

UNIVERSIDADE DE BRASÍLIA INSTITUTO DE QUÍMICA PROJETO DE ENGENHARIA QUÍMICA 2

PRODUÇÃO DE METIL-ETIL-CETONA A PARTIR DA DESIDROGENAÇÃO DO SEC-BUTANOL

BÁRBARA TORRES DA COSTA
EMANUELLA RIBEIRO LUZ
ISABELA MACEDO DE ANDRADE
JULIANO DE CASTRO NAKASA
LUIZA DINIZ CZARNEWSKI
NATÁLIA KAORI TODA
TIAGO BALDISSARA LEITE DA SILVA
VICTÓRIA RÉGIA MIRANDA ABRITTA
YASMIN MUSTAFA

Orientador: Prof. Dr. José Joaquín Linares León

UNIVERSIDADE DE BRASÍLIA INSTITUTO DE QUÍMICA DIVISÃO DE QUÍMICA TECNOLÓGICA PROJETO DE ENGENHARIA QUÍMICA 2

PRODUÇÃO DE METIL-ETIL-CETONA A PARTIR DA DESIDROGENAÇÃO DO SEC-BUTANOL

Projeto de graduação da disciplina Projetos de Engenharia Química 2 do Instituto de Química da Universidade de Brasília com como parte dos requisitos necessários para a obtenção do grau de bacharel em engenharia química.

Orientador: Prof. Dr. José Joaquín Linares León

BRASÍLIA – DF 2018 BÁRBARA TORRES DA COSTA EMANUELLA RIBEIRO LUZ ISABELA MACEDO DE ANDRADE JULIANO DE CASTRO NAKASA LUIZA DINIZ CZARNEWSKI NATÁLIA KAORI TODA TIAGO BALDISSARA LEITE DA SILVA VICTÓRIA MIRANDA ABRITTA YASMIN MUSTAFA

PRODUÇÃO DE METIL-ETIL-CETONA A PARTIR DA DESIDROGENAÇÃO DO SEC-BUTANOL

Projeto de graduação da disciplina Projetos de Engenharia Química 2 do Instituto de Química da Universidade de Brasília com como parte dos requisitos necessários para a obtenção do grau de bacharel em engenharia química.

Data:/	_/
	Banca Examinadora:
	Prof. Dr. José Joaquín Linares León
_	Prof. Dr. Fábio Moreira da Silva
	Prof. a Dr. a Fernanda Ribeiro do Carmo Damasceno

AGRADECIMENTOS

Em primeiro lugar, gratificamos nossas famílias. Nossa essência é construída pelas experiências que passamos durante a vida e cada vitória é reflexo de influências que temos desde a infância. Desse modo, a família teve papel fundamental em nossa graduação, nos dando suporte, compreendendo ausências e, principalmente, formando as pessoas que somos e os profissionais que seremos.

Devemos sempre reconhecer a orientação de nossos mestres. Pessoas generosas o bastante para dividir seu conhecimento e auxiliar nosso desenvolvimento, nos capacitando para sermos a mudança que o mundo clama. Em especial, agradecemos ao professor José Linares que, com toda a paciência do mundo, deu base para que pudéssemos concluir esse projeto.

Por fim, agradecemos nossos amigos e companheiros. Sabemos que a jornada não foi fácil, mas esses momentos serão levados para a vida. Somos muito gratos à quinta turma de engenharia química por transformar toda a vivência universitária em algo divertido, mesmo nos momentos de pressão. O conceito de ressonância ultrapassa as avaliações acadêmicas e mostra que juntos somos mais fortes.

"Quando penso que cheguei ao meu limite, descubro que tenho forças para ir além."

Ayrton Senna

RESUMO

O intuito deste trabalho foi realizar o projeto e análise da via de produção da Etil-Metil-Cetona (MEK) 99,7% pela desidrogenação de sec-butanol em reator de leito fixo catalítico, sendo usado catalisador de liga metálica. A produção anual almejada foi de dez mil toneladas do produto e assim, a simulação do processo foi implementada no software *AspenPlus*® com as especificações iniciais do projeto. Os dados retornados pelo simulador possibilitaram o cálculo de variáveis de *design* dos equipamentos que compõem a planta de produção de MEK, seguido de suas respectivas otimizações econômicas, bem como as tubulações, sistema de segurança, instrumentação de controle dos processos integrantes do sistema. Dispondo do ótimo econômico dos equipamentos da planta, preço dos reagentes e produtos, procedeu-se à avaliação econômica, considerando-se a demanda pelo produto, além de serviços como eletricidade, para assim validar a viabilidade de instalação da unidade produtiva. A capacidade produtiva poderá atender uma vasta gama de indústrias como as de tintas, resinas, colas, solventes.

Palavras chave: Metil-Etil-Cetona, MEK, sec-butanol, processo industrial, processo químico, viabilidade.

ABSTRACT

The purpose of this work was to carry out the design and analysis of the Ethyl-Methyl Ketone (MEK) 99.7% from the dehydrogenation of sec-butanol in a catalytic fixed bed reactor, using a metallic catalyst. The estimated annual yield was ten thousand tons of the product and thus, the process simulation was implemented in *AspenPlus®* with the initial specifications of the project. The data returned by the simulator made it possible to calculate the design variables of the equipment that compose the MEK production plant, followed by their respective economic optimizations, as well as the piping, safety system and process control instrumentation that are part of the system. With the economic optimization of the plant equipment, the price of the reagents and products, the economic evaluation was made, considering the demand for the product, as well as services such as electricity, in order to validate the viability of installing the production unit. The estimated production capacity can attend a wide range of industries such as paint, resins, glues, solvents industries.

Keywords: Methyl-Ethyl-Ketone, MEK, sec-butanol, industrial process, chemical process, viability.

LISTA DE FIGURAS

Figura 1 - Estrutura molecilar da 2-butanona	1
Figura 2 - Estrura molecular do peróxido de MEK	5
Figura 3 - Estrutura molecular da metil-etil-cetoxima.	6
Figura 4 - Consumo mundial de MEK em 2014	7
Figura 5 - Parâmetros para custo dos equipamentos (continua)	13
Figura 6 - Parâmetros para custo dos equipamentos (continuação)	14
Figura 7 - Fator de correção para trocador de calor de casco-tubo do tipo 1-2	25
Figura 8 - Fator de correção para trocador de calor de casco-tubo do tipo 2-4	25
Figura 9 - Relação de espaçamento entre os tubos e a carcaça	32
Figura 10 - Comparação entre as configurações do reator	34
Figura 11 - Cálculo da altura de recipientes separadores com demisters	37
Figura 12 - Custo total do equipamento em 15 anos, em reais, pelo número de pratos t	eóricos 41
Figura 13 - Esquema da coluna de extração C-2	43
Figura 14 - Estrutura de uma coluna de extração tipo Scheibel	44
Figura 15 - Rotor tipo turbina Rushton	45
Figura 16 - Determinação do ótimo da coluna de extração	50
Figura 17 - Determinação do ótimo da coluna de destilação C-4	51
Figura 18 - Determinação da alimentação ótima da coluna de destilação C-4	51
Figura 19 - Determinação do ótimo da coluna C-5	53
Figura 20 - Determinação da alimentação ótima da coluna de destilação C-5	54
Figura 21 - Otimização do recipiente regulador de alimentação de sec-butanol	57
Figura 22 - Otimização do recipiente regulador de água de alimentação da coluna de a	bsorção. 58
Figura 23 - Otimização do recipiente regulador de 1,1,2-tricloroetano de alimentação o	la coluna de
extração	58
Figura 24 - Diagrama de fluxo simplificado da coluna C-05	192
Figura 25 - Evolução dos fluxos de caixa	213
Figura 26 - Fluxo de caixa acumulado	214
Figura 27 - Fluxo de caixa acumulado com 20% a mais de investimento	215

LISTA DE TABELAS

Tabela 1 - Propriedades físico-químicas da metil-etil-cetona	3
Tabela 2 - Condições de operação da alimentação	10
Tabela 3 - Valor das variáveis de interesse para ao dimensionamento das bombas	15
Tabela 4 - Custo das bombas	17
Tabela 5 - Custos total com os serviços auxiliares em 15 anos	18
Tabela 6 - Valor das variáveis de interesse para ao dimensionamento do compressor K-1	19
Tabela 7 - Valor das variáveis de interesse para ao dimensionamento do compressor K-1	19
Tabela 8 - Valores aproximados dos coeficientes individuais de troca térmica	23
Tabela 9 - Valores dos coeficientes de deposição	24
Tabela 10 - Parâmetros dos trocadores de calor	26
Tabela 11 - Investimento dos trocadores de calor	27
Tabela 12 - Custo dos serviços auxiliares	28
Tabela 13 - Especificações de projeto do reator	29
Tabela 14 - Especificações de projeto do catalisador	29
Tabela 15 - Cenários para um tubo	34
Tabela 16 - Reator otimizado	35
Tabela 17 - Dimensionamento do vaso flash	38
Tabela 18 - Parâmetros de dimensionamento	42
Tabela 19 - Parâmetros da coluna de extração.	47
Tabela 20 - Parâmetros de dimensionamento da coluna C-4	51
Tabela 21 - Parâmetros preliminares da coluna de destilação C-5	53
Tabela 22 - Parâmetros de dimensionamento da coluna C-5	54
Tabela 23 - Composição do produto de topo	55
Tabela 24 - Dimensões de vasos verticais e horizontais	59
Tabela 25 - Instrumentação utilizada	60
Tabela 26 - Alarmes utilizados	61
Tabela 27 - Análise Preliminar	193
Tabela 28 - Análise Hazop da Coluna de Destilação C-05	194
Tabela 29 - Custos dos equipamentos da planta	200
Tabela 30 - Custo estimado para materiais	202

Γabela 31 - Custos de engenharia de detalhe	203
Гabela 32 - Custos de engenharia de processo	203
Гabela 33 - Custos construção e supervisão	203
Γabela 34 - Custo de limite de bateria interno da planta, relativo ao ano de 2017	204
Гabela 35 - Capital de giro	204
Гabela 36 - Valor total do investimento.	205
Γabela 37 - Valores vendas anuais	205
Γabela 38 - Custos anuais	206
Γabela 39 - Preço dos serviços auxiliares	207
Γabela 40 - Custo anual dos serviços auxiliares	207
Гabela 41 - Dados para cálculo do VAL	208
Γabela 42 - Fluxo de caixa do projeto	210
Γabela 43 - Resultado VAL	213

LISTA DE SÍMBOLOS

A Área de troca térmica (m²)

A_{sup} Área superficial em (m²)

A_{sup,c} Área superficial de catalisador (m²)

 A_t Área do tubo (m²) A_w Área molhada (m²)

C Custo

C.A. Sobre-espessura de corrosão (mm)

C' Constante (kmol/m².h)

Custo total das bombas (US\$)

C_C Custo da carcaça (US\$ Gulf)

C_{cat} Custo de catalisador

Custo elétrico da bomba (US\$)

C₁ Calor latente (kcal/kg)
C_M Custo do motor (US\$)

C_P Custo total dos pratos

C_p Capacidade calorífica (kcal/kg°C)

C_{Prato} Custo unitário do prato de destilação

C_T Custo total

D Diâmetro (m)

D_c Diâmetro da casca (m)

D_{cat} Diâmetro da partícula de catalisador (m)

 $\begin{array}{cc} D_r & \quad & \text{Diâmetro do rotor (m)} \\ D_t & \quad & \text{Diâmetro do tubo (m)} \end{array}$

D_{tocha} Diâmetro da tocha (ft)

E Constante de ajuste

e Espessura (mm)

E' Espaçamento (mm)

F Vazão volumétrica (m³/s)

F_{leve} Vazão volumétrica da fase leve (m³/h)

F_{LV} Relação entre fluxos de líquido e vapor

F_{pesada} Vazão volumétrica da fase pesada (m³/h)

F_{projeto} Vazão do projeto em (m3/h)

F_t Fator de correção

g_c Constante gravitacional (kg.m/N.s)

G_m Taxa de fluxo de gás (m³/h)

H Altura (m)

H_f Altura de líquido no fundo da coluna (m)

h_f Coeficiente individual de transferência de calor do fluido frio (kcal/hm²°C)

H_{fundo} Altura de fundo (m)
H_{liq} Altura de líquido (m)

H_{OG} Altura de unidade teórica (m)

h_q Coeficiente individual de transferência de calor do fluido quente (kcal/hm²°C)

H_t Altura da tocha (ft)

H_{tocha} Altura da tocha (m)

H_{topo} Altura de topo (m)

H_{Total} Altura total (m)

H_{recheio} Altura de recheio (m)

K Constante de equilíbrio (bar)

K₄ Parâmetro tabelado

k Razão entre as capacidades caloríficas de pressão e volume constante

adimensional

 K_{cat} Constante (bar⁻¹) K_{sec} Constante (bar⁻¹)

L Capacidade de líquido das correntes combinadas (m/h)

L_m Taxa de fluxo líquido (m³/h)
L_c Comprimento do casco (m)

 L_p Espaçamento entre os pratos (m)

 L_r Comprimento do reator (m) L_t Comprimento do tubo (m)

Lw* fluxo mássico de líquido por unidade de área da seção transversal, (kg/m²s)

m Vazão mássica de serviço auxiliar (kg/h)

m' Coeficiente angular da reta de operação

m_{cond} Vazão mássica da válvula de segurança em falha do condensador (kg/h)

m_{fogo} Vazão mássica da válvula de segurança em caso de fogo (kg/h)

M_{mistura} Massa molar da corrente que vai à tocha

m_{refe} Vazão mássica da válvula de segurança em falha do refervedor (kg/h)

m_{tocha} Vazão mássica de entrada na tocha (lb/h)

m_v Vazão mássica de vapor superaquecido (kg/h)

N Rotação do rotor (rpm)

N_{min} Número mínimo de estágios teóricos

N_{min,R} Número mínimo de estágios reais

N_{OG} Número de unidades teóricas

N_p Número de pratos reais

NPSH Carga líquida positiva de sucção (m)

N_t Número de tubos

P Pressão

P_{adm} Pressão de admissão (bar)

Palimentação Pressão da alimentação do compressor (kg/cm2g)

P_{asp} Pressão de aspiração (kg/cm2g)
P_d Pressão de desenho (kg/cm² g)

Pe Pressão de elevação

Pentrada do fluido em bar

P_H Pressão de hidrogênio

P_{imp} Potência do impelidor (W)

P_{imp} Pressão de impulsão em bar

P_{MEK} Pressão de metil-etil-cetona

P_{proj} Pressão de projeto (bar)

Psec Pressão de sec-butanol

Pressão de entrada do sec-butanol (bar)

P_{vapor superaquecido} Pressão do vapor superaquecido (bar)

Q Fluxo de calor (kcal/h)

Q_{cond} Fluxo de calor no condensador (kcal/h)

q_f Incidência (BTU/h.ft²)

Q_{fogo} Calor absorvido em caso de fogo (kcal/h)

Q_r Calor da reação (kcal/h)

Q_{refe} Fluxo de calor no refervedor (kcal/h)

r_f Coeficiente de deposição do fluido frio (hm²oC/kcal)

 R_G Constante dos gases (J/mol·K)

R_{min} Razão de refluxo mínima

r_q Coeficiente de deposição do fluido quente (hm²oC/kcal)

r_{sec} Velocidade da reação (kmol/m²h)

Ss Área sobredimensionada (m²)

S_T Parâmetro adimensional para cálculo da espessura

T₁ Temperatura de entrada do fluido frio (°C)

t₁ Temperatura de entrada do fluido quente (°C)

T₂ Temperatura de saída do fluido frio (°C)

t₂ Temperatura de saída do fluido quente (°C)

Ta Temperatura na aspiração (°C)

 T_r Temperatura do reator (°C)

 $T_{r'}$ Temperatura do reator (K)

T_{vapor superaquecido,0} Temperatura de entrada do vapor superaquecido (°C)

U Coeficiente global de transferência de calor (kcal/hm²°C)

V Volume (m³)

V_f Volume de líquido no fundo da coluna (m³)

V_W* Fluxo mássico de gás por unidade de área da seção transversal (kg/m²s)

v_o Velocidade de escoamento do fluido (m/s)

W Peso (kg)

Wa Potência absorvida (W)

W_{cat} Massa de catalisador (kg)

W_{hidráulico} Potência hidráulica (W)

W_{motor} Potência do motor (W)

W_r Potência do compressor (kW)

X Fator de complexidade

x_f Distância da base da tocha onde a incidência seja menor que o valor típico (ft)

x_{sec} Conversão

y₁ fração molar de soluto no gás no fundo da coluna
 y₂ fração molar de soluto no gás no topo da coluna
 Z₁ Fator de compressibilidade do gás adimensional

φ_c Fração molar da fase contínua

φ_D Fração molar da fase dispersa

λ_{vap,fundo} Calor latente de vaporização do líquido no fundo (kcal/kg)

λ_{vap,topo} Calor latente de vaporização do líquido topo (kcal/kg)

 ΔT_{ml} Temperatura média logarítmica ΔP Variação de pressão (mm H_2O)

μ_M Viscosidade da mistura (Pa.s)

ε Porosidade do catalisador

 ΔP_{tubos} Perda de carga nos tubos (bar)

η Eficiência dos pratos

η_{hidráulico} Eficiência hidráulica adimensional

η_{motor} Eficiência do motor adimensional

η_r Eficiência do compressor adimensional

 μ_c Viscosidade dinâmica da fase contínua (Pa.s) μ_d Viscosidade dinâmica da fase dispersa (Pa.s)

 ρ Densidade (kg/m³)

 ho_{c} Densidade da fase contínua (kg/m³) ho_{D} Densidade da fase dispersa (kg/m³) ho_{M} Densidade média da mistura (kg/m³) ho_{L} massa específica da fase líquida, kg/m³ ho_{V} massa específica da fase vapor, kg/m³

τ Tempo de residência (min)

% flooding Porcentagem de inundação

SUMÁRIO

1	IN'	ΓRΟΙ	OUÇAO	1
	1.1	Apli	cações	1
	1.1	.1	Solvente	1
	1.1	.2	Tintas, revestimentos e cimentos	2
	1.1	.3	Polimerização	2
	1.1	.4	Processamento de alimentos	2
	1.1	.5	Limpeza e desengraxamento	2
	1.2	Prop	oriedades	3
	1.3	Proc	essos	4
	1.3		Desidrogenação catalítica do sec-butanol em fase gasosa	
	1.3	.2	Oxidação da fase líquida do n-butano	4
	1.3	.3	Oxidação direta de n-buteno (Processo de Hoescht-Wacker)	4
	1.4	Deri	vados	5
	1.4	.1	Peróxido de Metil-Etil-Cetona	5
	1.4	.2	Metil-Etil-Cetoxima	5
	1.5	Mer	cado	6
2	ES		FICAÇÕES DO PROCESSO	
	2.1	_	etivo	
	2.2		érios de projeto	
	2.3		éria-prima disponível	
	2.4		lidade da alimentação	
	2.5		viços auxiliares	
	2.6		dições limítrofes	
	2.7		crição do processo	
	2.8		mativa de custos	
3			SIONAMENTO E OTIMIZAÇÃO	
	3.1		nbas	
	3.1		Custos Operativos	
	3.2		npressor	
	3.3		cadores de Calor	
	3.3		Descrição Dos Equipamentos	
	3.3		Dimensionamento dos trocadores de calor	
	3.4	Reat	tor	. 29

	3.5	Vaso Flash	. 36
	3.6	Coluna de Absorção	. 39
	3.7	Coluna de Extração	. 43
	3.8	Colunas de Destilação	. 48
	3.8	.1 Equações de dimensionamento	. 48
	3.8	.2 Coluna de destilação C-4	. 49
	3.8	.3 Coluna de destilação C-5	. 52
	3.9	Reservatórios e Pulmões	. 56
4	CO	NTROLE E SEGURANÇA	. 60
	4.1	Controle	. 60
	4.2	Alarmes e Sistema de Encravamento	. 61
	4.3	Válvulas de Segurança	. 62
	4.4	Tubulação	. 63
	4.5	Tocha	. 64
5	FO	LHA DE ESPECIFICAÇÃO	. 65
	5.1	Balanço de Massa	. 65
	5.2	Vasos Verticais	. 97
	5.3	Vasos Horizontais	107
	5.4	Tanques de Armazenamento	112
	5.5	Trocadores de Calor	114
	5.6	Bombas	124
	5.7	Compressor	150
	5.8	Tubulações	152
	5.9	Instrumentos de Controle	160
	5.10	Serviços Auxiliares	184
6	DIA	AGRAMAS	187
	6.1	Interconexões	187
	6.2	P&ID	188
7	AN	ÍÁLISE HAZOP	192
	7.1	Descrição do Equipamento Estudado	192
	7.2	Análise Preliminar	192
	7.3	Análise HAZOP da corrente de entrada da coluna C-05	193
8	AN	ÁLISE AMBIENTAL	196
9	AN	ÁLISE ECONÔMICA	199

9.1	Investimento	199
9.1	1.1 Capital imobilizado	199
9.2	Capital de giro	204
9.3	Investimento total	205
9.4	Rentabilidade do projeto	205
9.5	Vendas	205
9.6	Custos	205
9.7	Determinação da rentabilidade	208
9.8	Cálculo Taxa Interna de Rentabilidade (TIR)	214
10 CC	ONSIDERAÇÕES FINAIS	216
11 RE	EFERÊNCIAS	217

1 INTRODUÇÃO

A metil-etil-cetona (abreviação em inglês, MEK) ou 2-butanona, é um composto orgânico com a presença do grupo carbonila, de fórmula molecular C₄H₈O. Essa substância é uma cetona alifática que, juntamente com a acetona, é uma das moléculas da categoria mais importantes no âmbito comercial.

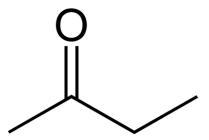


Figura 1 - Estrutura molecular da 2-butanona

O principal uso dessa substância é como solvente de baixo ponto de ebulição em processos envolvendo gomas, resinas, nitrato e acetato de celulose e revestimentos de superfície de vinil. Entretanto, a mesma também é utilizada na produção de borracha, cera de parafina e produtos domésticos como lacas, vernizes, removedores de tinta e colas. [1]

Tratando-se de propriedades organolépticas, o composto é um líquido incolor, razoavelmente volátil e de odor semelhante ao da acetona e pungente, apesar de agradável, causando irritação aos olhos, nariz e garganta. [2]

1.1 Aplicações

1.1.1 Solvente

De um modo geral para usos industriais, a MEK se apresenta como um solvente com algumas vantagens sobre outros com taxa de evaporação semelhantes pois tem um alto poder de dissolução, solubilizando uma quantidade razoável de matéria mantendo sua viscosidade e teor de sólidos, miscibilidade com diversos hidrocarbonetos e proporção volume/massa favorável em função de sua baixa densidade.

1.1.2 Tintas, revestimentos e cimentos

A MEK é utilizada na formulação de revestimentos e tintas por permitir que soluções de baixa viscosidade sejam obtidas simultaneamente a um alto teor de sólidos, sem afetar as propriedades do filme. Lacas produzidas com esse composto são utilizadas nas indústrias automotivas, de produtos elétricos e de móveis. Especificamente para tintas de impressão, agir como ligante de baixa temperatura e a função de solvente de separação azeotrópica o torna popular na área. Já para cimentos com base de borracha, a rápida taxa de evaporação atrai a atenção do mercado.

1.1.3 Polimerização

As polimerizações do poliestireno, acrilonitrilo-butadieno-estireno e borracha de estirenobutadieno precisam da 2-butanona como solvente para efetividade do processo, devido ao seu poder de dissolução dos compostos primários desses produtos que não é comum em outros solventes.

1.1.4 Processamento de alimentos

Na indústria alimentícia, a MEK é utilizada como solvente de extração para a industrialização de alguns produtos. A escolha desse composto é conveniente a esse tipo de manufatura pois além da 2-butanona ser uma substância naturalmente presente em uma ampla variedade de alimentos^[7], fazendo com que resíduos mínimos sejam aceitáveis, tem todas suas vantagens como solvente anteriormente citadas.

1.1.5 Limpeza e desengraxamento

Existem processos industriais em que a MEK é utilizada para o desengraxamento ou limpeza de partes do sistema. Um exemplo do poder de dissolução do produto nesse tipo de composto é o desenceramento de óleo, uma espécie de purificação do mesmo. A cetona em questão é adicionada ao óleo com cera, em seguida a mistura é aquecida até a homogeneização da mescla e depois resfriada, criando uma fase de cera que será decantada e filtrada. [17]

1.2 Propriedades

Em seguida, tem-se uma tabela com algumas propriedades físico-químicas da MEK, as quais serão utilizadas no decorrer do projeto:

Tabela 1 - Propriedades físico-químicas da metil-etil-cetona

Propriedade	Unidade de medida	Valor
Peso Molecular	g/mol	72,1
Ponto de Fusão	°C	-86,6
Ponto de Ebulição	°C	79,6
Densidade a 25 °C	kg/m^3	799,7
Calor Latente de Vaporização a 101,3 kPa	kJ/mol	32,8
Pressão de Vapor a 25 °C	kPa	12,1
Solubilidade em Água a 25 °C	kg/m³	223
Viscosidade a 25 °C	cP	0,4
Capacidade Calorífica da Fase Líquida a 20 °C	kJ/kg.K	2,2
Tensão Superficial a 20 °C	mN/m	24,6
Entalpia de Combustão a Pressão Constante e 25 °C	kJ/mol	2444,3

Tratando-se de propriedades físicas, a 2-butanona é apenas parcialmente miscível em água, entretanto é completamente miscível com a maioria dos solventes orgânicos. O composto forma uma mistura azeotrópica com a água em uma proporção de 88,7% de MEK e não forma com o secbutanol, matéria prima para o processo de produção explorado nesse projeto. É insaponificável e ao, contrário dos ésteres, não forma produtos corrosivos após hidrólise. Apresenta estabilidade em exposição a luz e calor, se decompondo apenas depois de longos períodos sobre radiação ultravioleta, produzindo etano, metano, monóxido de carbono, etileno e diacetil.

Quanto à toxicologia, o composto não é classificado como carcinogênico para humanos, entretanto, sua inalação pode causar tosse, dor de cabeça, tontura, náusea, vômito, sonolência, dormência e dificuldade de respiração. Em contato com a pele dá a sensação de secura e nos olhos dor e vermelhidão. A LD₅₀ oral em ratos é de 2500 a 3400 mg/kg, enquanto a cutânea em coelhos é acima de 8 mL/kg.

1.3 Processos

Existe mais de um modo de se obter a 2-butanona industrialmente. Pode-se citar os seguintes:

1.3.1 Desidrogenação catalítica do sec-butanol em fase gasosa

É uma reação endotérmica em que a concentração de MEK na mistura de reação aumenta com a temperatura e atinge seu máximo em aproximadamente 350 °C. Nesse método, o sec-butanol é desidrogenado em um reator multitubular no qual é fornecido o calor de reação através de uma corrente de óleo aquecendo o equipamento. Os produtos de reação deixam o reator na forma gasosa e são separados em MEK líquido bruto e hidrogênio. Esse é o processo mais utilizado na indústria, 88% da produção mundial, e o que será tratado nesse projeto, com mudança do fluído que fornece calor de reação. [18]

1.3.2 Oxidação da fase líquida do n-butano

A auto oxidação do n-butano ocorre na fase líquida de acordo com um mecanismo radical produzindo 2-butanona como produto intermediário e ácido acético como produto final. O processo contínuo de fluxo em pistão desenvolvido pela Union Carbide permite a coleta parcial de MEK intermediário. A 150 °C, 65 bar e tempo de residência de 2,7 minutos, forma-se MEK e ácido acético a uma proporção mássica de 3:1, respectivamente. [18]

1.3.3 Oxidação direta de n-buteno (Processo de Hoescht-Wacker)

Nesse processo, o oxigênio é transferido em uma fase homogênea para n-butenos usando um par de sais redox, PdCl₂ e 2 CuCl. Esse par de sais é subsequentemente reoxidado. Essa organização ocorre de acordo com as seguintes reações:

$$C_4H_8 + PdCl_2 + H_2O \rightarrow CH_3COC_2H_5 + Pd + 2 HCl$$

 $Pd + 2 CuCl_2 \rightleftharpoons PdCl_2 + 2 CuCl$

O n-buteno é convertido pode ser convertido em MEK com uma seletividade de 86%, entretanto, também pode ser convertido em butanonas cloradas e n-butiraldeído, o que se mostra como desvantagem do método, além da corrosão causada pelos ácidos livres. [18]

1.4 Derivados

1.4.1 Peróxido de Metil-Etil-Cetona

Derivado da 2-butanona, é utilizado como catalisador para iniciar a polimerização da resina poliéster usado em plásticos reforçados com fibra de vidro. Essa substância é feita oxidando a 2-butanona em uma solução de 30% de peróxido de hidrogênio.

Figura 2 - Estrura molecular do peróxido de MEK

1.4.2 Metil-Etil-Cetoxima

Esse aditivo, também chamado de MEKO, é um composto químico essencial usado como agente preventor de formação de peles e encolhimentos nas camadas superficiais de tintas e lacas devido a oxidação, bloqueando os isocianatos em poliuretanos. Também é utilizado como reticulador para selantes de silicone.

Figura 3 - Estrutura molecular da metil-etil-cetoxima.

1.5 Mercado

A demanda de MEK decaiu no final dos anos 80 nos EUA pois a *Environmental Protection Agency* (EPA) primeiramente propôs limitar componentes orgânicos voláteis e classificou a MEK como um poluente arriscado para o ar. Entretanto, em 2005, o composto foi retirado dessa lista.

A necessidade de mercado também foi reduzida na utilização da substância como um dos solventes na mistura para lacas uretânicas, usadas em fitas magnéticas de revestimento. Assim como em sua função de removedor de cera no refino de óleos lubrificantes, uma vez que atualmente os motores são mais eficientes e produzem menos emissões, reduzindo a demanda de MEK.

Em 2017 o maior consumidor global do produto era a região Ásia-Pacífico, seguido pela Europa e América do Norte. Essa área apresenta grande demanda devido à necessidade de tintas e revestimentos em função dos setores de construção e manufatura. O aumento do investimento em construções por parte, principalmente, dos governos indiano e chinês para suprir as necessidades de infraestrutura tem impulsionado o desenvolvimento das indústrias de construção, consequentemente a demanda por adesivos, tintas de impressão, plásticos, tintas e revestimentos.

Tendências de mercado global envolvendo a área de construção civil afetam diretamente procura por 2-butanona, tanto na iniciativa privada quanto na pública. Um exemplo de demanda específica que altera a visão econômica desse produto é a Copa do Mundo FIFA 2022 no Qatar. Apenas no ano de 2017, o país investiu cerca de 200 bilhões de dólares americanos em seu esquema de infraestrutura, com previsão de acréscimo nos próximos anos, movimentando assim o mercado de tintas, revestimentos e adesivos e, consequentemente, o de MEK. [6]

Os principais produtores dessa mercadoria são Exxon Mobil, Lanzhou Petrochemicals, Maruzen Petrochemical, Royal Dutch Shell e Sasol, com destaque para a Exxon Mobil que produz cerca de 135 mil toneladas por ano e assim, juntamente com a Maruzen Petrochemical, supriram cerca de 35% da demanda mundial em 2014. Entretanto, há diversas outras indústrias proeminentes no ramo, como AkzoNobel, Carboclor, Polinox e Tasco Chemical. A grande maioria dessas fábricas estão localizadas na China, devido aos custos gerais baixos e mão de obra barata e qualificada, além do fato do país ser um dos maiores consumidores da 2-butanona, facilitando questões logísticas. [10,11]

O consumo de MEK de acordo com o país da demanda pode ser avaliado de acordo com a Figura 4:

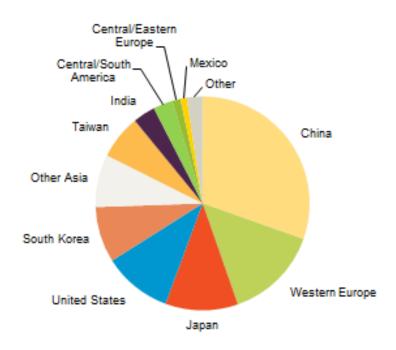


Figura 4 - Consumo mundial de MEK em 2014 [12]

Em 2014, a MEK teve um mercado de 2,51 bilhões de dólares americanos, dos quais 1,35 bilhão pertencia ao produto chinês e indiano, possuindo assim o maior *market share* global. A demanda mundial nesse ano foi de 1,42 milhão de toneladas de mercadoria, sendo 44% desse volume direcionado à produção de tintas e revestimentos e 17% para os adesivos. [13,14]

O preço atual da 2-butanona é entre 1600 e 1700 dólares americanos/tonelada no mercado asiático, porém esse valor está vulnerável a variações da economia e incidentes nas grandes

produtoras. Um exemplo disso aconteceu em julho de 2017 quando a refinaria Pernis da companhia Shell passou por um incêndio e, por produzir um grande volume de MEK, 90 mil toneladas por ano, fez com que houvesse um grande salto no preço desse composto. [15,16]

2 ESPECIFICAÇÕES DO PROCESSO

2.1 Objetivo

Este projeto visa a realização da Engenharia de Processos de uma planta de produção de cerca de 10.000 toneladas por ano de Etil-Metil-Cetona (MEK) a partir da desidrogenação de secbutanol em reator de leito fixo catalítico de meio aquecido, que consome, anualmente, cerca de 10.490 toneladas do álcool reagente, para uma capacidade de produção de 8000 horas/ano.

2.2 Critérios de projeto

- Fator de produção: 8000 horas/ano;
- Pureza do produto final: 99,7%;
- Capacidade mínima: 60% da capacidade de projeto;

O sobredimensionamento dos equipamentos foi determinado como:

- Bombas e compressores:110%;
- Torres de destilação, extração, absorção: 120%;
- Trocadores de calor: 110%;
- Reator: 120%.

Os equipamentos que entram em contato com o gás hidrogênio gerado na reação (reator, condensador, vaso flash, coluna de absorção e tubulações que ligam esses equipamentos) precisam ser construídos com aço inoxidável, já que H₂ é um composto corrosivo.

2.3 Matéria-prima disponível

- Sec-butanol a 24 °C e 804,2 kg/m²;
- Catalisador heterogêneo composto por mistura metálica de Óxido de Zinco (ZnO) e Latão;
- 1,1,2-tricloroetano a 24°C, a uma pureza de 99,9%;

• Água destilada a 24°C:

2.4 Qualidade da alimentação

A Tabela 2 descreve as condições de entrada das três correntes de alimentação presentes no sistema como um todo, a matéria-prima principal inserida no preaquecedor, o fluido de absorção e solvente de extração, respectivamente:

Tabela 2 - Condições de operação da alimentação

Local da	Componento	Temperatura	Pressão	Vazão (ton/h)
Alimentação	Componente	$^{\circ}\mathbf{C}$	(kg/cm ²)	v azao (ton/n)
Preaquecedor	2-Butanol	33,9	2,536	1,464
inicial	2-Dutanoi	33,9	2,330	1,404
Coluna de	ί d«1-d-	24.0	0.004	1.662
Absorção	Água destilada	24,0	0,904	1,662
Coluna de	m : 1	20.6	1 212	0.240
Extração	Tricloroetano	29,6	1,312	0,249

2.5 Serviços auxiliares

- Água de refrigeração:
 - Temperatura de entrada: 24 °C;
 - Temperatura de saída: 45°C
 - Pressão máxima de projeto: 3,5 bar
- Vapor superaquecido: 40 bar e 540°C.
- Vapor saturado: 4,5 bar e 218°C.
- Eletricidade trifásica a 440V e 50 Hz.

2.6 Condições limítrofes

As condições limítrofes estabelecidas para o funcionamento dessa planta referem-se à operação do reator. É necessário que a que a temperatura de reação do sec-butanol esteja necessariamente entre 400 e 500°C. Assim, fixou-se:

$$T_{reac\tilde{a}o} = 450^{\circ} \text{C}$$

Além disto, a queda de pressão que o reator deve promover é de um valor inferior a 0,15 bar.

$$\Delta P_{\text{reator}} \leq 0.15 \text{ bar}$$

2.7 Descrição do processo

O caso de projeto em questão é baseado ao apêndice F.3 do livro *Chemical Engineering Design* [22], que sugere a produção de 10⁷ kg/ano de MEK. O projeto de planta foi feito para a produção de de etil-metil-cetona pela desidrogenação do sec-butanol.

Sec-butanol é bombeado para o interior do sistema a partir do seu tanque de armazenamento numa vazão de 0,327 m³/s. O componente é bombeado e passa por um preaquecedor até que a corrente atinja 100°C, temperatura próxima à de ebulição do composto, que em seguida é direcionado a um vaporizador onde o estado físico da corrente passa a ser gasoso. Após a vaporização, a corrente gasosa passa por um superaquecedor, que ajusta a corrente com a temperatura correta para entrada no reator, a 540°C. O vaporizador opera com integração energética com a corrente de gás que deixa o reator, funcionando como um resfriamento prévio da corrente de produto da reação para as próximas operações da planta.

O reator projetado é um reator encamisado de leito catalítico fixo. Os componentes do interior do reator são mantidos aquecidos por injeção de vapor superaquecido no interior do reator entre a carcaça e os dutos por onde passam os reagentes e produtos da reação. No processo de passagem da corrente pelo leito catalítico, sec-butanol é convertido em metil-etil-cetona e gás hidrogênio. Essa corrente está a aproximadamente 504°C, por isso, após passar pela integração energética, adentra um condensador parcial em que água de refrigeração é o fluido de troca de calor. O vapor superaquecido que passa pelo reator para favorecer a reação endotérmica integra energeticamente o trocador de calor anterior ao reator, aproveitando a temperatura do vapor na saída do sítio de reação, a qual ainda é elevada.

A corrente de saída do condensador parcial, que contém MEK, H₂ e resquícios de 2-butanol, já resfriada passa para um vaso flash, que separa as correntes líquida e gasosa, sendo essa última de topo canalizada para a coluna de absorção. A corrente de líquido do fundo é diretamente

bombeada à segunda coluna de destilação do sistema, onde o produto, MEK, sai em sua maior pureza.

A coluna de absorção opera a fim de se concentrar MEK na corrente líquida de fundo e direcionar o H₂, produto de topo, vendido para outra unidade produtiva que o utilize como matéria-prima. A alimentação de topo é de água destilada, o fluido de absorção. Assim, o produto de fundo desta coluna é encaminhado a uma coluna de extração em que MEK é desidratado pelo uso de 1,1,2-tricloroetano.

O resultado destas operações é encaminhado a duas colunas de destilação consecutivas. A primeira separa a MEK do 1,1,2-tricloroetano, produto do fundo, que será recirculado para o reservatório da destinado ao recipiente regulador da alimentação da coluna de extração, sendo aproveitado nessa operação.

A segunda coluna de destilação se destina a separar MEK do álcool que não reagiu na corrente. Assim, como produto de topo, a MEK com pureza de 99,7% é recuperada. O sec-butanol que até então estava associado à etil-metil-cetona retorna ao reservatório de alimentação inicial para que se possa, então, realizar o processo novamente com este reagente.

2.8 Estimativa de custos

A estimativa de custos é realizada de maneira preliminar para que seja possível prevê alternativas do projeto e otimizá-lo, para isto, é seguida a metodologia estabelecida no Towler [22]. O custo dos equipamentos, C_e em U.S. Gulf em 2006, é definido pela Equação 1 abaixo:

$$C_{\rho} = a + bS^{n} \tag{1}$$

Sendo a e b são as constantes presentes tabeladas, S é o critério de dimensionamento do equipamento (área para trocadores, peso para vaso, etc.), n é expoente para cada tipo de equipamento. Os valores dos parâmetros usados estão descritos nas figuras abaixo.

Equipment	Units for Size, S	SLower	S_{Upper}	a	b	n	Note
Agitators & mixers							
Propeller	driver power, kW	5.0	75.0	4,300	1,920	0.8	
Spiral ribbon mixer	driver power, kW	5.0	35.0	11,000	420	1.5	
Static mixer	Liters/s	1.0	50.0	780	62	0.8	
Boilers							
Packaged, 15 to 40 bar	kg/h steam	5,000.0	200,000.0	4,600	62	0.8	
Field erected, 10 to 70 bar	kg/h steam	20,000.0	800,000.0	-90,000	93	0.8	
Centrifuges							
High-speed disk	diameter, m	0.26	0.49	63,000	260,000	0.8	
Atmospheric suspended basket	power, kW	2.0	20.0	37,000	1,200	1.2	
Compressors							
Blower	m ³ /h	200.0	5,000.0	4,200	27	0.8	
Centrifugal	driver power, kW	132.0	29,000.0	8,400	3,100	0.6	
Reciprocating	driver power, kW	100.0	16,000.0	240,000	1.33	1.5	
Conveyors							
Belt, 0.5 m wide	length, m	10.0	500.0	21,000	340	1.0	
Belt, 1.0 m wide	length, m	10.0	500.0	23,000	575	1.0	
Bucket elevator, 0.5 m bucket	height, m	10.0	35.0	14,000	1,450	1.0	
Crushers							
Reversible hammer mill	tonne/h	20.0	400.0	400	9,900	0.5	
Pulverizers	kg/h	200.0	4,000.0	3,000	390	0.5	
Crystallizers							
Scraped surface crystallizer	length, m	7.0	280.0	41,000	40,000	0.7	
Distillation columns							
See pressure vessels,							
packing, and trays							
Dryers							
Direct contact rotary	area, m ²	11.0	180.0	-7,400	4,350	0.9	1
Pan	area, m ²	1.5	15.0	-5,300	24,000	0.5	2
Spray dryer	evap rate kg/h	400.0	4,000.0	190,000	180	0.9	
Evaporators							
Vertical tube	area, m ²	11.0	640.0	17,000	13,500	0.6	
Agitated falling film	area, m ²	0.5	12.0	29,000	53,500	0.6	

Figura 5 - Parâmetros para custo dos equipamentos (continua)

Equipment	Units for Size, S	SLower	Supper	а	ь	n	Note
Exchangers							
U-tube shell and tube	area, m ²	10.0	1,000.0	10,000	88	1.0	
Floating head shell and tube	area, m ²	10.0	1,000.0	11,000	115	1.0	
Double pipe	area, m ²	1.0	80.0	500	1,100	1.0	
Thermosyihon reboiler	area, m ²	10.0	500.0	13,000	95	1.0	
U-tube Kettle reboiler	area, m ²	10.0	500.0	14,000	83	1.0	
Plate and frame	area, m ²	1.0	180.0	1,100	850	0.4	3
Filters							
Plate and frame	capacity, m3	0.4	1.4	76,000	54,000	0.5	
Vacuum drum	area, m ²	10.0	180.0	-45,000	56,000	0.3	
Fumaces							
Cylindrical	duty, MW	0.2	60.0	53,000	69,000	0.8	
Box	duty, MW	30.0	120.0	7,000	71,000	0.8	
Packings							
304 ss Raschig rings	m ³			0	3,700	1.0	
Ceramic intalox saddles	m ³			0	930	1.0	
304 ss Pall rings	m ³			0	4,000	1.0	
PVC structured packing	m ³			0	250	1.0	
304 ss structured packing	m ³			0	3,200	1.0	4
Pressure vessels							
Vertical, cs	shell mass, kg	150.0	69,200.0	-400	230	0.6	5
Horizontal, cs	shell mass, kg	250.0	69,200.0	-2,500	200	0.6	
Vertical, 304 ss	shell mass, kg	90.0	124,200.0	-10,000	600	0.6	5
Horizontal, 304 ss	shell mass, kg	170.0	114,000.0	-15,000	560	0.6	
Pumps and drivers							
Single-stage centrifugal	flow Liters/s	0.2	500.0	3,300	48	1.2	
Explosion-proof motor	power, kW	1.0	2,500.0	920	600	0.7	
Condensing steam turbine	power, kW	100.0	20,000.0	-19,000	820	0.8	
Reactors							
Jacketed, agitated	volume, m ³	0.5	100.0	14,000	15,400	0.7	
Jacketed, agitated, glass-lined	volume, m ³	0.5	25.0	13,000	34,000	0.5	
Tanks							
Floating roof	capacity, m3	100.0	10,000.0	53,000	2,400	0.6	
Cone roof	capacity, m3	10.0	4,000.0	5,700	700	0.7	
Trays							
Sieve trays	diameter, m	0.5	5.0	100	120	2.0	6
Valve trays	diameter, m	0.5	5.0	130	146	2.0	6
Bubble cap trays	diameter, m	0.5	5.0	200	240	2.0	6
Utilities							
Cooling tower & pumps	flow liters/s	100.0	10,000.0	61,000	650	0.9	7
Packaged mechanical refrigerator	evaporator duty, kW	50.0	1,500.0	4,900	720	0.9	
Water ion exchange plant	flow m ³ /h	1.0	50.0	6,200	4,300	0.7	

Figura 6 - Parâmetros para custo dos equipamentos (continuação)

3 DIMENSIONAMENTO E OTIMIZAÇÃO

3.1 Bombas

Para o transporte de fluidos ao longo da planta é necessária atingir as pressões requeridas para cada etapa do processo, no total foram necessárias 13 bombas do tipo. Para dimensionar as bombas utilizadas no processo, foram necessários vários dados fornecidos pela simulação no programa *AspenPlus*[®]. Desta forma, nesta parte terá os valores obtidos pela simulação e cálculos para o dimensionamento das bombas na planta.

Tabela 3 - Valor das variáveis de interesse para ao dimensionamento das bombas

Bomba	ΔP (bar)	$\rho (kg/m^3)$	F (kg/h)	h _{adm} (m)	h _{imp} (m)
B-0	5,00	794,34	1,61	3,00	15,91
B-1	5,84	794,34	1,84	5,58	3,00
B-2	5,49	801,31	1,69	3,00	21,33
B-3	6,10	994,92	1,67	3,45	26,25
B-4	4,07	981,95	1,77	10,35	3,45
B-5	5,71	1.199,84	0,26	3,00	17,63
B-6	4,65	1.399,48	0,18	3,27	8,03
B-7	2,69	733,63	0,11	3,16	28,19
B-8	3,92	1225,66	0,19	5,28	4,08
B-9	5,11	747,82	1,89	3,16	18,33
B-10	6,38	701,77	0,21	5,76	15,91
B-11	3,36	740,79	1,71	3,39	35,79
B-12	5,17	734,79	1,57	3,39	7,58

Os parâmetros das bombas começam a ser projetados a partir da diferença de pressão entre a admissão e impulsão da bomba. A primeira é relacionada à pressão de entrada e da carga hidrostática em função da força exercida pela coluna de líquido anterior ao bocal.

$$P_{adm} = \rho. g. h + P_{entrada} \tag{2}$$

Sendo ρ a densidade da corrente de líquido de entrada, g a aceleração da gravidade e h a altura do equipamento.

A partir dos cálculos com base na Equação 2, os valores de pressão de aspiração para cada uma das bombas podem ser calculados.

Já a pressão de impulsão é a soma da pressão da coluna com a pressão hidrostática exercida pela altura de líquido da coluna inteira somada à suspensão do equipamento seguinte e a perda de carga.

$$P_{imp} = \rho. g. h + P_{saida} - \Delta P_{tubos}$$
 (3)

Em que ΔP_{tubos} que representa a perda de carga devido a tubulação, admite valores entre 0,05 e 0,1.Nesse caso, as perdas de carga estão relacionadas não somente à tubulação, mas também equipamentos, como trocadores de calor. Logo, consideram-se as perdas de carga devido a tubulações igual a 0,1 e de trocadores de acordo com a diferença de pressão entre as correntes anteriores e seguintes ao trocador, e calcula-se as contribuições de pressão utilizando a altura dos equipamento e de sua elevação com base na Equação 2.

Além disso, P_{saída} é a pressão da corrente de saída da bomba segundo o AspenPlus[®].

Para que não haja cavitação na bomba, é necessário que sua pressão de admissão seja maior do que a de vapor do líquido. Equacionando esse cuidado, a carga líquida positiva de sucção (NPSH) disponível deve ser maior do que o requerido para o sistema. Em que P_{vap} é a pressão de vapor da mistura da corrente de entrada.

$$NPSH(m) = \frac{(P_{adm} - P_{vap}) \cdot \rho}{10} \tag{4}$$

Tendo a diferença de pressão (ΔP) a qual a bomba está submetida é sobredimensionada em 10% para prevenção a possíveis variações, o cálculo da potência absorvida da bomba é possibilitado através da vazão volumétrica da corrente de entrada. A potência absorvida é calculada por meio da Equação 5:

$$Wa = \frac{F \cdot \Delta P}{27.4} \tag{5}$$

Em que ΔP é a diferença entre a pressão de admissão e de impulsão do equipamento, F é a vazão de impulsão e 27,4 é uma constante de proporcionalidade para correção da diferença dimensional utilizada.

Porém, o consumo de energia é maior devido à eficiência de cada bomba, necessitando-se assim de uma correção, logo pode-se calcular a potência hidráulica pela Equação 6. Por sua vez, a potência do motor se dá pela Equação 7:

$$W_{hidr\'aulico} = \frac{Wa}{\eta_{hidr\'aulico}} \tag{6}$$

$$W_{motor} = \frac{W_{hidr\'aulico}}{\eta_{motor}} \tag{7}$$

Nesse tipo de processo, a rotatividade das bombas é consideravelmente alta, de modo que devem ser orçados dois aparelhos para que, caso um falhe, o processo não seja interrompido por muito tempo, devido à rápida substituição da reserva. Consequentemente, o custo das bombas, que é dividido em custo da centrífuga e do motor de explosão, é multiplicado por dois.

$$C_C = 6900 + 206.F^{0,9} (8)$$

$$C_M = -950 + 1770. W_{motor}^{0,6} (9)$$

$$C_{bombas} = 2.\left(C_C + C_M\right) \tag{10}$$

$$Imobilizado_{bomba} = 4,74. C_{bombas}$$
 (11)

Tabela 4 - Custo das bombas

Bombas	Custo (R\$)
B-0	91.312,66
B-1	93.177,36
B-2	92.153,53
B-3	92.804,73
B-4	90.669,54
B-5	85.539,29
B-6	84.671,75
B-7	73.729,89
B-8	84.571,83
B-9	92.445,51

	· ~ · ·	~ \
- 1	Ontinui	7000
- ((Continue	иш

Bombas	Custo (R\$)
B-10	85.361,18
B-11	82.909,66
B-12	91.343,58

3.1.1 Custos Operativos

A energia elétrica requisitada pela bomba é precificada em uma função direta à potência, de modo que:

$$C_{eletr}(R\$) = 0.15.8000.15.W_{motor}$$
 (12)

 $\mbox{Em que } 8000 \ \mbox{\'e tempo de operação anual para uma projeção de 15 anos e 0,15 \ \mbox{\'e o preço do} \\ \mbox{kW}.$

Tabela 5 - Custos total com os serviços auxiliares em 15 anos

Bombas	Custo em 15 anos (R\$)
B-0	10.960,46
B-1	14.624,06
B-2	12.573,31
B-3	13.866,97
B-4	9.772,79
B-5	2.032,86
B-6	1.126,56
B-7	848,36
B-8	1.032,94
B-9	13.148,62
B-10	1.834,10
B-11	16.091,13
B-12	11.018,59

3.2 Compressor

O compressor possui a função de impulsionar o 2-butanol em sua forma gasosa desde o vaporizador até o superaquecedor, anterior ao reator, na planta em questão. Este equipamento tem seus parâmetros de dimensionamento dados pelo software de simulação *AspenPlus*® que estão explicitados na tabela abaixo.

Tabela 6 - Valor das variáveis de interesse para ao dimensionamento do compressor K-1

Variável	Valor	Unidade
Pe	2,19	kg/m³ g
Os	1,94	$kg/m^3 g$
M	1,46	ton/h
W_r	2,31	kW

O custo do compressor é calculado por

$$C = a + bW_r^{0,6} \tag{13}$$

Em que W_r é a potência. Desta forma os parâmetros para o cálculo do custo do compressor estão na Tabela 7.

