ruci		-4.62	8.51	37.499	9.2457	219.56	9.1177	-354.97	2.762E-05	-265.2	4425.6	-543	4109.6	V	~
11	DP 8	١.	Export S	Selected De	sign Points		-3.2	7.6	34.393	8.044	189.09	7.9326	-299.83	2.3381E-0	-226.33	3738.1	-457.08	3471.2	V	1
12	DP 9	3	Set as C	urrent		-	-2.49	7.05	31,285	7.2265	169,45	7,1264	-267.84	2.0928E-0	-200.82	3339.3	-403.45	3100.9		1
13	DP 10	×	Delete D	esign Poin	t	-	0.0001	0.0001	-200.27	15.09	-206.56	14.881	-1343.5	0.0001144	591.28	16751	525.3	15553		1
14	DP 11	•	Duplicat	e Design P	pint	F	0.0001	0.0001	-199.97	15.068	-206.26	14.859	-1341.5	0.0001143	590.41	16726	524.52	15530		-
15	DP 12		Copy inp	outs to Cur	rent	H	0.0001	0.0001	-199 36	15.022	-205.63	14.814	-1337.4	0.0001139	588.6	16675	522.92	15483		· ./
15	DD 12						0.0001	0.0001	200.26	15.000	205.00	14 000	1244.1	0.000114	500.0	16750	525.52	1000		*
10	DF 13	77	Update	Selected D	esign Point	s F	0.0001	0.0001	-200.30	13.050	-200.07	17.005	-1344.1	0.000114	351.37	10735	323.30	13301		×
1/	DP 14		Export	able Data	as CSV		0.0001	0.0001	-551.1	10.115	-142	17.005	-14/5.2	0.0001193	000.00	10394	301.63	17079	V	×
18	DP 15		-135.79	-1119.4	0.0001	0.0001	0.0001	0.0001	-339.12	18.27	-144.58	18.017	-14/9.9	0.0001192	8/4.4	18452	285.5	1/132	V	~

Figura 45 – Detalhe de como selecionar certo passo da parametrização para uma abordagem mais completa.

Figura 46 – Detalhe da malha desenvolvida para a solução.

Figura 47 – Detalhe de como selecionar certo passo da parametrização para uma abordagem mais completa.

livres de momentos.

Por fim, os resultados qualitativos nos levam às tensões. Na Figura 48 podemos analisar como se distribui o campo de tensões ao longo de todo o mecanismo, tanto as tensões normais quanto fletoras.

Os demais resultados estão descritos em tabelas no Anexo C4, contendo as 18 simulações para a dianteira, bem como as da traseira do veículo.

Figura 48 – Detalhe de como selecionar certo passo da parametrização para uma abordagem mais completa.

Z

8 Apresentação e Análise de Resultados

Neste capítulo, os reultados obtidos anteriormente são analisados e discutidos.

Primeiramente, são definidas algumas características construtivas do nosso sistema, a fim de que se possa tratar devidamente os dados disponíveis. Para isso utilizamos a Tabela 7.

Dados Análise	
Módulo de Elaticidade [GPa]	200
Diametro Interno [mm]	12,875
Diâmetro Externo [mm]	15,875
Área [mm^2]	67,741
Momento de Inércia [mm ⁴]	1768,797

Tabela 7 – Dados necessários para o pós-processamento dos dados

Todos os dados se referem aos elementos de viga que compõem o sistema, visto que todos são geometricamente iguais e feitos do mesmo material.

Agora deve-se obter os valores medidos pelos extênsometros para todas as manobras nos momentos relevantes a serem avaliados. Para isso deve-se analisar os gráficos apresentados no Anexo C2, e compará-los aos vídeos realizados no dia do teste. Isso permite a exata identificação do instante em que tivemos tal aceleração e possamos cruzar este dado com um dado valor de deformação pelos extensômetros.

Devido à sincronia entre o *Aim* e o *ADS1800* não ser perfeita, pois não estavam funcionando no mesmo relógio, é dada uma margem de segurança na definição dos valores dos extensômetros. Ou seja, em vez de escolher uma única medição realizada pelo aquisitor, é elencada essa única medida, mas utilizamos o valor médio das medidas a sua volta sendo adotada uma margem de 0,1 segundo.

Assim, com as tabelas geradas anteriormente, pode-se buscar o instante próximo àquele desejado e, então, definir nossas deformações. Deve ser lembrado, que como comentado anteriormente, durante a realização dos testes houve perdas de conexão entre os extensômetros e os aquisitores (entre as baterias 2 e 3 dos trajetos circulares e o começo das baterias retilíneas), fazendo-se necessário o rebalancemanto dos dispositivos. Entretanto, a correção não foi feita em todos os pontos, devido ao fato dos arquivos serem grandes, e que de forma qualitativa, as variações seguem inalteradas. Durante o processo dos testes, os valores mostrados para recalibração foram salvos e estão mostrados na tabela 8 para a dianteira e tabela 9 para a traseira.

Onde temos :

Baterias	Correção Dianteira [mm/mm]								
	UAF	UAA	PR	LAF	LAA				
1 e 2	0.0787	0.1070	0.0715	-0.8083	-1.1815				
3	0.0404	0.0457	0.1037	0.3185	0.1503				
Retilíneas	0.0483	0.0527	0.1015	-0.2083	-1.1003				

Tabela 8 – Correções para as cargas estáticas presentes na instalação dos extensômetros na dianteira

Tabela 9 – Correções para as cargas estáticas presentes na instalação dos extensômetros na Traseira

Batariag	Correção Traseira								
Daterias		[mm/mm]					
	UAF	UAA	PR	LAF	LAA				
1 e 2	0.0351	0.0523	0.0376	-0.4999	-0.6854				
3	-0.0825	0.0222	0.1041	-0.0201	-0.0392				
Retilíneas	-0.1750	-0.0310	0.0039	-0.7001	-0.3979				

- UAF Upper Arm Fore, Braço Superior Dianteiro Tubo Anterior;
- UAA Upper Arm After, Braço Superior Dianteiro Tubo Posterior;
- *PR Push Rod*, Tubo de Alavanca (*Push Rod*);
- LAF Lower Arm Fore, Braço Inferior Dianteiro Tubo Anterior;
- LAA Lower Arm After, Braço Inferior Dianteiro Tubo Posterior;

Feitas as devidas correções, são geradas tabelas individuais de cada componente, para análise das deformações experimentadas por eles e compardas (percentualmente) com aquelas esperadas pelas simulações. Os resultados estão dispostos, com cada tabela dedicada a um componente. Nesta são analisados os resultados de força axial e momento total fletor, bem como a sua combinação no esforço resultante, e utilizando os dados da Tabela 7, pode-se determinar a deformação esperada pela simulação. Pode-se, por fim, comparar esse resultado com o experimental, e para melhor visualização, determinar uma relação percentual: onde valores superiores a 100 representam um maior dado de simulação, e vice versa.

