Universidade de Brasília - UnB Faculdade UnB Gama - FGA Curso de Engenharia de Energia

Análise Técnica e Econômica do Sistema de Módulos Fotovoltaicos do Ministério de Minas e Energia (MME).

Autor: Matheus Dutra Vilela Orientadora: Prof.^a Paula Meyer Soares

Brasília, DF 2019

Matheus Dutra Vilela

Análise Técnica e Econômica do sistema de módulos fotovoltaicos do Ministério de Minas e Energia (MME)

Monografia submetida ao curso de graduação em Engenharia de Energia da Universidade de Brasília, como requisito parcial para obtenção do Título de Bacharel em Engenharia de Energia.

Orientadora: Paula Meyer Soares

CIP - Catalogação Internacional da Publicação*

Vilela, Matheus Dutra.

Análise Técnica e Econômica do sistema de módulos fotovoltaicos do Ministério de Minas e Energia (MME). Brasília: UnB, 2019. 92 p. : il.

Monografia (Graduação) – Universidade de Brasília Faculdade do Gama, Brasília, 2019. Orientação: Paula Meyer Soares

1. sistema fotovoltaico 2. energia. 3. MME 4. I. Soares, Paula M.

CDU Classificação

REGULAMENTO E NORMA PARA REDAÇÃO DE RELATÓRIOS DE PROJETOS DE GRADUAÇÃO FACULDADE DO GAMA - FGA

Matheus Dutra Vilela

Monografia submetida como requisito parcial para obtenção do Título de Bacharel em Engenharia de Energia da Faculdade UnB Gama - FGA, da Universidade de Brasília, em 5 de dezembro de 2019 apresentada e aprovada pela banca examinadora abaixo assinada:

Profa. Dra. Paula Meyer Soares UnB/ FGA
Orientador

Prof. Dr. Fernando Scardua UnB/FGA
Membro Convidado

Prof. Dr. Flávio H. J. R. Silva UnB/FGA
Membro Convidado

Esse trabalho é dedicado a quem se preocupa com a preservação do planeta para as futuras gerações e que demonstra como as atitudes de cada um podem influir na melhoria da qualidade de vida de todos.

AGRADECIMENTOS

Este é um momento muito importante para mim. Hoje entrego minha monografia e início uma nova etapa de vida.

Começo por agradecer à minha família, que me incentivou e garantiu que eu não desistisse nunca.

Quero agradecer, também, à minha namorada Letícia, por estar sempre ao meu lado.

Externo ainda minha gratidão aos professores que passaram por minha vida, especialmente à minha orientadora Paula Meyer Soares, pela construção conjunta deste trabalho.

Que venha o futuro!

"É importante tirar daquilo que estamos acostumados a olhar todos os dias os segredos que, por causa da rotina, não conseguimos ver". Fragmento do livro O diário de um mago, de Paulo Coelho.

RESUMO

No atual contexto mundial, o estilo de vida moderno demanda, cada vez mais, o consumo de energia (renovável e não renovável). Por outro lado, existe uma preocupação crescente com o alcance de objetivos de um desenvolvimento sustentável, e como não poderia deixar de ser, a sociedade volta seu olhar para a contribuição do setor energético neste aspecto. A procura de alternativas ao consumo de combustíveis fósseis na locomoção urbana e em escala industrial, por exemplo, já significa um compromisso com uma geração mais sustentável. Em resposta a todos esses aspectos, a própria tecnologia avança, trazendo a possibilidade de aplicar soluções que possibilitam o uso eficiente de energia nas residências. A geração própria de energia elétrica é uma dessas soluções, já existindo disponibilidade por meios de fácil aplicação. Sendo assim, devem ser empreendidos esforços financeiros, políticos e legais, que permitam a expansão e a consolidação da Geração Distribuída. É para facilitar o alcance desses objetivos que esse estudo sobre o projeto de solarização do Ministério de Minas e Energia foi realizado. O presente trabalho realizou além de projetos de expansão do sistema existente, uma análise comparativa dos custos, payback, TIR e VPL do projeto de 2016 com um projeto recente, criado para o mesmo local e com as mesmas especificações. Ficou demonstrada a evolução de projetos fotovoltaicos ao longo do tempo e os resultados são animadores: mostram uma redução do custo de funcionamento do prédio público, porém, o seu consumo ainda fica longe de ser totalmente diluído na geração solar.

Palavras-chave: Eficiência Energética, Geração Distribuída, Desenvolvimento Sustentável, Sistemas Fotovoltaicos e MME.

ABSTRACT

In the current world context, the modern lifestyle increasingly demands energy consumption (renewable and non-renewable). On the other hand, there is a growing concern about the achievement of sustainable development goals, and as it should be, society turns its attention to the contribution of the energy sector in this regard. The search for alternatives to fossil fuel consumption in urban and industrial scale, for example, already means a commitment to a more sustainable generation. In response to all these aspects, the technology itself advances, bringing the possibility of applying solutions that enable the efficient use of energy in homes. Own generation of electricity is one of these solutions, already available by means of easy application. Therefore, financial, political and legal efforts must be made to expand and consolidate Distributed Generation. It is to facilitate the achievement of these objectives that this study on the solarization project of the Ministry of Mines and Energy was conducted. In addition to existing system expansion projects, this work performed a comparative analysis of costs, payback, TIR and VPL of the 2016 project with a recent project, created for the same location and with the same specifications. The evolution of photovoltaic projects over time has been demonstrated and the results are encouraging: they show a reduction in the public building's operating cost, but its consumption is still far from being completely diluted in solar generation.

Keywords: Energy Efficiency, Distributed Generation, Sustainable Development, Photovoltaic Systems and MME.

LISTA DE FIGURAS

Figura 1 - Oferta interna de energia no Brasil, Fonte: MME, 2018	13
Figura 2 - Irradiação solar mundial, Fonte: MME,2019	
Figura 3 - Consumo Final de Energia Elétrica por Setor. Fonte: EPE, 2017	
Figura 4 - Sistema Interligado Nacional. Fonte: (ONS, 2019)	
Figura 5 - Irradiação Solar ciclo de 11 anos (FILHO, 2019)	
Figura 6 - Componentes da Radiação Solar (Cepel, 2014)	
Figura 7 - Mapa Sul americano de Irradiação Direta Solar Fonte : (SolarGIS, 2	
Figura 8 - Mapa Sul americano de Irradiação Global Solar Fonte: (SolarGIS, 20	
Figura 9 - Irradiação Parcial Mundial, Fonte: Cresesb, 2019	38
Figura 10 - Módulo Fotovoltaico junção "pn", Fonte: Bluesol, 2019	
Figura 11 - Módulos montagem, Fonte: Bluesol, 2019	
Figura 12 - String Box CC+CA 1000V, FONTE: PHB, 2019	
Figura 13 - Diagrama unifilar de string box CC+CA, Fonte: PHB 2019	46
Figura 14 - Foto cobertura do MME 1, Fonte: própria	
Figura 15 - Foto cobertura do MME 2, Fonte: própria	48
Figura 16 - Disposição dos módulos fotovoltaicos, Fonte: criação própria	49
Figura 17 - Utilização do site CRESESB	
Figura 18 – Cálculo do azimutal, FONTE: Google Earth	53
Figura 19 - Utilização do RADIASOL, Fonte: RADIASOL	
Figura 20 - Gráfico da tabela 3, Fonte: criação própria	
Figura 21 - Especificações técnicas do módulo escolhido, Fonte: BYD	58
Figura 22 - Inversor Sunny 50kW, Fonte: minha casa solar	
Figura 23 - Exemplo da fixação a ser utilizada, Fonte: eletricista consciente	
Figura 24 - Desenho unifilar do sistema projetado FONTE: Helioscope	
Figura 25 - Cabeamento do MME FONTE: Google Earth	
Figura 26 - Conectores MC4 para ligação de módulos fotovoltaicos	
Figura 27 - Cálculo da área do telhado, Fonte: Google Earth	
Figura 28 - Prédio padrão da esplanada, Fonte: Google Earth	
Figura 29 - Gráfico da competitividade da TLP, Fonte: Anbima	71
LISTA DE TADELAS	
LISTA DE TABELAS	
Tabela 1 - Capacidade Instalada e total em 2018, FONTE: Snapshot of Global	
Photovoltaic Markets (IEA, 2019)	
Tabela 2 - Capacidade Instalada e Total em 2015, FONTE : (EIA, 2015)	36
Tabela 3 - Tabela de análise dos módulos fotovoltaicos, Fonte: criação própria	
Tabela 4 - Especificações técnicas da família e do módulo escolhido, Fonte: B	

LISTA DE QUADROS

Quadro 1 Resumo das citações da Geração Distribuída, Fonte: ANEEL	27 50
Quadro 5 - Valores de medição da CEB do MME, Fonte: criação própria, dados MM	1E
Quadro 6 - Gastos em reais do MME, Fonte: Tabela do Autor, Dados MME	56
Quadro 8 - Módulos utilizados na primeira simulação, Fonte: Helioscope	65
minhacasasolar	72
Quadro 12 - Valores do projeto, Fonte: criação própria	75 76
Quadro 15 - Tabela resumo do cenário 3, Fonte: criação própria	78 78
Quadro 18 - Resumo do cenário 2, Fonte: criação própria	79
LISTA DE GRÁFICOS	
Gráfico 1 - Crescimento de GD no Brasil, Fonte: ABSOLAR, 2019	
Gráfico 3 - Curva característica I-V e curva P-V para Pn 100Wp, Fonte: Cepel, 2014	1 43
Gráfico 4 - Gráfico de consumo do MME, Fonte: criação própria, dados: MME	73
criação própria	75 e: 75
Gráfico 9 - Gráfico de valores pagos anualmente no terceiro cenário, Fonte: criação própria	76
Gráfico 10 - Financiamento com a economia do sistema fotovoltaico, Fonte: criação própria	

LISTA DE SIGLAS

ABRADEE Associação Brasileira de Distribuidores de Energia

Elétrica

ANATEL Agência Nacional de Telecomunicações

ANEEL Agência Nacional de Energia Elétrica

ANP Agência Nacional do Petróleo

CCEE Câmara de Comercialização de Energia Elétrica

CEB-DIS Companhia Elétrica de Brasília - Distribuidora

CEPEL Centro de Pesquisas de Energia Elétrica

CNPE Conselho Nacional de Política Energética

COFINS Contribuição para Financiamento da Seguridade Social

CRESESB Centro de Referência para as Energias Solar e Eólica Sérgio de

Salvo Brito

DIF Diffuse Horizontal Irradiation

DNI Direct Normal Irradiation

ELETROBRÁS Centrais Elétricas Brasileiras S.A.

EPE Empresa de Pesquisa Energética

GD Geração Distribuída

GDFV Geração Distribuída Fotovoltaica

GHI Global Horizontal Irradiation

IBGE Instituto Brasileiro de Geografia e Dados Estatísticos

ICMS Imposto sobre Circulação de Mercadorias e Prestação de

Serviços

MME Ministério de Minas e Energia

ONS Operador Nacional do Sistema Elétrico

PCH Pequenas Centrais Hidroelétricas

PRODIST Procedimentos de Distribuição

SFV Sistema Fotovoltaico

SIN Sistema Interligado

TE Tarifa de Energia

TUSD Tarifa de Uso de Sistema de Distribuição

TUST Tarifa de Uso de Sistema de Transmissão

VPL Valor Presente Líquido

SUMÁRIO

1.	. INTRODUÇAO	13
	1.1 Aspectos Gerais	13
	1.1.1 Histórico Mundial	13
	1.1.2 Histórico Brasileiro	14
1.	.2. Objetivo Geral	16
	1.2.1. Objetivos Específicos	16
2.	METODÓLOGIA	
3.	. FUNDAMENTAÇÃO TEÓRICA	18
	3.1. O Desenvolvimento Sustentável e sua evolução	
	3.2. O Ministério de Minas e Energia (MME)	
	3.3 Projeto de Solarização de Ministério de Minas e Energia	
	3.4. A Geração Distribuída	
	3.5. A Resolução Normativa 482/2012	
	3.5.1. Revisões da RN 482	
	3.6. Programa de Desenvolvimento da Geração Distribuída de Energia Elétrica (ProGD	
	3.7. Programa de Incentivo às Fontes Alternativas (Proinfa)	
	3.8. O Setor Elétrico Brasileiro	
	3.8.1. Sistema de Tarifação	
	3.9. Energia Solar	
	3.9.1. A Energia Solar	
	<u> </u>	
	3.9.2. A Radiação, Irradiância e Irradiação Solar	
	3.9.3 Energia Solar no Mundo	
	3.10. Sistema de Geração de Energia Fotovoltaica	
	3.10.1. O Efeito Fotovoltaico	
	3.10.2 Semicondutores e a Célula Fotovoltaica	
	3.11. Dispositivos do Sistema Fotovoltaico Conectado à Rede	
4.	. ESTUDO DE CASO	46
	4.1. Localização	
	4.1.1. Local de Instalação dos módulos fotovoltaicos	47
	4.1.2. Local de Instalação dos Inversores	
	4.1.3. Disposição dos Módulos	
	4.2. Os Equipamentos	
	4.2.1 Os módulos Instalados	
	4.2.2. Os Inversores Instalados	
	4.2.2. Caranian	50
	4.3. Programa Helioscope	
	4.4. Análise do Potencial Solar	
	4.5. Análise da Fatura de Energia Elétrica do prédio do Estudo de Caso	54
	4.7. Escolha dos Inversores	
	4.8. Instalação do Sistema Fotovoltaico	
	4.8.1. Estrutura	
	4.8.2. Arranjo dos painéis	
	4.8.3. Cabeamento	
	4.8.4. Medidor Bidirecional	
	4.9. Dimensionamento do Sistema Fotovoltaico	
	4.10. As Simulações	
5.	. ANÁLISE ECONÔMICA	
	5.1 Payback (simples)	
	5.2 Taxa Mínima de Atratividade (TMA)	67
	5.3 Payback Descontado	68

5.4 Valor Presente Líquido (VPL)	69
5.5 Taxa Interna de Retorno (TIR)	69
5.6 Taxa de Longo Prazo (TLP) do BNDES	70
6. ANÁLISE DO PROJETO	
6.1 Cenário 1	
6.2 Cenário 2	75
6.3 Cenário 3	76
6.4 Cenários do MME	77
6.4.1 Cenário 1 MME	78
6.4.2 Cenário 2 MME	79
6.4.3 Cenário 3 MME	
6.5 Comparações	79
7. CONSIDERAÇÕES FINAIS	
8. REFERÊNCIAS BIBLIOGRÁFICAS	82
ANEXO A – Visão Completa dos Cenários	
• • • • • • • • • • • • • • • • • • • •	

1. INTRODUÇÃO

1.1 Aspectos Gerais

O meio ambiente sempre esteve presente nas nossas vidas e é fundamental para uma evolução saudável da população. Com isso em mente, uma busca por novas estratégias amenizadoras de impactos causados por ações antrópicas é necessária.

Como podemos ver na figura 1, o Brasil possui uma matriz energética predominantemente hídrica, o que pode ser considerado uma vantagem, mas pode se tornar uma situação delicada, quando reservatórios em baixa levam ao acionamento de outras fontes de energia, como as térmicas.

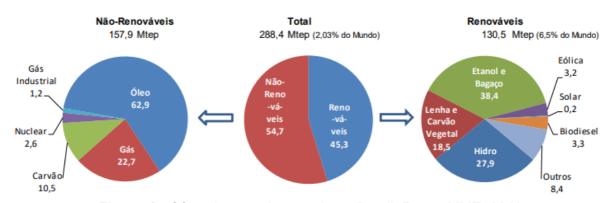


Figura 1 - Oferta interna de energia no Brasil, Fonte: MME, 2018

A variedade da matriz energética é imprescindível para a garantia de abastecimento energético. Ou seja, a utilização de outras fontes renováveis de energia – como a solar, a eólica, a maremotriz, entre outras – pode ser visualizada como o nosso futuro.

Nessa linha, o desenvolvimento da geração distribuída, junto com a Resolução 482/12 da ANEEL, foram os fios condutores do desenvolvimento desse TCC II, tendo como base os pontos positivos e negativos do crescimento da tecnologia de geração distribuída no prédio público onde funciona o Ministério de Minas e Energia.

1.1.1 Histórico Mundial

A jornada da energia fotovoltaica começa ainda na primeira metade do século XIX, em 1839, com o descobrimento, por Edmond Becquerel, do efeito fotovoltaico, proveniente da constatação de uma diferença de potencial nos terminais de uma célula eletroquímica causada pela absorção de luz.

Porém, o primeiro instrumento fotovoltaico, decorrente da física do estado sólido, aparece somente em 1876, passadas quase quatro décadas. E foi já na segunda metade do século XX, em 1956, que se inicia a produção industrial estimulada pelo crescimento da área de eletrônica. A princípio, essa tecnologia era utilizada em áreas isoladas pelo setor de telecomunicações (CEPEL, 2014).

Outra alavanca para o desenvolvimento dessa tecnologia foi a chamada "corrida espacial", iniciada nessa época (1957), por Estados Unidos e a então União Soviética. A energia fotovoltaica sempre foi, e continua sendo, o melhor custo benefício para gerar energia por longos períodos de tempo no espaço (Pinho & Galdino, 2014).

Em 1973, com a crise do petróleo, proliferou-se o interesse pela energia solar fotovoltaica por várias áreas, porém, o desafio para que ela se tornasse viável era reduzir, em até 100 vezes, o custo de produção (CEPEL, 2014).

Importante mencionar que, em 1978, a produção da indústria no mundo já ultrapassava a marca de 1 MW p/ano. Já na década de 90, os Estados Unidos foram os líderes dessa produção e, somente na virada do século, outros países como o Japão e a Alemanha apresentaram crescimento expressivo nesse mercado, muito em função de compromissos oriundos do Protocolo de Kyoto, principalmente, com relação à redução na emissão de CO₂ (CEPEL, 2014).

1.1.2 Histórico Brasileiro

O território brasileiro possui várias riquezas, uma delas é o elevado índice de irradiação solar, se comparado ao de outros países desenvolvidos como a Alemanha, exemplificado na figura 2 abaixo.

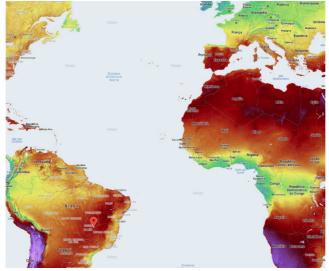


Figura 2 - Irradiação solar mundial, Fonte: MME,2019

A utilização desse potencial avança com o desenvolvimento tecnológico, que, embora venha passando por fases de crescimento, também enfrenta várias dificuldades de financiamento e legislação (ANEEL, 2019).

No Brasil, tudo começou na década de 50 com o desenvolvimento dos primeiros módulos fotovoltaicos pelo Instituto Nacional de Tecnologia (INT) e pelo Centro Tecnológico de Aeronáutica (CTA). Já as células de silício cristalino foram desenvolvidas pela Universidade de São Paulo (USP), com uma eficiência de 12,5% (CEPEL, 2014).

Na década de 70, o Instituto Militar de Engenharia (IME), desenvolveu, com colaboração internacional, a tecnologia de filmes finos, realizando a montagem de uma linha completa de processamento de células fotovoltaicas. Todo esse desenvolvimento, iniciado duas décadas antes, era impulsionado pela crise do petróleo, que não afetou somente o Brasil, mas todo o mundo. (FALCÃO, 2015)

Já na década de 80, o Brasil desacelerou, e as duas fábricas então existentes foram prejudicadas, sobrando hoje somente uma fábrica de encapsulamento de módulos fotovoltaicos, localizada em Campinas.

Em 1994, em uma ação do Governo Federal, por meio do Ministério de Minas e Energia, cria-se um programa de eletrificação rural, o Prodeem (Programa de Desenvolvimento Energético de Estados e Municípios), envolvendo várias esferas do poder público, e que resultou na instalação de mais de 8,5 mil sistemas fotovoltaicos. (CEPEL, 1997)

A Agência Nacional de Energia Elétrica (Aneel) iniciou, em 2002, estudos prevendo a necessidade de regulamentação das especificações técnicas para a instalação dos anteriormente chamados Sistemas Individuais de Geração de Energia Elétrica com Fontes Intermitentes (SIGFIs) e que a Resolução Normativa nº 482/2012 denominou como Sistemas de Micro e Minigeração Distribuídas.

No ano de 2003, o Governo Federal instituiu o Programa Nacional de Universalização do Acesso e Uso da Energia Elétrica – Programa Luz para Todos (LpT) – que resultou em vários projetos, parcerias internacionais e leis. Em 2014, o LpT foi expandido e continua seu crescimento até os dias atuais (BRASIL, 2011).

Em 2011, foi instalada no Brasil a primeira planta de energia fotovoltaica, com potência inicial instalada de 1 MWp – o suficiente para suprir de energia 1,5 mil famílias. Localizada no município de Tauá, a 344 km de Fortaleza, no Ceará, a

usina, quando inaugurada, ocupava uma área de 12 mil metros quadrados e contava com 4.680 painéis fotovoltaicos (EPE, 2011).

No final de 2013, ocorreu o primeiro Leilão de Energia A-3, os empreendimentos de geração fotovoltaica, com potência igual ou superior a 5MW, foram habilitados pela Empresa de Pesquisa Energética (EPE). O leilão só rendeu contratação de energia eólica com preço e custo marginal de referência de R\$ 126,00/MWh (EPE, 2011).

Atualmente, a capacidade de sistemas fotovoltaicos instalados no Brasil é da ordem de 1,3GW², muito próxima da potência total máxima gerada pelo nosso país vizinho, o Uruguai, que é da ordem de 1,4GW (EPE, 2019).

1.2. Objetivo Geral

- Realizar um estudo técnico e econômico do projeto intitulado "Solarização do Ministério de Minas e Energia" observando a expansão do projeto de 2016 ate o momento presente e os indicadores econômicos (payback, TIR e VPL).

1.2.1. Objetivos Específicos

- Apresentar os aspectos técnicos de engenharia de um dado projeto fotovoltaico:
- Descrever o marco regulatório brasileiro que trata sobre a Geração Distribuída (GD) no país e de que modo esta legislação impacta na efetivação de projetos fotovoltaicos;
- Descrever o projeto "Solarização do Ministério de Minas e Energia" com as particularidades técnicas do imóvel e as respectivas projeções de produção de energia elétrica;
- Avaliar 3 cenários econômicos e seus respectivos resultados VPL, TIR e *Payback*.

2. METODOLOGIA

A metodologia desse trabalho foi dividida em três partes. A primeira consiste em uma revisão bibliográfica sobre o tema da geração distribuída, para melhor entendimento do trabalho e de uma porcentagem do futuro da energia no país. A segunda parte foi composta de um trabalho de campo que incluiu o recolhimento de dados: com a facilitação de agente do MME, foram visitadas as instalações do

projeto de energia solar existente no prédio do Ministério, e também foram acessados dados de geração e de consumo energético do MME. A terceira parte é a utilização de programas para análise desses dados e a simulação de melhorias.

Para as análises contidas nesse trabalho, foram utilizados dois programas de software.

O primeiro é o Google Earth Pro. Ele foi utilizado para adquirir imagens de satélite dos telhados dos prédios públicos e para realizar os estudos necessários; com ele, foram realizadas medições e interpretações dos telhados, bem como a contagem dos prédios.

O segundo é o Helioscope um programa online, ou seja, é necessário estar conectado para utilizá-lo. Ele possui uma integração com o Google (fornecedor dos mapas), porém, é possível utilizar mapas adicionados pelo usuário ou de outros fornecedores já integrados. O website foi utilizado para se construir todos os projetos de painéis solares, é uma plataforma relativamente simples de usar e intuitiva para os dias atuais. Muitas das operações modificam a imagem de forma instantânea e, com um clique, é fácil desfazer a última operação, as instruções mostram um resumo de cada tecla, tornando fácil aprender a usar os comandos sem a necessidade de abrir um projeto de testes.

Além dos dois programas acima, foram utilizados os conhecimentos de planejamento de sistemas fotovoltaicos, de onde foram utilizadas planilhas do Excel para a modelagem e simulações de projeto, principalmente da parte financeira. E o programa RADIASOL, para o cálculo preciso da irradiação no prédio do MME.

Para visualizar a possibilidade de expansão do projeto já existente, foram realizadas 5 simulações iniciais, como um pré-trabalho. Dessas simulações, foi utilizado o projeto existente no MME, de 2016, para a realização da comparação entre este e uma nova simulação, utilizando equipamentos mais modernos e preços atualizados para 2019.

O período de utilização dos dados de consumo e geração do MME a fim de analisar o seu perfil, foi de janeiro a dezembro de 2017 e foram considerados os dados abaixo:

- Valores da conta de energia;
- Demanda: R\$/mês e contratação;
- Tarifas unitárias de energia e demanda (R\$/KWh);

- Geração dos painéis solares (medição dos inversores);
- Cronograma de medição fotovoltaico;
- Datas e montantes de entrada de operação da mini usina solar;
- Valores individuais dos equipamentos utilizados no projeto (passado versus presente);
- Capacidade dos inversores (para a possibilidade de futura ampliação);
- Área extra disponível para ampliação do projeto.

A partir da especificação técnica do sistema fotovoltaico estimado para o local, foram feitas estimativas da energia produzida anualmente pelo sistema e a economia obtida com a instalação do mesmo.

3. FUNDAMENTAÇÃO TEÓRICA

3.1. O Desenvolvimento Sustentável e sua evolução

No mundo, é cada vez mais urgente preocupar-se com o desenvolvimento sustentável. Mas esse conceito surgiu ainda na década de 80, como no Relatório de Brundtland (Brundtland, 1987) definiu desenvolvimento sustentável como "aquele em que se satisfaz as necessidades atuais sem comprometer a capacidade das gerações futuras em satisfazerem suas próprias necessidades".

Com inspiração na vertente do desenvolvimento sustentável – cujo objetivo principal é proporcionar "desenvolvimento capaz de suprir as necessidades da geração atual, sem comprometer a capacidade de atender as necessidades das futuras gerações" -, surgiu o conceito de geração distribuída, definida pelo Instituto Nacional de Eficiência Energética como uma expressão usada para designar a geração elétrica realizada junto ou próxima do(s) consumidor(es) independente da potência, tecnologia e fonte de energia (CEPEL, 2014).

Em síntese, a geração distribuída reduz a distância entre a geração de energia elétrica e o consumidor, incentivando a criação de uma consciência responsável sobre essa energia, podendo ocasionar um melhor aproveitamento da energia consumida, já que, o próprio consumidor saberá das dificuldades e custos da geração.

No conjunto de barreiras ao desenvolvimento sustentável global, destaca-se o crescimento do consumo mundial de energia, nas suas diferentes origens: fóssil,

hídrica, e de biomassa, e os impactos ao meio ambiente de sua geração/utilização, uma vez que o uso de fontes energéticas fósseis ainda é predominante na maior parte do globo, apesar dos avanços tecnológicos e benefícios proporcionados por fontes alternativas.

O neomalthusianismo considerou a disponibilidade de recursos naturais como limitação à sobrevivência humana (Malthus,1798). A energia solar é a energia eletromagnética cuja fonte é o sol. Ela pode ser transformada em energia térmica ou elétrica e aplicada em diversos usos. As duas principais formas de aproveitamento da energia solar são a geração de energia elétrica e o aquecimento solar de água. Seu uso é uma das atitudes sustentáveis mais promissoras na luta contra a degradação do meio ambiente, pois se trata de energia renovável e limpa, ou seja, é inesgotável e não gera poluição.

Ao contrário dos combustíveis fósseis, o processo de geração de energia elétrica a partir da energia solar não emite dióxido de enxofre (SO₂), óxidos de nitrogênio (NO_x) e dióxido de carbono (CO₂) – todos gases poluentes com efeitos nocivos à saúde humana e que contribuem para o aquecimento global. A energia solar também se mostra vantajosa em comparação a outras fontes renováveis, como a hidráulica, pois requer áreas menos extensas do que as hidrelétricas.