Tabela 7 - Valor das variáveis de interesse para ao dimensionamento do compressor K-1

Parâmetro	Valor	Unidade
a	8.400,00	
b	3.100,00	
С	13.160,14	US\$ 2017

3.3 Trocadores de Calor

O sistema de troca térmica da planta é composto por 10 trocadores de calor, 4 destes associados às colunas de destilação, nos quais ocorre transferência de calor entre dois fluidos que estão a temperaturas diferentes. Para determinar o tipo de equipamento mais adequado ao processo, deve-se levar em consideração fatores como: pressões e temperaturas de operação, propriedades dos fluidos de processo e vazão de escoamento. [22]

Os trocadores de calor utilizados no projeto possuem contato indireto entre os fluidos, ou seja, o fluxo de calor entre os fluidos quente e frio ocorre através de uma superfície que impede a sua mistura, e são do tipo tubular, classificados como trocadores de casco-tubo ou de tubos concêntricos. [30]

No trocador de tubos concêntricos, também chamado de tubo duplo, um dos fluidos escoa pelo tubo interno, enquanto o outro escoa pela parte externa entre os tubos em direção oposta. Este tipo de equipamento é de simples manutenção e é indicado para áreas de troca térmica de até 10 m². [30]

Já o trocador de casco-tubo é constituído por tubos, por onde passa um dos fluidos, que são envolvidos por uma carcaça, de forma que o outro tubo passa pelo espaço intermediário. Estes são utilizados nas mais diversas condições operacionais, como altas pressões e temperaturas, grande área de troca requerida, fluidos viscosos, corrosão, entre outras. Os trocadores de calor nos quais não houve cruzamento de temperatura possuem apenas uma carcaça e são do tipo 1-2, ao passo que os trocadores onde observou-se essa situação têm duas carcaças e são do tipo 2-4. [30,31]

3.3.1 Descrição Dos Equipamentos

O trocador E-01 é um preaquecedor de tubos concêntricos, cuja função principal é promover o aquecimento da corrente de alimentação composta por sec-butanol. Pelos tubos temos o vapor de aquecimento, a baixa pressão, passando à 218 °C, e pelo casco passa a corrente de alimentação que será aquecida de 35,32 °C a 100 °C, a uma pressão de 3,5 bar, sem que ocorra mudança de fase. Os tubos são de aço inoxidável 304. Para o vapor de aquecimento consideramos o coeficiente de deposição igual à $r_q = 0,0013 \ hm^2$ °C/kcal, enquanto para a corrente de

alimentação consideramos $r_f = 0,0002 \ hm^2$ °C/kcal, por ser considerado um solvente orgânico. O fator de correção neste caso é considerado igual a 1.

O vaporizador E-02 é um trocador de calor do tipo casco-tubos de modelo AEP, escolhido desta forma por apresentar um alto valor de variação de temperatura, que aquecerá a corrente de alimentação de 100 °C até 158,29 °C. Para isso, será utilizada a corrente que sai do reator a 450 °C para promover o aquecimento da corrente de alimentação, que então deixará o vaporizador a uma temperatura de 195,23 °C. A corrente quente passa pelos tubos, de configuração triangular, enquanto a corrente de alimentação, composta apenas por sec-butanol, passa pela carcaça. Os tubos são de aço inoxidável 304. Para a corrente quente que adentra o vaporizador consideramos coeficiente de deposição igual à $r_q = 0,0002 \ hm^2$ °C/kcal, por ser uma corrente de solvente orgânico evaporando e para a corrente fria temos rf = 0,0002 hm^2 °C/kcal por ser composto orgânico sem mudança de fase. O fator de correção neste caso é Ft=0,999.

O trocador E-03 é um superaquecedor de casco-tubos do tipo BEM, cuja função principal é promover o aquecimento da corrente de alimentação que entrará no reator. Pelos tubos, de configuração triangular e aço inoxidável 304, temos a corrente de vapor superaquecido de 5444,08 kg/h, a 39,65 bar, passando a 460 °C e saindo a 376,42 °C, e pelo casco passa a corrente de alimentação que será aquecida de 161 °C à 446 °C. Foi considerado um coeficiente de deposição igual à $r_f = 0,0002 \ hm^2$ °C/kcal para a corrente fria e $r_f = 0,0013 \ hm^2$ °C/kcal para a corrente quente. O fator de correção neste caso é considerado igual a 0,999.

O trocador E-04 é um cooler de casco-tubos do tipo AES, resfriando a corrente que alimenta a coluna de absorção de 195,72 °C para 29,58 °C, com coeficiente de deposição igual à r_q = 0,0002 hm^2 °C/kcal. A corrente quente passa pelos tubos, de configuração triangular e aço inoxidável 304. A água de refrigeração entra na carcaça a 24 °C e a deixa a 45,18 °C, não havendo mudança de fase, de forma que podemos considerar o coeficiente de deposição igual à r_f = 0,000235 hm^2 °C/kcal e F_t=1. Percebe-se que se for utilizado um trocador tipo 1-2, haverá cruzamento de temperaturas, assim foi escolhido utilizar duas carcaças em série (2-4) para evitar esse problema.

O trocador E-05 é um preaquecedor de tubos concêntricos, cuja função principal é promover o aquecimento da corrente de produto destinada à primeira coluna de destilação. Para isso, será aproveitado o calor da corrente de fundo da primeira coluna de destilação. Pelos tubos temos o reciclo do fundo da primeira coluna de destilação entrando a 140 °C e saindo a 35 °C e

pela carcaça passa a corrente de produto, que será aquecida de 27,05 °C a 101,89 °C. Para o reciclo consideramos um coeficiente de deposição igual à $r_q = 0,0002 \ hm^2$ °C/kcal, enquanto para a corrente de produto consideramos rf = 0,0002 hm^2 °C/kcal, por ser considerado um composto orgânico. O fator de correção é considerado igual a 1.

O condensador E-06 é um trocador casco-tubos do tipo AES que condensa a corrente de topo da primeira coluna de destilação, composta principalmente por MEK, que passa pelos tubos dispostos em configuração triangular. A corrente é resfriada de 94,71 °C até 86,30 °C com coeficiente de deposição de $r_q = 0,0002 \ hm^2$ °C/kcal. A água de refrigeração escoa pela carcaça entrando de a °C e saindo a 45 °C com rf = $0,00235 \ hm^2$ °C/kcal.

O refervedor E-07 é um casco-tubos tipo AKT que vaporiza a corrente de fundo da primeira coluna de destilação, composta por TCE, que passa pela carcaça, sendo aquecida de 145 °C a 147,49 °C com coeficiente de deposição de rf = 0,0002 hm^2 °C/kcal . O vapor de aquecimento passa pela tubos a 218 °C com rq = 0,0013 hm^2 °C/kcal , sem que haja mudança de fase, portanto F_t =1.

O trocador E-08 é um preaquecedor de tubos concêntricos, cuja função principal é promover o aquecimento da corrente de produto destinada à segunda coluna de destilação. Para aquecer a corrente, será utilizado o produto de topo da segunda coluna de destilação. Assim, pelos tubos, de configuração triangular e também de aço inoxidável 304, temos o produto de topo, composta principalmente por MEK, passando à 78,98 °C e saindo à 30 °C, e pela carcaça passa a corrente de produto que será aquecida de 27,74 °C a 69,75 °C. Para a corrente quente consideramos um coeficiente de deposição igual à $r_q = 0,0002 \ hm^2$ °C/kcal, enquanto para a corrente fria consideramos $r_f = 0,0002 \ hm^2$ °C/kcal, por ambos serem considerados solventes orgânicos. O fator de correção é considerado igual a 1.

O condensador E-09 é um casco-tubos AES o qual condensa a corrente de topo, composta por MEK, da segunda coluna de destilação. Pelo lado dos tubos passa a corrente de produto de topo da coluna que será resfriada de 88,68 °C até 78,95 °C com coeficiente de deposição de r_q = 0,0002 hm^2 °C/kcal. Pela carcaça passará a água de refrigeração a uma temperatura de 24 °C e com r_f = 0,000235 hm^2 °C/kcal. O fator de correção é considerado igual a 1.

O refervedor E-10 é um trocador de casco-tubos do tipo AKT que vaporiza a corrente de fundo da segunda coluna de destilação, rica em sec-butanol. O vapor de aquecimento passa a 218 °C pelos tubos, enquanto a corrente de processo, que passa pela carcaça, é aquecida de 114,76 °C

a 116, °C. A corrente fria possui coeficiente de deposição igual à $r_f = 0,0013 \ hm^2$ °C/kcal, enquanto a corrente quente $r_q = 0,0002 \ hm^2$ °C/kcal. O F_t possui valor igual à 1.

3.3.2 Dimensionamento dos trocadores de calor

No dimensionamento dos trocadores de calor tem-se como objetivo determinar a área de troca térmica. Para isso, utiliza-se a equação geral de um trocador de calor. [31]

$$Q = UAF_t \Delta T_{ml} \tag{14}$$

Em que Q é o fluxo de calor trocado, U é o coeficiente global de transferência de calor, F_t é o fator de correção, A corresponde à área de troca térmica e ΔT_{ml} é a temperatura média logarítmica, calculada por meio da Equação 15 [31].

$$\Delta T_{ml} = \frac{(t_1 - T_2) - (t_2 - T_1)}{\ln \frac{(t_1 - T_2)}{(t_2 - T_1)}}$$
(15)

Em que *t* é correspondente às temperaturas do fluido quente, T corresponde às temperaturas do fluido frio, e o subscrito 1 refere-se à entrada e o 2, à saída.

O coeficiente global de transferência de calor (U) é calculado a partir dos coeficientes de deposição, dos fluidos de processo (r_q para o quente e r_f para o frio), que estão diretamente ligadas aos coeficientes individuais de transferência de calor dos fluidos quente e frio (h_q e h_f , respectivamente), de acordo com a Equação 16. [31]

$$\frac{1}{U} = \frac{1}{h_q} + \frac{1}{h_f} + r_q + r_f \tag{16}$$

Para a determinação dos coeficientes citados acima, dispomos da Tabela 8 e da Tabela 9.

 ${\bf Tabela~8~-~Valores~aproximados~dos~coeficientes~individuais~de~troca~t\'ermica}$

Valores Aproximados dos h (kcal/hm ² °C)				
Sem Mudança de Fase				
Água 5.700				
Gases	125			

(Continuação)

Sem Mudança	Sem Mudança de Fase				
Solventes Orgânicos	1.350				
Hidrocarbonetos	325				
Produtos Cond	lensando				
Vapor de Água	9.500				
Solventes Orgânicos	1.550				
Hidrocarbonetos Leves	1.450				
Hidrocarbonetos Pesados	175				
Produtos Evap	Produtos Evaporando				
Vapor de Água	6.850				
Solventes Orgânicos	1.000				
Hidrocarbonetos Leves	1.100				
Hidrocarbonetos Pesados	150				
Tabela 9 - Valores dos coeficientes de deposição					
Coeficiente de Deposição (hm²°C/kcal)					
Fluídos Limpos	0,00015				
Fluídos Sujos	0,00120				
Água de Refrigeração	0,00020				

O fator de correção (F_t) foi estipulado utilizando as Figuras 7 e 8, para trocadores de calor dos tipos 1-2 e 2-4, respectivamente. Para trocadores de tubos concêntricos, considera-se F_T igual a 1. Conhecendo-se as temperaturas de entrada e saída dos fluidos quentes e frios, podem ser calculados os fatores P e P0, e então estipular graficamente o valor de P1.

0,00015

Vapor de Água

$$P = \frac{t_1 - t_2}{T_1 - t_1} \tag{17}$$

$$R = \frac{T_1 - T_2}{t_2 - t_1} \tag{18}$$

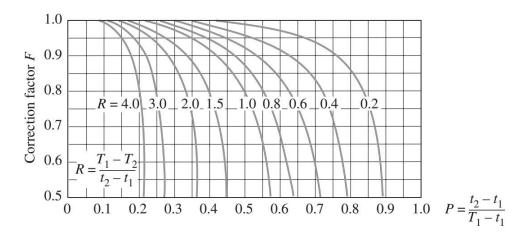


Figura 7 - Fator de correção para trocador de calor de casco-tubo do tipo 1-2 [31]

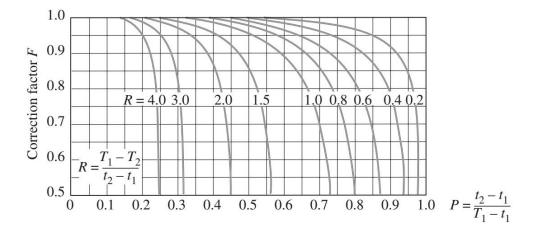


Figura 8 - Fator de correção para trocador de calor de casco-tubo do tipo 2-4 [31]

Para calcular o fluxo de calor trocado (Q) num trocador de calor, primeiramente, deve-se observar se há apenas variação na temperatura das correntes, onde será considerado o calor sensível do fluido (C_p) ou se ocorre uma mudança de fase no processo, que necessitará de ser considerando então o calor latente (C_1). Deve-se levar em consideração também a vazão mássica da corrente (m). É necessário considerar apenas uma das correntes que passam pelo trocador, e para obter Q por meio dos calores sensível e latente utiliza-se as Equações 19 e 20, respectivamente.

$$Q = mc_p \Delta T \tag{19}$$

$$Q = mc_l (20)$$

A partir da área de troca térmica encontrada é possível determinar o número de tubos (N_t) como é indicado pela equação abaixo.

$$N_t = \frac{A}{A_t} \tag{13}$$

Em que A_t é a área de cada tubo, que é calculada a partir de seu diâmetro (D_t) e comprimento (L_t) por meio da Equação 22. Para efeito de projeto, considera-se o sobredimensionamento de segurança em 110% para o cálculo da área final do trocador de calor.

$$A_t = \pi D_t L_t \tag{22}$$

Por fim, o custo é calculado em dólares Gulf, com base no ano de referência de 2007, como já foi mostrado anteriormente, onde a é igual a 24000, b é igual a 46 e n é igual a 1,2.

O valor deve ser atualizado para o ano de 2017, conhecidos o CEPCI dos anos de 2006 e 2017, que são 525,4 e 567,5 respectivamente, e multiplicado por 4,74 para considerar os custos da instrumentação e anexos ao equipamento. O cálculo da conversão de custos considerando os valores dos CEPCI é mostrado abaixo. A Tabela 10 mostra os resultados obtidos.

Tabela 10 - Parâmetros dos trocadores de calor

Equipamento	Q (Gcal/h)	U (kcal/hm ² °C)	Área (m²)
E-01	0,08	162,50	3,40
E-02	0,23	250,88	5,83
E-03	0,25	162,50	24,00
E-04	0,27	1.155,94	5,98
E-05	0,01	162,50	3,24
E-06	0,05	676,70	0,64
E-07	0,51	636,29	0,65
E-08	0,03	162,50	41,09
E-09	0,64	787,03	12,78
E-10	0,66	740,47	6,65

Tabela 11 - Investimento dos trocadores de calor

Trocador	Investimento	
Trocador	(R\$ 2017)	
E-01	163536,34	
E-02	455878,26	
E-03	448729,50	
E-04	456207,98	
E-05	165145,90	
E-06	449294,39	
E-07	471774,31	
E-08	2062998,83	
E-09	467033,57	
E-10	502408,20	

Os custos de água de refrigeração, vapor de aquecimento de baixa pressão foram calculados com base nos preços de 0,12 R\$/m³, 25,96 R\$/ton. Para o vapor de aquecimento de alta pressão utilizado exclusivamente no superaquecedor e no reator, consideramos o preço de 37 R\$/ton. Considera-se para o cálculo do consumo anual, a aproximação do tempo de operação de cada equipamento dentro da indústria como 8000 h de operação. A Tabela 12 mostra os resultados dos custos dos serviços auxiliares.

Tabela 12 - Custo dos serviços auxiliares

Trocador	Água de refrigeração em 15 anos (US\$)	Vapor de aquecimento em 15 anos (US\$)
E-01	-	511.383,30
E-02	-	-
E-03	-	24.171.715,20
E-04	184.441.019,80	-
E-05	-	-
E-06	19.286,92	-
E-07	-	216.804,77
E-08	-	-
E-09	307.986,37	-
E-10	-	3.132.303,20

3.4 Reator

A seleção de um sistema de reação que opere da maneira mais segura e mais eficiente pode ser a chave para o sucesso ou o fracasso econômico de uma planta química. ^[26] O reator onde se desenvolve a reação é tubular de leito fixo com catalisador e isotérmico. O sec-butanol, que entra superaquecido na temperatura de 450°C, é convertido no catalisador de óxido de zinco-latão em etil-metil-cetona, produto de interesse, hidrogênio e outros produtos. A reação se caracteriza como catalítica sólido-gás, portanto, as moléculas de gás de sec-butanol têm que interagir com a superfície sólida do catalisador para que a reação aconteça.

Esta é endotérmica, e pelo fato do reator ser isotérmico, tem-se vapor superaquecido a 540°C agindo como fonte energética para deste. Então, o projeto se assemelha a um trocador de casco e tubo, onde no tubo ocorre a reação e no casco passa o vapor que garante a transferência de calor.

A Tabela 13 indica as especificações de projeto e a Tabela 14 indica as especificações do catalisador.

Tabela 13 - Especificações de projeto do reator

Parâmetro	Valor
T _r	450 °C
$P_{\mathrm{sec,0}}$	3 bar
$P_{vapor\ superaquecido}$	40 bar
$T_{ m vapor\ superaquecido,0}$	540 °C
X_{Sec}	0,9

Tabela 14 - Especificações de projeto do catalisador

Parâmetro	Valor	
Área superficial	$40 \text{ m}^2/\text{g}$	
D_{cat}	0,046 m	
ε	0,4	

A cinética é representada pela equação abaixo:

$$r_{sec} = \frac{C'(P_{sec} - P_{MEK} \cdot P_{H}/K)}{P_{MEK}(1 + K_{sec} \cdot P_{sec} + K_{cat} \cdot P_{sec}/P_{MEK})}$$
(23)

Onde as pressões são determinadas pelas Equações 24 a 26 e as demais constantes pelas Equações 27 e 30.

$$P_{sec} = P_{sec.0}(1 - x_{sec}) (24)$$

$$P_{MEK} = P_{sec.0} \cdot \chi_{sec} \tag{25}$$

$$P_H = P_{sec.0} \cdot x_{sec} \tag{26}$$

$$\ln C' = \frac{-13732.6}{T_{r_I}} + 19,4891 \tag{27}$$

$$\ln K_{sec} = \frac{-7886,35}{T_{r'}} + 12,0448 \tag{28}$$

$$\ln K_{cat} = \frac{1119,06}{T_{r'}} - 0,45315 \tag{29}$$

$$\ln K = \frac{-6424,21}{T_{r'}} + 1,510 \ln T_{r'} + 4,3081 \tag{30}$$

Ao avaliar a cinética de reação e balanço de massa de reator tubular, dada pela Equação 31, para a conversão de 0,90, obtemos 95,03 m² de área superficial de catalisador necessária.

$$\frac{A_{sup}}{F} = \int_0^{0.9} \frac{dx_{sec}}{r_{sec}} \tag{31}$$

Sabendo que 17,3 ft² de área de catalisador equivale a 1 ft de altura de reator ^[27], é possível definir a altura do reator, 5394 m. A partir da configuração do reator usado, de diâmetro de 3 pol, para definir a equivalência anterior, estima-se o volume do reator, usando a equação abaixo.

$$V = \frac{\pi \cdot L_r \cdot D^2}{4} \tag{32}$$

Dessa forma, tem-se um reator de 24,60 m³. A partir desse volume, é necessário encontrar a relação comprimento e diâmetro que seja economicamente mais viável. A configuração multitubular pode ser avaliada como estratégia de dimensionamento do reator.

Foi escolhido que o reator projetado suporte queda de pressão máxima de 0,15 bar, verificado através da equação de Ergun para leito fixo ^[28], mostrada na Equação 33, e é necessário respeitar a limitação de L/D >20. ^[29]

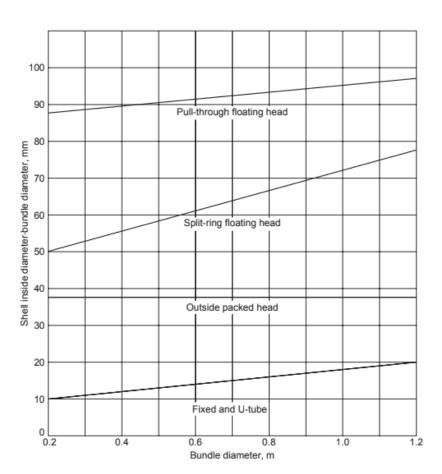
$$\left(150 \cdot \frac{\mu_M}{D_{cat}^2} \cdot \frac{(1-\varepsilon)^2}{\varepsilon^3} \cdot v_o + 1,75 \cdot \frac{\rho_M}{D_{cat}} \cdot \frac{(1-\varepsilon)}{\varepsilon^3} \cdot v_o^2\right) L = \Delta P \tag{33}$$

Assim análise do ótimo econômico é feita variando diâmetro dos tubos do reator e o número de tubos. Vale ressaltar que o sobredimensionamento é feito em 20% do valor do diâmetro dos tubos.

O custo completo dessa operação é feito a partir do peso do reator, levando em consideração o peso dos tubos e da carcaça, o custo do catalisador e do vapor, que são necessários para operacionalização. Para determinar o custo do reator se usa a equação já descrita anteriormente, onde a variável S neste caso é representada pelo peso e os parâmetros a, b e n são respectivamente -2500, 200 e 0,6. Para definir o peso temos que:

$$W = 24.6 \cdot D \cdot (L + 0.8.D)(e + X) \cdot N_t \tag{34}$$

O fator de complexidade X assume valor 4 e a espessura pode ser calculada por:


$$e = \frac{P_{proj} \cdot D/2 \cdot 1000}{1055 \cdot 0.85 - 0.6 \cdot P_{proj}} + 6 \tag{35}$$

A sobre-espessura assume o valor de 6 devido a presença de hidrogênio e a pressão de projeto é o máximo entre o aumento de 10% pressão do vapor e a adição de 1,8. No tubo, o diâmetro assume valores que cumpram a especificação de L/D citada anteriormente e temos o acréscimo de 30% do valor devido a necessidade de o tubo ser de aço inoxidável.

Para custo da carcaça também usa o método de Lang, S ainda representa o peso e os parâmetros assumem os valores de -400, 230 e 0,6, visto que o material é aço carbono, e temos definido por:

$$W = 24.6 \cdot D \cdot (L + 0.8.D)(e + X) \tag{36}$$

No diâmetro da carcaça, usa-se a abordagem de trocador de calor, então é preciso considerar o diâmetro dos tubos, o número de tubos e o espaçamento entre eles, como expresso na Equação 37, considerando que todo o tubo está trocando calor. Este foi definido a partir da Figura 9 variando em torno de 0,89 e 0,95 mm de espaçamento.

$$D_c = (N_t + 1) \cdot E' + (D_t \cdot N_t) \tag{37}$$

Figura 9 - Relação de espaçamento entre os tubos e a carcaça [22]

O fator de complexidade X assume valor 4 e a espessura pode ser calculada pela Equação 38, com sobre-espessura de 3:

$$e = \frac{P_{proj} \cdot D/2 \cdot 1000}{1055 \cdot 0.85 - 0.6 \cdot P_{proj}} + 3 \tag{38}$$

O custo do catalizador é definido pela massa utilizada, que é obtida a partir da equação:

$$W_{cat} = \frac{A_{sup,c}}{40} \cdot \frac{1 \, lb}{453,592 \, g} \tag{39}$$

$$C = C_{cat} \cdot W_{cat} \tag{40}$$

Sendo 40 a relação de área superficial em m² e gramas de catalisador. O valor da grama de catalisador, C_{cat}, foi estimado, de acordo com Towler, em 1 U\$/lb^[22]. Como o tempo de operação da planta é de 15 anos, o custo total de catalisador pode ser expresso por:

$$C = 15(1W_{cat}) \quad (US\$) \tag{41}$$

Para um cálculo de melhor aproximação é preciso considerar o esgotamento do catalisador, que vê do ciclo de vida do catalisador, entretanto, não foi encontrado tais dados na literatura sobre o catalisador usado neste trabalho para realizar o cálculo desta forma.

Primeiramente, para o cálculo custo do vapor superaquecido é definido através da simulação do *AspenPlus*[®], o calor fornecido para a reação, Q_r, de 237995,45 kcal/h, e como não há mudança de fase, este pode ser expresso pela Equação 4, onde o Q assume Q_r e m, m_v.

Sendo a diferença de temperatura definida para entrada e saída do vapor superaquecido, 540°C e 460°C. A partir da Equação 4, pode ser encontrado o fluxo mássico de vapor utilizado, m_v, em kg/h, e a partir do tempo de produção de 8000h/ano e uso durante 15 anos, temos o fluxo mássico total usada pela operação da planta. Assim, o custo do vapor foi calculado com base no preço de vapor superaquecido de alta pressão de 37 R\$/ton.

Em todos os custos aplica-se o CEPCI para 2017, obtendo o valor atual da operação do reator em dólar e é convertido para reais, assim obtém a estimativa do valor total do investimento necessário para operação do reator da planta.

As configurações analisadas foram para número de tubos igual a 1,2,5,10 e 15, podem ser vistas na Figura 10, e foi possível decidir o ótimo econômico está no cenário de um tubo e diâmetro de 1,15824 m e os dados estão expostos na Tabela 15.

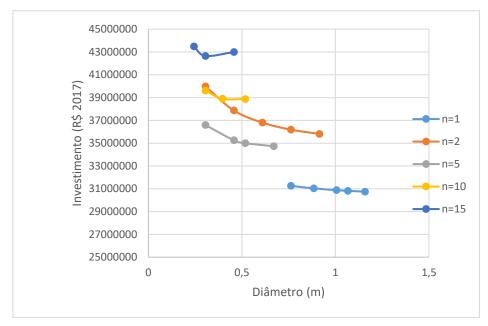


Figura 10 - Comparação entre as configurações do reator

Tabela	15 -	Cer	nários par	a um	tubo
•		-	T	4.0	

Diâmetro Número		Comprimento do	Investimento	Investimento total	
	do tubo	reator	reator	(R\$ 2017)	
	(m)	(m)	(R\$ 2017)	(K\$ 2017)	
	1,16	23,34	4.542.832,00	30.749.063,00	
	1,07	27,52	4.580.338,00	30.819.975,00	
1	1,01	30,95	4.612.904,00	30.880.054,00	
	0,88	40,08	4.699.874,00	31.037.881,00	
	0,76	53,94	4.824.307,00	31.261.736,00	

Tendo o ótimo definido podemos especificar o real dimensionamento do casco a partir do calor necessário, que pode ser expresso pela Equação 42, apresentada da seguinte maneira:

$$A = \frac{Q_r}{U \cdot \Delta T_{ml}} \tag{42}$$

$$L_c = \frac{A}{\pi \cdot D_c} \tag{43}$$

O coeficiente de global de troca térmica é obtido na literatura^[22]. Portanto, a carcaça tem cumprimento de 5,37 m. Repetindo o processo de cálculo de custo do casco temos o custo final do ótimo, como mostra a Tabela 16.

Tabela 16 - Reator otimizado

Número	Diâmetro	Comprimento	Investimento	Investimento	Investimento
Número de tubos	do tubo	do reator	do tubo	dos cascos	total
de tubos	(m)	(m)	(R\$ 2017)	(R\$ 2017)	(R\$ 2017)
1	1,16	23,34	4.542.832,00	910.941,56	29.625.505,78

3.5 Vaso Flash

O vaso flash posterior ao reator de leito fixo que faz um atalho de parte da corrente de produto diretamente para a purificação da segunda destilação foi dimensionado também como um recipiente vertical.

Com a equação empírica de York, é possível calcular a velocidade limite para que não haja arraste no destilador, relacionando as densidades da fase gasosa, líquida e constante dependente da tensão superficial e viscosidade do líquido "k", a qual tem um valor típico de 0,23. A última constante, 0,3048, é correspondente à transformação de unidade de ft para m.

$$v_{lim} = k \sqrt{\frac{\rho_L - \rho_G}{\rho_G}} \cdot 0,3048 \tag{44}$$

Nessa equação, V_{lim} é a velocidade limite, em m/s, ρ_L é a densidade da fase líquida, ρ_G é a densidade da fase vapor, ambas em kg/m3. Com v_{lim} , é calculada a área mínima da seção transversal da coluna de destilação, dada pela razão entre o fluxo mássico, em m³/s, e a velocidade limite, em m/s.

$$S_{min} = \frac{F}{v_{lim}} \tag{45}$$

Na qual F é vazão volumétrica de vapor. Com a área mínima, encontra-se o diâmetro mínimo da coluna pela relação geométrica:

$$D = \sqrt{\frac{4 \cdot S}{\pi}} \tag{46}$$

Para determinar a altura necessária para manter um certo volume de líquido no vaso separador, utiliza-se a vazão de líquido que vai para o equipamento, considerando um tempo de residência (τ) de 10 minutos:

$$V_{iitil} = F \cdot \tau \tag{47}$$

Assim, a altura do vaso flash pode ser calculada através da relação geométrica com o diâmetro e área utilizando com o diâmetro calculado adicionada de 1,95 metros que é o padrão para recipientes separadores que utilizam *demisters* para evitar arraste de líquido, como é ilustrado na seguinte figura:

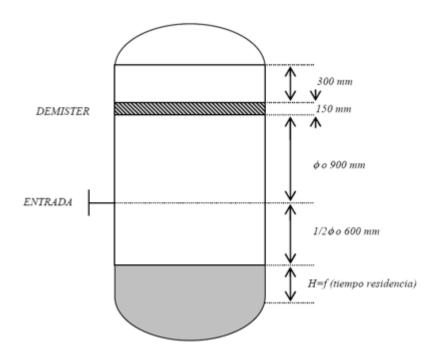


Figura 11 - Cálculo da altura de recipientes separadores com demisters

$$H = \frac{V_{\text{útil}}}{S} + 1,95 \tag{48}$$

Para o cálculo de espessura, peso do tanque e custo de colunas verticais, utilizam-se as seguintes equações:

$$e = \frac{P_D(\frac{D}{2})1000}{S_T E - 0.6 P_D} + C.A. \tag{49}$$

$$W = 24,6D(H + 0,8D)(e + X)$$
(50)

$$C_C = -400 + 230. W^{0,6} (51)$$

Sendo P_D a pressão de desenho, a qual é correspondente à pressão da coluna acrescida de $1,75~kg/cm^2$ ou $3,5~kg/cm^2$ caso o ajuste de pressão siga menor do que esse valor, S_T é um parâmetro adimensional equivalente a 1055~para aço-carbono a pressão e temperatura moderada, E igual a 0,85, C.A. a sobre-espessura de corrosão, a qual foi selecionada como 6 mm por se tratar de um equipamento de aço inox e X é o fator de complexidade que é correspondente a 4 em casos complexos como esse. $^{[22]}$

O custo de carcaça vertical calculado na equação acima tem valores empíricos para dólares americanos no ano de 2006. Devido à presença do gás hidrogênio, o equipamento deve ser feito de

aço inox, de modo que foi usado um fator de conversão de 1,3 para ajuste de preço do material e corrigido para a moeda brasileira, como já explicado.

Assim, obteve-se os seguintes parâmetros para esse recipiente separador:

Tabela 17 - Dimensionamento do vaso flash

Grandeza	Valor	Grandeza	Valor
$\rho_L (\mathrm{kg/m^3})$	801,31	F (m ³ /h)	212,49
$\rho_G (\mathrm{kg/m^3})$	0,49	H (m)	2,42
K	0,23	e (mm)	11,45
v_{lim} (m/s)	2,83	W (kg)	38.024,97
D (m)	9,77	C _c (R\$ 2017)	2.204.602,51

3.6 Coluna de Absorção

A absorção é uma operação unitária de transferência de massa em que uma corrente gasosa é purificada por associação das partículas de um gás com as de um sólido ou líquido. Este processo é largamente utilizado para purificar misturas de gases, concentrar gases e separar compostos de alta toxicidade.

A absorção pode ser realizada em colunas com recheio ou coluna de pratos. Neste trabalho optou-se por utilizar coluna de recheio pois a queda de pressão na fase gasosa e o tempo de retenção de líquido são menores do que em coluna de pratos; não há a necessidade de refrigerar o líquido; não há correntes secundárias. [32] Além disso, o cálculo do diâmetro mínimo requerido para a queda de pressão estabelecida foi mais favorável à escolha de uma coluna de absorção de recheio, já que para diâmetros menores (menores que 0,6m) fazem com que pratos se tornem difíceis de se instalar e caros. [22]

A coluna C-2 existe no sistema no intuito de executar a primeira etapa de separação para concentrar a metil-etil-cetona. A corrente gasosa de MEK, H₂ e restante do sec-butanol que não reagiu no reator R-1 separada no interior vaso Flash C-1 é introduzida na coluna pelo fundo a 25°C e o solvente de tratamento, pelo topo a 24°C. O solvente em questão é água destilada. No interior da coluna as duas fases entram em contato entre elas pelo auxílio do recheio, em que se transfere o MEK para a água, concentrando o H₂ na fase gasosa. Assim, pelo fundo, em fase líquida, saem, em fração mássica, MEK a 4,28% com Sec-butanol a 0,13% em água (95,6%) e pelo topo saem gás hidrogênio (85%). Este H₂ será armazenado e vendido. A corrente líquida é canalizada à coluna de extração para a próxima etapa de purificação do produto.

A água destilada foi selecionada como solvente ao invés do etanol, sugerido para essa separação. Essa escolha foi feita no intuito de poupar uma etapa de purificação que existiria na planta, em que se separaria MEK do etanol. A água destilada produz uma purificação de eficiência próxima à produzida com a utilização do álcool etílico.

A coluna de absorção usada neste projeto foi dimensionada de acordo com o procedimento descrito no Capítulo 11 do livro *Chemical Engineering Design*, de Gavin Towler e Ray Sinnott. O diâmetro mínimo da coluna, para início do dimensionamento, foi calculado com base na Equação de York, e em seguida utilizado para projeto de velocidade limite e área transversal de coluna também citada anteriormente para colunas verticais.

A partir do valor encontrado, que foi favorável ao dimensionamento de uma coluna de recheio, escolheu-se o recheio não ordenado constituído de selas Intalox de cerâmica, uma vez que os componentes que entram em contato com este recheio são de natureza corrosiva.

Assim, pelos métodos de Cornell e Onda, valores tabelados, gráficos, relações, chega-se aos valores e constantes para o cálculo da altura de recheio da coluna. Em cada um dos métodos calcula-se um valor de H_{OG} e elege-se o maior entre eles para o projeto, que foi o valor obtido pelo método de Cornell.

Assim, foi possível encontrar o valor da altura de recheio. Para se chegar ao valor do diâmetro (capacidade) da coluna correlaciona as vazões de líquido e vapor, propriedades físicas do sistema, características do recheio, porcentagem de inundação e queda de pressão por altura de recheio. Essas são as relações:

$$V_{W}^{*} = \left[\frac{K_{4 \text{ inundação}} \rho_{V}(\rho_{L} - \rho_{V})}{13.1 F_{p}(\mu_{L} / \rho_{L})^{0,1}} \right]^{\frac{1}{2}}$$
 (52)

$$\%_{\text{flooding}} = \sqrt{\frac{K_{4 \text{ desenho}}}{K_{4 \text{ inundação}}}} \times 100\%$$
 (53)

Sendo A área de seção transversal, determinada por:

$$S = \frac{G_{\rm m}\rho_{\rm V}}{V_{\rm w}^*} \tag{54}$$

$$D_{\text{coluna}} = \sqrt{\frac{4.S}{\pi}} \times 1.2 \tag{55}$$

Assim,

$$N_{OG} = \frac{1}{\left(1 - \frac{m'G_{m}}{L_{m}}\right)} \ln \left[\left(1 - \frac{mG_{m}}{L_{m}}\right) \frac{y_{1}}{y_{2}} + \frac{m'G_{m}}{L_{m}} \right]$$
 (56)

$$H_{\text{recheio}} = H_{\text{OG}} N_{\text{OG}} \tag{57}$$

A altura total da coluna é calculada contabilizando 0,91 metro de carcaça acima e abaixo do recheio, além da altura de acúmulo de líquido ao fundo da coluna, baseada no volume líquido de saída retido em um tempo de residência de 10 minutos.

$$H_{Liq} = \frac{F_{saida liq} \times 10min}{S}$$
 (58)

$$H_{Total} = H_{Lig} + H_{recheio} + 2 \times 0.91m$$
 (59)

A otimização do equipamento foi realizada fazendo-se os cálculos de custo a partir do equipamento dimensionado primordialmente. Fixando-se a porcentagem de inundação no interior da coluna e seu diâmetro, para que assim, outros parâmetros pudessem ser recalculados.

A otimização é feita pelo cálculo do equipamento que opere no ótimo econômico, considerando seus serviços auxiliares. O preço do equipamento é obtido em função do seu peso (W) em kg que por sua vez depende da espessura (e) do recipiente em mm, por meio das equações 49, 50.

$$C = -10000 + 600W^{0,6} \tag{60}$$

Ainda com o auxílio do software de simulações AspenPlus®, foi realizada a simulação da planta com a coluna de absorção de 10, 12, 14, 16, 18, 20 e 22 pratos teóricos, para que então fossem recalculados os custos de equipamento e água em 15 anos. O preço por metro cúbico de água é de aproximadamente US\$ 0,45. Assim, abaixo está expressa a variação deste custo de acordo com o número de pratos.

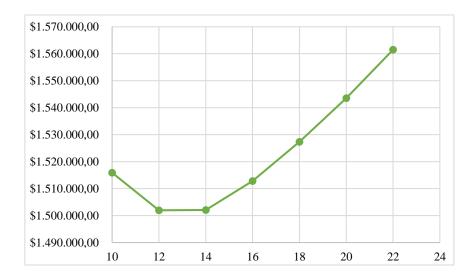


Figura 12 - Custo total do equipamento em 15 anos, em reais, pelo número de pratos teóricos

O valor total orçado para este equipamento em seu ótimo econômico, calculado para 15 anos de uso, foi de R\$ 1.387.837,63, sendo R\$ 1.217.491,63 o investimento na compra da carcaça e recheio. Vendo-se que o ótimo da coluna de absorção reside na casa dos 12 pratos teóricos, os

parâmetros de dimensionamento foram recalculados para esse valor. Assim, chega-se aos valores de projeto da coluna de absorção organizados na tabela a seguir.

Tabela 18 - Parâmetros de dimensionamento

%flooding	Nog	H _{OG} (m)	D _{coluna} (m)	Hrecheio (m)	HLíq (m)	H _{Total} (m)	ΔP/ H _{recheio} (mmH ₂ O/m)
54,35	10,64	0,71	0,43	7,65	14,69	24,17	186,63

3.7 Coluna de Extração

A extração é um processo utilizado para separação de constituintes com diferentes graus de solubilidade. Com duas fases de composições diferentes, pode ocorrer a transferência de componentes de uma para a outra. Neste projeto, uma coluna de extração é inserida logo após o processo de absorção, para separar a corrente de água e a corrente orgânica, que tem como principal componente a metil-etil-cetona, utilizando 1,1,2-tricloroetano como solvente.

A corrente que deixa o absorvedor, por possuir menor densidade, é alimentada no fundo da coluna e o 1,1,2-tricloroetano, por sua vez, entra pelo topo, arrastando a MEK até a parte inferior da coluna, onde será recuperada. A figura a seguir mostra uma representação esquemática do processo.

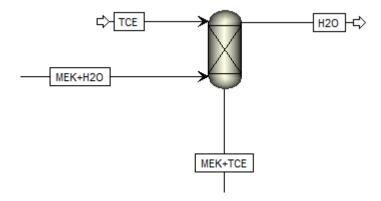


Figura 13 - Esquema da coluna de extração C-2

O modelo de coluna de extração escolhido foi o de torre agitada pois é o equipamento de aplicação típica para compostos orgânicos^[23] e adequado para processos que não necessitam de tempo de contato mínimo e tem um número considerável de estágios^[22]. Esse modelo conta um eixo acoplado a impelidores e anéis estabilizadores em sua carcaça para promover melhor mistura dos fluxos ao atravessarem o equipamento.

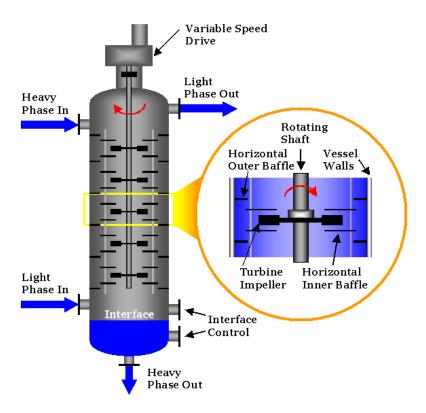


Figura 14 - Estrutura de uma coluna de extração tipo Scheibel

Existem três escalas fundamentais a serem determinadas para projetar uma coluna de extração: seu diâmetro, altura da torre e pressão de operação. O diâmetro pode ser calculado através da Equação 61.

$$D = \sqrt{\frac{F_{leve} + F_{pesada}}{\bar{L}}} \tag{61}$$

Sendo F_{leve} , F_{pesada} e \overline{L} vazão da fase leve (m³/h), vazão da fase pesada (m³/h) e capacidade de líquido das correntes combinadas (m/h), respectivamente. Para esse último item, o valor máximo é de 30,48 m/h^[23], o qual é utilizado para o projeto. Esse valor foi sobredimensionado em 20% por questões de segurança do processo.

Já para o dimensionamento de altura do equipamento, é levado em conta alguns pontos. O primeiro é a quantidade de pratos, que foi otimizada para reduzir o custo do processo e estrutura utilizando o software *AspenPlus*®, considerando a eficiência dos mesmos para esse tipo de coluna, que em média é dita como 90%^[23], de modo que a quantidade de pratos teóricos é dividida por 0,9 para se obter a quantidade de pratos reais. Possuindo o número de pratos reais (Np), é calculada a extensão do meio da coluna pelo espaçamento entre os pratos, dado como 0,4572 m para torre

agitada^[23], multiplicando esse valor por Np - 1. Em seguida adiciona-se o valor da altura de topo e de fundo, necessária devido ao acúmulo de fluidos no equipamento, que se encontra em uma faixa de 10 a 15% da altura dos pratos da coluna. Nesse projeto consideraremos cada altura, de topo e de fundo, como 10%. Desse modo a altura é reduzida matematicamente à equação:

$$H = H_{topo} + H_{fundo} + (N_p - 1)L_p \tag{62}$$

Uma vez que o modelo de coluna de extração escolhido para o processo foi o de torre agitada, deve-se adequar variáveis com tipo de impelidor, rotação do eixo acoplado ao rotor e potência requerida pela agitação para futura contabilização de gastos variáveis de energia elétrica. Para sistemas líquido-líquido, são utilizados os rotores tipo turbina Rushton^[24], o qual estará presente em cada prato da coluna, caracterizando uma espécie de torre agitada chamada coluna Scheibel.

Figura 15 - Rotor tipo turbina Rushton

Uma vez simulado o processo com o auxílio do software *AspenPlus*[®], é possível saber, através da ferramenta virtual, as densidades das correntes de entrada, assim como suas quantidades molares, que resultam nas frações molares da mistura. Com esses dados, obtém-se a densidade média da mistura, através da seguinte equação:

$$\rho_M = \rho_C \phi_C + \rho_D \phi_D \tag{63}$$

Em que "C" é relacionado à fase contínua e "D" à dispersa, que são as fases com maior e menor quantidade de soluto, respectivamente. Por não se tratar de um composto puro na fase dispersa, as propriedades dessa corrente são retiradas da simulação virtual no software *AspenPlus*®.

Utilizando a mesma referência de fases, para se calcular a viscosidade dinâmica média da mistura para um tanque com chicanas, que é o caso da coluna de extração devido aos anéis estabilizadores, temos a seguinte equação^[24]:

$$\mu_M = \frac{\mu_C}{\phi_C} \left(1 + \frac{1.5\mu_D \phi_D}{\mu_C + \mu_D} \right) \tag{64}$$

Possuindo a altura e o diâmetro da coluna, pode-se calcular o volume aproximado da coluna de extração e com ele, através do gráfico de seleção de rotores adaptado de Rase [24], descobrir a rotação do rotor do extrator "N", que, para esse processo, foi selecionada como 420 rpm.

A potência impelida por cada estágio de mistura da torre agitada em W pode ser traduzida pela seguinte equação^[25]:

$$P_{imp} = 1.85 N_p \left(\frac{D_r^5 \rho_M N^3}{g_c} \right) \tag{65}$$

Em que gc é a constante gravitacional considerada como 1 (kg.m)/(N.s).

O cálculo de espessura (e), peso (W) e consequentemente custo da carcaça (C_C) dos equipamentos de separação é semelhante, de modo que são descritos, também, pelas Equações 49, 50 e 51:

$$C_C = -400 + 230. W^{0,6} (66)$$

Sendo P_{proj} a pressão de projeto, a qual é correspondente à pressão da coluna acrescida de $1,75 \text{ kg/cm}^2$ ou $3,5 \text{ kg/cm}^2$ caso o ajuste de pressão siga menor do que esse valor, S_T é um parâmetro adimensional, equivalente a 1055 para aço-carbono a pressão e temperatura moderada, E igual a 0,85, C.A. a sobre-espessura de corrosão, a qual foi selecionada como 3 mm por se tratar de um equipamento de aço-carbono e X é o fator de complexidade que é correspondente a 4 em casos complexos como esse $^{[22]}$.

O custo relacionado aos pratos da coluna se relaciona com o valor do diâmetro da torre e o investimento soma os custos de carcaça e de pratos, ajustando esses valores com um fator de correção.

$$C_p = 100 + 120 \cdot D^2 \tag{67}$$

$$C_T = 4.74(C_C + N_P \cdot C_P) \tag{68}$$

Desse modo, os custos relacionados à coluna de extração se relacionam com o custo da carcaça do equipamento, o custo do solvente consumido que deve ser acrescido à entrada de reaproveitamento provindo da coluna de destilação seguinte, o custo do rotor e eixo de impelidores e o custo da energia elétrica gasta em função dessa agitação.

A otimização desse equipamento é feita simultaneamente à da destilação C-3, uma vez que a coluna seguinte à extração C-2 é quem dita o refluxo do solvente 1,1,2-tricloroetano. Desse modo, na próxima seção será explicado o processo de identificação de ótimo desse sistema integrado como um todo, variando número de pratos de ambas as colunas e refluxo na destilação.

Assim, dimensionando o equipamento em todas as variáveis explicitadas acima, obteve-se os seguintes parâmetros:

Parâmetro Valor Unidade Parâmetro Valor Unidade m^3/h Fpesada 0,17 990,61 kg/m^3 ρ_M m^3/h cР Fleve 1,77 0,92 μ_M Ī. 3,59 30,48 m/h e mm D W 0,30 m 298,43 Kg 10 W 88,05 N_p pratos Pimp Η 5,03 C_{C} 24.005,27 R\$ 2017 m P_{D} 3,50 402,30 R\$ 2017 bar C_{P} D_{r} 0,10 C_{T} 132.853,85 R\$ 2017 m

Tabela 19 - Parâmetros da coluna de extração.

O custo do equipamento, contando o custo da carcaça, pratos, energia elétrica e solvente, em um horizonte de 15 anos é de R\$ 5.745.703,49.

3.8 Colunas de Destilação

Para o projeto da coluna de uma coluna de destilação, deve-se levar em consideração os custos do equipamento, relativo à carcaça e os pratos, assim como os custos associados ao funcionamento da coluna, relativo ao condensador, refervedor, recipiente pulmão e bomba, e serviços auxiliares de aquecimento, resfriamento e eletricidade.

Para isso, alguns parâmetros iniciais são calculados pelo software *AspenPlus* ®. O número mínimo de pratos, a razão de refluxo mínima, a alimentação ótima, e alguns outros parâmetros são estimados através das equações de Winn-Underwood-Gilliland. [33] Como dados de entrada, são especificadas as taxas de recuperação dos componentes-chave (*key components*) e pressões no topo e fundo da coluna. Através da equação de Fenske, é estimado o número mínimo de estágios, pela equação de Underwood estima-se a razão de refluxo mínima, a correlação de Gilliland é utilizada para correção do número de estágios dado uma razão de refluxo.

Como esse método utiliza algumas simplificações, como a equimolaridade de transbordamento, esses valores obtidos são utilizados como estimativas iniciais para os cálculos rigorosos, cujos resultados serão utilizados para calcular o ótimo.

3.8.1 Equações de dimensionamento

A velocidade limite para que não ocorra arrase de líquido pelo vapor ascendente na coluna é calculada pela equação de York, como já feito anteriormente, e com ela calculado o diâmetro mínimo da coluna, conforme as equações 44, 45 e 46 que, por questões de segurança é sobredimensionado em 20%.

Para determinar a altura necessária para manter um certo volume de líquido no fundo da coluna, utiliza-se a vazão de líquido que vai para o refervedor, considerando um tempo de residência (τ) de 10 minutos:

$$V_f = Q_f \cdot \tau \tag{69}$$

Assim, a altura do fundo pode ser calculada através da relação geométrica com o diâmetro e área calculada (SS) com o diâmetro sobredimensionado:

$$H_f = \frac{v_f}{s_s} \tag{70}$$

O espaçamento entre os pratos é de 0,46 m, com exceção do prato de alimentação, cujo espaçamento é 0,91 m. Além disso, há um espaçamento de 0,91 m entre o primeiro prato e o topo da coluna, e de 0,61 m entre o último prato e a altura de líquido retido no fundo da coluna, para retorno do vapor. Logo, a altura da coluna é dada pela seguinte equação, na qual NP é o número total de pratos:

$$H_t = (NP - 1) \cdot 0.46 + 0.61 + 2 \cdot 0.91 + H_f \tag{71}$$

A espessura da carcaça (e), é calculada com base na pressão de desenho (P_d) e o diâmetro, pela Equação 66, considerando uma sobre-espessura de corrosão de 3 mm, característica do açocarbono. Com esse parâmetro, estima-se o peso da coluna (W) e o custo da carcaça vertical (C_{Cv}) .

Além disso, também é calculado o custo unitário do prato valvulado, utilizado na coluna, com base no diâmetro da coluna, através da fórmula:

$$Custo_{prato} = 130 + 146 \cdot D^2 \tag{72}$$

3.8.2 Coluna de destilação C-4

A primeira coluna de destilação opera recuperando o solvente utilizado na extração. O produto de fundo, composto majoritariamente por 1,1,2-tricloroetano, é utilizado para preaquecer a alimentação desta coluna e é retornado ao pulmão L-4, enquanto o produto de topo, composto majoritariamente por metil-etil-cetona, 2-butanol e água é destinado à segunda coluna de destilação, para a purificação final do produto.

Para a indicação de ótimo econômico do sistema envolvendo a coluna de extração C-3 e a destilação sequente C-4, sendo o equipamento que promove o reaproveitamento de solvente 1,1,2-tricloroetano, foi feita uma espécie de iteração entre os dimensionamentos dos dois aparelhos. A princípio foram dimensionadas as torres de extração e volume de solvente necessário para a desidratação da corrente de produto provinda da coluna de absorção. Foram dimensionados extratores variando o número de estágio entre 2 e 21, calculando seus respectivos custos, incluindo o da carcaça, o de eletricidade gasta na agitação do líquido e o de solvente novo incluído na entrada da fase pesada em um horizonte de 15 anos de funcionamento de planta. Como foi fixada a taxa de recuperação de 1,1,2-tricloroetano, as dimensões da coluna foram o fator determinante para os custos da coluna, com o custo aumentando com o número de pratos.

Para cada um desses extratores, foi estimado o número de pratos necessário da destilação C-4 para a recuperação mínima de 99% do 1,1,2-tricloroetano, de forma a minimizar os custos de solvente, e em seguida orçados os preços de carcaça e de funcionamento, no mesmo horizonte anterior. O número de pratos mínimos estimado para a separação foi de 22 pratos, considerando eficiência de 0,7 para cada prato.

A soma dos custos desses dois equipamentos, para cada número de pratos correspondente do extrator, transformados adequadamente para os valores de dólar de 2017 e em seguida para reais, indicou um ótimo para a coluna de extração.

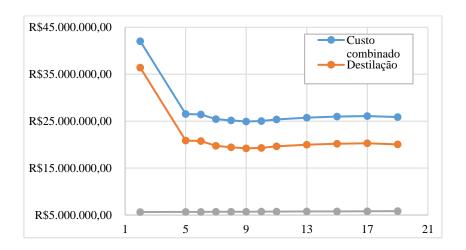


Figura 16 - Determinação do ótimo da coluna de extração

Uma vez que o extrator ótimo foi apontado, com 9 pratos, foi otimizada individualmente a coluna de destilação C-4. Para isso foi variada a quantidade de pratos de 22 a 47 e consequentemente o refluxo correspondente necessário para que a separação atingisse o nível demandado de recuperação do solvente. A partir disso, foram somados os custos de equipamento e variáveis da primeira destilação da planta, estes últimos sendo relativos ao vapor utilizado na recirculação da substância, e assim encontrado o número ótimo de pratos através do menor valor de custo no horizonte determinado, que no caso foi 40 pratos.

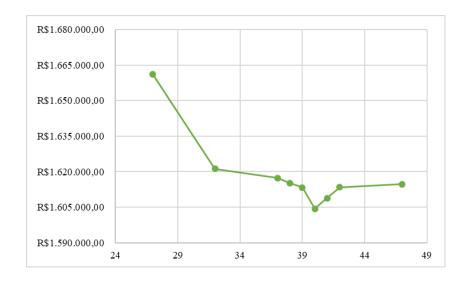


Figura 17 - Determinação do ótimo da coluna de destilação C-4

Além disso, variando-se o estágio de alimentação, foi encontrado o ótimo para a entrada.