Braco Superior Anterior Dianteiro										
		Tensão [MPa]	perior Anterior	Deformaçã	io [um/mm]					
Volta	Axial	Eleter	Total	Simulação	Extensômetre	Percentual (%)				
	AXIdi	Fieldi	TOLAI	Simulação	Extensometro					
1.5E	1,112	0,129	1,241	6,205	7,404	83,81%				
2.4E	0,922	0,125	1,046	5,232	-1,879	-278,47%				
2.6E	3,610	0,193	3,803	19,017	3,841	495,16%				
2.7E	0,589	0,122	0,712	3,558	3,510	101,36%				
3.7E	2,724	0,162	2,887	14,433	-10,894	-132,48%				
3.11	0,529	0,038	0,567	2,835	-52,387	-5,41%				
3.21	0,428	0,030	0,458	2,288	-58,269	-3,93%				
3.51	0,554	0,041	0,595	2,973	-37,461	-7,94%				
3.61	0,508	0,036	0,543	2,716	2,414	112,50%				
3.71	0,462	0,032	0,494	2,470	1,597	154,60%				
1A	-2,956	0,067	-2,890	-14,448	-10,912	132,41%				
2A	-2,952	0,067	-2,885	-14,427	-20,159	71,56%				
3A	-2,943	0,066	-2,877	-14,383	-18,214	78,96%				
4A	-2,958	0,067	-2,891	-14,455	-3,027	477,57%				
1F	-4,888	0,080	-4,808	-24,038	-39,470	60,90%				
2F	-5,006	0,081	-4,925	-24,626	-77,939	31,60%				
3F	-4,922	0,080	-4,841	-24,206	-20,215	119,74%				
4F	-4,904	0,080	-4,823	-24,116	-86,884	27,76%				

Tabela 10 – Comparativo dos esforços e deformações no Braço Superior Dianteiro Anterior

Tabela 11 – Comparativo dos esforços e deformações no Braço Superior Dianteiro Posterior

Braço Superior Posterior Dianteiro										
Volta		Tensão [MPa]		Deformaçã	o [µm/mm]	Percentual (%)				
Volta	Axial	Fletor	Total	Simulação	Extensômetro	Percentuar (%)				
1.5E	1,112	0,131	1,243	6,214	4,558	136,35%				
2.4E	0,922	0,126	1,048	5,241	-17,526	-29,90%				
2.6E	3,610	0,196	3,806	19,030	-8,379	-227,13%				
2.7E	0,589	0,124	0,713	3,566	-17,870	-19,96%				
3.7E	2,724	0,165	2,889	14,444	52,275	27,63%				
3.11	0,529	0,038	0,568	2,838	6,763	41,97%				
3.21	0,428	0,030	0,458	2,290	-11,388	-20,11%				
3.51	0,554	0,042	0,595	2,975	4,141	71,85%				
3.61	0,508	0,036	0,544	2,719	56,622	4,80%				
3.71	0,462	0,032	0,494	2,472	58,503	4,23%				
1A	-2,956	0,068	-2,889	-14,444	-13,440	107,47%				
2A	-2,952	0,068	-2,884	-14,422	-25,512	56,53%				
3A	-2,943	0,067	-2,876	-14,378	-16,116	89,21%				
4A	-2,958	0,068	-2,890	-14,450	-9,133	158,22%				
1F	-4,888	0,081	-4,806	-24,032	109,104	-22,03%				
2F	-5,006	0,082	-4,924	-24,621	72,552	-33,94%				
3F	-4,922	0,081	-4,840	-24,200	88,444	-27,36%				
4F	-4,904	0,081	-4,822	-24,111	107,973	-22,33%				

Push Rod Dianteiro										
Volta		Tensão [MPa]		Deformaçã	io [μm/mm]	Percentual (%)				
Volta	Axial	Fletor	Total	Simulação	Extensômetro	Percentual (%)				
1.5E	-24,807	0,000	-24,807	-124,037	-99,266	124,95%				
2.4E	-24,785	0,000	-24,785	-123,923	-120,270	103,04%				
2.6E	-24,632	0,000	-24,632	-123,160	-140,831	87,45%				
2.7E	-25,231	0,000	-25,231	-126,154	-125,660	100,39%				
3.7E	-25,270	0,000	-25,270	-126,348	-146,204	86,42%				
3.11	-4,725	0,000	-4,725	-23,626	-58,792	40,19%				
3.21	-3,692	0,000	-3,692	-18,460	-37,009	49,88%				
3.51	-5,240	0,000	-5,240	-26,201	-82,925	31,60%				
3.61	-4,426	0,000	-4,426	-22,131	-49,700	44,53%				
3.71	-3,954	0,000	-3,954	-19,770	-17,882	110,55%				
1A	-19,833	0,000	-19,833	-99,163	-1,640	6045,71%				
2A	-19,803	0,000	-19,803	-99,016	-26,585	372,46%				
3A	-19,743	0,000	-19,743	-98,714	-43,756	225,60%				
4A	-19,842	0,000	-19,842	-99,212	-75,782	130,92%				
1F	-21,778	0,000	-21,778	-108,888	-111,428	97,72%				
2F	-21,846	0,000	-21,846	-109,230	-80,434	135,80%				
3F	-21,797	0,000	-21,797	-108,986	-71,638	152,14%				
4F	-21,787	0,000	-21,787	-108,937	-66,726	163,26%				

Tabela 12 – Comparativo dos esforços e deformações Push Rod Dianteira

Tabela 13 – Comparativo dos esforços e deformações do Braço Inferior Dianteiro Anterior

Braço Inferior Anterior Dianteiro										
Volta		Tensão [MPa]		Deformaçã	o [µm/mm]	Dercentual (%)				
Volta	Axial	Fletor	Total	Simulação	Extensômetro	Percentual (70)				
1.5E	-30,698	87,305	56,606	283,032	293,842	96,32%				
2.4E	-30,182	87,225	57,042	285,211	284,528	100,24%				
2.6E	-34,768	86,688	51,920	259,601	206,285	125,85%				
2.7E	-30,908	88,795	57,887	289,433	178,209	162,41%				
3.7E	-32,689	88,932	56,243	281,214	-687,137	-40,93%				
3.11	-7,227	16,630	9,403	47,017	-61,077	-76,98%				
3.21	-5,487	12,993	7,506	37,532	-20,124	-186,50%				
3.51	-8,016	18,442	10,426	52,130	34,354	151,74%				
3.61	-6,748	15,577	8,829	44,147	-407,980	-10,82%				
3.71	-5,956	13,915	7,959	39,796	-342,776	-11,61%				
1A	7,755	69,796	77,550	387,752	267,509	144,95%				
2A	7,743	69,693	77,436	387,179	370,633	104,46%				
3A	7,719	69,480	77,199	385,996	390,736	98,79%				
4A	7,758	69,830	77,588	387,942	426,659	90,93%				
1F	4,456	76,641	81,097	405,484	192,409	210,74%				
2F	4,215	76,881	81,096	405,479	267,677	151,48%				
3F	4,387	76,710	81,096	405,482	236,527	171,43%				
4F	4,424	76,675	81,099	405,496	373,347	108,61%				

Braço Inferior Posterior Dianteiro										
Valta		Tensão [MPa]		Deformaçã	o [mm/mm]	Dercentual (%)				
Volta	Axial	Fletor	Total	Simulação	Extensômetro	Percentual (%)				
1.5E	-14,891	94,019	79,128	395,640	461,179	85,79%				
2.4E	-14,446	93,933	79,487	397,434	428,835	92,68%				
2.6E	-17,776	93,354	75,577	377,887	324,135	116,58%				
2.7E	-13,962	95,624	81,662	408,312	313,020	130,44%				
3.7E	-18,155	95,770	77,616	388,078	-624,640	-62,13%				
3.11	-3,562	17,909	14,347	71,733	-2,938	-2441,91%				
3.21	-2,733	13,992	11,259	56,297	79,866	70,49%				
3.51	-3,915	19,860	15,945	79,725	168,900	47,20%				
3.61	-3,341	16,775	13,433	67,167	-334,756	-20,06%				
3.71	-2,965	14,985	12,020	60,102	-319,007	-18,84%				
1A	8,729	75,171	83,899	419,496	353,207	118,77%				
2A	8,716	75,060	83,776	418,878	465,942	89,90%				
3A	8,689	74,830	83,519	417,597	468,915	89,06%				
4A	8,733	75,208	83,941	419,703	463,739	90,50%				
1F	12,674	82,544	95,218	476,089	536,980	88,66%				
2F	12,908	82,802	95,710	478,552	301,170	158,90%				
3F	12,741	82,617	95,359	476,793	313,701	151,99%				
4F	12,706	82,580	95,286	476,431	533,160	89,36%				