No que se refere ao Brasil, a situação é menos crítica, mas ainda preocupante. Apesar da grande extensão territorial do país e da abundância de fontes de recursos naturais para a produção dessas energias, há uma enorme diversidade regional e uma forte concentração de pessoas e atividades econômicas em regiões com sérios problemas de suprimento de energia (MME, 2018).

Figura 3 - Consumo Final de Energia Elétrica por Setor. Fonte: EPE, 2017

A Figura 3 ilustra a tendência do consumo de energia elétrica dividida por setores no Brasil.

Segundo dados da Empresa de Pesquisa Energética (EPE), vinculada ao Ministério de Minas e Energia (MME), a irradiação média anual no Brasil varia entre 1200 e 2400 KWh/m²/ano, valor significativamente superior, por exemplo, ao da Alemanha (com intervalos entre 900 e 1.250kWh/m²/ano), que é um dos países mais desenvolvidos no aproveitamento e na tecnologia da energia solar (EPE, 2014).

Além disso, o incentivo à energia solar no Brasil é justificável pelo potencial do país enquanto possuidor de uma das maiores reservas de quartzo de qualidade e como o quarto maior produtor de silício grau metalúrgico do mundo – que é a primeira etapa para produção de silício grau solar.

Apesar dessas características, no contexto da geração de energia por sistemas fotovoltaicos, a capacidade atual do Brasil é estimada em 20 MW, sendo que 99% desses sistemas instalados correspondem ao atendimento de áreas isoladas, onde a rede de distribuição não consegue alcançar.

Desde 17 de abril de 2012, quando entrou em vigor a Resolução Normativa ANEEL nº 482/2012, o consumidor brasileiro pode gerar sua própria energia elétrica a partir de fontes renováveis ou cogeração qualificada e, inclusive, fornecer o excedente para a rede de distribuição de sua localidade. São as chamadas micro e minigeração distribuídas de energia elétrica, inovações que podem aliar economia financeira, consciência socioambiental e a auto sustentabilidade (ANEEL, 2016).

Os estímulos à geração distribuída se justificam pelos potenciais benefícios que tal modalidade pode proporcionar ao sistema elétrico. Entre eles, estão o adiamento de investimentos em expansão dos sistemas de transmissão e

distribuição, o baixo impacto ambiental, a redução no carregamento das redes, a minimização das perdas e a diversificação da matriz energética (ANEEL, 2016).

Como, nos últimos anos, tem-se configurado o cenário de crescente participação das fontes renováveis não despacháveis no suprimento (INT/MCTI, 2017), como eólica e solar fotovoltaica, por conta de seus custos competitivos, as tecnologias de armazenamento de energia passaram a ser componentes valiosos na maioria dos sistemas energéticos, constituindo-se numa das tecnologias chave para apoiar sua descarbonização (IEA, 2014).

Enfim, a energia solar contribui enormemente para o desenvolvimento sustentável, pois os equipamentos empregados na sua produção, transformação e distribuição são duráveis e requerem baixo investimento em manutenção, o que proporciona mais autonomia, em longo prazo, para grandes e pequenas comunidades.

3.2. O Ministério de Minas e Energia (MME)

O Ministério de Minas e Energia, órgão da administração federal direta, representa a União como Poder Concedente e formulador de políticas públicas, bem como indutor e supervisor da implementação dessas políticas nos seguintes segmentos:

- I Geologia, recursos minerais e energéticos;
- II Aproveitamento da energia hidráulica;
- III Mineração e metalurgia; e
- IV Petróleo, combustível e energia elétrica, inclusive nuclear.

Cabe, ainda, ao Ministério de Minas e Energia:

- I Energização rural, agro energia, inclusive eletrificação rural, quando custeada com recursos vinculados ao Sistema Elétrico Nacional; e
- II Zelar pelo equilíbrio conjuntural e estrutural entre a oferta e a demanda de recursos energéticos no País.

Em 2015, o MME lançou o "Guia para Eficiência Energética nas Edificações Públicas", elaborado em parceria com o Centro de Pesquisa de Energia Elétrica (Cepel). A publicação aborda as principais etapas a serem contratadas em projetos de revitalização típicos em edificações, focando em edifícios públicos, para fins de

eficiência energética, como: diagnóstico energético; elaboração de projeto básico e executivo; execução das obras; fiscalização e acompanhamento dos resultados.

3.3 Agencia Nacional de Energia Elétrica (ANNEL)

A Agência Nacional de Energia Elétrica (ANEEL) foi criada a fim de "proporcionar condições favoráveis para que o mercado de energia elétrica se desenvolva com equilíbrio entre os agentes e em benefício da sociedade". Dito isto, cabe à agência exercer a regulação e a fiscalização sobre a geração, a transmissão, a comercialização e a distribuição de energia elétrica. O seu maior desafio é alcançar essa harmonia dentro do contexto brasileiro, no qual a energia elétrica só aparece entre as prioridades do governo em momentos de crise, como ameaças de apagão. (ANEEL, 2008)

A ANEEL iniciou suas atividades em dezembro de 1997, tendo como principais atribuições:

- Regular a geração (produção), transmissão, distribuição e comercialização de energia elétrica;
- Fiscalizar, diretamente ou mediante convênios com órgãos estaduais, as concessões, as permissões e os serviços de energia elétrica;
- Implementar as políticas e diretrizes do governo federal relativas à exploração da energia elétrica e ao aproveitamento dos potenciais hidráulicos;
- Estabelecer tarifas;
- Dirimir as divergências, na esfera administrativa, entre os agentes e entre esses agentes e os consumidores, e
- Promover as atividades de outorgas de concessão, permissão e autorização de empreendimentos e serviços de energia elétrica, por delegação do Governo Federal.

Essas atribuições foram dadas por meio da Lei nº 9.427/1996 e do Decreto nº 2.335/1997, criando a ANEEL como uma autarquia em regime especial vinculada ao Ministério de Minas e Energia, para regular o setor elétrico brasileiro.

3.3 Projeto de Solarização de Ministério de Minas e Energia

O projeto de Solarização do Ministério de Minas e Energia visou a instalação de um sistema de microgeração distribuída, a partir de fonte solar fotovoltaica,

instalando-se módulos fotovoltaicos sobre a cobertura do Bloco U situado na Esplanada dos Ministérios em Brasília-DF, no Ministério de Minas e Energia.

Na concepção original, a energia gerada pelo sistema fotovoltaico seria consumida pelas cargas ativas no momento da geração, e havendo excedente, seria injetada na rede de distribuição da CEB, fazendo uso do Sistema de Compensação de Energia Elétrica (Resolução Normativa 482/2012), porém, o sistema desde a sua concepção não atende a carga por motivos financeiros, não havendo mais doações e técnicos, considerando o alto consumo para o espaço disponível para a instalação do sistema fotovoltaico, como será mostrado mais adiante.

Sendo o primeiro prédio público a ter geração distribuída na capital federal, o projeto pioneiro foi inaugurado no dia 17 de novembro de 2016 em uma cooperação técnica entre o MME e a Associação Brasileira de Energia Solar Fotovoltaica (ABSOLAR).

Esse projeto foi o primeiro passo dado pelo Governo Federal com o objetivo de diminuir as contas públicas fixas de energia. Já que, além da instalação do sistema fotovoltaico, foi realizado um processo de aumento da eficiência energética do prédio.

3.4. A Geração Distribuída

A melhor descrição da Geração Distribuída (GD) é feita pela ANEEL que, em síntese, descreve-a como uma geração de pequeno porte localizada próxima ao consumo, classificando-a como micro ou minigeração distribuídas de energia elétrica, elas são inovações que podem aliar economia financeira, consciência socioambiental e autossustentabilidade (ANEEL, 2012).

Em 2015, a geração distribuída no Brasil registrou 1.307 novas adesões de consumidores, somando uma potência instalada de 16,5 megawatts (MW) e totalizando 1.731 conexões. Apenas entre novembro e dezembro, após a aprovação das alterações na Resolução Normativa Aneel nº 482/2012 e o Lançamento do Programa de Desenvolvimento da Geração Distribuída de Energia Elétrica (ProGD), houve crescimento de 73% nos projetos, que registravam mil unidades em outubro (EPE, 2019).

A Geração Distribuída (GD) é uma expressão usada para designar a geração elétrica realizada junto ou próxima do consumidor, independente da potência, da tecnologia e da fonte de energia, ou seja, é basicamente o rearranjo da

distribuição de energia, no qual, o consumidor pode gerar sua própria energia, e ainda disponibilizar o que sobra para a rede. As tecnologias de GD têm evoluído para incluir potências cada vez menores.

A GD inclui: co-geradores, geradores que usam como fonte de energia resíduos combustíveis de processo, geradores de emergência, geradores para operação no horário de ponta, painéis fotovoltaicos e pequenas Centrais Hidrelétricas (PCH's).

O conceito envolve, ainda, equipamentos de medida, controle e comando, que articulam a operação dos geradores e o eventual controle de cargas (ligamento/ desligamento) para que estas se adaptem à oferta de energia.

A fonte mais utilizada pelos consumidores continua sendo a solar, com 1.675 adesões, seguida da eólica, com 33 instalações. Atualmente, o estado que possui mais micro e minigeradores é Minas Gerais, com 333 conexões. Em seguida: Rio de Janeiro, com 203, e o Rio Grande do Sul, com 186 (EPE, 2019).

A geração distribuída tem registrado crescimento expressivo desde as primeiras instalações, em 2012. Naquele ano, eram apenas três projetos registrados, enquanto que em 2013 foram verificados 75. Se comparado com o ano de 2014, quando registradas 424 conexões, o número de adesões quadruplicou em 2015, passando para as atuais 1.731 adesões (EPE, 2019).

Com o aprimoramento na Resolução Normativa nº 482/2012, que criou o Sistema de Compensação de Energia Elétrica e permitiu que o consumidor instalasse pequenos geradores, tais como painéis solares fotovoltaicos e microturbinas eólicas, são estimadas 1.230.000 unidades de micro e minigeração até 2024, o que representaria 4.500 MW de capacidade. As novas regras começaram a valer em 1º de março de 2016 (ANEEL, 2016).

3.5. A Resolução Normativa 482/2012

Em relação à regulação da GD, em dezembro de 2012, entrou em vigor a Resolução Normativa nº 482, de 17/04/2012, da Aneel, que estabeleceu as condições gerais para o acesso de microgeração e minigeração distribuída aos sistemas de distribuição de energia elétrica. O objetivo da regulamentação foi reduzir as barreiras regulatórias existentes para conexão de geração de pequeno porte disponível na rede de distribuição, além de introduzir o sistema de compensação de

energia elétrica (*net metering*), bem como, de estabelecer adequações necessárias nos Procedimentos de Distribuição (Prodist).

A RN n. 482 conceitua a micro e a minigeração distribuída da seguinte forma:

I - microgeração distribuída: central geradora de energia elétrica, com potência instalada menor ou igual a 75 kW e que utilize cogeração qualificada, conforme regulamentação da ANEEL, ou fontes renováveis de energia elétrica, conectada na rede de distribuição por meio de instalações de unidades consumidoras; (Redação dada pela REN ANEEL 687, de 24.11.2015.)

II - minigeração distribuída: central geradora de energia elétrica, com potência instalada superior a 75 kW e menor ou igual a 5MW e que utilize cogeração qualificada, conforme regulamentação da ANEEL, ou fontes renováveis de energia elétrica, conectada na rede de distribuição por meio de instalações de unidades consumidoras; (Redação dada pela REN ANEEL 786, de 17.10.2017).

Resumindo, a microgeração distribuída consiste em uma central geradora de energia elétrica, com potência instalada menor ou igual a 100 kW, e a minigeração distribuída para potência instalada acima de 100 kW e menor ou igual a 1 MW, sendo ambas para fontes hidráulica, solar, eólica, biomassa e cogeração qualificada.

Simultaneamente, foi publicada pela Aneel a Resolução Normativa nº 481/2012, na qual foi estipulado um desconto nas tarifas de uso dos sistemas elétricos de transmissão (TUST) e de distribuição (TUSD) para operações com fonte solar cuja potência injetada nos sistemas de transmissão ou de distribuição seja menor ou igual a 30 MW. Pela norma, o desconto é de 80% para os empreendimentos que entrarem em operação comercial até 31/12/2017, e de 50% para os que entrarem em operação comercial após essa data. Com a medida, a procura pela geração de energia solar cresceu no Brasil (ANEEL, 2013).

3.5.1. Revisões da RN 482

Com o objetivo de reduzir os custos e o tempo para a conexão da microgeração e minigeração; compatibilizar o Sistema de Compensação de Energia Elétrica com as Condições Gerais de Fornecimento (Resolução Normativa nº 414/2010); aumentar o público alvo; e melhorar as informações na fatura, a ANEEL publicou as Resoluções Normativas nº 687/2015 e nº 786/2017, revisando a Resolução Normativa nº 482/2012.

As modificações, em sua maioria, foram feitas para beneficiar os produtores de microgeração e tentar reduzir o número de grandes produtores que se fazem dessa nova modalidade de produção para reduzir os seus encargos entrando como minigeração. Vale salientar, que, para efeitos dessa Resolução (alterada pelas resoluções 687/2015 e 786/2017), enquadra-se no conceito de microgeração distribuída a central geradora de energia elétrica, com potência instalada menor ou igual a 75 kW, e de minigeração distribuída, a central com potência instalada acima de 75 kW e menor ou igual a 5 MW, sendo ambas para fontes hidráulica, solar, eólica, biomassa e cogeração qualificada.

Foi feito para sintetizar e compilar as ideias gerais e as diferenças entre as RN's 482, 587, 786 da ANEEL o quadro 1 com essa evolução comparada. Além disso, uma linha do tempo dos marcos, quadro 2 que tratam sobre a Geração Distribuída desde 2001, quando foi primeiramente citada, até 2017.

Quadro 1 Resumo das citações da Geração Distribuída, Fonte: ANEEL

ANO	Resumo da citação			
2001	Primeira citação da Geração Distribuída, Resolução nº 7 do CNPE			
2004	Lei nº 0.848 (fonte de contratação de energia)	Decreto nº 5.163 (regulamentou a contratação de energia vindo de geração distribuída)		
2005	Audiência pública AP-022	RN 167 (condições para a comercialização de energia vinda de GD)		
2006	RN 323	Critérios e procedimentos da ANEEL de contratos de energia da GD		
2010	Primeira citação de Micro e Mini GD	CP-015 (GD de pequeno porte a partir de fontes Renováveis)	MME cria grupo de trabalho SmartGrid	CP-018 (Agenda ANEEL propõe discutir Micro e Minigeração nos próximos 2 anos
2012	RN 482 (primeiro marco regulatório sobre o acesso da nova modalidade de geração e a forma de como a energia gerada seria tratada no âmbito comercial da distribuidora	AP-100 (discussão	da RN 482)	
2013	Agenda regulatória da ANEEL propõe acompanhar a micro e mini GD em 2014-15 e a RN 482			
2014	RN 607 (Operacionalização do acesso e contratos do micro e mini GD no PRODIST		AP-037 resultou a RN 687 (melhoramento da RN 482)	
2015	Portaria 538 do MME cria ProGD Lei 13.203 estabele		ece VR e do VRES para GD	
2016	RN 724 (altera procedimentos de acesso do micro e mini GD no PRODIST			

Quadro 2 - Pontos principais das Normas Regulamentarias de GD, Fonte: ANEEL.

Pontos da RN 482	RN 687	RN 786
2012	2015	2017
Microgeração <= 100kW	Microgeração <= 75kW	É vedada a qualificação como Micro ou Minigeração distribuída das centrais que já possuem registro, concessão, permissão ou autorização, ou estejam em funcionamento.
Minigeração > 100KW e <= 1MW	Minigeração > 75kW e <= 3MW para fontes hídricas e <= 5MW para outras	Minigeração > 75kW e <= 5MW para todos
Sistema de compensação de energia elétrica: sistema no qual a energia ativa injetada por unidade consumidora com micro ou minigeração distribuída é cedida, por meio de empréstimo gratuito, à distribuidora local e posteriormente compensada com o consumo de energia elétrica ativa dessa mesma unidade consumidora ou de outra unidade consumidora de mesma titularidade da unidade consumidora onde os créditos foram gerados, desde que possua o mesmo Cadastro de Pessoa Física (CPF) ou Cadastro de Pessoa Jurídica (CNPJ) junto ao Ministério da Fazenda	Não é mais necessário a compensação ocorrer para o mesmo CPF ou CNPJ. Consumidores de CPF ou CNPJ distintos, abastecidos pela mesma concessionária distribuidora, associados por meio de cooperativa ou consórcio, respectivamente, onde a unidade micro ou minigeradora fica em local diferente das unidades consumidoras compensatórias.	
Condomínios proibidos	Acrescenta-se Condomínios verticais e/ou horizontais, situados em mesma área ou área contígua, com o sistema gerador instalado em área comum, onde as unidades consumidoras do local e a área comum do condomínio sejam energeticamente independentes entre si.	
Possuía algo parecido	Consumidores pessoa física ou pessoa jurídica que possuem unidades consumidoras de mesma titularidade, CPF ou CNPJ, onde a geração distribuída de energia elétrica está em local diferente dos locais que fazem uso dos créditos energéticos.	
36 meses para uso do crédito	60 meses para o uso do crédito	
Custos de instalação e de medidores do interessado.	Custos de instalação e de adequação do interessado, medidores nos custos da distribuidora.	

3.6. Programa de Desenvolvimento da Geração Distribuída de Energia Elétrica (ProGD)

Para aprofundar as ações de estímulo à geração de energia pelos próprios consumidores, com base nas fontes renováveis de energia, o Ministério de Minas e Energia (MME) lançou, em dezembro de 2015, o Programa de Desenvolvimento da Geração Distribuída de Energia Elétrica (ProGD).

Com investimentos de pouco mais de R\$ 100 bilhões até 2030, o ProGD prevê que 2,7 milhões de unidades consumidoras poderão ter energia gerada por elas mesmas, entre residências, comércios, indústrias e no setor agrícola, o que pode resultar em 23.500 MW (cerca de 48 TWh produzidos anualmente) de energia limpa e renovável, o equivalente à metade da geração anual da Usina Hidrelétrica de Itaipu.

3.7. Programa de Incentivo às Fontes Alternativas (Proinfa)

A Lei 10.438/2002 criou o Proinfa com o objetivo de aumentar a participação de fontes alternativas renováveis (pequenas centrais hidrelétricas, usinas eólicas e empreendimentos termelétricos a biomassa) na produção de energia elétrica, privilegiando empreendedores que não tenham vínculos societários com concessionárias de geração, transmissão ou distribuição (ANEEL, 2017).

O cálculo das cotas é baseado no Plano Anual do Proinfa (PAP) elaborado pela Eletrobrás e encaminhado para a ANEEL. O custo do programa, cuja energia é contratada pela Eletrobrás, é pago por todos os consumidores finais (livres e cativos) do Sistema Interligado Nacional (SIN), exceto os classificados como baixa renda (ANEEL, 2017).

O valor de custeio do Proinfa é dividido em cotas mensais, recolhidas por distribuidoras, transmissoras e cooperativas permissionárias e repassadas à Eletrobrás. Do valor total do custeio para o programa, R\$ 2,4 bilhões são recolhidos pelas distribuidoras, R\$ 206,1 milhões pelas transmissoras e R\$ 17,7 milhões pelas cooperativas (permissionárias). O cálculo das cotas foi definido com base no mercado verificado no SIN, no período de setembro de 2013 a agosto de 2014 (ANEEL, 2017).

3.8. O Setor Elétrico Brasileiro

A energia elétrica no Brasil é, em sua grande maioria, gerada por empreendimentos hidrelétricos (ANEEL, 2014). O restante dessa porcentagem distribui-se entre fontes térmicas, solar, eólica, biomassa, termonuclear. De acordo com dados do Censo Demográfico de 2010 realizado pelo Instituto Brasileiro de Geografia e Estatística, o IBGE, a energia elétrica está presente em 97,8% dos domicílios brasileiros (IBGE, 2010).

O Operador Nacional do Sistema Elétrico (ONS) é o órgão responsável pela coordenação e controle da operação das instalações de geração e transmissão de energia elétrica no Sistema Interligado Nacional (SIN) e pelo planejamento da operação dos sistemas isolados do país, sob a fiscalização e regulação da Agência Nacional de Energia Elétrica (Aneel).

Pelo Censo Demográfico de 2010 do Instituto Brasileiro de Geografia e Estatística (IBGE), divulga que a energia elétrica está presente em 97,8% dos domicílios brasileiros (IBGE, 2010). Nesse sentido, 95% da energia gerada passa pelo SIN. Esse controle de despacho de energia elétrica é crucial para a garantia da oferta de eletricidade em todo o território nacional (Maxwell, 2015).

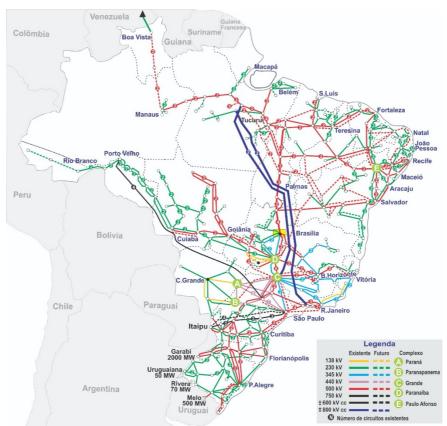


Figura 4 - Sistema Interligado Nacional. Fonte: (ONS, 2019)

3.8.1. Sistema de Tarifação

No Brasil, existem encargos e tributos que compõem o cálculo da conta unitária de energia elétrica (Fugimoto, 2010). Detalhando um pouco mais, essa tarifação é composta por custo de aquisição de energia, relativos ao uso do sistema de distribuição, ao uso do sistema de transmissão, às perdas elétricas e, encargos e impostos.

Os custos relativos ao uso do sistema de distribuição incluem-se as despesas com peças e, custos de operação, manutenção das redes de distribuição na Tarifa de Uso do Sistema de Distribuição (TUSD) e perdas elétricas. Quanto aos custos do uso do sistema de transmissão adiciona-se as despesas com operação e manutenção das linhas de transmissão na Tarifa de Uso do Sistema de Transmissão (TUST).

Por último, os encargos e impostos também fazem parte dessa conta. No Brasil, aliás, Brasil representa quase a metade dessa conta. O PIS/COFINS, o ICMS e a Contribuição para Iluminação Pública são os tributos presentes na conta de energia elétrica. Como tributos federais, o Programa de Integração Social (PIS) e a Contribuição para o Financiamento da Seguridade Social (COFINS) são cobrados para atender os programas sociais do Governo Federal. Já o Imposto sobre a Circulação de Mercadorias e Serviços (ICMS) é adicionado à conta pelos estados da federação, considerando o fornecimento de energia elétrica como a prestação de um serviço. Por fim, a Contribuição para Custeio do Serviço de Iluminação Pública (CIP) é um tributo municipal que é adicionado a conta para implementação, operação, manutenção e expansão das instalações de iluminação pública (ANEEL, 2013).

Para o sistema fotovoltaico conectado à rede desse estudo de caso, a tarifação brasileira utiliza um sistema de tarifação chamado *net metering*. Esse sistema utiliza o medidor bidirecional – instalado pela distribuidora ao instalar o sistema – para calcular a energia produzida, consumida, e a energia da concessionária. Dessa forma, é calculada a diferença, e o consumidor paga por ela. Cabe ressaltar, que não há remuneração financeira direta nesse tipo de sistema, apenas compensação de créditos de energia elétrica.

3.9. Energia Solar

É descrito nesse capítulo o que é a energia solar e como captamos e a transformamos em eletricidade.

3.9.1. A Energia Solar

A energia solar é entendida como o combustível essencial para atividades no nosso planeta. O Sol é o fornecedor dessa energia, sua composição é composta em grande parte por Hidrogênio (91,2%) e Hélio (8,7%), além de outros gases (FILHO, 2019). Através da reação de fusão nuclear de quatro prótons de hidrogênio em um núcleo de hélio, aproximadamente 600 milhões de toneladas de hidrogênio são transformados em hélio por segundo e a diferença de massa entre os elementos é convertida em energia radiante, sua propagação é realizada para todas as direções, distribuindo energia aos corpos ao seu redor. Esta é a energia que chega ao nosso planeta promovendo a fotossíntese das plantas, e pode ser utilizada ainda na geração de energia elétrica através de módulos fotovoltaicos.

Estima-se que a constante solar seja de aproximadamente 1367,5 Watts/m², esse valor varia em um ciclo de 11 anos como mostra a figura 5 abaixo:

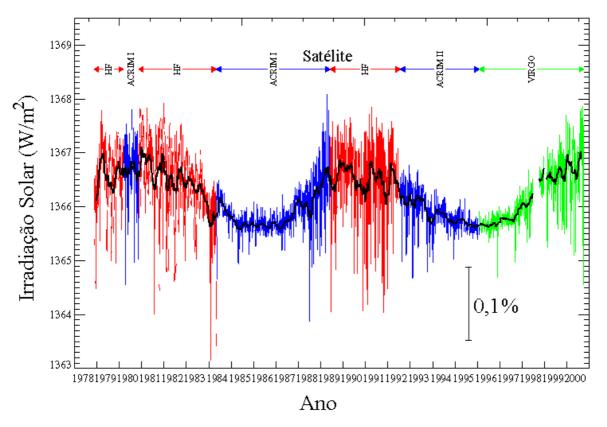


Figura 5 - Irradiação Solar ciclo de 11 anos (FILHO, 2019)

3.9.2. A Radiação, Irradiância e Irradiação Solar

O termo "radiação solar" é uma forma genérica de se denominar a potência do sol na terra, variando de irradiância solar, quando se quer o fluxo, à irradiação solar, quando se quer a energia por área.

A radiação solar é a principal fonte de vida para o planeta Terra. Como fonte primária de energia, graças a ela, crescem as plantas que produzem oxigênio e dão origem aos alimentos, que fornecem energia aos demais seres vivos. Mas a radiação solar também pode ser aproveitada para produzir eletricidade e alimentar energeticamente o mundo em que vivemos.

Uma das formas de fazer isso é por meio da conversão fotovoltaica em que um dispositivo, chamado célula solar, converte a energia solar em energia elétrica. Trata-se de um processo fiável, limpo e sustentável, porque inesgotável e não poluidor, e com um recurso abundante e bem distribuído pelo planeta.

Para avaliarmos o potencial da energia fotovoltaica em uma determinada região, ou sistema fotovoltaico, é importante caracterizar a radiação solar que se encontra no local a cada instante. O cálculo da irradiação horária dependeria somente da latitude, do dia e da hora no local se não houvesse a atmosfera.

Um dos principais efeitos da atmosfera é alterar o ângulo de incidência de uma fração dos raios solares. Isso significa que, para um observador na superfície terrestre, a radiação solar divide-se em três componentes principais com características diferentes: a radiação direta (que projeta sombras) que vem diretamente da direção do disco solar; a radiação difusa (que inclui a radiação solar de todas as direções do céu, com a exceção do disco solar); e a radiação refletida (que resulta da reflexão da radiação solar na superfície, dependendo, portanto das propriedades ópticas da superfície), também denominada albedo.

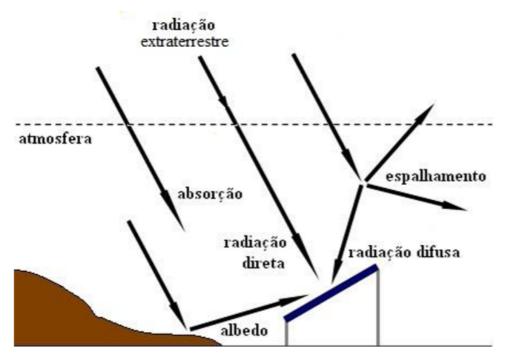


Figura 6 - Componentes da Radiação Solar (Cepel, 2014)

As grandezas relevantes mais simples e menos onerosas de medir são a irradiância global horizontal (GHI – Global Horizontal Irradiation) e as horas-de-sol (definido como o período em que a irradiância é maior que 120 W/m2). Também seria muito custoso realizar essas medidas para cada ponto do mapa, calculando outros parâmetros atmosféricos como a turbulência ou a quantidade de nuvens, por isso é utilizada uma média mensal e anual.