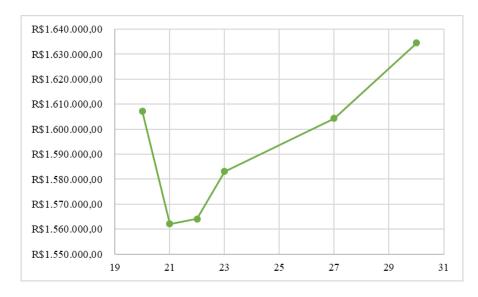


Figura 18 - Determinação da alimentação ótima da coluna de destilação C-4

As dimensões obtidas para dimensionamento da coluna estão descritas na tabela abaixo.

Tabela 20 - Parâmetros de dimensionamento da coluna C-4

Parâmetro	Valor	Parâmetro	Valor
$F_L (m^3/h)$	0,27	τ (min)	10
$F_G(m^3/h)$	66,72	$H_{T}(m)$	25,19
$\rho_L (kg/m^3)$	726,68	E (mm)	3,37

			(Continuação)
Parâmetro	Valor	Parâmetro	Valor
$\rho_G (kg/m^3)$	4,07	W (kg)	876,73
v_{lim} (m/s)	0,93	C _C (\$)	47.144,44
D (m)	0,19	C _P (\$)	19.612,15
N_P	40	C _T (R\$)	66.756,60

3.8.3 Coluna de destilação C-5

A segunda coluna de destilação é a última etapa do processo de produção da etil-metil-cetona. A principal separação que ocorre nessa coluna é entre o nosso produto de interesse, a etil-metil-cetona e o s-butanol. A metil-etil-cetona, que possui ponto de ebulição menor que o s-butanol, é retirada pelo topo da coluna, com pureza mínima de 99,7% m/m, contendo 2-butanol, água e traços de 1,1,2-tricloroetano, e é utilizada para preaquecer a alimentação dessa coluna.

Pelo fundo, é retirado o 2-butanol que não foi convertido em etil-metil-cetona não reagido, junto com MEK, 1,1,2-tricloroetano e traços de água. Essa corrente é reciclada, sendo bombeada para o pulmão L-1 de todo o processo, junto com a corrente de alimentação de s-butanol.

A corrente de alimentação entra na coluna a 2 bar e 71,69 °C, preaquecida pelo produto de topo da coluna.

Para o dimensionamento da coluna, os cálculos utilizados são similares à coluna de destilação C-4, calculando-se a velocidade limite para que não ocorra arrase de líquido, pela equação de York, mostrada na Equação 44 seguido pelo cálculo do diâmetro mínimo pela equação 46 e da altura da coluna, considerado os espaçamentos entre os pratos, e as alturas entre o primeiro prato e o topo, entre o último prato e altura de líquido no fundo, assim como a altura do líquido presente no fundo da coluna. Assim, é calculada a espessura da coluna, o peso e o custo da carcaça e dos pratos, pelas equações 49, 50, 51 e 72.

Os parâmetros iniciais de quantidade de pratos e razão de refluxo, obtidos pela simulação não-rigorosa pelo software *AspenPlus*®.

Parâmetro	Valor
Número mínimo de estágios	19
Razão de refluxo mínima	1,357
Porcentagem de pratos na seção de enriquecimento	56%

Esses valores correspondem a uma eficiência de 100% para cada prato. Considerando que serão utilizados pratos valvulados, com eficiência média (η) de 70%, o número mínimo de pratos reais é dado por:

$$N_{min,R} = \frac{N_{min}}{\eta} = \frac{18,804}{0,70} + 2 = 24,006 \tag{14}$$

Para a otimização da coluna de destilação, foi fixada a fração mássica mínima de 99,7% m/m de etil-metil-cetona, com produção mínima de 1250 kg/h do produto final, variando-se, então, a quantidade de pratos e a razão de refluxo. Dessa forma, levou-se em consideração os gastos com equipamentos para essa destilação – coluna, recipiente pulmão, trocadores de calor e bomba – e os gastos com serviços auxiliares – vapor, água de resfriamento e eletricidade. A partir dos resultados obtidos pelo software de simulação *AspenPlus*®, os gastos foram calculados de forma semelhante aos dos trocadores de calor e bombas.

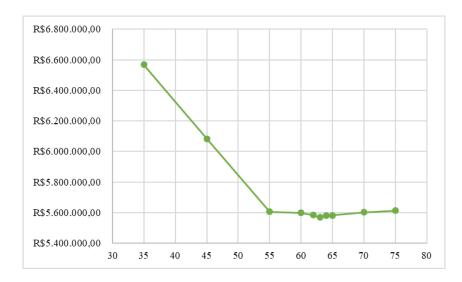


Figura 19 - Determinação do ótimo da coluna C-5

O ótimo econômico foi obtido com 63 pratos, e, em seguida, foi determinado o prato de alimentação ótima.

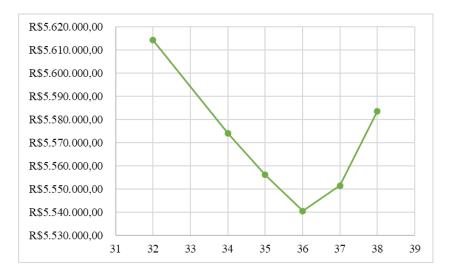


Figura 20 - Determinação da alimentação ótima da coluna de destilação C-5

As dimensões obtidas para dimensionamento da coluna estão na tabela abaixo.

Valor **Parâmetros** Valor **Parâmetros** $F_L (m^3/h)$ 10 4,16 τ (min) F_G (m³/h) 1246 $H_{T}(m)$ 32,79 $\rho_L (kg/m^3)$ 728,9 E (mm) 4,37 $\rho_G (kg/m^3)$ 3,4 5436,85 W (kg) $v_{lim} (m/s)$ 1,017 $C_{C}(R\$)$ 143.785,25 0,79 D(m) $C_P(R\$)$ 49.685,31

63

 N_{P}

Tabela 22 - Parâmetros de dimensionamento da coluna C-5

O produto final obtido tem composição de 99,7% de pureza, o que permite vendê-lo a um preço um pouco acima do valor de mercado.

 $C_T(R\$)$

193.470,55

Tabela 23 - Composição do produto de topo

Componente	Vazão mássica (kg/h)	Fração mássica (%)		
Metal-etil-cetona	1.246,88	99,75		
2-butanol	2,75	0,22		
Água	0,37	0,03		
1,1,2-tricloroetano	3,4E-7	2,7E-10		
Total	1.250,00	100		

3.9 Reservatórios e Pulmões

Os tanques de armazenamento ou pulmões são recipientes que armazenam matérias-primas, substâncias intermediárias do processo ou produtos finais. Esses reservatórios auxiliam a independência setorial do processo fazendo com que ele opere de modo seguro e contínuo, pois garantem menor oscilação de vazão para os equipamentos sequentes. [34]

O dimensionamento desse recipiente é feito projetando um volume total equivalente ao dobro do acúmulo de líquido no tempo de retenção do pulmão específico. No tanque de armazenamento, a vazão de líquido de entrada é igual à de saída, de modo que, a soma das vazões volumétricas de saída, ou a de entrada, multiplicada pelo tempo de retenção representa o volume útil, que de fato é preenchido. Entretanto, por questões de segurança, esse volume é dobrado para que variações de vazão não inundem o equipamento. O cálculo do volume total é traduzido na seguinte equação:

$$V_{Total} = Q_{in,total} \cdot 2 \cdot \tau \tag{15}$$

Sabendo que esse tipo de recipiente é geralmente em formato cilíndrico, temos a relação entre o comprimento e o diâmetro L/D. Esse parâmetro é variado para achar o ótimo econômico em função do custo da carcaça do pulmão, que é calculado do mesmo modo que a carcaça de recipientes separadores, através das Equações 49, 50, 51. Essa relação deve variar entre 2 e 5 para recipientes reguladores e valores menores do que 1 para recipientes de armazenamento, de modo que os valores inteiros desse intervalo são simulados, encontrando assim a escolha mais adequada pela ótica financeira. Para obtermos o diâmetro do tanque de armazenamento, que será usado em sequência para o cálculo do custo desses reservatórios, e o custo dos recipientes horizontais foram utilizadas as seguintes equações:

$$D = \sqrt[3]{\frac{4V_{Total}}{\pi \cdot \frac{L}{D}}} \tag{74}$$

$$C_{Ch} = -2500 + 200W^{0,6} (75)$$

Nesse projeto, os tanques de armazenamento estruturados são os referentes às alimentações inicial, anterior ao primeiro trocador de calor, e ao vaso que guarda produto final, MEK em alta pureza. Esses equipamentos são dimensionados como tanques de teto flutuante por, tanto o 2-butanol e a metil-etil-cetona, serem líquidos com alta pressão de vapor. O tempo de retenção

utilizado no primeiro tanque de 2-butanol foi de 7 dias, pensando na logística de abastecimento dos fornecedores. O de armazenamento de produto final foi de 24 horas por precaução de parada de planta para que o envase siga de modo constante e o abastecimento do mercado não pare. O recipiente de armazenamento de H₂ resultante da absorção não foi dimensionado pois a fábrica canalizará diretamente o produto para uma indústria vizinha que utilize o insumo, com o auxílio de um medidor de vazão para cobrança da matéria-prima, onde ele será armazenado adequadamente. Para o tanque de armazenamento inicial, de sec-butanol, e final, de metil-etil-cetona, é utilizada a seguinte equação de custo, que é relacionada ao volume total, de modo que não é otimizado de acordo com a relação L/D, tomada como 1.

$$C_{arm} = 53000 + 2400 \cdot V_{total}^{0,6} \tag{76}$$

Os vasos que contém sec-butanol, água e 1,1,2-tricloroetano, por serem classificados como recipientes reguladores, são horizontais, entretanto suas dimensões são calculadas analogamente aos recipientes verticais. Os pulmões foram dimensionados para 20 minutos pela margem de segurança. Os recipientes de refluxo das colunas de destilação são tratados na seção específica dos destiladores desse trabalho. As vazões totais volumétricas dos recipientes inicial, de sec-butanol, de água, de 1,1,2-tricloroetano e de produto final são respectivamente 1,61 m³/h, 1,83 m³/h, 1,67 m³/h, 0,37 m³/h e 1,57 m³/h.

A seguir, temos a otimização dos recipientes de acordo com a variação da relação entre o comprimento ou altura sobre o diâmetro:

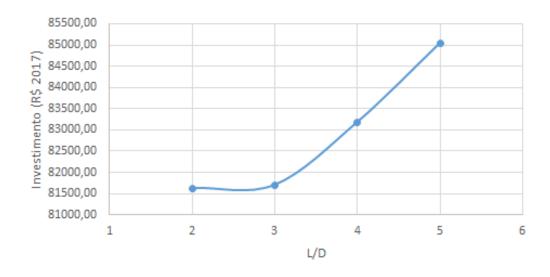


Figura 21 - Otimização do recipiente regulador de alimentação de sec-butanol

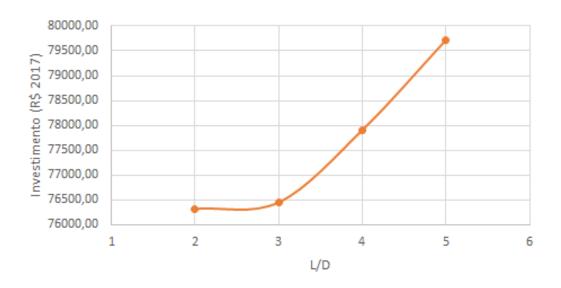


Figura 22 - Otimização do recipiente regulador de água de alimentação da coluna de absorção

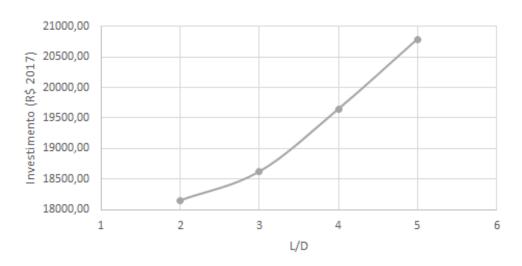


Figura 23 - Otimização do recipiente regulador de 1,1,2-tricloroetano de alimentação da coluna de extração

Desse modo, calculando o custo do recipiente como um recipiente ou carcaça de coluna, temos os seguintes investimentos em reais no ano de 2017 para diferentes relações entre comprimento e diâmetro:

Assim, as dimensões dos recipientes verticais e horizontais são as seguintes:

Tabela 24 - Dimensões de vasos verticais e horizontais

Material	Inicial	sec-	Água	1,1,2-	MEK
Armazenado	Illiciai	butanol	Destilada	tricloroetano	NILK
H/L (m)	8,83	1,84	1,78	1,07	4,58
D (m)	8,83	0,92	0,89	0,54	4,58
e (mm)	20,27	4,80	4,74	4,05	11,96
W (kg)	76.925,31	397,27	369,44	121,16	12.951,10
C _C (R\$ 2017)	2.709.273,27	81.626,04	76.314,00	18.150,29	1.461.633,64

4 CONTROLE E SEGURANÇA

4.1 Controle

Um sistema de controle automático tem como objetivo manter as variáveis de um processo em um determinado valor. Essas variáveis podem ser temperatura, vazão, pressão e composição por exemplo. Ao manter tais variáveis em valores constantes é possível garantir a qualidade do produto e a produtividade, bem como a segurança do processo. [19]

O controle de um processo é realizado por meio de um conjunto de instrumentos. São eles medidores, transmissores, controladores, conversores e atuadores. Os medidores têm por função medir a variável em questão, como termopares e barômetros. O sinal medido polos medidores são transformados em sinal elétrico pelos transmissores e enviados ao controlador. Este que, por sua vez, determina a ação a ser tomada para que a variável medida alcance o valor desejado (*Set Point*). O sinal enviado pelo controlador chega ao atuador, modificando condições do processo. Alguns dos atuadores mais comuns são válvulas de controle e motores elétricos.

Os instrumentos utilizados são representados em um diagrama mecânico (*Piping and Instrumentation Diagram* ou P&ID) utilizando a simbologia normatizada pela Sociedade Internacional de Automação (ISA). A norma define as siglas usadas para cada instrumento, bem como deve ser feita a identificação de cada numerando os laços de controle. A Tabela 25 apresenta os instrumentos presentes na planta para produção da metil-etil-cetona.

Tabela 25 - Instrumentação utilizada

Variável	Indicador	Transmissor	Indicador/ Controlador	Válvula de Controle
Fluxo	FI	FT	FIC	FCV
Temperatura	TI	TT	TIC	TCV
Pressão	PI	PT	PIC	PCV
Qualidade	XI	XT	XIC	XCV

4.2 Alarmes e Sistema de Encravamento

Caso os laços de controle falhem em manter as condições dos processos, é necessário ter outras formas de garantir a segurança da planta. Utiliza-se alarmes sonoros e visuais para alertar os operadores de situações em que o processo desviou de suas condições normais chegando a apresentar riscos. Ao ser disparado, o operador deve realizar ações para retornar o processo à normalidade, como fechar ou abrir válvulas, desligar bombas. [22]

Os alarmes são acionados quando alguma variável chega em valores altos (AH), baixos (AL), muito altos (AHH) e/ou muito baixos (ALL). A Tabela 26 apresenta os alarmes utilizados em cada equipamento.

Tabela 26 - Alarmes utilizados

Variável	Alarmes	Instrumento	Equipamento
	LAL/LAH	LIC-002	L-01
	LAL/LAH	LIC-048	L-02
	LAL/LAH	LIC-064	L-03
	LAL/LAH	LIC-090	L-04
Nível	LAL/LAH	LIC-035	C-01
	LAL/LAH	LIC-039	C-02
	LAL/LAH	LIC-053	C-03
	LAL/LAH	LIC-073	C-04
	LAL/LAH	LIC-097	C-05
-	PAH/PAHH	PIC-015	R-01A
D ~	PAH/PAHH	PIC-024	R-01B
Pressão	PAH	PIC-059	C-04
	PAH	PIC-084	C-04
T	ТАН/ТАНН	TIC-016	R-01A
Temperatura	ТАН/ТАНН	TIC-025	R-01B

(continuação)

Variável	Alarmes	Instrumento	Equipamento
	FAL	FIC-012	R-01A
V ~-	FAL	FIC-021	R-01B
Vazão	FAL	FIC-064	C-04
	FAL	FIC-094	C-05

Os alarmes, entretanto, não são suficientes para garantir a segurança em uma falha de controle. Por depender de um operador, o tempo de resposta é maior ou pode não ocorrer resposta para normalização e, dependendo do processo, o perigo pode intensificar-se rapidamente. Portanto, são acrescentados aos alarmes, sistemas de encravamento. Os sistemas de encravamentos agem automaticamente fechando válvulas, desligando bombas e acionando sistemas de emergência. [22]

O sistema de encravamento é associado ao controlador por um seletor de muito alta (SHH) ou seletor de muita baixa (SLL). Por exemplo, se uma temperatura aumenta muito além do Set Point o seletor de muita alta temperatura (TSHH) aciona o sistema de encravamento cortando o fornecimento de calor. Os sistemas de encravamento são representados em um P&ID pela sigla SE seguida de seu número de identificação.

4.3 Válvulas de Segurança

As válvulas de segurança são acopladas aos vasos como proteção contra aumento excessivo de pressão que pode levar a estouro ou explosão do mesmo. Quando a pressão de seu interior supera a pressão de projeto do vaso, a válvula estoura aliviando a pressão. O gás liberado pela válvula é encaminhado para uma tocha ou liberado para atmosfera. Condições de pressão elevadas podem ocorrer devido fogo externo ou condições do processo que gerem muito calor.^[20]

O dimensionamento de uma válvula é feito pela maior vazão mássica dentre todas as possibilidades de aumento de pressão. Em caso de fogo, é calculado a vazão do vapor gerado ao evaporizar o líquido acumulado no fundo do recipiente. Para isso é calculado o calor absorvido pela área molhada do recipiente. A área molhada (Aw) é dada por:

$$A_{w} = \pi \cdot D \cdot H_{liq} \tag{77}$$

Onde D é o diâmetro do vaso em metros e H_{liq} é a altura de liquido em metros. O calor absorvido (Q_{fogo}) em kcal/h é:

$$Q_{fogo} = 37139 \cdot A_w^{0,82} \tag{78}$$

A vazão mássica vai ser, então:

$$m_{fogo} = \frac{Q_{fogo}}{\lambda_{vap,fundo}} \tag{79}$$

Onde, $\lambda_{vap,fundo}$ é o calor latente de vaporização do liquido no fundo do vaso em kcal/kg.

Em caso de falha de refrigeração de uma coluna, a vazão de vapor gerado deve ser calculada para o condensador e refervedor. Para o refervedor utiliza-se:

$$m_{refe} = \frac{Q_{refe}}{\lambda_{vap,fundo}} \tag{80}$$

Onde Q_{refe} é o fluxo de calor do refervedor. Para o condensador:

$$m_{cond} = \frac{Q_{cond}}{\lambda_{van,tono}} \tag{81}$$

Onde Q_{cond} é o fluxo de calor do condensador e $\lambda_{vap,topo}$ é o calor latente de vaporização do liquido do topo.

Além dessas vazões, outra falha que pode aumentar pressão é caso haja bloqueio de válvula. Assim deve-se considerar também as vazões que saem do vaso por tais válvulas. A vazão mássica que a válvula de segurança deve suportar é a maior vazão das mencionadas anteriormente, uma vez que não consideramos falhas duplas.

4.4 Tubulação

As tubulações foram todas projetadas por meio de simulação no *software AspenPlus*® de forma que não haja uma perda de carga maior que 0,12 kg/cm². As correntes com presença de gás hidrogênio, possuem tubulações de aço carbono 304, uma vez que é um composto corrosivo. As demais tubulações são de aço carbono.

4.5 Tocha

A tocha tem como principal função converter vapores inflamáveis, tóxicos ou corrosivos em compostos degradáveis a partir da combustão destes. [3] ela também pode ser usada como estratégia final de segurança da unidade industrial, evitando que, em situações de anormalidades, tenha-se parâmetros com valores máximos que os admissíveis de operação.

O dimensionamento da tocha é feito considerando o caso maior crítico onde seria necessário queimar todas as correntes naturalmente gasosas da planta e as líquidas em a situação de fogo. Vale ressaltar que em caso de recipientes molhados pelo líquido e expostos ao fogo com coluna de líquido acima de 8 m o procedimento de segurança é responsabilidade dos bombeiros, portanto, estas correntes não entram para o dimensionamento. Dessa forma, temos a vazão total que pode ir a tocha representada por:

$$m_{tocha} = 2,2046 \left(\sum m_{vapor} + \sum m_{d,>8} \right)$$
 (82)

Com o auxílio do *AspenPlus*®, simula-se uma tubulação de 1300m, com vazão de entrada encontrada e encontra-se o diâmetro necessário para obter um diferencial de pressão de no máximo 0,2 bar. Assim, temos que o diâmetro da tocha é 14 in (1,167 ft). A partir da equação abaixo, é possível obter a altura da tocha:

$$H_t = -60 \cdot D_{tocha} + \sqrt{(120 \cdot D_{tocha})^2 - \left(\frac{4 \cdot \pi \cdot q_f \cdot x_f - 960 \cdot m_{tocha} \cdot \sqrt{M_{mistura}}}{\pi \cdot q_f}\right)}$$
(83)

$$H_{tocha} = 0.3048 \cdot H_t \tag{84}$$

A incidência e a distância, q_f e x_f , assumem valor típico de 1500 BTU/h.ft² e 20ft respectivamente. Assim a tocha desta planta química tem 34,31 m de altura.

5 FOLHA DE ESPECIFICAÇÃO5.1 Balanço de Massa

		PROJETO:	Produção de m	etil-etil-cetona	a partir de 2-bu	tanol	•	Balanços de cal	or e matéria
		UNIDA DE :						Pág. 1	de 1
	R						6		
_	e v			BAL	ANÇOS DE C	ALOR E MATE	ERIA		
1	٧				DADOS DE OBER	AÇÃO E VAZÕE	2		
2		CASO DE OPER	AÇÃO/DESENHO		DADOS DE OFEN	AÇAO E VAZOE	•		
3		Nº DE CORREN				1	2	3	4
4		DECODIOÃO				Entrada de s-	S-butanol para	D D 4	Estando E
5		DESCRIÇÃO				butanol	L-1	Para B-1	Entrada E-
6		PRESSÃO (1)			kg/cm² g	-0,014	-0,010	-0,014	2,504
7		TEMPERATURA			°C	24,000	24,000	33,874	33,873
8		VAZÃO TOTAL	•		kg/h	1297,000	1297,000	1464,065	1464,056
9 10		% VAPOR VAZÃO TOTAL	DE V/A DOD		%p kg/h	0	0	0	0
11		INCONDENSÁ			kg/n kg/h				
12		VAPOR DE A			kg/h				
13		HIDROCARBO			kg/h				
14		VAZÃO TOTAL	. DE LIQUIDO		kg/h	1297,000	1297,000	1464,065	1464,056
15		AGUA LIVRE			kg/h				
16		HIDROCARBO			kg/h				
17		ENTALPÍA TOTA			Gcal/h	-1,436	-1,436	-1,603	-1,603
18			ORROSIVOS, TÓX	ICOS	% p/ppmp	0	0	748	748
19		SÓLIDOS : QUA			%				
20 21		SÓLIDOS : DIAN	VI. PARTICULA	DD	Micras	SEVAPOR (Úmi	da)		
21 22		VAZÃO VOLUN	MÉTRICA @ D T	PR	m³/h	SE VAPOR (UM)	da)		
23			MÉTRICA @ (1 atm,	0°C)	Nm³/h				
24		PESO MOLECUL		0 0)	kg/kmol				
25		DENSIDADE @F			kg/m³				
26		DENSIDADE @(,		kg/Nm³				
27		VISCOSIDA DE			сP				
28		CONDUCTIVIDA	DE TÉRMICA @T		kcal/h m°C				
29		CALOR ESPECÍ	FICO @T		kcal/kg °C				
30			/IPRESIBILIDA DE @	P,T					
31		Cp / Cv							
32		ENTALPIA			Gcal/h	<u> </u>	<u> </u>		
33		\/	,	PRIEDADES FASE	_				4.040
34		VAZÃO VOLUM			m³/h	1,613	1,613	1,843	1,843
35 36		DENSIDADE @1	MÉTRICA @15°C		m³/h	1,604	1,604 804.287	1,809	1,809
36 37		DENSIDADE @ 1			kg/m³ kg/m³	804,287 808,803	808,803	794,343 809,252	794,339 809,253
38			CINEMÁTICA @T		cSt	3,956	3,956	2,760	2,756
39			DE TÉRMICA @T		kcal/h m°C	0,116	0,116	0,115	0,115
40	-	CALOR ESPECÍ			kcal/kg °C	0,752	0.752	0.756	0,756
41		TENSÃO SUPER			dinas/cm	23,065	23,065	21,992	21,992
42	7	PRESSÃO DE V			kg/cm² a	0,022	0,022	0,045	0,045
43		ENTALPIA			Gcal/h	-1,436	-1,436	-1,603	-1,603
44					MISCE	LÂNEOS			
45									
46									
47									ļ
48	_								
49	_	NOTA C :							
50 51	-	NOTAS:	0ão o oo promis -!-	doe denondert -	corão confirma	ac pole one de d	otolbo oom bidasi.	lione/icamát=:===	finoic
51 52	-	(1) A pres	são e as proprieda	iues aepenaentes	serao confirmad	as peia eng. de d	etaine com nidrau	iicas/isometricas	IIIIais
52 53	-								
54	-								
55	-								
		Rev.	Por						
		Data	Aprovado			1	1		

	ſ	PROJETO:	Produção de m	etil-etil-cetona	a partir de 2-bu	tanol	·	Balanços de calo	or e matéria
		UNIDADE:						Pág. 2	de 16
F	R								
	е	I		BAI	LANÇOS DE C	ALOR E MATÉ	RIA		
٧	٧								
1					DADOS DE OPER	AÇÃO E VAZÕE	3		
2	-		AÇÃO/DESENHO						,
3		Nº DE CORRENT	TE			5	6	7	8
4		DESCRIÇÃO				Entrada E-2	Entrada K-1	Entrada E-3	Entrada R-
5					1				
6		PRESSÃO (1)			kg/cm² g	1,966	1,938	2,136	2,021
7	_	TEMPERATURA			°C	100,000	157,462	160,371	446,079
8	_	VAZÃO TOTAL	•		kg/h	1464,056	1464,056	1464,056	1464,056
9	_	% VAPOR	DE VA DOD		%p	0	100	100	100
10 11	4	VAZÃO TOTAL	VEIS (N2,)		kg/h kg/h		1464,056	1464,056	1464,056
12	4	VAPOR DE A			kg/n kg/h		0,000	0,000	0,000
13	4	HIDROCARBO			kg/h		0,000	0,000	0,000
14	+	VAZÃO TOTAL			kg/h	1464.056			
15	+	AGUA LIVRE			kg/h	1-10-1,000		 	
16	+	HIDROCARBO			kg/h			1	<u> </u>
17	1	ENTALPÍA TOTA			Gcal/h	-1,527	-1,299	-1,297	-1,049
18	_		ORROSIVOS, TÓX	ICOS	% p/ppmp	748	748	748	748
19	_	SÓLIDOS: QUA			%				
20	1	SÓLIDOS : DIAN	/I. PARTÍCULA		Micras				
21				PF	ROPRIEDADES FA	SE VAPOR (Úm i	da)		•
22		VAZÃO VOLUN	NÉTRICA @P,T		m³/h		229,403	216,070	391,911
23		VAZÃO VOLUN	∕IÉTRICA @(1 atm,	0°C)	Nm³/h		-	-	-
24		PESO MOLECUL	_AR		kg/kmol		74,130	74,130	74,130
25	_	DENSIDADE @F	•		kg/m³		6,382	6,776	3,736
26	_	DENSIDA DE @(kg/Nm³		-	-	-
27	-	VISCOSIDADE (cР		0,011	0,011	0,017
28	_		DE TÉRMICA @T		kcal/h m °C		0,026	0,026	0,054
29	_	CALOR ESPECÍF			kcal/kg ⁰C		0,512	0,515	0,674
30	_		IPRESIBILIDA DE @	P, I			0,945	0,943	0,994
31	_	Cp / Cv			01/1-		1,081	1,082	1,044
32	4	ENTALPIA	DDOD	DIEDA DES EASE	Gcal/h		-1,299	-1,297	-1,049
33	+	\/A 7Ã O \/OLLIA		KIEDADES FASE	LÍQUIDA (Seca m³/h		de nidrocarbor	letos)	ı
35	-	VAZÃO VOLUN	MÉTRICA @P,1		m³/h	2,035 1,809		<u> </u>	
36	4	DENSIDADE @T			kg/m³	719.270			
37	_	DENSIDADE @1			kg/m³	809,253			
38	_		CINEMÁTICA @T		cSt	0,508			
39	_		DE TÉRMICA @T		kcal/h m °C	0,105		†	
40	_	CALOR ESPECÍF			kcal/kg °C	0,808			
41	1	TENSÃO SUPER			dinas/cm	14,831			
42	1	PRESSÃO DE V	APOR @T		kg/cm² a	1,060			
43		ENTALPIA			Gcal/h	-1,527			
44	1				MISCE	ÂNEOS			
45	Ţ								
46									
47									
48	J								
49	Ţ								
50	⅃	NOTAS:							
51	J	(1) A pres	são e as proprieda	des dependentes	s serão confirmad	as pela eng. de d	etalhe com hidráu	ulicas/isométricas	finais
52	4								
53	4								
54	4								
55	4			1	1		1		1
_	1	Rev.	Por					.	
	L	Data	Aprovado						

DE CORRENT ESCRIÇÃO RESSÃO (1) EMPERA TURA AZÃO TOTAL VAPOR AZÃO TOTAL INCONDENSÁ VAPOR DE AC HIDROCARBO AZÃO TOTAL AGUA LIVRE HIDROCARBO ITALPÍA TOTA DMPOSTOS CO DILIDOS: DIAM AZÃO VOLUM	DE VAPOR VEIS (N2,) GUA NETOS DE LIQUIDO NETOS L DRROSIVOS, TÓXICOS NTIDADE . PARTÍCULA	BALANÇOS DE CA DADOS DE OPERA kg/cm² g °C kg/h %p kg/h Gcal/h % p / ppm p % Micras DEDORIGO DE CA			11 Alimentação C-1 1,277 31,565 1464,056 88 129,145 35,146 1334,910	12 Produto de topo C-1 0,992 25,000 112,492 100 112,492 35,147
DE CORRENT ESCRIÇÃO RESSÃO (1) EMPERA TURA AZÃO TOTAL VAPOR AZÃO TOTAL INCONDENSÁ VAPOR DE AC HIDROCARBO AZÃO TOTAL AGUA LIVRE HIDROCARBO ITALPÍA TOTA DIMPOSTOS CO DÍLIDOS : DIAM AZÃO VOLUM AZÃO VOLUM SO MOLECUL	DE VAPOR VEIS (N2,) GUA NETOS DE LIQUIDO NETOS L DRROSIVOS, TÓXICOS NTIDADE . PARTÍCULA	kg/cm² g °C kg/h %p kg/h kg/h kg/h kg/h kg/h kg/h kg/h kg/h	9 Saída R-1 1,721 450,000 1464,056 100 1464,056 35,154	10 Entrada E-4 1,411 196,296 1464,056 100 1464,056 35,154	Alimentação C-1 1,277 31,565 1464,056 88 129,145 35,146 1334,910	Produto de topo C-1 0,992 25,000 112,492 100 112,492 35,147
DE CORRENT ESCRIÇÃO RESSÃO (1) EMPERA TURA AZÃO TOTAL VAPOR AZÃO TOTAL INCONDENSÁ VAPOR DE AC HIDROCARBO AZÃO TOTAL AGUA LIVRE HIDROCARBO ITALPÍA TOTA DIMPOSTOS CO DÍLIDOS : DIAM AZÃO VOLUM AZÃO VOLUM SO MOLECUL	DE VAPOR VEIS (N2,) GUA NETOS DE LIQUIDO NETOS L DRROSIVOS, TÓXICOS NTIDADE . PARTÍCULA	kg/cm² g °C kg/h %p kg/h kg/h kg/h kg/h kg/h kg/h kg/h kg/h	9 Saída R-1 1,721 450,000 1464,056 100 1464,056 35,154	10 Entrada E-4 1,411 196,296 1464,056 100 1464,056 35,154	Alimentação C-1 1,277 31,565 1464,056 88 129,145 35,146 1334,910	Produto de topo C-1 0,992 25,000 112,492 100 112,492 35,147
DE CORRENT ESCRIÇÃO RESSÃO (1) EMPERA TURA AZÃO TOTAL VAPOR AZÃO TOTAL INCONDENSÁ VAPOR DE AC HIDROCARBO AZÃO TOTAL AGUA LIVRE HIDROCARBO ITALPÍA TOTA DIMPOSTOS CO DÍLIDOS : DIAM AZÃO VOLUM AZÃO VOLUM SO MOLECUL	DE VA POR VEIS (N2,) GUA NETOS DE LIQUIDO NETOS L DRROSIVOS, TÓXICOS NTIDA DE . PARTÍCULA	kg/cm² g ° C kg/h %p kg/h kg/h kg/h kg/h kg/h kg/h kg/h kg/h kg/h Mig/h Micras	9 Saída R-1 1,721 450,000 1464,056 100 1464,056 35,154	10 Entrada E-4 1,411 196,296 1464,056 100 1464,056 35,154	Alimentação C-1 1,277 31,565 1464,056 88 129,145 35,146 1334,910	Produto de topo C-1 0,992 25,000 112,492 100 112,492 35,147
DE CORRENT ESCRIÇÃO RESSÃO (1) EMPERA TURA AZÃO TOTAL VAPOR AZÃO TOTAL INCONDENSÁ VAPOR DE AC HIDROCARBO AZÃO TOTAL AGUA LIVRE HIDROCARBO ITALPÍA TOTA DIMPOSTOS CO DÍLIDOS : DIAM AZÃO VOLUM AZÃO VOLUM SO MOLECUL	DE VA POR VEIS (N2,) GUA NETOS DE LIQUIDO NETOS L DRROSIVOS, TÓXICOS NTIDA DE . PARTÍCULA	°C kg/h %p kg/h kg/h kg/h kg/h kg/h kg/h kg/h kg/h	Saída R-1 1,721 450,000 1464,056 100 1464,056 35,154	Entrada E-4 1,411 196,296 1464,056 100 1464,056 35,154 -1,033	Alimentação C-1 1,277 31,565 1464,056 88 129,145 35,146 1334,910	Produto de topo C-1 0,992 25,000 112,492 100 112,492 35,147
ESCRIÇÃO RESSÃO (1) MPERATURA AZÃO TOTAL VAPOR AZÃO TOTAL INCONDENSÁ VAPOR DE AC HIDROCARBO AZÃO TOTAL AGUA LIVRE HIDROCARBO MIDROCARBO M	DE VA POR VEIS (N2,) GUA NETOS DE LIQUIDO NETOS L DRROSIVOS, TÓXICOS NTIDA DE . PA RTÍCULA	°C kg/h %p kg/h kg/h kg/h kg/h kg/h kg/h kg/h kg/h	Saída R-1 1,721 450,000 1464,056 100 1464,056 35,154	Entrada E-4 1,411 196,296 1464,056 100 1464,056 35,154 -1,033	Alimentação C-1 1,277 31,565 1464,056 88 129,145 35,146 1334,910	Produto de topo C-1 0,992 25,000 112,492 100 112,492 35,147
RESSÃO (1) MPERATURA AZÃO TOTAL VAPOR AZÃO TOTAL INCONDENSÁ VAPOR DE AG HIDROCARBO AZÃO TOTAL AGUA LIVRE HIDROCARBO ITALPÍA TOTA DMPOSTOS CO DLIDOS: DIAM AZÃO VOLUM AZÃO VOLUM AZÃO VOLUM SO MOLECUL	VEIS (N2,) GUA NETOS DE LIQUIDO NETOS L DRROSIVOS, TÓXICOS NTIDADE . PARTÍCULA	°C kg/h %p kg/h kg/h kg/h kg/h kg/h kg/h kg/h kg/h	1,721 450,000 1464,056 100 1464,056 35,154	1,411 196,296 1464,056 100 1464,056 35,154	1,277 31,565 1464,056 88 129,145 35,146 1334,910	0,992 25,000 112,492 100 112,492 35,147
EMPERATURA AZÃO TOTAL VAPOR AZÃO TOTAL INCONDENSÁ VAPOR DE AC HIDROCARBO AZÃO TOTAL AGUA LIVRE HIDROCARBO ITALPÍA TOTA DIMPOSTOS CO DILIDOS: DIAM AZÃO VOLUM AZÃO VOLUM SO MOLECUL	VEIS (N2,) GUA NETOS DE LIQUIDO NETOS L DRROSIVOS, TÓXICOS NTIDADE . PARTÍCULA	°C kg/h %p kg/h kg/h kg/h kg/h kg/h kg/h kg/h kg/h	450,000 1464,056 100 1464,056 35,154	196,296 1464,056 100 1464,056 35,154 -1,033	31,565 1464,056 88 129,145 35,146 1334,910	25,000 112,492 100 112,492 35,147
AZÃO TOTAL VAPOR AZÃO TOTAL INCONDENSÁ VAPOR DE AV HIDROCARBO AZÃO TOTAL AGUA LIVRE HIDROCARBO ITALPÍA TOTA DMPOSTOS CO DLIDOS: DIAM AZÃO VOLUM ISO MOLECUL	VEIS (N2,) GUA NETOS DE LIQUIDO NETOS L DRROSIVOS, TÓXICOS NTIDADE . PARTÍCULA	kg/h %p kg/h kg/h kg/h kg/h kg/h kg/h kg/h kg/h	1464,056 100 1464,056 35,154 -0,804	1464,056 100 1464,056 35,154 -1,033	1464,056 88 129,145 35,146 1334,910	112,492 100 112,492 35,147
VAPOR AZÃO TOTAL INCONDENSÁ VAPOR DE AG HIDROCARBO AZÃO TOTAL AGUA LIVRE HIDROCARBO ITALPÍA TOTA DMPOSTOS CO DLIDOS: DIAN AZÃO VOLUM AZÃO VOLUM SO MOLECUL	VEIS (N2,) GUA NETOS DE LIQUIDO NETOS L DRROSIVOS, TÓXICOS NTIDADE . PARTÍCULA	%p kg/h kg/h kg/h kg/h kg/h kg/h kg/h kg/h	100 1464,056 35,154 -0,804	100 1464,056 35,154 -1,033	88 129,145 35,146 1334,910 -1,306	100 112,492 35,147
AZÃO TOTAL INCONDENSÁ VAPOR DE AG HIDROCARBO AZÃO TOTAL AGUA LIVRE HIDROCARBO ITALPÍA TOTA DMPOSTOS CO DLIDOS: DIAN AZÃO VOLUM AZÃO VOLUM ISO MOLECUL	VEIS (N2,) GUA NETOS DE LIQUIDO NETOS L DRROSIVOS, TÓXICOS NTIDADE . PARTÍCULA	kg/h kg/h kg/h kg/h kg/h kg/h kg/h Gcal/h % p / ppm p % Micras	1464,056 35,154 -0,804	1464,056 35,154 -1,033	129,145 35,146 1334,910 -1,306	112,492 35,147
VAPOR DE AU HIDROCARBO AZÃO TOTAL AGUA LIVRE HIDROCARBO ITALPÍA TOTA DMPOSTOS CO DLIDOS: QUA DLIDOS: DIAM AZÃO VOLUM ISO MOLECUL	GUA NETOS DE LIQUIDO NETOS L DRROSIVOS, TÓXICOS NTIDADE . PARTÍCULA	kg/h kg/h kg/h kg/h kg/h kg/h Gcal/h % p / ppm p % Micras	-0,804	-1,033	35,146 1334,910 -1,306	35,147
HIDROCARBO AZÃO TOTAL AGUA LIVRE HIDROCARBO ITALPÍA TOTA DIMPOSTOS CO DLIDOS: QUA DLIDOS: DIAM AZÃO VOLUM SO MOLECUL	NETOS DE LIQUIDO NETOS L DRROSIVOS, TÓXICOS NTIDADE . PARTÍCULA	kg/h kg/h kg/h kg/h Gcal/h % p / ppm p % Micras		<u> </u>	-1,306	
AZÃO TOTAL AGUA LIVRE HIDROCARBO ITALPÍA TOTA DIMPOSTOS CO DLIDOS: QUA DLIDOS: DIAM AZÃO VOLUM SO MOLECUL	DE LIQUIDO NETOS L DRROSIVOS, TÓXICOS NTIDADE . PARTÍCULA	kg/h kg/h kg/h Gcal/h % p / ppm p % Micras		<u> </u>	-1,306	
AGUA LIVRE HIDROCARBO ITALPÍA TOTA DMPOSTOS CO DLIDOS: QUA DLIDOS: DIAM AZÃO VOLUM SO MOLECUL	NETOS L DRROSIVOS, TÓXICOS NTIDADE . PARTÍCULA	kg/h kg/h Gcal/h % p / ppm p % Micras		<u> </u>	-1,306	
HIDROCA RBC ITALPÍA TOTA DIMPOSTOS CO DLIDOS: QUA DLIDOS: DIAM AZÃO VOLUM SO MOLECUL	L DRROSIVOS, TÓXICOS NTIDADE . PARTÍCULA	kg/h Gcal/h % p / ppm p % Micras		<u> </u>	· '	
ITALPÍA TOTA DMPOSTOS CO DLIDOS: QUA DLIDOS: DIAM AZÃO VOLUM SO MOLECUL	L DRROSIVOS, TÓXICOS NTIDADE . PARTÍCULA	Gcal/h % p / ppm p % Micras		<u> </u>	· '	
OMPOSTOS CO DLIDOS: QUA DLIDOS: DIAM AZÃO VOLUM AZÃO VOLUM SO MOLECUL	ORROSIVOS, TÓXICOS NTIDADE . PARTÍCULA	% p / ppm p % Micras		<u> </u>	· '	-0,062
ÓLIDOS: QUA ÓLIDOS: DIAM AZÃO VOLUM AZÃO VOLUM SO MOLECUL	NTIDADE . PARTÍCULA	% Micras		409320	469320	942000
AZÃO VOLUM AZÃO VOLUM SO MOLECUL						
AZÃO VOLUM SO MOLECUL	ÉTRICA @P,T	DDODDIED 4 DEC = 1 4				
AZÃO VOLUM SO MOLECUL	ETRICA @P,T		SE V APOR (Úm i			
SO MOLECUL		m³/h	827,196	600,744	209,759	231,274
	ÉTRICA @(1 atm, 0°C)	Nm³/h	- 20.200	-	-	6,079
		kg/kmol kg/m³	39,369 1,770	39,369 2,437	6,893 0,616	0,486
ENSIDADE @(1		kg/Nm³	-	-	-	
SCOSIDADE @		cP	0,020	0,013	0,011	0,010
ONDUCTIV IDA I	DE TÉRMICA @T	kcal/h m°C	0,103	0,058	0,119	0,122
ALOR ESPECÍF		kcal/kg ⁰C	0,679	0,545	1,188	1,306
	PRESIBILIDADE @P,T		0,999	0,992	1,001	1,001
TALPIA		Gcal/h	1,081 -0,804	1,109 -1,033	1,325 -0,074	1,337
ITALFIA	PROPRIEDADES E	FASE LÍQUIDA (Seca p	•			-0,062
AZÃO VOLUM		m³/h	Jara correntes	The mar ocal por	1,681	
AZÃO VOLUM	ÉTRICA @15°C	m³/h			1,652	
NSIDADE @T		kg/m³			794,339	
NSIDADE @1	5°C				807,974	
					0,562	
					· ·	
	,			 	-	
ITALPIA	-	Gcal/h			-1,232	
			LPIA	·		
					 	
OTAS:				<u> </u>	<u> </u>	
	ão e as propriedades depende	entes serão confirmada	as pela eng. de d	letalhe com hidráu	ılicas/isométricas f	inais
, , ,	, ,		. 3			
				1		
					 	
SO ON ALL IN RELIGION OF THE PROPERTY OF THE P	ISIDADE @ 15 COSIDADE C NDUCTIVIDAE OR ESPECÍF SÃO SUPERI SSÃO DE VA ALPIA	ISIDADE @15°C COSIDADE CINEMÁTICA @T IDUCTIVIDADE TÉRMICA @T LOR ESPECÍFICO @T ISÃO SUPERFICIAL @P,T ISSÃO DE VAPOR @T IALPIA TAS: I) A pressão e as propriedades depend Rev. Por	ISIDADE @15°C kg/m³ COSIDADE CINEMÁTICA @T cSt NDUCTIVIDADE TÉRMICA @T kcal/h m°C OR ESPECÍFICO @T kcal/kg °C SÃO SUPERFICIAL @P,T dinas/cm SSÃO DE VAPOR @T kg/cm² a ALPIA Gcal/h ENTA TAS: 1) A pressão e as propriedades dependentes serão confirmada Rev. Por	ISIDADE @15°C kg/m³ COSIDADE CINEMÁTICA @T cSt NDUCTIVIDADE TÉRMICA @T kcal/h m°C OR ESPECÍFICO @T kcal/kg °C SÃO SUPERFICIAL @P,T dinas/cm SSÃO DE VAPOR @T kg/cm² a FALPIA Gcal/h ENTALPIA FAS: A pressão e as propriedades dependentes serão confirmadas pela eng. de co	ISIDADE @15°C kg/m³ COSIDADE CINEMÁTICA @T CSt NDUCTIVIDADE TÉRMICA @T kcal/h m °C COR ESPECÍFICO @T kcal/kg °C SÃO SUPERFICIAL @P,T dinas/cm SSÃO DE VAPOR @T kg/cm² a GCal/h ENTALPIA FALPIA FAS: A pressão e as propriedades dependentes serão confirmadas pela eng. de detalhe com hidráu Rev. Por	SIDADE @15°C kg/m³ 807,974 COSIDADE CINEMÁTICA @T cSt 0,562 NDUCTIVIDADE TÉRMICA @T kcal/h m°C 0,122 OR ESPECÍFICO @T kcal/kg °C 0,523 SÃO SUPERFICIAL @P,T dinas/cm 23,124 SSÃO DE VAPOR @T kg/cm² a 3,090 ALPIA Gcal/h -1,232 ENTALPIA

		PROJETO:	Produção de m	etil-etil-cetona	a partir de 2-bu	tanol		Balanços de calo	r e matéria
		UNIDADE:						Pág. 4	de 16
	R								
	е			BAL	LANÇOS DE C	ALOR E MATÉ	RIA		
	٧								
1					DADOS DE OPER	AÇAO E VAZOES	3		
2			AÇÃO/DESENHO			40		15 1	40
3 4		Nº DE CORREN	IE			13	14	15 Saída de topo	16
5		DESCRIÇÃO				Produto de fundo C-1	Bombeado para E-8	C-2	Saída do fundo C-2
6		PRESSÃO (1)			kg/cm² g	1,006	1,009	0,853	1,006
7		TEMPERATURA			°C	25,000	25,008	24,267	26,446
8		VAZÃO TOTAL			kg/h	1351,563	1351,557	41,180	1734,122
9		% VAPOR			%p	0	0	100	0
10		VAZÃO TOTAL	DEVAPOR		kg/h			41,180	
11		INCONDENSÁ	VEIS (N2,)		kg/h			35,110	
12		VAPOR DE A	GUA		kg/h			5,258	
13		HIDROCA RB0	ONETOS		kg/h				
14		VAZÃO TOTAL			kg/h	1351,563	1351,557		1734,122
15		AGUA LIVRE			kg/h				
16		HIDROCA RBO			kg/h				
17		ENTALPÍA TOTA		1000	Gcal/h	-1,252	-1,252	-0,018	-6,347
18			ORROSIVOS, TÓX	icos	% p/ppmp	779	779	983000	1
19		SÓLIDOS : QUA			%	0,000	0,000	0,000	0,000
20 21		SÓLIDOS : DIAN	/I. PARTICULA	DE	Micras ROPRIEDADES FA	0,000	0,000	0,000	0,000
22		VAZÃO VOLUN	MÉTRICA @PT	PR	m³/h	0,000	0,000	237,220	0,000
23			MÉTRICA @(1 atm,	0°C)	Nm³/h	0,000	0,000	237,220	0,000
24		PESO MOLECUL	,	0 0)	kg/kmol	0,000	0,000	2,324	0,000
25		DENSIDADE @F			kg/m³	0,000	0,000	0,174	0,000
26		DENSIDADE @(•		kg/Nm³	0,000	0,000	-	0,000
27		VISCOSIDA DE			сP	0,000	0,000	0,009	0,000
28		CONDUCTIVIDA	DE TÉRMICA @T		kcal/h m°C	0,000	0,000	0,147	0,000
29		CALOR ESPECÍ	FICO @T		kcal/kg °C	0,000	0,000	2,974	0,000
30		FATOR DE COM	IPRESIBILIDADE@	P,T		0,000	0,000	1,002	0,000
31		Cp / Cv				0,000	0,000	1,405	0,000
32		ENTALPIA			Gcal/h	0,000	0,000	-0,018	0,000
33		~		RIEDADES FASE	LÍQUIDA (Seca			-	
34		VAZÃO VOLUN			m³/h	1,687	1,686	0,000	1,766
35			MÉTRICA @15°C		m³/h	1,673	1,673	0,000	1,757
36		DENSIDADE @1			kg/m ³	801,310	801,418	0,000	981,955
37	-	DENSIDADE @1			kg/m³	807,978	808,061	0,000	987,255
38 39	-		DE TÉRMICA @T		cSt kcal/h m°C	0,607 0,124	0,608 0,124	0,000	0,890 0,396
40	-	CALOR ESPECÍ			kcal/kg °C	0,124	0,124	0,000	0,396
41	\dashv	TENSÃO SUPER			dinas/cm	23,864	23,867	0,000	71,826
42	-	PRESSÃO DE V	· · · · · · · · · · · · · · · · · · ·		kg/cm² a	2,757	0,115	0,000	2,930
43		ENTALPIA			Gcal/h	-1,252	-1,252	0,000	-6,347
44						LPIA	- ,===	-,,,,,	-,
45									
46									
47									
48									
49									
50		NOTAS:							
51		(1) A pres	são e as proprieda	des dependentes	s serão confirmad	as pela eng. de d	etalhe com hidráu	ulicas/isométricas f	inais
52									
53									
54									
55					,			· · · · · · · · · · · · · · · · · · ·	
		Rev.	Por					ļļ	
		Data	Aprovado				-		

	Т	PROJETO:	Produção de r	netil-etil-cetona	a partir de 2-bu	ıtanol	-	Balanços de cal	or e matéria
		UNIDADE:						Pág. 5	de 16
	R						•		
	e v			BAI	LANÇOS DE C	CALOR E MATÉ	ERIA		
1	'				DADOS DE OPER	RAÇÃO E VAZÕES	2		
2	(CASO DE OPER	RAÇÃO/DESENHO		DADOS DE OI EI	TAÇAO E VAZOE			
3	_	V° DE CORREN				17	18	19	20
4	1	DECCDICÃ O				Entrada fundo	Saída de topo	Saída de	Entrada E E
5	Ľ	DESCRIÇÃO				C-3	C-3	fundo C-3	Entrada E-5
6	_	PRESSÃO (1)			kg/cm² g	1,056	0,904	1,203	1,210
7	_	TEMPERATURA			°C	26,449	27,871	27,079	27,079
8	_	√AZÃO TOTAI % VAPOR	_		kg/h %p	1734,122 0	1676,580 0	307,084 0	307,084
10	_	% VAPOR VAZÃO TOTAI	DE V/A POR		%р kg/h	"	0	0	"
11	Ŧ		ÁVEIS (N2,)		kg/h				
12	+	VAPOR DE A			kg/h				
13	T	HIDROCA RB			kg/h				
14	١	/AZÃO TOTAI	DE LIQUIDO		kg/h	1734,122	1676,580	307,084	307,084
15	Ţ	AGUA LIVRE			kg/h				
16		HIDROCA RB			kg/h				
17	_	ENTALPÍA TOT		"	Gcal/h	-6,347	-6,280	-0,154	-0,154
18			CORROSIVOS, TÓ	KICOS	% p/ppmp	1	584	599095	599095
19	_	SÓLIDOS : QU SÓLIDOS : DIA			%	0,000	0,000	0,000	0,000
20	+	SOLIDOS : DIA	W. PARTICULA	DI	Micras	0,000 ASE VAPOR (Úmi		0,000	0,000
22	_	/AZÃO VOLU	MÉTRICA @P,T	• • • • • • • • • • • • • • • • • • • •	m³/h	TOL VAI OR (OIII)	l	l	I
23	_		MÉTRICA @(1 atm	. 0°C)	Nm³/h				
24	_	PESO MOLECU	,	,,	kg/kmol				
25		DENSIDADE @	P,T		kg/m³				
26		DENSIDADE @	(1 atm, 0°C)		kg/Nm ³				
27	١	/ISCOSIDADE	@T		сP				
28	_		DE TÉRMICA @T		kcal/h m°C				
29	_	CALOR ESPEC			kcal/kg ⁰C				
30	_		MPRESIBILIDA DE @	P,T					ļ
31 32		Cp/Cv ENTALPIA			Gcal/h				<u> </u>
33	F	INTALPIA	PPO	DDIEDADES EASE		para correntes	do hidrocarbon	otos)	<u> </u>
34	_	/AZÃO VOLU	MÉTRICA @P,T	FRIEDADES FASE	m³/h	1,766	1,691	0,256	0,256
35			MÉTRICA @15°C		m³/h	1,757	1,680	0,255	0,255
36	_	DENSIDADE @			kg/m³	981,952	991,370	1199,841	1199,841
37		DENSIDADE @			kg/m³	987,255	998,015	1203,450	1203,450
38			CINEMÁTICA @T		cSt	0,890	0,863	0,602	0,602
39			DE TÉRMICA @T		kcal/h m°C	0,396	0,489	0,116	0,116
40	_	CALOR ESPEC			kcal/kg ⁰C	0,943	0,960	0,334	0,334
41	_	TENSÃO SUPE			dinas/cm	71,825	72,036	31,565	31,565
42	_	PRESSÃO DE \	APOR @T		kg/cm² a	0,036	2,864	0,072	0,072
43 44	뿌	ENTALPIA			Gcal/h	-6,347 ALPIA	-6,280	-0,154	-0,154
44	╁				ENIA	ALFIA		<u> </u>	
46	+								
47	+								
48	\dagger								
49	十								
50	١	NOTAS:							
51	1	(1) A pres	são e as propried	ades dependentes	s serão confirmad	las pela eng. de d	etalhe com hidráu	licas/isométricas	finais
52	_[
53	1								
54	4								
55	4	Rev.	Por	1			I		1
							i .		