Tabela 14 – Comparativo dos esforços
e deformações do Braço Inferior Dianteiro Posterior

Tabela 15 – Comparativo dos esforços e deformações do Braço Superior Traseiro Anterior

Braço Superior Anterior Traseiro											
Volta		Tensão [MPa]		Deformaçã	o [µm/mm]	Percentual (%)					
Volta	Axial	Fletor	Total	Simulação	Extensômetro	Percentual (70)					
1.5E	4,215	0,083	4,297	21,487	13,611	157,87%					
2.4E	6,391	0,314	6,705	33,523	24,588	136,34%					
2.6E	6,893	0,317	7,210	36,052	17,040	211,57%					
2.7E	6,933	0,323	7,256	36,282	36,140	100,39%					
3.7E	8,246	0,341	8,587	42,936	28,746	149,37%					
3.11	1,694	0,078	1,772	8,859	-46,265	-19,15%					
3.21	1,569	0,067	1,636	8,180	-71,278	-11,48%					
3.51	1,718	0,082	1,800	8,998	-42,161	-21,34%					
3.61	1,666	0,075	1,741	8,706	-158,745	-5,48%					
3.71	1,608	0,070	1,677	8,387	-190,097	-4,41%					
1A	5,904	0,232	6,135	30,677	61,377	49,98%					
2A	6,210	0,237	6,446	32,231	45,824	70,34%					
3A	6,821	0,246	7,067	35,336	31,152	113,43%					
4A	5,801	0,230	6,032	30,158	28,278	106,65%					
1F	-14,893	0,092	-14,801	-74,004	111,215	-66,54%					
2F	-15,608	0,104	-15,505	-77,523	-71,458	108,49%					
3F	-15,178	0,093	-15,085	-75,425	55,472	-135,97%					
4F	-14,996	0,094	-14,902	-74,512	-75,502	98,69%					

Braço Superior Posterior Traseiro										
Volta		Tensão [MPa]		Deformaçã	io [μm/mm]	Dercentual (%)				
Volta	Axial	Fletor	Total	Simulação	Extensômetro	Percentual (%)				
1.5E	4,215	0,094	4,308	21,541	16,508	130,49%				
2.4E	6,391	0,355	6,746	33,728	13,375	252,17%				
2.6E	6,893	0,359	7,252	36,260	-12,963	-279,71%				
2.7E	6,933	0,365	7,299	36,493	-2,793	-1306,71%				
3.7E	8,246	0,386	8,632	43,160	54,649	78,98%				
3.11	1,694	0,088	1,782	8,910	-25,020	-35,61%				
3.21	1,569	0,076	1,645	8,224	-28,994	-28,36%				
3.51	1,718	0,092	1,810	9,052	-23,892	-37,89%				
3.61	1,666	0,085	1,751	8,755	5,282	165,76%				
3.71	1,608	0,079	1,687	8,433	11,615	72,60%				
1A	5,904	0,262	6,166	30,829	46,490	66,31%				
2A	6,210	0,268	6,477	32,386	31,060	104,27%				
3A	6,821	0,278	7,099	35,497	34,105	104,08%				
4A	5,801	0,260	6,062	30,309	26,884	112,74%				
1F	-14,893	0,104	-14,789	-73,944	147,290	-50,20%				
2F	-15,608	0,117	-15,491	-77,455	224,479	-34,50%				
3F	-15,178	0,105	-15,073	-75,364	175,712	-42,89%				
4F	-14,996	0,106	-14,890	-74,450	227,593	-32,71%				

Tabela 16 – Comparativo dos esforços e deformações do Braço Superior Traseiro Posterior

Tabela 17 – Comparativo dos esforços
e deformações na Push Rod Traseira

Push Rod Traseiro											
Volta		Tensão [MPa]		Deformaçã	o [µm/mm]	Dercontual (%)					
Volta	Axial	Fletor	Total	Simulação	Extensômetro	Percentuar (%)					
1.5E	-28,783	0,229	-28,554	-142,768	-248,167	57,53%					
2.4E	-28,721	0,229	-28,492	-142,462	-186,384	76,43%					
2.6E	-29,080	0,232	-28,848	-144,241	-95,455	151,11%					
2.7E	-28,517	0,227	-28,290	-141,448	-129,902	108,89%					
3.7E	-29,750	0,237	-29,513	-147,564	-126,412	116,73%					
3.11	-7,706	0,061	-7,644	-38,221	-125,394	30,48%					
3.21	-6,638	0,053	-6,585	-32,924	-120,144	27,40%					
3.51	-8,271	0,066	-8,205	-41,023	-88,951	46,12%					
3.61	-7,387	0,059	-7,328	-36,641	-250,575	14,62%					
3.71	-6,900	0,055	-6,845	-34,224	-302,855	11,30%					
1A	-35,056	0,279	-34,777	-173,883	-137,240	126,70%					
2A	-35,331	0,282	-35,050	-175,249	-107,191	163,49%					
3A	-35,884	0,286	-35,598	-177,991	-139,575	127,52%					
4A	-34,964	0,279	-34,685	-173,427	-132,245	131,14%					
1F	-16,386	0,131	-16,256	-81,279	-52,889	153,68%					
2F	-15,743	0,125	-15,618	-78,088	-52,000	150,17%					
3F	-16,952	0,135	-16,817	-84,087	-50,200	167,50%					
4F	-16,294	0,130	-16,164	-80,819	-58,176	138,92%					
Braço Inferior Anterior Traseiro											
----------------------------------	---------	---------------	---------	-----------	--------------------	----------------	--	--	--	--	--
Volta		Tensão [MPa]		Deformaçã	Deformação [µm/mm]						
voita	Axial	Fletor	Total	Simulação	Extensômetro	Percentuar (%)					
1.5E	-28,492	53,303	24,810	124,052	-126,958	-97,71%					
2.4E	-21,672	53,191	31,519	157,594	17,235	914,37%					
2.6E	-23,286	53,854	30,568	152,842	139,169	109,83%					
2.7E	-22,979	52,812	29,832	149,161	89,474	166,71%					
3.7E	-25,699	55,095	29,396	146,978	-48,152	-305,24%					
3.11	-8,284	14,270	5,985	29,927	-48,897	-61,20%					
3.21	-7,458	12,292	4,834	24,172	-87,471	-27,63%					
3.51	-8,562	-8,562 15,316		33,770	-37,944	-89,00%					
3.61	-8,077	13,680	5,603	28,016	-224,628	-12,47%					
3.71	-7,694	12,778	5,084	25,418	-320,452	-7,93%					
1A	31,624	64,941	96,565	482,826	298,938	161,51%					
2A	32,506	65,452	97,957	489,787	289,704	169,06%					
3A	34,270	66,476	100,747	503,733	291,471	172,82%					
4A	31,329	64,771	96,100	480,499	301,714	159,26%					
1F	-28,318	30,338	2,021	10,104	37,948	26,63%					
2F	-30,379	29,146	-1,233	-6,165	150,191	-4,10%					
3F	-28,735	31,386	2,652	13,258	99,873	13,27%					
4F	-28,615	30,167	1,552	7,758	144,276	5,38%					

Tabela 18 – Comparativo dos esforços e deformações do Braço Inferior Traseiro Anterior

Tabela 19 – Comparativo dos esforços e deformações do Braço Inferior Traseiro Posterior