O grande desafio de estimar a irradiância no meio urbano está com a complexidade da topografia, incluindo edifícios, árvores e outros equipamentos urbanos. Esta dificuldade pode ser nulificada no caso dos ministérios e ser relativizada em outros prédios públicos próximos.

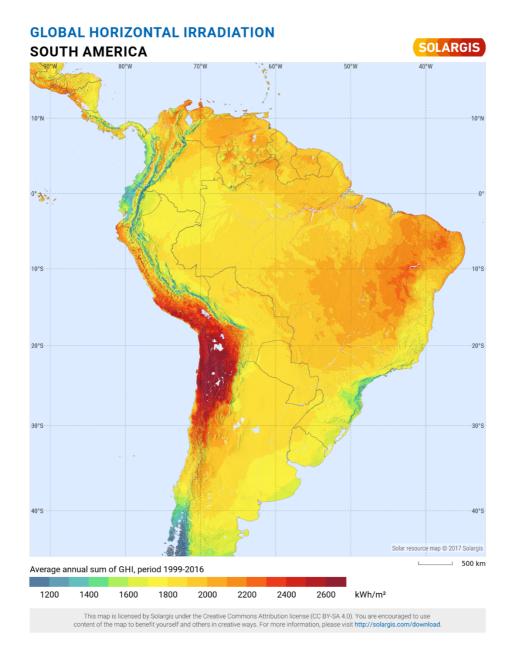

A irradiância solar é denominada irradiância extraterrestre quando calculada nos limites da camada atmosférica. A média da irradiância, quando medida em um plano perpendicular, com a direção de propagação dos raios solares nesse limite, recebe o nome de "constante solar" e tem o valor de 1.367 W/m², como está na figura 7 abaixo (SOLARGIS, 2019).

Figura 7 - Mapa Sul americano de Irradiação Direta Solar Fonte: (SolarGIS, 2019)

Considerando o raio médio da Terra como 6.371 km, e com esse valor de constante solar, tem-se que a potência total disponibilizada pelo Sol nos limites da atmosfera é de aproximadamente 174 mil TW (terawatts), porém a atmosfera reflete ou absorve cerca de 54% dessa energia, Trenberth (2009), chegando realmente na superfície uma aproximação de 94 mil TW (SOLARGIS, 2019).

Com essas reflexões em mente, é utilizado um novo mapa, agora mais completo e composto da soma da radiação direta, da difusa e do albedo. Esse é o mapa realmente considerado para os cálculos da energia fotovoltaica.

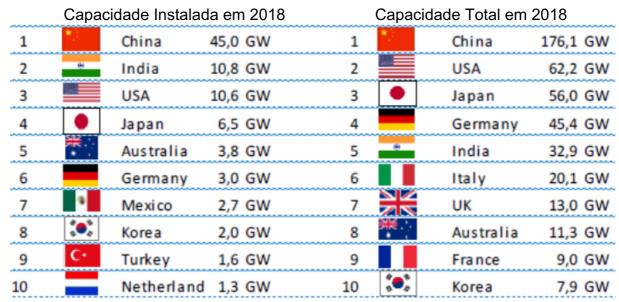


Figura 8 - Mapa Sul americano de Irradiação Global Solar Fonte: (SolarGIS, 2019)

A diferença de irradiação entre os dois mapas é a soma da irradiação difusa e do albedo.

3.9.3 Energia Solar no Mundo

O Brasil ainda não figura como um dos dez mais importantes na energia fotovoltaica, como está mostrado na Tabela 1, mas perde somente por uma posição com seus 1,2 GW instalados no ano de 2018.

Tabela 1 - Capacidade Instalada e total em 2018, FONTE: Snapshot of Global Photovoltaic Markets (IEA, 2019)

Em 2015, a China passou a liderar a capacidade total instalada de energia solar fotovoltaica (FV), com 43,5 GWp, seguida pela Alemanha com 39,7 GWp, como apresentado na Tabela 2 a seguir:

	Capac	idade Instalada	em 2015		Capa	cidade Lotal er	n 2015
1	*3	China	15,2 GW	1	*3	China	43,5 GW
2		Japan	11 GW	2		Germany	39,7 GW
3		USA	7,3 GW	3		Japan	34,4 GW
4		UK	3,5 GW	4	8,000	USA	25,6 GW
5		India	2 GW	5		Italy	18,9 GW
6		Germany	1,5 GW	6		UK	8,8 GW
7	(•)	Korea	1 GW	7		France	6,6 GW
8	樂	Australia	0,9 GW	8	和	Spain	5,4 GW
9		France	0,9 GW	9	**	Australia	5,1 GW
10	+	Canada	0,6 GW	10		India	5 GW

Tabela 2 - Capacidade Instalada e Total em 2015, FONTE : (EIA, 2015)

Com base nas duas tabelas acima, é possível ver a tendência de expansão do aproveitamento de energia solar no mundo, com diminuição da importância dos países europeus, como a Alemanha, e destaque para os países asiáticos, como a China e o Japão, que lideraram a instalação de painéis fotovoltaicos no mundo em 2015.

Não podemos deixar de fazer uma comparação dessa capacidade total com o tamanho de cada país, e nessa comparação o Brasil assume uma posição ainda pior, já que, de acordo com a EPE (Evento Brasil Solar Power), o Brasil tem um potencial teórico de geração distribuída de mais de 164 GW, isso considerando a tecnologia atual. Com nossa potência instalada de aproximadamente 2,5 GW, não estamos orgulhoso, mas sim, esperançosos com o futuro crescimento do setor nos baseando nos últimos 2 anos, como mostrado no gráfico 1.

O gráfico abaixo mostra o crescimento somente da geração distribuída, contudo, esse crescimento acompanha o de projetos maiores.

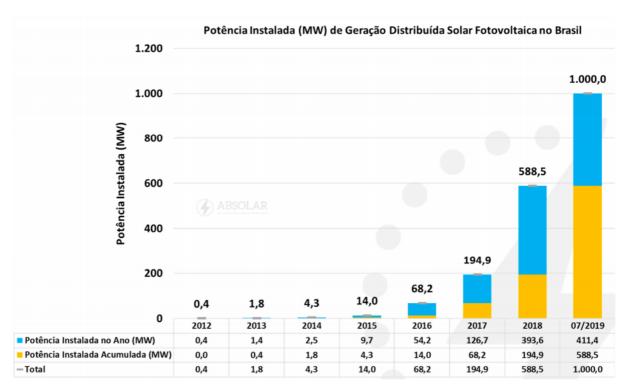


Gráfico 1 - Crescimento de GD no Brasil, Fonte: ABSOLAR, 2019

3.10. Sistema de Geração de Energia Fotovoltaica

É explicado abaixo como a energia solar se transforma em energia elétrica e como essa energia chega nas tomadas de nossa casa.

3.10.1. O Efeito Fotovoltaico

Na geração da energia solar, o efeito fotovoltaico ocorre quando materiais como o arsenieto de gálio e o silício cristalino, dispostos em um painel, passam a gerar eletricidade após serem expostos à radiação do sol. Nesse contexto, o Brasil é um país privilegiado, já que é atravessado pela linha do Equador, apresentando altos níveis de radiação solar incidente.

Figura 9 - Irradiação Parcial Mundial, Fonte: Cresesb, 2019

A energia solar é uma energia alternativa renovável, limpa, barata e conta com uma fonte abundante e inesgotável. O recurso dessa fonte está presente todos os dias. A Terra recebe de energia cerca de 1,5 x 10¹⁸ kWh anualmente em sua superfície, energia mais que suficiente para alimentar a matriz energética de toda a Terra (CRESESB, 2006). Se apenas 0,1% da energia solar pudesse ser convertida com uma eficiência de 10%, ainda assim a energia gerada seria quatro vezes maior que a capacidade mundial total de geração de energia, que é de 3000 GW (Council, 2007). O fato de ser uma fonte geradora 100% limpa, sem haver qualquer tipo de poluição na hora da geração, a energia solar tem ganhado cada vez mais espaço e é cada vez mais investida, visto a grande preocupação do mundo diante do cenário atual de mudanças climáticas (Partners, 2015).

3.10.2 Semicondutores e a Célula Fotovoltaica

Os semicondutores têm a capacidade de absorver luz e entregar uma porção de energia dos fótons para portadores de corrente elétrica, como os elétrons. Um diodo semicondutor separa e coleta os transportadores, conduzindo-os

preferencialmente em uma direção específica. Assim, um diodo semicondutor bem projetado e construído, irá absorver e converter com eficiência a energia luminosa do sol em energia elétrica.

O diodo semicondutor é formado quando um semicondutor do tipo n e um semicondutor do tipo p são reunidos para formar uma junção metalúrgica. Este é tipicamente alcançado através da difusão ou implantação de impurezas específicas (dopantes) ou através de um processo de deposição. O outro contato elétrico do diodo é formado por uma camada metálica na parte de trás da célula solar (Luque, 2003).

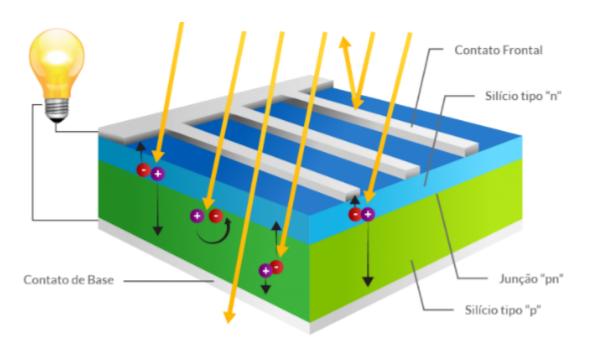


Figura 10 - Módulo Fotovoltaico junção "pn", Fonte: Bluesol, 2019

A célula fotovoltaica é o elemento mais básico em um módulo fotovoltaico, para a conversão da energia solar em eletricidade. A célula é fabricada a partir de materiais semicondutores, normalmente o silício (Si), por apresentar a melhor relação custo benefício. O Si apresenta elétrons fracamente ligados a seus átomos, ocupando um estado energético chamado de banda de valência, que se desprendem ao serem excitados por determinada fração de energia (característica de cada semicondutor) e passam a ocupar a banda de condução. A partir deste processo é possível realizar o transporte de energia elétrica para fora da célula por meio da criação de campos elétricos.

Cada célula fotovoltaica consegue produzir uma tensão muito baixa, da ordem de 0,5 a 0,8V (volts) nas células de silício. Por ter tensões tão baixas, há a necessidade de um agrupamento em série das células, para que o módulo consiga uma tensão média de 12 a 48V, como é praticado no mercado. Além de serem ligadas, são encapsuladas em placas de plástico rígidas ou flexíveis (Etilvinilacetato-EVA), que trazem a proteção mecânica e do tempo.

São montadas em arranjos, em série ou em paralelo, para ajuste da tensão (como foi dito) ou da corrente máxima. A moldura comumente utilizada nos módulos é de alumínio, proporcionando leveza, resistência e durabilidade.

A luz solar incide a partir do topo (parte exporta ao sol), uma grade metálica forma os contatos elétricos do diodo e permite que a luz caia sobre o material semicondutor entre as linhas da grade, assim, sendo absorvida e convertida em energia elétrica. Existe ainda uma camada antireflexiva entre as linhas da grade, que permitem um aumento da passagem de luz.

3.11. Dispositivos do Sistema Fotovoltaico Conectado à Rede

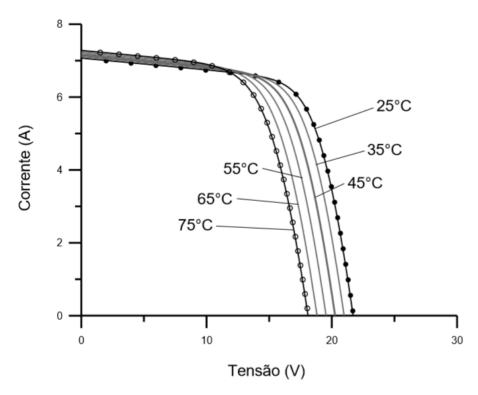
Os principais componentes de um sistema fotovoltaico são um bloco gerador, um bloco de condicionamento de potência e, facultativamente, um bloco de armazenamento. Normalmente, o bloco gerador é constituído por módulos fotovoltaicos, o cabeamento elétrico e a estrutura de suporte dos módulos. O bloco de condicionamento de potência possui o inversor, a caixa de *string* (*string box*) e os controladores de carga (se houver armazenamento). E, por fim, o bloco de armazenamento, que é formado pelas baterias – os acumuladores de carga.

3.11.1. Módulos Fotovoltaicos

O módulo fotovoltaico é composto por várias células fotovoltaicas conectadas em arranjos para produção da tensão desejada. São consideradas também parte do módulo: a estrutura em que as células são montadas e a proteção aplicada para resistir às intempéries do tempo.

Cada célula fotovoltaica consegue produzir uma tensão muito baixa, da ordem de 0,5 a 0,8V (volts) nas células de silício. Por ter tensões tão baixas, há a necessidade de um agrupamento em série das células, para que o módulo consiga uma tensão média de 12 a 48V, como é praticado no mercado. Além de serem

ligadas, são encapsuladas em placas de plástico rígidas ou flexíveis (Etilvinilacetato-EVA), que trazem a proteção mecânica e do tempo.


Figura 11 - Módulos montagem, Fonte: Bluesol, 2019

Os módulos são considerados o componente mais importante de um sistema fotovoltaico, eles são montados em arranjos, em série ou em paralelo, para ajuste da tensão (como foi dito) ou da corrente máxima. A moldura comumente utilizada nos módulos é de alumínio, proporcionando leveza, resistência e durabilidade.

3.11.1.1 Característica elétrica dos módulos

A identificação do módulo é usualmente pela sua potência elétrica pico (Wp). Porém, se deve observar outros fatores para a sua aplicação específica. A definição de potência de pico é feita nas condições padrão de ensaio (do inglês STC, *Standard Test Conditions*), com uma Irradiância solar de 1000 W/m², sob uma distribuição espectral padrão e temperatura de célula de 25 °C.

A incidência de radiação solar e a variação da temperatura ambiente influenciam as características das células que formam o módulo. O gráfico 2 mostra a curva Tensão-Corrente de um módulo fotovoltaico de 36 células, em que a irradiação se manteve constante a 1000 W/m² e foi variando a temperatura.

Gráfico 2 - Efeito causado pela variação da temperatura das células sobre a curva características I-V para um módulo fotovoltaico de 36 células de silício cristalino, Fonte: Cepel, 2014.

É visível a perda de tensão do módulo ao incremento da temperatura, e é possível notar que a corrente também sofre um efeito contrário de melhoria, porém, utilizando a lei de Ohm (V = R x I, a tensão sendo diretamente proporcional à corrente), a corrente não é numericamente compensada pela perda de tensão.

O módulo possui também uma tensão medida entre os terminais positivo e negativo, quando direcionado diretamente ao sol. Quando o módulo está desconectado é possível medir a tensão de circuito aberto (Voc). Se conectarmos os terminais a um amperímetro mede-se sua corrente de curto-circuito (Isc). São dados não muito utilizados, mas muitas vezes informados pelo fabricante.

O módulo pode também ser submetido a condições padrão de ensaio e a uma fonte de tensão variável, realizando uma varredura entre uma tensão um pouco abaixo da tensão terminal, até uma tensão um pouco maior que a tensão de circuito aberto. Desse procedimento são anotados os pares de tensão e corrente para traçar a curva característica *I-V*, uma curva determinante das características elétricas do módulo fotovoltaico.

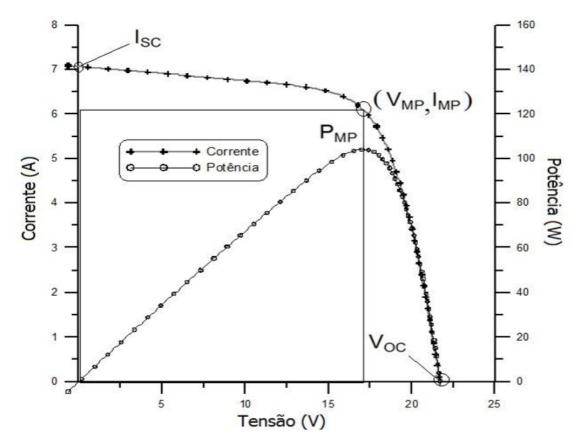


Gráfico 3 - Curva característica I-V e curva P-V para Pn 100Wp, Fonte: Cepel, 2014

O gráfico 3 mostra duas curvas, a curva *I-V*, e a curva *P-V*, essa última apresenta o ponto de valor máximo de potência (Pmp): produto da corrente de máxima potência (Imp) pela tensão de máxima potência (Vmp), que é medida pelo terceiro eixo, disposto no lado direito da imagem. Já a curva I-V representa a potência gerada nas condições de operação.

3.11.1.2 Conexões dos módulos (série-paralelo)

Assim como na eletricidade em geral, existem dois tipos de conexões possíveis para os módulos fotovoltaicos: em série ou em paralelo.

A conexão em série é realizada unindo o terminal positivo de um módulo ao terminal negativo de outro, e assim até o final. De maneira análoga à eletricidade, quando os módulos são ligados em série, as tensões desses módulos são somadas e a corrente não é afetada. Ou seja, a corrente que flui por cada módulo é sempre igual, desde que considerados módulos idênticos e sob as mesmas condições de radiação e temperatura. Se houver um módulo gerando menor corrente, seja por

características elétricas ou sombreamento parcial, o conjunto conectado será limitado pelo módulo de menor corrente individual.

A conexão em paralelo é realizada unindo os terminais positivos com os positivos e terminais negativos com os negativos. Esse tipo de conexão soma as correntes dos módulos, porém, mantém a mesma tensão.

3.11.1.3 Efeitos de sombreamento

As células fotovoltaicas geram uma tensão muito baixa. Para elevá-la, as células são associadas em série aos módulos fotovoltaicos. O problema de associá-los dessa maneira ocorre quando alguma dessas células é submetida a um sombreamento, isso gera uma queda de corrente nessa célula e provoca uma diminuição de produtividade em todas que estiverem ligadas a ela em série. Esse efeito redutor ocasiona redução na produtividade do módulo como um todo, que, por um efeito cascata, reduz a produtividade de todos os outros módulos ligados em série com o sombreado, diminuindo, assim, a produtividade de todo o sistema.

Outro problema que pode ocorrer é o *hotspot*, ou ponto quente, ele ocorre quando a potência elétrica gerada não entregue ao consumo é dissipada pelo próprio módulo por pequenas quantidades de células, sobrecarregando-as e gerando um superaquecimento. O ponto quente gera riscos de ruptura do vidro e fusão dos polímeros e metais, ocasionando danos permanentes ao módulo parcialmente sombreado.

3.11.2. Inversor on-grid

Inversores são dispositivos eletrônicos de potência usados em diferentes configurações de sistemas fotovoltaicos, sistemas conectados à rede de distribuição, sistemas com baterias, ou até mesmo sistemas de bombeamento isolados.

O inversor é o segundo componente mais importante do sistema fotovoltaico, a sua função é transformar a energia CC módulos (energia de corrente contínua) gerada pelos módulos e transformá-la em CA (corrente alternada) de 60Hz em conformidade com a rede. Toda a energia dos geradores solares passa pelo inversor, tornando imprescindível a sua alta eficiência nessa conversão para que o sistema como um todo tenha um bom aproveitamento.

Internamente, o funcionamento de um inversor é controlado eletronicamente, ele funciona com uma ponte de transistores, MOSFETs (transistores de efeito de campo), IGBTs (transistor bipolar de porta isolada) ou IGCT (transistor integrado controlado), que chaveiam a tensão contínua de forma que ela fique alternada, ligando e desligando o circuito várias vezes por segundo (60 vezes no caso do Brasil). O nivelamento da tensão é feito por um PWM (Modulação de Largura de Pulso), ele altera a tensão de uma onda sem alterar sua frequência.

Além de converter eficientemente, os inversores mais modernos possuem componentes e funções responsáveis pelo funcionamento diário do sistema, além de funções específicas de cada fabricante, a mais comum é o monitoramento remoto via internet.

3.11.3. Dispositivos de Proteção para Sistema Fotovoltaico

Segundo a Norma Brasileira 5410, uma instalação elétrica necessita de condições mínimas para o perfeito funcionamento garantindo a segurança de pessoas e animais e a preservação dos bens (ABNT, 2008). Sendo assim, é imprescindível em uma instalação elétrica a existência de um quadro elétrico. Esse quadro, quando aplicado ao sistema fotovoltaico, recebe o nome de *string box*.

A função da *string box* é fornecer as conexões de forma segura tanto no lado CC quanto no lado CA, para isso, ela conta com dispositivos que são: o DPS (proteção contra surtos elétricos), o disjuntor (chave seccionadora de corte dos painéis fotovoltaicos), os fusíveis, e a caixa (que chamamos de *string box*) com grau mínimo de proteção IP55 (proteção contra poeira e jatos de água). (PHB, 2015)

Não é necessário que existam todos os elementos na *string box*, mas sim no sistema, já que, alguns inversores já possuem as proteções de corrente contínua embutidas para facilitar a instalação.

A figura 12 exemplifica uma *string box* com entrada e saída tanto de corrente contínua quanto de alternada. No lado esquerdo da figura (CC), existem os fusíveis, os protetores de surto (DPS), a chave seccionadora, e a conexão terra. Do lado direito (CA), os DPS, disjuntores, e a conexão terra. Neste caso a caixa tem proteção IP65.

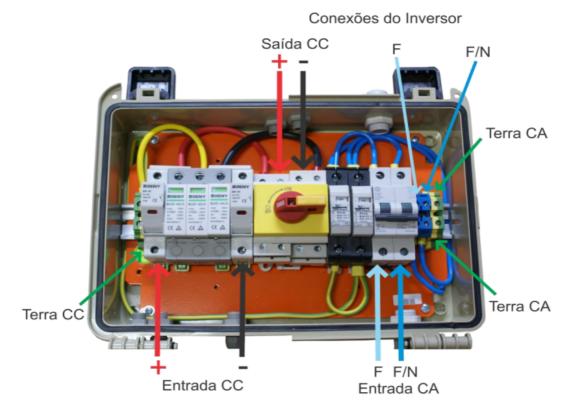


Figura 12 - String Box CC+CA 1000V, FONTE: PHB, 2019

A figura 13 já mostra o diagrama unifilar da *string box* da figura 13, nela é possível analisar de forma rápida e com mais detalhes (valores) as conexões do sistema.

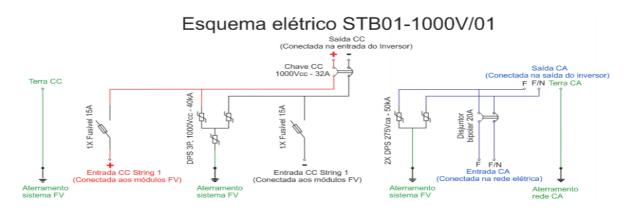


Figura 13 - Diagrama unifilar de string box CC+CA, Fonte: PHB 2019

4. ESTUDO DE CASO

O projeto de Solarização não utilizou nenhum recurso do Orçamento do Governo Federal. Foi assinado em dezembro de 2015, via acordo do Proinfa (recémcriado na data), um termo de cooperação técnica entre o MME e a ABSOLAR (Associação Brasileira de Energia Solar Fotovoltaica), os equipamentos e

instalações foram realizadas a partir de doações viabilizadas pela Absolar e o projeto feito pela BlueSol.

A seguir estão listados alguns dados do projeto instalado:

- Número de Módulos Instalados: 192 unidades;
- Potência unitária dos módulos: 250Wp, 260 Wp, 265 Wp;
- Potência total do sistema: 49,91 kWp
- Número de String's: 12;
- Módulos por String: 14, 15, 19;
- Estimativa de Geração Anual: 69,7 MWh/ano;
- Estimativa de Geração Mensal: 5,8 MWh/mês;
- Taxa de Desempenho: 74,2 %.

4.1. Localização

O projeto foi instalado no Ministério de Minas e Energia (MME).

- Coordenadas Geográficas (Latitude / Longitude): -15.7971, -47.8687
- Altitude: 1.172 m
- Esplanada dos Ministérios, Bloco U, Brasília DF, CEP: 70065 900.

4.1.1. Local de Instalação dos módulos fotovoltaicos

A instalação dos módulos foi realizada sobre a laje plana de concreto do Ministério de Minas e Energia, como nas figuras 14 e 15. Possuem um ângulo com o solo de 20 graus e um espaçamento de fileiras de aproximadamente 60cm.

Figura 14 - Foto cobertura do MME 1, Fonte: própria

Figura 15 - Foto cobertura do MME 2, Fonte: própria

Toda a laje é impermeabilizada, o que impediu a furação para colocação das estruturas, por isso foram balastradas na cobertura. A mesma possui uma platibanda (espécie de mureta) com altura de 1,85m.

Além de encanamento hidráulico existem antenas, alças de fixação para fixação de andaimes de manutenção do prédio e abrigos de alvenaria que diminuíram a área útil aproveitada na instalação dos módulos fotovoltaicos.

O prédio tem 101,5m de comprimento e largura de 17,1m, então uma área de 1735,65m² (1733,75m² pelo Google Earth). Por conta de 5 coberturas de alvenaria, a área é diminuída por, 46,51m²; 47,42m²; 46,91m²; 46,73m²; 154,37m²; somando 341,94m². Existe uma área ao redor da beirada do prédio onde não se pode construir por ser um espaço reservado para instalação de andaimes de manutenção, com a existência de sapatas de suporte que necessitam de espaço livre. Por isso um espaço de 1,55m é necessário. Multiplicando esse recuo pelo perímetro:

$$(1,55 * 102,13 + 2 * 1,55 * 3,87 = 158,30 + 12 = 170,3m^2).$$

Sobrando um total de 1223,41m², sendo que foi necessário delimitar uma área de circulação e algumas áreas que não recebem sol, as entre as coberturas de alvenaria e a platibanda. A área de circulação central é prejudicada pela existência de canos aparentes que dificultam, mas não impossibilitam a passagem como estão ilustradas nas figuras 15 e 16.

4.1.2. Local de Instalação dos Inversores

Os inversores foram instalados em um dos abrigos de alveria existentes no prédio, o qual já possui um sistema OFF-GRID para funcionamento de alguns holofotes LED que iluminam o redor do prédio durante a noite.

4.1.3. Disposição dos Módulos

A figura 16 abaixo mostra a disposição dos módulos na cobertura do prédio do Ministério de Minas e Energia.

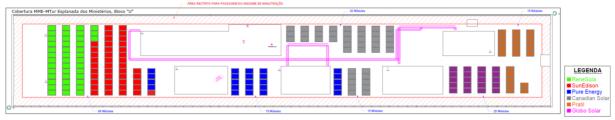


Figura 16 - Disposição dos módulos fotovoltaicos, Fonte: criação própria.

4.2. Os Equipamentos

Serão descritos os módulos e os inversores instalados no projeto original do MME.

4.2.1 Os módulos Instalados

A partir dos espaços permitidos e viáveis de instalação dos módulos, se dimensionou um total de 192 módulos fotovoltaicos com potências que variam entre 250 Wp e 265 Wp dependendo do fabricante. A potência total do sistema é de 49,9 kWp. Os módulos variam pelas características do projeto e das doações realizadas.

O quadro 3 abaixo lista as quantidades de módulos doados, suas potências, modelo e os fabricantes.

	MÓDULO										
Quantidade	Potência unitária	Potência Total [kWp]	Fabricante	Modelo							
38	260	9,88	ReneSola	Virtus II							
20	250	5	Pure Energy	260P							
38	265	10,07	SunEdison	SE-P265NPB-A4							
38	260	9,88	Canadian Solar	CS6P-260P							
20	260	5,2	Pratil	260W							
38	260	9,88	Globo	GBR260P							
	TOTAL	49,91									

Quadro 3 - Listagem dos módulos fotovoltaicos, Fonte: criação própria

4.2.2. Os Inversores Instalados

Da mesma forma que foram conseguidos os módulos, se conseguiu os inversores.