	PROJETO:	Produção de m	etil-etil-cetona a	partir de 2-bu	tanol		Balanços de calor	e matéria
	UNIDADE:						Pág. 6	de 16
F	₹	-						
е	•		BALA	ANÇOS DE C	ALOR E MAT	ÉRIA		
V	,							
1			D _i	ADOS DE OPER	AÇÃO EVAZÕE	S		
2	CASO DE OPER	RAÇÃO/DESENHO						
3	Nº DE CORREN	ΓE			21	22	23	24
4						Entrada E-6	Entrada L-5	Saída L-5
5	DESCRIÇÃO				Entrada C-4	(condensador)	(condensado)	(refluxo e
	PDE00 Ã O (4)			1/2	4.400	0.500	0.044	topo)
6 7	PRESSÃO (1) TEMPERATURA		-	kg/cm² g °C	1,196 106,024	0,598 93,232	0,241 83,710	0,241 83,710
8	VAZÃO TOTAL				307,084	254,620	254,620	254,620
9	% VAPOR	•	+	kg/h %p	0	100	0	0
10	VAZÃO TOTAL	DE VA DOD	+	kg/h	· ·	254,620	· •	<u> </u>
11		ÁVEIS (N2,)		kg/h		234,020		
12	VAPOR DE A			kg/h				
13	HIDROCARBO			kg/h				
14	VAZÃO TOTAL		+	kg/h	307,084	0,000	190,965	190,965
15	AGUA LIVRE			kg/h	557,007	0,000	100,000	.00,000
16	HIDROCARBO			kg/h			 	
17	ENTALPÍA TOTA			Gcal/h	-0,144	-0,203	-0,174	-0,174
18		ORROSIVOS, TÓXI	cos	% p/ppmp	599095	0	0,174	0,174
19	SÓLIDOS : QU			%	0,000			
20	SÓLIDOS : DIAN			Micras	0,000			0,000
21			PRO		SE VAPOR (Úm	ida)	1	-,
22	VAZÃO VOLUN	NÉTRICA @P,T		m³/h	65,550	65,552		
23	VAZÃO VOLUN	MÉTRICA @(1 atm,	°C)	Nm³/h	0,000	-		
24	PESO MOLECUI	_AR		kg/kmol	70,950	70,954		
25	DENSIDA DE @F	P,T		kg/m³	3,960	3,959		
26	DENSIDA DE @(1 atm, 0°C)		kg/Nm³	0,000	-		
27	VISCOSIDA DE	<u>@</u> Т		cР	0,010	0,009		
28	CONDUCTIVIDA	DE TÉRMICA @T		kcal/h m°C	0,010	0,014		
29	CALOR ESPECÍ	FICO @T		kcal/kg °C	0,420	0,419		
30	FATOR DE COM	//PRESIBILIDADE@I	,T		0,940	0,940		
31	Cp / Cv				1,100	1,105		
32	ENTALPIA			Gcal/h	-0,200	-0,203		
33		PROF	RIEDADES FASE L	ÍQUIDA (Seca	para correntes	de hidrocarbon	etos)	
34	VAZÃO VOLUN	ИÉTRICA @P,T		m³/h	0,000		0,259	0,259
35	VAZÃO VOLUN	MÉTRICA @15°C		m³/h	0,000		0,236	0,236
36	DENSIDADE @1	Γ		kg/m³	0,000		737,746	737,746
37	DENSIDADE @1	√5°C		kg/m³	0,000		809,294	809,294
38	VISCOSIDADE (CINEMÁTICA @T		cSt	0,000		0,313	0,313
39		DE TÉRMICA @T		kcal/h m°C	0,000		0,113	0,113
40	CALOR ESPECÍ			kcal/kg °C	0,000		0,546	0,546
41	TENSÃO SUPER			dinas/cm	0,000	1	19,516	19,516
42	PRESSÃO DE V	APOR @T		kg/cm² a	0,000	ļ	0,122	0,122
43	ENTALPIA			Gcal/h	0,000		-0,174	-0,174
44	ļ			ENTA	ALPIA	 	,	
45	1							
46						1		
						1		
47						1		
47 48	ļ							
47 48 49	NOTAC							
47 48 49 50	NOTAS:	~						
47 48 49 50 51	-	são e as proprieda	les dependentes s	erão confirmada	as pela eng. de d	letalhe com hidráuli	cas/isométricas fin	ais
47 48 49 50 51 52	-	são e as proprieda	les dependentes s	erão confirmada	as pela eng. de d	letalhe com hidráuli	cas/isométricas fin	ais
47 48 49 50 51 52 53	-	são e as proprieda	les dependentes s	erão confirmada	as pela eng. de d	etalhe com hidráuli	cas/isométricas fin	ais
47 48 49 50 51 52 53 54	-	são e as proprieda	les dependentes s	erão confirmada	as pela eng. de d	etalhe com hidráuli	cas/isométricas fin	ais
47 48 49 50 51 52 53	-	são e as proprieda	les dependentes s	erão confirmada	as pela eng. de d	etalhe com hidrauli	cas/isométricas fin	ais

		PROJETO:	Produção de m	etil-etil-cetona	a partir de 2-bu	tanol	•	Balanços de calo	r e matéria		
		UNIDADE:			•			Pág. 7	de 16		
	R		•					<u> </u>	·		
	е			BAI	LANÇOS DE C	ALOR E MAT	ÉRIA				
	٧					~ ~					
1	-				DADOS DE OPERAÇÃO E VAZÕES						
2	-		RAÇÃO/DESENHO				1	1 1			
3	-	Nº DE CORREN	ITE			25	26	27	28		
4	ł					Refluxo de	Saída fundo C-	Refluxo fundo	Produto de		
5		DESCRIÇÃO				topo C-4	4 (reboiler e	C-4	fundo C-4		
		DD500 (0 (4)			1 , , 2		fundo)	4.004			
6		PRESSÃO (1)			kg/cm² g	0,241	1,245	1,261	1,312		
7		TEMPERATURA			°C	83,710	136,166	140,915	142,013		
8 9	-	VAZÃO TOTAI % VAPOR	-		kg/h	190,965 0	725,293 0	474,475 100	242,220		
10		% VAPOR VAZÃO TOTAI	DE VA DOD		%p kg/h	0	0	474,475	<u> </u>		
11			ÁVEIS (N2,)		kg/h			474,473			
12		VAPOR DE A	,		kg/h						
13		HIDROCA RB			kg/h						
14	\vdash	VAZÃO TOTAL			kg/h	190,965	725,293	0,000	242,220		
15	H	AGUA LIVRE			kg/h	,	-,	-,	-,		
16	П	HIDROCARB			kg/h						
17	П	ENTALPÍA TOT			Gcal/h	-0,174	-0,258	-0,143	-0,083		
18		COMPOSTOS (ORROSIVOS, TÓX	ICOS	% p/ppmp	0	868146	868146	868146		
19		SÓLIDOS: QU	ANTIDADE		%	0,000	0,000	0,000			
20		SÓLIDOS : DIA	M. PARTÍCULA		Micras	0,000	0,000	0,000			
21				Pi	ROPRIEDADES FA	SE VAPOR (Úm	ida)				
22		VAZÃO VOLU			m³/h	0,000		56,762			
23	Ш		MÉTRICA @(1 atm,	0°C)	Nm³/h	0,000		-			
24		PESO MOLECU			kg/kmol	0,000		120,579			
25		DENSIDADE @			kg/m³	0,000		8,359			
26		DENSIDADE @			kg/Nm³	0,000		-			
27		VISCOSIDADE			cP	0,000		0,012			
28			ADE TÉRMICA @T		kcal/h m °C	0,000		0,012			
29 30		CALOR ESPEC	MPRESIBILIDA DE @	DT	kcal/kg ⁰C	0,000		0,227 0,943			
31		Cp / Cv	VIPRESIBILIDADE @	P, I		0,000		1,106			
32		ENTALPIA			Gcal/h	0,000		-0,143			
33	-	LINIALIA	PRO	PRIFDADES FASE		,	de hidrocarbon				
34		VAZÃO VOLU	MÉTRICA @P,T		m³/h	0,259	0.204		0,204		
35			MÉTRICA @15°C		m³/h	0,236	0,176		0,176		
36		DENSIDADE @	Т		kg/m³	737,746	1188,542		1188,528		
37		DENSIDADE @	15°C		kg/m³	809,294	1378,553		1378,553		
38		VISCOSIDADE	CINEMÁTICA @T		cSt	0,313	0,231		0,231		
39	П	CONDUCTIVIDA	ADETÉRMICA @T		kcal/h m º C	0,113	0,090		0,090		
40		CALOR ESPEC			kcal/kg °C	0,546	0,406		0,406		
41		TENSÃO SUPE	,		dinas/cm	19,516	19,683		19,683		
42	-	PRESSÃO DE \	/APOR @T		kg/cm² a	0,122	2,508		2,509		
43	Ш	ENTALPIA			Gcal/h	-0,174	-0,258		-0,083		
44	Ш				ENT	ALPIA		1 1			
45	Ш										
46	\vdash										
47	Н										
48 49	-						1				
50	-	NOTAS:			l	l	1				
51	\vdash	_	ssão e as proprieda	ades denendentes	serão confirmad	as nela end de d	letalhe com hidráuli	cas/isométricas fin	ais		
52	Н	(i) A pies	ouo o as proprieda	adou dependentes	. Sorao cominida	ao poia eng. ue c	otanio com murauli	oaonoomenicas III	IGIO		
53	\vdash										
54	H										
55	\vdash										
		Rev.	Por								

	PROJETO:	Produção de metil-etil	-cetona a partir de 2-bu	itanol	•	Balanços de calo	r e matéria
	UNIDADE:					Pág. 8	de 16
	R			_			
_	е		BALANÇOS DI	E CALOR E MATÉRIA			
_	V						
1			DADOS DE O	PERAÇÃO E VAZÕES			
2		PERAÇÃO/DESENHO		20		1 04	
3	Nº DE CORF	RENTE		29	30	31	32
-4	DESCRIÇÃO	,		Entrada L-4 (produto	Saída L-4	Entrada topo	Bombead
5	DESCRIÇÃO	•		fundo C-4)	Jaida L-4	C-3	para E-8
6	PRESSÃO (1)	kg/cm² g	1,294	1,294	1,312	1,057
7	TEMPERATU	<u>′</u>	°C	35.000	35,000	29,589	85,063
8	VAZÃO TO		kg/h	242,220	242,220	249,542	64,861
9	% VAPOR	···-	%p	0		0	0
10	VAZÃO TO	TAL DE VAPOR	kg/h				
11	INCONDE	NSÁVEIS (N2,)	kg/h				
12	VAPOR D	E AGUA	kg/h				
13	HIDROCA	RBONETOS	kg/h				
14		TAL DE LIQUIDO	kg/h	242,220	249,542	249,542	64,861
15	AGUA LI\		kg/h				
16		RBONETOS	kg/h				
17	ENTALPÍA T		Gcal/h	-0,093	-0,087	-0,087	-0,058
18		S CORROSIVOS, TÓXICOS	% p/ppmp	868146	933506	933506	241
19		QUANTIDA DE	%				
20	SOLIDOS : E	DIAM. PARTÍCULA	Micras				
21	\/A 7Ã O \/O	LUMÉTRICA @P,T		S FASE VAPOR (Úmida)			
22			m³/h				
23 24	PESO MOLE	LUMÉTRICA @(1 atm, 0°C)	Nm³/h				
25	DENSIDA DE		kg/kmol kg/m³				
26		@(1 atm, 0°C)	kg/Nm³				
27	VISCOSIDAI	, ,	cP				
28		IDADE TÉRMICA @T	kcal/h m °C				
29		ECÍFICO @T	kcal/kg °C				
30	FATOR DE C	COMPRESIBILIDADE @P,T	- U				
31	Cp / Cv						
32	ENTALPIA		Gcal/h				
33		PROPRIED	DADES FASE LÍQUIDA (Se	eca para correntes de h	idrocarbonet	os)	
34		LUMÉTRICA @P,T	m³/h	0,177	0,178	0,178	0,088
35		LUMÉTRICA @15°C	m³/h	0,176	0,177	0,177	0,080
36	DENSIDA DE		kg/m ³	1364,802	1399,482	1399,482	734,869
	DENSIDA DE						
37			kg/m³	1378,552	1406,961	1406,961	808,431
38	VISCOSIDAI	DE CINEMÁTICA @T	cSt	0,620	0,676	0,676	0,309
38 39	VISCOSIDAI CONDUCTIV	DE CINEMÁTICA @T IDADE TÉRMICA @T	cSt kcal/h m°C	0,620 0,113	0,676 0,114	0,676 0,114	0,309 0,112
38 39 40	VISCOSIDAI CONDUCTIV CALOR ESP	DE CINEMÁTICA @T IDADE TÉRMICA @T ECÍFICO @T	cSt kcal/h m°C kcal/kg°C	0,620 0,113 0,320	0,676 0,114 0,271	0,676 0,114 0,271	0,309 0,112 0,544
38 39 40 41	VISCOSIDAI CONDUCTIV CALOR ESP TENSÃO SU	DE CINEMÁTICA @T IDADE TÉRMICA @T 'ECÍFICO @T IPERFICIAL @P,T	cSt kcal/h m°C kcal/kg°C dinas/cm	0,620 0,113 0,320 33,541	0,676 0,114 0,271 33,710	0,676 0,114 0,271 33,710	0,309 0,112 0,544 18,253
38 39 40 41 42	VISCOSIDAI CONDUCTIV CALOR ESP TENSÃO SU PRESSÃO D	DE CINEMÁTICA @T IDADE TÉRMICA @T ECÍFICO @T	cSt kcal/h m°C kcal/kg °C dinas/cm kg/cm² a	0,620 0,113 0,320 33,541 0,063	0,676 0,114 0,271 33,710 0,044	0,676 0,114 0,271 33,710 0,044	0,309 0,112 0,544 18,253 1,218
38 39 40 41 42 43	VISCOSIDAI CONDUCTIV CALOR ESP TENSÃO SU	DE CINEMÁTICA @T IDADE TÉRMICA @T 'ECÍFICO @T IPERFICIAL @P,T	cSt kcal/h m °C kcal/kg °C dinas/cm kg/cm² a Gcal/h	0,620 0,113 0,320 33,541 0,063 -0,093	0,676 0,114 0,271 33,710	0,676 0,114 0,271 33,710	0,309 0,112 0,544 18,253
38 39 40 41 42 43 44	VISCOSIDAI CONDUCTIV CALOR ESP TENSÃO SU PRESSÃO D	DE CINEMÁTICA @T IDADE TÉRMICA @T 'ECÍFICO @T IPERFICIAL @P,T	cSt kcal/h m °C kcal/kg °C dinas/cm kg/cm² a Gcal/h	0,620 0,113 0,320 33,541 0,063	0,676 0,114 0,271 33,710 0,044	0,676 0,114 0,271 33,710 0,044	0,309 0,112 0,544 18,253 1,218
38 39 40 41 42 43 44 45	VISCOSIDAI CONDUCTIV CALOR ESP TENSÃO SU PRESSÃO D	DE CINEMÁTICA @T IDADE TÉRMICA @T 'ECÍFICO @T IPERFICIAL @P,T	cSt kcal/h m °C kcal/kg °C dinas/cm kg/cm² a Gcal/h	0,620 0,113 0,320 33,541 0,063 -0,093	0,676 0,114 0,271 33,710 0,044	0,676 0,114 0,271 33,710 0,044	0,309 0,112 0,544 18,253 1,218
38 39 40 41 42 43 44 45 46	VISCOSIDAI CONDUCTIV CALOR ESP TENSÃO SU PRESSÃO D	DE CINEMÁTICA @T IDADE TÉRMICA @T 'ECÍFICO @T IPERFICIAL @P,T	cSt kcal/h m °C kcal/kg °C dinas/cm kg/cm² a Gcal/h	0,620 0,113 0,320 33,541 0,063 -0,093	0,676 0,114 0,271 33,710 0,044	0,676 0,114 0,271 33,710 0,044	0,309 0,112 0,544 18,253 1,218
38 39 40 41 42 43 44 45 46 47	VISCOSIDAI CONDUCTIV CALOR ESP TENSÃO SU PRESSÃO D	DE CINEMÁTICA @T IDADE TÉRMICA @T 'ECÍFICO @T IPERFICIAL @P,T	cSt kcal/h m °C kcal/kg °C dinas/cm kg/cm² a Gcal/h	0,620 0,113 0,320 33,541 0,063 -0,093	0,676 0,114 0,271 33,710 0,044	0,676 0,114 0,271 33,710 0,044	0,309 0,112 0,544 18,253 1,218
38 39 40 41 42 43 44 45 46 47	VISCOSIDAI CONDUCTIV CALOR ESP TENSÃO SU PRESSÃO D	DE CINEMÁTICA @T IDADE TÉRMICA @T 'ECÍFICO @T IPERFICIAL @P,T	cSt kcal/h m °C kcal/kg °C dinas/cm kg/cm² a Gcal/h	0,620 0,113 0,320 33,541 0,063 -0,093	0,676 0,114 0,271 33,710 0,044	0,676 0,114 0,271 33,710 0,044	0,309 0,112 0,544 18,253 1,218
38 39 40 41 42 43 44 45 46 47	VISCOSIDAI CONDUCTIV CALOR ESP TENSÃO SU PRESSÃO D	DE CINEMÁTICA @T IDADE TÉRMICA @T 'ECÍFICO @T IPERFICIAL @P,T	cSt kcal/h m °C kcal/kg °C dinas/cm kg/cm² a Gcal/h	0,620 0,113 0,320 33,541 0,063 -0,093	0,676 0,114 0,271 33,710 0,044	0,676 0,114 0,271 33,710 0,044	0,309 0,112 0,544 18,253 1,218
38 39 40 41 42 43 44 45 46 47 50 51	VISCOSIDAI CONDUCTIV CALOR ESP TENSÃO SU PRESSÃO D ENTALPIA	DE CINEMÁTICA @T IDADE TÉRMICA @T 'ECÍFICO @T IPERFICIAL @P,T	cSt kcal/h m °C kcal/kg °C dinas/cm kg/cm² a Gcal/h	0,620 0,113 0,320 33,541 0,063 -0,093	0,676 0,114 0,271 33,710 0,044 -0,087	0,676 0,114 0,271 33,710 0,044 -0,087	0,309 0,112 0,544 18,253 1,218
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	VISCOSIDAI CONDUCTIV CALOR ESP TENSÃO SU PRESSÃO D ENTALPIA	DE CINEMÁTICA @T IDADE TÉRMICA @T ECÍFICO @T IPERFICIAL @P,T DE VAPOR @T	cSt kcal/h m °C kcal/kg °C dinas/cm kg/cm² a Gcal/h	0,620 0,113 0,320 33,541 0,063 -0,093	0,676 0,114 0,271 33,710 0,044 -0,087	0,676 0,114 0,271 33,710 0,044 -0,087	0,309 0,112 0,544 18,253 1,218
38 39 40 41 42 43 44 45 46 47 48 50 51 52 53	VISCOSIDAI CONDUCTIV CALOR ESP TENSÃO SU PRESSÃO D ENTALPIA	DE CINEMÁTICA @T IDADE TÉRMICA @T ECÍFICO @T IPERFICIAL @P,T DE VAPOR @T	cSt kcal/h m °C kcal/kg °C dinas/cm kg/cm² a Gcal/h	0,620 0,113 0,320 33,541 0,063 -0,093	0,676 0,114 0,271 33,710 0,044 -0,087	0,676 0,114 0,271 33,710 0,044 -0,087	0,309 0,112 0,544 18,253 1,218
38 39 40 41 42 43 44 45 46 47 50 51 52 53 54	VISCOSIDAI CONDUCTIV CALOR ESP TENSÃO SU PRESSÃO D ENTALPIA	DE CINEMÁTICA @T IDADE TÉRMICA @T ECÍFICO @T IPERFICIAL @P,T DE VAPOR @T	cSt kcal/h m °C kcal/kg °C dinas/cm kg/cm² a Gcal/h	0,620 0,113 0,320 33,541 0,063 -0,093	0,676 0,114 0,271 33,710 0,044 -0,087	0,676 0,114 0,271 33,710 0,044 -0,087	0,309 0,112 0,544 18,253 1,218
38 39 40 41 42 43 44 45 46 47 48 50 51 52 53	VISCOSIDAI CONDUCTIV CALOR ESP TENSÃO SU PRESSÃO D ENTALPIA	DE CINEMÁTICA @T IDADE TÉRMICA @T ECÍFICO @T IPERFICIAL @P,T DE VAPOR @T	cSt kcal/h m °C kcal/kg °C dinas/cm kg/cm² a Gcal/h	0,620 0,113 0,320 33,541 0,063 -0,093	0,676 0,114 0,271 33,710 0,044 -0,087	0,676 0,114 0,271 33,710 0,044 -0,087	0,309 0,112 0,544 18,253 1,218

	PROJETO:	Produção de m	etil-etil-cetona	a partir de 2-bu	tanol		Balanços de calor	e matéria
	UNIDADE:						Pág. 9	de 16
R						_		
е			BA	LANÇOS DE (ALOR E MAT	ÉRIA		
V								
1				DADOS DE OPE	RAÇÃO E V AZÕE	S		
2		AÇÃO/DESENHO						
3	Nº DE CORREN	ΓE			33	34	35	36
4	DE0001010						Saída fundo C-5	Refluxo fundo
5	DESCRIÇÃO				Entrada E-8	Entrada C-5	(reboiler e	C-5
6	PRESSÃO (1)			kg/cm ² g	1,000	1,001	fundo) 0,996	1.006
7	TEMPERATURA			°C	27,764	73,594	117,394	118,529
8	VAZÃO TOTAL			kg/h	1416,418	1416,418	4669,610	4523,752
9	% VAPOR			%p	0	0	0	100
10	VAZÃO TOTAL	DEVAPOR		kg/h			0,000	4523,752
11	INCONDENSÁ			kg/h			3,555	1020,102
12	VAPOR DE A			kg/h				
13	HIDROCA RBO			kg/h				
14	VAZÃO TOTAL			kg/h		1416,418	4669,610	0,000
15	AGUA LIVRE			kg/h	1416,418	-, -	-,-	,
16	HIDROCA RBO			kg/h	, -			1
17	ENTALPÍA TOTA			Gcal/h	-1,310	-1,275	-4,770	-4,068
18		ORROSIVOS, TÓX	ICOS	% p/ppmp	0	754	754	754
19	SÓLIDOS: QUA			%				
20	SÓLIDOS : DIAN			Micras				
21			PI	ROPRIEDADES FA	SE VAPOR (Úm	ida)		•
22	VAZÃO VOLUN	MÉTRICA @P,T		m³/h	-			936,506
23	VAZÃO VOLUN	MÉTRICA @(1 atm,	0°C)	Nm³/h				
24	PESO MOLECUL	.AR	·	kg/kmol				73,985
25	DENSIDADE @F	P,T		kg/m³				4,830
26	DENSIDADE @(1 atm, 0°C)		kg/Nm³				
27	VISCOSIDADE (cР				0,010
28	CONDUCTIVIDA	DE TÉRMICA @T		kcal/h m ⁰C				0,022
29	CALOR ESPECÍF	FICO @T		kcal/kg ⁰C				0,489
30	FATOR DE COM	IPRESIBILIDA DE @	P,T					0,941
31	Cp / Cv							1,093
32	ENTALPIA			Gcal/h				-4,068
33		PRO	PRIEDADES FASE	ELÍQUIDA (Seca	para correntes	de hidrocarbo	netos)	
34	VAZÃO VOLUN	MÉTRICA @P,T		m³/h	1,774	1,894	6,701	
35	VAZÃO VOLUN	MÉTRICA @15°C		m³/h	1,753	1,753	5,774	
36	DENSIDADE @T			kg/m³	798,541	747,812	696,813	
37	DENSIDADE @1	5°C		kg/m³	808,078	808,078	808,711	
38		CINEMÁTICA @T		cSt	0,583	0,365	0,355	
39		DE TÉRMICA @T		kcal/h m °C	0,123	0,114	0,102	
40	CALOR ESPECÍ			kcal/kg ⁰C	0,519	0,555	0,811	
41	TENSÃO SUPER			dinas/cm	23,610	18,516	13,049	
42	PRESSÃO DE V	APOR @T		kg/cm² a	0,131	0,807	0,939	
43	ENTALPIA			Gcal/h	-1,310	-1,275	-4,770	
44				MISCE	LÂNEOS			
45								ļ
46								
47								
48								
49								
50	NOTAS:							
51	(1) A pres	são e as proprieda	des dependentes	serão confirmad	as pela eng. de d	etalhe com hidráu	ilicas/isométricas fir	nais
52								
53								
54								
55		1				1	•	
					1	1		1
	Rev. Data	Por Aprovado						

		PROJETO:	Produção de m	etil-etil-cetona	a a partir de 2-bu	tanol		Balanços de calor	e matéria
		UNIDADE:						Pág. 10	de 16
	R						_	·	<u> </u>
	е			E	BALANÇOS DE	CALOR E MAT	TÉRIA		
	٧								
1			~		DADOS DE OPE	RAÇÃO E VAZÕ	ES		
2			AÇÃO/DESENHO					_	
3		Nº DE CORREN	TE			37	38	39	40
4		~				Produto de	Entrada L-2	Para E-9	Entrada L-6
5		DESCRIÇÃO				fundo C-5	(refluxo s-	(condensador)	(condensado)
					Isa/am² a	2 522	butanol)	0.242	0.044
6 7		PRESSÃO (1)			kg/cm² g °C	2,522 112,310	-0,014	0,343	-0,014
8		TEMPERATURA VAZÃO TOTAL				167,056	94,541 167,056	88,555 4993,387	78,805 4993,387
9		% VAPOR	•		kg/h %p	0	0	100	4993,367
10		VAZÃO TOTAL	DE V/A DOD		kg/h	0	18,472	4992,387	0,000
11			VEIS (N2,)		kg/h		10,472	4992,367	0,000
12		VAPOR DE A			kg/h			+	
13		HIDROCARBO			kg/h				
14		VAZÃO TOTAL			kg/h	167,056	148,584	0,000	3744,291
15		AGUA LIVRE			kg/h	. 57,000	10,001	0,000	2,77,201
16		HIDROCARBO			kg/h			1	
17	\dashv	ENTALPÍA TOTA			Gcal/h	-0,167	-0,167	-3,856	-3,298
18			ORROSIVOS, TÓX	ICOS	% p/ppmp	6558	6558	0	0
19		SÓLIDOS: QUA			%			1	1
20		SÓLIDOS : DIAN			Micras				
21					PROPRIEDADES F	ASE VAPOR (Úm	•	•	
22		VAZÃO VOLUN	MÉTRICA @P,T		m³/h	,	7,354	1459,716	
23		VAZÃO VOLUN	MÉTRICA @(1 atm,	0°C)	Nm³/h		-		
24		PESO MOLECUL	_AR		kg/kmol		73,777	71,974	
25		DENSIDADE @F	P,T		kg/m³		2,512	3,420	
26		DENSIDADE @(1 atm, 0°C)		kg/Nm³		-		
27		VISCOSIDADE (@T		cР		0,009	0,009	
28		CONDUCTIVIDA	DE TÉRMICA @T		kcal/h m ⁰C		0,019	0,014	
29		CALOR ESPECÍ	FICO @T		kcal/kg °C		0,444	0,412	
30		FATOR DE COM	IPRESIBILIDADE@	P,T			0,961	0,945	
31		Cp / Cv					1,089	1,102	
32		ENTALPIA			Gcal/h		-0,016	-3,856	
33				OPRIEDADES FA	SELÍQUIDA (Sec			netos)	
34		VAZÃO VOLUN			m³/h	0,236	0,204		5,053
35			MÉTRICA @15°C		m³/h	0,206	0,183		4,637
36		DENSIDADE @T			kg/m³	706,839	729,181	1	741,024
37		DENSIDADE @1			kg/m³	812,766	813,014		807,505
38	Ц		CINEMÁTICA @T		cSt	0,373	0,519		0,319
39	_		DE TÉRMICA @T		kcal/h m °C	0,103	0,106	1	0,113
40	_	CALOR ESPECÍA			kcal/kg °C	0,777	0,766	1	0,534
41	\vdash	TENSÃO SUPER			dinas/cm	13,713	15,576	1	18,094
42	\vdash	PRESSÃO DE V ENTALPIA	APUR W I		kg/cm² a	1,770 -0,167	0,961 -0.151		-0,019 -3 208
43 44	\vdash	LINIALMA			Gcal/h	ELÂNEOS	-0,151	1	-3,298
44	-				T	LLANEOS			1
45	-				+			+	
46	\dashv				+			+	
48					+			+	
49	-				+			+	1
50		NOTAS:				I		1	
51	\vdash		são e as proprieda	ides dependente	es serão confirmad	as pela end de de	etalhe com hidráulio	cas/isométricas finais	
52		(., ,, pics	2 C do propriodo	aspondonte	50.00 50	poia origi do de	Commanduit		-
53									
54									
55									
		Rev.	Por						

	PROJETO:	Produção de m	til-etil-cetona a part	tir de 2-bu	tanol		Balanços de calo	or e matéria
	UNIDA DE :						Pág. 11	de 16
R								
е			BALAN	ÇOS DE (CALOR E MATÉF	RIA		
V								
1			DAD	OS DE OPE	RAÇÃO E VAZÕES			
2	CASO DE OPER	AÇÃO/DESENHO						
3	Nº DE CORREN	TE			41	42	43	44
4	DE00010				Saída L-6	Refluxo topo	Produto topo	Produto final
5	DESCRIÇÃO				(refluxo e topo)	C-5	C-5	resfriado
6	PRESSÃO (1)		k	g/cm² g	-0,014	-0,014	1,002	1,002
7	TEMPERATURA		K	°C	78,805	78,805	84,021	30,000
8	VAZÃO TOTAL			kg/h	4993,387	3743,291	1250,000	1250,000
9	% VAPOR			%p	0	0	0	0
10	VAZÃO TOTAL	DE VA POR		kg/h	•	•	•	0
11	INCONDENSÁ			kg/h				
12	VAPOR DE A			kg/h				
13	HIDROCARBO			kg/h				
14	VAZÃO TOTAL			kg/h	3744,291	3744,291	1249,362	1249,362
15	AGUA LIVRE			kg/h	3177,231	3177,231	1243,302	1273,302
16	HIDROCARBO			kg/h				
17	ENTALPÍA TOTA		<u> </u>	Gcal/h	-3,298	-3,298	-1,096	-1,131
18		ORROSIVOS, TÓX		p / ppm p	0	-5,296	0	0
19	SÓLIDOS : QUA		/6	%		•		
20	SÓLIDOS : DIAN			Micras				
21	COLIDOO : DIV (I	I. I / (I CI COL)			ASE V APOR (Úm ida	a)		
22	VAZÃO VOLUN	MÉTRICA @PT	T NOT IN	m³/h		۵,	l	
23	1	MÉTRICA @(1 atm,	C)	Nm³/h				
24	PESO MOLECUL			kg/kmol				
25	DENSIDA DE @F			kg/m³				
26	DENSIDADE @(kg/Nm³				
27	VISCOSIDADE (<u>'</u>	cP				
28		DE TÉRMICA @T	kc	al/h m °C				
29	CALOR ESPECÍF			al/kg °C				
30		IPRESIBILIDA DE @		aring 0				
31	Cp / Cv							
32	ENTALPIA			Gcal/h				
33		PRO	RIEDADES FASE LÍQU		para correntes d	e hidrocarbone	tos)	I.
34	VAZÃO VOLUN			m³/h	5,053	5,053	1,700	1,571
35		/ÉTRICA @15°C		m³/h	4,637	4,637	1,547	1,547
36	DENSIDADE @T			kg/m³	741,024	741,024	734,793	795,421
37	DENSIDADE @1			kg/m³	807,505	807,505	807,455	807,455
38		CINEMÁTICA @T		cSt	0,319	0,319	0,308	0,472
39		DE TÉRMICA @T	kca	al/h m °C	0,113	0,113	0,112	0,124
40	CALOR ESPECÍF			al/kg °C	0,534	0,534	0,539	0,495
41	TENSÃO SUPER			inas/cm	18,094	18,094	17,463	23,454
42	PRESSÃO DE V			g/cm² a	-0,019	-0,019	1,190	0,158
43	ENTALPIA			Gcal/h	-3,298	-3,298	-1,096	-1,131
44			1		ELÂNEOS	-,	,	, , , , , ,
45								
46	1							
47								
48								
49								
50	NOTAS:		ı					
51		são e as proprieda	es dependentes serão	confirmed	as pela end de deta	lhe com hidráulica	as/isométricas fina	ais
52	(1) A pies	cas o ao propriede	so appoindomico ocial	, 551111111111111	as pola orig. do deta	John mar adillot		
53								
54								
55								
		D						
	Rev.	Por	1					

	PROJETO:	Produção de m	etil-etil-cetona	a partir de 2-bu	tanol		Balanços de calo	or e matéria
	UNIDADE:						Pág. 12	de 16
R	२							
е			ВА	LANÇOS DE (CALOR E MAT	ÉRIA		
V	/							
1				DADOS DE OPE	RAÇÃO E VAZÕE	S		
2		AÇÃO/DESENHO						
3	Nº DE CORREN	ΓE			45	46	47	48
4	DECODIOÑ O				Entrada vapor	Água	Entrada vapor	Entrada vapor
5	DESCRIÇÃO				E-1	condensada E-1	R-1	E-3
6	PRESSÃO (1)			kg/cm² g	7,000	7,000	39,800	39,399
7	TEMPERATURA			°C	218,000	218,000	540,000	460,000
8	VAZÃO TOTAL			kg/h	1464,060	1464,060	5444,080	5444,080
9	% VAPOR			%p	100	0	100	100
10	VAZÃO TOTAL	DE VA POR		kg/h	1464,060	0	5444,080	5444,080
11	INCONDENSÁ			kg/h	1404,000		3444,000	3444,000
12	VAPOR DE A			kg/h	1464,060		5444,080	5444,080
13	HIDROCARBO			kg/h	1404,000		3444,000	3444,000
14	VAZÃO TOTAL			kg/h	+	1464,060		
15	AGUA LIVRE			kg/h	+	1464,060		
16	HIDROCARBO			kg/h	+	1-10-1,000		
17	ENTALPÍA TOTA			Gcal/h	-4,575	-5,246	-16,148	-16,380
18		ORROSIVOS, TÓXI	COS	% p/ppmp	-4,575	-5,240	0	-10,380
19	SÓLIDOS : QUA	, <u>, , , , , , , , , , , , , , , , , , </u>		% р/рршр	+ -	•	•	
20	SÓLIDOS : DIAN			Micras				
21	GOLIDOO : DIVIN	II. I / (I CHOOL)	P		ASE VAPOR (Úm	ida)		l
22	VAZÃO VOLUN	ÆTRICA @PT	•	m³/h	323,192		493,355	445,776
23		MÉTRICA @(1 atm,	0°C)	Nm³/h	-		-	-
24	PESO MOLECUL		 	kg/kmol	18,020		18,015	18,015
25	DENSIDADE @F			kg/m³	4,530		11,035	12,213
26	DENSIDADE @(,		kg/Nm³	-		-	-
27	VISCOSIDADE (cP	0,017		0,030	0,027
28		DE TÉRMICA @T		kcal/h m °C	0,039		0,062	0,054
29	CALOR ESPECÍF			kcal/kg °C	1,630		0,534	0,534
30		IPRESIBILIDA DE @ I	PT	nouring C	1,000		0,967	0,960
31	Cp / Cv		. , .		1,128		1,280	1,296
32	ENTALPIA			Gcal/h	0,031		-16,148	-16,380
33								. 0,000
34	LIVITALITY	PROI	PRIEDADES FASE	ELÍQUIDA (Seca	para correntes	de hidrocarbone		
			PRIEDADES FASE		para correntes		105)	
	VAZÃO VOLUN	MÉTRICA @P,T	PRIEDADES FASE	m³/h	para correntes	1,879330203	105)	
35	VAZÃO VOLUN VAZÃO VOLUN	MÉTRICA @P,T MÉTRICA @15°C	PRIEDADES FASE	m³/h m³/h	a para correntes	1,879330203 1,466881614	itos)	
35 36	VAZÃO VOLUN VAZÃO VOLUN DENSIDADE @T	MÉTRICA @P,T MÉTRICA @15°C	PRIEDADES FASE	m³/h m³/h kg/m³	a para correntes	1,879330203 1,466881614 887,13	losj	
35	VAZÃO VOLUN VAZÃO VOLUN DENSIDADE @T DENSIDADE @1	MÉTRICA @P,T MÉTRICA @15°C - 5°C	PRIEDADES FASE	m³/h m³/h kg/m³ kg/m³	para correntes	1,879330203 1,466881614 887,13 998,076	lusj	
35 36 37 38	VAZÃO VOLUM VAZÃO VOLUM DENSIDADE @T DENSIDADE @1 VISCOSIDADE @	MÉTRICA @P,T MÉTRICA @15°C	PRIEDADES FASE	m³/h m³/h kg/m³ kg/m³ cSt	para correntes	1,879330203 1,466881614 887,13 998,076 0,1459	losy	
35 36 37 38 39	VAZÃO VOLUN VAZÃO VOLUN DENSIDADE @T DENSIDADE @1 VISCOSIDADE C CONDUCTIVIDA	MÉTRICA @P,T MÉTRICA @15°C	PRIEDADES FASE	m³/h m³/h kg/m³ kg/m³ cSt kcal/h m °C	para correntes	1,879330203 1,466881614 887,13 998,076		
35 36 37 38	VAZÃO VOLUN VAZÃO VOLUN DENSIDADE @T DENSIDADE @1 VISCOSIDADE @1 CONDUCTIVIDA CALOR ESPECÍF	MÉTRICA @P,T MÉTRICA @15°C 5°C CINEMÁTICA @T DE TÉRMICA @T FICO @T	PRIEDADES FASE	m³/h m³/h kg/m³ kg/m³ cSt kcal/h m °C kcal/kg °C	para correntes	1,879330203 1,466881614 887,13 998,076 0,1459 0,552365 0,510676		
35 36 37 38 39 40	VAZÃO VOLUM VAZÃO VOLUM DENSIDADE @T DENSIDADE @1 VISCOSIDADE @1 CONDUCTIVIDA CALOR ESPECÍF	MÉTRICA @P,T MÉTRICA @15°C 5°C CINEMÁTICA @T DE TÉRMICA @T FICO @T RFICIAL @P,T	PRIEDADES FASE	m³/h m³/h kg/m³ kg/m³ cSt kcal/h m°C kcal/kg °C dinas/cm	para correntes	1,879330203 1,466881614 887,13 998,076 0,1459 0,552365 0,510676 29,455		
35 36 37 38 39 40 41 42	VAZÃO VOLUM VAZÃO VOLUM DENSIDADE @T DENSIDADE @1 VISCOSIDADE C CONDUCTIVIDA CALOR ESPECÍF TENSÃO SUPER	MÉTRICA @P,T MÉTRICA @15°C 5°C CINEMÁTICA @T DE TÉRMICA @T FICO @T RFICIAL @P,T	PRIEDADES FASE	m³/h m³/h kg/m³ kg/m³ cSt kcal/h m°C kcal/kg °C dinas/cm kg/cm² a	para correntes	1,879330203 1,466881614 887,13 998,076 0,1459 0,552365 0,510676 29,455 1,00278		
35 36 37 38 39 40 41	VAZÃO VOLUM VAZÃO VOLUM DENSIDADE @T DENSIDADE @1 VISCOSIDADE @1 CONDUCTIVIDA CALOR ESPECÍF	MÉTRICA @P,T MÉTRICA @15°C 5°C CINEMÁTICA @T DE TÉRMICA @T FICO @T RFICIAL @P,T	PRIEDADES FASE	m³/h m³/h kg/m³ kg/m³ cSt kcal/h m°C kcal/kg °C dinas/cm kg/cm² a Gcal/h		1,879330203 1,466881614 887,13 998,076 0,1459 0,552365 0,510676 29,455		
35 36 37 38 39 40 41 42 43	VAZÃO VOLUM VAZÃO VOLUM DENSIDADE @T DENSIDADE @1 VISCOSIDADE C CONDUCTIVIDA CALOR ESPECÍF TENSÃO SUPER	MÉTRICA @P,T MÉTRICA @15°C 5°C CINEMÁTICA @T DE TÉRMICA @T FICO @T RFICIAL @P,T	PRIEDADES FASE	m³/h m³/h kg/m³ kg/m³ cSt kcal/h m°C kcal/kg °C dinas/cm kg/cm² a Gcal/h	a para correntes	1,879330203 1,466881614 887,13 998,076 0,1459 0,552365 0,510676 29,455 1,00278		
35 36 37 38 39 40 41 42 43	VAZÃO VOLUM VAZÃO VOLUM DENSIDADE @T DENSIDADE @1 VISCOSIDADE C CONDUCTIVIDA CALOR ESPECÍF TENSÃO SUPER	MÉTRICA @P,T MÉTRICA @15°C 5°C CINEMÁTICA @T DE TÉRMICA @T FICO @T RFICIAL @P,T	PRIEDADES FASE	m³/h m³/h kg/m³ kg/m³ cSt kcal/h m°C kcal/kg °C dinas/cm kg/cm² a Gcal/h		1,879330203 1,466881614 887,13 998,076 0,1459 0,552365 0,510676 29,455 1,00278		
35 36 37 38 39 40 41 42 43 44 45	VAZÃO VOLUM VAZÃO VOLUM DENSIDADE @T DENSIDADE @1 VISCOSIDADE C CONDUCTIVIDA CALOR ESPECÍF TENSÃO SUPER	MÉTRICA @P,T MÉTRICA @15°C 5°C CINEMÁTICA @T DE TÉRMICA @T FICO @T RFICIAL @P,T	PRIEDADES FASE	m³/h m³/h kg/m³ kg/m³ cSt kcal/h m°C kcal/kg °C dinas/cm kg/cm² a Gcal/h		1,879330203 1,466881614 887,13 998,076 0,1459 0,552365 0,510676 29,455 1,00278		
35 36 37 38 39 40 41 42 43 44 45	VAZÃO VOLUM VAZÃO VOLUM DENSIDADE @T DENSIDADE @1 VISCOSIDADE C CONDUCTIVIDA CALOR ESPECÍF TENSÃO SUPER	MÉTRICA @P,T MÉTRICA @15°C 5°C CINEMÁTICA @T DE TÉRMICA @T FICO @T RFICIAL @P,T	PRIEDADES FASE	m³/h m³/h kg/m³ kg/m³ cSt kcal/h m°C kcal/kg °C dinas/cm kg/cm² a Gcal/h		1,879330203 1,466881614 887,13 998,076 0,1459 0,552365 0,510676 29,455 1,00278		
35 36 37 38 39 40 41 42 43 44 45 46 47	VAZÃO VOLUM VAZÃO VOLUM DENSIDADE @T DENSIDADE @1 VISCOSIDADE C CONDUCTIVIDA CALOR ESPECÍF TENSÃO SUPER	MÉTRICA @P,T MÉTRICA @15°C 5°C CINEMÁTICA @T DE TÉRMICA @T FICO @T RFICIAL @P,T	PRIEDADES FASE	m³/h m³/h kg/m³ kg/m³ cSt kcal/h m°C kcal/kg °C dinas/cm kg/cm² a Gcal/h		1,879330203 1,466881614 887,13 998,076 0,1459 0,552365 0,510676 29,455 1,00278		
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	VAZÃO VOLUM VAZÃO VOLUM DENSIDADE @T DENSIDADE @1 VISCOSIDADE @ CONDUCTIVIDA CALOR ESPECÍF TENSÃO SUPEF PRESSÃO DE V ENTALPIA	MÉTRICA @P,T MÉTRICA @15°C 5°C CINEMÁTICA @T DE TÉRMICA @T FICO @T RFICIAL @P,T	PRIEDADES FASE	m³/h m³/h kg/m³ kg/m³ cSt kcal/h m°C kcal/kg °C dinas/cm kg/cm² a Gcal/h		1,879330203 1,466881614 887,13 998,076 0,1459 0,552365 0,510676 29,455 1,00278		
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	VAZÃO VOLUM VAZÃO VOLUM DENSIDADE @T DENSIDADE @T VISCOSIDADE @T CONDUCTIVIDA CALOR ESPECÍF TENSÃO SUPEF PRESSÃO DE V ENTALPIA	MÉTRICA @P,T MÉTRICA @15°C		m³/h m³/h kg/m³ kg/m³ cSt kcal/h m°C kcal/kg °C dinas/cm kg/cm² a Gcal/h MISCE	ELÂNEOS	1,879330203 1,466881614 887,13 998,076 0,1459 0,552365 0,510676 29,455 1,00278 0,0311395		ais
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	VAZÃO VOLUM VAZÃO VOLUM DENSIDADE @T DENSIDADE @T VISCOSIDADE @T CONDUCTIVIDA CALOR ESPECÍF TENSÃO SUPEF PRESSÃO DE V ENTALPIA	MÉTRICA @P,T MÉTRICA @15°C		m³/h m³/h kg/m³ kg/m³ cSt kcal/h m°C kcal/kg °C dinas/cm kg/cm² a Gcal/h MISCE	ELÂNEOS	1,879330203 1,466881614 887,13 998,076 0,1459 0,552365 0,510676 29,455 1,00278		ais
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	VAZÃO VOLUM VAZÃO VOLUM DENSIDADE @T DENSIDADE @T VISCOSIDADE @T CONDUCTIVIDA CALOR ESPECÍF TENSÃO SUPEF PRESSÃO DE V ENTALPIA	MÉTRICA @P,T MÉTRICA @15°C		m³/h m³/h kg/m³ kg/m³ cSt kcal/h m°C kcal/kg °C dinas/cm kg/cm² a Gcal/h MISCE	ELÂNEOS	1,879330203 1,466881614 887,13 998,076 0,1459 0,552365 0,510676 29,455 1,00278 0,0311395		iais
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	VAZÃO VOLUM VAZÃO VOLUM DENSIDADE @T DENSIDADE @T VISCOSIDADE @T CONDUCTIVIDA CALOR ESPECÍF TENSÃO SUPEF PRESSÃO DE V ENTALPIA	MÉTRICA @P,T MÉTRICA @15°C		m³/h m³/h kg/m³ kg/m³ cSt kcal/h m°C kcal/kg °C dinas/cm kg/cm² a Gcal/h MISCE	ELÂNEOS	1,879330203 1,466881614 887,13 998,076 0,1459 0,552365 0,510676 29,455 1,00278 0,0311395		ais
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	VAZÃO VOLUM VAZÃO VOLUM DENSIDADE @T DENSIDADE @T VISCOSIDADE @T CONDUCTIVIDA CALOR ESPECÍF TENSÃO SUPEF PRESSÃO DE V ENTALPIA	MÉTRICA @P,T MÉTRICA @15°C		m³/h m³/h kg/m³ kg/m³ cSt kcal/h m°C kcal/kg °C dinas/cm kg/cm² a Gcal/h MISCE	ELÂNEOS	1,879330203 1,466881614 887,13 998,076 0,1459 0,552365 0,510676 29,455 1,00278 0,0311395		ais
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	VAZÃO VOLUM VAZÃO VOLUM DENSIDADE @T DENSIDADE @T VISCOSIDADE @T CONDUCTIVIDA CALOR ESPECÍF TENSÃO SUPEF PRESSÃO DE V ENTALPIA	MÉTRICA @P,T MÉTRICA @15°C		m³/h m³/h kg/m³ kg/m³ cSt kcal/h m°C kcal/kg °C dinas/cm kg/cm² a Gcal/h MISCE	ELÂNEOS	1,879330203 1,466881614 887,13 998,076 0,1459 0,552365 0,510676 29,455 1,00278 0,0311395		ais

R e v 1 2 0	UNIDA DE :						Pág. 13	de 16					
e v 1 2 0 0 3 1													
v 1 2 0 0 3 1													
1 2 (B	ALANÇOS DE	CALOR E MAT	ÉRIA							
2 (3 I	DADOS DE OPERAÇÃO E VAZÕES												
3 1				DADOS DE OPE	RAÇÃO E VAZÕE	S							
-	CASO DE OPERA	AÇÃO/DESENHO											
4	Nº DE CORRENT	E			49	50	51	52					
						.	á	Entrada de					
Ţ	DESCRIÇÃO				Saída vapor E-3	Água	Água residual	água na					
5						refrigeração E-4	E-4	absorção					
6	PRESSÃO (1)			kg/cm² g	39,390	1,108	1,058	0,904					
7	TEMPERATURA			۰C	375,383	24,000	45,149	24,000					
8	VAZÃO TOTAL			kg/h	5444,080	13279,700	13279,700	1662,810					
9 (% VAPOR			%р	100	0	0	0					
10	VAZÃO TOTAL	DE VAPOR		kg/h	5444,080								
11	INCONDENSÁ'	VEIS (N2,)		kg/h									
12	VAPOR DE AC	,		kg/h	5444,080								
13	ORGÂNICOS			kg/h	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
	VAZÃO TOTAL	DE LIQUIDO		kg/h		13279,700	13279,700	1662,810					
15	AGUA LIVRE			kg/h		13279,700	13279,700	1662,810					
16	ORGÂNICOS			kg/h	 	10210,100	.02/3,/00	. 502,010					
	ENTALPÍA TOTA	I		Gcal/h	-16,628	-50.341	0,271	6,365					
		DRROSIVOS, TÓX	ros	% p/ppmp	0	-50,541	0,271	0,303					
	SÓLIDOS: QUA	· · · · · · · · · · · · · · · · · · ·	.03	% p/ppiiip %	0		0						
	SÓLIDOS : DIAM	PARTICULA		Micras	ASEVAPOR (Úm i	 -1-\							
21	\	ĆTDIOA ®DT	laa)	I I									
	VAZÃO VOLUM		20)	m³/h	388,353								
		ÉTRICA @(1 atm,	·C)	Nm³/h	-								
	PESO MOLECULA			kg/kmol	18,015								
	DENSIDA DE @P,			kg/m³	14,018								
-	DENSIDA DE @(1			kg/Nm³	-								
\rightarrow	VISCOSIDADE @			cP	0,024								
	CONDUCTIVIDAD			kcal/h m°C	0,045								
	CALOR ESPECÍF			kcal/kg ⁰C	0,549								
		PRESIBILIDA DE @	,T		0,945								
	Cp / Cv				1,321								
32	ENTALPIA			Gcal/h	-16,628								
33		PRO	RIEDADES FAS	SELÍQUIDA (Sec	a para correntes	de hidrocarbone	tos)						
34	VAZÃO VOLUM	ÉTRICA @P,T		m³/h		13,347	1,671	0,186					
35	VAZÃO VOLUM	ÉTRICA @15°C		m³/h		13,305	1,666	0,186					
36	DENSIDA DE @T			kg/m³		994,921	994,921	1433,480					
37	DENSIDADE @15	5°C		kg/m³		998,076	998,076	1434,610					
38	VISCOSIDA DE C	INEMÁTICA @T		cSt		0,938	0,938	0,739					
	CONDUCTIVIDAD			kcal/h m °C		0,520	0,520	0,114					
-	CALOR ESPECÍF			kcal/kg °C		0,961	0,961	0,221					
	TENSÃO SUPERI			dinas/cm		72,873	72,873	33,888					
	PRESSÃO DE VA			kg/cm² a		0,030	1,003	1,003					
-	ENTALPIA			Gcal/h		-50,341	6,365	0,000					
44					ELÂNEOS	1 22,071	5,500						
45				1									
46				+	 								
47 47				+	1								
48				+	+								
49				+	-								
	NOTA C :												
	NOTAS:	~				4-ll 1 1 1 1 2 2	- 6						
51	(1) A press	ao e as proprieda	es aependentes	s serao confirmad	as peia eng. de de	talhe com hidráulica	is/isometricas finai	3					
52													
53													
54													
55				_									
	Rev.	Por											