Braço Inferior Posterior Traseiro											
Volta		Tensão [MPa]		Deformaçã	Deformação [mm/mm]						
Volta	Axial	Fletor	Total	Simulação	Extensômetro	Percentual (70)					
1.5E	1,454	47,211	48,665	243,327	243,327 142,207						
2.4E	1,512	47,101	48,613	243,067	298,182	81,52%					
2.6E	0,280	47,705	47,984	239,921	610,362	39,31%					
2.7E	0,002	46,784	46,786	233,931	477,743	48,97%					
3.7E	-2,710	48,839	46,129	230,645	-303,673	-75,95%					
3.11	-0,844	12,653	12,653 11,809		32,311	182,74%					
3.21	-1,156	10,905 9,749		48,746	100,105	48,70%					
3.51	-0,575	13,577	13,002	65,010	117,801	55,19%					
3.61	-0,961	12,132	11,171	55,856	-255,280	-21,88%					
3.71	-1,098	11,334	10,236	51,180	-369,931	-13,83%					
1A	-3,039	57,475	54,436	272,180	268,063	101,54%					
2A	-3,890	57,935	54,045	270,226	262,824	102,82%					
3A	-5,589	58,858	53,268	266,342	264,186	100,82%					
4A	-2,755	57,321	54,567	272,834	303,870	89,79%					
1F	54,824	26,302	81,126	405,630	207,682	195,31%					
2F	56,812	25,228	82,040	410,202	-30,459	-1346,73%					
3F	55,985	27,218	83,203	416,017	127,026	327,51%					
4F	55,111	26,148	81,258	406,291	-63,158	-643,29%					

8.1 Discussão dos Resultados

Como verificado na seção 8, é possível notar uma alta variação nos termos percentuais de comparação, conforme esperado para uma solução experimental. Porém, é possível examinar algumas tendências e levantar discussões sobre os resultados.

- Em todas as tabelas, pode-se verificar que os braços superiores apresentaram diferenças percentuais mais significativas entre voltas. Devido à natureza construtiva deste conceito de suspensão, o braço sem Push Rod é significativamente menos exigido, ou seja, com esforços internos menores e, por conseguinte, mais sujeito a pequenas variações entre o teórico e o prático;
- Em todas as tabelas, os resultados obtidos para a Bateria 3 de testes circulares se apresentou como mais divergente. Há de se notar ainda que, na maioria das análises desta bateria, estamos analisando com os extensômetros na parte interna da curva. Esta situação demanda menos esforços da parte analisada e, portanto, é mais sensível às variações (vide as altas inconstâncias no comparativo percentual), como discutido anteriormente. Alguns motivos desta discrepância podem residir no alívio da compressão das peças, pela diminuição de carga naquele setor do veículo, por vezes até invertendo o sentido da tensão. Isto pode ser notado pela aparição de um percentual comparativo negativo;
- Nas Tabelas 12 e 17, que apresentam os resultados das *Push Rods*, os valores estão satisfatoriamente próximos. Note ainda que é comum encontrar valores de simulação superiores àqueles aferidos pelos extensômetros. Isto é explicado em parte pelo fato de que, no modelo teórico, consideramos uma condição de não deslizamento em pneu e asfalto (diferente do alívio gerado entre as superfícies, dado seu movimento relativo);
- Ainda sobre as Tabelas 12 e 17, relevando os resultados para a Bateria 3, por motivos já discutidos, os resultados estão condizentes tmbém deviddo ao fato de que este componente trabalha teoricamente em tração/compressão. Além disso, por sua simplicidade geométrica, são geradas menos tensões espúrias;
- Por conta das imperfeições do trajeto, existe uma grande influência de efeitos dinâmicos. Ou seja, uma pequena elevação, um choque encontrado pela roda, pode gerar uma alteração na força, sem necessariamente haver um aumento das acelerações;
- Pelo fato dos sistemas de aquisição de esforços e do sistema de aquisição de acelerações não estarem diretamente sincronizados, existe um erro associado em determinar uma relação direta entre os dois. Foi visado atenuar o impacto dessa falha sistêmica com o auxílio de filmagens combinada a atenta análise dos gráficos gerados. Procurou-se atrelar os dois sistemas a um sistema externo de marcação temporal

para que possamos mais fácil e assertivamente determinar quais momentos do percurso são de fato interessantes para nossa análise;

- Podemos notar uma divergência sistêmica presente em alguns resultados, principalmente os de frenagem (linhas 1F, 2F, 3F e 4F de todas as tabelas), onde há uma queda quase da qualidade das leituras de extensometria no componente para diferentes manobras. Essa variação presente se deve a falhas na definição das tensões teóricas e o modelo deve ser revisado;
- Em razão da presença constante dos efeitos dinâmicos no contato pneu-asfalto, foi possível verificar momentos em que estes se tornaram mais brandos (momentos em que o valor teórico esperado se aproximou do prático). Para esta situação específica que o teste foi projetado, os resultados foram extremamente satisfatórios. Apenas cabe o adendo de que foi necessária muita observação, entre vídeos e os dados obtidos, para que fosse possível obter situações em que as características ideiais fossem encontradas. Devido ao fato de que as condições do teste eram precárias, devemos ter cuidado redobrado no pós-processamento dos resultados.

Parte III

Conclusão

9 Conclusão

Dados os pontos levantados no Capítulo 8.1, pode-se concluir este trabalho avaliando a metodologia envolvida.

Os testes dinâmicos se mostraram pouco efetivos para a comparaçãos dos diferentes métodos. Isto vem da falta de controle das condições em que o veículo é submetido (pista irregular, asfalto não ideal, temperatura e desgaste de pneu não previstos) para que se equiparem ao proposto na teoria.

Nas *Push Rods* e no Braço Superior, há, no modelo teórico, apenas a presença de tensões na direção axial aos tubos. Porém, é possível notar a aparição de tensões espúrias no modelo teórico. A utilização de apenas um extensômetro por tubo permite apenas a aferição da tensão longitudinal a ele. Nos Braços de Suspensão pode ser notada a influência dessas outras tensões não medidas, mesmo que não estivesse prevista no modelo teórico do Braço Superior.

Por fim, folgas não previstas e histerese do sistema também podem ser causas das divergências encontradas nos resultados. E mais uma vez se reforça a necessidade de um teste com condições mais controladas para a validação definitiva.

Tendo em vista a proposta de pavimentar o caminho para que possamos ver outras aplicações das metodologias aqui apresentadas, deixamos recomendações para aqueles que se apoiem neste trabalho.

9.1 Sugestões para Trabalhos Futuros

- Analisar o problema de maneira estática, aplicando uma força conhecida e comparando com os resultados da análise numérica.
- Aplicar o teste em pista com condições mais controladas, possivelmente em um autódromo ou pista própria para a prática;
- Desenvolver um modelo em elementos finitos que possibilite a análise dinâmica dos esforços solicitantes;
- Obter os resultados dos testes, se possível ainda *in loco* para que estes sejam mais efetivos e até mais extensos;
- Elaborar o modelo matemático e simulação estrutural de ambos os eixos do carro simultaneamente;

- Avaliar o problema de forma similar, porém, desta vez, utilizando mais de um extensômetro (ou rosetas) em peças que tenham componentes fletoras e/ou torsoras de tensão;
- Utilizar os dados obtidos para formular uma análise de fadiga do sistema.

Referências

1 RESOURCES. Disponível em: <https://www.pcb.com/resources/ technical-information/introduction-to-accelerometers>. Citado 2 vezes nas páginas 11 e 15.

2 RESOURCES. Disponível em: <https://www.pcb.com/resources/ technical-information/introduction-to-accelerometers>. Citado 2 vezes nas páginas 11 e 16.

3 ASTLEY, R. Finite elements in solids and structures. an introduction. 1992. Disponível em: ">https://eprints.soton.ac.uk/167419/>. Citado 3 vezes nas páginas 11, 19 e 21.

4 THREE Visual Methods: Envisioning Tensors. Disponível em: <https://esm.rkriz. net/classes/ESM4714/methods/EEG.html>. Citado 2 vezes nas páginas 11 e 20.

5 FóRMULA SAE BRASIL. Mariana Cruz. Disponível em: http://portal.saebrasil. org.br/programas-estudantis/formula-sae-brasil>. Citado na página 4.

6 MILLIKEN W. F.; MILLIKEN, D. L. *Race Car Vehicle Dynamics.* 2. ed. [S.l.]: Society of Automotive Engineers, 1994. Citado 3 vezes nas páginas 9, 77 e 78.