O quadro 4 abaixo lista os inversores instalados.

INVERSOR							
Quantidade Potência Fabricante							
1	15kW	Solar Energy					
1	15kW	Solar Energy					
1	20kW	WEG					

Quadro 4 - Listagem dos inversores, Fonte: criação própria

Esses três inversores se dividem para fazer a ligação dos 192 módulos à rede elétrica do MME.

4.2.3. Conexões

O sistema fotovoltaico é composto por 12 string's, que estão conectadas a 3 inversores, com 2 blocos de potência cada. Cada inversor recebe 4 *string's*, mesmo

possuindo potência diferentes, foram feitos ajustes nas quantidades de módulos para que a soma desse 15 kWp para os inversores da Solar Energy e 20 kWp para o da WEG, aproximadamente.

4.3. Programa Helioscope

O Helioscope é um software que funciona online diretamente do navegador de sua escolha e foi utilizado para realizar os projetos utilizados nesse trabalho. O software possui uma base de dados dos módulos fotovoltaicos e inversores mais comercializados, mas é possível a inclusão de produtos novos e alterações em suas especificações.

O recurso do Google Maps foi utilizado juntamente com idas ao local, para reconhecer as limitações do telhado. No programa foram adicionados todos os limitadores existentes e assim, foi criado um projeto mais exequível possível, já que o programa, recebendo os valores de inclinação, altura dos obstáculos e posicionamento dos módulos, calcula tanto as perdas referentes ao sombreamento de módulo com módulo, como de obstáculos.

É possível realizar um projeto básico de cabeamento, que, no meu caso, é facilitado pelo uso de cabeamento externo. Foi realizado um projeto esteticamente agradável e bem exemplificado, com imagens aéreas e em 3D dos módulos, tornando fácil a visualização superficial do trabalho realizado.

4.4. Análise do Potencial Solar

Todos os cálculos foram feitos utilizando dados oficiais fornecidos pelo SWERA (*Solar and Wind Energy Resource Assesment*), CRESESB (Centro de Referência para Energia Solar e Eólica) da Cepel (Eletrobrás) e INPE (Instituto Nacional de Pesquisas Espaciais).

Para conseguir valores relativamente precisos de uma forma fácil e rápida, foi utilizado o site da Cepel, no qual foram inseridos os valores de longitude e latitude do local a ser analisado e nos foram fornecidos os valores de radiação solar para o ano inserido em um plano horizontal, junto, também são mostrados valores com algumas variações de inclinações e algumas médias de anos anteriores. Onde foram utilizados os dados de plano horizontal do site.

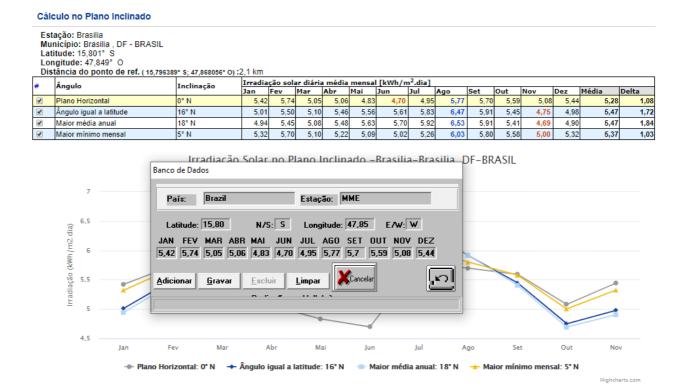


Figura 17 - Utilização do site CRESESB, Fonte: criação própria

Estação: Brasilia

Município: Brasilia , DF - BRASIL Latitude: 15,801° S Longitude: 47,949° O

Distância do ponto de ref. (15,796389° s; 47,868056° O):8,7 km

Com os próprios valores fornecidos no site da Cepel, é possível ver valores melhores de radiação para planos com inclinações, mas para isso foi utilizado o programa RADIASOL, que calcula o total de radiação nos módulos já na inclinação desejada e considerando seu desvio azimutal.

Para o cálculo do azimutal, foi utilizado o aplicativo Google Earth Pro que quando desenhado uma reta no mapa, ela já dispõe de uma bússola embutida que mostra a angulação da mesma. Assim, desenhando uma reta perpendicular à direção desejada para os módulos, se consegue uma aproximação do azimutal a ser utilizado.

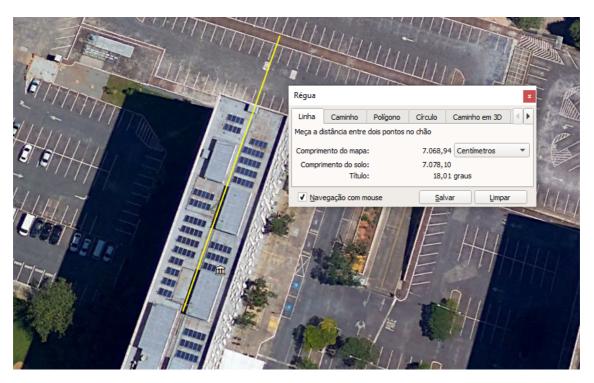


Figura 18 – Cálculo do azimutal, FONTE: Google Earth

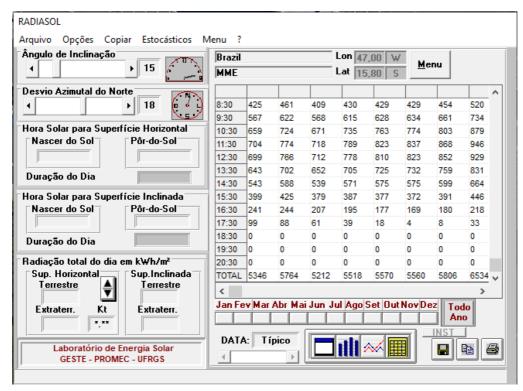


Figura 19 - Utilização do RADIASOL, Fonte: RADIASOL

O RADIASOL, figura 19, exibe na parte de baixo da imagem, na aba "TOTAL", o potencial solar diário da região escolhida e nas especificações indicadas, sendo esses valores os utilizados no estudo de caso.

4.5. Análise da Fatura de Energia Elétrica do prédio do Estudo de Caso

Foram disponibilizadas pela equipe do MME as contas perante a CEB (Companhia Elétrica de Brasília), de janeiro de 2015 até agosto de 2018. Das contas fornecidas houve a extração dos dados de consumo, gastos e valores. Os dados da fatura da CEB são distribuídos em valores de Ponta (P) e Fora de Ponta (FP), além de possuir dois medidores, o Medidor 1 para a iluminação, computadores e tomadas, tudo que não seja os ar condicionados, o Medidor 2 é exclusivo para os ar condicionados. O quadro 5 possui os valores de consumo (kWh) por mês do período de janeiro de 2015 até agosto de 2018, qual foi utilizado para as simulações, somente o período de janeiro a dezembro de 2017.

Mês (KWh)		2	2015		2016				
	MEDIDOR 01		MEDI	DOR 02	MEDI	DOR 01	MEDIDOR 02		
	Ponta(P)	Fora de Ponta(FP)	Ponta(P)	Fora de Ponta(FP)	Ponta(P)	Fora de Ponta(FP)	Ponta(P)	Fora de Ponta(FP)	
Janeiro	3.765	64.190	12.102	138.972	3.386	69.734	11.314	138.403	
Fevereiro	5.417	88.382	12.475	156.289	3.195	60.115	11.194	139.690	
Março	3.998	56.020	12.507	133.917	6.360	86.220	12.807	135.289	
Abril	4.524	60.194	15.363	147.198	7.228	85.093	14.031	143.003	
Maio	4.333	59.152	13.749	140.092	5.353	66.230	13.246	137.234	
Junho	4.326	59.801	14.838	146.469	5.162	61.165	14.848	144.708	
Julho	1.619	30.843	15.324	148.381	2.255	27.640	13.337	135.018	
Agosto	1.735	32.787	14.634	150.245	3.338	41.229	14.197	138.206	
Setembro	2.790	55.728	16.067	155.025	4.618	59.778	14.334	142.259	
Outubro	8.344	95.700	15.461	150.721	5.842	73.352	13.091	132.676	
Novembro	5.594	88.321	12.524	147.437	4.658	82.863	12.165	140.855	
Dezembro	4.869	94.846	13.114	154.557	3.118	62.138	11.293	133.026	
TOTAL	51.314,00	785.964,00	168.158,00	1.769.303,00	54.513,00	775.557,00	155.857,00	1.660.367,00	
Mês (KWh)		2	2017		2018				
	MEDI	DOR 01	MEDI	DOR 02	MEDI	DOR 01	MEDIDOR 02		
	Ponta(P)	Fora de Ponta(FP)	Ponta(P)	Fora de Ponta(FP)	Ponta(P)	Fora de Ponta(FP)	Ponta(P)	Fora de Ponta(FP)	
Janeiro	3.696	73.583	10.718	128.557	2.355	54.874	9.952	123.735	
Fevereiro	4.078	78.735	11.819	137.355	2.653	71.803	11.200	130.289	
Março	4.478	59.163	10.902	112.442	4.557	61.410	10.987	110.913	
Abril	5.879	73.949	13.105	122.848	4.816	67.635	12.423	125.605	
Maio	5.080	62.212	11.757	120.834	3.641	47.130	13.113	123.156	
Junho	4.438	58.164	14.355	131.915	2.687	37.811	12.746	125.369	
Julho	1.526	20.586	11.582	118.761	2.205	31.384	12.423	117.119	
Agosto	1.531	18.958	14.021	127.178	2.902	38.042	14.073	127.779	
Setembro	3.590	49.413	13.003	127.204					
Outubro	4.070	53.635	13.012	121.771					
Novembro	4.340	87.248	11.072	129.796					
Dezembro	2.548	59.097	10.022	123.844					
				1.502.505,00				983.965,00	

Quadro 5 - Valores de medição da CEB do MME, Fonte: criação própria, dados MME

O quadro 6 indica os gastos em reais durante esses 4 anos.

MÊS (R\$)		2015		2016		2017		2018
Janeiro	R\$	98.202,06	R\$	150.756,89	R\$	136.426,96	R\$	127.521,15
Fevereiro	R\$	124.098,56	R\$	143.941,56	R\$	145.945,22	R\$	137.999,50
Março	R\$	109.587,06	R\$	159.064,38	R\$	125.192,48	R\$	129.794,26
Abril	R\$	138.547,87	R\$	162.414,74	R\$	146.459,99	R\$	140.692,21
Maio	R\$	127.933,94	R\$	141.779,07	R\$	134.043,48	R\$	131.727,77
Junho	R\$	135.087,25	R\$	141.243,13	R\$	144.306,55	R\$	129.942,47
Julho	R\$	122.380,98	R\$	113.904,06	R\$	108.769,30	R\$	136.045,84
Agosto	R\$	117.397,22	R\$	119.318,17	R\$	122.995,47	R\$	150.427,81
Setembro	R\$	146.712,00	R\$	137.159,13	R\$	139.051,77	R\$	-
Outubro	R\$	185.437,33	R\$	141.850,91	R\$	141.383,00	R\$	-
Novembro	R\$	174.367,95	R\$	152.389,15	R\$	171.107,66	R\$	-
Dezembro	R\$	180.551,97	R\$	134.961,71	R\$	99.488,28	R\$	-
TOTAL	R\$:	1.660.304,19	R\$:	1.698.782,90	R\$:	1.615.170,16	R\$ 1	1.084.151,01

Quadro 6 - Gastos em reais do MME, Fonte: Tabela do Autor, Dados MME

4.6. Escolha dos Painéis Solares

Como foi visto, os painéis solares utilizados no projeto instalado no prédio do MME são de fornecedores e marcas variados, modelos que até já saíram de linha não existindo mais no mercado para compra, dificultando uma análise financeira do produto. Assim, uma apuração foi realizada dos produtos comercializados pelos maiores sites de venda avulsa de painéis fotovoltaicos e no quadro abaixo estão listados.

Marca	Modelo	Potência(W)	Eficiência (%)	Preço	Área(m²	Fornecedo
)	r
Canadian	CS6K-275P	275	16,8%	R\$	1,64	Minha
Solar				599,00		Casa Solar
Canadian	CS6U-	325	16,72%	R\$	1,94	Minha
Solar	325P			689,00		Casa Solar
Canadian	CSU-360P	360	18,15%	R\$	1,98	Minha
Solar				819,00		Casa Solar
Canadian	CS3W-	395	17,88%	R\$	2,21	Minha
Solar	395P			919,00		Casa Solar
BYD Solar	BYD-270P	270	16,5%	R\$	1,63	Minha
				499,00		Casa Solar
BYD Solar	BYD-	335	17,0%	R\$	1,98	Portal
	335PHK			799,00		Solar
BYD Solar	BYD-	330	17,0%	R\$	1,94	Portal
	330P6K36			819,00		Solar
Globo	GBR-260P	260	16%	R\$	1,62	Minha
Brasil				799,00		Casa Solar
Sinosola	SA275-	275	16,9%	R\$	1,63	Neosolar
	60P			579,00		

Q Cells	Q.Power	330	16,9%	R\$	1,94	Portal
Aldo Solar	L-G5			739,00		Solar
Q Cells	Q.Peak	365	18,8%	R\$	1,94	Portal
Aldo Solar				899,00		Solar

Quadro 7 - Comparação dos módulos fotovoltaicos, Fonte: criação própria, Dados: minha casa solar

Dos produtos a serem analisados foram retirados os valores de Potência (W), Eficiência (%), valores fornecidos pelo INMETRO (Instituto Nacional de Metrologia, Qualidade e Tecnologia), Preço e sua Área total. A análise feita dos produtos comercializados foi dividida em três, uma análise simples, uma mais prática e outra mais completa.

A Análise simples foi realizada pela razão entre o preço do produto e sua potência, tornando o menor valor como o melhor avaliado.

Na Análise prática, se levou em conta o tamanho de cada painel, considerando que as coberturas dos prédios dos Ministérios possuem um espaço limitado. Para esse cálculo se multiplicou a análise anterior pela área individual de cada unidade.

A análise mais completa acabou se tornando a ferramenta de escolha do painel a ser utilizado como modelo, ela utilizou as análises anteriores como base, porém, se multiplicou a potência pela eficiência, para um valor mais real e preciso já descrito na tabela 3.

Tabela 3 - Tabela de análise dos módulos fotovoltaicos. Fonte: criação própria

labela 3 - Tabel	a de analise dos mod	iulos lotovoltaicos, i on	ie. Gração propria
Modelo	Simples	Prática	Completa
CS6K-275P	2,18	3,57	21,22
CS6U-325P	2,12	4,12	24,65
CSU-360P	2,28	4,51	24,87
CS3W-395P	2,33	5,14	28,75
BYD-270P	1,85	3,02	18,28
BYD-335PHK	2,39	4,72	27,78
BYD-330P6K36	2,48	4,81	28,32
GBR-260P	3,07	4,99	31,18
SA275-60P	2,11	3,43	20,27
Q.Power L-G5	2,24	4,34	25,71
Q.Peak	2,46	4,78	25,42

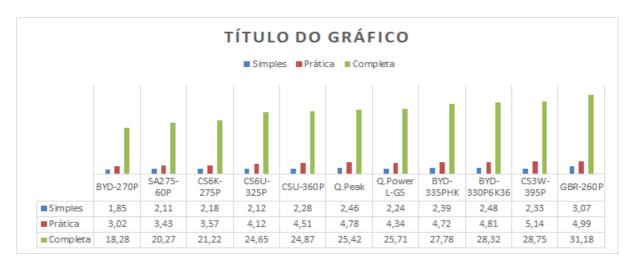


Figura 20 - Gráfico da tabela 3, Fonte: criação própria

Os dados da tabela 3 foram organizados, na figura 20 acima, para melhor visualização. Em todos os casos, a análise foi realizada para que, quanto menor o valor, melhor a sua avaliação, tornando possível escolher mais facilmente o painel com o melhor retorno financeiro.

Desta forma, a placa escolhida é a BYD-270P, ela ganhou nas três análises, ficando em primeiro lugar. A sua disponibilidade no mercado também é boa e ela possui o menor preço entre as concorrentes, custando R\$ 499,00 a unidade do painel na loja virtual Minha Casa Solar.

	Células solares de silíci	Células solares de silício policristalino				
Célula	156.75 mm * 156,75 mr	m / 6,17 inch				
Número de células	60 (6 *10) Peças					
Dimensão de módulos	1645 mm * 992 mm * 35	5 mm				
Dimensão de modulos	/ 62.31 inch * 39.06 inch	1 *1.38 inch				
Peso	18.7 kg / 41.14 lbs					
Vidro frontal	Vidro de 3,2 mm tempe	rado com revestimento de AR				
Estrutura	Liga de alumínio anodiz	ado				
Caixa de junção	IP67					
Conector	IP67					
Diodos bypass	3 peças					
Tipo de conector	Mc4 ou MC4-compative	el				
Área de seção do cabo	4 mm² / 0.0062 Sq in					
Comprimento do cabo	2 * 1000 mm / 2 * 39.4 i	nch				
Coeficientes de	temperatura					
Temperatura nominal de funcio	namento da célula (NOCT)	45℃± 2℃				
Coeficiente de temperatura de	corrente de curto-circuito	0.07%/ ℃				
Coeficiente de temperatura de	voltagem de circuito aberto	-0.31%/℃				
Coeficiente de temperatura de	notência de nico	-0.39%/°C				

Figura 21 - Especificações técnicas do módulo escolhido, Fonte: BYD

Tabela 4 - Especificações técnicas da família e do módulo escolhido, Fonte: BYD

Módulo	BYD	BYD	BYD	BYD	BYD	BYD
Item	255P6C-30	250P6C-30	265P6C-30	270P6C-30	275P6C-30	280P6C-30
Voltagem de circuito aberto (Voc)	38.07 ∨	38.38V	38.69 V	39.00 V	39.31 V	39.62 V
Voltagem máxima de operação (Vmp)	30.40 V	30.67 V	30.92 V	31.18V	31.43V	31.68V
Corrente de curto-circuito (Isc)	8.89 A	8.97A	9.05 A	9.13 A	9.21 A	9.29 A
Corrente máxima de operação (Imp)	8.39 A	8.48 A	8.57 A	8.66 A	8.75 A	8.84 A
Potência máxima em STC (Pmax)	255 Wp	260 Wp	265 Wp	270 Wp	275 Wp	280 Wp
Eficiência do módulo	15.6 %	15.9 %	16.2 %	16.5%	16.9 %	17.2 %
Temperatura de funcionamento			-40℃~85℃			
Corrente nominal máxima do fusível			15A			
Voltagem máxima do sistema			1000 VDC			
Tolerância da potência			0~5W			
Classes de aplicação			Class A			
STC: IRRADIÂNCIA 1000W/m², Temperatura do módulo 25 , AM=1.5 Ave. re	dução de eficiência de 4.5% por	200W/m²				
NOCT						
Módulo	BYD	BYD	BYD	BYD	BYD	BYD
Item	255P6C-30	260P6C-30	265P6C-30	270P6C-30	260P6C-30	260P6C-30
Voltagem de circuito Aberto (Voc)	35.1 V	35.4 V	35.7 V	36.0 V	36.3V	36.6V
Voltagem máxima de funcionamento (Vmp)	28.0 V	28.3 V	28.6 V	28.8 V	28.1V	29.1 V
Corrente de curto-circuito (Isc)	7.21 A	7.28 A	7.34 A	7.40 A	7.47 A	7.53 A
Corrente máxima de funcionamento (Imp)	6.73 A	6.80 A	6.87 A	6.94 A	7.00 A	7.02 A
Potência máxima em NOCT (Pmax)	188.8 Wp	192.6 Wp	196.3 Wp	200.1 Wp	203.8 Wp	204.4 Wp

Na figura 21 e na tabela 4 acima, estão dispostas as especificações do painel fotovoltaico escolhido obtidas no site do fabricante. Além das informações de construção do produto, a tabela 4 possui também os valores de tensão de circuito aberto, corrente de curto circuito, eficiência, tensão de pico, corrente de pico, tolerância, entre outras. Além de poder inferir pelos valores de pico a máxima potência gerada em condições ideais de funcionamento.

4.7. Escolha dos Inversores

O dimensionamento do inversor se orientou, primeiramente, de acordo com o dimensionamento dos painéis solares. Após quantificado o número exato (192 placas solares), a marca e o modelo dos painéis solares, foi possível identificar qual melhor inversor para atender a necessidade do estudo de caso. Foi calculado então qual a potência pico gerada pelo sistema fotovoltaico. Para esse cálculo, é necessária a potência pico que apenas um painel tem o potencial de produzir de acordo com as considerações de fábrica, e a quantidade de painéis que serão utilizados nesse projeto. Conforme abaixo:

$$Pt [Wp] = n \times P [Wp]$$

Onde:

Pt [Wp] - Potência pico total do sistema

n – Número de placas solares fotovoltaicas

P [Wp] – Potência pico por placa

 $Pt [Wp] = 192 \times 270$

Pt = 51.840 [Wp]

Com a potência de aproximadamente 51 kWp para o inversor, a disposição dispersa dos módulos, e a disponibilidade de produtos nos sites pesquisados, o modelo escolhido é o Inversor Solar SMA ALDO Solar STP50-40 SUNNY 50kW.

Figura 22 - Inversor Sunny 50kW, Fonte: minha casa solar

Não foi realizada comparação mais aprofundada e com várias opções, porque essa marca é conhecida e muito utilizada no mercado, como visto no curso realizado pela Elektsolar, e é uma opção já viável para o projeto e possibilidade de expansão.

Foi considerada outra marca como a Fronius, outra muito utilizada e conceituada, porém os fornecedores perguntados não possuíam o produto com potência acima de 30kW, o que aumentava o seu valor final, sendo que o de 27kw da Fronius custa R\$ 22 mil e com a necessidade do uso de 2, o seu valor final vai para R\$ 44 mil, frente aos R\$ 37 mil do inversor escolhido.

4.8. Instalação do Sistema Fotovoltaico

Para o estudo caso de 192 módulos fotovoltaicos e 1 inversor já escolhido, realizei uma pesquisa por telefone junto a duas empresas de Brasília que foram fundadas por ex-alunos da FGA, a Campos Solares e a CGR energia. Os valores recebidos variaram de R\$ 44 mil a R\$ 55 mil como um pré-orçamento.

4.8.1. Estrutura

A estrutura metálica utilizada para a fixação dos módulos sobre a cobertura será do modelo "Triangular", com inclinação de 20° e sistema de fixação sobre blocos de concreto sobre a cobertura para não interferir na impermeabilização do prédio.

Figura 23 - Exemplo da fixação a ser utilizada, Fonte: eletricista consciente

4.8.2. Arranjo dos painéis

O inversor instalado possui 6 MPPT (seguidor do ponto de máxima potência), isso influencia na disposição dos módulos no projeto, foi possível dividir o telhado em 6 "áreas", essas áreas são divididas pelo local de instalação, pelo sombreamento do local e pela potência máxima por MPPT.

Para essa organização de conjunto fotovoltaico é preciso entender o conceito de *string*. Uma *string* é uma quantidade de painéis fotovoltaicos conectados em série, ou seja, uma *string* é uma fileira de painéis fotovoltaicos. Conhecer o conceito é fundamental para esse dimensionamento, já que, a partir da quantidade de módulos em uma string, sabe-se a tensão aplicada aos terminais de entrada do MPPT do inversor. Já na ligação de painéis em paralelo, as correntes da *string* são somadas, e essa conexão faz com que aumente a potência do conjunto.

Uma ressalva para a visualização de uma *string*, apesar de pela definição ela ser uma fileira de módulos, essa "fileira" vem da conexão em série do cabo passado, então é possível que, em telhado de configuração variado, exista apenas uma *string*, assim como, diversas *strings* em um telhado linear. Para esse trabalho foi projetado um arranjo de 6 *strings* com cada uma possuindo 24 painéis conectados em série.

4.8.3. Cabeamento

Para o cálculo do cabeamento foi realizado de início um resumo do sistema com o desenvolvimento do unifilar do projeto, Figura 24. Nesta figura percebe-se bem a disposição do inversor com 6 MPPT's, e dele, no lado direito, uma saída para o prédio, e no lado esquerdo, as entradas dos módulos.

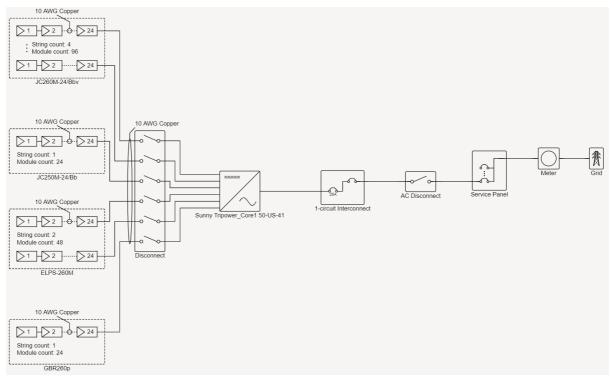


Figura 24 - Desenho unifilar do sistema projetado FONTE: Helioscope

Utilizando o Google Earth Pro, realizei uma medição básica do cabeamento necessário para a realização do projeto, como pode-se ver na figura 26 abaixo, as linhas utilizadas foram simples e com um comprimento total de 350m utilizando a própria ferramenta do programa.

Figura 25 - Cabeamento do MME FONTE: Google Earth

O próximo passo é o cálculo da bitola do cabo tanto para o lado CC e para o lado CA do sistema.

No lado CA, utilizaremos o método de limite por corrente, com 50 kW de pico e 230V de tensão, a corrente máxima do sistema será de 217 amperes, com isso, pela norma ABNT NBR5410, a seção nominal necessária no condutor é de 120mm².

No lado CC, a norma NBR 16612 indica o padrão de cabo, suas restrições e proteções necessárias, como a sua classificação, proteção UV, de temperatura, entre outras. Utilizando o manual do usuário do inversor, verifiquei que a corrente máxima admitida por MPPT é de 30A, com isso, a seção nominal do cabeamento CC do projeto será de 6mm².

Ao final, os conectores para o sistema fotovoltaico são diferenciados e possuem uma resistência IP67 para aguentar as intempéries do ambiente.

Figura 26 - Conectores MC4 para ligação de módulos fotovoltaicos

4.8.4. Medidor Bidirecional

Para finalizar a instalação do sistema fotovoltaico e aproveitar suas vantagens, é necessário conectá-lo ao prédio e, consequentemente, à rede de distribuição, para isso é necessária a troca do medidor do prédio: do convencional (relógio) para um atualizado.

No caso da instalação de um sistema fotovoltaico, é necessária a instalação de um medidor bidirecional, que conseguirá medir de forma precisa o fluxo de energia elétrica. Para sua instalação, o usuário deve solicitar diretamente à distribuidora de sua região. No caso de Brasília, compete à CEB essa mudança. A Resolução RN482 de 2012 estabelece que essa troca é gratuita para o consumidor.

4.9. Dimensionamento do Sistema Fotovoltaico

O projeto para a Esplanada dos Ministérios a ser analisado foi realizado utilizando-se das técnicas aprendidas em um curso ministrado pela empresa Elektsolar, que faz parte da ABSolar.

Utilizando o Google Earth pro, é possível utilizar a mesma ferramenta e calcular áreas no mapa, com isso calculamos tanto a área total, quanto as áreas das limitações, ou seja, as áreas onde não serão colocados módulos fotovoltaicos.

A linha em amarelo indica a área total que está sendo medida e as linhas em vermelho, delimitam as áreas que serão posteriormente subtraídas para os cálculos.