_		PROJETO:	Producao de m	etil-etil-cetona	a partir de 2-bu	tanol		Balanços de calor	e matéria	
		UNIDADE:		J JOIOIIA	_ pa ac 2-bu			Pág. 14	de 16	
	R		1					1 3- 1 1-	3	
	e			R	ALANCOS DE	CALOR E MATÉ	ÉRIA			
	v									
1	7				DADOS DE OP	ERAÇÃO E VAZÕES	3			
2	+	CASO DE OPFR	AÇÃO/DESENHO			1.3 2 77.200	-			
3	1	Nº DE CORRENT	•			53	54	55	56	
4	1						Entrada			
		DESCRIÇÃO				Entrada topo C-2		Água de	Água residua	
5		DLOOKIÇ/ (O				Entrada topo o 2	L-4	refrigeração E-6	E-6	
6	-	PRESSÃO (1)			kg/cm² g	0,904	1,312	3,100	3,100	
7	4	` ,			°C			· ·		
	4	TEMPERATURA VAZÃO TOTAL			_	24,000	24,000	24,000	45,000	
8	4				kg/h	1662,810	7,320	1339,370	1339,370	
9	4	% VAPOR	DE1/4 DOD		%p	0	0	0	0	
10		VAZÃO TOTAL			kg/h					
11		INCONDENSÁ			kg/h					
12	_	VAPOR DE A			kg/h					
13	4	HIDROCARBO			kg/h					
14	4	VAZÃO TOTAL			kg/h	1662,810	7,320	1339,370	1339,370	
15		AGUA LIVRE			kg/h			1339,370	1339,370	
16	_[HIDROCARBO			kg/h	ļ			 	
17		ENTALPÍA TOTA			Gcal/h	6,365	-0,002	0,029	0,029	
18			ORROSIVOS, TÓXI	cos	% p/ppmp	0	1000000	0	0	
19		SÓLIDOS: QUA			%					
20		SÓLIDOS : DIAM	1. PARTÍCULA		Micras					
21					PROPRIEDADES	FASE V APOR (Úm i	da)			
22		VAZÃO VOLUM			m³/h					
23		VAZÃO VOLUM	∕lÉTRICA @(1 atm,	0°C)	Nm³/h					
24		PESO MOLECUL	AR		kg/kmol					
25		DENSIDADE @P	;T		kg/m³					
26		DENSIDADE @(1 atm, 0°C)		kg/Nm³					
27		VISCOSIDADE @	® T		cР					
28		CONDUCTIVIDA	DE TÉRMICA @T		kcal/h m °C					
29		CALOR ESPECÍF	FICO @T		kcal/kg ⁰C					
30	1	FATOR DE COM	PRESIBILIDA DE @ I	P,T	<u> </u>					
31	1	Cp / Cv		·						
32		ENTALPIA			Gcal/h					
33	T		PR	OPRIEDADES FA		ca para correntes	de hidrocarbone	etos)	<u></u>	
34	Ħ	VAZÃO VOLUM			m³/h	1,671	0,005	1,346	1,375	
35			MÉTRICA @15°C		m³/h	1,666	0,005	1,342	1,342	
36		DENSIDADE @T			kg/m³	994,921	1433,484	994,921	974,304	
37		DENSIDADE @1			kg/m³	998,076	1434,608	998,076	998,076	
38	+	VISCOSIDADE O			cSt	0,938	0,739	0,938	0,626	
39	┪		DE TÉRMICA @T			0,520	0,739	0,520		
40	┥	CALOR ESPECÍF			kcal/h m °C kcal/kg °C	0,961	0,114	0,961	0,543 0,971	
41	+	TENSÃO SUPER			dinas/cm	72,873	33,888	72,873	68,768	
41	\dashv	PRESSÃO DE V	/		kg/cm ² a	1,003	0,030	1,003	0,935	
	\dashv	ENTALPIA	OIX @ I			•		·		
43	+	LINIALMA			Gcal/h	6,365 CELÂNEOS	-0,087	0,029	0,029	
44	-				IVIISO	JELANEUS		T	T	
45	4					 			 	
46	4					-			ļ	
47	4					-				
48	_									
49	_					<u> </u>			L	
50		NOTAS:	_							
51	_[(1) A press	são e as proprieda	des dependentes	s serão confirmad	as pela eng. de deta	lhe com hidráulica	s/isométricas finais		
52										
53										
54										
55										
		Rev.	Por							
	- 1	Data	Aprovado		1	1			i	

	PROJETO:	Produção de m	etil-etil-cetona	a partir de 2-bu	itanol		Balanços de calo	
-	UNIDADE:						Pág. 15	de 16
R e			Е	BALANÇOS DE	CALOR E MA	TÉRIA		
V								
1 2 (AÇÃO/DESENHO		DADOS DE OF	PERAÇÃO E VAZÕ	DES		
-	N° DE CORRENT	3			57	58	59	60
4		· <u> </u>			Entrada vapor	Água	Entrada vapor	Água
5	DESCRIÇÃO				E-7	condensada E-7		condensada E-
6 I	PRESSÃO (1)			kg/cm² g	7,000	7,000	7,000	7,000
	TEMPERATURA			°C	218,000	218,000	218,000	218,000
	VAZÃO TOTAL			kg/h	69,596	69,596	3946,330	3946,330
	% VAPOR	DE VA DOD		%p	100	0	100	0
10 \\	VAZÃO TOTAL INCONDENSÁ			kg/h kg/h	69,596	0,000	3946,330	0,000
12	VAPOR DE A			kg/h	69,596	0,000	3946,330	0,000
13	HIDROCARBO			kg/h	03,330	0,000	3340,330	0,000
	VAZÃO TOTAL			kg/h	0,000	69,596		3946,330
15	AGUA LIVRE			kg/h	0,000	69,596		3946,330
16	HIDROCARBO			kg/h				0,000
	ENTALPÍA TOTA			Gcal/h	0,031	0,031	0,457	0,457
		ORROSIVOS, TÓX	ICOS	% p/ppmp	0	0	0	0
	SÓLIDOS : QUA			%				
20 \$	SÓLIDOS : DIAN	/I. PARTICULA		Micras	FASE VAPOR (Ún	nida)		
	VAZÃO VOLUN	MÉTRICA @PT		m³/h	15,363	iliua)	871,155	
		MÉTRICA @(1 atm,	0°C)	Nm³/h	10,000		0.1,100	
	PESO MOLECUL	• •	,	kg/kmol	18,020		18,020	
25 I	DENSIDADE @P	P,T		kg/m³	4,530		4,530	
26 I	DENSIDA DE @(1 atm, 0°C)		kg/Nm³				
-	VISCOSIDADE @			cР	0,017		0,017	
		DE TÉRMICA @T		kcal/h m°C	0,039		0,039	
-	CALOR ESPECÍF			kcal/kg °C	1,630		1,630	
		IPRESIBILIDA DE @	P, I	1	1,000		1,000	
	Cp / Cv ENTALPIA			Gcal/h	1,128 0,031		1,128 0,457	
33	LINIALFIA	PR	OPRIEDADES EA			l es de hidrocarboi		
	VAZÃO VOLUN		OI NILDADLO I A	m³/h	l para corrente	0,078	10103)	4,448
		MÉTRICA @15 °C		m³/h		-,-		, -
36	DENSIDADE @T			kg/m³		887,130		887,130
37	DENSIDA DE @1	5°C		kg/m³				
		INEMÁTICA @T		cSt		0,146		0,146
		DE TÉRMICA @T		kcal/h m°C		0,552		0,552
	CALOR ESPECÍF			kcal/kg °C	<u> </u>	0,511		0,511
	TENSÃO SUPER PRESSÃO DE V			dinas/cm		29,455		29,455
-	ENTALPIA	APOR @ I		kg/cm² a Gcal/h		0,031		0,457
44	LINIALFIA				CELÂNEOS	0,031		0,437
45								
46				1				
47								
48								
49			-					
	NOTAS:							
51	(1) A press	são e as proprieda	des dependente	s serão confirmad	das pela eng. de de	etalhe com hidráulio	as/isométricas fir	nais
52								
53								
54 55								
55	Rev.	Por						
	Data	Aprovado		+		ļ		

		PROJETO:	Produção de m	etil-etil-cetona a j	partir de 2-bu	tanol		Balanços de cal	or e matéria		
		UNIDADE:	,					Pág. 16	de 16		
	R		•								
	е			BALA	ANÇOS DE O	CALOR E MATÉ	RIA				
	٧				_						
1				D	DADOS DE OPERAÇÃO E VAZÕES						
2		CASO DE OPER	RAÇÃO/DESENHO								
3		Nº DE CORREN	TE			61	62				
4						Água de	Água residual				
5		DESCRIÇÃO				refrigeração E-	E-9				
5						9	L-9				
6		PRESSÃO (1)			kg/cm² g	3,100	3,100				
7		TEMPERATURA	1		°C	24,000	45,000				
8		VAZÃO TOTAL	_		kg/h	4139,340	4139,340				
9		% VAPOR			%p	0	0				
10		VAZÃO TOTAL	DEVAPOR		kg/h						
11		INCONDENSA	ÁVEIS (N2,)		kg/h						
12		VAPOR DE A	\GUA		kg/h						
13		HIDROCA RB	ONETOS		kg/h						
14		VAZÃO TOTAL	DE LIQUIDO		kg/h	4139,340	4139,340				
15		AGUA LIVRE			kg/h	4139,340	4139,340				
16		HIDROCA RB	ONETOS		kg/h						
17		ENTALPÍA TOT	AL		Gcal/h	0,449	0,449				
18		COMPOSTOS C	ORROSIVOS, TÓX	cos	% p/ppmp	0	0				
19		SÓLIDOS: QU.			%						
20		SÓLIDOS : DIAI	M. PARTÍCULA		Micras						
21				PRO	PRIEDADES F	ASE VAPOR (Úm id	la)	•	•		
22		VAZÃO VOLUI	MÉTRICA @P,T		m³/h						
23		VAZÃO VOLUI	MÉTRICA @(1 atm,	0°C)	Nm³/h						
24		PESO MOLECU	LAR		kg/kmol						
25		DENSIDADE @I	P,T		kg/m³						
26		DENSIDADE @((1 atm, 0°C)		kg/Nm³						
27		VISCOSIDA DE	@T		cР						
28		CONDUCTIVIDA	DE TÉRMICA @T		kcal/h m °C						
29		CALOR ESPECÍ	FICO @T		kcal/kg ⁰C						
30		FATOR DE CON	/IPRESIBILIDADE@	P,T							
31		Cp / Cv									
32		ENTALPIA			Gcal/h						
33				PRIEDADES FASE L	.ÍQUIDA (Seca	para correntes o	de hidrocarbone	etos)			
34		VAZÃO VOLUI	MÉTRICA @P,T		m³/h	4,249	4,160				
35		VAZÃO VOLUI	MÉTRICA @15°C		m³/h	4,147	4,147				
36		DENSIDADE @	Г		kg/m³	974,304	994,921				
37		DENSIDADE @			kg/m³	998,076	998,076				
38		VISCOSIDADE	CINEMÁTICA @T		cSt	0,626	0,938				
39		CONDUCTIVIDA	DE TÉRMICA @T		kcal/h m°C	0,543	0,520				
40		CALOR ESPECÍ			kcal/kg ⁰C	0,971	0,961				
41		TENSÃO SUPE	RFICIAL @P,T		dinas/cm	68,768	72,873				
42		PRESSÃO DE V	/APOR @T		kg/cm² a	0,935	1,003				
43		ENTALPIA			Gcal/h	0,029	0,029				
44					MISCI	LÂNEOS					
45											
46											
47											
48											
49											
50		NOTAS:									
51		(1) A pres	são e as proprieda	des dependentes s	erão confirmad	las pela eng. de det	alhe com hidráulic	as/isométricas fir	nais		
52											
53											
54											
55											
		Rev.	Por								

		metil-etil-cetona	a partir de 2	2-butanol				de calor e mas					
R	UNIDADE :						Pág.	1 d	e 16				
e v													
1	COMPOSIÇÃO												
	Nº CORRENTE		1	2			3	4	ļ.				
	Componente / pseudocomp.	% peso	% mol	% peso	% mol	% peso	% mol	% peso	% mol				
	Água H₂	0	0	0	0	0	0	0	0				
	Metil Etil Cetona	0	0	0	0	1,77	1,81	1,77	1,81				
	2-Butanol	100	100	100	100	98,1	98,11	98,1	98,11				
_	1,1,2-Tricloroetano	0	0	0	0	0,13	0,08	0,13	0,08				
9													
11													
12													
13 14													
15													
16													
17													
18 19													
20													
21													
22 23													
24													
25													
26													
27 28													
29													
30													
31													
32 33													
34													
35													
36 37													
38													
39													
40													
41 42													
43													
44	Total	100	100	100	100	100	100	100	100				
	Vazão total seca (kg/h)		7,00	129		146		146					
46 47	Vazão total seca (kmol/h) Vazão total úmida (kg/h)		,50 -	17	,50 -		,75 -	19					
	Vazão total úmida (kmol/h)		-		-		-						
	NOTAS :												
50 51													
52													
53													
54													
55 56	1												
57													
58	Rev. Por	ı	ī		1			1					

	PROJETO : UNIDADE :	Produção de n	netil-etil-cetona	a partir de 2	2-butanol			Balanço Pág.	de calor e ma	ssa le 16			
R	1							ray.	2 (ie 10			
е													
1 V	COMPOSIÇÃO												
2	Nº CORRENTE			5		3	7	7		8			
3	Componente / p	seudocomp.	% peso	% mol	% peso	% mol	% peso	% mol	% peso % mol				
4	Água		0	0	0	0	0	0	0	0			
5 6	H ₂ Metil Etil Ceto	na	0 1,77	1,81	0 1,77	0 1,81	0 1,77	0 1,81	0 1,77	0 1,81			
7	2-Butanol		98,1	98,11	98,1	98,11	98,1	98,11	98,1	98,11			
8	1,1,2-Tricloroe	tano	0,13	0,08	0,13	0,08	0,13	0,08	0,13	0,08			
9 10													
11													
12													
13													
14 15									 				
16													
17													
18 19													
20													
21													
22													
23 24													
25													
26													
27 28													
29													
30													
31													
32 33													
34													
35													
36 37													
38													
39													
40													
41 42									1				
43													
44	Total		100	100	100	100	100	100	100	100			
45 46	Vazão total sed Vazão total sed			<u>. </u>		<u>. </u>		•		<u>-</u> -			
47	Vazão total úm		146			4,06	146		ļ	- 4,06			
48	Vazão total úm	, , ,		,75	19		19,			,75			
49	NOTAS:												
50 51	1												
52													
53													
54 55	1												
56													
57													
58		Por											
	Rev.												

	PROJETO :	Produção de n	netil-etil-cetona	a partir de 2	2-butanol				de calor e ma				
R	UNIDADE :							Pág.	3 d	e 16			
e				BALANC	O DE CALO	OR E MAS	SA						
v													
1					COMPOSIÇ	ÃO							
2	Nº CORRENT			9 10		1		12					
3	Componente /	pseudocomp.	% peso	% mol	% peso	% mol	% peso	% mol	% peso	% mol			
4	Água		0	0	0	0	0	0	0	0			
5 6	H ₂ Metil Etil Cet		2,40 87,65	46,89 47,86	2,40 87,65	46,89 47,86	2,40 87,65	46,89 47,86	31,24 66,76	94,21 5,63			
7	2-Butanol	Jila	9,81	5,21	9,81	5,21	9,81	5,21	1,97	0,16			
8	1,1,2-Tricloro	etano	0,13	0,04	0,13	0,04	0,13	0,04	0,03	0			
9													
10													
11													
12 13													
14													
15	1												
16													
17													
18													
19													
20 21													
22													
23													
24													
25													
26													
27													
28 29	+												
30													
31													
32													
33													
34	-												
35 36													
37													
38													
39													
40													
41													
42	1								-				
43 44	Total		100	100	100	100	100	100	100	100			
45	Vazão total se	eca (kg/h)	_		0,0		0,		100				
46	Vazão total se			•	0,0		0,			•			
47	Vazão total úr			4,06	1464		146		112				
48	Vazão total ún	nida (kmol/h)	37	,19	37,	19	37	,19	18	51			
49	NOTAS :												
50 51													
52													
53													
54													
55													
56													
57 58													
3XI		Т	1										
50	Rev.	Por											

R e v 1 1 2 1 3 4 5 6 6 7 :	UNIDADE : Nº CORRENTE Componente / pseudocomp. Água		BALANÇ	O DE CALO	OD E MAC	•	Pág.	4 d	e 16
e v 1 2 1 3 4 5 6 7 3 7	Componente / pseudocomp.		BALANÇ	O DE CAL	OD E MAC	~ .			
1 2 1 3 4 4 5 5 6 1 7 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Componente / pseudocomp.				JK E IVIAS	SA			
2 3 4 4 5 6 1 7 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Componente / pseudocomp.				~				
3 4 5 5 6 F 7 2 2	Componente / pseudocomp.			COMPOSIÇ		т .			
4 5 6 7 2		% peso	3 % mol	% peso	4 % mol	% peso	5 % mol	% peso	6 % mol
5 1 6 1 7 2	, .g	% peso 0	% IIIOI 0	% peso 0	% HIOI 0	% peso	1,65	% peso	98,85
6 I	H ₂	0	0,02	0	0,02	85,26	98,29	0	0
	Metil Etil Cetona	89,39	89,7	89,39	89,7	1,92	0,06	4,28	1,12
8	2-Butanol	10,46	10,22	10,46	10,22	0	0	0,13	0,03
	1,1,2-Tricloroetano	0,15	0,08	0,15	0,08	0,05	0	0	0
9									
10									
12									
3									
4									
15									
16									
7									
18						<u> </u>		1	
20									1
21									
22									
23									
24									
25									
26									
27 28									
29									
30									
31									
32									
33									
34									
35 36									
37									
38									
39									
10									
11									
12								1	
13 14	Total	100	100	100	100	100	100	100	100
_	Vazão total seca (kg/h)	135		135			- 100	1734	
	Vazão total seca (kmol/h)		,68	18			•	93,	
	Vazão total úmida (kg/h)		•		•	41	,18		•
	Vazão total úmida (kmol/h)		-		-	17	,72		
	NOTAS :								
50									
51									
53									
54									
55									
66									
57									
8				1		1			
	Rev. Por Data Aprovac	lo.						1	

		OJETO :	Produção de me	til-etil-cetona	a partir de 2	2-butanol				de calor e mas			
	_	IDADE :							Pág.	5 d	e 16		
R e					BALANC	O DE CAL	OR F MAS	SA					
- v					DALAIT	O DE OAL	JIK E 1117-0						
1						COMPOSIÇÃO							
2	Nº C	ORRENTE		1	7	1	8	1	9	2	0		
3	Com	nponente / ps	eudocomp.	% peso	% mol	% peso	% mol	% peso	% mol	% peso	% mol		
4	Águ	а		95,59	98,85	99,22	99,85	0,7	4,13	0,7	4,13		
5	H ₂			0	0	0	0	0	0	0	0		
6	_	il Etil Cetona	1	4,28	1,12	0,27	0,07	23,86	35,27	23,86	35,27		
7 8		utanol 2-Tricloroeta		0,13 0	0,03	0,08 0,43	0,03 0,06	0,48 74,96	0,69 59,91	0,48 74,96	0,69 59,91		
9	1,1,2	2-11101010010		-	•	0,43	0,00	74,30	33,31	74,30	33,31		
10													
11													
12													
13													
14								ļ					
15 16													
17	1												
18	1												
19	L												
20							•						
21													
22													
23 24													
25													
26	-												
27													
28													
29													
30													
31 32	-												
33	-												
34													
35													
36													
37													
38	-												
39 40													
41	+												
42	1												
43													
44	Tota			100	100	100	100	100	100	100	100		
45		ão total seca		1734			6,58	307		307			
46		ão total seca		93,		92		4,		4,			
47 48		ão total úmida ão total úmida			-		<u>. </u>		<u>-</u>	+			
49		AS :	~ (AIIIO/II)	<u> </u>		<u>'</u>		<u> </u>		<u> </u>			
50													
51													
52													
53													
54 55	-												
55 56													
57	+												
58													
		Rev.	Por										
		Data	Aprovado										

	PROJETO:	Produção de m	netil-etil-cetona	a partir de 2	2-butanol				de calor e mas			
	UNIDADE :							Pág.	6 d	e 16		
R e				BALANC	O DE CAL	OR F MAS	SΔ					
V				DYFYIIÒ	O DE CAL	JI L WAS	0 A					
1				COMPOSIÇÃO								
2	Nº CORRENTE		2	1		2	2	3	2	4		
3	Componente /	oseudocomp.	% peso	% mol	% peso	% mol	% peso	% mol	% peso	% mol		
4	Água		0,7	4,13	0,55	2,18	0,55	2,18	0,55	2,18		
5	H ₂		0	0	0	0	0	0	0	0		
6	Metil Etil Ceto	na	23,86	35,27	98,81	97,23	98,81	97,23	98,81	97,23		
7	2-Butanol		0,48	0,69	0,59	0,56	0,59	0,56	0,59	0,56		
9	1,1,2-Tricloroe	tano	74,96	59,91	0,05	0,03	0,05	0,03	0,05	0,03		
10												
11												
12												
13												
14												
15							-					
16 17	+						1					
18	+		+				-					
19												
20												
21												
22												
23												
24 25												
26												
27												
28												
29												
30												
31												
32 33												
34												
35												
36												
37												
38												
39	1						1					
40 41	+						-					
41 42	1											
43	+											
44	Total		100	100	100	100	100	100	100	100		
45	Vazão total se		307		254		254		254			
46	Vazão total se		4,3		3,		3,		3,			
47	Vazão total úm			-		-		-		•		
48 49	Vazão total úm NOTAS :	ıda (kmol/h)	-	•	<u> </u>	•	<u> </u>	•		•		
50	INOTAS.											
51												
52												
53												
54												
55												
56												
57 58												
JU	+ -	Por	1		I		1		ı			
	Rev.	POI										

	PROJETO : UNIDADE :	Produção de r	netil-etil-cetona	a partir de 2	2-butanol				de calor e mas	
R								Pág.	7 d	e 16
e				BALANÇ	O DE CAL	OR E MAS	SA			
V	,			3						
1					COMPOSIÇ	ÃO				
2	Nº CORRENTE		2			6		7	2	
3	Componente /	pseudocomp.	% peso	% mol	% peso	% mol	% peso	% mol	% peso	% mol
4	Água		0,55	2,18	0,74	5,01	0,74	5,01	0,74	5,01
5 6	H ₂ Metil Etil Ceto	.na	98,81	97,23	0 4,37	0 7,42	0 4,37	0 7,42	0 4,37	7,42
7	2-Butanol	ліа	0,59	0,56	0,45	0,75	0,45	0,75	0,45	0,75
8	1,1,2-Tricloroe	etano	0,05	0,03	94,44	86,82	94,44	86,82	94,44	86,82
9										
10										
11										
12 13										
14										
15	 									
16										
17										
18	-									
19 20	-									
21	+									
22										
23										
24										
25										
26										
27 28										
29										
30										
31										
32										
33 34										
35										
36										
37										
38										
39	1									
40 41	+									
42	+									
43										
44	Total		100	100	100	100	100	100	100	100
45	Vazão total se		190		716		474		242	
46 47	Vazão total se		2,7		5,			94	2,	
47 48	Vazão total um Vazão total úm	, , ,	-			<u>. </u>		<u>-</u>	1	
49	NOTAS :	inda (Killoi/II)	1		<u>'</u>		<u>'</u>		<u> </u>	
50										
51										
52										
53										
54 55										
56										
57										
58										
	Rev.	Por								
	Data	Aprovado								

		PROJETO :	Produção de me	til-etil-cetona	a partir de 2	-butanol				de calor e mas	
F	,	UNIDADE :	ļ.						Pág.	8 d	e 16
- 6					BALANC	O DE CAL	OR E MAS	SA			
	v				_,	0 0					
1						COMPOSIÇ					
2	_	Nº CORRENTE		2	9	3	0	3	1	3	2
3	_	Componente / pse	eudocomp.	% peso	% mol	% peso	% mol	% peso	% mol	% peso	% mol
4	_	Água		0,55	2,18	0,36	2,52	0,36	2,52	0,55	2,18
5	_	H ₂ Metil Etil Cetona		0	0 07.00	0	0	0	0	0	0
6 7	_	2-Butanol	l	98,81 0,59	97,23 0,56	2,11 0,22	3,75 0,38	2,11 0,22	3,75 0,38	98,81 0,59	97,23 0,56
8		1,1,2-Tricloroeta	no	0,05	0,03	97,31	93,35	97,31	93,35	0,05	0,03
9				,	•		,	,	,	,	•
10											
11											
12											
13 14											
15	1										
16											
17	J		<u> </u>				-				
18	_							ļ			
19 20	+							-			
21	+										
22	1										
23											
24											
25											
26											
27 28	+										
29	+										
30	1										
31											
32											
33	_										
34 35	+										
36	+										
37	1										
38											
39	Ţ										
40	_										
41 42	4							-			
43	1										
44	7	Total		100	100	100	100	100	100	100	100
45		Vazão total seca		242		249		249		64	
46	_	Vazão total seca		2,0		1,		1,		0,	
47	_	Vazão total úmida			•		•		•	+	•
48 49		Vazão total úmida NOTAS :	(KITIOI/N)	-	•	<u> </u>	•	<u> </u>	_	1	•
50	┪										
51	7										
52											
53	_]										
54	_										
55 56	4										
57	┥										
58	\dashv										
	j	Rev.	Por								
	Ī	Data	Aprovado		<u> </u>						

		e metil-etil-cetona	a partir de 2	2-butanol				de calor e mas			
	UNIDADE :						Pág.	9 d	e 16		
F e			BALANC	O DE CAL	OR E MAS	SA					
- \			2,12,119	0 01 0/12	J. (_ 11 ()	. , .					
1	COMPOSIÇÃO										
2	Nº CORRENTE		3		4		5	3			
3	Componente / pseudocomp.	% peso	% mol	% peso	% mol	% peso	% mol	% peso	% mol		
4	Água	0,03	0,1	0,03	0,1	0	0	0	0		
5 6	H ₂ Metil Etil Cetona	0 89,82	0 90,06	0 89,82	0 90,06	0 15,50	0 15,94	0 15,50	0 15,94		
7	2-Butanol	10,01	9,76	10,01	9,76	83,32	83,4	83,32	83,4		
8	1,1,2-Tricloroetano	0,14	0,08	0,14	0,08	1,18	0,66	1,18	0,66		
9											
10											
11											
12											
13 14	+										
15	+										
16											
17											
18									-		
19											
20 21	+										
22											
23											
24											
25											
26											
27											
28											
29 30											
31											
32											
33											
34											
35											
36											
37 38											
39											
40	1										
41											
42											
43	Total	100	400	400	400	400	400	400	400		
44 45	Total	100	100	100	100 6,42	100 466	100	100	100 2,23		
45 46	Vazão total seca (kg/h) Vazão total seca (kmol/h)	1410			,59		9,61 ,94	60			
47	Vazão total úmida (kg/h)						, 34 -				
48	Vazão total úmida (kmol/h)						-				
19	NOTAS :										
50											
51											
52 53											
53 54											
55 55											
56											
57											
58											
	Rev. Por										
	Data Aprovado	0									

	PROJETO:	Produção de n	netil-etil-cetona	a partir de 2	2-butanol				de calor e mas		
R	UNIDADE :							Pág.	10 d	e 16	
e				BALANC	O DE CAL	OR E MAS	SA				
v	,			3							
1				COMPOSIÇÃO							
2	Nº CORRENTE		3			8		9			
3	Componente /	pseudocomp.	% peso	% mol	% peso	% mol	% peso	% mol	% peso	% mol	
4	Água		0	0	0	0	0,03	0,11	0,03	0,11	
5 6	H ₂ Metil Etil Ceto		0 15,50	0 15,94	0 15,50	0 15,94	0 99,76	0 99,69	0 99,76	99,69	
7	2-Butanol	ila .	83,32	83,4	83,32	83,4	0,21	0,2	0,21	0,2	
8	1,1,2-Tricloroe	etano	1,18	0,66	1,18	0,66	0	0	0	0	
9											
10											
11											
12 13											
14	1										
15	<u> </u>										
16											
17											
18	<u> </u>										
19 20	 										
21	+										
22											
23											
24											
25											
26											
27 28											
29	1										
30											
31											
32											
33 34											
35											
36	+										
37											
38											
39	<u> </u>										
40 41	+										
42	+										
43											
44	Total		100	100	100	100	100	100	100	100	
45	Vazão total se		167		148			3,39	4993		
46	Vazão total se		2,2		2,			,31	69,		
47 48	Vazão total úm Vazão total úm		-		18 0,	,47 25		-			
49	NOTAS :	iida (KIIIO/II)	1		ı U,		<u>'</u>		<u> </u>		
50											
51											
52											
53											
54 55											
56											
57											
58			_								
	Rev.	Por									
	Data	Aprovado									

		de metil-etil-cetona	a partir de 2	2-butanol			Balanço	de calor e mas	sa				
	UNIDADE :						Pág.	11 d	e 16				
R			DALANC	O DE CAL	OD E MAC	C A							
e v			BALANÇ	O DE CAL	JK E MAS	SA							
1	<u>' </u>			COMPOSIÇ	ÃO								
2	Nº CORRENTE	4	1		2		3	1 4	,03 0,11 0 0 0,76 99,69 ,21 0,2				
3	Componente / pseudocomp.	% peso	% mol	% peso	% mol	% peso	% mol	% peso					
4	Água	0,03	0,11	0,03	0,11	0,03	0,11	0,03					
5	H ₂	0	0	0	0	0	0						
6	Metil Etil Cetona	99,76	99,69	99,76	99,69	99,76	99,69	99,76					
7	2-Butanol	0,21	0,2	0,21	0,2	0,21	0,2	0,21					
8	1,1,2-Tricloroetano	0	0	0	0	0	0	0	0				
9													
10													
11													
12													
13	1												
14	1												
15													
16 17	1												
18	1												
19													
20	1												
21													
22													
23													
24													
25													
26													
27													
28													
29													
30													
31													
32 33								+					
34													
35	†												
36	1												
37													
38				İ									
39													
40													
41													
42													
43	<u> </u>												
44	Total	100	100	100	100	100	100	100	100				
45	Vazão total seca (kg/h) Vazão total seca (kmol/h)	499		374			0,00	1250					
46 47		69		51,		1	,43	17,					
47 48	Vazão total úmida (kg/h) Vazão total úmida (kmol/h)		<u>. </u>		<u>. </u>		-	10,	75				
49	NOTAS :	<u> </u>	-	<u> </u>	-		-	10,					
50	1												
51	1												
52													
53													
54													
55													
56													
57													
58													
	Rev. Por												
	Data Aprovac	do				<u> </u>		<u> </u>					

	PROJETO : Produçã	ão de metil-etil-cetona	a partir de 2	2-butanol			Balanço	de calor e mas	ssa
	UNIDADE :						Pág.	12 d	e 16
R			DAL AND	0 DE 041		C A			
e v			BALANÇ	O DE CAL	JK E WAS	5A			
1				COMPOSIÇ	ÃO				
2	Nº CORRENTE	4	15		6	4	7	4	8
3	Componente / pseudocomp	o. % peso	% mol	% peso	% mol	% peso	% mol	% peso	% mol
4	Água	100	100	100	100	100	100	100	100
5	H ₂	0	0	0	0	0	0	0	0
6	Metil Etil Cetona	0	0	0	0	0	0	0	0
7 8	2-Butanol 1,1,2-Tricloroetano	0	0	0	0	0	0	0	0
9	1,1,2-Tricioroetano	0	U	0	U		U	0	U
10									
11									
12									
13									
14				ļ		ļ			
15									
16 17									
18									
19									
20									
21							-		
22									
23									
24 25									
26									
27									
28									
29									
30									
31									
32 33									
34									
35									
36									
37									
38									
39									
40									
41 42						-			
43									
44	Total	100	100	100	100	100	100	100	100
45	Vazão total seca (kg/h)		-	146	5,06	1	-		
46	Vazão total seca (kmol/h)		-	81			-		
47	Vazão total úmida (kg/h)		4,06				4,08		4,08
48	Vazão total úmida (kmol/h)	81	,34	<u> </u>		302	2,45	302	,45
49 50	NOTAS:								
51									
52									
53									
54									
55									
56									
57 58									
יאר									
55	Rev. F	Por							

	PROJETO : UNIDADE :	Produção de n	netil-etil-cetona	a partir de 2	2-butanol			Balanço Pág.	de calor e mas	
R	1							ı ag.	10 0	<u> </u>
e v				BALANÇ	O DE CAL	OR E MAS	SA			
1					COMPOSIÇ	ÃO				
2	Nº CORRENT		4	9	î .	0	5	1	5	2
3	Componente /	pseudocomp.	% peso	% mol	% peso	% mol	% peso	% mol	% peso	% mol
5	Água H₂		100	100 0	100 0	100 0	100 0	100 0	0	0
6	Metil Etil Cet	ona	0	0	0	0	0	0	0	0
7	2-Butanol		0	0	0	0	0	0	0	0
9	1,1,2-Tricloro	etano	0	0	0	0	0	0	100	100
10										
11										
12										
13 14										
15										
16										
17 18										
19										
20										
21										
22 23										
24										
25										
26 27										
28										
29										
30										
31 32										
33										
34										
35 36										
37										
38										
39										
40 41										
42										
43										
44 45	Total Vazão total se	eca (ka/h)	100	100	100 1329	7 70	100 1329	100 7 70	100 166	100
46	Vazão total se		+		738		738		92	
47	Vazão total úr	nida (kg/h)	544			•	1	-		-
48	Vazão total úr	mida (kmol/h)	302	,45		<u> </u>		-		-
49 50	NOTAS :									
51										
52										
53 54										
55										
56										
57										
58	Rev.	Por								
_	Data	Aprovado					 		1	

	PROJETO : UNIDADE :	Produção de m	etil-etil-cetona	a partir de 2	2-butanol			Balanço Pág.	de calor e mas	
R	_							Pay.	14 0	e 16
е				BALANÇ	O DE CAL	OR E MAS	SA			
V	'					a _				
1	Nº CORRENTE	=		3	COMPOSIÇ	40 4		5	5	<u> </u>
3	Componente /		% peso	% mol	% peso	% mol	% peso	% mol	% peso	% mol
4	Água	pooduceop.	100	100	0	0	100	100	100	100
5	H ₂		0	0	0	0	0	0	0	0
6	Metil Etil Ceto	ona	0	0	0	0	0	0	0	0
7	2-Butanol 1,1,2-Tricloro	-tono	0	0	100	0 100	0	0	0	0
9	1,1,2-11101010	etano	- 0	U	100	100	0	U	0	U
10										
11										
12	1									
13 14	-									
15	†									
16										
17						<u> </u>		·		
18 19	1									
20	+									
21	<u> </u>									
22										
23										
24 25										
26										
27										
28										
29										
30										
32										
33										
34										
35										
36 37	1									
38										
39										
40								,		
41	1									
42 43	1									
44	Total		100	100	100	100	100	100	100	100
45	Vazão total se		166	2,81	7,	32	133	9,37	133	9,37
46	Vazão total se			,38	0,		74		74	
47	Vazão total ún			-		-		-		•
48 49	Vazão total ún NOTAS :	iiua (KIIIUI/II)		-	<u> </u>	-	<u> </u>	-		•
50	1									
51										
52										
53 54										
55										
56										
57										
58										
	Rev.	Por	+							
	Data	Aprovado	1						ļ	

	PROJETO : UNIDADE :	Produção de m	netil-etil-cetona	a partir de 2	2-butanol			Balanço Pág.	de calor e mas	
R								ray.	13 U	9 10
е				BALANÇ	O DE CAL	OR E MAS	SA			
1					COMPOSIÇ	ÃO				
2	Nº CORRENTE		5	7		8	5	9	6	0
3	Componente / p	seudocomp.	% peso	% mol	% peso	% mol	% peso	% mol	% peso	% mol
4	Água		100	100	100	100	100	100	100	100
5 6	H ₂ Metil Etil Cetor	na	0	0	0	0	0	0	0	0
7	2-Butanol	····	0	0	0	0	0	0	0	0
8	1,1,2-Tricloroe	tano	0	0	0	0	0	0	0	0
9										
10 11										
12										
13										
14 15										
16										
17										
18				-						
19 20										
21										
22										
23										
24 25										
26										
27										
28										
29 30										
31										
32										
33										
34 35										
36										
37										
38										
39 40							-			
40 41										
42										
43										,
44 45	Total Vazão total sec	a (ka/h)	100	100	100 69	100	100	100	100 3946	100
45 46	Vazão total sec			-	3,				219	
47	Vazão total úmi			,60		•	394	6,33		
48	Vazão total úmi	da (kmol/h)	3,	87		-	219),24		
49 50	NOTAS:									
50 51										
52										
53										
54 55										
56										
57										
58										
-	Rev.	Por							1	
	Data	Aprovado			<u> </u>		L	<u> </u>	ļ	

DE : RENTE nente / pse til Cetona tol		% peso 100 0	BALANÇ	COMPOSIQ		SA	Pág.	16 d	de 16
nente / pse til Cetona	1	% peso 100 0	61 % mol	COMPOSIÇ	ÃO	SA			
nente / pse til Cetona	1	% peso 100 0	61 % mol	COMPOSIÇ	ÃO	T			
nente / pse til Cetona	1	% peso 100 0	% mol	(
nente / pse til Cetona	1	% peso 100 0	% mol		62				
til Cetona	1	100 0		% naca					
nol		0	100		% mol	% peso	% mol	% peso	% mol
nol		_		100	100				
nol		0	0	0	0				
		0	0	0	0				
	ino	0	0	0	0				
		+		1					—
		+		<u> </u>					
		+	<u> </u>	 					1
		+		-	1				-
		+							-
		-							
		-							
		+							
		+		 					-
		+						†	
		+		 				_	
		100	100	100	100				-
otal seca	(ka/h)		9,34		9,34				<u> </u>
	(kmol/h)		9,96		9,96				
otal seca			-		-	1		†	
otal seca otal úmida	a (kmol/h)		-		-				
otal úmida otal úmida									
otal úmida									
otal úmida otal úmida									
otal úmida otal úmida									
otal úmida otal úmida									
otal úmida otal úmida									
otal úmida otal úmida									
otal úmida otal úmida									
otal úmida otal úmida									
otal úmida otal úmida	Por				I	ı			
0									

5.2 Vasos Verticais

		PROJET	Ō	Produ	ção de Metil	Etil Ceto	na a Pa	rtir da Desidro	genação do Se	c-Butanol	EQUIPAMENTO r	C-1
		UNIDAD)E :								Pág. 1	de 1
	R e v						RE	CIPIENTES VI	ERTICAIS			
1							CARAC	TERÍSTICAS DO	EQUIPAMENTO			
2	-		MENTO №	C-1								
3		SERVIÇO		Coluna	de Destilaçã	o Flash			PDE00 Ã	2 (1 1 2)	TEMPERATE	FUDA (0.0)
5		CONDIÇÃ POSIÇÃ							Topo	O (kg/cm² g) Fundo	TEMPERAT Topo	Fundo
6			RAÇÃO NOF	RMAI	-				2	2	25	25
7	H		ENHO MECÂ						3,8	3,8	80	80
8					T. (regeneraçã	ão, pem, [EOR, etc	.)	-,-	-,-		
9			NHO MECÂ				•	•		•		
10					despressurizaç	ão, etc)						
11		DE LIMPE	EZA COM V				,					
12	Ш			CARA	CTERÍSTICAS	DO FLU		,		ESQ	JEM A	
13 14	Н	FLUÍDO	STOS. COR	DOGN/O	<u> </u>		ORGA	NICO/ÁGUA				
15	Н		6 / ppm p)	NOSIV US	2			H2				
16	Н		ADE LÍQ. LE	VE @T (kg/m3)			465000 0,62				
17	H		ADELÍQ. PE	,	<u> </u>			794,34				
18	П		ÁXIMO LÍQI					472				
19					MATERIA	L						
20				N	Material	Sob. Co	orrosão	Trat. Térmico				
21		Envolver	nte		ço Inox	6 m				A	В	
22		Fundo			ço Inox	7 m			+		$ \downarrow$	
23 24		Internos Pratos			ço Inox ço Inox	8 m						
25	H	Isolamen	nto.		ço illox	Não						
26	H	БОІДІТІСТ	110	<u>.</u>	CONEXÕE						-	D 1938 mm
27		SIGLA	N⁰	DIA (")	FLANGE		Ser	viço	E			•
28		Α					Purga d	e Vapor	2422 			
29		В					Saída de		2			E 484 mm
30		С						Temperatura)	
31		D						lível Superior			/.	
32 33	Н	E F	 					Nível Inferior Líquido	<u> </u>			
34	H	G						Líquido		 G	. 	
35		Н					Alimer	-		G		
36								,		9771 n	nm	
37									-		-	
38	Ц	oxdot			<u> </u>							
39	Ш	igwdown	<u> </u>									
40 41	Н											
42	Н			\vdash								
43	H			\vdash								
44												
45												
46	Ц											
47	Ц	$oxed{oxed}$		igdash	<u> </u>	<u> </u>						
48	Н		 	$\vdash \vdash \vdash$	-	 			Indiaar ===:=:=	oom rooch siese - (-	o diforente esci-	iol CA T-1-
49 50	H			\vdash		 			-	com recobrimento lamentos, enjaque		iai, CA, I de
51	H	NOTAS	:		·				r. 0,010 0/04 100	Since, orijaque		
52	H			as y recir	pientes cheios	de líquid	o indicar	P, T em topo e fu	ındo em operaçã	io normal y em des	senho.	
53												
54												
55	Ц											
56	Н											
57 58	H											
50	Н	F	Rev.		Por						l	
			Data	Aı	provado					+		

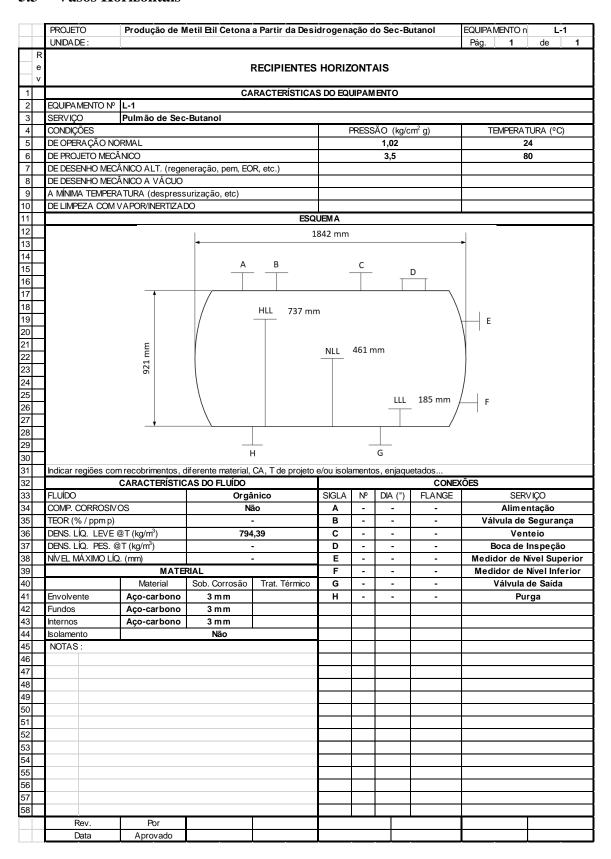
		PROJET	0	Produc	ão de metil-e	etil-cetona a	parti	ir de 2-butanol					EQUIPAMENTO nº	C-2
		UNIDAD		,									Pág. 1	de 2
	R													
	е						REC	CIPIENTES V	ERTICAI	S				
4	٧					044	D 4 67	EEDÍOTIO A C DO	FOLUDAN					
1		FOL JIPA N	//ENTO №	C-2		CA	KAC	TERISTICAS DO	EQUIPAN	IENIO				
3		SERVIÇO			de Absorção)								
4		CONDIÇ	ĎES	•					PRE	SSÃO	(kg/cm² (g)	TEMPERAT	URA (°C)
5		POSIÇÃ							Тор		Fur		Торо	Fundo
6			RAÇÃO NOI						0,85		1,00		24,27	26,44
7			NHO MECÂ		T (rogonoroo	ão nom EOR	oto \		3,5		3,	5	80	80
8			NHO MECÂ		T. (regeneraçã	ao, pem, EOR,	, etc.)							
10					espressurizaç	ão, etc)								
11			ZA COM V			, ,								
12				CARA	CTERÍSTICAS	DO FLUÍDO						ESQ	UEM A	
13	_	FLUÍDO	TOC 5==	DOC# : = =				EK, Secbutanol						
14 15	-		STOS. COR 5 / ppm p)	KOSIV OS	5	H		ricloroetano					Α	
16	-		DE FLUIDO) LEVF @	T (kg/m3)			,94E+06 0,174					\top	
17					0 @T (kg/m3)			0,174 081,955	1	1				
18			ÁXIMO LÍQI					3.512,00		910 mm				В
19					MATERIA					101	_		Γ	Ь
20					/aterial	Sob. Corros	são	Trat. Térmico		9	_C			
21 22		Envolver	nte		noxidável	6 m m		<u> </u>		7	· · ·			
23		Fundo Internos			noxidável noxidável	6 m m	-	<u> </u>					/	
24		Recheio			râmico	-	\dashv	_						
25		Isolamen	to			l				틸			\ /	
26					CONEXÕE					7650 mm			X	
27		SIGLA	Nº	DIA (")	FLANGE		Servi		٤	765				
28 29		A B	1	3 1 1/2	-			egurança gás H2	24164 mm				´ \	
30		С	<u>'</u>	1 1/4	-			gas nz le água	164					
31		D	1	1	-			alto nível	24	_				\neg D
32		E	1	3	-	Saída d	de ág	ua e MEK				НЦ	_ 23512 mm	
33		F	1	2 1/2	-			de gás						
34		G	1	1	-	Medidor		baixo nível				NLI	14695 mm	
35 36		Н	1	3	-		Purç	<u>Ja</u>						
37												LL	L 5878 mm	-
38											-			\dashv E
39											F			
40													\frac{1}{1}	\dashv G
41 42										,				
43														
44													Н	
45													428 mm	
46	_											• "	+20 IIIIII	
47 48	4										1		I	
48 49	-								Indicar red	aiões r	om recoh	orimento	s, diferente materia	al, CA, T de
50	7								projeto e/	-				, - , :
51		NOTAS												
52		(1)	Para colun	as y recip	oientes cheios	de líquido ind	licar F	P, T em topo e fu	ndo em op	eração	normal y	em des	enho.	
53 54	_													
54 55														
56	-													
57														
58														
			Rev.		Por									
)ata	A	orovado			_						

	PROJE	<u> </u>	Produção de m	etil-etil-cetons	a nartir de 2-hi		-	EOI IID/	AMENTO no)	C-02
	UNIDAE		Frodução de III	retii-etii-cetoiia	itanoi		Pág.	2	de		
R	OI VIEW VE	,	Į.					r ag.		uo	
е					PRATOS /	RECHEIOS					
V											
1				C.A	ARACTERÍSTICA	S DO EQUIPAME	ENTO				
2	EQUIPA	MENTO N	10		C-2						
3	SERVIÇ	XO/CASO	DE DESENHO :		Recheio - Colu						
4					SEÇÕES DE FRA	CIONAMENTO ((1)				
5	SEÇÃO										
6			./A PRATO REAL			DE	A	DE		Α	
7	PRESS				Kg/cm² g						
8			SÃO ADMISSÍVEL		kg/cm ²						
9			TOS TEÓRICOS								
10	CALOR	RETIRAD	OO NA SEÇÃO (2)		Gcal/h						
11	= ~ .	(VAPOR A	O PRATO (TOPO					1	
12		MÁSSIC			kg/h	41,18	112,492			-	
13			ÉTRICA @ P,T		m³/h	237,219	229,632				
14 15		ADE @ P SIDADE @			Kg/m³ cP	0,174 0,00939	0,489 0,0104	-			
16		RATURA,			°C	24,266	25			1	
17			I RAÇÃO MÁX. / MÍN	N	%	120/60	120/60			1	
18	v 747		IV IQI IV IVIAA. / IVIII	a sequência)	l						
19	VAZÃO	MÁSSIC	:A	1734,122							
20			ÉTRICA @ P,T		kg/h m³/h	1662,81 1,672	1,765			1	
21		ADE @ T			Kg/m ³	994,921	981,955				
22		SIDADE @			cSt	0,938	0,89				
23	TENSÃ	O SUPERI	FICIAL @ P,T		Dinas/cm	72,873	7,826				
24	TEMPER	RATURA,	,T		°C	24	26,446				
25	VAZÃC	DE OPEI	RAÇÃO MÁX. / MÍN	N.	%	120/60					
26					CARACTERÍSTI	CAS DO SISTEM	1A				
27		•	MING) FACTOR		1						
28	TENDÊN	NCIA AO I	FOULING (baixo/m	oderado/alto)	1						
29	COMP.	CORROS	IVOS / TEOR		% p / ppm p						
30				LIMI	TAÇÕES EM PR	OJETO DE PRAT	TOS (3)				
31		DODING, I			%						
32	DOWN	COMER BA	ACKUP, MÁX.		%						
33				CA	RACTERÍSTICAS			1			
34			RIOR DA COLUNA		mm	·	428				
35		O DE PRA			-		-				
36			RE PRATOS SSES POR PRATO		mm -		-				
37				\			-	<u> </u>			
38 39		A DE REC	(Perforado, válvula	45,)	- mm	70	- 649.5				
40	_	RECHEIC			mm -	_	cerâmicas 1 in				
41	NOTAS				-	Joins Illiaiux	coramicas i III	1			
42	(1)	_	numerado de cima	para baixo Dividi	r a coluna em sec	cões com uma va	ariação não superi	or a +/-	10% no trá	ifean d	e
43	(')		es. Especificar sep					11	. 5,0 110 110	g- u	-
44	(3)		ositivo é calor agre				1				
45	(3)		/amps, flooding e			objeto de recom	endação/discussã	io com c	vendedor		
46	(4)		mar por engenhar			,	,				
47	<u> </u>		. 5								
48											
49											
50											
51											
52											
53											
54											
55											
56											
57											
58		•	teriais ver folha de	e seleção de mate	eriais.	1	Т	1			
		ev.	Por							1	
		ata	Aprovado				1			1	