7 PACEJKA, H. B.; BESSELINK, I. *Tire and vehicle dynamics*. [S.l.]: Elsevier, 2012. Citado 2 vezes nas páginas 10 e 77.

8 RAO, S. S. *Mechanical vibrations*. 3. ed. [S.l.]: Addison-Wesley, 1995. Citado 3 vezes nas páginas 11, 13 e 14.

9 MABIE, H. H.; OCVIRK, F. W. *Dinâmica das Máquinas.* 2. ed. [S.l.]: Livros Técnicos e Científicos, 1980. Citado na página 12.

10 SMITH, C. Tune to win. 1. ed. [S.l.]: Aero Publishers, 1978. Citado na página 12.

11 KYOWA. Strain Gages. Kyowa, 2018. Disponível em: http://www.kyowa-ei.com/eng/download/technical/strain_gages/pdf_index_001_eng.pdf. Citado na página 17.

12 Disponível em: <https://www.aim-sportline.com/en/products/evo4s/index.htm>. Citado na página 25.

13 LYNX Tecnologia. Disponível em: ">https://www.lynxtec.com.br/>. Citado 2 vezes nas páginas 25 e 26.

14 MANUAL. Disponível em: <http://www.kyowa-ei.com/eng/support/download/manual/index.html>. Citado na página 32.

15 ESSS. Introdução a Simulação Estrutural (Apostila e Notas). [S.l.: s.n.], 2016. Citado na página 82.

Apêndices

APÊNDICE A – Modelagem de Pneu

Como dito no capítulo de Introdução, agora apresentamos de maneira mais aprofundada a problemática, os passos necessários, e as informações extraídas de um modelo de pneu. Gostaria de agradecer pela enorme contribuição de toda a equipe da Apuama, mas em especial do Pedro Henrique Brasil Santos pelo trabalho exímio desenvolvido nessa análise.

Ressalto aqui que as características entre interação do pneu-asfalto em testes do *TTC* ocorrem em um ambiente extremamente controlado, muito diferente do que presenciamos em qualquer momento de tráfego com o protótipo. Impurezas na pista, elevações, temperatura de operação longe da ideal são algumas características que podem influenciar negativamente nossa análise. Além disso, os testes deste trabalho foram realizados com pneus da marca "NA Carrera", próprios para a utilização na categoria FSAE, porém sem dados suficientes disponibilizados pelo fornecedor para se elaborar um modelo matemático. A escolha por este jogo de pneus é única e exclusivamente norteada por aspectos financeiros.

Para ser possível desenvolver um projeto de suspensão (onde modelar o pneu é prioridade número 1), opta-se então por selecionar um modelo que tenha características construtivas semelhantes ao utilizado, porém que esteja contemplado nos testes realizados pelo *TTC*. O modelo selecionado então é o "R25B" da marca Hoosier. Este apresenta dimensões parecidas e mesmo conceitos de trançamento de suas malhas internas.

Primeiramente, temos que definir um conceito crucial no desenvolvimento do modelo que é o chamado Ângulo de Deriva (*Slip Angle*^[6]). Este se define como o ângulo formado entre a direção apontada pelo plano transversal do pneu e a direção de sua velocidade. Este fenômeno pode ser observado na Figura 49:

Devemos também definir o chamado Escorregamento Longitudinal (*Slip Ratio*^[6]), este é dado como o escorregamento da roda na direção longitudinal ao carro, com base na Equação A.1^[7]:

$$k = -\frac{V_x p - r_e \Omega}{V_x p} = -\frac{\Omega - \Omega_0}{\Omega_0}$$
(A.1)

onde k é o Slip Ratio (Escorregamento Longitudinal) e acompanha o sinal da força longitudinal, Ω é a velocidade angular da roda medida no centro da roda e r_e , o Raio Efetivo, definido pela equação ^[7]

$$r_e = \frac{V_x p}{\Omega_0} \tag{A.2}$$

Figura 49 – Esquema utilizado para explicar o conceito do Ângulo de Deriva

A partir disso podemos nos aventurar pela análise do *Friction Circle*(Círculo de Atrito), em que este diagrama representa os limites de força que um pneu pode gerar nas direções longitudinal e lateral quando submetido a determinadas condições. O diagrama é determinado a partir de dois tipos de curva $F_x eF_y$. Um exemplo didático de Círculo de Atrito é ilustrado na Figura 50. Nela são ilustrados os pontos A (Operação combinada em frenagem), B (Operação de força lateral pura) e C (Operação combinada em aceleração no limite da capacidade do pneu).^[6]

Então, com demais aplicações da teoria encontrada nos livros supracitados, e com auxílio dos dados disponibilizados pelo TTC é possível gerar um modelo computacional de um pneu, fazendo com que suas reações sejam previsíveis a determinados valores de entrada.

Figura 50 – Exemplo de Círculo de Atrito encontrado no Livro Milliken

APÊNDICE B – Criação da Geometria de Simulação

A utilização do *Design Modeler* tem a função de adaptar a geometria para melhor adequar às condições da simulação. Aqui são descritos os passos necessários para se replicar a simulação feita. Portanto, a demonstração é feita apenas para o eixo dianteiro do carro, ressaltando que de maneira análoga podemos desenvolver para o eixo traseiro.

O passo inicial para a nossa simulação é criar um arquivo de texto (extensão .txt) similar ao visto na Figura 51. Onde a primeira coluna representa o grupo dos pontos (irrelevante para este caso espescífico); a segunda, uma identificação ordinal dos pontos; a terceira, quarta e quinta colunas representam, respectivamente, as coordenadas $x, y \in z$ de cada ponto.

///	Front Suspension.txt - Notepad													
File	Edit Format	View Help												
1	1	0	0	632.5										
1	2	0	-240	660.9										
1	3	-20	-334.36	539.4										
1	4	0	-144.15	561.9										
1	5	80	-209.7	561.9										
1	6	80	-198	230										
1	7	157.7	-305	258.1										
1	8	-182.8	-305	258.1										
1	9	157.7	-144.5	235.5										
1	10	-182.8	-144.5	235.5										
1	11	0	-169.15	506.88										
1	12	0	-517	345										
1	13	0	-465.8	257.8										
1	14	0	-515.3	305.9										
1	15	0	-656.7	160.2										
1	16	26.58	-144.21	506.88										
1	17	0	-144.21	506.88										
1	18	-30.71	-144.21	506.88										

Figura 51 – Instruções de pré-processamento, passo 1

O Design Modeler é um aplicativo embarcado, portanto iniciamos o WorkBench e selecionamos a opção "Geometry" na ToolBox. Importante checar aqui se a opção de "Line Bodies" está habilitada nas propriedades. Então, clicando com o botão direito, selecionar a opção "New DesignModeler Geometry, para dar início à confecção de uma nova geometria para análise.

Abrindo o *Design Modeler*, devemos confirmar que nossas unidades de medida são compatíveis com aquelas presentes no arquivo de texto, e então selecionamos as opções de "*Create*" e "*Point*", para inserirmos o arquivo de texto previamente criado. Como mostrado na Figura 53.

Então, nos deparamos com uma vasta distribuição (Figura 54) de pontos que agora devem ser analisados minuciosamente para determinar as conexões utilizando a função de

Figura 52 – Instruções de pré-processamento, passo 2

Figura 53 – Instruções de pré-processamento, passo 3

"Line From Points". O resultado final deve se assemelhar ao encontrado na Figura 55.

Os elementos criados são conhecidos como "*beam elements*", ou "elementos de vigas" como é usualmente dito em Português. Este método apresenta elementos mais uniformes e poupa capacidade computacional da máquina responsável pela análise ^[15], pois simplifica situações, substituindo elementos tridimensionais por outros unidimensionais. Porém, a simulação apenas se torna possível se fornecermos propriedades adicionais como as dimensões da seção tranversal. Isso pode ser realizado seguindo as instruções presentes na Figura 56.