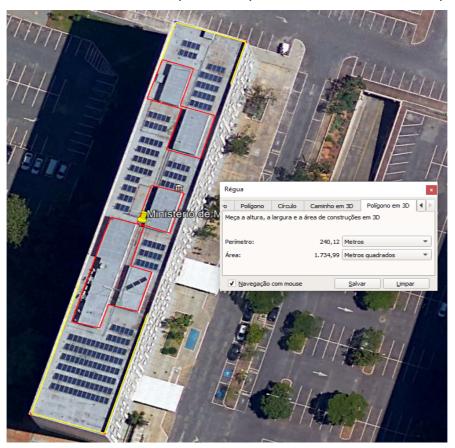


Figura 27 - Cálculo da área do telhado, Fonte: Google Earth

Com esses valores iniciais já é possível realizar um pré-dimensionamento do projeto.

Para isso foi utilizada uma tabela interativa disponibilizada pelo curso da ElektSolar, que é dividida em cinco janelas principais. A primeira denominada "Dados de Consumo e Irradiação", na qual são inseridos os dados de consumo, os valores de tarifa e os cenários de irradiação.

4.10. As Simulações

Foram realizados 5 modelos prévios e, consequentemente, 5 simulações foram feitas no Helioscope. Em todas foi utilizado o padrão do programa para manter uma uniformidade dos resultados e poder compará-los com maior confiabilidade e facilidade.

Na primeira simulação, a potência do sistema foi limitada a 49,9kWp para simular um projeto mais parecido possível com o já existente no prédio do Ministério de Minas e Energia. Foram utilizadas 3 marcas de módulos e 6 modelos (2 de cada marca). Não são todos os mesmos modelos do projeto existente, duas marcas que realizaram as doações para o projeto não possuíam nenhum módulo na vasta opção de marcas do programa Helioscope. Os módulos utilizados na simulação estão dispostos no quadro 8 abaixo.

Módulos	Quantidade (potência pico)
Renesola, JC260M-24/Bbv (260W)	88 (22.9 kWp)
Renesola, JC250M-24/Bb (250W)	15 (3.75 kWp)
Canadian Solar, ELPS-260M (260W)	47 (12.2 kWp)
Canadian Solar, CS6P-265P (July 2016) (265W)	10 (2.65 kWp)
Globo Brasil, GBR260p (260W)	24 (6.24 kWp)
Globo Brasil, GBR265p (265W)	8 (2.12 kWp)

Quadro 8 - Módulos utilizados na primeira simulação, Fonte: Helioscope

O programa utilizado para os projetos possui muitas variáveis de entrada que foram deixadas no padrão e as seguintes foram escolhidas:

- Espaçamento entre fileiras de módulos de 2ft (60cm);
- Espaçamento entre módulos de 3 cm;
- Espaçamento lateral de 5ft (1,5m);
- Preferência de não deixar módulos unitários lateralmente;
- Ângulo azimutal de 17 graus;
- Angulação com o solo (telhado) de 20 graus;
- Sem altura em relação com o solo;
- Módulos configurados em orientação vertical;
- Colocação de módulos somente em locais com no máximo 10% de perda de rendimento por sombras;
- Sombras calculadas das 10 até às 14h;
- A parte elétrica e os inversores foram deixadas no padrão;

Alguns desses valores estão diferentes do projeto real, mas os valores obtidos são suficientes para a análise que será realizada.

O segundo modelo incrementa módulos de 265W nas coberturas de alvenaria já existentes. Mas não considera uma ampliação em mesmo plano do já existente.

O terceiro é um comparativo do modelo 2 com o caso de utilizar módulos de 405W nas coberturas, um incremento para se comparar diferentes placas, os outros parâmetros ficaram inalterados.

O quarto modelo é realizado com a utilização de módulos de 405W em toda a extensão do telhado do MME, tanto nas coberturas tanto no local das placas já existentes.

O quinto modelo é o mais ousado: utiliza, como modelo padrão, um dos 15 prédios existentes na Esplanada dos Ministérios que apresentam o formato igual ao do prédio do MME (conforme observado por imagens do Google Earth e desconsiderando se a cobertura é laje ou telhado). Assim, ao realizar o projeto para um desses prédios, por ser mais novo, foram utilizados módulos de 405W.

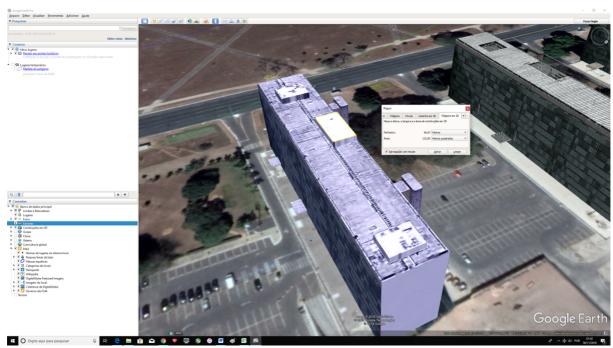


Figura 28 - Prédio padrão da esplanada, Fonte: Google Earth

O quadro 9 a seguir resume os valores das simulações, os inversores foram deixados em automático no programa, por isso não foram listados abaixo.

	Modelo 1	Modelo 2	Modelo 3	Modelo 4	Modelo 5
Nameplate:	49.9 kWp	67.0 kWp	72,6 kWp	91.1 kWp	119,5 kWp
Energy(MWh):	82.7	113,2	123,1	159,1	208
Shade Losses:	1,6%	4.2%	4,60%	3,00%	2,80%
Módulos:	192	253	245	225	295
TOTAL de	82700,5	106679,7	113512,9	148427,7	194844,2
Geração(kWh):					
Inversor(kWh):					

Rendimento	95,3896	94,2400	92,2119	93,2920	93,6750
(%):					
Valor dos	113.400,00	151.800,00		191.250,00	250.750,00
módulos (R\$):					

Quadro 9 - Lista resumo de simulações, Fonte: criação própria, Dados: minhacasasolar,2019

5. ANÁLISE ECONÔMICA

O valor de um projeto é baseado em sua capacidade de gerar renda econômica. Porém, essa capacidade precisa ser medida e comparada com os mesmos critérios para uma análise mais coerente e precisa.

Existem vários métodos para cálculo da rentabilidade e viabilidade econômica de um empreendimento, dentre eles alguns são mais comumente utilizados, os descritos abaixo são os avaliados suficientes para uma análise precisa:

5.1 Payback (simples)

O payback simples (ou período de payback) é o método mais simples para se analisar a viabilidade de um investimento. É definido como o número de períodos (anos, meses, semanas etc.) para se recuperar o investimento inicial. Para se calcular o período de payback de um projeto se soma os valores dos fluxos de caixa, período a período, até que essa soma se iguale ao valor do investimento inicial.

Quanto menor o número de períodos, mais rápido será o retorno do investimento. Para facilitar a avaliação, é preferível que se determine um prazo máximo para o retorno do investimento.

Apesar de ser um cálculo simples, o *payback* não é o indicador mais apropriado no estudo de viabilidade dos sistemas de energia solar, pois a sua análise não leva em conta o valor temporal do dinheiro.

$$Payback = \frac{Investimento}{Fluxo de Caixa}$$

Um problema da utilização dessa fórmula é o resultado em números não inteiros, o que acontece frequentemente. Uma solução é a utilização de períodos de tempo menores e algumas aproximações.

5.2 Taxa Mínima de Atratividade (TMA)

A taxa mínima de atratividade é a taxa que representa o mínimo que o investimento deve retornar para que seja considerado viável economicamente. A

TMA também possui um uso menos comum que é ser a taxa máxima aceita em um empréstimo ou financiamento.

Em outras palavras, para que um novo projeto de investimento seja aceito é preciso que a rentabilidade esperada seja pelo menos superior ao custo que a empresa tem por manter recursos circulando dentro dela, seja na forma de capital próprio ou de capital de terceiros.

Um jeito básico de calcular a TMA é utilizando a fórmula abaixo:

$$TMA = Taxa de juros X Retorno desejado$$

Nela, a taxa de juros pode ser, como exemplo, a taxa do empréstimo tomado para a abertura do empreendimento. O retorno desejado já é um valor mais subjetivo, cujo cálculo deve considerar vários fatores como o custo de oportunidade, riscos do negócio e a sua liquidez.

Por fim, a taxa mínima de atratividade, nada mais é que uma taxa para ser usada como comparativo na hora de definir se um investimento deve ser aceito. Ela possui uma relação direta com outros conceitos econômicos e financeiros, sendo os três que iremos descrever o *Payback* Descontado, o Valor Presente Líquido (VPL) e a Taxa Interna de Retorno (TIR).

5.3 Payback Descontado

Este método de engenharia econômica é semelhante ao *payback* simples, a diferença é que não são utilizados valores nominais dos fluxos de caixa, mas sim, os valores descontados para o Valor Presente (VP) por meio de uma taxa, em geral, esta taxa de desconto será a TMA, ou seja, cada fluxo é descontado pela TMA antes de ser somado.

Para calcular esse Valor Presente utiliza-se a fórmula abaixo, sendo n o número de períodos:

$$VPn = Fluxo de Caixa(1 + TMA)n$$

Os valores de VP substituem os valores do fluxo de caixa e assim se calcula como o *Payback* simples.

5.4 Valor Presente Líquido (VPL)

O método do valor presente líquido (VPL) tem como finalidade calcular em termos de valor presente, o impacto dos eventos futuros associados a uma alternativa de investimento. Ou seja, ele mede o valor presente dos fluxos de caixa gerados pelo projeto ao longo da sua vida útil. Se não houver restrição de capital, argumenta-se que esse critério leva à escolha ótima, pois maximiza o valor do projeto (Samanez, 2010). A equação abaixo mostra a expressão que define o VPL, onde o critério de decisão será VPL > 0 \Rightarrow projeto economicamente viável.

$$VPL = \sum_{n=0}^{N} \frac{Fluxo \ de \ Caixa_n}{(1+TMA)^n}$$

A equação descrita acima representa o fluxo de caixa no N-ésimo período, o símbolo Σ , somatório, indica que deve ser realizada a soma da data inicial até a data N dos fluxos de caixa descontados ao período inicial. A regra decisória a ser seguida ao aplicar o VPL é empreender o projeto se o VPL for positivo. O objetivo do VPL é encontrar alternativas de investimento que valham mais do que custam para os patrocinadores, alternativas que tenham um valor presente líquido positivo.

5.5 Taxa Interna de Retorno (TIR)

O método da Taxa Interna de Retorno (TIR) não tem como finalidade a avaliação da rentabilidade absoluta a determinado custo de capital, como o VPL, mas objetiva encontrar uma taxa intrínseca de rendimento. Por definição, a TIR é uma taxa de retorno do investimento (Samanez, 2010). Matematicamente, a TIR é uma taxa hipotética que anula o VPL, ou seja, é aquele valor de TIR* que satisfaz a seguinte equação:

$$0 = VPL = \sum_{t=0}^{T} \frac{Fluxo \ de \ Caixa_{t}}{(1 + TIR)^{t}}$$

O critério de decisão: se a TIR for maior que a TMA \Rightarrow projeto economicamente viável. A regra decisória a ser seguida no método da TIR é empreender no projeto de investimento se a TIR exceder o custo de oportunidade do capital. Essencialmente, o método pergunta: A taxa de retorno esperada sobre o projeto de investimento excede a taxa de retorno requerida? O projeto criará valor?

A princípio, o método parece semelhante a regra do VPL, mas, isso nem sempre é verdadeiro.

Utilizaremos as técnicas descritas acima, para ter o cuidado de não utilizar somente um indicador para análise do nosso estudo. Uma questão não avaliada por essas técnicas é a sobrevida dos equipamentos solares após o seu *payback*, e é um problema que não trataremos nesse estudo.

5.6 Taxa de Longo Prazo (TLP) do BNDES

Outra parte importante da uniformidade de critérios na utilização de recursos financiados é a adoção de um valor de juros em comum, para isso verifiquei no BNDES (Banco Nacional de Desenvolvimento) as suas taxas de juros de longo prazo.

O BNDES trabalha com várias taxas e linhas de créditos, tanto no âmbito pessoal, quanto no empresarial, além de taxas especiais para a agricultura e no nosso caso, a energia elétrica.

Decidimos utilizar a Taxa de Longo Prazo do BNDES (TLP) como taxa de juros base para as nossas simulações. O principal motivo para isso é a sua linearidade com o tempo, gerando uma segurança maior para os cálculos futuros realizados.

Procurando uma comparação da TLP, vemos a sua quase oposição à Selic, pois esta é uma taxa com variação diária, portanto, varia ao longo de todo o financiamento. A comparação mais adequada é com as taxas de mercado livres de risco dos títulos públicos com os mesmos vencimentos dos financiamentos do BNDES. O gráfico ilustra a competitividade da TLP frente às taxas de juros reais de mercado. Note que a TLP é única para qualquer momento da operação.

TLP X TAXA REAL LIVRE DE RISCO

Data-base (Juro Real): 18/10/2019

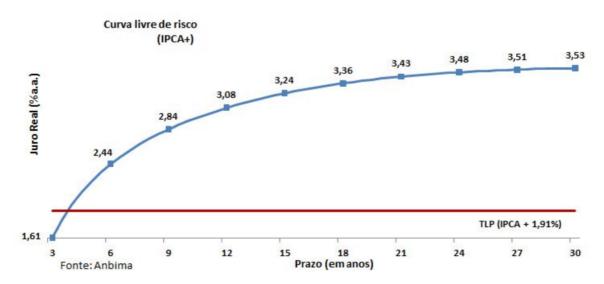


Figura 29 - Gráfico da competitividade da TLP, Fonte: ANBIMA

A TLP é composta pela inflação ocorrida mais a taxa de juros real, tendo a capitalização do IPCA intrínseco, permite que, a cada mês de pagamento, a variação do índice seja incorporada ao saldo devedor, o que contribui para maior estabilidade do fluxo de caixa.

A taxa que iremos utilizar é a mais recente disponibilizada no site no BNDES, a de julho a setembro de 2019, convertemos então a taxa de 5,95% ao ano para 0,4828% ao mês, sendo esta a que utilizaremos para os cálculos de *Payback*, TIR e VPL.

Evolução TLP (% a.a.)	2018	2019
Janeiro a Março	6,75%	7,03%
Abril a Junho	6,60%	6,26%
Julho a Setembro	6,56%	5,95%
Outubro a Dezembro	6,98%	-

Quadro 10 - Evolução da taxa TLP. Fonte: BNDES

6. ANÁLISE DO PROJETO

Foram analisados somente dois modelos: o projeto de Solarização do Ministério de Minas e Energia descrito anteriormente e a simulação 2019 no Helioscope como um modelo mais moderno e eficiente do projeto. Resumindo: ambos possuem 192 módulos fotovoltaicos, aproximadamente 1200m² e os mesmos ângulos de inclinação e de azimutal. As modificações realizadas foram: a utilização

de módulos mais potentes e eficientes (270W ao invés de 260W, na média) e da simplificação de três inversores para um.

Assumi três cenários financeiros para a realização das análises. Para melhorar a visualização e a consulta dos cenários foi criada no quadro 11.

Cenário 1	100% de recursos próprios				
Cenário 2	50% de recursos próprios e 50% de recursos				
	financiados				
Cenário 3	6 meses de carência				
	50% de recursos próprios e 50% de recursos				
	financiados				

Quadro 11 - Apresentação dos cenários avaliados, FONTE: criação própria

Antes da criação dos cenários econômicos no sistema, algumas predefinições do projeto, listadas abaixo, são colocadas na interface interativa da tabela utilizada.

Foram então inseridos:

- As especificações técnicas do módulo e do inversor escolhido;
- Os valores limitantes de área e a quantidade de módulos fotovoltaicos;
- Impostos como PIS, COFINS, ICMS;
- Valores médios de Reajuste anual de tarifa e degradação do rendimento do sistema;
- Valores de consumo do MME.

O valor mais sensível colocado pelo manuseador da tabela interativa é o custo do Wp, um valor que influencia diretamente no valor final do projeto. Esse valor em estudo da ABSOLAR está na média de R\$ 5,00 por Wp instalado em telhados residenciais. No caso do Ministério, pela estrutura adicional e tamanho do projeto, foram adicionados 20% ao valor final do projeto, utilizando R\$ 5,5 por Wp. Esse valor condiz com a pesquisa de valores realizada, o seu resumo está no quadro 12, abaixo:

Item	Quantidade	Valor Total
Módulos	192	R\$ 96.000,00
Inversor	1	R\$ 37.000,00
Instalação	1	R\$ 55.000,00
Projeto	1	R\$ 30.000,00
Materiais	1	R\$ 20.000,00
Total		R\$ 238.000,00

Quadro 12 - Valores do projeto, Fonte: criação própria

Utilizando o fator de 5,5, ou seja, um acréscimo de 20%, o valor final do projeto ficou em R\$ 285.120,00.

6.1 Cenário 1

O consumo de energia é o mesmo em todas as simulações realizadas, por isso somente é necessária a exibição de seu gráfico somente uma vez.

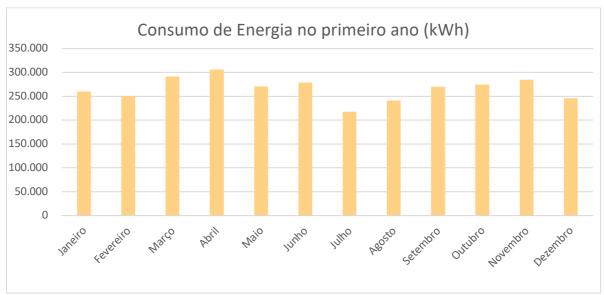
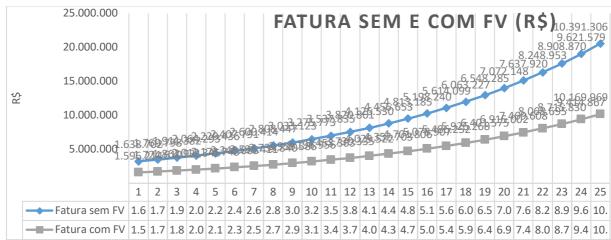



Gráfico 4 - Gráfico de consumo do MME, Fonte: criação própria, dados: MME

Assim como o consumo de energia, os valores da fatura com e sem o sistema fotovoltaico, também não variam entre os cenários, assim, serão exibidos somente uma vez. O gráfico 5 (abaixo) mostra a diferença da influência do aumento do valor do kWh cobrado pela distribuidora ao longo de 25 anos. A curva mais baixa e com crescimento menor considera a utilização de um sistema fotovoltaico e, a curva mais alta e mais íngreme é aquela sem um sistema fotovoltaico. Percebe-se que a utilização dos módulos permite uma amenização desse aumento do kWh por meio da diferença da inclinação das curvas. Já o gráfico 6 (a seguir) apresenta a mesma diferença ao longo do primeiro ano considerado.

Gráfico 5 - Gráfico exibindo a diferença de fatura ao longo de 25 anos, FONTE: criação própria

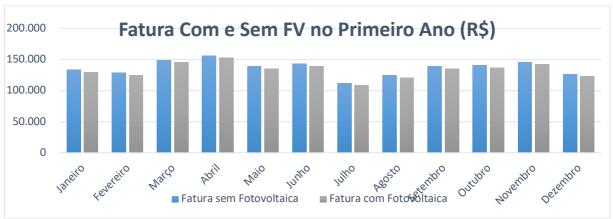


Gráfico 6 - Fatura detalhada do primeiro ano, Fonte: criação própria

O quadro 13 é um resumo dos valores do cenário 1, e é possível ver que analisando os valores de VPL e TIR na linha de 5 anos, o projeto ainda não se pagou (um detalhe importante é que o valor entre parênteses significa o valor negativo). Os valores obtidos se ratificam se compararmos também com o *payback*.

O LCOE (*Levelized Cost of Energy*) exibido na tabela é uma relação dos custos envolvidos e a energia gerada pelo empreendimento, ao longo de sua vida útil (25 anos). Representa o quanto a energia elétrica gerada deveria obter de receita por kWh, de modo que seja o suficiente para cobrir as despesas operacionais, os investimentos, os juros e remunerar adequadamente os investidores. Esse valor é relevante em comparações entre outras fontes de energia, mas para esse estudo também pode ser utilizado para comparações entre financiamentos.

Anos	VPL	TIR
25	R\$ 2.383.473,96	20,83%
20	R\$ 1.433.010,17	20,07%
15	R\$ 760.418,06	18,26%
10	R\$ 285.441,98	13,28%
5	R\$(49.310,46)	-5,77%
Payback		5 anos e 10 meses
Custo Nivelado - LCOE - "Valor da Tarifa"		0,156 R\$/kWh
Relação LCOE/Tarifa		31%

Quadro 13 - Resumo do cenário 1, Fonte: criação própria

6.2 Cenário 2

Considerando o cenário 2, o gráfico 7 demonstra os 24 meses de financiamento, a minha escolha de um parcelamento de valor fixo e 50% sendo pago de entrada.

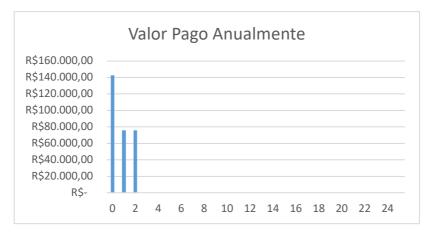
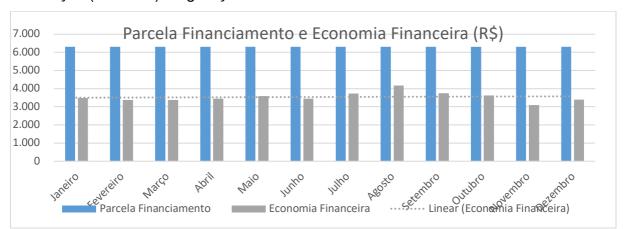



Gráfico 7 - valores pagos anualmente no segundo cenário, Fonte: criação própria

O gráfico 8 mostra as parcelas iguais do financiamento realizado e as diferenças (indiretas) da geração associada com a economia financeira.

Gráfico 8 - Gráfico do financiamento com a economia do sistema fotovoltaico, Fonte: criação própria

O quadro 14 (abaixo) exibe o resumo dos valores obtidos no cenário 2 criado. Apesar da pequena diferença de valores, comparando brevemente com o cenário1 é possível colocar o primeiro cenário na frente do segundo, independentemente do método que iremos considerar.

Anos	VPL		TIR
25	R\$ 2.374.711,56		22,74%
20	R\$ 1.424.247,77		22,02%
15	R\$ 751.655,66		20,23%
10	R\$ 276.679,58		14,89%
5	R\$ (58.072,86)		-8,68%
Payback		6 anos	e 0 meses
Custo Nivelado - LCOE - "Valor da Tarifa"		0,152 R	\$/kWh
Relação LCOE/Tarifa		30%	

Quadro 14 - Resumo do cenário 2, Fonte: criação própria

6.3 Cenário 3

Já no cenário 3, o gráfico 9 demonstra os 24 meses de financiamento, porém com os 6 (seis) meses de carência, a minha escolha por um parcelamento de valor fixo e 70% do valor sendo pago de entrada, percebe-se um valor baixo das parcelas.

Gráfico 9 - Gráfico de valores pagos anualmente no terceiro cenário, Fonte: criação própria

Comparando o gráfico 9 com o gráfico 7, já se tem uma avaliação rápida de suas diferenças, os 6 meses de carência do cenário 3, também exemplificados no gráfico 10.

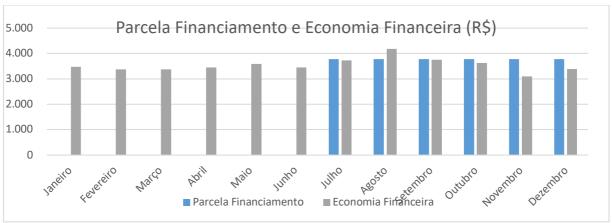


Gráfico 10 - Financiamento com a economia do sistema fotovoltaico, Fonte: criação própria

O quadro 15 abaixo exibe o resumo dos valores obtidos no cenário 3 criado. Apesar da pequena diferença de valores, comparando brevemente com o cenário1 e 2, é possível colocar o primeiro cenário na frente de todos e esse terceiro cenário no meio, os únicos valores que foram iguais do segundo para o terceiro cenário, foi o LCOE e sua relação com a tarifa.

Anos	VPL		TIR
25	R\$ 2.378.234,28		22,30%
20	R\$ 1.427.770,49		21,58%
15	R\$ 755.178,38		19,80%
10	R\$ 280.202,30		14,61%
5	R\$ (54.550,14)		-7,84%
Payback		5 anos	e 11 meses
Custo Nivelado - LCOE - "Valor da Tarifa"		0,152 R	\$/kWh
Relação LCOE/Tarifa		30%	

Quadro 15 - Tabela resumo do cenário 3, Fonte: criação própria

Essa igualdade de valores ocorre pela definição da LCOE e dos valores de juros estabelecidos, já que o único fator que muda qualquer dos dois valores, pela definição, é a mudança de taxas. Como nos cenários 2 e 3 foi concebido um empréstimo com a mesma taxa de juros e somente condições diferentes de pagamento, os valores serão os mesmos.

6.4 Cenários do MME

Para conseguir fazer uma análise entre o projeto já instalado no MME e o realizado com os cenários, foi necessário elaborar uma maneira de calcular os valores de *payback*, VLP e TIR do projeto do MME, mesmo não possuindo os valores de projeto iniciais. Consegui, com o mesmo fornecedor em que fiz a cotação dos módulos do meu projeto (minha casa solar), o valor do módulo mais barato de

potência 260Wp (a média dos instalados), que era de R\$ 876,00 em 13 de junho de 2016, e realizei o cálculo do quadro abaixo para conseguir um valor total. Mantive todos os outros valores e só modifiquei o dos módulos.

Item	Quantidade	Valor Total
Módulos	192	R\$ 168.192,00
Inversor	1	R\$ 37.000,00
Instalação	1	R\$ 55.000,00
Projeto	1	R\$ 30.000,00
Materiais	1	R\$ 20.000,00
Total		R\$ 310.192,00

Quadro 16 - Valores do projeto do MME, Fonte: criação própria

Partindo desse valor total, adicionei 20% de margem (a mesma aplicada no meu projeto), aumentando o valor para R\$ 372.000,00. Com esse novo valor e a potência do sistema já conhecida de 49,9kW, calculei o valor de R\$ por Wp e utilizei o valor calculado de 7,45.

Utilizei as mesmas definições de cenários para uma comparação mais precisa, além disso, coloquei somente as tabelas resumo dos cenários, já que o comportamento das curvas e gráficos gerados foi o mesmo e, nesse caso, os valores serão mais importantes.

6.4.1 Cenário 1 MME

O quadro 17 abaixo, possui o resumo do cenário 1 obtido utilizando as mesmas definições do cenário 1 anterior.

Anos	VPL		TIR
25	R\$ 2.175.718,55		16,33%
20	R\$ 1.267.010,20		15,20%
15	R\$ 624.587,43		12,80%
10	R\$ 171.422,76		6,74%
5	R\$ (147.545,33)		-14,24%
Payback		7 anos e 6	meses
Custo Nivelado - LCOE - "Valor da Tarifa"		0,214 R\$/k	Wh
Relação LCOE/Tarifa		43%	

Quadro 17 - Resumo do cenário 1 do MME, Fonte: criação própria

Comparando-o com o cenário 1 projetado, vemos um aumento dos valores e uma piora do *payback*.

6.4.2 Cenário 2 MME

No cenário 2, representado pelo quadro 18 (abaixo), os valores são também mais altos que o mesmo cenário projetado e mostrado anteriormente.

Anos	VPL		TIR
25	R\$ 2.164.356,71		17,46%
20	R\$ 1.255.648,36		16,34%
15	R\$ 613.225,59		13,84%
10	R\$ 160.060,92		7,16%
5	R\$ (158.907,17)		-19,29%
Payback		7 anos	e 8 meses
Custo Nivelado - LCOE - "Valor da Tarifa"		0,208 F	R\$/kWh
Relação LCOE/Tarifa		42%	

Quadro 18 - Resumo do cenário 2, Fonte: criação própria

6.4.3 Cenário 3 MME

O quadro 19 não foge à regra, sendo o resumo do cenário 3 do projeto que fiz mais parecido com o existente no MME.