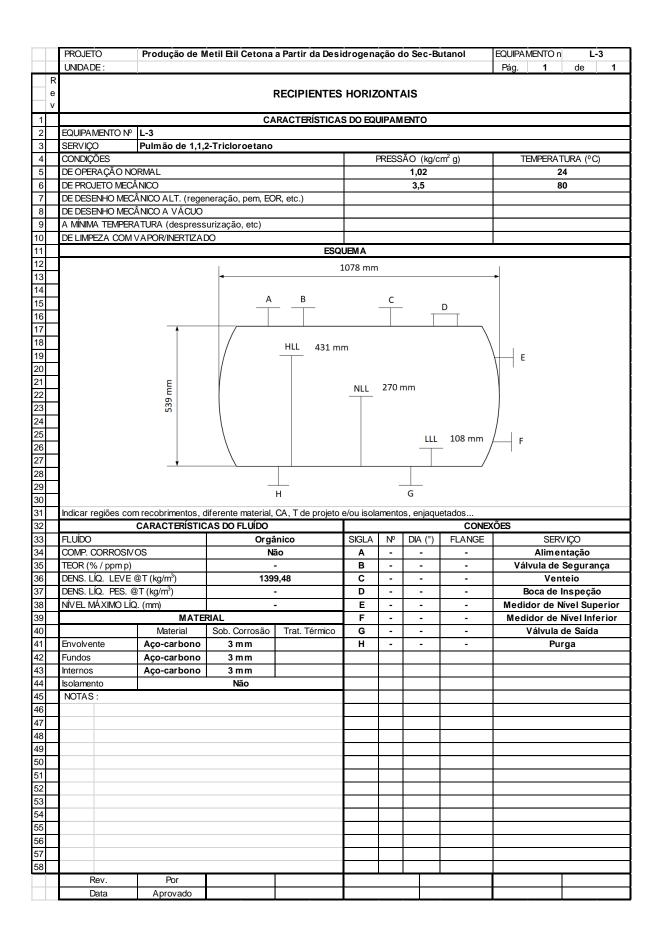
		PROJET	Ю	Produ	ção de Meti	Etil Cet	ona a Pa	rtir da Desidro	genaç	ão do Sec	-Butanol	EQUIPAMENTO r	C-3
		UNIDAD	E:									Pág. 1	de 2
	R e v						RE	CIPIENTES V	ERTIC	CAIS			
1	П						CARAC	TERÍSTICAS DO	EQUIF	AMENTO			
2		EQUIPA	MENTO Nº	C-3									
3		SERVIÇ		COLUN	A DE EXTRA	ÇÃO LÍQ	UIDO-LÍ	QUIDO					
4		CONDIÇ									(kg/cm ² g)	TEMPERA 1	
5		POSIÇÃ								Торо	Fundo	Торо	Fundo
6			RAÇÃO NO							0,9	1	27,87	27,05
7			ENHO MECÂ		T /	- ~	FOD -4	- \		3,5	3,5	80	80
9			ENHO MECÂ		T. (regenera	çao, pem	, EOR, et	C.)					
10					lespressuriza	noão oto	١						
11	H		EZA COM V			açao, etc)						
12	H	DE EIIVII	LZA COIVI V		CTERÍSTICA	S DO FLL	IÍDO				FSQI	JEM A	
13		FLUÍDO		0711011	011011071	0 00 1 20		ÂNICO/ÁGUA				,	
14			STOS. COR	ROSIVOS	3		OKG	NÃO					
15	Т		6 / ppm p)					-					
16	П		ADE LÍQ. LE	VE@T(kg/m3)			981,95					
17			ADE LÍQ. PE					1399,48					
18			1ÁXIMO LÍQI					-			303	mm	
19					MATERIA	٩L					•	-	
20					faterial		orrosão	Trat. Térmico					
21	$oxed{oxed}$	Envolve	nte		Carbono	3 m							
22		Fundo			Carbono	3 m				J)	
23		Internos			Carbono	3 m				J	[⊥]		
24		Pratos	.4.	Aço	Carbono	3 m NÃO						A	
25 26		Isolamer	110		CONEXÕ		<u>' </u>			- 1		— I .	
27		SIGLA	Nº	DIA (")	FLANGE		Ser	viço					
28		A	-	-	-	Alim		uido Pesado					
29		В	-	-	-			Temperatura					
30		С	-	-	-	Me	didor d	e Pressão	mm				•
31		D	-	-	-	В	oca de l	nspeção	9 n			<u></u>	
32		Е	-	-	-	Medi	dor de l	Nível Inferior	5029				
33		F	-	-	-	Saída		uido Pesado	L)				
34	$ldsymbol{ldsymbol{ldsymbol{eta}}}$	G	-	-	-		Pui						
35		H	-	-	-			e Líquido Leve					
36 37		J	-	-	-			nspeção quido Leve)
38		J	-	-	-	Said	da de Li	quiao Leve		Н	9	—	
39											10		457 mm
40	H										\vdash		
41	H												
42	П					İ					T	F	
43												_	
44	\Box										G	l	
45	\Box												
46													
47													
48	\vdash					-			Indiac	r rociãos -	om rocchriment-	o diforente mate	ial CA Td-
49 50	\vdash	- 								_	om recobrimento amentos, enjaque	s, diferente mater tados	iai, CA, Tue
51	H	NOTAS		I		ı			p. ojot	5 5,50 ISOR	ornoo, orijaque		
52	H	(1)		as e reci	pientes cheio	s de líaui	do indica	r P, T em topo e f	undo e	m operacã	io normal e em de	esenho.	
53	Т	(-)						,		-130		-	
54	П												
55													
56													
57													
58	Щ				5	I					Γ		
			Rev.	<u> </u>	Por								
			Data	Ap	rovado						<u> </u>		

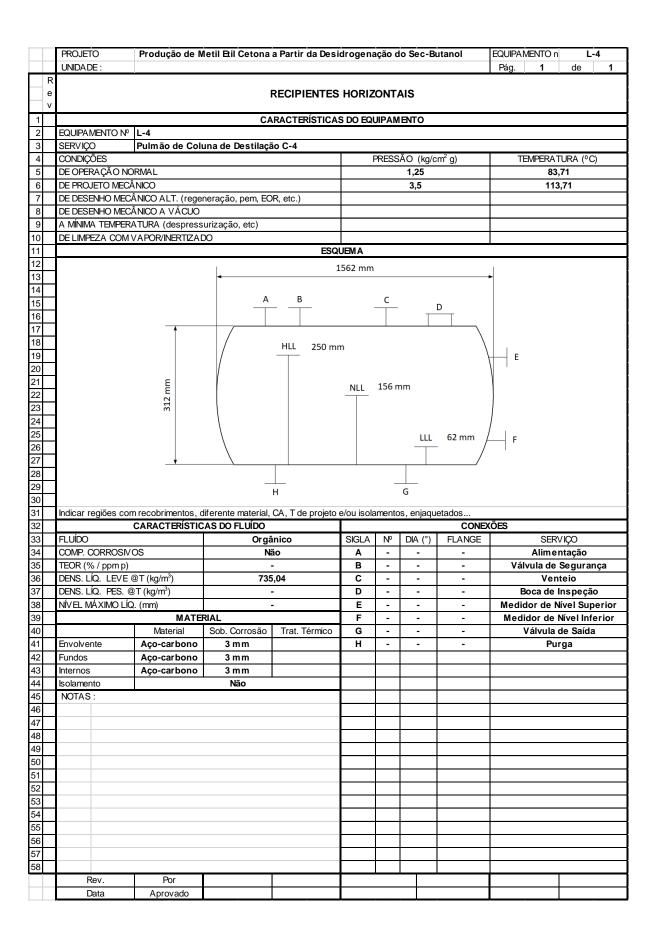
	PROJE	TO:	Produção de Metil Etil	Cetona a Partir da Desidro	genação do Sec-Butano	EQUIPAMENTO nº	C-3				
	UNIDAE	E:				Pág. 2	de 2				
R e				PRATOS / RE	CHEIOS						
V											
1	EOL IIDA	MENTO N	10	CARACTERÍSTICAS DO	O EQUIPAMENTO						
3			D DE DESENHO :	Coluna de Extração	Líguido-Líguido						
4	0 · · · · ş	, , , , , , ,	32 3232 4.10 .	SEÇÕES DE FRACIO							
5	SEÇÃO				Торо	Fund	lo				
6			/ A PRATO REAL		1	10					
7	PRESS/			Kg/cm² g	0,9	1,0					
9			SÃO ADMISSÍVEL TOS TEÓRICOS	kg/cm ²	0,15	10	b				
10			O NA SEÇÃO (2)	Gcal/h	_	-					
11			3 (/	LÍQUIDO L	.EVE	•					
12) MÁSSIC		kg/h	-	1734,					
13			ÉTRICA @ P,T	m³/h	-	1,70					
14 15		ADE@P		Kg/m³ cP	<u>-</u>	981, ¹ 89.0					
16		RATURA,		°C	<u> </u>	26,4					
17			RAÇÃO MÁX. / MÍN.	%		120/80	-				
18				LÍQUIDO PE	SADO						
19		MÁSSIC		kg/h	249,54	-					
20			ÉTRICA @ P,T	m³/h	0,18	-					
21		ADE@T SIDADE@		Kg/m³ cSt	1399,48 67,57	-					
23			FICIAL @ P,T	Dinas/cm	33,71	-					
24		RATURA ,	· · · · · · · · · · · · · · · · · · ·	°C	29,59						
25	VAZÃC	DE OPER	RAÇÃO MÁX. / MÍN.	%		120/80					
26		= =		CARACTERÍSTICAS	DO SISTEMA	[
27			IING) FACTOR FOULING (baixo/moderado/a	-							
28 29			VOS / TEOR	% p / ppm p							
30	OCIVII .	001(1(00)	VOOT ILOIK	LIMITAÇÕES EM PROJE	TO DE PRATOS (3)						
31	JET FLO	DODING, N	иÁХ.	%							
32	DOWN	COMER BA	ACKUP, MÁX.	%							
33				CARACTERÍSTICAS CO	ONSTRUTIVAS (4)						
34 35		O DE PRA	RIOR DA COLUNA	mm -		303					
36			RE PRATOS	- mm		10 457					
37			SES POR PRATO	-		101					
38	TIPO DE	PRATO ((Perforado, válvulas,)	-	Impelidor com anel	estabilizador de torre	agitada				
39	_	A DE REC		mm							
40	_	RECHEIC)	-							
41 42	NOTAS (1)		umerado de cima para baix	o. Dividir a coluna em seções	com uma variação pão cu	nerior a ±/- 100/, no tráfa	ano de				
43	(1)	_	•	nto os pratos de alimentação		•	ogu u c				
44	(3)		sitivo é calor agregado, ne		, , , , , , , , , , , , , , , , , , , ,						
45	(3)		·	er backup máximos será obje	eto de recomendação/discu	ıssão com o vendedor.					
46	(4)	A confir	mar por engenharia de deta	alhe/vendedor							
47 40											
48 49	1										
50	1										
51	1										
52											
53	_										
54 55											
55 56	1										
57	1										
58		Para ma	teriais ver folha de seleção	de materiais.							
	R	lev.	Por								
		ata	Aprovado								

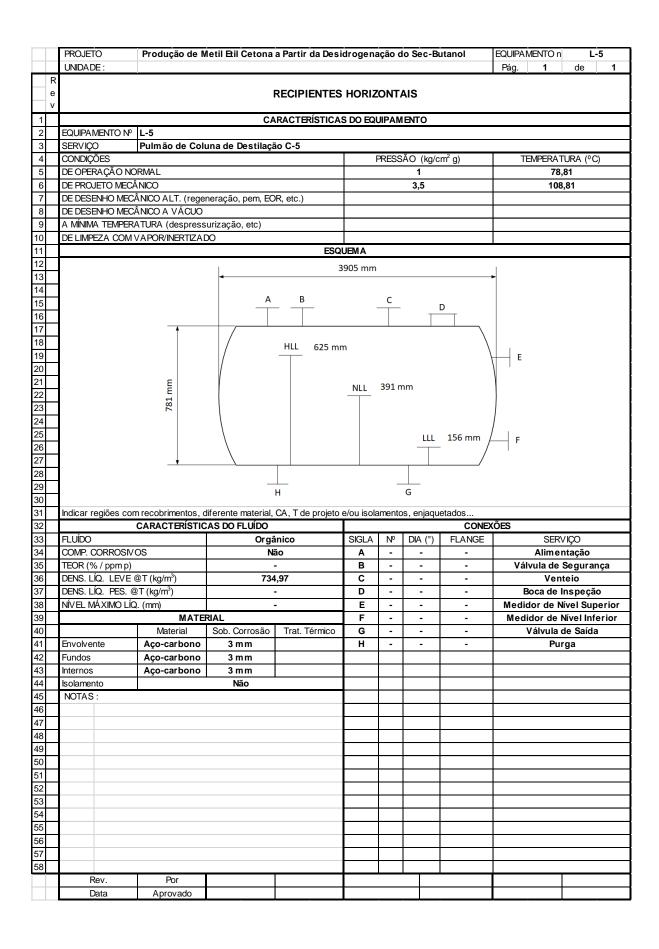
		PROJE	ГО	Produção de	metil-et	il-cetona a	a par	tir de 2-butano			•	EQUIPAMENTO nº	C-	4
		UNIDAE	E:									Pág. 1	de	2
	R e v							ECIPIENTES V						
1	-	FOL IIDA	MENTO NO	C-4		C	ARAC	CTERÍSTICAS DO	EQUIPAME	NTO				
3	_	SERVIÇ	MENTO №	COLUNA DE	DESTIL AC	:ÃO								
4	_	CONDIÇ	-	OOLONA DE	DEGITEAÇ	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			PRESS	SÃO	(kg/cm ² g)	TEMPERAT	URA (°C)	
5		POSIÇÃ							Торо		Fundo	Торо	Fun	
6			RAÇÃO NO	RMAL					0,61		1,26	94,71	142	2,1
7		DE DESI	ENHO MECÂ	NICO					3,5		3,5	124,71	172	2,1
8	_			NICO ALT. (re		o, pem, EOF	R, etc	.)						
9	Ш			NICO A VÁCL										
10				TURA (despre		io, etc)								
11 12	H	DE LIMP	EZA COIVI V	APOR/INERTIZ		DO EL UÍDO	,				FSC	UEM A		
				OAIMOIL	IIOTIOAO I	00120100		istura de						
13		FLUÍDO						mpostos				<u>B</u>		
14	-		STOS. COR	ROSIVOS				-			I	_		
15	Ш		% / ppm p)					-						
16	Н			VE @T (kg/m3				724,971	1	1			1	
17 18	Н		ADELIQ. PE 1ÁXIMOLÍQ	SADO @T (kg	/m3)	-		1225,66 8452,16			ſ	1	— c	•
19	_	INIVELIV	MAIIVIO LIQ		ATERIAL			0452,10					I	
20	H			Materi		Sob. Corro	são	Trat. Térmico						
21		Envolve	nte	Aço carb	ono									
22		Fundo		Aço carb	ono									
23		Internos		Aço carb								21		
24	Ш	Pratos		Aço carb	ono							21		
25		Isolamei	nto		ONEXÕES	,					A	22		
26 27	H	SIGLA	Nº		ANGE	•	Ser	vico	n			22		
28	H	A	1	531()	7 11 10 2	Entrada		ılimentação	25193 mm					
29		В	1					ondensador	3 1					
30		С	1			Entrada d	lo re	fluxo de topo	19					
31		D	1					luxo de fundo	25			40		
32		E	1					de nível	(1		D			
33 34		F G	1					de nível				LL: 8452 mm		
35		Н	1					e líquido o fundo			171	LL. 8432 IIIII	— E	
36	H	- 1	1					segurança			l _{NII}	1 . 5202	ı	
37											1/1	LL: 528 <u>3 mm</u>		
38												L: 2113 mm		
39	Ш											LL. 2113 IIIII	F	
40 41					-								1-	
41 42	Н			 	+									
43	H			 	+									
44												G		
45														
46	Ц											Н		
47	\vdash			\vdash								191 mm		
48 49	Н				+						4	—		
50	H										'	-		
51	H	NOTAS:												
52		(1)	as y recipiente	s cheios d	de líquido inc	dicar	P, T em topo e fu	ndo em oper	ação	normal y em des	senho.			
53	Ц													
54	Н													
55 56	H													
57	H													
58	H													
			Rev.	Por										
Ĺ			Data	Aprova	ido									


Columa de destilação SEÇÕES DE FRACIONAMENTO (1) Enriquecimento Esgotameneto		PROJI	ETO:	Produção de n	netil-etil-cetona	a partir de 2-bu	itanol		EQUIPAMENTO nº	C-4
CARACTERÍSTICAS DO EQUIPAMENTO N° C-4 Coluna de destilação SEÇÕES DE FRACIONAMENTO (1) Enriquecimento Esgotameneto L / A PRATO REAL L / B PRATO REAL Kg/cm² g 0.611 0.926 0.943 1.257 SSÃO A DMISSÍVEL Kg/cm² g 0.611 0.926 0.943 1.257 SSÃO A DMISSÍVEL Kg/cm² g 0.611 0.926 0.943 1.257 SSÃO A DMISSÍVEL Kg/cm² g 0.611 0.926 0.943 1.257 SSÃO A DMISSÍVEL Kg/cm² g 0.611 0.926 0.943 1.257 SSÃO A DMISSÍVEL Kg/cm² g 0.611 0.926 0.943 1.257 SSÃO A DMISSÍVEL Kg/cm² g 0.611 0.926 0.943 1.257 SSÃO A DMISSÍVEL Kg/cm² g 0.611 0.926 0.943 1.257 SSÃO A DMISSÍVEL Kg/cm² g 0.611 0.926 0.943 1.257 SSÃO A DMISSÍVEL Kg/cm² g 0.611 0.926 0.943 1.257 SSÃO A DMISSÍVEL Kg/cm² g 0.611 0.926 0.943 1.257 SSÃO A DMISSÍVEL Kg/cm² g 0.611 0.926 0.943 1.257 Kg/cm² g 25.485 3.956,156 361,199 5.58,875 KÉTRICA @ P,T m²/h 65,4421 57,8689 58,0201 58,9398 T cP 0.00897 6.15862 6.22942 9.10897 ENCA MISSÍVEL 0.943 1.22,27 123,51 142,1 12060 LÍQUIDO DPRATO (TOPO, ALIMENTIAÇÃO E FUNDO nesta sequência) CAA LIQUIDO DPRATO (TOPO, ALIMENTIAÇÃO E FUNDO nesta sequência) CAA LIQUIDO DPRATO (TOPO, ALIMENTIAÇÃO E FUNDO nesta sequência) CAA LIQUIDO DRATO (TOPO, ALIMENTIAÇÃO E FUNDO nesta sequência) CAA LIQUIDO DRATO (TOPO, ALIMENTIAÇÃO E FUNDO nesta sequência) CAA LIQUIDO DRATO (TOPO, ALIMENTIAÇÃO E FUNDO nesta sequência) CAA LIQUIDO PRATO (TOPO, ALIMENTIAÇÃO E FUNDO nesta sequência) CAA LIQUIDO REAL (TOPO (TOPO, ALIMENTIAÇÃO E FUNDO nesta sequência) CAA LIQUIDO DRATO (TOPO, ALIMENTIAÇÃO E SUNDO NESTE SEQUÊNCIA) CARACTERISTICAS DO SISTEMA FUNDO (TOPO (TOPO, ALIMENTIAÇÃO E PUNDO NESTE SEQUÊNCIA) CARACTERISTICAS DO SISTEMA FUNDO (TOPO (TOPO, ALIMENTIAÇÃO E PUNDO NESTE SEQUÊNCIA) CARACTERISTICAS CONSTRUTIVAS (4) STORE PRATOS (192, 192, 192, 192, 192, 192, 192, 192,		UNIDA	DE:						Pág. 2	de 2
CARACTERÍSTICAS DO EQUIPAMENTO N° C-4 Coluna de destilação SEÇÕES DE FRACIONAMENTO (1) Enriquecimento Esgotameneto L / A PRATO REAL L / B PRATO REAL Kg/cm² g 0.611 0.926 0.943 1.257 SSÃO A DMISSÍVEL Kg/cm² g 0.611 0.926 0.943 1.257 SSÃO A DMISSÍVEL Kg/cm² g 0.611 0.926 0.943 1.257 SSÃO A DMISSÍVEL Kg/cm² g 0.611 0.926 0.943 1.257 SSÃO A DMISSÍVEL Kg/cm² g 0.611 0.926 0.943 1.257 SSÃO A DMISSÍVEL Kg/cm² g 0.611 0.926 0.943 1.257 SSÃO A DMISSÍVEL Kg/cm² g 0.611 0.926 0.943 1.257 SSÃO A DMISSÍVEL Kg/cm² g 0.611 0.926 0.943 1.257 SSÃO A DMISSÍVEL Kg/cm² g 0.611 0.926 0.943 1.257 SSÃO A DMISSÍVEL Kg/cm² g 0.611 0.926 0.943 1.257 SSÃO A DMISSÍVEL Kg/cm² g 0.611 0.926 0.943 1.257 SSÃO A DMISSÍVEL Kg/cm² g 0.611 0.926 0.943 1.257 Kg/cm² g 25.485 3.956,156 361,199 5.58,875 KÉTRICA @ P,T m²/h 65,4421 57,8689 58,0201 58,9398 T cP 0.00897 6.15862 6.22942 9.10897 ENCA MISSÍVEL 0.943 1.22,27 123,51 142,1 12060 LÍQUIDO DPRATO (TOPO, ALIMENTIAÇÃO E FUNDO nesta sequência) CAA LIQUIDO DPRATO (TOPO, ALIMENTIAÇÃO E FUNDO nesta sequência) CAA LIQUIDO DPRATO (TOPO, ALIMENTIAÇÃO E FUNDO nesta sequência) CAA LIQUIDO DRATO (TOPO, ALIMENTIAÇÃO E FUNDO nesta sequência) CAA LIQUIDO DRATO (TOPO, ALIMENTIAÇÃO E FUNDO nesta sequência) CAA LIQUIDO DRATO (TOPO, ALIMENTIAÇÃO E FUNDO nesta sequência) CAA LIQUIDO PRATO (TOPO, ALIMENTIAÇÃO E FUNDO nesta sequência) CAA LIQUIDO REAL (TOPO (TOPO, ALIMENTIAÇÃO E FUNDO nesta sequência) CAA LIQUIDO DRATO (TOPO, ALIMENTIAÇÃO E SUNDO NESTE SEQUÊNCIA) CARACTERISTICAS DO SISTEMA FUNDO (TOPO (TOPO, ALIMENTIAÇÃO E PUNDO NESTE SEQUÊNCIA) CARACTERISTICAS DO SISTEMA FUNDO (TOPO (TOPO, ALIMENTIAÇÃO E PUNDO NESTE SEQUÊNCIA) CARACTERISTICAS CONSTRUTIVAS (4) STORE PRATOS (192, 192, 192, 192, 192, 192, 192, 192,	F	3				DDATOS	DECHEIOS			
Coluna de destilação Coluna de destilação SEÇÕES DE FRACIONAMENTO (1) Enrique cimento Esgotameneto L / A PRATO REAL DE 1 A 20 DE 21 A 40 40 40 40 40 40 40	_ \					PRATUS /	RECHEIOS			
Coluna de destiliação SEÇÕES DEFRACIONAMBNTO (1)	2	EQLIID.	AMENTO N	Ю	CA		S DO EQUIPAME	NTO		
SEÇÕES DE FRACIONAMENTO (1)	3						tilação			
Enriquecimento	4	SLICVI	ÇO / CAGO	DE DESENTO .				1)		
L / A PRATO REAL Ng/cm² g 0,611 A 20 DE 21 A 40	5	SECÃO)			CLÇOLO DL I I I		•	Esgotan	neneto
Kg/cm² g	6	- 3	-	./A PRATO REAL						
SSÃO ADMISSIVEL kg/cm²	7		SÃO, P			Kg/cm² g	0,611		0,943	1,257
DO NA SEÇÃO (2) Geal/h 0 0	8	PERDA	DE PRES	SÃO ADMISSÍVEL	-			-	-	
VAPOR AO PRATO (TOPO, ALIMBNTAÇÃO E FUNDO nesta sequência)	9					-		-	-	
\(\text{CA} \qquad \text{kg/h} \qquad 263.455 \text{S7}, \qquad	10	CALO	R RETIRAD	OONA SEÇÃO (2)		Gcal/h		0	0	
MÉTRICA @ P.T	1			V	APOR AO PRATO	(TOPO, ALIME	NTAÇÃO E FUND	O nesta sequên	cia)	
P.T	2		O MÁSSIC				-	+ <u>'</u>	<u> </u>	
© T	3	_						·	-	
.T °C 94,71 122,27 123,51 142,1 ERAÇÃO MÁX / MÍN % 12060 LÍQUIDO DO PRATO (TOPO, ALIMENTAÇÃO E FUNDO nesta sequência) CA kg/h 194,768 284,478 641,223 774,029 MÉTRICA @ P.T m²/h 0,2887 0,2599 0,5875 0,6288 T Kg/m² 724,971 1094,43 1091,48 1230,99 @ T CSt 0,3130 0,3028 0,2556 0,2388 ERFICIAL @ P.T Dinas/cm 19,5155 19,12519 19,051731 18,8631 ERAÇÃO MÁX / MÍN % 122,27 123,51 142,1 ERAÇÃO MÁX / MÍN % 122,27 123,51 142,1 ERAÇÃO MÁX / MÍN % 120/60 CARACTERÍSTICAS DO SISTEMA	14	_	DADE @ F	,		·		· ·	,	
Liquido Do Prato (TOPO), ALIMENTAÇÃO E FUNDO nesta sequência) CA	15		SIDADE @			_			· · · · · · · · · · · · · · · · · · ·	
LÍQUIDO DO PRATO (TOPO, ALIMENTAÇÃO E PUNDO nesta sequência) CA kg/h 194,768 284,478 641,223 774,029 MÉTRICA @ P.T m²/h 0,2687 0,2589 0,5875 0,6288 T Kg/m² 724,971 1094,43 1091,48 1220,99 CS 0,3130 0,3028 0,2556 0,2388 CRICAL @ P.T Dinas/cm 19,5155 19,12519 19,051731 18,8631 T.T °C 94,71 122,27 123,51 142,1 CRAÇÃO MÁX. / MÍN % 120/60 CARACTERÍSTICAS DO SISTEMA	16 17		RATURA,		N	_	94,/1	,		142,1
CA	18	VAZA	U DE OPE				NTAÇÃO E ELINIC			
MÉTRICA @ P.T	9	VA7Ã	O MÁSSIC		SOLO DO FRAT					774.029
T Kg/m² 724,971 1094,43 1091,48 1230,99 @ T cSt 0,3130 0,3028 0,2556 0,2388 CSCIAL @ P,T Dinas/cm 19,5155 19,12519 19,051731 18,8631 .,T °C 94,71 122,27 123,51 142,1 ERAÇÃO MÁX. / MÍN % 120/60 CARACTERÍSTICAS DO SISTEMA MING) FACTOR - CARACTERÍSTICAS DO SISTEMA MING) FACTOR - P / P / P / P / P / P / P / P / P / P	20							· · · · · · · · · · · · · · · · · · ·	·	
© T	11		DADE @ T					<u> </u>		
.,T	22	VISCO	SIDADE @) T			-	0,3028		
ERAÇÃO MÁX. / MÍN.	23	TENSÃ	O SUPER	FICIAL @ P,T		Dinas/cm	19,5155	19,12519	19,051731	18,8631
CARACTERÍSTICAS DO SISTEMA MING) FACTOR - DE POULING (baixo/moderado/alto) - SIVOS / TEOR % p / ppmp LIMITAÇÕES EM PROJETO DE PRATOS (3) MÁX. % SACKUP, MÁX. % SACKUP, MÁX. W SACKUP, M	24	TEMPE	RATURA	,T		°C	94,71	122,27	123,51	142,1
MING) FACTOR -	25	VAZÃ	O DE OPE	RAÇÃO MÁX. / MÍ	N.	%		12	20/60	
DECULING (baixo/moderado/alto) SIVOS / TEOR SIVOS / TEOR SIVOS / TEOR SIMITAÇÕES EM PROJETO DE PRATOS (3) LIMITAÇÕES EM PROJETO DE PRATOS (3) LIMITAÇÕES EM PROJETO DE PRATOS (3) LIMITAÇÕES EM PROJETO DE PRATOS (4) CARACTERÍSTICAS CONSTRUTIVAS (4) ERIOR DA COLUNA mm 191 191 ANTOS - 20 20 TRE PRATOS - 460 466 SISSES POR PRATO - Válvulas Válvulas CHEIO mm IO - Válvulas Válvulas CHEIO mm IO Válvulas Nositivo é calor apara baixo. Dividir a coluna em seções com uma variação não superior a +/- 10% no tráfego de tese. Específicar separadamento os pratos de alimentação e extração total ou parcial. Descrito de calor agregado, negativo calor retirado. Sevamps, floding e dow ncomer backup máximos será objeto de recomendação/discussão com o vendedor. irmar por engenharia de detalhe/vendedor	26					CARACTERÍSTI	CAS DO SISTEM	Α		
LIMITAÇÕES EM PROJETO DE PRATOS (3) IMÁX. MÁX. MAX. CARACTERÍSTICAS CONSTRUTIVAS (4) BRIOR DA COLUNA IMM 191 INTER PRATOS IMM 460 INSES POR PRATO IMM 191	27	_				-				
LIMITAÇÕES EM PROJETO DE PRATOS (3) MÁX. % CARACTERÍSTICAS CONSTRUTIVAS (4) ERIOR DA COLUNA mm 191 191 PATOS - 20 20 IRE PRATOS mm 460 460 SSESE POR PRATO	28				noderado/alto)	-				
MÁX. % BACKUP, MÁX. % CARACTERÍSTICAS CONSTRUTIVAS (4) ERIOR DA COLUNA mm 191 191 191 ATOS - 20 20 IRE PRATOS mm 460 460 ISSES POR PRATO - DO DEPARACION - DO DEPARACION	29	COMP.	CORROS	IVOS / TEOR				(-)		
CARACTERÍSTICAS CONSTRUTIVAS (4) RIOR DA COLUNA mm 191 191 PATOS - 20 20 REPRATOS mm 460 460 RISSES POR PRATO - Válvulas Válvulas) - Válvulas Válvulas CHEIO mm 300 - 10% no tráfego de tes. Especificar separadamento os pratos de alimentação e extração total ou parcial. Desarros, flooding e dow ncomer backup máximos será objeto de recomendação/discussão com o vendedor. Dirmar por engenharia de detalhe/vendedor	30	JET EI	OODING	MÁV	LIM		OJETO DE PRAT	OS (3)	1	
CARACTERÍSTICAS CONSTRUTIVAS (4) ERIOR DA COLUNA mm 191 191 IATOS - 20 20 IRE PRATOS mm 460 460 ISSES POR PRATO - 50 IO (Perforado, válvulas,) - Válvulas Válvulas IO - 100 IO - 100 Inumerado de cima para baixo. Dividir a coluna em seções com uma variação não superior a +/- 10% no tráfego de tes. Especificar separadamento os pratos de alimentação e extração total ou parcial. Descritivo é calor agregado, negativo calor retirado. Devamps, flooding e dow ncomer backup máximos será objeto de recomendação/discussão com o vendedor. Irimar por engenharia de detalhe/vendedor	31 32									
RIOR DA COLUNA mm 191 191 191 191 191 191 191 191 191	33	DOVVIN	ICOIVILIN D	ACKOF, WAX.	CA		CONSTRUTIVA	S (4)	<u> </u>	
ATOS - 20 20 TRE PRATOS mm 460 460 ISSES POR PRATO - Válvulas Válvulas Válvulas CHEIO mm 300 - Válvulas Dividir a coluna em seções com uma variação não superior a +/- 10% no tráfego de tes. Especificar separadamento os pratos de alimentação e extração total ou parcial. Desitivo é calor agregado, negativo calor retirado. Devamps, flooding e dow ncomer backup máximos será objeto de recomendação/discussão com o vendedor. Tirmar por engenharia de detalhe/vendedor	34	DIÂME	TRO INTER	RIOR DA COLUNA				• •	19	1
ASSES POR PRATO (Perforado, válvulas,) (Per	35		RO DE PRA			-		20	20)
CHEIO mm CHEIO	36	DISTÂ	NCIA ENTE	RE PRATOS		mm	4	160	46	0
CHEIO mm io - numerado de cima para baixo. Dividir a coluna em seções com uma variação não superior a +/- 10% no tráfego de tes. Específicar separadamento os pratos de alimentação e extração total ou parcial. costitivo é calor agregado, negativo calor retirado. evamps, flooding e dow ncomer backup máximos será objeto de recomendação/discussão com o vendedor. irmar por engenharia de detalhe/vendedor materiais ver folha de seleção de materiais. Por	37	NÚMER	RO DE PAS	SSES POR PRATO		-				
numerado de cima para baixo. Dividir a coluna em seções com uma variação não superior a +/- 10% no tráfego de tes. Especificar separadamento os pratos de alimentação e extração total ou parcial. positivo é calor agregado, negativo calor retirado. evamps, flooding e dow ncomer backup máximos será objeto de recomendação/discussão com o vendedor. irmar por engenharia de detalhe/vendedor materiais ver folha de seleção de materiais. Por	38			,	as,)	-	Vál	vulas	Válvu	ılas
numerado de cima para baixo. Dividir a coluna em seções com uma variação não superior a +/- 10% no tráfego de tes. Especificar separadamento os pratos de alimentação e extração total ou parcial. positivo é calor agregado, negativo calor retirado. evamps, flooding e dow ncomer backup máximos será objeto de recomendação/discussão com o vendedor. irmar por engenharia de detalhe/vendedor materiais ver folha de seleção de materiais. Por	39		RA DE REC			mm				
tes. Especificar separadamento os pratos de alimentação e extração total ou parcial. positivo é calor agregado, negativo calor retirado. evamps, flooding e dow ncomer backup máximos será objeto de recomendação/discussão com o vendedor. irmar por engenharia de detalhe/vendedor materiais ver folha de seleção de materiais. Por	10	_	E RECHEK)		-				
tes. Especificar separadamento os pratos de alimentação e extração total ou parcial. positivo é calor agregado, negativo calor retirado. evamps, flooding e dow ncomer backup máximos será objeto de recomendação/discussão com o vendedor. irmar por engenharia de detalhe/vendedor materiais ver folha de seleção de materiais. Por	11	NOTA:				:I	~			
positivo é calor agregado, negativo calor retirado. evamps, flooding e dow ncomer backup máximos será objeto de recomendação/discussão com o vendedor. irmar por engenharia de detalhe/vendedor materiais ver folha de seleção de materiais.	12	(1)	_		•				or a +/- 10% no tráf	ego de
evamps, flooding e dow ncomer backup máximos será objeto de recomendação/discussão com o vendedor. irmar por engenharia de detalhe/vendedor ateriais ver folha de seleção de materiais.	3	(3)					уао е ехпасао п	utai uu parciai.		
rateriais ver folha de seleção de materiais.	5	(3)					obieto de recom	endação/discussã	io com o vendedor	
nateriais ver folha de seleção de materiais.	6	(4)					22,010 GO 100011R	aayao, aloousse	John Condodor.	
Por	7	('')		_F 5. 5. goilla						
Por	8	1								
Por	.9									
Por	0									
Por	1									
Por	2									
Por	3									
Por	4									
Por	5	-								
Por	6	-								
Por	7	-	Doro res	toriais var falles d	o coloção do met	orioic				
	8	+	Para ma Rev.		e seleção de mate	enais.			1	
71010100	+							1	1	
			Data	Aprovado		<u> </u>			<u> </u>	

		PROJE	ГО	Produç	ão de metil-e	etil-ceto	na a par	tir de 2-butano	 İ	-	EQUIPAMENTO nº	C-5
		UNIDAE									Pág. 1	de 2
	R e						RI	ECIPIENTES V	FRTICAIS		· · · · · · · · · · · · · · · · · · ·	
1	٧							CTERÍSTICAS DO				
2	_	FOL IIPA	MENTO №	C-5			CARA	CTENSTICAS D	DEGOIFAMENTO	<u> </u>		
3		SERVIÇ			A DE DESTILA	CÃO						
4		CONDIÇ				3 -			PRESSÃO	(kg/cm² g)	TEMPERAT	JRA (°C)
5		POSIÇÃ							Торо	Fundo	Торо	Fundo
6			RAÇÃO NO	RMAL					0,388	1,098	88,67	114,97
7		DE DESI	ENHO MECÂ	NICO					3,5	3,5	118,67	144,97
8		DE DESI	ENHO MECÂ	NICO AL	T. (regeneraç	ão, pem,	EOR, etc	:.)				
9			ENHO MECÂ									
10					espressurizaç	ção, etc)						
11		DE LIMP	EZA COM V				,					
12				CARA	CTERÍSTICAS	DO FLU				ESC	QUEMA	
13		FLUÍDO						listura de			В	
14	H	COMPO	STOS. COR	ROSIVOS			CC	ompostos -		T	$\overline{}$	
15	Н		% / ppm p)		•			<u> </u>				
16	H	,	ADE LÍQ. LE	VE@T(k	(g/m3)			734,97	A	7		
17	H		ADE LÍQ. PE					707,12		(1)	⊢c
18	П		NÁXIMO LÍQ					4419				1
19					MATERIA	\L						
20				N	faterial	Sob. Co	orrosão	Trat. Térmico				
21		Envolve	nte	Aço	carbono							
22		Fundo			carbono						36	
23		Internos	i		carbono						30	
24		Pratos		Aço	carbono					A	37	
25	Н	Isolamer	nto		OONEVÕ	-0				. F.		
26 27		SIGLA	Nº	DIA (")	CONEXÕE FLANGE	<u>=</u> S	Sor	viço		- 1	- 1	
28		A	1	DIA ()	FLANGE	Entr		alimentação	티			
29	H	В	1					ondensador	32792 mm		- 1	
30	H	C	1					fluxo de topo	26		- 1	
31	П	D	1					fluxo de fundo	32,		L	_lp
32		Е	1			ı	/ledidor	de nível	` `		62	٦,
33		F	1			N	/ledidor	de nível			7	
34		G	1			ı		e líquido			- 1	
35		Н	1					o fundo		H	LL: 4419 mm	l-
36		ı	1			Vál	vula de	segurança				— E
37 38	H									N	LL: 2762 mm	
38 39	Н											
39 40	H		1	1						"	LL: 1105 mm	— F
41	H			 								1-
42	H								1		1	
43										\rightarrow		
44											G	
45	Ш										-	
46	Щ										H	
47	Н										789 mm	
48 49	Н			1						◆		
50	H			+ +						1	1	
51	H	NOTAS	:			<u> </u>						
52	H	(1)		as y recip	ientes cheios	de líquid	o indicar	P, T em topo e fu	ndo em operação	normal y em des	senho.	
53	H	. ,		2 1		1			, ,	,		
54												
55												
56	Ш											
57	Щ											
58	Щ		Devi		Des	ı		1		I		
	H		Rev.	Λ	Por							
		l	Data	Ap	orovado							


	PROJE	TO:	Produção de m	etil-etil-cetona	a partir de 2-bı	ıtanol		EQUIPAMENTO nº	C-5	
	UNIDAE	DE:						Pág. 2	de 2	
R					PRATOS /	RECHEIOS				
v 1				C	A DA CTEDÍSTICA	S DO EQUIPAME	NTO			
2	EQUIPA	MENTO N	10	C,	C-5	3 DO EQUIPAME	NIO			
3			D DE DESENHO :		Coluna de des	tilação				
1					SEÇÕES DE FRA	CIONAMENTO (1)			
5	SEÇÃO						cimento	Esgotan		
7	DE PRA		. / A PRATO REAL		Kg/cm² g	DE 1 0.388	A 35 0,772	DE 36 0,783	A 64 1,097	
3			SÃO ADMISSÍVEL		kg/cm²	0,366	- 0,772	0,765	1,097	
9			ATOS TEÓRICOS		-		-	-		
)	CALOR	RETIRAD	OO NA SEÇÃO (2)		Gcal/h		0	0		
	~	,		APOR AO PRATO		NTAÇÃO E FUND		, ,		
-		MÁSSIC			kg/h	4156,12	4245,36	4244,52	3853,52	
1		ADE @ F	ÉTRICA @ P,T		m³/h Kg/m³	1214,24 3,42282	1007,09 4,21547	1001,01 4,24024	795,59 4,8436	
5		SIDADE @			cP	0,00877	0,00943	0,00950	0,00979	
3		RATURA,			°C	88,67	97,15	97,38	140,97	
7	VAZÃC	DE OPE	RAÇÃO MÁX. / MÍN		%	~		20/60		
3)/A = % -) NA (00:0		QUIDO DO PRATO		NTAÇÃO E FUND			0000 ==	
)) MÁSSIC	ÉTRICA @ P,T		kg/h m³/h	3030,90 4,1564	2977,57 4,1386	2976,08 4,1391	3960,53 5,6401	
<u>' </u>		ADE @ T	· · · · · · · · · · · · · · · · · · ·		Kg/m³	729,22	719,46	719,02	702,21	
2		SIDADE @			cSt	0,3186	0,3378	0,3393	0,3553	
3	TENSÃ	O SUPER	FICIAL @ P,T		Dinas/cm	18,094	15,018	14,615	13,049	
1		RATURA			°C	88,67	97,15	97,38	140,97	
5	VAZAC	DE OPE	RAÇÃO MÁX. / MÍN	N	%	CAS DO SISTEM		20/60		
7	SYSTE	M (FOAN	MING) FACTOR			CAS DO SISTEM	<u> </u>			
3			FOULING (baixo/m	oderado/alto)	-					
9	COMP.	CORROS	IVOS / TEOR	•	% p / ppm p					
)			,	LIM		OJETO DE PRAT	OS (3)	•		
2		DODING, I	MAX. ACKUP, MÁX.		%					
3	DOWN	JUIVIER B	ACKUP, IVIAX.	CA		L S CONSTRUTIVA	S (4)			
1	DIÂMET	TRO INTER	RIOR DA COLUNA		mm		89	78	9	
5	NÚMER	O DE PRA	ATOS		-	3	35	29)	
5			RE PRATOS		mm	4	60	46	0	
_			SSES POR PRATO	\	-	7/41		W41	.1	
)		A DE REC	(Perforado, válvula CHEIO	as,)	- mm	vaiv	/ulas	Válvu	ııas	
)		RECHEK			-					
1	NOTAS	5:			•	•		•		
2	(1)	_	numerado de cima es. Especificar sep	•				or a +/- 10% no tráf	ego de	
	(3)		ositivo é calor agre			ίναο ο ολιτάφαο το	nai ou paroiai.			
5	(3)					objeto de recome	ndação/discussã	io com o vendedor.		
3	(4)	A confi	mar por engenhar	ia de detalhe/ven	dedor					
1										
)										
2										
3										
ļ 5										
3										
7										
3		Para ma	teriais ver folha de	e seleção de mate	eriais.					
1		lev.	Por							
	D	ata	Aprovado					<u></u>		


		PROJET				ona a partir 2-but	anol				EQUIPAMENTO nº	R-1
Н	R	UNIDAD	E:	Reator R	-1						Pág. 1	de 1
	е						RECIPIENT	ES VE	RTICAIS			
1	٧					CA	PACTERISTIC/	AS DO E	EQUIPAMENTO			
2		EQUIPAN	IENTO Nº	R-1			INACTERIOTICS	40000	EQUIPAMENTO			
3		SERVIÇO		Reator to	ubular de leito fi	ко						
4		CONDIÇ								(kg/cm ² g)	TEMPERAT	
5 6	Н	POSIÇÃO DE ODER	(1) AÇÃO NOR!	441				\rightarrow	Entrada 2	Saida 2	Entrada 450	Saida 450
7	Н		NHO MECĂ					-+	39,8	39,8	480	480
8		DE DESE	NHO MECÂ	NICO ALT.	(regeneração, per	m, EOR, etc.)		\neg				
9	П		NHO MECÂ									
10			A TEMPERAT EZA COM VA		pressurização, etc	0)				-		
12	Н	DE LIMPE	ZA COM VA		ACTERÍSTICAS	DO FLUÍDO		\rightarrow		- ES	QUEMA -	
13	Н	FLUÍDO				T T						
14			TOS. CORR	osivos				\Box				
15	\vdash	TEOR (%		E OT "	- 21						A	
16	\vdash		DE LÍQ. LEV DE LÍQ. PES					\dashv		В /	Т	
18	H		XIMO LÍQUI		-g-1112)			=		1		•
19					MATERIA	L			_ 1			
20					Material	Sob. Corrosão	_	nico	D	- 115	8 mm	
21	\vdash	Envolvent Fundo	e	-	inoxidável inoxidável	6	-	\dashv				
23	Н	Internos		-	inoxidável	6	-	\dashv	Ε	134	8 :::m	
24	П	Pratos				6	-	\neg	-1		400	F
25		Isolament	0							100 11		
26 27		CICI A	N°	DIA (E)	CONEXÕE FLANGE		Nama da na	\dashv		100	all all	
28	Н	SIGLA	1 1	DIA (")	FLANGE		Serviço de produtos	\dashv		100 10		
29	Н	В	1	-			de segurança	\neg		100	100	g
30		С	1	-			de temperatura		3)66 mm	100		23345 mm
31		D E	1	-			por superaqueo perior de pressă		~	100 1		24
33	Н	F	1				ferior de pressă ferior de pressă	_		0 10	100	
34		G	1	-			or superaquecio	_		11 11		
35		Н	1	-		Entrad	a de reagente			0 10	100	
36	Н	<u> </u>							н			G
38	Н	\vdash						\dashv	.			
39	Н							\Box	-			
40									D	_		
41	\vdash			-				—				
43	Н	-		 				\dashv				•
44								\Box		_	_	
45								\Box				
46	Н			-				\dashv				
48	Н	\vdash						\dashv				
49	Н								Indicar regiões com	recobrimentos, dife	erente material, CA, T de	projeto e/ou
50								i	isolamentos, enjaqu	etados		
51	Н	NOTAS:										
52		(1)							reator isotermo. Ist		superaquecido.	
53 54	Н	(2)				io e de desenho se m de compriment		peraqueo	cido ser de alta pres	isao.		
55	\vdash	(4)			e diametro e 5,37 peraquecido é de		J.					
56		1,21										
57												
58					D							
			Rev. Data	1	Por Aprovado			\dashv		-		
			udid		φ. Ovado			1		<u> </u>		


5.3 Vasos Horizontais

5.4 Tanques de Armazenamento

		PROJETO):	Produção de M	letil Etil C	Cetona :	a Partir da Desid	lrogena	ção do Se	c-Buta	nol	EQUIPA MENT	O nº	A1	
		UNIDA DE	:									Pág.	1	de	1
	R e v						TAN	QUES							
1	П					CA	ARACTERÍSTICAS	S DO EQI	JIPAMENT	0					
2		EQUIPA M	ENTO №	A1											
3		SERVIÇO		Tanque de Arn	nazenam	ento de	Matéria-Prima								
4		•	CARACT	ERÍSTICAS DO F			CARACTER	ÍSTICAS	DO TANG	UE		VENTI	LAC	ÃO	
5		COMP. CO	ORROSIVO		-		TIPO DE TANQUE		Verti		GÁS DE E	BLANKETING		-	
6			ORROSIVO		% p	_	TIPO DE TETO		Flutua			NT. MÁX.		m³/h	-
7		.	SUSPENSÁ		% p	-	Capacidade total		m ³	541	VAZÃO S	SAL. MÁX.		m³/h	-
8			RMAZENAG		°C	24	Capacidade útil		m ³	270,5		ACESS	SÓRI		
9			DE LÍQUIDO		kg/m ³	804,29			m	-	AGITAÇÃ		, O. u.	sim/não	Não
10			DADE @ T		cSt	3,96	ALTURA		m	8,83	SERPENTI			sim/não	Não
11			X. ARM., T	máx	°C	90	MÁX. NÍVEL		m	7,06		AQUEC	IMEN		
12			POR @Tm		kg/cm² a	-	MIN. NÍVEL		m	1,77	DUTY	714020		Gcal/h	-
13			E FULGOR	ux.	°C	23,9	PRESSÃO DESE	NHO	kg/cm² g	3,5		DE DESENHO)	kg/cm ² g	-
14		PONTO FI			°C	20,0	TEMPERAT. DES		°C	80		T. DESENHO		°C	
15		TONIOTI	LOIDLZ			ASSIFIC	CAÇÃO DO FLUÍD					1. DECEIVING		U	
16			TΔN	QUE ATMOSFÉRIO		ACON IC		UE A PR		LAWIL		CIPIENTE A PR	FSS	ÃO / ESEER	Δ
17			17313	API 650			17(140	API 620				SME VIII / API			
18			Proc Van	or @ Tmax (kg/cn	n ² a) = 1		1 <pres. td="" vap<=""><td></td><td></td><td>21-2</td><td></td><td>Pvap. @15°C</td><td></td><td></td><td></td></pres.>			21-2		Pvap. @15°C			
19		D.o		0 <t. fijo<0.05<t<="" td=""><td></td><td>- 1</td><td></td><td>Techo fij</td><td></td><td>a)<2</td><td></td><td>Recipient</td><td></td><td></td><td></td></t.>		- 1		Techo fij		a)<2		Recipient			
20		B1		to. fulgor < 38 °C	. I lotarite v	<u> </u>	B1 Pto. fulc				A1 🗌	Temp. Armaz			
21		B2		C <pto. fulgor<55<="" td=""><td>00</td><td></td><td>B2 ☐ 38°C<p< td=""><td>•</td><td></td><td></td><td></td><td>Temp. Armaz</td><td></td><td></td><td></td></p<></td></pto.>	00		B2 ☐ 38°C <p< td=""><td>•</td><td></td><td></td><td></td><td>Temp. Armaz</td><td></td><td></td><td></td></p<>	•				Temp. Armaz			
22		C 🗆		>Pto. fulgor<100			B2 ∐ 36° CKFI	io. ruigoi	C33 °C		AZ L	Temp. Amaz	en.	, 0 · C	
23				o. fulgor > 100 °C											
24		υЦ	FL	0. ruigur > 100 °C	,		ESO	UEMA							
25															
26															
27															
28															
29															
30				_	<u> </u>					`					
31										Ι.					
32										H	7065 mr	n			
33				۶						4					
34				8831 mm											
35				31											
36				88						⊢в					
37					E⊢										
38										⊢c	1766 m	m			
				_	<u> </u>] '					
39 40	H				Ī										
41							8831 m	m							
41 42	Н				ŀ	•				1					
	Н			84 6 7 5	DIAI			1		1	CONT	EYŐE9			
43 44	H			MATE Material	Sob. Co	rrosão	Trat. Térmico	SIGLA	Nº	DIA (")		EXOES	SEC	RVIÇO	
44	\vdash	Envolv./ f	undos	Aço-Carbono	300. Co		mat. remited		14-	DIA ()		Modidos		Nível Supe	rior
46	Н	Teto	uiluus	Aço-Carbono	3 m		+	A B		-	-			atéria-Prin	
47	Н	Internos		Aço-Carbono	3 m		+	С	-	H -	 			Nível Infer	
47	Н	Internos	0	AÇU-CAI DUIIO			<u> </u>	D	-	-	-	wealao			101
48 49	Н	NOTAS:	U	I	Nã	ıu		E	-	-	-	Entrada		ırga ∕latéria-Pri	ime
50	\vdash	INCIAS.						-	<u> </u>	<u> </u>	l -	⊔ıııaua	ue I		iiia
51	\vdash														
52	Н							-							
52 53	Н							-							
54	Н							-							
	\vdash														
55 56	\vdash														
56 57	\vdash														
57 50	Н							-							
58	Н	D.	ev.	Por				 	l		1	1			
			ev. ata	Aprovado			 							 	
\Box		U	чи	Aprovado			<u> </u>								