Agora, podemos observar que todas as linhas foram atreladas a um único corpo, o que impossibilita deslocamentos relativos entre elas e se afasta da situação real. A

🔯 A: Geometry	- DesignModeler												
File Create	Concept Tools Units View	Help											
2 🔒 📕	Source From Points	ielect: *	l }- [हे 🖪	Q-11		IS-	∲ @	Ð. 🔍	0 (20	2, 5
XYPlane	Lines From Sketches	1											
- Generate	🗎 Lines From Edges	arr.											
	VA 3D Curve	iers											
R Extrude	🐂 Split Edges	Loft											
Thin/Surf:	Surfaces From Edges	Slice Slice	흊 Poin	t D Co	nversion								
Tree Outline	Surfaces From Sketches	ą	Grap	hics									
	© Surfaces From Faces												
	🚓 Detach												
~*	Cross Section	•											
	12510110												
— , , ∲	Point2												
) Parts, 0 Bodies						. *						
							•						
						•							
										+			
					*							٠	
Sketching Mo	deling												
Details View		ą									+		
 Details of Poi 	nt2		1					•			•		
Point	Point2									**			
Туре	Construction Point				-		*						
Definition	From Coordinates File												
Coordinates I	File C:\Users\Luiz\Des\From	t Suspension.tx										٠	
Coordinates I	Unit Millimeter							•					
Base Plane	XYPlane												
Tolerance	Normal												

Figura 54 – Instruções de pré-processamento, passo 4

Figura 55 – Instruções de pré-processamento, passo 5

Figura 56 – Instruções de pré-processamento, passo 6

próxima tarefa é separar (função "*Slice*", Figura 57) todas estas linhas, uma a uma, e depois identificar quais pertencem, de fato, ao mesmo componente e juntá-las novamente em uma nova peça (Figura 58).

🔞 A: Geometry - DesignModeler	
File Create Concept Tools Units View Help	
🛛 🔄 🔜 📫 💭 Undo 📿 Redo 🗍 Select: *🕼 🕻	॰ 🖻 🛅 🖉 🖉 🖉 🗐 🗶 🖓 🛠 🔍 🗮 🖉 🔍 🗮
XYPlane ▼ 本 None ▼ 哲	
📙 🧚 Generate 🛛 🖤 Share Topology 🛛 🔀 Parameters	
📗 🌉 Extrude 🛛 🌰 Revolve 🕒 Sweep 🔺 Skin/Loft	
] 📑 Thin/Surface 💊 Blend 🔻 💊 Chamfer 🔦 Slice 📔 🧶	Point 🜓 Conversion
Tree Outline 7	Graphics
XCPlane XVPlane YZPlane YZPlane Point2 Icnel Sicel Icross Section Jordinature l Secting Modeling Details View Xourde and the section of t	·
E Details of Slice1 Slice Slice1 Slice Type Slice Off Edges Edges Apply Cancel	

Figura 57 – Instruções de pré-processamento, passo 7

Figura 58 – Instruções de pré-processamento, passo 8

C Anexos

Neste capítulo apresentamos os dados que, devido à sua extensão, foram melhor adequados fora do corpo textual.

C.1 Tabela de resultados dos testes

Como visto na seção 6.3.2.1, segue as tabelas referentes aos dados obtidos na Manobras Curvas e Retilíneas.

[4]	5	2	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
de [km	vivên		21.8	28.7(32.8	38.6	38.4	36.4	37.1(28.3(36.0	38.6	38.8(40.0	42.3(43.7(35.6	38.5(28.4(33.1(38.8	39.0	38.9
Velocida	Minimo		0.000	10.000	27.200	29.700	0.600	29.700	0.600	0.000	28.300	31.400	31.200	31.300	32.000	0.000	0.000	0.100	0.100	25.400	29.500	31.400	0.000
	o Máximo	Absoluto	8.061	33.521	49.710	57.521	66.371	78.311	82.371	16.861	24.550	36.811	40.510	47.190	58.311	104.120	35.111	48.201	67.877	81.126	91.717	98.516	109.257
[g]	Instante d	Relativo	8.061	1.097	6.045	6.350	8.565	4.890	1.617	16.861	0.540	6009	2.818	3.013	6.962	45.514	35.111	1.418	11.571	2.825	4.132	3.001	6.119
ngitudinal	o Mínimo	Absoluto	18.021	36.341	49.530	56.331	60.380	78.981	87.740	20.471	29.491	36.240	42.261	49.141	56.481	98.970	42.780	52.581	74.046	87.496	95.087	99.206	160.207
leração Lo	Instante d	Relativo	18.021	3.917	5.865	5.160	2.574	5.560	6.986	20.471	5.481	5.438	4.569	4.964	5.132	40.364	42.780	5.798	17.740	9.195	7.502	3.691	57.069
Ace	Mévimo		0.680	0.590	0.110	0.280	0.750	0.130	0.110	0.570	0.100	060.0	0.240	0.170	0.170	0.690	0.350	0.390	0.830	0.150	0.210	0.250	0.670
	Minimo		-0.860	-0.150	-0.110	-0.150	-0.900	-0.140	-0.960	-0.100	-0.090	-0.350	-0.250	-0.130	-0.100	-0.770	-0.200	-1.060	-0.460	-0.140	-0.150	-0.180	-0.770
	o Máximo	Absoluto	10.880	34.631	49.590	57.001	59.290	79.070	86.190	24.010	29.660	36.450	39.700	48.880	51.901	60.150	3.341	53.441	66.606	80.876	89.697	100.417	129.226
	Instante d	Relativo	10.880	2.207	5.925	5.830	1.484	5.649	5.436	24.010	5.650	5.648	2.008	4.703	0.552	1.544	3.341	6.658	10.300	2.575	2.112	4.902	26.088
Lateral [g]	o Mínimo	Absoluto	9.300	33.061	47.570	57.701	66.161	73.421	88.400	10.470	24.191	30.901	40.801	51.240	58.221	65.991	46.081	52.041	78.187	81.736	95.427	99.577	103.437
Aceleração	Instante d	Relativo	9.300	0.637	3.905	6.530	8.355	0.000	7.646	10.470	0.181	0.099	3.109	7.063	6.872	7.385	46.081	5.258	21.881	3.435	7.842	4.062	0.299
	Mévimo		0.730	0.695	1.050	1.244	1.328	1.292	1.233	0.652	1.244	1.208	1.319	1.243	1.366	1.339	0.112	0.188	0.177	-0.330	-0.447	-0.602	1.432
	Minimo		-0.500	-0.080	0.535	0.274	-0.500	0.549	-0.090	-0.104	0.636	0.813	0.606	0.626	0.260	-0.886	-1.112	-1.239	-0.652	-0.865	-1.048	-1.149	-1.207
	Cinal		32.424	43.665	51.171	57.806	73.421	80.754	96.354	24.010	30.802	37.692	44.177	51.349	58.606	117.286	46.783	56.306	78.301	87.585	95.515	103.138	168.550
Tempo(s)	loioid		0.000	32.424	43.665	51.171	57.806	73.421	80.754	0.000	24.010	30.802	37.692	44.177	51.349	58,606	0.000	46.783	56.306	78.301	87.585	95.515	103.138
	+V	đ	32.424	11.241	7.506	6.635	15.615	7.333	15.600	24.010	6.792	6.890	6.485	7.172	7.257	58.680	46.783	9.523	21.995	9.284	7.930	7.623	65.412
	N ^o Volta		Volta 1.1	Volta 1.2	Volta 1.3	Volta 1.4	Volta 1.5	Volta 1.6	Volta 1.7	Volta 2.1	Volta 2.2	Volta 2.3	Volta 2.4	Volta 2.5	Volta 2.6	Volta 2.7	Volta 3.1	Volta 3.2	Volta 3.3	Volta 3.4	Volta 3.5	Volta 3.6	Volta 3.7