Anos	VPL		TIR
25	R\$ 2.168.901,3	5	17,24%
20	R\$ 1.260.193,0	0	16,13%
15	R\$ 617.770,23		13,67%
10	R\$ 164.605,56		7,19%
5	R\$ (154.362,53	5)	-18,25%
Payback		7 anos e 7 i	meses
Custo Nivelado - LCOE - "Valor da		0,208 R\$/k	Wh
Tarifa"			
Relação LCOE/Tarifa		42%	

Quadro 19 - Resumo do cenário 3, Fonte: criação própria

Entre os 3 cenários do MME, o mesmo padrão existente nos 3 cenários anteriores criados por mim se repete. O cenário 1 do MME como o melhor, seguido pelo cenário 3 e por último, o cenário 2, ficando bem na média entre os outros dois.

6.5 Comparações

Para facilitar a visualização dos dados o quadro 20 abaixo foi criada.

Payback	Cenário 1	Cenário 2	Cenário 3
MME	7 anos e 6 meses	7 anos e 8 meses	7 anos e 7 meses
Projetado	5 anos e 10 meses	6 anos e 0 meses	5 anos e 11 meses

VPL 10			
anos			
MME	R\$171.422,76	R\$160.060,92	R\$164.605,56
Projetado	R\$285.441,98	R\$276.679,58	R\$280.202,30
TIR 10			
anos			
MME	6,74%	7,16%	7,19%
Projetado	13,28%	14,89%	14,61%

Quadro 20 - Resumo comparativa das simulações, Fonte: criação própria

Analisando friamente os dados obtidos nas simulações é bem claro e intuitivo que o cenário 1 é o mais vantajoso, ganhando em todos os critérios. Já entre os cenários 2 e 3 há uma divergência na TIR. Avaliando pelo *payback* e pelo VPL, o cenário 3 ganha; no momento em que olhamos a TIR, o projeto simulado do MME perde por uma margem muito pequena, o que é estranho, pois se espera que o VPL e a TIR tenham conclusões iguais, já que uma depende da outra.

Uma hipótese para a divergência é a existência de erros decorrentes das fórmulas utilizadas. Todos os cálculos realizados possuem erros associados aos arredondamentos utilizados pela máquina e isso pode ter causado essa diferença.

Se pegarmos a diferença do projeto mais antigo e o mais recente, percebemos uma diferença de *payback* de menos de 2 anos em todos os cenários, e a diferença de idade entre eles é de no mínimo 3 anos. O que nos permite chegar à conclusão que o projeto instalado no MME é técnica e economicamente viável, mesmo considerando que ele se paga em mais tempo que um projeto mais recente, visto que os preços dos equipamentos estão cada dia mais baixos e a potência cada dia maior.

7. CONSIDERAÇÕES FINAIS

A dimensão continental do Brasil é sempre uma dificuldade em pauta quando se fala de energia elétrica. Estamos falando em distâncias entre geração e consumo superiores ao comprimento de muitos países europeus.

A geração distribuída vem para quebrar essas distâncias e diminuir perdas no sistema elétrico, porém, não serei ingênuo de achar que a GD só apresenta vantagens, existem sim desvantagens, mas estas não constituem o escopo desse trabalho.

Os dados fornecidos e coletados do projeto de Solarização do Ministério de Minas e Energia, foram suficientes para a criação do projeto virtual e para entender melhor um sistema fotovoltaico. Seus aspectos técnicos apresentados podem servir para o desenvolvimento de qualquer usina fotovoltaica de pequeno porte. Seguindo a legislação brasileira descrita no trabalho e se atentando a mudanças que possam ocorrer.

A expansão do projeto de Solarização do Ministério de Minas e Energia realizada foi pouco focada no trabalho. Assim sendo, alguns dados gerados não foram totalmente utilizados para as análises descritas, porém, todo o esforço gerou conhecimento e os dados não utilizados por mim podem servir para um trabalho futuro de expansão da geração distribuída, principalmente se focado em prédios públicos.

Os três cenários utilizados nas avaliações foram suficientes para uma percepção sobre as possibilidades de investimentos. É verificado que em todos os casos acontece um retorno do capital investido, porém, uma carência de conhecimentos técnicos pode acarretar em problemas financeiros, considerando o VPL negativo e a TIR baixa, pelo alto investimento inicial e o seu tempo de retorno ser longo.

Apesar de tudo, todos os objetivos foram concluidos e foi possível a determinação: da evolução tecnológica dos equipamentos e da legislação, da diminuição do custo total de um sistema fotovoltaico e do potencial brasileiro de crescer sua capacidade instalada de sistemas fotovoltaicos. Cabe ressaltar que a legislação nunca deve parar de evoluir, assim como a tecnologia, para que no nosso futuro, possamos ver o Brasil em mais uma liderança.

A partir da conclusão deste trabalho, de que o projeto instalado no MME teria um custo menor hoje e, por isso, teria um tempo de retorno do investimento menor, levanto um ponto crucial para futuros estudos: uma análise de qual seria o momento ideal para um investimento em energia fotovoltaica. Seria viável esperar a queda dos preços? Ou melhor instalar agora, e ter o aproveitamento imediato da sua geração? Estudos futuros dirão.

8. REFERÊNCIAS BIBLIOGRÁFICAS

ANEEL, A. N. (2008). Atlas de Energia Elétrica do Brasil 3ª Edição.

ANEEL. Agencia Nacional de Energia Elétrica. Resolução Normativa Nº 482, De 17 De Abril De 2012. Regulamento Técnico sobre Distribuição de Energia Elétrica. Brasil. 2012.

ANEEL, A. N. (2013). Por Dentro Da Conta de Luz 6ª Edição.

ANEEL, Agência Nacional de Energia Elétrica -. (2014). Cadernos Temáticos ANEEL - Micro e Minigeração Distribuída - Sistema de Compensação de Energia Elétrica. Brasília: ANEEL.

ANEEL. (Março de 2014). Informações Gerenciais. Acesso em outubro de 2019, em ANEEL Agência Nacional de Energia Elétrica: http://www.aneel.gov.br/arquivos/PDF/IG Mar 14.pdf.

AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA (ANEEL, 2016). Micro e Minigeração Distribuídas: ANEEL. 2016. Disponível em: https://tinyurl.com/j3wprx3 Acesso em: 10 out. 2019.

ANEEL, (2017). Programa de Incentivo às Fontes Alternativas: ANEEL. 2017. Disponível em: < https://www.aneel.gov.br/proinfa> Acesso em: 3 nov. 2019.

ANNEL, ABSOLAR (2019). Desafios no Acesso e Conexão de Usina Solares Fotovoltaicas Rede Disponível à Básica. em

- http://www.aneel.gov.br/documents/656877/18606609/03+-
- +Alecio+Barreto+Fernandes+-+2019.05.09+ABSOLAR+-
- +Desafios+de+Acesso+e+Conex%C3%A3o+a+Rede+B%C3%A1sica++-
- +Final.pdf/6a189258-4c5a-7a8e-9c0c-f1bb0fb1e1b0> Acesso em 10 out de 2019.

BETHEL al. Levelized cost of energy. 2018. Disponível em: https://energyeducation.ca/encyclopedia/Levelized cost of energy>. Acesso em: 10 dez. 2018.

BNDES e a Energia Elétrica. Disponível em <www.bndes.gov.br> Acesso em 03 de nov de 2019.

TLP. BNDES. Taxa de Longo Prazo Disponível em < https://www.bndes.gov.br/wps/portal/site/home/financiamento/guia/custosfinanceiros/tlp-taxa-de-longo-prazo> Acesso em 03 de nov de 2019.

BRASIL, Engie; SOLAR, Renewable Energy. Tempo de retorno do investimento em energia solar. 2018. Disponível em: http://www.wasolar.com.br/tempo-de- retorno-do-investimento-em-energia-solar>. Acesso em: 10 dez. 2018.

BRASIL. Decreto nº 7.520, de 8 de julho de 2011. Institui o Programa Nacional de Universalização do Acesso e Uso da Energia Elétrica - "LUZ PARA TODOS", para o período de 2011 a 2014, e dá outras providências. Disponível em: http://www.planalto.gov.br/ccivil_03/_Ato2011-2014/2011/Decreto/D7520.htm. Acesso em: 03 de nov de 2019.

BRUNDTLAND, G. H. (1987) Report of the World Commission on Environment and Development: Our Common Future.. Disponível em: https://sustainabledevelopment.un.org/content/documents/5987our-common-future.pdf>. Acesso em: 03 de nov de 2019.

BYD. (2019). PV Module Product Datasheet. Build Your Dreams.

CARÇÃO, J. F. (2011). Tarifas de Energia Elétrica no Brasil. pp. 41-54.

COUNCIL, W. E. (2007). *World Energy Scenarios.* Acesso em outubro de 2019, disponível em World Energy Council: https://www.worldenergy.org/publications/entry/world-energy-scenarios-2019-exploring-innovation-pathways-to-2040.

CEPEL. (1997). PRODEEM – Programa para o Desenvolvimento da Energia nos Estados e Municípios. Fonte: < http://www.cresesb.cepel.br/publicacoes/download/periodicos/informe_prodeem.pdf> . Acesso em 15 de nov de 2019.

CEPEL. (2014). *Manual de Engenharia para Sistemas Fotovoltaicos.* Fonte: http://www.cresesb.cepel.br/publicacoes/download/Manual_de_Engenharia_FV_2014.pdf . Acesso em 15 de nov de 2019.

CRESESB. (2019). *Potencial Solar - SunData.* Fonte: Centro de referência para Energia Solar e Eólica Sérgio Brito: http://www.cresesb.cepel.br/index.php#data. Acesso em 15 de out de 2019.

CRESESB. (2006). Energia Solar-Princípios e Aplicações. Eletrobrás.

ELEKTSOLAR. (2019). Planejamento de Instalações de Sistemas de Energia Solar Fotovoltaicos. Brasília.

ELÉTRICA, C. -C. (2015). CCEE - Câmera de Comercialização de Energia Elétrica. Acesso em Abril de 2015, disponível em http://www.ccee.org.br/portal/faces/pages_publico/o-que-fazemos?_afrLoop=312206646241258#%40%3F_afrLoop%3D312206646241258%2 6 adf.ctrl-state%3Dhn85i6te4 17.

ENERGIA, M. -M. (2003). Modelo Institucional do Setor Elétrico.

ENERGY, E. E. (s.d.). *The History of Solar.* Acesso em Abril de 2015, disponível em Energy Efficiency and Renewable Energy': https://www1.eere.energy.gov/solar/pdfs/solar timeline.pdf.

EPE. (2011). Leilão de energia para 2014 contrata 51 usinas, somando 2.744 MW. Acesso em 25 de novembro de 2019, disponível em: http://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-105/20110817 1.pdf.

EPE. (2014). Nota Técnica DEA 26/14, Eficiência Energética e Geração Distribuída, disponível em: . Acesso em: 03 de nov de 2019.

EPE. (2019). Balanço Energético Nacional. Acesso em outubro de 2019, disponível em EPE: http://www.epe.gov.br/pt/imprensa/noticias/epe-disponibiliza-edicao-2019-do-ben-balanco-energetico-nacional.

FALCÃO, VIVIENNE DENISE. (2005). Fabricação de células solares de CdS/CdTe / Vivienne Denise Falcão. – http://www.ime.eb.mil.br/arquivos/teses/se4/cm/dissertacaofinal_viviennedenise.pdf >. Acesso em: 03 de nov de 2019.

FILHO, KEPLER and SARAIVA, MARIA. *O SOL – a nossa estrela*. Disponível em: < http://astro.if.ufrgs.br/esol/esol.htm> Acesso em 24 de nov de 2019.

FORTES, M. Z., Ferreira, V. H., Dias, B. H., & Gomes, F. (2013). Conceitos Iniciais para Dimensionamento - Sistema Fotovoltaico em Residências. Rio de Janeiro: Universidade Federal Fluminense (UFF).

FRONIUS. (2019). Fronius International. Fronius.

Fugimoto, S. K. (2010). Estrutura de Tarifas de Energia Elétrica. *Análise Crítica e Proposições Metodológicas*.

GIL, A.C. Métodos e técnicas de pesquisa social. Ed. Atlas, São Paulo, 1999.

GREEN, M. A., Emery, K., Hishikawa, Y., Warta, W., & Dunlop, E. D. (Janeiro de 2015). Solar Cell Efficiency Tables.

IBGE. (2010). Censo Demográfico. Instituto Brasileiro de Geografia e Estatística.

JOÃO TAVARES PINTO (Rio de Janeiro) (Org.). Manual de Engenharia para Sistemas Fotovoltaicos. 2014. Disponível em: http://www.cresesb.cepel.br/publicacoes/download/Manual_de_Engenharia_FV_20 14.pdf>. Acesso em: 10 dez. 2018.

LUQUE, ANTONIO and HEGEDUS, STEVEN. Handbook of Photovoltaic Sceince and Engineering. Disponível em: https://kashanu.ac.ir/Files/Content/Handbook.pdf> Acesso em 24 de nov de 2019.

MAGARREIRO, Clarisse; FREITAS, Sara; BRITO, Miguel Centeno. Radiação e energia solar. Disponível em: https://www.spf.pt/magazines/GFIS/119/article/993/pdf>. Acesso em: 10 dez. 2018

MAGNOLI, D., & Scalzaretto, R. (1998). Geografia, espaço, cultura e cidadania. São Paulo: Moderna.

- MAXWELL, P.-R. (2015). Sistema Elétrico Brasileiro.
- **MINHA CASA SOLAR (2019).** Ficha técnica e manuais. Disponível em: https://www.minhacasasolar.com.br/produto/painel-solar-270w-byd-solar-byd270p6c-30-79345 Acesso em 11 de outubro de 2019.
- **MME. (2015).** *Energia Solar no Brasil e no Mundo.* Disponível em: . **Acesso em:** 10 dez. 2018.
- **MME.** (2017). *MME* inaugura 1^a Usina Solar distribuída em prédio do Governo Federal. Disponível em: . Acesso em: 10 dez. 2018.
- **MME. (2017).** *Plano Decenal de Expansão de Energia 2027.* Disponível em: . Acesso em: 11 nov. 2019.
- **MME.** (2018). Resenha Energética Brasileira Disponível em: https://www.eletronuclear.gov.br/Imprensa-e-Midias/Documents/Resenha%20Energ%C3%A9tica%202018%20-MME.pdf. Acesso em: 11 nov. 2019.
- **MME**. **(2019)**. **Santos**. **Reive Barros**. *Mercado Elétrico Brasileiro (ACR e ACL): O papel da fonte solar fotovoltaica*. Disponível em: < http://www.mme.gov.br/documents/1138787/0/APRESENTA%C3%87%C3%83O+REIVE+Int ersolar_+2019+R2.pdf/c849e354-788f-4be1-bb69-a0b68550e43f>. Acesso em: 11 nov. 2019.
- NUNES, E., MOLHANO, L., & PEIXOTO, V. (2007). Agências Reguladoras no Brasil.
- **ONS. (2019).** *Sistema de Transmissão Horizonte.* Acesso em outubro de 2019, disponível em ONS Operador Nacional do Sistema Elétrico: http://www.ons.org.br/conheca_sistema/pop/pop_sistema_transmissao.aspx.
- **PEREIRA, O. L., & Gonçalves, F. F. (2008).** Dimensionamento de Inversores para Sistemas Fotovoltaicos Conestados à Rede Elétrica: Estudo de Caso do Sistema de Tubarão-SC. Revista Brasileira de Energia, 25-45.
- PHB, S. (2019). String BOx CC+CA 2 Strings. São Paulo.
- PINHO, J. T., & Galdino, M. A. (2014). Manual de Engenharia para Sistemas Fotovoltaicos. Rio de Janeiro: CEPEL CRESESB.
- RAFAEL AMARAL SHAYANI, M. A. (2006). Comparação do Custo entre Energia Solar Fotovoltaica e Fontes Convencionais. Brasilia-DF: Congresso Brasileiro de Planejamento Energético.

ROMERO, T. (2003). Pesquisa do Inpe e Nasa mostra regiões do mundo com maior incidência de raios. *Agência FAPESP*.

SÃO PAULO. MINISTÉRIO DE MINAS E ENERGIA. *MME ASSINA ACORDO PARA TER SISTEMA DE GERAÇÃO SOLAR DISTRIBUÍDA*. 2015. Disponível em: http://www.absolar.org.br/noticia/noticias-externas/mme-assina-acordo-para-tersistema-de-geracao-solar-distribuida.html. Acesso em: 10 dez. 2018.

SEGUEL, **J. I.** (**Agosto de 2009**). Projeto de um sistema fotovoltaico autônomo de suprimento de energia usando técnica MPPT e controle digital.

SOLARGIS (2016). Energy Yield Assessment of the Photovoltaic Power Plant. Reference No. 200-01/2013. Disponível em: https://solargis2-web-assets.s3.eu-west-1.amazonaws.com/public/sample/48a9f2ada0/Solargis-PVrep-200-01-2013-DEMO-v0b.pdf. Acesso em nov 2019.

TOY, J. (Agosto de 2007). Are Photovoltaic Cells a Feasible Way to Alleviate the World's Dependence on Fossil Fuels?

VILLALVA, M. G., & Gazoli, J. R. (2012). Energia Solar Fotovoltaica: Conceitos e Aplicações. São Paulo: Érica.

WILSON, L. (s.d.). *The World's Top 10 Solar Countries.* Acesso em setembro de 2019, disponível em The Shrink That Footprint: http://shrinkthatfootprint.com/theworlds-top-10-solar-countries

YIN, Robert. Estudos de caso: planejamento e métodos, Ed. Bookman, São Paulo, 2001.

Acesso em: 10 dez. 2018.

ANEXO A – Visão Completa dos Cenários

Cenário 1

		Cenário Escolhido											
	Dimensionamento												
	Pa	arâmetros do Sistema											
			Anual	Mensal									
Potência Instalada de Módulos 180,90 kWp Histórico de consumo 3,277.404,0 kWh 273.117,0 kWh													
Potência Instalada de Inversor	135,00 kW	Geração de Energia	296.927,8 kWh	24.744,0 kWh									
Área Necessária	1.047,8 m ²	Economia de Energia	296.927,8 kWh	24.744,0 kWh									
Rendimento	1.641,4 kWh/kWp	Energia sem Retorno	0,0 kWh	0,0 kWh									
Percentual do Consumo Atendido	9,06 %	Taxa de Desempenho	80	%									
Percentual de Energia sem Retorno	0,000 %	Número de Módulos	540 M	lódulos									
Percentural da Energia Utilizada	100,000 %	Potência disponibilizada	91,0	8 kW									
Mês do Início de Operação do Sistema	Janeiro												

Mês	Energia Consumida da UC	Energia Gerada pelo SFV	Energia Fornecida pela Rede	Crédito Gerado	Crédito Utilizado	Saldo do Crédito	Energia Faturada	Energia sem Retorno	Economia de Energia
Janeiro	266.937,00	23.983,87	242.953,13	-	-	-	242.953,13	0,00	23.983,87
Fevereiro	257.361,00	23.356,65	234.004,35	-	-	-	234.004,35	0,00	23.356,65
Março	298.177,00	23.382,70	274.794,30	-	-	-	274.794,30	(0,00)	23.382,70
Abril	313.132,00	23.956,95	289.175,05	-	-	-	289.175,05	(0,00)	23.956,95
Maio	277.860,00	24.988,80	252.871,20	-	-	-	252.871,20	0,00	24.988,80
Junho	285.913,00	24.139,30	261.773,70	-	-	-	261.773,70	-	24.139,30
Julho	225.026,00	26.047,57	198.978,43	-	-	-	198.978,43	0,00	26.047,57
Agosto	249.575,00	29.313,61	220.261,39	-	-	-	220.261,39	(0,00)	29.313,61
Setembro	277.845,00	26.379,56	251.465,44	-	-	-	251.465,44	(0,00)	26.379,56
Outubro	281.760,00	25.500,24	256.259,76	-	-	-	256.259,76	(0,00)	25.500,24
Novembro	291.010,00	21.894,69	269.115,31	-	-	-	269.115,31	(0,00)	21.894,69
Dezembro	252.808,00	23.983,87	228.824,13	-	-	-	228.824,13	0,00	23.983,87
Total	3.277.404,00	296.927,81	2.980.476,19	-		-	2.980.476,19	(0,00)	296.927,81

	Ana	álise Financeira							
		Parâmetros							
R\$/Wp	4,00	Aumento do Consumo	0,00%	em	0 m	eses			
Orçamento Final	R\$ 723.600,00	Reinvestir Lucro da Geracao	0%	Taxa (%	ao mês)	0,00%			
Tarifa TUSD - Sem Encargos - F.Ponta	0,20872 R\$/kWh	Custos Adicionais ao Ano	R\$	-	% ao Ano	0,00%			
Tarifa TE - Sem Encargos - F.Ponta	0,31177 R\$/kWh								
PIS	1,52%								
COFINS	6,99%		Financi	iamento					
ICMS	25,00%	Forma de Fi	nanciamento		Percentual	pago à Vista			
Impostos na Energia Injetada	CMS+PIS+COFINS na TUSD+TE	Sem Fina	nciamento		▼				
Valor Pago pela Energia Injetada - F.Ponta	la - F.Ponta 0,52049 R\$/kWh Financiamento (% ao mês) Reajuste do finan. (% mês) Valor Financiado								
Tarifa c/ encargos - F.Ponta ou Convencional	0,50000 R\$/kWh								
Tarifa c/ encargos - Ponta	2,00000 R\$/kWh	Nº de Parcelas	Período de	e Carência	Valor Total	a ser pago			
Potência à Contratar (kW)	0,00 kW								
Demanda com encargos (R\$/kW)			Resu	Itados					
Reajuste Anual da Tarifa Ponta	8,00%	Anos	VPL		TIR				
Reajuste anual da tarifa F.Ponta ou Conv.	8,00%	25	R\$	8.650.382,00	26,	80%			
Reajuste anual da demanda	5,00%	20	R\$	5.315.392,47	26,	36%			
Degradação no 1º ano	2,50%	15	R\$	2.953.667,92	25,	15%			
Degradação anual	0,70%	10	R\$	1.284.436,73 21,32%					
% do Orçamento Final com O&M	0,50%	5	R\$	106.851,29	4,5	55%			
Reajuste anual da O&M	4,50%	Payback		4	4 anos e 5 mese	S			
Custo de Oportunidade - ao Ano		Custo Nivelado - LCOE - "Va	lor da Tarifa"		0,112 R\$/kWh				
Percentual injetado na rede	30,00%	Relação LCOE/Tar	ifa		22%				

Ano	Energia Gerada kWh	Energia Consu. kWh	% Consumo	Tarifa		Fatura sem FV		Fatura com FV		Economia Financeira	Im Ener	npostos na rgia injetada	Va	for Total com Juros	Demanda a mais		O&M	Custos Adic.	Fluxo d	e Caixa Anual		xo de Caixa cumulado
0					R\$		R\$		R\$		R\$		R\$	(723.600,00)	R\$ -	R\$		R\$ -	R\$	(723.600,00)	R\$	
1	292.927,03	3.277.404,00	8,94%	0,50		1.638.702,00		1.490.437,86		148.264,14		1.800,55	R\$	-	R\$ -	R\$	(3.692,03)	R\$ -	R\$	144.572,11	R\$	(579.027,89)
2	288.468,19	3.277.404,00	8,80%	0,54	R\$	1.769.798,16		1.612.110,27		157.687,89		1.915,00	R\$		R\$ -	R\$	(3.858,17)	R\$ -	R\$	153.829,72	R\$	(425.198,17)
3	286.388,99	3.277.404,00	8,74%	0,58		1.911.382,01		1.742.306,58		169.075,43		2.053,32		-	R\$ -	R\$	(4.031,79)	R\$ -	R\$	165.043,64		(260.154,53)
4	284.309,80	3.277.404,00	8,67%	0,63		2.064.292,57		1.883.016,80		181.275,77		2.201,47			R\$ -	R\$	(4.213,22)	R\$ -	R\$	177.062,55		(83.091,97)
5	282.230,60	3.277.404,00	8,61%	0,68		2.229.435,98		2.035.089,90		194.346,08		2.360,22	R\$		R\$ -	R\$	(4.402,81)	R\$ -	R\$	189.943,27	R\$	106.851,29
6	280.151,40	3.277.404,00	8,55%	0,73		2.407.790,86		2.199.443,38		208.347,48		2.530,26	R\$	-	R\$ -	R\$	(4.600,94)	R\$ -	R\$	203.746,54	R\$	310.597,83
7	278.072,20	3.277.404,00	8,48%	0,79		2.600.414,13		2.377.068,85		223.345,28		2.712,38			R\$ -	R\$	(4.807,98)	R\$ -	R\$	218.537,30		529.135,13
8	275.993,01	3.277.404,00	8,42%	0,86		2.808.447,26		2.569.037,95		239.409,31		2.907,48			R\$ -	R\$	(5.024,34)	R\$ -	R\$	234.384,97		763.520,10
9	273.913,81	3.277.404,00	8,36%	0,93		3.033.123,04		2.776.508,86		256.614,17		3.116,43	R\$		R\$ -	R\$	(5.250,44)	R\$ -	R\$	251.363,74		1.014.883,84
10	271.834,61	3.277.404,00	8,29%	1,00		3.275.772,88		3.000.733,28		275.039,60		3.340,21	R\$		R\$ -	R\$	(5.486,71)	R\$ -	R\$	269.552,89	R\$	1.284.436,73
11	269.755,42	3.277.404,00	8,23%	1,08		3.537.834,71		3.243.063,96		294.770,76		3.579,83		-	R\$ -	R\$	(5.733,61)	R\$ -	R\$	289.037,15		1.573.473,88
12	267.676,22	3.277.404,00	8,17%	1,17		3.820.861,49		3.504.962,84		315.898,65		3.836,43			R\$ -	R\$	(5.991,62)	R\$ -	R\$	309.907,03		1.883.380,91
13	265.597,02	3.277.404,00	8,10%	1,26		4.126.530,41		3.788.009,94		338.520,47		4.111,18			R\$ -	R\$	(6.261,24)	R\$ -	R\$	332.259,23		2.215.640,13
14	263.517,82	3.277.404,00	8,04%	1,36		4.456.652,84		4.093.912,81		362.740,03		4.405,29			R\$ -	R\$	(6.543,00)	R\$ -	R\$	356.197,03		2.571.837,17
15	261.438,63	3.277.404,00	7,98%	1,47		4.813.185,07		4.424.516,88		388.668,19		4.720,21	R\$		R\$ -	R\$	(6.837,43)	R\$ -	R\$	381.830,76	R\$	2.953.667,92
16	259.359,43	3.277.404,00	7,91%	1,59		5.198.239,87		4.781.816,55		416.423,32		5.057,26			R\$ -	R\$	(7.145,12)	R\$ -	R\$	409.278,20		3.362.946,13
17	257.280,23	3.277.404,00	7,85%	1,71		5.614.099,06		5.167.967,27		446.131,79		5.418,08			R\$ -	R\$	(7.466,65)	R\$ -	R\$	438.665,15		3.801.611,27
18	255.201,04	3.277.404,00	7,79%	1,85		6.063.226,99		5.585.298,47		477.928,52		5.804,22			R\$ -	R\$	(7.802,65)	R\$ -	R\$	470.125,87		4.271.737,14
19	253.121,84	3.277.404,00	7,72%	2,00		6.548.285,15		6.036.327,68		511.957,47		6.217,50			R\$ -	R\$	(8.153,77)	R\$ -	R\$	503.803,70		4.775.540,85
20	251.042,64	3.277.404,00	7,66%	2,16		7.072.147,96		6.523.775,65		548.372,31		6.659,76		-	R\$ -	R\$	(8.520,69)	R\$ -	R\$	539.851,63		5.315.392,47
21	248.963,44	3.277.404,00	7,60%	2,33		7.637.919,79		7.050.582,79		587.337,00		7.132,96			R\$ -	R\$	(8.904,12)	R\$ -	R\$	578.432,88		5.893.825,36
22	246.884,25	3.277.404,00	7,53%	2,52		8.248.953,38		7.619.926,92		629.026,46		7.639,29		-	R\$ -	R\$	(9.304,80)	R\$ -	R\$	619.721,66		6.513.547,01
23	244.805,05	3.277.404,00	7,47%	2,72		8.908.869,65		8.235.242,38		673.627,27		8.180,95		-	R\$ -	R\$	(9.723,52)	R\$ -	R\$	663.903,75		7.177.450,77
24	242.725,85	3.277.404,00	7,41%	2,94		9.621.579,22		8.900.240,77		721.338,45		8.760,38	R\$		R\$ -	R\$	(10.161,08)	R\$ -	R\$	711.177,37	R\$	7.888.628,13
25	240.646,66	3.277.404,00	7,34%	3,17	R\$	10.391.305,56	R\$	9.618.933,36	R\$	772.372,19	R\$	9.380,19	R\$	-	R\$ -	R\$	(10.618,32)	R\$ -	R\$	761.753,87	R\$	8.650.382,00