		PROJETO:	Producão do I	Motil Etil (otona	a Partir da Desid	rogona	oão do So	o Buto	nol	EQUIPA MEN	VII 0 n0	A2	
			Frodução de r	Metil Etil (Je LUIIa d	a Faitii ua Desiu	liogena	yau uu se	с-вига	1101				
_		UNIDA DE :									Pág.	1	de	1
	R													
	е					TAN	QUES							
	٧													
1					C/	ARACTERÍSTICAS	S DO EQI	JIPAMENT	ō					
2		EQUIPAMENTO Nº	A2											
3		SERVIÇO	Tanque de Arn	nazenam	ento de	Produto Final								
4			ERÍSTICAS DO F	•	onto do	CARACTER	ÍSTIC A S	DO TANO	NI IE	1	VENT	TLAÇÂ	<u> </u>	
					-	T .				CÁ C DE E			10	
5		COMP. CORROSIVO		Nã		TIPO DE TANQUE	=	Verti			BLANKETING	,	3 a	
6		COMP. CORROSIVO		% p	-	TIPO DE TETO		Flutua			ENT. MÁX.		m³/h	-
7		SÓLIDOS SUSPENSA	ÁO	% p	-	Capacidade total		m ³	75,36	VAZÃO S	SAL. MÁX.		m³/h	-
8		TEMP. ARMAZENAG	EM	٥C	30	Capacidade útil		m ³	37,68		ACE	SSÓRIC	os	
9		DENSIDA DE LÍQUIDO) @ T	kg/m ³	795,42	alla		m	-	AGITAÇÃ	.0		sim / não	Não
10		VISCOSIDADE @ T		cSt	0,47	ALTURA		m	4,58	SERPENT			sim / não	Não
11		TEMP. MÁX. ARM., T	máv	°C	70	MÁX. NÍVEL		m	3,66	02.1.2.11		CIMEN		
						MIN. NÍVEL				DUTY	AQUE	CIIVI LIV	Gcal/h	
12		PRES. VAPOR @Tm	ax.	kg/cm² a				m			DE DECEM			-
13		PONTO DE FULGOR		°C	-5,5	PRESSÃO DESEI		kg/cm² g	3,5		DE DESENH		kg/cm² g	-
14		PONTO FLUIDEZ		٥C	-	TEMPERAT. DES	ENHO	٥C	80	TEMPERA	T. DESENHO)	٥C	-
15				CL	.ASSIFIC	CAÇÃO DO FLUÍD	O SEGUI	NDO REGU	LAMEN	πо				
16		TAN	QUE ATMOSFÉRI	CO		TANG	UE A PR	ESSÃO		RE	CIPIENTE A F	PRESSÃ	O / ESFER	RA.
17			API 650				API 620			А	SME VIII / AF	PI 2510	/ API 2350	
18	Н	Pres Van	or @ Tmax (kg/cr	n² a) < 1		1 <pres. td="" vap<=""><td></td><td></td><td>a)<2</td><td><u> </u></td><td>Pvap. @15º</td><td></td><td></td><td></td></pres.>			a)<2	<u> </u>	Pvap. @15º			
19			0 <t. fijo<0.05<t<="" td=""><td></td><td>- 1</td><td></td><td>Techo fij</td><td></td><td>u) _</td><td></td><td>Recipie</td><td></td><td></td><td></td></t.>		- 1		Techo fij		u) _		Recipie			
_					<u> </u>	B1 Pto. fulg				A 4				
20			to. fulgor < 38 °C								Temp. Arma			
21			C <pto. fulgor<55<="" td=""><td></td><td></td><td>B2 ☐ 38°C<pt< td=""><td>to. fulgor</td><td><55 °C</td><td></td><td>A2 L</td><td>Temp. Arma</td><td>azen. ></td><td>. 0°C</td><td></td></pt<></td></pto.>			B2 ☐ 38°C <pt< td=""><td>to. fulgor</td><td><55 °C</td><td></td><td>A2 L</td><td>Temp. Arma</td><td>azen. ></td><td>. 0°C</td><td></td></pt<>	to. fulgor	<55 °C		A2 L	Temp. Arma	azen. >	. 0°C	
22		C 55°C	C <pto. fulgor<100<="" td=""><td>٥C</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pto.>	٥C										
23		D 🔲 PI	o. fulgor > 100 °C)										
24						ESQ	UEMA							
25														
26														
27														
28														
29			_	<u> </u>					`					
30				Ī I										
31									\square	3662 m	m			
32									1 ''	3002 111				
33			Ē						\dashv					
34			4578 mm											
35			78											
_			45						1 .					
36				l E⊢					⊢B					
37				1 ! 1					⊢ c	016 m	m			
38				↓ P⊢					1,	916 m				
39	L l		_						_					
40						4570								
41						4578 m	ım							
42									7					
43	H		MATE	RIAL						CON	EXÕES			
44	H		Material	Sob. Co	rrosão	Trat. Térmico	SIGLA	Nº	DIA (")	FLANGE		SED	VIÇO	
	H	Envolv / francis -				mai. remiico		1.41-	אט ()	LANGE	NA11 -1		,	ria-
45		Envolv./ fundos	Aço-Carbono	3 m		 	A	-	<u> </u>				Nível Supe	
46		Teto	Aço-Carbono	3 m			В	-	-	-			oduto Fir	
47		Internos	Aço-Carbono	3 m			С	-	-	-	Medid	or de	Nível Infe	rior
48		Isolamento		Nã	io		D	-	-	-		Pu	rga	
49		NOTAS:					Е	-	-	-	Entrac	da de l	Produto F	inal
50														
51	М													
52	H								1	†				
53	H						1		1	 				
	Н								1					
54									<u> </u>					
55	Ш								ļ					
56														
57	L Ì									<u> </u>				
58														
		Rev.	Por											
		Data	Aprovado	l		1	i		İ					
			,			<u>. </u>		-		_				

5.5 Trocadores de Calor

	PROJETO:	Produção de metil-	etil-cetona a partir o	le 2-butanol			EQUIPAN	MENTO nº	E-01
	UNIDADE:	Sistema de pré aqu		L-Dutano.			Pág.	1	de 1
R									
e	l			TROCADO	RES DE CALO	R			
٧									
1	EQUIDANELE:	N 810		CARACTERISTI	CAS DO EQUIPAM				
3	CASO DE DES				Dient	E-01 a de produção de m	etil etil oet		
4	SERVIÇO	INFO			Fiant	Pré-aquecedo		ona	
5	_	oos / placas / tubo duplo)		Tubo	duplo	TIPO TEMA	-		
6	DISPOSIÇÃO (Horiz	zontal	Circulação (Termos	if., forçada))	Forçada
7	NÚMERO DE O	ARCAÇAS ESTIMADAS			1	Em série / paralelo			
8			CARACT	ERÍSTICAS DO FLU					
9	LADO					ASCO		TUBO	
10	NATUREZA	S CORROSIVOS / TEO	R (% p)		0	0 mento		0 Venez e beim	0
12	NATUREZA				Entrada	Saida		Vapor a baixa Entrada	Saida
13	VAZÃO TOTAL			kg/h	1464,06	1464,06		193,50	193,50
14		DE VAPOR ÚMIDO		kg/h	0	0		193,50	0
15	INCONDENS	ÁVEIS (N2,)		kg/h	0	0		0	0
16	VAPOR DE A			kg/h	0	0		193,50	0
17	ORGĀNICOS			kg/h	0	0		0	0
18	VAZÃO TOTAL	DE LIQUIDO		kg/h	1464,06	1464,06		0	193,50
19	ÁGUA LIVRE ORGÂNICOS			kg/h kg/h	0 1464,06	1464,06		0	193,50
21		S FASE VAPOR (úmida))	Ng11	1404,00	1404,00			
22	Peso molecul		,	kg/kmal				18,02	
23	Densidade @	P,T		Kg/m ³				4,53	
24	Viscosidade (сP				0,02	
25	Condutividade			kcal/h m K				0,04	
26	Calor especifi			kcal/kg °C				1,63	
27		S FASE LÍQUIDA (Seca	para org.)		704.04	740.07			007.40
28	Densidade @ Viscosidade (kg/m² cSt	794,34 2.76	719,27 0,51			887,13 0.15
30	Condutividade			kcal/h m K	0,11	0,10			0,55
31	Calor especifi			kcal/kg °C	0,76	0,81			0,51
32	Tensão super			dinas/cm	21,99	14,83			29,46
33	TEMPERATUR			°C	34	100		218	218
34	PRESSÃO DE E			kg/cm² g		2,5		7,0	
35		RGA PERMITIDA		kg/cm²		0,7		0,7	
36 37	CALOR TROCA			m²hºC / kcal Gcal/h	,	0E-04 0.08		1,30E-	
38		R TROCADO MÁX.		%	<u> </u>	2,00		-0,00	,
39		RGA PERMIT. A VAZÃO	MÁX.	kg/cm ²					
40					PROJETO MECĂI	NICO			
41	CONDIÇÕES D				Pressão	Temperatura		Pressão	Temperatura
42	PROJETO MEG			kg/cm2 g; °C					
43		ÂNICO A VAZIO		kg/cm2 g; °C					
44	À MÎNIMA TEM	PEKATUKA		kg/cm2g;°C kg/cm2g;°C	-				
46	FLUSHING OU	STEAM OUT		kg/cm2g;°C		 			
47	222.210.00		CARACTERÍSTI		AS E LIMITAÇÕES	NO PROJETO TÉRM	lico		•
48	MÁX. DIĀMETF	O CASCO		60"	MÁXIMO PESO DO				
49		TERIOR TUBOS		0,75*	MÍNIMO ESPESSI	JRA (BWG)			
50		O TUBOS (mm)		6100	PITCH / TIPO			1"	Δ
51		. PERMITIDA TUBOS (n	n/s)		VEL. MAX/MÎN. P	ERM.CASCO (m/s)			
52	NOTAS:								
53 54									
55									
56									
57									
58						_			
	Rev.	Por							
	Data	Aprovado							

	Produção de metil-etil-cetona a par	tir de 2-butanol			EQUIPAMENTO nº	E-02
	Sistema de pré aquecimento				Pág. 1	de 1
R e		TROCADO	RES DE CALC	NP.		
v		INOCADO	THE DE CALC	, K		
		CARACTERÍSTI	CAS DO EQUIPAM	ENTO		
EQUIPAMENTO N°				E-02		
CASO DE DESENHO SERVIÇO)		Plant	a de produção de me Vaporizador		
TIPO (casco-tubos / p	nlacas / futho dunio)	Caso	o-tubo	TIPO TEMA		AEP
TIPO (casco-tubos / p DISPOSIÇÃO (Horiz			zontal	Circulação (Termos	if forcada)	Termosifă
NÚMERO DE CARC		Hon	1	Em série / paralelo	ii., ioi yaday	Territosita
NUMERO DE CARC		OTERÍOTICA O DO EL	-			
LADO	CARA	CTERÍSTICAS DO FLI		ASCO	TUBO	26
	ORROSIVOS / TEOR (% p)		0	0	0	7 0
NATUREZA	()			mento	Reac	
			Entrada	Salida	Entrada	Salida
VAZÃO TOTAL		kg/h	1464,06	1464,06	1464,06	1464,06
VAZÃO TOTAL DE VA INCONDENSÁVEI:		kg/h	0	1464,06	1464,06	1464,06
VAPOR DE ÁGUA	Q [114]	kg/h kg/h	0	0	0	0
ORGĀNICOS		kg/h	0	1464,06	1464,06	1464,06
VAZÃO TOTAL DE LÍ	QUIDO	kg/h	1464,06	0	0	0
ÁGUA LIVRE		kg/h	0	0	0	0
ORGĀNICOS		kg/h	1464,06	0	0	0
	SE VAPOR (Húmeda)					
Peso molecular		kg/kmal		74,13	39,37	39,37
Densidade @P,T		Kg/m ³		6,38	1,77	2,51
Viscosidade @T	in OT	cP		0,01	0,02	0,01
Condutividade térmi Calor específico @		kcal/h m K kcal/kg °C		0,03 0,51	0,10 0,68	0,06
	SE LÍQUIDA (Seca para hidroc.)	Roding C		0,01	0,00	0,55
	SE ENGUIDA (Soca para Hidroc.)		719.27			-
Densidade @P,T Viscosidade @T		kg/m³ cSt	719,27 0.51			
Condutividade térm	ica @T	kcal/h m K	0,10			+
Calor específico @		kcal/kg °C	0,81			+
Tensão superficial (dinas/cm	14,83			
TEMPERATURA		°C	100	157	450	196
PRESSÃO DE ENTR		kg/cm² g		1,97	1,72	2
PERDA DE CARGA F	PERMITIDA	kg/cm ²		0,7	0,7	
FATOR DE DEPOSIÇ	ÇÃO	m ² hºC / kcal		00E-04	2,00E	
CALOR TROCADO		Gcal/h		0,23	-0,2	3
VAZÃO E CALOR TR		%				
PERDA DE CARGA F	PERMIT. A VAZÃO MÁX.	kg/cm ²				
CONDICATEORE		CONDIÇÕES DI	Pressão		Pressão	Terrore
CONDIÇÕES DE PROJETO MECÂNIO	0	kg/cm2 g; °C	PTESSãO	Temperatura	PTESSãO	Temperatur
PROJETO MECÂNIC		kg/cm2g;°C		+		+
A MÍNIMA TEMPERA		kg/cm2g;°C			1	1
		kg/cm2 g; °C				
FLUSHING OU STEA		kg/cm2 g;°C				
111v m/*		CAS CONSTRUCTIVA			AICO (1)	
MÁX. DIĀMETRO CA		60"	MÁXIMO PESO D			
DIĀMETRO EXTERK COMPRIMENTO TU		0,75** 6100	MÎNIMO ESPESSI PITCH / TIPO	ANA (DIVO)	1"	Δ
	RMITIDA TUBOS (m/s)	0100		ERM.CASCO (m/s)	1	Δ
NOTAS:		1				
H						
Rev.	Por		I		I	T
Data	Aprovado		1	1	1	1

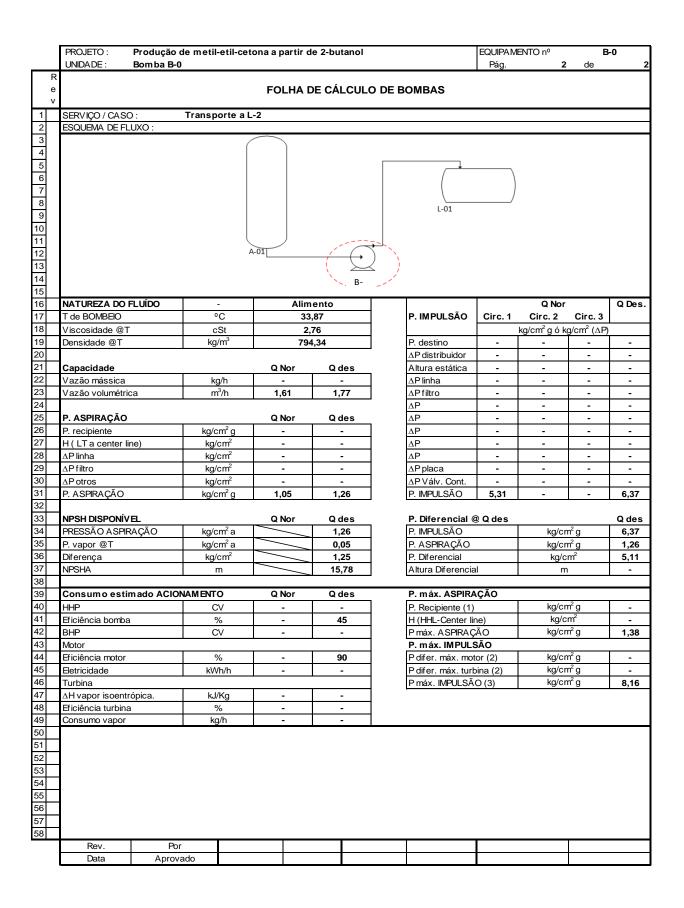
	PROJETO:		etil-cetona a partir o	ie 2-butanol			EQUIPAMENTO nº	E-03
	UNIDADE:	Sistema de pré aqu	ecimento				Pág. 1	de 1
R						_		
e				TROCADO	RES DE CALO	R		
1				CARACTERÍSTIC	CAS DO EQUIPAMI	ENTO		
2	EQUIPAMENTO	Nº		CARACTERISTI	CAS DO EQUIPAMI	E-03		
3	CASO DE DESE				Planta	de produção de me	etil-etil-cetona	
4	SERVIÇO					Super aqueces		
5	TIPO (casco-tub	os / placas / tubo duplo)		Caso	o-tubo	TIPO TEMA		BEM
6	DISPOSIÇÃO (I	toriz. / Vert.)		Horiz	zontal	Circulação (Termos	if., forçada)	Termosifão
7	NÚMERO DE C	ARCAÇAS ESTIMADAS			1	Em série / paralelo		
8				ERÍSTICAS DO FLU	IÍDO E CONDIÇÕE:	S DE OPERAÇÃO		•
9	LADO				CA	SCO	TU	BOS
0		S CORROSIVOS / TEOR	R (% p)		0	0	0	0
1	NATUREZA					nento		lta pressão
2				1	Entrada	Salida	Entrada	Salida
3	VAZÃO TOTAL	DE VAPOR ÚMIDO		kg/h	1464,06 1464,06	1464,06 1464,06	5444,08 5444,08	5444,08 5444,08
5	INCONDENS			kg/h kg/h	0	0	0	0
6	VAPOR DE Á			kg/h	0	0	5444,08	5444,08
7	ORGĀNICOS			kg/h	1464,06	1464,06	0	0
8	VAZÃO TOTAL	DE LÍQUIDO		kg/h	0	0	0	0
9	ÁGUA LÍVRE			kg/h	0	0	0	0
0	ORGĀNICOS			kg/h	0	0	0	0
1	PROPRIEDADE	S FASE VAPOR (Húmeo	ta)					
2	Peso molecula	r		kg/kmal	74,13	74,13	18,02	18,02
3	Densidade @F	P,T		Kg/m ³	6,78	3,79	12,21	14,02
4	Viscosidade @			сP	0,01	0,02	0,03	0,02
5	Condutividade			kcal/h m K	0,03	0,05	0,05	0,05
6	Calor especific			kcal/kg °C	0,52	0,67	0,53	0,55
7	PROPRIEDADE	S FASE LÍQUIDA (Seca	para hidroc.)					
8	Densidade @f	P,T		kg/m ³				
9	Viscosidade @			cSt				
0	Condutividade			kcal/h m K				
1	Calor especific			kcal/kg °C				
3	Tensão superf TEMPERATURA			dinas/cm °C	160	446	460	375
4	PRESSÃO DE E					2.1		9.4
-		GA PERMITIDA		kg/cm² g		0,7		2,7
5	FATOR DE DEF			kg/cm²		0,7 0E-04)E-03
6 7	CALOR TROCA			m²hºC / kcal Gcal/h	-	1.25	-	.25
8		R TROCADO MÁX.		%	,	1,20	**	,20
9		GA PERMIT. A VAZÃO	MÁV	-			 	
0	PENDA DE CAP	ON PERMIT. A VALAD	MAA.	kg/cm²	PROJETO MECÂN	uco		
1	CONDIÇÕES D	E		CONDIÇUES DE	Pressão	Temperatura	Pressão	Temperatura
2	PROJETO MEC			kg/cm2 g; °C		r sample time d	. 103300	, amparatara
3		ÂNICO A VAZIO		kg/cm2g;°C				
4	À MÎNIMA TEM	PERATURA		kg/cm2g;°C				
5				kg/cm2 g;°C				
8	FLUSHING OU			kg/cm2 g;°C				
7			CARACTERÍSTICAS			NO PROJETO TÉRM	MICO (1)	
8	MÁX. DIĀMETR			60"	MÁXIMO PESO DO			·
9		ERIOR TUBOS		0,75"	MÎNIMO ESPESSU	KA (BWG)	47-	
1	COMPRIMENT	PERMITIDA TUBOS (n	, le l	6100	PITCH / TIPO VEL. MÁX / MÍN. PI	EDM CASCO (mile)	1"	Δ
2	VEL. MAX/MIN NOTAS:	PERMITIDA TUBUS (N	lis)	<u> </u>	VEL. MAX/MIN. PL	ENM.CASCO (M/S)		
3								
4								
5								
В								
7								
8								
	Rev.	Por						
	Data	Aprovado	I	I	I	I	I	1

	T	PROJETO:	Produção de metil-	etil-cetona a partir d	le 2-butanol			EQUIPAMENTO n	٥	E-04
		UNIDADE:						Pág.	1	de 1
F	R				TROCADO	RES DE CALO	R			
١	V									
1	4	EQUIPAMENTO N°			CARACTERISTI	CAS DO EQUIPAME	E-04			
3	_	CASO DE DESENH				Planta	de produção de me	etil-etil-cetona		
4	_	SERVIÇO					Refrigerado			
5	╛	TIPO (casco-tubos /	placas / tubo duplo)		Caso	o-tubo	TIPO TEMA			AES
6	1	DISPOSIÇÃO (Hari	iz./Vert.)		Horiz	zontal	Circulação (Termos	if., forçada)		Termosifão
7	_	NÚMERO DE CAR	CAÇAS ESTIMADAS			2	Em série / paralelo			Série
8	4			CARACT	ERÍSTICAS DO FLU	IDO E CONDIÇÕES				
9	_	LADO	ORROSIVOS / TEOF	9 /9/ w)		0 CA	SCO 0	0	TUBOS	0
10	_	NATUREZA	ORROSIVOS / TEOR	K (70 P)			efrigeração		Reação	
12	┪	MATUREZA				Entrada	Salida	Entrada	reagae	Salida
13	1	VAZÃO TOTAL			kg/h	13279,70	13279,70	11407,67	-	11407,67
14	╛	VAZÃO TOTAL DE '			kg/h	0	0	11407,67		0
15	\Box	INCONDENSÁVE			kg/h	0	0	0		0
16	4	VAPOR DE ÁGUA	Ą		kg/h	0	0	0		0
17	4	ORGĀNICOS	louino		kg/h	0	0	11407,67		0
18 19	4	VAZÃO TOTAL DE I ÁGUA LIVRE	LIMUIDO		kg/h kg/h	13279,70 13279,70	13279,70 13279,70	0		11407,67
20	┥	ORGĀNICOS			kg/h	132/9,70	132/9,/0	0	-	11407,67
-	┪		ASE VAPOR (Húmeo	49)	Ng11					11-07,07
21	4		ASE VAPOR (Humos	ia)	lea fron el			20.07		
22	4	Peso molecular			kg/kmal			39,37		
23	4	Densidade @P,T			Kg/m² cP			2,44 0,01		
24 25	4	Viscosidade @T Condutividade térr	mica @T		kcal/h m K			0,01		
26	┥	Calor específico (_		kcal/kg °C			21,47	-	
27	+		ASE LÍQUIDA (Seca)	para hidroc.)	icang o			21,41		
28	1	Densidade @P,T			kg/m ³	994,92	974,10			795,17
29	┪	Viscosidade @T			cSt	0,93	0,61			0,45
30	\Box	Condutividade térr			kcal/h m K	1	1			0,12
31	\Box	Calor específico (6			kcal/kg °C	0,96	0,97			0,58
32	4	Tensão superficial	I @P,T		dinas/cm	72,87	68,73			23,21
33	_	TEMPERATURA	2121		°C	24	45	196		31
34	_	PRESSÃO DE ENTI			kg/cm² g	_	I,1		1,5	
35	_	PERDA DE CARGA			kg/cm²	-	3026		0,1559	
36		FATOR DE DEPOS			m²hºC / kcal		3E-04		2,73E-04	
37	_	CALOR TROCADO			Gcal/h	0	,27		-0,27	
38	-	VAZÃO E CALOR T			%					
39	4	PERDA DE CARGA	PERMIT. A VAZÃO	MAX.	kg/cm²					
40	4	CONIDIO ÁCO DE			CONDIÇÕES DE	PROJETO MECÂN		D		T
41		CONDIÇÕES DE PROJETO MECÂNI			kg/cm2 g; °C	Pressão	Temperatura	Pressão		Temperatura
43		PROJETO MECÂNI PROJETO MECÂNI			kg/cm2g;°C		-	-		
44	_	À MÎNIMA TEMPER			kg/cm2g;°C		 	 		
45	+				kg/cm2g;°C		 	 		
46	7	FLUSHING OU STE	AM OUT		kg/cm2 g; °C				$\overline{}$	
47	┪		-	CARACTERÍSTICAS		SYLIMITACIONES	NO PROJETO TÉRM	AICO (1)		
48	┪	MÁX. DIĀMETRO C			60"	MÁXIMO PESO DO				
49		DIĀMETRO EXTER			0,75*	MÎNIMO ESPESSU	RA (BWG)			
50	_	COMPRIMENTO T			6100	PITCH / TIPO		1	-	Δ
51			RMITIDA TUBOS (n	n/s)		VEL. MÁX/MÍN. PE	RM.CASCO (m/s)			
52	4	NOTAS:								
53 54	4									
55	4									
56	┨									
57	┪									
58	_1									
	T	Rev.	Por							
		Data	Aprovado							

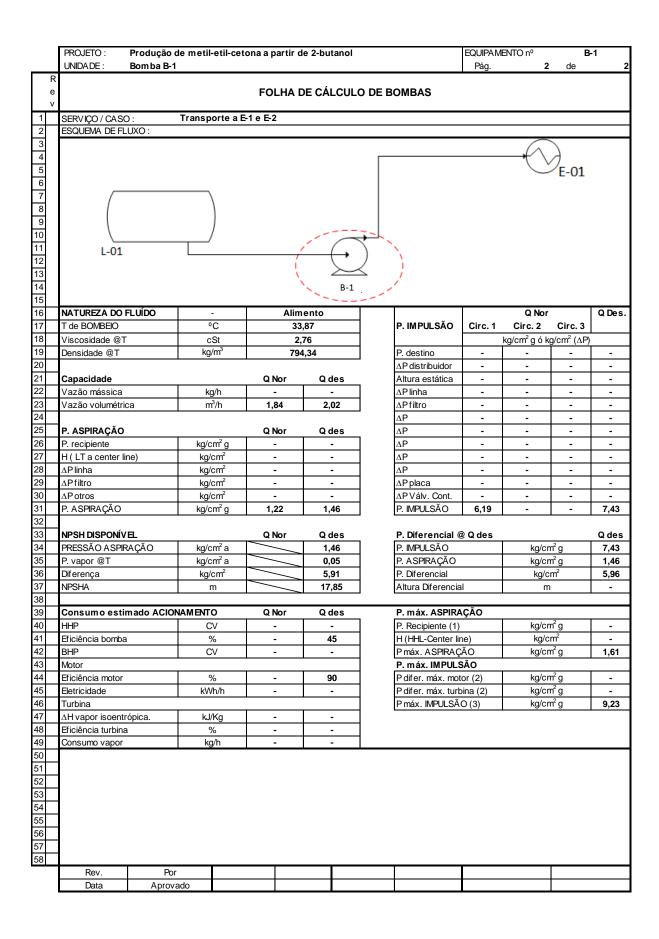
	PROJETO:	Produção de metil-	etil-cetona a partir d	le 2-butanol			EQUIPAMENTO nº	E-05
	UNIDADE:						Pág. 1	de 1
R								
e v				TROCADO	RES DE CALO	R		
1				CARACTERISTIC	CAS DO EQUIPAME	INTO		
2	EQUIPAMENTO No			OARACTERISTI	DAG DO EQUIPAME	E-05		
3	CASO DE DESENH	10			Planta	de produção de me	etil-etil-cetona	
4	SERVIÇO					Pré-aquecedo	or	
5	_	/ placas / tubo duplo)			duplo	TIPO TEMA	W #	F
6	DISPOSIÇÃO (Har				zontal	Circulação (Termos	at., forçada)	Forçada
7	NUMERO DE CAR	CAÇAS ESTIMADAS			1	Em série / paralelo		
8	LADO		CARACT	ERISTICAS DO FLU	IDO E CONDIÇÕES	SCO SCO		TUBOS
9		ORROSIVOS / TEOR	R (% n)		0	SCO 0	0	0
11	NATUREZA		· (/ · · · p)			processo		TCE
12					Entrada	Salida	Entrada	Salida
13	VAZÃO TOTAL	Whom Olding		kg/h	314,46	314,46	250,98	250,98
14 15	VAZÃO TOTAL DE INCONDENSÁVI			kg/h kg/h	0,00	0,00	0,00	0,00
16	VAPOR DE ÁGU			kg/h	0,00	0,00	0,00	0,00
17	ORGĀNICOS			kg/h	0,00	0,00	0,00	0,00
18	VAZÃO TOTAL DE	LÍQUIDO		kg/h	314,46	314,46	250,98	250,98
19	ÁGUA LIVRE ORGÁNICOS			kg/h	2,20 312,26	2,20 312,26	1,43 249,55	1,43 249,55
20		ASE VADOD /H/m	le3	kg/h	312,26	312,26	249,55	249,55
21		ASE VAPOR (Húmeo	13)	kalomol				
22	Peso molecular Densidade @P,T			kg/kmal				
24	Viscosidade @T			Kg/m² cP				
25	Condutividade tén	mica @T		kcal/h m K				
26	Calor específico (gT Tg		kcal/kg °C				
27	PROPRIEDADES F	ASE LÍQUIDA (Seca	para hidroc.)					
28	Densidade @P,T			kg/m ³	1199,84	1083,74	1364,81	719,27
29	Viscosidade @T			cSt.	0,72	0,31	0,27 0,00	
30	Condutividade tén			kcal/h m K	0,00	0,00 0,00 3344,00 0,46		0,00
31	Calor específico (Tensão superficia			kcal/kg °C dinas/cm	3344,00 31,57	0,46 21,66	0,41 19,68	0,78 33,54
33	TEMPERATURA	i gr,i		°C	27	102	141	35
34	PRESSÃO DE ENT	RADA		kg/cm² g		1,2		1,3
35	PERDA DE CARGA	A PERMITIDA		kg/cm ²		0,1		0,1
36	FATOR DE DEPOS	SIÇÃO		m²hºC / kcal	2,33	3E-04		2,33E-04
37	CALOR TROCADO			Gcal/h	0,0	0094		-0,0094
38	VAZÃO E CALOR T			%				
39	PERDA DE CARGA	A PERMIT. A VAZÃO	MÁX.	kg/cm ²				
40	CONDICATO DE			CONDIÇÕES DE	PROJETO MECÂN		D7	T
41	CONDIÇÕES DE PROJETO MECÂN			kg/cm2 g;°C	Pressão	Temperatura	Pressão	Temperatura
43	PROJETO MECAN			kg/cm2g;°C		 	 	
44	À MÎNIMA TEMPER			kg/cm2g;°C				
45				kg/cm2g;°C				
46	FLUSHING OU STE			kg/cm2g;°C				
47	MAY DISHETES		CARACTERÍSTICAS				MICO (1)	
48 49	MÁX. DIĀMETRO (DIĀMETRO EXTER			60" 0,75"	MÁXIMO PESO DO MÍNIMO ESPESSU			
50	COMPRIMENTO T			6100	PITCH / TIPO	- CALDITOJ	1"	·
51		ERMITIDA TUBOS (n	n/s)		VEL. MÁX/MÍN. PE	RM.CASCO (m/s)	<u> </u>	
52	NOTAS:						•	
53								
54								
55 56								
57								
58								
	Rev.	Por						
	Data	Aprovado						

	PROJETO:	Produção de metil-	etil-cetona a partir d	le 2-butanol			EQUIPAMENTO nº	E-06
	UNIDADE:	Coluna de destilaç					Pág. 1	de 1
R								
е				TROCADO	RES DE CALO	R		
4				CARACTERICT	CAS DO FOLUDAM	THE O		
2	EQUIPAMENTO N			CARACTERISTI	CAS DO EQUIPAMI	E-06		
3	CASO DE DESENH				Planta	de produção de me	etil-etil-cetona	
4	SERVIÇO					Condensado	r	
5		/ placas / tubo duplo)			o-tubo	TIPO TEMA		AES
6	DISPOSIÇÃO (Har			Horiz	zontal	Circulação (Termos	sif., forçada)	Termosifão
7	NÚMERO DE CAR	CAÇAS ESTIMADAS	i		1	Em série / paralelo		
8			CARACT	ERÍSTICAS DO FLU	JÍDO E CONDIÇÕES		-	
9	LADO	ORROSIVOS / TEOR	2 /9(m)		0 CA	SCO 0	TUE 0	ios 0
10	NATUREZA	ORROSIVOS/TEO	₹ (70 p)			refrigeração	ME	
12					Entrada	Salida	Entrada	Salida
13	VAZÃO TOTAL			kg/h	1339,37	1339,37	254,62	63,65
14	VAZÃO TOTAL DE			kg/h	0	0	254,62	0
15 16	INCONDENSÁVI VAPOR DE ÁGU			kg/h kg/h	0	0	0 7,51	0
17	ORGĀNICOS			kg/h	0	0	247,11	0
18	VAZÃO TOTAL DE	LÍQUIDO		kg/h	1339,37	1339,37	0	63,65
19	ÁGUA LIVRE			kg/h	1339,37	1339,37	0	0,78
20	ORGĀNICOS			kg/h	0	0	0	62,87
21		ASE VAPOR (Húme	ta)					
22	Peso molecular			kg/kmal			4.07	
23	Densidade @P,T			Kg/m² cP			4,07	
24 25	Viscosidade @T Condutividade tén	mica @T		kcal/h m K			0,32 0,10	
26	Calor específico (kcal/kg °C			0,46	+
27		ASE LÍQUIDA (Seca	para hidroc.)				-,	
28	Densidade @P,T		, , , , , , , , , , , , , , , , , , , ,	kg/m ³	994,92	974,10		737,75
29	Viscosidade @T			cSt	0,93	0,61		0,31
30	Condutividade tén			kcal/h m K	1	1		0,11
31	Calor específico (kcal/kg °C	0,96	0,97		0,55
32	Tensão superficia	i @P,T		dinas/cm °C	72,87	68,73		19,52
33	TEMPERATURA PRESSÃO DE ENT	DADA		-	24	45	93	84
34	PERDA DE CARGA			kg/cm² g		0.1	0,0	
36	FATOR DE DEPOS			kg/cm²		5E-04	1,50	
37	CALOR TROCADO			m²hºC / kcal Gcal/h		1.03	-0.	
38	VAZÃO E CALOR T			%	_	,,		
39	PERDA DE CARGA	A PERMIT. A VAZÃO	MÁX.	kg/cm ²				
40					PROJETO MECÂN	IICO		
41	CONDIÇÕES DE				Pressão	Temperatura	Pressão	Temperatura
42	PROJETO MECÂN			kg/cm2g;°C				
43	PROJETO MECÂN À MÎNIMA TEMPER			kg/cm2 g; °C				
44 45	A MINIMA TEMPER	NATURA		kg/cm2 g; °C kg/cm2 g; °C	-		-	+
46	FLUSHING OU STI	EAM OUT		kg/cm2g;°C	 		+	+
47			CARACTERÍSTICAS		SYLIMITACIONES	NO PROJETO TÉRM	MICO (1)	
48	MÁX. DIĀMETRO (CASCO		60"	MÁXIMO PESO DO	FEIXE (10-20 t)		
49	DIĀMETRO EXTER			0,75*	MÎNIMO ESPESSU	RA (BWG)		
50	COMPRIMENTO T		1-3	6100	PITCH / TIPO		1"	Δ
51	VEL. MAX / MIN. PE NOTAS :	ERMITIDA TUBOS (n	1/5)		VEL. MÁX / MÍN. PE	ERM.GASCO (m/s)		
52 53								
54								
55								
56								
57	-							
58	Rev.	Por			·	1	1	1
	Data	Aprovado			-		 	

		PROJETO:	Produção de metil-	etil-cetona a partir o	ie 2-butanol			EQUIPAMENTO nº	E-07			
		UNIDADE:	Coluna de destilaç	ão				Pág. 1	de 1			
_	R						_					
	e v				TROCADO	RES DE CALO	R					
1					CARACTERÍSTI	CAS DO EQUIPAME	ENTO					
2		EQUIPAMENTO N					E-07	471 471				
3	_	CASO DE DESEN SERVIÇO	но		Planta de produção de metil-etil-cetona Refervedor							
4 5	\dashv		s / placas / tubo duplo)		Caso	o-tubo	TIPO TEMA		AKT			
6		DISPOSIÇÃO (He				contal	Circulação (Termos	sif forcada)	Termosifão			
7	-		RCAÇAS ESTIMADAS	,		1		ent, not yeardy	Termositao			
_	_	NUMERO DE CA	KCAÇAS ESTIMADAS				Em série / paralelo					
8	-	LADO		CARACT	ERÍSTICAS DO FLU		SCO SCO	TUBOS				
10	\dashv		CORROSIVOS / TEO	R (% p)		0	0	0	0			
11	\neg	NATUREZA		(,,,,,,,			CE		paixa pressão			
12						Entrada	Salida	Entrada	Salida			
13		VAZÃO TOTAL			kg/h	725,29	250,82	69,60	69,60			
14	_	VAZÃO TOTAL DE			kg/h	0	0	69,60	0			
15 16	-	VAPOR DE ÁGI			kg/h kg/h	0	0	69,60	0			
17	\dashv	ORGĀNICOS			kgh	0	0	0	0			
18		VAZÃO TOTAL DI	ELÍQUIDO		kg/h	725,29	250,82	0	69,60			
19		ÁGUA LIVRE			kg/h	1,63	1,43	0	69,60			
20		ORGĀNICOS			kg/h	723,66	249,39	0	0			
21			FASE VAPOR (Húme	da)								
22		Peso molecular			kg/kmol			18,02				
23		Densidade @P,			Kg/m ³			4,53				
24	_	Viscosidade @T			cP			0,02				
25 26	-	Calor especifico			kcal/h m K kcal/kg °C			0,04 1,63				
27	\dashv		FASE LÍQUIDA (Seca	nara hidroc \	Koding C			1,00				
\rightarrow	-			para naroc.,		1089,64	1183.93		887,130			
28 29	-	Densidade @P, Viscosidade @T			kg/m² cSt	0,291118	0,23316		0,146			
30	\dashv	Condutividade te			kcal/h m K	0,100264	0.09		0,552			
31	\neg	Calor específico			kcal/kg °C	0,45837	0,385725		0,511			
32		Tensão superfic	al @P,T		dinas/cm	22,1548	19,3741		29,455			
33		TEMPERATURA			°C	136	141	218	218			
34		PRESSÃO DE EN			kg/cm² g		,24		7,00			
35		PERDA DE CARG			kg/cm ²),70		0,07			
36		FATOR DE DEPO			m²hºC / kcal	-	0E-04	_	30E-03			
37	_	CALOR TROCAD			Gcal/h	0	1,03		-0,03			
38	-	VAZÃO E CALOR		a a fac	76							
39	_	PERDA DE CARG	SA PERMIT. A VAZÃO	MAX.	kg/cm²	nno erro uro la						
40	_	CONDIÇÕES DE			CONDIÇÕES DE	PROJETO MECÂN Pressão	Temperatura	Pressão	Temperatura			
42	\dashv	PROJETO MECĂ			kg/cm2 g;°C	riessau	remperatura	2105500	ramperatura			
43	\dashv	PROJETO MECĂ			kg/cm2 g; °C							
44		À MÎNIMA TEMPE	RATURA		kg/cm2 g; °C							
45					kg/cm2 g; °C							
46		FLUSHING OU S'			kg/cm2 g; °C			L				
47	_	MAY DITHETO		CARACTERISTICAS				MICO (1)				
48 49	\dashv	MÁX. DIĀMETRO DIĀMETRO EXTE			60° 0,75°	MÁXIMO PESO DO MÍNIMO ESPESSU						
50	\dashv		DIÂMETRO EXTERIOR TUBOS COMPRIMENTO TUBOS (mm)			PITCH / TIPO	(0110)	1"				
51	\exists		VEL. MÁX / MÍN. PERMITIDA TUBOS (m/s)				ERM.CASCO (m/s)	'				
52		NOTAS:						•				
53												
54	\Box											
55	4											
56 57	-											
58	\dashv											
30		Rev.	Por					ı				
		Data	Aprovado									
								_	_			

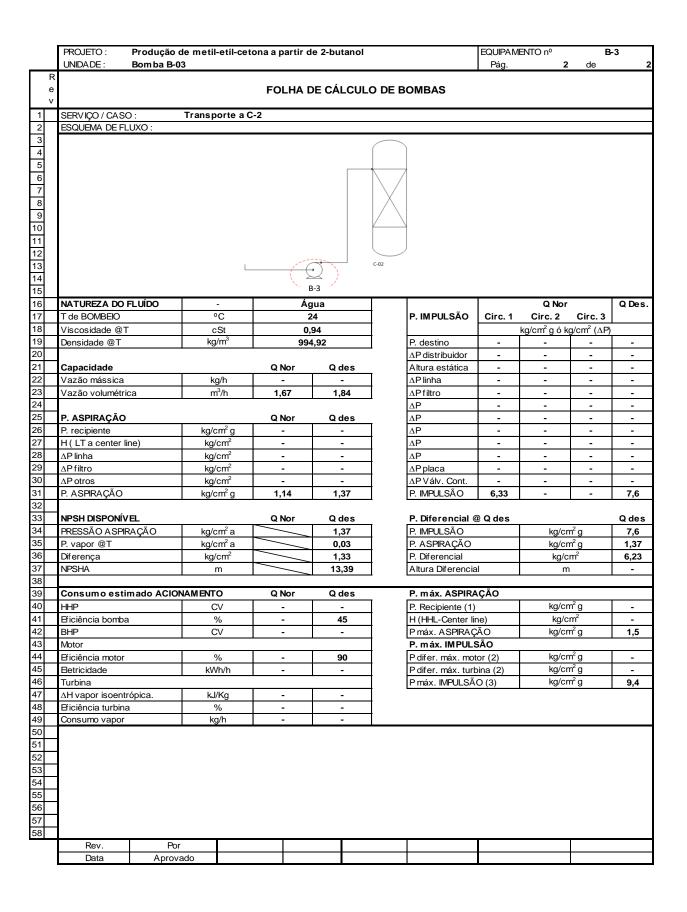

	PROJETO:	Produção de metil-	etil-cetona				EQUIPAME	NTO nº	E-08
U	JNIDADE:						Pág.	1	de 1
R				TROCARO	DES DE CAL	O.D.			
e v				TROCADO	RES DE CAL	JK			
				CARACTERÍSTI	CAS DO EQUIPAN	MENTO			
_	QUIPAMENTO N°					E-08			
	ASO DE DESENH	0			Planta d	le produção de metil-		MEK)	
	ERVIÇO	/ placas / tubo duplo)		Tube	duplo	Pré-aquecede TIPO TEMA	or		Т
_	ISPOSIÇÃO (Hari				zontal	Circulação (Termos	if forcada)	Termosifão	
-		CAÇAS ESTIMADAS		11011	1	Em série / paralelo	en, nor yoursely	Territosinao	
7 N	UMERO DE CAR	CAÇAS ESTIMADAS		EDÍSTICAS DO ELI		ES DE OPERAÇÃO			
_	ADO		CARACII	ERISTICAS DO FLI		ASCO	Г	TUBOS	S
	OMPONENTES C	ORROSIVOS / TEOF	R (% p)		0	0		0	0
_	ATUREZA					de processo		MEK	
2	AZÃO TOTAL			loude	Entrada 1416.43	Salida 1416,43		ntrada 249.36	Salida 1249.00
	AZÃO TOTAL DE	VAPOR ÚMIDO		kg/h kg/h	0	0	12	0	0
	INCONDENSÁVE			kg/h	0	0		0	0
8	VAPOR DE ÁGUA	Ą		kg/h	0	0		0	0
	ORGĀNICOS	loupo		kg/h	0	0		0	0
-	AZÃO TOTAL DE I ÁGUA LIVRE	LIQUIDO		kg/h kg/h	1416,43	1416,43	12	0 0	1249,36
1	ORGĀNICOS			kg/h	1416,07	1416,07	12	249,00	1249.00
_		ASE VAPOR (Húmeo	ta)	9***	. A regar		<u> </u>		.2-10,00
	Peso molecular		,	kg/kmal					
	Densidade @P,T			Kg/m ³					
	Viscosidade @T			cP					
5	Condutividade térr	mica @T		kcal/h m K					
8	Calor específico (6			kcal/kg °C					
7 PI	ROPRIEDADES F	ASE LÍQUIDA (Seca)	para hidroc.)						
8	Densidade @P,T			kg/m ³	798,55	747,82	73	34,79	795,42
9	Viscosidade @T			cSt	0,47	0,27		0,23	0,38
	Condutividade térr			kcal/h m K	0,12 0.52	0,11 0.55		0,11 0.54	0,12 0.50
2	Calor específico (Tensão superficial			kcal/kg °C dinas/cm	23,61	18,52		17,46	14,83
	EMPERATURA	18.11		°C	28	70	-	79	30
_	RESSÃO DE ENTI	RADA		kg/cm² g	1	,00226		1,0062	2
_	ERDA DE CARGA	PERMITIDA		kg/cm ²		0,004		0,004	,
6 F	ATOR DE DEPOS	IÇÃO		m ² h ^o C / kcal	2.	33E-04		2,33E-0	34
7 C	ALOR TROCADO			Gcal/h		0,03		-0,03	
B V	AZÃO E CALOR T	ROCADO MÁX.		%					
9 PI	ERDA DE CARGA	PERMIT. A VAZÃO I	MÁX.	kg/cm ²					
0				CONDIÇÕES DI	PROJETO MECĂ				
_	ONDIÇÕES DE ROJETO MECÂNI			kalem 2 00	Pressão	Temperatura	Pro	essão	Temperatura
	ROJETO MECANI ROJETO MECÂNI			kg/cm2 g; °C kg/cm2 g; °C					
	MÎNIMA TEMPER			kg/cm2 g; °C		1			
5				kg/cm2 g;°C					
8 FI	LUSHING OU STE			kg/cm2 g;°C					
7			CARACTERÍSTICAS			S NO PROJETO TÉRM	AICO (1)		
	IÁX. DIĀMETRO C			60" 0,75"	MÁXIMO PESO D MÍNIMO ESPESS	O FEIXE (10-20 t)			
	IÄMETRO EXTER OMPRIMENTO T			6100	PITCH / TIPO	URA (BIVG)	-+	1"	
		RMITIDA TUBOS (m	1/5)	5100		PERM.CASCO (m/s)	-+		
_	OTAS:								
3									
4									
5									
7									
7 8									
	Rev.	Por			I				
	Data	Aprovado					1		

	PROJETO:		Produção de metil-	etil-cetona				EQUIPAN	MENTO nº	E-09		
	UNIDADE:		_					Pág.	1	de 1		
R							_					
e v					TROCADO	RES DE CALO	R					
1	 				CARACTERISTI	CAS DO EQUIPAM	ENTO					
2	EQUIPAMEN	TO N°					E-10					
3	CASO DE DE	SENH	0		Planta de produção de metil-etil-cetona (MEK)							
4	SERVIÇO	t inne	/ placas / tubo duplo)		Carre	o-tubo	Refervedor TIPO TEMA		AKT			
6	DISPOSIÇÃO					contal	Circulação (Termos	if forcada	١	Termosifão		
-	_	_	CAÇAS ESTIMADAS			1	Em série / paralelo	et., roryada	,	Termositao		
7	NUMERO DE	CAR	CWCAS ESTIMADAS									
9	LADO			CARACI	ERÍSTICAS DO FLU		ISCO		TUBOS	3		
10		TES C	ORROSIVOS / TEOF	₹ (% p)		0	0		0	0		
11	NATUREZA						outanol		Vapor a baixa			
12	VAZÃO TOTAL			lB-	Entrada	Salida		Entrada	Salida 3946			
13			VAPOR ÚMIDO		kg/h kg/h	1416,42	167,06		3946 3946	3946		
15	INCONDE				kg/h	0	0		0	0		
16	VAPOR DE		A.		kg/h	0	0		3946	3946		
17	ORGĀNICO		loupo		kg/h	0	0		0	0		
18	VAZÃO TOTA ÁGUA LIVR		LIQUIDO		kg/h kg/h	1416,42 0,36	167,06 0,00		0	0		
20	ORGÁNICO				kg/h	1416,06	167,06		0	0		
21	PROPRIEDA	DES F	ASE VAPOR (Húmeo	ta)	-9		127,22					
22	Peso molec			,	kg/kmal				18,02			
23	Densidade (Kg/m ³				4,53			
24	Viscosidade	@T			cР				0,02			
25	Condutivida		_		kcal/h m K				0,04			
26	Calor espec	_			kcal/kg °C				1,63			
27			ASE LÍQUIDA (Seca)	para hidroc.)								
28	Densidade (_			kg/m³	747,81	707,12			887,13		
29 30	Viscosidade Condutivida		mica @T		cSt kcal/h m K	0,27 0,11	0,26 0,10			0,15 0.55		
31	Calor espec				kcal/kg °C	0,55	0,78			0,51		
32	Tensão sup				dinas/cm	18,52	13,74			29,46		
33	TEMPERATU				°C	115	116		218	218		
34	PRESSÃO DE				kg/cm² g		,996		7,00			
35	PERDA DE C				kg/cm ²		,005		0,07			
36	FATOR DE D				m²hºC / kcal	_	3E-04		1,30E-0	3		
37	CALOR TRO		ROCADO MÁX.		Gcal/h %	,	0,46	-0,46				
39			PERMIT. A VAZÃO	MÁX	kg/cm ²							
40					_	PROJETO MECÂN	lico					
41	CONDIÇÕES	DE				Pressão	Temperatura		Pressão	Temperatura		
42	PROJETO MI				kg/cm2 g; °C							
43	PROJETO MI A MÎNIMA TE				kg/cm2 g; °C							
44 45	A MINIMA TE	MPER	MIURA		kg/cm2 g; °C kg/cm2 g; °C		 					
46	FLUSHING O	U STF	AM OUT		kg/cm2g;°C		 					
47	200/11/00	2 216		CARACTERÍSTICA:		S Y LIMITACIONES	NO PROJETO TÉRM	IICO (1)				
48	MÁX. DIĀME		ASCO		60"	MÁXIMO PESO DO	FEIXE (10-20 t)					
49		DIĀMETRO EXTERIOR TUBOS			0,75*	MÎNIMO ESPESSU	IRA (BWG)					
50		COMPRIMENTO TUBOS (mm) VEL. MÁX/ MÍN. PERMITIDA TUBOS (m/s)			6100	PITCH / TIPO	EDM CARCO (1"	\triangle		
51 52	VEL. MAX / M NOTAS :	IN. PE	KMITIDA TUBOS (m	1/5)		VEL. MAX/MIN. P	ERM.CASCO (m/s)					
53	.101710.											
54												
55												
56												
57 58												
50	Rev.		Por			I	I					
	Data		Aprovado									
_				_								


	PROJETO:	Produção de metil-	etil-cetona				EQUIPAMENTO nº	E-10				
	UNIDADE:						Pág. 1	de 1				
R				TROCADO	RES DE CALO	R						
1	 			CARACTERÍSTI	CAS DO EQUIPAME	ENTO						
2	EQUIPAMENTO N					E-09						
3	CASO DE DESEN SERVICO	но			Planta de produção de metil-etil-cetona (MEK)							
5		/ placas / tubo duplo)		Caso	o-tubo	Condensado TIPO TEMA	r	AES				
6	DISPOSIÇÃO (Ho				zontal	Circulação (Termos	if., forçada)	Termosifão				
7		RCAÇAS ESTIMADAS			1	Em série / paralelo						
8					IDO E CONDIÇÕES							
9	LADO					SCO	T	JBOS				
10		CORROSIVOS / TEO	₹ (% p)		0	0	0	0				
11	NATUREZA				Agua de r Entrada	refrigeração Salida	Entrada	MEK Salida				
13	VAZÃO TOTAL			kg/h	4139,34	4139,34	1416,43	1249,36				
14	VAZÃO TOTAL DE			kg/h	0	0	0	0				
15	INCONDENSÁN			kg/h	0	0	0	0				
16 17	VAPOR DE ÁGL ORGÁNICOS	IA.		kg/h kg/h	0	0	0	0				
18	VAZÃO TOTAL DE	LÍQUIDO		kg/h	4139,34	4139,34	1416,43	1249,36				
19	ÁGUA LIVRE			kg/h	4139,34	4139,34	0,36	0,36				
20	ORGĀNICOS			kg/h	0	0	1416,07	1249,00				
21		FASE VAPOR (Húmeo	ia)									
22	Peso molecular Densidade @P,1			kg/kmal								
24	Viscosidade @T			Kg/m² cP								
25	Condutividade té	rmica @T		kcal/h m K								
26	Calor específico			kcal/kg °C								
27		FASE LÍQUIDA (Seca	para hidroc.)									
28	Densidade @P,T			kg/m ³	994,92	974,10	747,82	734,97				
29 30	Viscosidade @T Condutividade té	rmica @T		cSt kcal/h m K	0,93 0.52	0,61 0,54	0,27 0,11	0,23 0,11				
31	Calor específico			kcal/kg °C	0,96	0,97	0,55	0,54				
32	Tensão superfici			dinas/cm	72,87	68,73	18,52	17,48				
33	TEMPERATURA	FD.1.D.1		°C	24	45	78	89				
34	PRESSÃO DE EN			kg/cm² g		1,10	0,3	343389				
35 36	PERDA DE CARG FATOR DE DEPO			kg/cm²		0,1 5E-04	2.5	0,8 33E-04				
37	CALOR TROCAD			m²hºC / kcal Gcal/h	0,45			0.45				
38	VAZÃO E CALOR			%		,		-,				
39	PERDA DE CARG	A PERMIT. A VAZÃO	MÁX.	kg/cm ²								
40				CONDIÇÕES DE	PROJETO MECÂN							
41	CONDIÇÕES DE. PROJETO MECĂ			kg/cm2 g; °C	Pressão	Temperatura	Pressão	Temperatura				
42	PROJETO MECA			kg/cm2g;°C								
44	À MÎNIMA TEMPE			kg/cm2g;°C								
45				kg/cm2 g;°C								
46	FLUSHING OU ST		CADACTERISTIC	kg/cm2 g; °C	D V I BUT A CICHES	NO DROJETO TÉC	HCO (4)					
47 48	MÁX. DIĀMETRO		CARACTERÍSTICAS	60"	MÁXIMO PESO DO		MICO (1)					
49	DIĀMETRO EXTE			0,75*	MÍNIMO ESPESSU							
50		COMPRIMENTO TUBOS (mm)			PITCH / TIPO		1"	Δ				
51	VEL. MÁX / MÍN. P NOTAS :	ERMITIDA TUBOS (n	1/s)		VEL. MÁX / MÍN. PE	ERM.CASCO (m/s)						
52 53	NOTAS:											
54												
55												
56 57	-											
58												
	Rev.	Por										
	Data	Aprovado										