Tabela 20 – Resultados obtidos para as trajetórias circulares

Nº Volta	Tempo(s)		Aceleração	Lateral [g]	Ace	eleração Lo	[g]	Velocidade [km/h]			
		Mínimo	Máximo	Instante		Mínimo	Mávimo	Inst	ante	Mínimo	Mávimo	
		WIIIIIII		Mínimo	Máximo	WININO	Maximo	Mínimo	Máximo	WIIIIIIO	Waximo	
1	31.256	-0.285	0.347	26.031	26.541	-1.120	0.860	27.920	25.410	0.000	44.600	
2	20.832	-0.260	0.206	16.840	15.561	-1.190	0.890	16.881	15.061	0.000	56.100	
3	11.611	-1.106	0.207	11.441	9.531	-1.140	0.950	10.441	8.491	0.000	56.800	
4	27.947	-0.176	1.084	25.461	27.851	-1.130	0.850	27.160	24.971	0.000	58.800	

Tabela 21 – Resultados obtidos para as trajetórias retilíneas

C.2 Gráficos do AiM

A seguir mostramos os gráficos obtidos para Aceleração Lateral e Longitudinal experimentada pelo protótipo nas mais diversas baterias. Observe que existem dois gráficos distintos para a Bateria 3 de testes Circulares. Isso se deve ao fato de que, durante a Bateria, o carro foi desligado, gerando então um novo histórico.

Figura 59 - Resultados de Aceleração Lateral e Longitudinal - Bateria 1, Testes Circulares

Figura 60 - Resultados de Aceleração Lateral e Longitudinal - Bateria 2, Testes Circulares

Figura 61 - Resultados de Aceleração Lateral e Longitudinal - Bateria 3, Testes Circulares

Figura 62 - Resultados de Aceleração Lateral e Longitudinal - Bateria 3, Testes Circulares

Figura 63 – Resultados de Aceleração Lateral e Longitudinal - Bateria 1, Testes Retilíneos

Figura 64 - Resultados de Aceleração Lateral e Longitudinal - Bateria 2, Testes Retilíneos

Figura 65 - Resultados de Aceleração Lateral e Longitudinal - Bateria 3, Testes Retilíneos

Figura 66 - Resultados de Aceleração Lateral e Longitudinal - Bateria 4, Testes Retilíneos

C.3 Gráficos provenientes dos Extensômetros

Nesta seção, disponibilizamos os gráficos que são gerados por MATLAB a partir dos arquivos de texto convertidos no aquisitor.

Ademais, há a divisão em subseções de modo a contemplar as diferentes manobras e, inserida em cada seção, temos a apresentação dos canais de deformação na seguinte ordem:

- Braço Superior Dianteiro no Tubo Anterior e Posterior;
- Push Rod Dianteira;
- Braço Inferior Dianteiro no Tubo Anterior e Posterior;
- Braço Superior Traseiro no Tubo Anterior e Posterior;
- Push Rod Traseira;
- Braço Inferior Traseiro no Tubo Anterior e Posterior;

C.3.1 Manobra Reta 1

Figura 67 – Deformações experimentadas no Braço Superior Dianteiro no tubo (a) Anterior (b) Posterior.

Figura 68 – Deformações experimentadas Push Rod Dianteira.

Figura 69 – Deformações experimentadas no Braço Inferior Dianteiro no tubo (a) Anterior (b) Posterior.

Figura 70 – Deformações experimentadas no Braço Superior na Traseira no tubo (a) Anterior (b) Posterior.

Figura 71 – Deformações experimentadas Push Rod Traseira.

Figura 72 – Deformações experimentadas no Braço Inferior na Traseira no tubo (a) Anterior (b) Posterior.

C.3.2 Manobra Reta 2

Figura 73 – Deformações experimentadas no Braço Superior Dianteiro no tubo (a) Anterior (b) Posterior.

Figura 74 – Deformações experimentadas Push Rod Dianteira.

Figura 75 – Deformações experimentadas no Braço Inferior na Dianteira no tubo (a) Anterior (b) Posterior.

Figura 76 – Deformações experimentadas no Braço Superior na Traseira no tubo (a) Anterior (b) Posterior.

Figura 77 – Deformações experimentadas Push Rod Traseira.

Figura 78 – Deformações experimentadas no Braço Inferior na Traseira no tubo (a) Anterior (b) Posterior.

C.3.3 Manobra Reta 3

Figura 79 – Deformações experimentadas no Braço Superior Dianteiro no tubo (a) Anterior (b) Posterior.

Figura 80 – Deformações experimentadas Push Rod Dianteira.

Figura 81 – Deformações experimentadas no Braço Inferior na Dianteira no tubo (a) Anterior (b) Posterior.

Figura 82 – Deformações experimentadas no Braço Superior na Traseira no tubo (a) Anterior (b) Posterior.

Figura 83 – Deformações experimentadas Push Rod Traseira.

Figura 84 – Deformações experimentadas no Braço Inferior na Traseira no tubo (a) Anterior (b) Posterior.

C.3.4 Manobra Reta 4

Figura 85 – Deformações experimentadas no Braço Superior Dianteiro no tubo (a) Anterior (b) Posterior.

Figura 86 – Deformações experimentadas Push Rod Dianteira.

Figura 87 – Deformações experimentadas no Braço Inferior na Dianteira no tubo (a) Anterior (b) Posterior.

Figura 88 – Deformações experimentadas no Braço Superior na Traseira no tubo (a) Anterior (b) Posterior.

Figura 89 – Deformações experimentadas Push Rod Traseira.

Figura 90 – Deformações experimentadas no Braço Inferior na Traseira no tubo (a) Anterior (b) Posterior.

C.3.5 Manobra Circular 1

Figura 91 – Deformações experimentadas no Braço Superior Dianteiro no tubo (a) Anterior (b) Posterior.

Figura 92 – Deformações experimentadas Push Rod Dianteira.

Figura 93 – Deformações experimentadas no Braço Inferior na Dianteira no tubo (a) Anterior (b) Posterior.

Figura 94 – Deformações experimentadas no Braço Superior na Traseira no tubo (a) Anterior (b) Posterior.

Figura 95 – Deformações experimentadas Push Rod Traseira.

Figura 96 – Deformações experimentadas no Braço Inferior na Traseira no tubo (a) Anterior (b) Posterior.

C.3.6 Manobra Circular 2

Figura 97 – Deformações experimentadas no Braço Superior Dianteiro no tubo (a) Anterior (b) Posterior.

Figura 98 – Deformações experimentadas Push Rod Dianteira.

Figura 99 – Deformações experimentadas no Braço Inferior na Dianteira no tubo (a) Anterior (b) Posterior.

Figura 100 – Deformações experimentadas no Braço Superior na Traseira no tubo (a) Anterior (b) Posterior.

Figura 101 – Deformações experimentadas Push Rod Traseira.

Figura 102 – Deformações experimentadas no Braço Inferior na Traseira no tubo (a) Anterior (b) Posterior.

C.3.7 Manobra Circular 3

Figura 103 – Deformações experimentadas no Braço Superior Dianteiro no tubo (a) Anterior (b) Posterior.

Figura 104 – Deformações experimentadas Push Rod Dianteira.

Figura 105 – Deformações experimentadas no Braço Inferior na Dianteira no tubo (a) Anterior (b) Posterior.

Figura 106 – Deformações experimentadas no Braço Superior na Traseira no tubo (a) Anterior (b) Posterior.

Figura 107 – Deformações experimentadas Push Rod Traseira.

Figura 108 – Deformações experimentadas no Braço Inferior na Traseira no tubo (a) Anterior (b) Posterior.