Cenário 1 MME

	Cenário Escolhido													
	Dimensionamento													
Parâmetros do Sistema														
	Anual Mensal													
Potência Instalada de Módulos 49,92 kWp Histórico de consumo 3.277.404,0 kWh 273.117,0 kWh														
Potência Instalada de Inversor	50,00 kW	Geração de Energia	81.938,3 kWh	6.828,2 kWh										
Área Necessária	312,4 m²	Economia de Energia	81.938,3 kWh	6.828,2 kWh										
Rendimento	1.641,4 kWh/kWp	Energia sem Retorno	0,0 kWh	0,0 kWh										
Percentual do Consumo Atendido	2,50 %	Taxa de Desempenho	80	1 %										
Percentual de Energia sem Retorno	0,000 %	Número de Módulos	192 M	lódulos										
Percentural da Energia Utilizada	100,000 %	Potência disponibilizada	91,0	8 kW										
Mês do Início de Operação do Sistema	Janeiro													

Mês	Energia Consumida da UC	Energia Gerada pelo SFV	Energia Fornecida pela Rede	Crédito Gerado	Crédito Utilizado	Saldo do Crédito	Energia Faturada	Energia sem Retorno	Economia de Energia
Janeiro	266.937,00	6.618,43	260.318,57		-	-	260.318,57	0,00	6.618,43
Fevereiro	257.361,00	6.445,35	250.915,65	-	-	-	250.915,65	0,00	6.445,35
Março	298.177,00	6.452,54	291.724,46	-		-	291.724,46	(0,00)	6.452,54
Abril	313.132,00	6.611,01	306.520,99	-		-	306.520,99	0,00	6.611,01
Maio	277.860,00	6.895,75	270.964,25	-		-	270.964,25	0,00	6.895,75
Junho	285.913,00	6.661,32	279.251,68	-		-	279.251,68	(0,00)	6.661,32
Julho	225.026,00	7.187,92	217.838,08		-	-	217.838,08	0,00	7.187,92
Agosto	249.575,00	8.089,20	241.485,80	-	-	-	241.485,80	(0,00)	8.089,20
Setembro	277.845,00	7.279,53	270.565,47	-		-	270.565,47	(0,00)	7.279,53
Outubro	281.760,00	7.036,88	274.723,12	-	-	-	274.723,12	(0,00)	7.036,88
Novembro	291.010,00	6.041,92	284.968,08	-	-	-	284.968,08	0,00	6.041,92
Dezembro	252.808,00	6.618,43	246.189,57	-		-	246.189,57	0,00	6.618,43
Total	3.277.404,00	81.938,29	3.195.465,71				3.195.465,71	0,00	81.938,29

						A	nálise Finar	ceira									
							Parâmetro										
		R\$/W	/p			7,45		do Consun	10	0,00	%	em			0 mese	s	
		rçament			R\$	371.904,00	Reinvestir L	ucro da Ger	acao	0%		Та	ха (%	ao mês)		0,0	00%
Tar	rifa TUSD ·	- Sem E	ncargos -	- F.Ponta	0,20	872 R\$/kWh	Custos Ad	icionais ao	Ano	R\$				% ao A	Ano	0,0	00%
Ta	arifa TE - :	Sem End	cargos - I	F.Ponta	0,31	177 R\$/kWh											
		PIS				1,52%											
		COFI	NS			6,99%					inand	iamento					
		ICMS	3			25,00%		Forma	a de Fi	inanciame	nto			Perce	entual pag	goà∖	/ista
	Imposto	s na Ene	ergia Inje	tada	ICMS+PIS+C	OFINS na TUSD+1	re	Se	m Fina	inciamento							
Valor	Pago pela	a Energia	a Injetada	a - F.Ponta	0,52	049 R\$/kWh	Financiame	ento (% ao r	nês)	Reajust	e do i	finan. (% n	nês)	Vá	alor Fina	nciad	0
Tarifa	c/ encargo	os - F.Po	onta ou C	Convencional	0,50	000 R\$/kWh											
	Tarifa o	c/ encar	gos - Por	nta	2,00	000 R\$/kWh	N° de	Parcelas		Peri	odo d	le Carência	a	Valo	r Total a	ser p	ago
	Potêno	cia à Cor	ntratar (k	W)),00 kW											
	Demanda	com end	argos (R	\$/kW)							Resu	ıltados					
	Reajuste	Anual da	a Tarifa F	Ponta		8,00%		Anos		VPL				TIR			
Reaju	uste anual	l da tarif	a F.Ponta	a ou Conv.		8,00%		25		R\$		2.175.7	18,55		16,339	6	
	Reajust	e anual	da demai	nda		5,00%		20		R\$		1.267.0	10,20		15,209	6	
	Degr	adação	no 1º and)		2,50% 15 R\$ 624.587,43				12,809	6						
	De	gradaçã	o anual			0,70%		10 R\$ 1			171.42	22,76		6,74%	o		
	% do Orç	amento	Final con	n O&M		0,50%		5 R\$ (147.			(147.54	45,33)		-14,24	%		
	Reajuste anual da O&M				4,50%		Payback					7	7 anos e 6	meses			
	Custo de	Oportun	idade - a	o Ano			Custo Niv	elado - LCO	E - "Va	alor da Tari	fa"			0,214 R\$	/kWh		
	Percent	tual injet	ado na re	ede		30,00%		Relação LC	OE/Ta	rifa				43%	5		
Ano	Energia Gerada	Energia Consu.	% Consumo	Tarifa	Fatura sem FV	Fatura com FV	Economia Financeira	Impostos na	Valor To	tal com	ia a mais	O&M	Custo	os Adic. Flu:	co de Caixa Anua	Flu	ixo de Caixa
0	NY n			- R\$			R\$ -	R\$ -		71.904,00) R\$		R\$ -	R\$	- R\$	(371.904,0	0) R\$	cumu isaa
2	80.834,26 79.603,83	3.277.404,00 3.277.404,00	2,47% 2,43%	0,50 R\$ 0,54 R\$	1.638.702,00 1.769.798,16	R\$ 1.726.283,62	R\$ 40.914) R\$ 43.514)	4 R\$ 528,42	R\$	- R\$		R\$ (1.897,57) R\$ (1.982,96)	R\$ R\$	- R\$	39.016,4 41.531,5	B R\$	(332.887,55) (291.355,97)
3 4	79.030,06 78.456.30	3.277.404,00	2,41% 2,39%	0,58 R\$ 0,63 R\$	1.911.382,01 2.064.292.57		R\$ 46.656; R\$ 50.023;			- R\$		R\$ (2.072,19) R\$ (2.165.44)	R\$ R\$	- R\$	44.584,7 47.858.2		(246.771,20) (198.912,94)
5	77.882,54 77.308.78	3.277.404,00	2,38%	0,68 R\$	2.229.435,98 2.407.790.86		R\$ 53.630,	9 R\$ 651,26	R\$	- R\$		R\$ (2.262,88)	R\$	- R\$	51.367,6		(147.545,33)
6 7	76.735.02	3.277.404,00	2,36% 2,34%	0,73 R\$ 0,79 R\$	2.407.790,86		R\$ 57.494; R\$ 61.632;			- R\$	- :	R\$ (2.364,71) R\$ (2.471.13)	R\$ R\$	- R\$	55.129,5 59.161,8		(92.415,82)
8	76.161,25	3.277.404,00	2,32%	0,86 R\$			R\$ 66.065,			- R\$	-	R\$ (2.582,33)	R\$	- R\$	63.483,5		30.229,51
9	75.587,49 75.013.73	3.277.404,00	2,31% 2,29%	0,93 R\$ 1,00 R\$	3.033.123,04 3.275.772.88		R\$ 70.813/ R\$ 75.896.			- R\$		R\$ (2.698,53) R\$ (2.819.97)	R\$ R\$	- R\$	68.115,0 73.078.1		98.344,57 171.422.76
11	74.439,97	3.277.404,00	2,27%	1,08 R\$			R\$ 81.343,			- R\$		R\$ (2.946,86)	R\$	- R\$	78.396,1		249.818,94
12	73.866,21 73.292,45	3.277.404,00	2,25% 2,24%	1,17 R\$ 1,26 R\$			R\$ 87.173, R\$ 93.415,			- R\$		R\$ (3.079,47) R\$ (3.218,05)	R\$ R\$	- R\$	84.093,8 90.197,8		333.912,82 424.110,70
14	72.718,68	3.277.404,00	2,22%	1,36 R\$	4.456.652,84	R\$ 4.356.553,43	R\$ 100.099,	0 R\$ 1.215,62	R\$	- R\$		R\$ (3.362,86)	R\$	- R\$	96.736,5	4 R\$	520.847,24
15 16	72.144,92 71.571,16	3.277.404,00	2,20%	1,47 R\$ 1,59 R\$			R\$ 107.254; R\$ 114.913;			- R\$	- :	R\$ (3.514,19) R\$ (3.672.33)	R\$ R\$	- R\$	103.740,1		624.587,43 735.828.60
17	70.997,40	3.277.404,00	2,17%	1,71 R\$	5.614.099,06	R\$ 5.490.987,40	R\$ 123.111,	6 R\$ 1.495,10	R\$	- R\$	-	R\$ (3.837,58)	R\$	- R\$	119.274,0	7 R\$	855.102,67
18	70.423,64 69.849.87	3.277.404,00	2,15% 2,13%	1,85 R\$ 2.00 R\$	6.063.226,99 6.548.285.15		R\$ 131.886) R\$ 141.276			- R\$		R\$ (4.010,28) R\$ (4.190,74)	R\$ R\$	- R\$	127.875,8 137.085.7		982.978,47 1,120.064,22
20	69.276,11	3.277.404,00	2,11%	2,16 R\$	7.072.147,96	R\$ 6.920.822,66	R\$ 151.325,	9 R\$ 1.837,73	R\$	- R\$	- :	R\$ (4.379,32)	R\$	- R\$	146.945,9	7 R\$	1.267.010,20
21 22	68.702,35 68.128.59	3.277.404,00	2,10%	2,33 R\$ 2,52 R\$			R\$ 162.077; R\$ 173.582;			- R\$		R\$ (4.576,39) P\$ (4.782.33)	R\$ R\$	- R\$	157.501,3 168.799,7		1.424.511,55
23	67.554,83	3.277.404,00	2,06%	2,72 R\$	8.908.869,65	R\$ 8.722.979,80	R\$ 185.889,	5 R\$ 2.257,53	R\$	- R\$		R\$ (4.997,53)	R\$	- R\$	180.892,3	1 R\$	1.774.203,63
24 25	66.981,06 66.407,30	3.277.404,00	2,04%	2,94 R\$ 3,17 R\$	9.621.579,22 10.391.305.56		R\$ 199.055, R\$ 213.138,			- R\$	- :	R\$ (5.222,42) R\$ (5.457,43)	R\$ R\$	- R\$	193.833,4 207.681.4		1.968.037,12 2.175.718.55

Cenário 2

	Cenário Escolhido													
	Dimensionamento													
Parâmetros do Sistema														
	Anual Mensal													
Potência Instalada de Módulos 180,90 kWp Histórico de consumo 3.277.404,0 kWh 273.117,0 kWh														
Potência Instalada de Inversor	135,00 kW	Geração de Energia	296.927,8 kWh	24.744,0 kWh										
Área Necessária	1.047,8 m²	Economia de Energia	296.927,8 kWh	24.744,0 kWh										
Rendimento	1.641,4 kWh/kWp	Energia sem Retorno	0,0 kWh	0,0 kWh										
Percentual do Consumo Atendido	9,06 %	Taxa de Desempenho	80) %										
Percentual de Energia sem Retorno	0,000 %	Número de Módulos	540 M	lódulos										
Percentural da Energia Utilizada	100,000 %	Potência disponibilizada	91,0	8 kW										
Mês do Início de Operação do Sistema	Mês do Início de Operação do Sistema Janeiro													

Mês	Energia Consumida da UC	Energia Gerada pelo SFV	Energia Fornecida pela Rede	Crédito Gerado	Crédito Utilizado	Saldo do Crédito	Energia Faturada	Energia sem Retorno	Economia de Energia
Janeiro	266.937,00	23.983,87	242.953,13	-	-	-	242.953,13	0,00	23.983,87
Fevereiro	257.361,00	23.356,65	234.004,35	-	-	-	234.004,35	0,00	23.356,65
Março	298.177,00	23.382,70	274.794,30	-	-	-	274.794,30	(0,00)	23.382,70
Abril	313.132,00	23.956,95	289.175,05	-	-	-	289.175,05	(0,00)	23.956,95
Maio	277.860,00	24.988,80	252.871,20	-	-	-	252.871,20	0,00	24.988,80
Junho	285.913,00	24.139,30	261.773,70	-	-	-	261.773,70	-	24.139,30
Julho	225.026,00	26.047,57	198.978,43	-	-	-	198.978,43	0,00	26.047,57
Agosto	249.575,00	29.313,61	220.261,39	-	-	-	220.261,39	(0,00)	29.313,61
Setembro	277.845,00	26.379,56	251.465,44	-	-	-	251.465,44	(0,00)	26.379,56
Outubro	281.760,00	25.500,24	256.259,76		-		256.259,76	(0,00)	25.500,24
Novembro	291.010,00	21.894,69	269.115,31	-	-	-	269.115,31	(0,00)	21.894,69
Dezembro	252.808,00	23.983,87	228.824,13	-	-	-	228.824,13	0,00	23.983,87
Total	3.277.404,00	296.927,81	2.980.476,19				2.980.476,19	(0,00)	296.927,81

						An	álise Financ	eira					
							Parâmetros						
		R\$/W	Vp			4,00		do Consumo	0.00%	em	0 m	neses	
	С	rçament	to Final		R\$	723.600,00	Reinvestir Lu	cro da Geracao	0%		ao mês)	0.00%	
Tar	ifa TUSD	- Sem E	ncargos -	- F.Ponta		872 R\$/kWh	Custos Adio	ionais ao Ano	R\$	-	% ao Ano	0.00%	
Ta	arifa TE -	Sem End	cargos - I	F.Ponta	0,31	177 R\$/kWh					70 00 7 1110	0,0070	
		PIS	3			1,52%							
		COFII	NS			6,99%			Financ	iamento			
		ICM	S			25,00%		Forma de F	inanciamento		Percentual	pago à Vista	
	Imposto	s na En	ergia Inje	tada	ICMS+PIS+C	OFINS na TUSD+TE		Price - Presta	cões Constantes		50.	.00%	
Valor				a - F.Ponta		049 R\$/kWh		nto (% ao mês)		finan. (% mês)	Valor Financiado		
				Convencional	0,50	000 R\$/kWh	0.	37%	0.0	00%	R\$	361.800,00	
	Tarifa	c/ encar	gos - Por	nta	2,00	000 R\$/kWh		Parcelas		e Carência		l a ser pago	
	Potên	cia à Coi	ntratar (k	W)		0,00 kW		24	0 m	eses	R\$	740.570.16	
	Demanda	com end	cargos (R	R\$/kW)					Resu	ltados			
	Reajuste	Anual d	a Tarifa F	Ponta		8,00%	Α	nos	VPL		TIR		
Reaju	uste anua	ıl da tarif	fa F.Ponta	a ou Conv.		8,00%		25	R\$	8.633.411,84	30,	29%	
	Reajust	te anual	da demai	nda		5,00%		20 R\$			29,	94%	
	Degradação no 1º ano				2,50%		15	R\$ 2.936.697,76			85%		
	De	egradaçã	io anual			0,70%		10	R\$	1.267.466,57	25,	01%	
	% do Orç	amento	Final con	n O&M		0,50%		5	R\$	89.881,13	5,0	02%	
	Reajı	uste anu	al da O&l	М		4,50%		Payback			4 anos e 6 mese	s	
	Custo de	Oportun	idade - a	o Ano			Custo Nivel	ado - LCOE - "V	alor da Tarifa"		0,109 R\$/kWh		
	Percen	ntual injet	tado na re	ede		30,00%	R	telação LCOE/Ta	rifa		22%		
Ano	Energia Gerada kWh	Energia Consu.	% Consumo	Tarifa	Fatura sem FV	Fatura com FV	Economia Financeira	Impostos na Valor T	otal com Demanda a mais	O&M Custo	os Adic. Fluxo de Caixa	Anual Fluxo de Caixa	
0	292.927.03	3.277.404.00	8.94%	- R\$ 0,50 R\$	1.638.702,00	R\$ - R\$ R\$ 1,490,437,86 R\$				R\$ - R\$		1.800,00) R\$ - 4.812.97) R\$ (406.612.9	
2	288.468,19	3.277.404,00	8,80%	0,54 R\$	1.769.798,16	R\$ 1.612.110,27 R\$	157.687,89	R\$ 1.915,00 R\$ (189.385,08) R\$ - 189.385,08) R\$ -	R\$ (3.692,03) R\$ R\$ (3.858,17) R\$	- R\$ (35	5.555,36) R\$ (442.168,3	
3	286.388,99 284.309,80	3.277.404,00	8,74% 8,67%		1.911.382,01 2.064.292,57				- R\$ -	R\$ (4.031,79) R\$ R\$ (4.213,22) R\$		5.043,64 R\$ (277.124,6 7.062,55 R\$ (100.062,1	
5	282.230,60	3.277.404,00	8,61%	0,68 R\$	2.229.435,98	R\$ 2.035.089,90 R\$	194.346,08	R\$ 2.360,22 R\$	- R\$ -	R\$ (4.402,81) R\$	- R\$ 189	9.943,27 R\$ 89.881,1	
6 7	280.151,40 278.072,20	3.277.404,00	8,55% 8,48%			R\$ 2.199.443,38 R\$ R\$ 2.377,068,85 R\$			- R\$ -	R\$ (4.600,94) R\$ R\$ (4.807,98) R\$		3.746,54 R\$ 293.627, 8.537,30 R\$ 512.164,	
8	275.993,01	3.277.404,00	8,42%	0,86 R\$	2.808.447,26	R\$ 2.569.037,95 R\$			- R\$ -	R\$ (5.024,34) R\$		4.384,97 R\$ 746.549,	
9	273.913,81	3.277.404,00	8,36%	0,93 R\$	3.033.123,04				- R\$ -	R\$ (5.250,44) R\$		1.363,74 R\$ 997.913,	
10	271.834,61 269.755.42	3.277.404,00	8,29% 8,23%		3.275.772,88 3.537,834,71				- R\$ -	R\$ (5.486,71) R\$ R\$ (5.733,61) R\$		9.552,89 R\$ 1.267.466, 9.037,15 R\$ 1.556.503.	
12	267.676,22	3.277.404,00	8,17%	1,17 R\$	3.820.861,49	R\$ 3.504.962,84 R\$	315.898,65	R\$ 3.836,43 R\$	- R\$ -	R\$ (5.991,62) R\$	- R\$ 309	9.907,03 R\$ 1.866.410,	
13 14	265.597,02 263.517.82	3.277.404,00	8,10% 8,04%		4.126.530,41 4.456.652.84				- R\$ -	R\$ (6.261,24) R\$ R\$ (6.543,00) R\$		2.259,23 R\$ 2.198.669, 8.197.03 R\$ 2.554.867.	
14	263.517,82	3.277.404,00	7,98%	1,36 R\$	4.456.652,84 4.813.185,07				- R\$ -	R\$ (6.837,43) R\$		8.197,03 R\$ 2.554.867, 1.830,76 R\$ 2.936.697,	
16	259.359,43	3.277.404,00	7,91%	1,59 R\$	5.198.239,87	R\$ 4.781.816,55 R\$	416.423,32	R\$ 5.057,26 R\$	- R\$ -	R\$ (7.145,12) R\$	- R\$ 409	9.278,20 R\$ 3.345.975	
17	257.280,23 255.201.04	3.277.404,00	7,85% 7,79%	1,71 R\$	5.614.099,06 6.063.226.99				- R\$ -	R\$ (7.466,65) R\$ R\$ (7.802,65) R\$		8.665,15 R\$ 3.784.641, 0.125.87 R\$ 4.254.766;	
18	255.201,04	3.277.404,00	7,79%		6.063.226,99				- R\$ -	R\$ (7.802,65) R\$ R\$ (8.153,77) R\$		0.125,87 R\$ 4.254.766, 3.803.70 R\$ 4.758.570.	
20	251.042,64	3.277.404,00	7,66%	2,16 R\$	7.072.147,96	R\$ 6.523.775,65 R\$	548.372,31	R\$ 6.659,76 R\$	- R\$ -	R\$ (8.520,69) R\$	- R\$ 539	9.851,63 R\$ 5.298.422,3	
21 22	248.963,44 246.884.25	3.277.404,00	7,60% 7,53%		7.637.919,79 8.248.953,38				- R\$ -	R\$ (8.904,12) R\$ R\$ (9.304,80) R\$		8.432,88 R\$ 5.876.855, 9.721,66 R\$ 6.496.576,	
22	246.884,25	3.277.404,00	7,53%		8.248.953,38 8.908.869,65		629.026,46 673.627,27		- R\$ -	R\$ (9.304,80) R\$ R\$ (9.723,52) R\$		9.721,66 R\$ 6.496.576, 3.903,75 R\$ 7.160.480,	
24	242.725,85	3.277.404,00	7,41%	2,94 R\$	9.621.579,22	R\$ 8.900.240,77 R\$	721.338,45	R\$ 8.760,38 R\$	- R\$ -	R\$ (10.161,08) R\$	- R\$ 711	1.177,37 R\$ 7.871.657,	
25	240.646.66	3.277.404.00	7.34%	3.17 R\$	10.391.305.56	R\$ 9.618.933.36 R\$	772,372.19	R\$ 9.380.19 R\$	- R\$ -	R\$ (10.618.32) R\$	- R\$ 761	1.753.87 R\$ 8.633.41	

Cenário 2 MME

		Cenário Escolhido		
		Dimensionamento		
	Pa	arâmetros do Sistema		
			Anual	Mensal
Potência Instalada de Módulos	49,92 kWp	Histórico de consumo	3.277.404,0 kWh	273.117,0 kWh
Potência Instalada de Inversor	50,00 kW	Geração de Energia	81.938,3 kWh	6.828,2 kWh
Área Necessária	312,4 m²	Economia de Energia	81.938,3 kWh	6.828,2 kWh
Rendimento	1.641,4 kWh/kWp	Energia sem Retorno	0,0 kWh	0,0 kWh
Percentual do Consumo Atendido	2,50 %	Taxa de Desempenho	80	%
Percentual de Energia sem Retorno	0,000 %	Número de Módulos	192 M	ódulos
Percentural da Energia Utilizada	100,000 %	Potência disponibilizada	91,08	3 kW
Mês do Início de Operação do Sistema	Janeiro		•	

Mês	Energia Consumida da UC	Energia Gerada pelo SFV	Energia Fornecida pela Rede	Crédito Gerado	Crédito Utilizado	Saldo do Crédito	Energia Faturada	Energia sem Retorno	Economia de Energia
Janeiro	266.937,00	6.618,43	260.318,57	-	-	-	260.318,57	0,00	6.618,43
Fevereiro	257.361,00	6.445,35	250.915,65	-	-	-	250.915,65	0,00	6.445,35
Março	298.177,00	6.452,54	291.724,46		-	-	291.724,46	(0,00)	6.452,54
Abril	313.132,00	6.611,01	306.520,99	-	-	-	306.520,99	0,00	6.611,01
Maio	277.860,00	6.895,75	270.964,25		-	-	270.964,25	0,00	6.895,75
Junho	285.913,00	6.661,32	279.251,68	-	-	-	279.251,68	(0,00)	6.661,32
Julho	225.026,00	7.187,92	217.838,08			-	217.838,08	0,00	7.187,92
Agosto	249.575,00	8.089,20	241.485,80	-	-	-	241.485,80	(0,00)	8.089,20
Setembro	277.845,00	7.279,53	270.565,47	-	-	-	270.565,47	(0,00)	7.279,53
Outubro	281.760,00	7.036,88	274.723,12		-	-	274.723,12	(0,00)	7.036,88
Novembro	291.010,00	6.041,92	284.968,08	-	-	-	284.968,08	0,00	6.041,92
Dezembro	252.808,00	6.618,43	246.189,57		-	-	246.189,57	0,00	6.618,43
Total	3.277.404,00	81.938,29	3.195.465,71	-		-	3.195.465,71	0,00	81.938,29