C.4 Tabelas da Parametrização do Ansys

Para melhor visualização dos dados, as tabelas tiveram suas próprias páginas dedicadas.
	_	_		_							_						_			
	or Posterior	Fletor [N.mm]	19455,05	19437,22	19317,62	19787,08	19817,59	3705,82	2895,43	4109,61	3471,17	3100,85	15553,32	15530,36	15482,92	15560,97	17078,73	17132,26	17094,02	17086,37
	Braço Inferio	Axial [N]	-2079,53	-2044,58	-2355,2	-2093,74	-2214,36	-489,53	-371,69	-543	-457,08	-403,45	525,3	524,52	522,92	525,56	301,83	285,5	297,16	299,67
	or Anterior	Fletor [N.mm]	20951,28	20932,12	20803,02	21308,91	21341,52	3990,75	3118,06	4425,58	3738,05	3339,27	16751,08	16726,36	16675,26	16759,33	18394,04	18451,7	18410,51	18402,27
	Braço Inferi	Axial [N]	-1008,73	-978,61	-1204,19	-945,77	-1229,82	-241,29	-185,13	-265,2	-226,33	-200,82	591,28	590,41	588,6	591,57	858,56	874,4	863,09	860,69
da	Rod	Fletor [N.mm]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Saío	Push	Axial [N]	-1680,47	-1678,93	-1668,59	-1709,15	-1711,78	-320,09	-250,1	-354,97	-299,83	-267,84	-1343,47	-1341,48	-1337,39	-1344,13	-1475,23	-1479,86	-1476,56	-1475,89
	r Posterior	Fletor [N.mm]	28,85	27,75	43,01	27,27	36,17	8,4	6,62	9,12	7,93	7,13	14,88	14,86	14,81	14,89	17,86	18,02	17,91	17,89
	Braço Superio	Axial [N]	742,16	724,74	961,71	735,54	831,95	200,77	157,6	219,56	189,09	169,45	-206,56	-206,26	-205,63	-206,67	-149	-144,58	-147,74	-148,42
	or Anterior	Fletor [N.mm]	29,26	28,14	43,61	27,65	36,68	8,52	6,72	9,25	8,04	7,23	15,09	15,07	15,02	15,1	18,12	18,27	18,16	18,14
	Braço Superio	Axial [N]	75,3	62,45	244,57	39,91	184,54	35,86	28,98	37,5	34,39	31,29	-200,27	-199,97	-199,36	-200,36	-331,1	-339,12	-333,39	-332,17
		Z	26,61	26,5	27,24	26,69	26,99	7,94	6,73	8,51	7,6	7,05	0	0	0	0	0	0	0	0
	lomento [N.m]	۲	-49,74	-50,25	-22,71	-51,77	-45,32	-3,69	-2,13	-4,62	-3,2	-2,49	0	0	0	0	0	0	0	0
da	2	×	-33,52	-32,69	-38,54	-33,65	-40,67	-0,57	-0,19	-0,78	-0,45	-0,28	0	0	0	0	0	0	0	0
Entra		z	-1820,55	-1789,29	-2132,16	-1795,03	-2006,27	-457,65	-355,67	-503,33	-429,73	-383,28	0	0	0	0	0	0	0	0
	Força [N]	٢	-1429,43	-1425,42	-1447	-1449,24	-1471,18	-277,73	-216,71	-307,75	-260,18	-232,31	-1016,2	-1014,7	-1011,6	-1016,7	-1115,9	-1119,4	-1116,9	-1116,4
		×	-244,49	-242,43	-275,03	-263,33	-227,3	-52,7	-37,57	-59,86	-48,44	-41,54	0	0	0	0	-127,39	-135,79	-129,79	-128,51
	Volta		1.5E	2.4E	2.6E	2.7E	3.7E	3.11	3.21	3.51	3.61	3.71	IA	2A	3A	4A	1F	2F	ЗF	4F

Tabela 22 – Resultados da parametrização para a Dianteira

Saída	Braço Inferior Anterior Braço Inferior Posterior	[N.mm] Axial [N] Fletor [N.mm] Axial [N] Fletor [N.mm]	1,12 98,50 10520,59 -1930,08 11877,99	1,01 102,43 10496,09 -1468,06 11853,03	1,65 18,94 10630,53 -1577,40 12000,93	9,65 0,14 10425,40 -1556,63 11768,55	2,84 -183,56 10883,25 -1740,87 12277,32	3,69 -57,18 2819,70 -561,19 3179,88	1,79 -78,28 2430,04 -505,19 2739,16	1,69 -38,97 3025,54 -580,00 3413,05	3,12 -65,10 2703,56 -547,12 3048,44	2,26 -74,40 2525,75 -521,19 2847,35	2,26 -205,86 12807,75 2142,22 14471,53	2,75 -263,48 12910,21 2201,97 14585,26	3,74 -378,62 13115,89 2321,50 14813,59	2,10 -186,59 12773,51 2122,25 14433,53	3,10 3713,79 5861,24 -1918,26 6760,62	7,96 3848,47 5621,92 -2057,89 6494,91	0,11 3792,48 6065,30 -1946,52 6994,18	NC CCT2 01 0001 27 2002 00 0000
	Push] Axial [N]	-1949,78	-1945,60	-1969,89	-1931,75	-2015,27	-521,98	-449,64	-560,25	-500,41	-467,40	-2374,72	-2393,37	-2430,82	-2368,49	-1110,03	-1066,44	-1148,37	37 0011
	perior Posterior	Fletor [N.mm]	18,44	69,94	70,74	71,96	76,03	17,30	14,90	18,22	16,67	15,56	51,67	52,73	54,86	51,31	20,58	23,07	20,71	10 00
	Braço Supi	1] Axial [N]	188,39	1157,33	1150,81	1174,19	1198,23	281,06	236,99	299,04	269,16	248,92	-1345,36	-1381,56	-1453,98	-1333,26	1114,81	1199,41	1130,62	1127.01
	Braço Superior Anterior	Fletor [N.mm	20,86	79,11	80,02	81,39	86,00	19,57	16,85	20,61	18,85	17,60	58,44	59,64	62,05	58,04	23,28	26,09	23,43	72.69
		Axial [N]	285,51	432,91	466,93	469,67	558,59	114,76	106,29	116,37	112,88	108,90	399,92	420,64	462,06	392,99	-1008,87	-1057,30	-1028,16	-1015 86
	Momento [N.m]	Z	20,67	20,71	20,51	20,34	19,64	9,78	8,84	10,25	9,51	9,08	0,00	0,00	0,00	0,00	0,00	0,00	0,00	000
Entrada		۲	55,48	-55,45	-50,31	-53,34	-48,40	-7,06	-4,91	-8,13	-6,43	-5,45	0,00	00'0	00'0	0,00	0,00	00'0	0,00	000
		×	-52,51	-51,79	-55,24	-54,07	-62,01	-5,98	-5,08	-6,41	-5,72	-5,31	00'0	00'0	00'0	0,00	00'0	00'0	0,00	00.0
		Z	-1840,31	-1818,98	-1916,11	-1903,31	-2112,30	-630,45	-567,13	-653,97	-613,94	-584,67	0,00	0,00	0,00	0,00	0,00	0,00	0,00	000
	Força [N]	٨	-1516,85	-1512,46	-1534,70	-1506,47	-1572,54	-408,69	-351,51	-438,14	-391,83	-365,72	-1338,20	-1339,70	-1342,80	-1337,70	-1238,50	-1235,00	-1273,30	-1238.00
		×	65,19	62,63	75,03	74,53	113,52	28,45	31,56	26,83	29,36	30,75	1012,40	1047,70	1118,30	1000,60	-1387,10	-1469,60	-1410,80	1200 00
	Volta		1.5E	2.4E	2.6E	2.7E	3.7E	3.11	3.21	3.51	3.61	3.71	14	2A	3A	44	1F	2F	ЗF	4F

Tabela 23 – Resultados da parametrização para a Traseira