								A	nálise Finar	nceir	a											
									Parâmetro	e												
		R\$/W)				7.45		Aumente	0	0,00%			m		0.	meses					
	0	rcamento	Final			R\$ 371.904.00			Reinvestir Lucro da Geracao			0,00				6 ao mé			.00%			
Tarif	fa TUSD -	- Sem En	cargos -	- F.Ponta			872 R\$/kWh		Custos Ad	licion	ais ao A	no	R\$			-	% :	ao Ano	_	.00%		
	rifa TE - S					0,31	177 R\$/kWh										70 40 7410					
		PIS					1,52%															
		COFIN	S				6,99%							Financi	iamente							
		ICMS	;				25,00%				Forma	de Fin	anciame				Pe	rcentua	l pago à	Vista		
	Imposto	s na Ene	rgia Injet	tada	С	MS+PIS+C	OFINS na T	USD+T	E	Pr	ice - Pr	estaçõ	es Cons	tantes				50	0.00%			
				a - F.Ponta			049 R\$/kWh		Financiam				Reajus		inan. (%	mês)			Financia	ido		
				Convencio		0,50	000 R\$/kWh			0.48%	,			0.0	0%		R\$		18	5.952.00		
	Tarifa	c/ encarg	os - Por	nta		2,00	000 R\$/kWh			Parc			Per		Carêr	cia		alor Tota	al a ser			
	Potêno	ia à Con	tratar (k	W)		(0,00 kW			24				0 me	eses		R\$		38	3.265.84		
D	Demanda	com enca	argos (R	\$/kW)										Resu	Itados							
	Reajuste	Anual da	Tarifa F	Ponta		8,00%			Anos			VP	L				TIR					
Reaju	ste anual	da tarifa	F.Ponta	a ou Conv		8,00%			25				R\$ 2.164.356,71				17,46%					
	Reajust	e anual d	la dema	nda			5,00%						R\$		1.255	648,36		16	6,34%			
	Degr	adação n	o 1º and)			2,50%			15			R\$		613	225,59		13	3,84%			
	De	gradação	anual			0,70%				10			R\$		160	060,92		7	,16%			
9	% do Orç	amento F	inal com	n O&M		0,50%			5				R\$		(158	907,17)	-19	9,29%			
	Reaju	iste anua	l da O&l	М		4,50%			Payback			ck					7 anos	e 8 mes	ses			
C	Custo de	Oportunio	dade - a	o Ano					Custo Nivelado - LCOE - "Valor da Tarifa"					rifa"			0,208	R\$/kW	h			
	Percent	tual injeta	ado na re	ede		30,00%			Relação LCOE/Tarifa					42%								
Ano	Energia Gerada E kWh	Energia Consu. kWh	% Consumo	Tarifa		ura sem FV		v		lm Ener	postos na gla injetada	Valor Total Juros	Demar	nda a mais		Cus			ca Anual	Fluxo de Caixa Acumulado		
0	80.834,26	3.277.404,00	2,47%	- F		1.638.702,00	R\$ R\$ 11	- F	\$ 40.914	R\$ 02 R\$	496,81	R\$ (185.	952,00) R\$ 656,92) R\$	- 1	R\$ (1.89	R\$	-	R\$ (1)	85.952,00) R\$ 59.640.47) R\$	(245 592 4		
2	79.603,83 79.030.06	3.277.404,00	2,43%	0,54 F 0,58 F	₹\$	1.769.798,16 1.911.382,01	R\$ 1.	26.283,62 F	R\$ 43.514	54 R\$ 97 R\$	528,42	R\$ (98.	656,92) R\$ - R\$	-	R\$ (1.98	(96) R\$	-	R\$ (57.125,34) R\$ 44.584.78 R\$	(302.717,8		
4	78.456,30	3.277.404,00	2,39%	0,63 F	₹\$	2.064.292,57	R\$ 2.1	14.268,88 F	\$ 50.023	69 R\$	607,46	R\$	- R\$	- 1	R\$ (2.16	(44) R\$	-	R\$	47.858,25 R\$	(210.274,7		
6	77.882,54 77.308.78	3.277.404,00	2,38%	0,68 F		2.229.435,98 2.407.790,86		175.805,49 F		49 R\$ 23 R\$		R\$ R\$	- R\$	- 1	R\$ (2.26 R\$ (2.36				51.367,61 R\$ 55.129.51 R\$	(158.907,1		
7	76.735,02	3.277.404,00	2,34%	0,79 F	₹\$	2.600.414,13	R\$ 2.5	38.781,20 F	t\$ 61.632	93 R\$	748,47	R\$	- R\$	- 1	R\$ (2.47	,13) R\$	-	R\$	59.161,80 R\$	(44.615,		
8	76.161,25 75.587.49	3.277.404,00	2,32% 2,31%	0,86 F	R\$	2.808.447,26 3.033.123,04		742.381,40 F 962.309.44 F		85 R\$ 60 R\$		R\$ R\$	- R\$	- 1	R\$ (2.58	(33) R\$ (53) R\$			63.483,53 R\$ 68.115.06 R\$	18.867, 86.982.		
10	75.013,73	3.277.404,00	2,29%	1,00 F				199.874,72 F		16 R\$		R\$	- R\$		R\$ (2.81	(97) R\$	-		73.078,19 R\$	160.060,		
11	74.439,97	3.277.404,00	2,27%	1,08 F				156.491,67 F		04 R\$		R\$	- R\$		R\$ (2.94	(86) R\$			78.396,18 R\$	238.457		
12	73.866,21 73.292,45	3.277.404,00	2,25%	1,17 F		3.820.861,49 4.126.530,41		733.688,13 F 333.114,48 F		36 R\$ 93 R\$	1.058,64	R\$	- R\$	- :	R\$ (3.07	(47) R\$ (05) R\$			84.093,88 R\$ 90.197,88 R\$	322.550 412.748		
14	72.718,68	3.277.404,00	2,22%	1,36 F	₹\$	4.456.652,84	R\$ 4.	56.553,43 F	t\$ 100.099	40 R\$	1.215,62	R\$	- R\$		R\$ (3.36	.86) R\$		R\$!	96.736,54 R\$	509.485		
15 16	72.144,92 71.571.16	3.277.404,00	2,20%	1,47 F		4.813.185,07		705.930,69 F		37 R\$	1.302,51		- R\$	1	R\$ (3.51 R\$ (3.67				03.740,18 R\$ 11.241,17 R\$	613.225		
16	71.571,16	3.277.404,00	2,18%	1,59 F		5.198.239,87 5.614.099.06		83.326,37 F		50 R\$	1.395,53		- R\$		R\$ (3.67				11.241,17 R\$ 19.274,07 R\$	724.466 843.740		
18	70.423,64	3.277.404,00	2,15%	1,85 F	R\$	6.063.226,99	R\$ 5.1	31.340,91 F	t\$ 131.896	08 R\$	1.601,65	R\$	- R\$	- 1	R\$ (4.01	(28) R\$		R\$ 1:	27.875,80 R\$	971.616		
19	69.849,87	3.277.404,00	2,13%	2,00 F		6.548.285,15				49 R\$	1.715,69		- R\$	- 1	R\$ (4.19		-		37.085,75 R\$	1.108.700		
	69.276,11 68.702,35	3.277.404,00	2,11%	2,16 F		7.072.147,96 7.637.919,79		20.822,66 F 175.842,05 F		29 R\$ 74 R\$	1.837,73		- R\$		R\$ (4.37 R\$ (4.57				46.945,97 R\$ 57.501,35 R\$	1.255.648,		
21																				1.581.949.4		
21 22	68.128,59	3.277.404,00	2,08%	2,52 F		8.248.953,38		75.371,28 F		09 R\$	2.108,02		- R\$	- 1	R\$ (4.78				68.799,77 R\$			
21	68.128,59 67.554,83 66.981,06	3.277.404,00 3.277.404,00 3.277.404,00	2,08% 2,06% 2,04%	2,52 F 2,72 F 2,94 F	₹\$	8.248.953,38 8.908.869,65 9.621.579,22	R\$ 8.	722.979,80 F 122.523.30 F	185.889	09 R\$ 85 R\$ 92 R\$	2.108,02 2.257,53 2.417,43	R\$	- R\$ - R\$	- 1	R\$ (4.78 R\$ (4.99 R\$ (5.22	,53) R\$		R\$ 1	68.799,77 R\$ 80.892,31 R\$ 93.833,49 R\$	1.581.949, 1.762.841, 1.956.675,		

Cenário 3

	Cenário Escolhido												
Dimensionamento													
Parâmetros do Sistema													
Potência Instalada de Módulos	180,90 kWp	Histórico de consumo	3.277.404,0 kWh	273.117,0 kWh									
Potência Instalada de Inversor	135,00 kW	Geração de Energia	296.927,8 kWh	24.744,0 kWh									
Área Necessária	1.047,8 m ²	Economia de Energia	296.927,8 kWh	24.744,0 kWh									
Rendimento	1.641,4 kWh/kWp	Energia sem Retorno	0,0 kWh	0,0 kWh									
Percentual do Consumo Atendido	9,06 %	Taxa de Desempenho	80)%									
Percentual de Energia sem Retorno	0,000 %	Número de Módulos	540 M	ódulos									
Percentural da Energia Utilizada	100,000 %	Potência disponibilizada	91,0	8 kW									
Mês do Início de Operação do Sistema	Janeiro												

Mês	Energia Consumida da UC	Energia Gerada pelo SFV	Energia Fornecida pela Rede	Crédito Gerado	Crédito Utilizado	Saldo do Crédito	Energia Faturada	Energia sem Retorno	Economia de Energia
Janeiro	266.937,00	23.983,87	242.953,13	-	-	-	242.953,13	0,00	23.983,87
Fevereiro	257.361,00	23.356,65	234.004,35		-	-	234.004,35	0,00	23.356,65
Março	298.177,00	23.382,70	274.794,30	-	-	-	274.794,30	(0,00)	23.382,70
Abril	313.132,00	23.956,95	289.175,05	-	-	-	289.175,05	(0,00)	23.956,95
Maio	277.860,00	24.988,80	252.871,20	-	-	-	252.871,20	0,00	24.988,80
Junho	285.913,00	24.139,30	261.773,70		-	-	261.773,70	-	24.139,30
Julho	225.026,00	26.047,57	198.978,43	-	-	-	198.978,43	0,00	26.047,57
Agosto	249.575,00	29.313,61	220.261,39	-	-	-	220.261,39	(0,00)	29.313,61
Setembro	277.845,00	26.379,56	251.465,44	-	-	-	251.465,44	(0,00)	26.379,56
Outubro	281.760,00	25.500,24	256.259,76	-	-	-	256.259,76	(0,00)	25.500,24
Novembro	291.010,00	21.894,69	269.115,31	-	-	-	269.115,31	(0,00)	21.894,69
Dezembro	252.808,00	23.983,87	228.824,13	-	-	-	228.824,13	0,00	23.983,87
Total	3.277.404,00	296.927,81	2.980.476,19	-		-	2.980.476,19	(0,00)	296.927,81

							A	ná	lise Finan	cei	ira											
									Parâmetros													
		R\$/M				4,00		\Box	Aumento	do (Consumo)		0,00%		en	า			0 mese	s	
	(Orçament	o Final		R\$		723.600.0	00	Reinvestir L	ucro	da Gera	cao		0%		1	Гаха (%	ao mé	ês)		0,0	00%
T	arifa TUSI	D - Sem E	ncargos -	F.Ponta	0,2	0872 R	\$/kWh	ĪΙ	Custos Ad	icio	nais ao A	no	R\$				-	%	ao Ai	no	0,0	00%
	Tarifa TE	- Sem En	cargos - F	.Ponta	0,3	1177 R	\$/kWh															
		PIS				1,52%	6	П														
		COFI	NS			6,99%	6	П						Finan	ciam	nento						
		ICM	S			25,009	%	1			Form	a de	Financ	iamento					Percei	ntual pag	oà\	/ista
	Impos	tos na Ene	ergia Injeta	ıda	ICMS+PIS+	COFIN	S na TUSD+1	ΤE			Price -	Prest	ações (Constantes						70,00%	,	
Val	or Pago pe	ela Energi	a Injetada	- F.Ponta	0,5	2049 R	\$/kWh		Financiame	ento	(% ao n	nês)	F	Reajuste do	fina	an. (% r	nês)		Va	lor Finan	ciado	
Tari	fa c/ encar	gos - F.Po	onta ou Co	nvencional	0,5	0000 R	\$/kWh	T	0	,379	%			C	,00%	,		R\$			21	7.080,00
	Tarif	a c/ encar	gos - Pont	а	2,0	0000 R	\$/kWh		N° d€	Pa	rcelas			Período de Carência					Valor	Total a	er pa	ago
	Potêr	ncia à Con	tratar (kW	()		0,00 k	W			24				61	nese	es		R\$			73	3.782.00
	Demanda	a com enc	argos (R\$	/kW)				П							ultad							
	Reajus	te Anual d	a Tarifa Po	onta		8,00%				Anos				VPL					TIR			
Re	eajuste anu	ual da tarif	a F.Ponta	ou Conv.		8,00%			25			R\$						29,33%				
	Reaju	ste anual	da deman	da		5,00%	6			20			R\$			5.305	.210,47			28,95%	,	
	De	gradação	no 1º ano			2,50%	6		15			R\$			2.943	.485,92			27,85%	,		
		Degradaçã	io anual			0,70%			10			R\$			1.274	.254,73			24,05%			
	% do Or	çamento F	inal com	O&M		0,50%			5			R\$			96	.669,29			5,09%			
	Rea	ajuste anua	al da O&M			4,50%			Payback										se6n	neses		
	Custo d	e Oportun	idade - ao	Ano					Custo Nivelado - LCOE - "Valo				/alor da	or da Tarifa"				0,109 R\$/kWh				
	Perce	entual injet	ado na red	de		30,00%			Relação LCOE/Tarifa					a					22%			
Ano	Energia	Energia	% Consumo	Tarifa	Fatura sem FV	Fa	tura com FV	ε	conomia Financeira	. 10	postos na	Valor	Total com	Demanda a mais		O&M	Custo	s Adic.	Fluxo	fe Caixa Anual	Flu	xo de Caixa
0	Gerada KWII	Consu. xwn			is -	R\$		R\$		R\$	gia injerada	R\$ (R\$ -	R\$		R\$		R\$	(506.520,00)	R\$	umulado -
2	292.927,03 288.468,19	3.277.404,00 3.277.404,00	8,94% 8,80%	0,50 F 0,54 F	R\$ 1.769.798,16	R\$	1.490.437,86 1.612.110,27	R\$	148.264,14 157.687,89	R\$	1.800,55 1.915,00	R\$ R\$ (113.631,00)	R\$ - R\$ -	R\$ R\$	(3.692,03)	R\$ R\$	- :	R\$ R\$	87.756,61 40.198,72	R\$	(418.763,39)
3 4	286.388,99 284.309,80	3.277.404,00	8,74% 8,67%	0,58 F	R\$ 2.064.292,57	R\$	1.742.306,58 1.883.016,80	R\$	169.075,43 181.275,77		2.053,32 2.201,47	R\$	(56.815,50)	R\$ -	R\$	(4.031,79)	R\$ R\$	- :	R\$ R\$	108.228,14 177.062,55		(270.336,53)
5	282.230,60	3.277.404,00	8,61%	0,68 F	3\$ 2.229.435,98	R\$	2.035.089,90		194.346,08	R\$	2.360,22	R\$		R\$ -	R\$	(4.402,81)	R\$		R\$	189.943,27	R\$	96.669,29
7	280.151,40 278.072,20	3.277.404,00	8,55% 8,48%	0,73 F	R\$ 2.600.414,13	R\$	2.377.068,85	R\$	223.345,28	R\$	2.530,26 2.712,38	R\$		R\$ -	R\$	(4.600,94)	R\$ R\$	- :	R\$ R\$	203.746,54 218.537,30	R\$	300.415,83 518.953,13
8	275.993,01	3.277.404,00	8,42%	0,86	R\$ 2.808.447,26		2.569.037,95 2.776.508.86		239.409,31 256.614,17		2.907,48	R\$	-	R\$ -	R\$	(5.024,34)	R\$		R\$	234.384,97	R\$	753.338,10
9	273.913,81 271.834.61	3.277.404,00	8,36% 8,29%	0,93 F	R\$ 3.033.123,04 R\$ 3.275.772,88		3.000.733,28		256.614,17		3.116,43 3.340,21			R\$ -	R\$	(5.250,44)	R\$ R\$	- :	R\$ R\$	251.363,74 269.552,89		1.004.701,84
11	269.755,42	3.277.404,00	8,23%	1,08 F	3.537.834,71		3.243.063,96		294.770,76		3.579,83	R\$		R\$ -	R\$	(5.733,61)	R\$		R\$	289.037,15	R\$	1.563.291,88
12	267.676,22 265.597.02	3.277.404,00	8,17% 8.10%	1,17	R\$ 4.126.530,41	R\$	3.504.962,84		315.898,65 338.520,47		3.836,43 4.111,18	R\$		R\$ -	R\$	(6.261,24)	R\$ R\$	- :	R\$ R\$	309.907,03	H\$ R\$	1.873.198,91
14	263.517,82	3.277.404,00	8,04%	1,36 F	3\$ 4.456.652,84	R\$	4.093.912,81	R\$	362.740,03	R\$	4.405,29	R\$		R\$ -	R\$	(6.543,00)	R\$		R\$	356.197,03	R\$	2.561.655,17
15 16	261.438,63 259.359,43	3.277.404,00	7,98% 7,91%	1,47			4.424.516,88 4.781.816,55	R\$	388.668,19 416.423,32		4.720,21 5.057,26			R\$ -	R\$	(6.837,43)	R\$ R\$		R\$ R\$	381.830,76 409.278,20		2.943.485,92 3.352.764,13
17	257.280,23	3.277.404,00	7,85%	1,71	3\$ 5.614.099,06	R\$	5.167.967,27	R\$	446.131,79	R\$	5.418,08	R\$	-	R\$ -	R\$	(7.466,65)	R\$	-	R\$	438.665,15	R\$	3.791.429,27
18 19	255.201,04 253.121,84	3.277.404,00	7,79% 7,72%	1,85	R\$ 6.063.226,99 R\$ 6.548.285,15	R\$	5.585.298,47 6.036.327,68		477.928,52 511.957,47		5.804,22 6.217,50			R\$ -	R\$	(8.153.77)	R\$ R\$	- :	R\$ R\$	470.125,87 503.803,70		4.261.555,14 4.765.358,85
20	251.042,64	3.277.404,00	7,66%	2,16	R\$ 7.072.147,96	R\$	6.523.775,65	R\$	548.372,31	R\$	6.659.76	R\$		R\$ -	R\$	(8.520,69)	R\$	-	R\$	539.851,63	R\$	5.305.210,47
21 22	248.963,44 246.884,25	3.277.404,00	7,60% 7,53%	2,33 F	R\$ 7.637.919,79 R\$ 8.248.953.38	R\$	7.050.582,79 7.619.926.92		587.337,00 629.026.46		7.132,96 7.639,29	R\$		R\$ -	R\$	(8.904,12)	R\$ R\$	-	R\$ R\$	578.432,88 619.721,66		5.883.643,36 6.503.365,01
23	244.805,05	3.277.404,00	7,47%	2.72	3\$ 8.908.869,65	R\$	8.235.242,38	R\$	673.627,27	R\$	8.180,95	R\$		R\$ -	R\$	(9.723,52)	R\$	- :	R\$	663.903,75	R\$	7.167.268,77
24 25	242.725,85 240.646.66	3.277.404,00	7,41% 7,34%	2,94 F	R\$ 9.621.579,22 R\$ 10.391.305,56	R\$	8.900.240,77 9.618.933,36		721.338,45 772.372,19	R\$	8.760,38 9.380,19			R\$ - R\$ -	R\$	(10.161,08)	R\$ R\$	- :	R\$ R\$	711.177,37 761.753.87		7.878.446,13 8.640.200.00

Cenário 3 MME

Dimensionamento													
Parâmetros do Sistema													
Potência Instalada de Módulos	49,92 kWp	Histórico de consumo	3.277.404,0 kWh	273.117,0 kWh									
Potência Instalada de Inversor	50,00 kW	Geração de Energia	81.938,3 kWh	6.828,2 kWh									
Área Necessária	312,4 m²	Economia de Energia	81.938,3 kWh	6.828,2 kWh									
Rendimento	1.641,4 kWh/kWp	Energia sem Retorno	0,0 kWh	0,0 kWh									
Percentual do Consumo Atendido	2,50 %	Taxa de Desempenho	80	%									
Percentual de Energia sem Retorno	0,000 %	Número de Módulos	192 M	ódulos									
Percentural da Energia Utilizada	100,000 %	Potência disponibilizada	91,0	1,08 kW									
Mês do Início de Operação do Sistema	Janeiro												

Mês	Energia Consumida da UC	Energia Gerada pelo SFV	Energia Fornecida pela Rede	Crédito Gerado	Crédito Utilizado	Saldo do Crédito	Energia Faturada	Energia sem Retorno	Economia de Energia
Janeiro	266.937,00	6.618,43	260.318,57	-		-	260.318,57	0,00	6.618,43
Fevereiro	257.361,00	6.445,35	250.915,65	-	-	-	250.915,65	0,00	6.445,35
Março	298.177,00	6.452,54	291.724,46	-	-	-	291.724,46	(0,00)	6.452,54
Abril	313.132,00	6.611,01	306.520,99	-	-	-	306.520,99	0,00	6.611,01
Maio	277.860,00	6.895,75	270.964,25	-		-	270.964,25	0,00	6.895,75
Junho	285.913,00	6.661,32	279.251,68	-	-	-	279.251,68	(0,00)	6.661,32
Julho	225.026,00	7.187,92	217.838,08	-	-	-	217.838,08	0,00	7.187,92
Agosto	249.575,00	8.089,20	241.485,80	-	-	-	241.485,80	(0,00)	8.089,20
Setembro	277.845,00	7.279,53	270.565,47	-		-	270.565,47	(0,00)	7.279,53
Outubro	281.760,00	7.036,88	274.723,12	-	-	-	274.723,12	(0,00)	7.036,88
Novembro	291.010,00	6.041,92	284.968,08	-	-		284.968,08	0,00	6.041,92
Dezembro	252.808,00	6.618,43	246.189,57	-	-	-	246.189,57	0,00	6.618,43
Total	3.277.404,00	81.938,29	3.195.465,71	-			3.195.465,71	0,00	81.938,29

						A	nálise Fina	nceira	a									
							Parâmetr	os										
		R\$/W	þ			7,45		to do Co	onsumo		0,00% em				0 meses	s		
	0	rçamento	Final		R\$	371.904,00	Reinvestir	Lucro d	la Geracao		0%	Ta	axa (%	ao mês)		0,00%		
Tai	rifa TUSD -	- Sem Er	cargos -	F.Ponta	0,20	872 R\$/kWh	Custos /	dicional	is ao Ano	R\$			-	% ao	Ano	0,00%		
T	arifa TE - :	Sem Enc	argos - F	.Ponta	0,31	177 R\$/kWh				_								
		PIS				1,52%												
		COFIN	IS			6,99%					Finan	ciamento						
		ICMS	3			25,00%			Forma de	Financi	amento			Perc	entual pag	o à Vista		
	Imposto	s na Ene	rgia Injeta	ada	ICMS+PIS+C	OFINS na TUSD+T	E	Pr	ice - Presta	ações C	onstantes				70,00%	,		
Valor	Pago pela	a Energia	Injetada	- F.Ponta	0,52	049 R\$/kWh	Financia	nento (%	% ao mês)	Re	ajuste do	finan. (% n	nês)		/alor Finan	ciado		
Tarifa	c/ encargo	os - F.Po	nta ou Co	onvencional	0,50	000 R\$/kWh		0,48%			0,	00%		R\$		111.571,20		
	Tarifa	c/ encarg	gos - Pon	ta	2,00	000 R\$/kWh	N° (le Parce	elas		Período o	de Carência	3	Valo	or Total a s	er pago		
	Potêno	cia à Con	tratar (kV	V)	(0,00 kW		24			6 n	neses		R\$		378.721,20		
	Demanda	com enc	argos (R\$	S/kW)							Res	ultados						
	Reajuste	Anual da	a Tarifa P	onta			Anos			VPL			TIF					
Reaj	uste anual	l da tarifa	F.Ponta	ou Conv.		8,00%			25			R\$ 2.168.901,35			17,24%	,		
	Reajust	te anual	da deman	ıda		5,00%		20 R\$				1.260.1	93,00		16,13%	,		
	Degr	adação r	no 1º ano			2,50%		15				617.7	70,23		13,67%	•		
	De	egradação	o anual			0,70%			10			164.6	05,56		7,19%			
	% do Orç	amento F	inal com	O&M			5				(154.3	62,53)		-18,25%	6			
	Reaju	iste anua	l da O&N	1			Payback						7 anos e 7 meses					
	Custo de	Oportuni	dade - ao	Ano		Custo N	Custo Nivelado - LCOE - "Valor da Tarifa						0,208 R	\$/kWh				
	Percent	tual injeta	ado na re	de		30,00%			Relação LCOE/Tarifa					42%				
Ano	Energia Gerada E	Energia Consu.	% Consumo	Tarifa	Fatura sem FV	Fatura com FV		Imp	postos na Valor	r Total com		O&M	Cust	os Adic. FI		Fluxo de Cabra		
0	80.834.26	3.277.404,00	2,47%	- R\$ 0,50 R\$	1.638.702,00	R\$ - 1.597.787.98	R\$	- R\$ 14,02 R\$	- R\$ 496,81 R\$		R\$ -	R\$ -	R\$	- R\$	(260.332,80 9.419,35	R\$ -		
2	79.603,83	3.277.404,00	2,43%	0,54 R\$	1.769.798,16	R\$ 1.726.283,62	R\$ 43.	14,54 R\$	528,42 R\$	(59.194,20)	R\$ -	R\$ (1.982,96	R\$	- RS	(17.662,62	R\$ (268.576,07)		
3	79.030,06 78.456.30	3.277.404,00	2,41%	0,58 R\$ 0,63 R\$	1.911.382,01 2.064.292.57			56,97 R\$ 23.69 R\$	566,57 R\$ 607,46 R\$		R\$ -	R\$ (2.072,19 R\$ (2.165,44	R\$	- RS		R\$ (253.588,40) R\$ (205.730,14)		
5	77.882,54	3.277.404,00	2,38%	0,68 R\$	2.229.435,98			30,49 R\$	651,26 R\$		R\$ -	R\$ (2.262,88) R\$	- R	51.367,61	R\$ (154.362,53)		
7	77.308,78 76.735,02	3.277.404,00	2,36% 2,34%	0,73 R\$ 0,79 R\$	2.407.790,86 2.600.414,13			94,23 R\$ 32,93 R\$	698,18 R\$ 748,47 R\$		R\$ -	R\$ (2.364,71	R\$ R\$	- R		R\$ (99.233,02) R\$ (40.071,22)		
8	76.161,25	3.277.404,00	2,32%	0,86 R\$	2.808.447,26			65,85 R\$	802,29 R\$		R\$ -	R\$ (2.582,33) R\$	- R				
10	75.587,49 75.013,73	3.277.404,00	2,31%	0,93 R\$ 1,00 R\$	3.033.123,04 3.275.772,88			13,60 R\$ 98,16 R\$	859,96 R\$ 921,70 R\$		R\$ -	R\$ (2.698,53	R\$	- R				
11	74.439,97	3.277.404,00	2,27%	1,08 R\$	3.537.834,71	R\$ 3,456.491,67	R\$ 81.	43,04 R\$	987,82 R\$	-	R\$ -	R\$ (2.946,86	R\$	- R	78.396,18	R\$ 243.001,74		
12	73.866,21 73.292,45	3.277.404,00	2,25% 2,24%	1,17 R\$ 1,26 R\$	3.820.861,49 4.126.530.41			73,36 R\$ 15.93 R\$	1.058,64 R\$ 1.134.45 R\$		R\$ -	R\$ (3.079,47 R\$ (3.218.05) R\$	- R				
14	72.718,68	3.277.404,00	2,22%	1,36 R\$	4.456.652,84	R\$ 4.356.553,43	R\$ 100.	99,40 R\$	1.215,62 R\$		R\$ -	R\$ (3.362,86) R\$	- R	96.736,54	R\$ 514.030,04		
15	72.144,92	3.277.404,00	2,20%	1,47 R\$	4.813.185,07			54,37 R\$	1.302,51 R\$		R\$ -	R\$ (3.514,19) R\$	- R				
16	71.571,16 70.997,40	3.277.404,00	2,18%	1,59 R\$ 1,71 R\$	5.198.239,87 5.614.099,06			13,50 R\$ 11,66 R\$	1.395,53 R\$ 1.495,10 R\$		R\$ -	R\$ (3.672,33 R\$ (3.837.58	R\$ R\$	- R				
18	70.423,64	3.277.404,00	2,15%	1,85 R\$	6.063.226,99	R\$ 5.931.340,91	R\$ 131.	86,08 R\$	1.601,65 R\$	-	R\$ -	R\$ (4.010,28) R\$	- R	127.875,80	R\$ 976.161,27		
19	69.849,87 69.276,11	3.277.404,00	2,13%	2,00 R\$ 2,16 R\$		R\$ 6.407.008,66 R\$ 6.920.822,66	R\$ 141. R\$ 151.	76,49 R\$ 25,29 R\$	1.715,69 R\$ 1.837,73 R\$		R\$ -	R\$ (4.190,74 R\$ (4.379.32	R\$ R\$	- R				
20	68.702,35	3.277.404,00	2,11%	2,16 R\$ 2,33 R\$	7.072.147,96	R\$ 6.920.822,66 R\$ 7.475.842,05	R\$ 151.	77,74 R\$	1.837,73 R\$ 1.968,34 R\$		R\$ -	R\$ (4.379,32) R\$	- R				
22	68.128,59	3.277.404,00	2,08%	2,52 R\$	8.248.953,38	R\$ 8.075.371,28	R\$ 173.	82,09 R\$	2.108,02 R\$	-	R\$ -	R\$ (4.782,33) R\$	- R	168.799,77			
23	67.554,83 66.981.06	3.277.404,00	2,06%	2,72 R\$ 2,94 R\$	8.908.869,65 9.621.579,22			89,85 R\$ 55,92 R\$	2.257,53 R\$ 2.417,43 R\$		R\$ -	R\$ (4.997,53 R\$ (5.222.42	R\$	- R				
25	66.407,30	3.277.404,00	2,03%	3,17 R\$				38,86 R\$	2.588,46 R\$		R\$ -	R\$ (5.457,43) R\$	- R				