5.6 Bombas

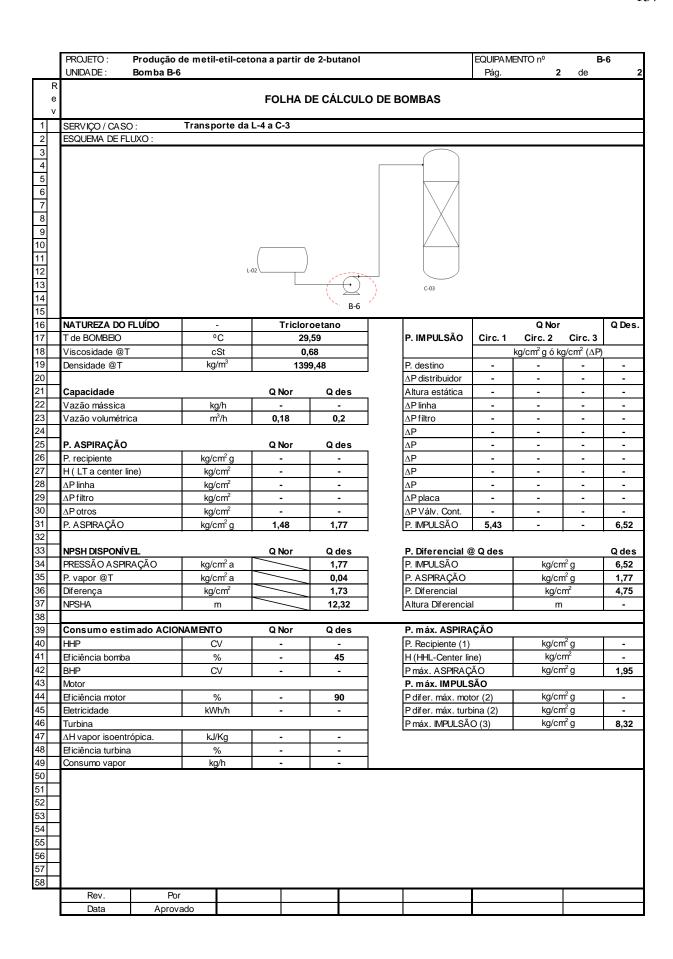
г	DOO ITTO	hadaa ah	TECH HOA MENTO . O							
	PROJETO: Produção de metil-etil-cetona a partir de 2 UNIDADE: Bomba B-0	-butanoi	EQUIPAMENTO nº	B-0						
В	UNIDADE: Bomba B-0		Pág. 1	de 2						
R		DOMBAG								
e v		BOMBAS								
\vdash	0.00									
1		CTERÍSTICAS DO EQUIPAMENTO		~						
	CASO DE PROJETO		Planta de produção de metil-etil-cetona							
	SERVIÇO		Trai	nsporte a L-2						
	EQUIPAMENTO Nº OPERAÇÃO / RESERVA		B-0							
	NÚMERO DE BOMBAS REQUERIDAS OPERAÇÃO / RESERVA		1 1							
	TIPO DE BOMBA (centrífuga / volumétrica alternativa / volumétric	a rotativa)		Centrífuga						
-	FUNCIONAMENTO (continuo / descontínuo ; série / paralelo)	Contínuo/Paralelo								
8	CARACTERÍSTICAS DO FLUIDO									
	NATUREZA DO FLUIDO		Alimento							
	COMPONENTES CORROSIVOS / TÓXICOS	Não	Não							
	SÓLIDOS EN SUSPENSÃO (quantidade / DIÂMETRO Equivalente)		Não	Não						
	PONTO DE FLUIDEZ (POUR POINT)	°C		-						
	TEMP. DE AUTO IGNIÇÃO / IGNIÇÃO	°C	-	-						
-	TEMPERATURA DE BOMBEIO	°C		33,87						
-	Densidade @T BOMBEIO	kg/m ³		794,34						
	Viscosidade @T BOMBEIO	cSt		2,76						
	PRESSÃO DE VAPOR @T BOMBEIO	kg/cm² a	1	0,05						
18		RÍSTICAS DO PROJETO DA BOMBA								
19	VAZÃO DE PROJETO Q (rated) (1)	m³/h		1,77						
	VAZÃO MÍNIMO DE PROCESSO (2)	m³/h		0,98						
21	VAZÃO NORMAL	m³/h	1,61							
22	PRESSÃO DE IMPULSÃO @ Q rated	kg/cm² g	6,37							
23	PRESSÃO DE ASPIRAÇÃO @ Q rated	kg/cm² g	1,26							
	PRESSÃO DIFERENCIAL @ Q rated	kg/cm ²		5,11						
25	ALTURA DIFERENCIAL @ Q rated (1)	m		-						
	NPSH DISPONÍVEL @ Q rated (3)	m		15,78						
27	MÁX. DP a IMPULSÃO FECHADA (4)	kg/cm ²	-							
28	PRESSÃO MÁXIMA ASPIRAÇÃO	kg/cm² g	1,38							
	PRESSÃO MÁXIMA IMPULSÃO	kg/cm² g	7							
	DIÂMETRO TUBULAÇÃO ASPIRAÇÃO / IMPULSÃO	polegadas	1,25 1,25							
	IMPULSOR / FECHAMENTO (5)		,	-						
	TRACEJADO / ISOLAMENTO / FLUSHING (6)			-						
33		IÇÕES DE PROJETO MECÂNICO	U.							
	TEMPERATURA PROJETO MECÂNICO	°C	63,87							
	PRESSÃO PROJETO MECÂNICO	kg/cm² g	8,16							
36		TERÍSTICAS DO ACIONAMENTO								
	TIPO OPERAÇÃO / RESERVA		Motor Elétrico	Motor Eétrico						
	CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO	kWh/h	0,61	0,61						
	CONSUMO DE VAPOR ESTIMADO A VAZÃO PROJETO	Kg/h	-,	-						
	NOTAS:	1 19.11	1	1						
41										
42										
43										
44										
45										
46										
47										
48										
49										
49 50										
49 50 51										
49 50 51 52										
49 50 51 52 53										
49 50 51 52 53 54										
49 50 51 52 53 54 55										
49 50 51 52 53 54 55 56										
49 50 51 52 53 54 55 56 57										
49 50 51 52 53 54 55 56	Para materiais ver la folha de seleção de materiais.									
49 50 51 52 53 54 55 56 57	Para materiais ver la folha de seleção de materiais. Rev. Por Data Aprovado									


į	PROJETO:	Producão de m	etil-etil-cetona	a nartir da 2-hu	tanol		EQUIPAMENTO nº		B-1		
	UNIDADE:	Bomba B-1	retii-etii-cetona	a partii de 2-bu	tarioi		Pág. 1	de	2		
R									-		
е					BOMBAS						
٧					·						
1	04 00 PE PPO IE	TO.		CARACTE	RÍSTICAS DO EQU	JIPAMENTO	Diam'r Is and Is	~	- 49 - 49 4		
3	CASO DE PROJE SERVIÇO	10					Planta de produ	uçao de m porte a E-			
4	EQUIPAMENTO N	OPERAÇÃO / R	ESERV/A				irans	B-1	1 e E-2		
5			AS OPERAÇÃO / F	RESERVA			1 1				
6			ımétrica alternativ		tativa)		Centrífuga				
7	FUNCIONA MENTO		tínuo/Para								
8	CARACTERÍSTICAS DO FLUIDO										
9	NATUREZA DO F		Alimento								
10	COMPONENTES (Não		Não						
11			idade / DIÂMETRO	Equivalente)		°C	Não		Não		
12 13	PONTO DE FLUID TEMP. DE AUTO I					°C	-	-	_		
14	TEMPERATURA [°C	-	33,87	-		
15	Densidade @TB					kg/m³		794,34			
16	Viscosidade @T					cSt		2,76			
17	PRESSÃO DE VA	POR @T BOMBE	IO			kg/cm² a		0,05			
18				CARACTERÍS	TICAS DO PROJE						
19	VAZÃO DE PRO					m³/h		2,03			
20	VAZÃO MÍNIMO I	,	()			m³/h		1,11			
21	VAZÃO NORMAI PRESSÃO DE IMP					m³/h	1,84				
22	PRESSÃO DE IVI-					kg/cm² g kg/cm² g	7,43				
24	PRESSÃO DIFERI					kg/cm²	1,46 5,96				
25	ALTURA DIFERE					m		-			
26	NPSH DISPONÍVE		. ()			m		17,85			
27	MÁX. DP a IMPUL		4)			kg/cm²	-				
28	PRESSÃO MÁXIN	/A ASPIRAÇÃO				kg/cm² g	1,61				
29	PRESSÃO MÁXIN					kg/cm² g		8,17			
30	DIÂMETRO TUBU		ÇÃO/IMPULSÃO			polegadas	1,5		1,5		
31	IMPULSOR / FECH		101 1110 (0)					-			
33	TRACEJADO / ISO	JLAMENTO / FLU	ISHING (6)	CONDICÕ	ES DE PROJETO I	MECÂNICO		-			
34	TEMPERATURA F	PROJETO MECÂNI	ICO	CONDIÇO	E3 DE PROJETO I	°C		63,87			
35	PRESSÃO PROJE		.00			kg/cm² g	9,23				
36				CARACTE	RÍSTICAS DO ACI			-,-			
37	TIPO OPERAÇÃO	/ RESERVA					Motor Elétrico	M	otor Eétrico		
38			A VAZÃO PROJI			kWh/h	0,81		0,81		
39		APOR ESTIMADO	A VAZÃO PROJE	TO		Kg/h	-		-		
40	NOTAS:										
41 42											
43											
44											
45											
46											
47											
48											
49											
50											
51											
52											
53 54											
-											
55											
-											
55 56	Para ma	teriais ver la folha	a de seleção de m	ateriais.							
55 56 57	Para ma Rev.	teriais ver la folha Por	a de seleção de m	ateriais.							

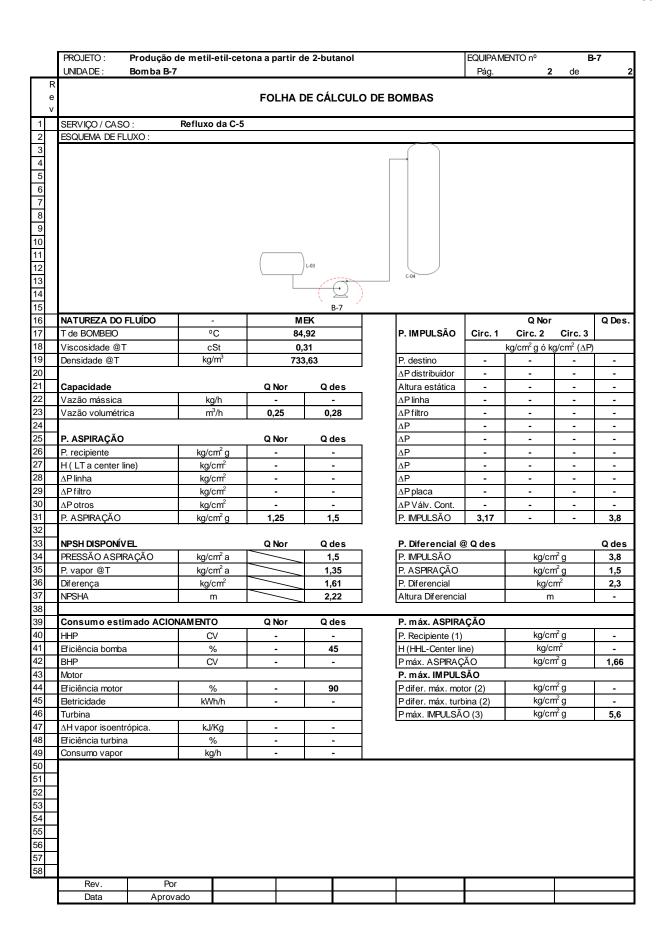
Ī	PROJETO : Produção de metil-etil-cetona a partir de 2-butanol		EQUIPAMENTO nº	B-2			
	UNIDADE: Bomba B-2		Pág. 1	de 2			
R e v	Bo	OMBAS					
1	CARACTERÍSTIC	AS DO EQUIPAMENTO					
2	CASO DE PROJETO			ção de metil-etil-cetona			
3	SERVIÇO		Trasnpo	orte da C-1 a C-5			
5	EQUIPAMENTO № OPERAÇÃO / RESERVA NÚMERO DE BOMBAS REQUERIDAS OPERAÇÃO / RESERVA		B-2				
	TIPO DE BOMBA (centrífuga / volumétrica alternativa / volumétrica rotativa)		1	entrífuga			
7	FUNCIONAMENTO (continuo / descontínuo ; série / paralelo)			ínuo/Paralelo			
8	CARACTERÍ	STICAS DO FLUIDO					
9	NATUREZA DO FLUIDO			MEK			
10	COMPONENTES CORROSIVOS / TÓXICOS		Sim	Não			
	SÓLIDOS EN SUSPENSÃO (quantidade / DIÂMETRO Equivalente)		Não	Não			
12 13	PONTO DE FLUIDEZ (POUR POINT) TEMP. DE AUTO IGNIÇÃO / IGNIÇÃO	°C	-	-			
14	TEMPERATURA DE BOMBEIO	°C	-	25			
15	Densidade @T BOMBEIO	kg/m³		801,32			
16	Viscosidade @T BOMBEIO	cSt		0,61			
17	PRESSÃO DE VAPOR @T BOMBEIO	kg/cm² a		2,76			
18		DO PROJETO DA BOMBA					
	VAZÃO DE PROJETO Q (rated) (1)	m³/h		1,86			
20	VAZÃO MÍNIMO DE PROCESSO (2)	m³/h		1,01			
21 22	VAZÃO NORMAL PRESSÃO DE IMPULSÃO @ Q rated	m³/h kg/cm² g		1,69 6,85			
	PRESSÃO DE ASPIRAÇÃO @ Q rated	kg/cm² g		1,25			
24	PRESSÃO DIFERENCIAL @ Q rated	kg/cm ²		5,6			
25	ALTURA DIFERENCIAL @ Q rated (1)	m		-			
26	NPSH DISPONÍVEL @ Q rated (3)	m		=			
27	MÁX. DP a IMPULSÃO FECHADA (4)	kg/cm ²		-			
28	PRESSÃO MÁXIMA ASPIRAÇÃO	kg/cm² g		1,37			
29	PRESSÃO MÁXIMA IMPULSÃO	kg/cm² g	4.05	7,53			
30	DIÂMETRO TUBULAÇÃO A SPIRAÇÃO / IMPULSÃO IMPULSOR / FECHAMENTO (5)	polegadas	1,25	1,25			
	TRACEJADO / ISOLAMENTO / FLUSHING (6)			<u>.</u>			
33		PROJETO MECÂNICO					
34	TEMPERATURA PROJETO MECÂNICO	°C		55			
	PRESSÃO PROJETO MECÂNICO	kg/cm² g		8,65			
36		AS DO ACIONAMENTO					
37	TIPO OPERAÇÃO / RESERVA		Motor ⊟étrico	Motor Elétrico			
38 39	CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO CONSUMO DE VAPOR ESTIMADO A VAZÃO PROJETO	kWh/h Kg/h	0,7	0,7			
40	NOTAS:	Ng/II	-	-			
41	none.						
42							
43							
44							
45							
46 47							
48							
49							
50							
51							
52							
53							
54							
55							
55 56							
55	Para materiais ver la folha de seleção de materiais.						
55 56 57	Para materiais ver la folha de seleção de materiais. Rev. Por						

	PROJETO : Produção d UNIDADE : Bomba B-2	le metil-etil-cet	ona a partir d		EQUIPAM Pág.	IENTO nº	B de	- 2 2	
R e			FOLHA D	DE CÁLCULO	DE BOMBAS	,g.			
1	SEDVICO / CA SO :	Tracaparta da	C 1 2 C E						
	SERVIÇO / CASO : ESQUEMA DE FLUXO :	Trasnporte da	C-1 a C-5						
3									
4 5									
5						\			
6					─)			
7						É-08			
8		J							
10	C-01	T							
11			,						
12				→) \					
13			\ ≥	∠ /					
14			``E	3-2					
15	NATUREZA DO ELLÍDO			FI/ '		1	2		0.5:
16 17	NATUREZA DO FLUÍDO T de BOMBEIO	- °C		EK 25	P. IMPULSÃO	Circ. 1	Q Nor Circ. 2	Circ. 3	Q Des.
18	Viscosidade @T	cSt		61	F. IIVIFULSAU	Circ. 1	kg/cm² g ó k		
19	Densidade @T	kg/m³		1,32	P. destino	-		g/CIII (ΔΕ) -	_
20	Donoidado O i	<u> </u>		.,0_	ΔP distribuidor	-	-	-	-
21	Capacidade		Q Nor	Q des	Altura estática	-	-	-	-
22	Vazão mássica	kg/h	-	-	ΔP linha	-	-	-	-
23	Vazão volumétrica	m³/h	1,69	1,86	ΔPfiltro	-	-	-	-
24	~				ΔΡ	-	-	-	-
25	P. ASPIRAÇÃO	2	Q Nor	Q des	ΔΡ	-	-	-	-
26 27	P. recipiente	kg/cm² g	-	-	ΔΡ	 -	-	-	-
28	H (LT a center line) ΔP linha	kg/cm ² kg/cm ²	-	-	ΔΡ ΔΡ	-	-	-	-
29	ΔP filtro	kg/cm ²	-	-	ΔP placa	-	-	-	-
30	ΔP otros	kg/cm ²	_	-	ΔP Válv. Cont.	-	-	-	-
31	P. ASPIRAÇÃO	kg/cm² g	1,04	1,25	P. IMPULSÃO	5,7	-	-	6,85
32				<u> </u>					
33	NPSH DISPONÍVEL		Q Nor	Q des	P. Diferencial	@ Q des			Q des
34	PRESSÃO ASPIRAÇÃO	kg/cm² a		1,25	P. IMPULSÃO		kg/cn		6,85
35 36	P. vapor @T	kg/cm² a		2,76	P. ASPIRAÇÃO P. Diferencial		kg/cn kg/c		1,25
37	Diferença NPSHA	kg/cm ² m		-	Altura Diferencial	al	kg/c m		5,6 -
38	TW OI IA				Altara birerene	ai .			
39	Consumo estimado ACION	NAMENTO	Q Nor	Q des	P. máx. ASPIR	AÇÃO			
40	HHP	CV	-	-	P. Recipiente (1)	kg/cn	n² g	-
41	Eficiência bomba	%	-	45	H (HHL-Center		kg/c		-
42	BHP	CV	-	-	P máx. A SPIRA		kg/cn	nf g	1,37
43 44	Motor	0/		00	P. máx. IMPUL		kg/cn	o ² a	
45	Eficiência motor Eletricidade	% kWh/h	-	90	P difer. máx. m P difer. máx. tui		kg/cn		-
46	Turbina	174.411/11	<u>-</u>		P máx. IMPULSA		kg/cn		8,65
47	ΔH vapor isoentrópica.	kJ/Kg	-	-		\-/			,
48	Eficiência turbina	%	-	-					
49	Consumo vapor	kg/h	-	-					
50									
51									
52 53									
54									
55									
56									
57									
58		8						1	
	Rev. Por					 			
	Data Aprova	au0				1		<u> </u>	

	PROJETO:	Producão do m	etil-etil-cetona	a partir da 2 hu	tanal		EQUIPAMENTO nº		B-3
	UNIDADE:	Bomba B-3	etii-etii-cetona	a partir de 2-bu	tailoi		Pág. 1	de	2
R								40	
е					BOMBAS				
٧									
1				CARACTE	RÍSTICAS DO EQI	UIPAMENTO			
2	CASO DE PROJE	то					Planta de produ		
3	SERVIÇO						Trar	sporte a C	-2
4		POPERAÇÃO/R		DEOED! / A			_	B-3	
5 6		/IBAS REQUERIDA (centrífuga / volu			toti (a)		1	entrífuga	1
7		O (continuo / des			ialiva)			tínuo/Parale	alo.
8	TONCIONAMILIATO	O (COMMINGO / Ges	Continuo, sene /		CTERÍSTICAS DO	FLUIDO	Com	illuo/ir ai aic	10
9	NATUREZA DO F	LUIDO		•/	0.2.000			Água	
10	COMPONENTES (CORROSIVOS / TO	ÓXICOS				Sim		Não
11	SÓLIDOS EN SUS	SPENSÃO (quanti	idade / DIÂMETRO	Equivalente)			Não		Não
12	PONTO DE FLUID	EZ (POUR POINT)			۰C		-	
13	1	IGNIÇÃO / IGNIÇÃ	0			°C	-		-
14	TEMPERATURA [°C		24	
15	Densidade @TB					kg/m³		994,92	
16	Viscosidade @T					cSt		0,94	
17	PRESSAO DE VA	POR @T BOMBE	IO	CARACTERÍO	TICA C DO BBC :-	kg/cm² a	l	0,03	
18 19	VAZÃO DE DOO	JETO Q (rated) (1	1	CARACTERIS	TICAS DO PROJE	m³/h	ı	1 04	
20		DE PROCESSO (2				m ⁻ /n m ³ /h		1,84 1	
21	VAZÃO NORMA		,			m³/h		1,67	
22		PULSÃO @ Q rate	ed			kg/cm² g		7,6	
23		SPIRAÇÃO @ Q ra				kg/cm² g		1,36	
24		ENCIAL @ Q rated				kg/cm ²		6,23	
25		VCIAL @ Q rated				m		-	
26	NPSH DISPONÍVE	L @ Q rated (3)				m		13,39	
27	MÁX. DP a IMPUL	NÁX. DP a IMPULSÃO FECHADA (4)				kg/cm ²		-	
28	PRESSÃO MÁXIN					kg/cm² g		1,5	
29	PRESSÃO MÁXIN					kg/cm² g	8,36		
30		ILAÇÃO ASPIRAÇ	AO/IMPULSAO			polegadas	1,25		1,25
31	IMPULSOR / FECI		(A)					-	
32	TRACEJADO / IS	OLAMENTO / FLU	SHING (6)	CONDICÕ	TE DE DEO IETO I	MEGÂNICO		-	
33 34	TEMPERATURA D	PROJETO MECÂNI	m	CONDIÇO	ES DE PROJETO I	°C		54	
35	PRESSÃO PROJE					kg/cm² g		9,4	
36	TREES, TO TREES	TO WEST HISS		CARACTE	RÍSTICAS DO ACI			0,4	
37	TIPO OPERAÇÃO	/ RESERVA					Motor Elétrico	Mot	or Elétrico
38		TRICO ESTIMADO	A VAZÃO PROJI	ETO		kWh/h	0,77		0,77
39	CONSUMO DE VA	A POR ESTIMA DO	A VAZÃO PROJE	TO		Kg/h	-		-
40	NOTAS:								
41									
42									
43									
44	-								
45 46	4								
46	1								
48	1								
49	1								
50	1								
51									
52									
53	1								
54	1								
55	4								
56	4								
57	D	toriojo vez la falli :	odo ooloc≅= de ··	otorioio					
58	⊬ara ma	teriais ver la folha	ue seleção de m	ateriais.				1	
	Rev	Por							
<u> </u>	Rev. Data	Por Aprovado							

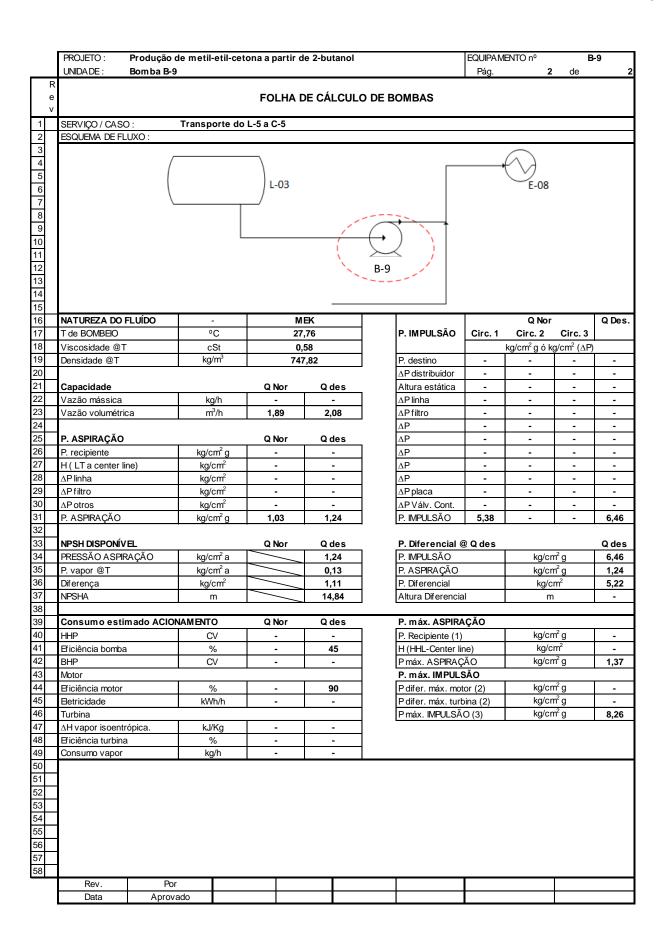

	PROJETO:	Producão do m	etil-etil-cetona	a partir da 2 hu	tanal		EQUIPAMENTO nº	B-4			
	UNIDADE:	Bomba B-4	etii-etii-cetona	a partir de 2-bu	talloi		Pág. 1	de 2			
R								<u> </u>			
е					BOMBAS						
V											
1				CARACTE	RÍSTICAS DO EQI	UIPAMENTO					
2	CASO DE PROJE	то						ıção de metil-etil-cetona			
3	SERVIÇO						Transp	orte da C-2 a C-3			
4	EQUIPAMENTO N			NEOEDI / A			_	B-4			
5 6			AS OPERAÇÃO / F Imétrica alternativ		toti (a)		1 1 Centrífuga				
7			contínuo ; série / į		ialiva)			tínuo/Paralelo			
8	TONGONAMENT	J (CONTINUO / Ges	Continuo , Sene /		CTERÍSTICAS DO	FLUIDO	Com	tilluo/r al aleio			
9	NATUREZA DO F	LUIDO		OATO	0124011071070	7. 20.00	M	IEK e Água			
10	COMPONENTES (CORROSIVOS / TO	ÓXICOS				Sim	Não			
11	SÓLIDOS EN SUS	SPENSÃO (quanti	idade / DIÂMETRO	Equivalente)			Não	Não			
12	PONTO DE FLUID	EZ (POUR POINT)			۰C		-			
13	TEMP. DE AUTO I		0			°C	-	-			
14	TEMPERATURA D					°C		26,45			
15	Densidade @TB					kg/m³		981,95			
16	Viscosidade @T					cSt		0,89			
17	PRESSÃO DE VA	POR @T BOMBE	Ю	04540====	TICA C DO 222 :-	kg/cm² a		2,93			
18	VA 7Ã O DE DDO	IETO (/**** -1) / 1	1	CARACTERIS	TICAS DO PROJE	m³/h		1.04			
19 20	VAZÃO DE PROJ VAZÃO MÍNIMO I					m ⁻ /n m ³ /h		1,94 1,06			
21	VAZÃO NINIIVIO I		,			m ³ /h		1,06			
22	PRESSÃO DE IMP		ed			kg/cm ² g		6,18			
23	PRESSÃO DE AS					kg/cm² g		2,02			
24	PRESSÃO DIFERI	3				kg/cm ²		4,16			
25	ALTURA DIFERE					m		-			
26	NPSH DISPONÍVE	L @ Q rated (3)				m		-			
27	MÁX. DP a IMPUL	SÃO FECHADA (4)			kg/cm ²		-			
28	PRESSÃO MÁXIN					kg/cm² g		2,22			
29	PRESSÃO MÁXIN					kg/cm² g		6,8			
30	DIÂMETRO TUBU		AO/IMPULSAO			polegadas	3 3				
31	IMPULSOR / FECH		(a)					-			
32 33	TRACEJADO / ISO	OLAMENTO / FLU	SHING (6)	CONDICÕ	ES DE PROJETO	MECÂNICO		-			
34	TEMPERATURA F	PRO JETO MECÂNI	m	CONDIÇO	ES DE PROJETO	°C		56,45			
35	PRESSÃO PROJE					kg/cm² g		7,98			
36				CARACTE	RÍSTICAS DO AC			- 1			
37	TIPO OPERAÇÃO	/ RESERVA					Motor Elétrico	Motor Elétrico			
38	CONSUMO ELÉC	TRICO ESTIMADO	A VAZÃO PROJE	TO		kWh/h	0,54	0,54			
39		APOR ESTIMADO	A VAZÃO PROJE	TO		Kg/h	-	-			
40	NOTAS:										
41											
42	1										
43 44	1										
45	1										
46	1										
47	1										
48	1										
49	1										
50	1										
51]										
52	1										
53											
54	4										
55	1										
56 57	-										
57 58	Dara ma	teriais ver la folle	a de seleção de m	ateriais							
50	Rev.	Por	, ao soleyau de III	atoliais.							
	Data	Aprovado									

	PROJETO : Produção UNIDADE : Bomba B-	de metil-etil-cet	ona a partir d	e 2-butanol			EQUIPAM Pág.	ENTO nº		-4 2
R e			FOLHA [E CÁLCULO	DE BOMBAS	5	· <u>J</u>			
1	SERVIÇO / CASO :	Transporte da	C-3 a C-3							
2	ESQUEMA DE FLUXO :	Transporte da	C-2 a C-3							
3	LOGOLIWY DE 1 LOXO .									
4										
5		,								
6			\ /							
7										
8			\wedge							
8										
10		ľ								
11										
12			C-02		C-03					
13					C-03					
14				B-4						
15	NATUREZA DO EL VÍDA	1						6 **		0.5
16	NATUREZA DO FLUÍDO	- °C		Água	D 1845	ا ممّا	Cinc 4	Q Nor	Circ 2	Q Des.
17 18	T de BOMBEIO			,45 00	P. IMPU	LSAU	Circ. 1	Circ. 2	Circ. 3	
19	Viscosidade @T	cSt kg/m³		89	D doction			kg/cm² g ó kợ	g/cm⁻(∆P)	I
20	Densidade @T	Kg/III	98	,95	P. destin ΔP distri		-	-	-	-
21	Capacidade		Q Nor	Q des	Altura es		-	-	-	-
22	Vazão mássica	kg/h	-	- Ques	ΔP linha					
23	Vazão volumétrica	m³/h	1,77	1,94	ΔPfiltro	1	_	-	-	_
24	Vazao Volamonioa	,	.,,,,	1,0-	ΔΡ		-	-	_	_
25	P. ASPIRAÇÃO		Q Nor	Q des	ΔP		-	-	-	-
26	P. recipiente	kg/cm² g	-	-	ΔΡ		-	-	-	-
27	H (LT a center line)	kg/cm ²	-	-	ΔΡ		-	-	-	-
28	ΔP linha	kg/cm ²	-	-	ΔΡ	İ	-	-	-	-
29	ΔP filtro	kg/cm ²	-	-	ΔP placa		-	-	-	-
30	ΔPotros	kg/cm ²	-	-	ΔPVálv	. Cont.	-	-	-	-
31	P. ASPIRAÇÃO	kg/cm² g	1,68	2,02	P. IMPUL	SÃO.	5,15	-	-	6,18
32										
33	NPSH DISPONÍVEL		Q Nor	Q des		encial @	Q des			Q des
34	PRESSÃO ASPIRAÇÃO	kg/cm² a		2,02	P. IMPUL			kg/cm		6,18
35	P. vapor @T	kg/cm² a		2,93	P. ASPIR			kg/cm		2,02
36 37	Diferença NPSHA	kg/cm²		-	P. Difere	encial iferencial		kg/cı		4,16 -
38	INFORM	m		-	Allura D	ii ei ei ciai		m		-
39	Consumo estimado ACIO	NAMENTO	Q Nor	Q des	P. máx.	ASPIRA	CÃO			
40	HHP	CV	-	-	P. Recip		,	kg/cm	r² q	_
41	Eficiência bomba	%	-	45		Center line	e)	kg/cı		-
42	BHP	CV	-	-		ASPIRAÇÃ		kg/cm		2,22
43	Motor				P. máx.	IM PULS	ÃO			
44	Eficiência motor	%	-	90	P difer. r	máx. moto	or (2)	kg/cm		-
45	Eletricidade	kWh/h	-	-		máx. turbi	_ , ,	kg/cm		-
46	Turbina			T	P máx. II	MPULSÃC	(3)	kg/cm	r²g	7,98
47	ΔH vapor isoentrópica.	kJ/Kg	-	-						
48	Eficiência turbina	%	-	-						
49	Consumo vapor	kg/h	-	-						
50 51										
52										
52 53										
54										
55										
56										
57										
58										
	Rev. Po	r								
	Data Aprov	/ado								


	i 							
	PROJETO:	-	etil-etil-cetona	a partir de 2-bu	tanol		EQUIPAMENTO nº	B-5
	UNIDADE:	Bomba B-5					Pág. 1	de 2
R								
e v					BOMBAS			
— —				CARACTE	RÍSTICAS DO EQI	праменто.		
1	CASO DE PROJE	TO.		CARACTE	RISTICAS DO EQI	UIPAMENTO	Dianto do produ	ıção de metil-etil-cetona
3	SERVIÇO	:10					•	rte da C-3 para C-4
4		POPERAÇÃO/R	EQED\/A				Transpor	B-5
5			AS OPERAÇÃO / F	RESERVA			1	1
6			ımétrica alternativ		tativa)			Centrífuga
7			contínuo ; série /		.ava)			tínuo/Paralelo
8		,	, , , , , , , , , , , , , , , , , , , ,		CTERÍSTICAS DO	FLUIDO		
9	NATUREZA DO F	LUIDO					M EK e	Tricloroetano
10	COMPONENTES (CORROSIVOS / To	ÓXICOS				Não	Sim
11	SÓLIDOS EN SUS	SPENSÃO (quant	idade / DIÂMETRO	Equivalente)			Não	Não
12	PONTO DE FLUID	EZ (POUR POINT)			°C		-
13		IGNIÇÃO / IGNIÇÃ	0			°C	-	-
14	TEMPERATURA [°C		27,08
15	Densidade @TB			kg/m³		1199,84		
16	Viscosidade @T		10	cSt 2		0,6		
17	PRESSAO DE VA	APOR @T BOMBE	IU	04540===	TICA C DO 222 :-	kg/cm² a		0,07
18	VAZÃO DE PROJ	IETO 0 /+1\ /4	1)	CARACTERIS	TICAS DO PROJE			0.20
19 20		DE PROCESSO (2	,			m³/h m³/h		0,29 0,16
21	VAZÃO NORMA	,	.)			m³/h		0,16
22		PULSÃO @ Q rate	2d			kg/cm² g		7,39
23		SPIRAÇÃO @ Q ra				kg/cm² g		1,56
24		ENCIAL @ Q rate				kg/cm ²		5,83
25		NCIAL @ Q rated				m		-
26	NPSH DISPONÍVE		()			m		12,42
27	MÁX. DP a IMPUL	SÃO FECHADA (4)			kg/cm ²		-
28	PRESSÃO MÁXIN					kg/cm² g		1,72
29	PRESSÃO MÁXIN	MA IMPULSÃO				kg/cm² g		8,13
30	DIÂMETRO TUBU	ILAÇÃO ASPIRAÇ	ÃO/IMPULSÃO			polegadas	0,75	0,75
31	IMPULSOR / FECH							-
32	TRACEJADO / IS	OLAMENTO / FLU	ISHING (6)	~				-
33				CONDIÇO	ES DE PROJETO		T	
34		PROJETO MECÂNI	ico			°C		57,08
35 36	PRESSÃO PROJE	=10 MECANICO		CARACTE	RÍSTICAS DO AC	kg/cm² g		9,19
37	TIPO OPERAÇÃO) / DESED\/ \(\)		CARACTE	RISTICAS DO ACI	IONAMENTO	Motor Elétrico	Motor Elétrico
38			A VAZÃO PROJI	=TO		kWh/h	0,11	0,11
39			A VAZÃO PROJE			Kg/h	-	-
40	NOTAS:	220		-			1	
41	1							
42	1							
43]							
44]							
45]							
46	1							
47	4							
48	4							
49	4							
50 51	-							
52	1							
53	1							
54	1							
55	1							
56	1							
57	1							
58	Para ma	teriais ver la folha	a de seleção de m	ateriais.				<u> </u>
	Rev.	Por						
	Data	Aprovado						
					•			

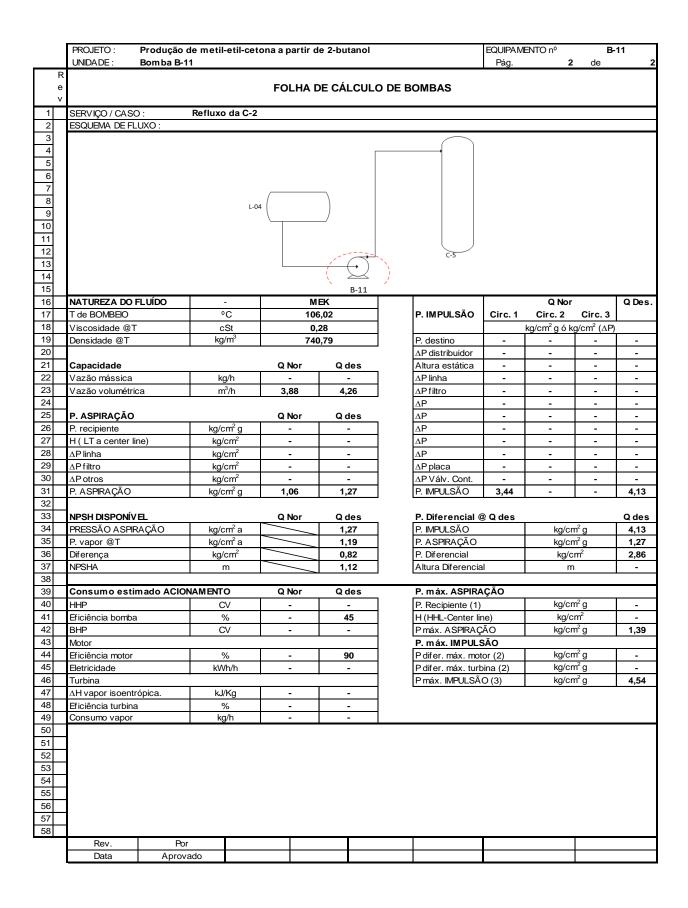
	PROJETO : Produção d UNIDADE : Bomba B-5	de metil-etil-cet	ona a partir d	e 2-butanol		EQUIPAM Pág.	IENTO nº 2	de	⊦5 2
R e v			FOLHA [E CÁLCUL	D DE BOMBAS				
1	SERVIÇO / CASO :	Transporte da	C-3 para C-4						
	ESQUEMA DE FLUXO :								
3									
4 5									
5									
6									
7		X							
8									
10					E-05				
11									
12		C-03	1						
13		C-03-	(\supset					
14			1	B-5					
15									
16	NATUREZA DO FLUÍDO	=	MEK e Tric	cloroetano			Q Nor		Q Des.
17	T de BOMBEIO	°C	27	,08	P. IMPULSÃO	Circ. 1	Circ. 2	Circ. 3	
18	Viscosidade @T	cSt	0	,6			kg/cm² g ó k	g/cm² (ΔP)	
19	Densidade @T	kg/m³	119	9,84	P. destino	-	-	-	-
20					∆P distribuidor	-	-	-	-
21	Capacidade	1	Q Nor	Q des	Altura estática	-	-	-	-
22	Vazão mássica	kg/h	-	-	ΔP linha	-	-	-	-
23 24	Vazão volumétrica	m³/h	0,26	0,29	ΔPfiltro	-	-	-	-
25	D ASSIDAÇÃO		ONer	Odaa	ΔΡ	 -	-	-	-
26	P. ASPIRAÇÃO P. recipiente	kg/cm² g	Q Nor -	Q des	ΔΡ	-	-	-	-
27	H (LT a center line)	kg/cm²	-	-	ΔΡ	 -	-		
28	ΔP linha	kg/cm ²	-	_	ΔΡ			_	
29	ΔP filtro	kg/cm ²	_	_	ΔPplaca	-	-	-	-
30	ΔP otros	kg/cm ²	-	-	ΔP Válv. Cont.	-	-	_	-
31	P. ASPIRAÇÃO	kg/cm² g	1,3	1,56	P. IMPULSÃO	6,16	-	-	7,39
32	•		•	•					
33	NPSH DISPONÍVEL		Q Nor	Q des	P. Diferencial	@ Q des			Q des
34	PRESSÃO A SPIRAÇÃO	kg/cm² a		1,56	P. IMPULSÃO		kg/cn		7,39
35	P. vapor @T	kg/cm² a		0,07	P. ASPIRAÇÃO		kg/cn		1,56
36	Diferença	kg/cm ²		5,76	P. Diferencial		kg/c		5,83
37	NPSHA	m		12,42	Altura Diferenci	al	m		-
38 39	Consumo estimado ACION	JAM ENTO	Q Nor	Q des	P. máx. ASPIR	A CÃO			——
40	HHP	CV	- Q (NO)	- ucs	P. Recipiente (1		kg/cn	n ² n	-
41	Eficiência bomba	%		45	H (HHL-Center		kg/cii		-
42	BHP	CV	-	-	P máx. A SPIRA		kg/cn		1,72
43	Motor			ı	P. máx. IMPUL		, , , , ,		, ,
44	Eficiência motor	%	-	90	P difer. máx. mo		kg/cn	n² g	-
45	Eletricidade	kWh/h	-	-	P difer. máx. tur		kg/cn		-
46	Turbina				P máx. IMPULSÁ	(S)	kg/cn	n² g	9,19
47	ΔH vapor isoentrópica.	kJ/Kg	-	-					7
48	Eficiência turbina	%	-	-					
49	Consumo vapor	kg/h	-	-					
50 51									
52									
53									
54									
55									
56									
57									
58									
	Rev. Por								
	Data Aprova	ado							

	T								
	PROJETO:	-	etil-etil-cetona	a partir de 2-bu	tanol		EQUIPAMENTO nº	B-6	
	UNIDADE:	Bomba B-6					Pág. 1	de 2	
R									
e v					BOMBAS				
				CARACTE	RÍSTICAS DO EQ	праменто.			
1	CASO DE PROJE	TO.		CARACTE	RISTICAS DO EQ	UIPAMENTO	Dianto do produ	isão do motil otil cotono	
3	SERVIÇO	:10						ução de metil-etil-cetona orte da L-4 a C-3	
4		POPERAÇÃO/R	EQED\/A				Transp	B-6	
5			AS OPERAÇÃO / F	RESER\/A			1	1	
6			ımétrica alternativ		tativa)			Centrífuga	
7			contínuo ; série /		.ca.ru)			tínuo/Paralelo	
8		,	, , , , , , , , , , , , , , , , , , , ,		CTERÍSTICAS DO	FLUIDO			
9	NATUREZA DO F	LUIDO					Tr	icloroetano	
10	COMPONENTES (CORROSIVOS / To	ÓXICOS				Não	Sim	
11	SÓLIDOS EN SUS	SPENSÃO (quant	idade / DIÂMETRO	Equivalente)			Não	Não	
12	PONTO DE FLUID	EZ (POUR POINT)			°C		-	
13		IGNIÇÃO / IGNIÇÃ	0			°C			
14	TEMPERATURA [°C		29,59	
15	Densidade @TB			kg/m³		1399,48			
16	Viscosidade @T		10	cSt 2		0,68			
17	PRESSAO DE VA	APOR @T BOMBE	IU	04546===	TICA C DO 222 :-	kg/cm² a		0,04	
18	VAZÃO DE PROJ	IETO 0 /+1\ /4	1)	CARACTERIS	TICAS DO PROJE		l .	0.2	
19 20		DE PROCESSO (2	,			m³/h m³/h		0,2 0,11	
21	VAZÃO MINIMO	,	.)			m³/h		0,11	
22		PULSÃO @ Q rate	2d			kg/cm² g		6,52	
23		SPIRAÇÃO @ Q ra				kg/cm² g		1,77	
24		ENCIAL @ Q rate				kg/cm ²		4,75	
25		NCIAL @ Q rated				m		-	
26	NPSH DISPONÍVE		()			m		12,32	
27	MÁX. DP a IMPUL	SÃO FECHADA (4)			kg/cm ²		-	
28	PRESSÃO MÁXIN					kg/cm² g		1,95	
29	PRESSÃO MÁXIN	MA IMPULSÃO				kg/cm² g		7,17	
30	DIÂMETRO TUBU	ILAÇÃO ASPIRAÇ	ÃO/IMPULSÃO			polegadas	0,75	0,75	
31	IMPULSOR / FECH							-	
32	TRACEJADO / IS	OLAMENTO / FLU	ISHING (6)	~				-	
33				CONDIÇO	ES DE PROJETO		ſ		
34		PROJETO MECÂNI	ICO			°C		59,59	
35	PRESSÃO PROJE	=10 MECANICO		OADAOTE	DÍOTIO A O DO A O	kg/cm² g		8,32	
36 37	TIPO OPERAÇÃO	\		CARACTE	RÍSTICAS DO AC	IONAMENTO	Motor Elétrico	Motor Elétrico	
38	,		A VAZÃO PROJI	ETO		kWh/h			
39			A VAZÃO PROJE			Kyvn/n Kg/h	0,06	0,06	
40	NOTAS:	OK LOTIVADO	A VAZAOTROJE			TNg/11	ı <u>-</u>		
41	1								
42	1								
43	1								
44]								
45	j								
46	ĺ								
47									
48	Í								
49	ĺ								
50									
51	ĺ								
52 53	ĺ								
54	1								
55	1								
56	1								
57	ĺ								
58	Para ma	teriais ver la folha	a de seleção de m	ateriais.					
	Rev.	Por	<u>-</u>						
	Data	Aprovado			1				
	Data	710.01440							


	PROJETO:	Producão do m	etil-etil-cetona	a partir da 2 hu	tanal		EQUIPAMENTO nº	B-7
	UNIDADE:	Bomba B-7	etii-etii-cetona	a partir de 2-bu	tanoi		Pág. 1	de 2
R		Bolliba B-7					rag. I	uc Z
e					BOMBAS			
V					2011.2710			
1				CARACTE	RÍSTICAS DO EQI	UIPAMENTO		
2	CASO DE PROJE	TO					Planta de produ	ıção de metil-etil-cetona
3	SERVIÇO						Re	fluxo da C-5
4	EQUIPAMENTO N	POPERAÇÃO/R	ESERVA					B-7
5	NÚMERO DE BON	MBAS REQUERIDA	S OPERAÇÃO / F	RESERVA			1	1
6		(centrífuga / volu			tativa)		C	Centrífuga
7	FUNCIONA MENTO	O (continuo / des	contínuo ; série / ¡	paralelo)			Cont	tínuo/Paralelo
8				CARA	CTERÍSTICAS DO	FLUIDO		
9	NATUREZA DO F							MEK
10		CORROSIVOS / TO					Não	
11		SPENSÃO (quanti		Equivalente)			Não	Não
12		DEZ (POUR POINT				°C		-
13		IGNIÇÃO / IGNIÇÃ	0			°C	-	-
14	TEMPERATURA [°C		84,92
15	Densidade @TB					kg/m³		0,31
16	Viscosidade @T					cSt 2		733,63
17	PRESSÃO DE VA	POR @T BOMBE	IO .	04040===	TIO 4 0 DC DDC :-	kg/cm² a		1,35
18	\/A 7Ã C DE DOC	IETO O (see as 4)	`	CARACTERIS	TICAS DO PROJE			0.00
19		JETO Q (rated) (1				m³/h		0,28
20	VAZÃO MINIMO VAZÃO NORMA	DE PROCESSO (2)			m³/h		0,15
21 22		L PULSÃO @ Q rate	nd.			m³/h		0,25 3,8
23		SPIRAÇÃO @ Q raid				kg/cm² g		1,5
24		ENCIAL @ Q rated				kg/cm ² g		2,3
25		NCIAL @ Q rated				kg/cm ² m		-
26	NPSH DISPONÍVE		(1)			m		2,22
27		SÃO FECHADA (4)			kg/cm ²		-
28	PRESSÃO MÁXIN		4)			kg/cm² g		1,66
29	PRESSÃO MÁXIN					kg/cm² g		4,18
30	DIÂMETRO TUBU		ÃO / IMPULSÃO			polegadas	0,75	0,75
31	IMPULSOR / FECI		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			pologadao	3,10	
32	TRACEJADO / IS		SHING (6)					-
33				CONDICÕ	ES DE PROJETO	MECÂNICO		
34	TEMPERATURA F	PROJETO MECÂNI	CO			°C		84,92
35	PRESSÃO PROJE	ETO MECÂNICO				kg/cm² g		5,6
36				CARACTE	RÍSTICAS DO AC	IONAM ENTO		
37	TIPO OPERAÇÃO	/RESERVA					Motor Elétrico	Motor Elétrico
38	CONSUMO ELÉC	TRICO ESTIMADO	A VAZÃO PROJE	ETO		kWh/h	0,05	0,05
39	CONSUMO DE VA	A POR ESTIMA DO	A VAZÃO PROJE	TO .		Kg/h	-	-
40	NOTAS:							
41								
42	1							
43	1							
44	1							
45	1							
46	4							
47	4							
48	4							
49	-1							
50								
51	1							
52 53	1							
54	1							
55	1							
56	1							
57	1							
58	Para ma	teriais ver la folha	ı de selecão de m	ateriais.				
	Rev.	Por						
	Data	Aprovado			i			

ĺ	PROJETO Production of the Control of		FOLUDA MENTO . A		
	PROJETO: Produção de metil-etil-cetona a partir de 2-butano UNIDADE: Bomba B-8	!	EQUIPAMENTO nº Pág. 1	B-8 de 2	
R			rag. I	uc Z	
е		BOMBAS			
٧					
1	CARACTERÍSTI	CAS DO EQUIPAMENTO			
2	CASO DE PROJETO			ıção de metil-etil-cetona	
3	SERVIÇO		Transpo	rte do C-4 ao L-4	
4	EQUIPAMENTO № OPERAÇÃO / RESERVA			B-8	
5	NÚMERO DE BOMBAS REQUERIDAS OPERAÇÃO / RESERVA	1	1	1	
6 7	TIPO DE BOMBA (centrifuga / volumétrica alternativa / volumétrica rotativa FUNCIONAMENTO (continuo / descontínuo; série / paralelo))		entrífuga ínuo/Paralelo	
8		ÍSTICAS DO FLUIDO	Com	illuo/Falaleio	
9	NATUREZA DO FLUIDO	10110/10 00 1 20100	Tri	icloroetano	
10	COMPONENTES CORROSIVOS / TÓXICOS		Não	Sim	
11	SÓLIDOS EN SUSPENSÃO (quantidade / DIÂMETRO Equivalente)		Não	Não	
12	PONTO DE FLUIDEZ (POUR POINT)	°C			
13	TEMP. DE AUTO IGNIÇÃO / IGNIÇÃO	°C	-	-	
14	TEMPERATURA DE BOMBEIO	°C	· · · · · · · · · · · · · · · · · · ·	142	
15	Densidade @T BOMBEIO	kg/m ³		1225,66	
16	Viscosidade @T BOMBEIO	cSt		0,23	
17	PRESSÃO DE VAPOR @T BOMBEIO	kg/cm² a		2,51	
18		S DO PROJETO DA BOMBA		0.24	
19 20	VAZÃO DE PROJETO Q (rated) (1) VAZÃO MÍNIMO DE PROCESSO (2)	m³/h m³/h		0,21 0,11	
21	VAZÃO MINIMO DE PROCESSO (2) VAZÃO NORMAL	m³/h		0,11	
22	PRESSÃO DE IMPULSÃO @ Q rated	kg/cm ² g		5,91	
23	PRESSÃO DE ASPIRAÇÃO @ Q rated	kg/cm² g		1,91	
24	PRESSÃO DIFERENCIAL @ Q rated	kg/cm ²		4	
25	ALTURA DIFERENCIAL @ Q rated (1)	m		-	
26	NPSH DISPONÍVEL @ Q rated (3)	m			
27	MÁX. DP a IMPULSÃO FECHADA (4)	kg/cm ²		-	
28	PRESSÃO MÁXIMA ASPIRAÇÃO	kg/cm ² g		2,1	
29	PRESSÃO MÁXIMA IMPULSÃO	kg/cm² g		6,5	
30	DIÂMETRO TUBULAÇÃO ASPIRAÇÃO / IMPULSÃO	polegadas	0,75 0,75		
31	IMPULSOR / FECHAMENTO (5)			-	
-				-	
32	TRACEJADO / ISOLAMENTO / FLUSHING (6)				
32 33	CONDIÇÕES D	E PROJETO MECÂNICO		142	
32 33 34	CONDIÇÕES D TEMPERATURA PROJETO MECÂNICO	°C		142 7.71	
32 33 34 35	CONDIÇÕES D TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO	°C kg/cm² g		7,71	
32 33 34	CONDIÇÕES D TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO	°C	Motor ⊟étrico		
32 33 34 35 36	CONDIÇÕES D TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO CARACTERÍSTI	°C kg/cm² g	Motor ⊟étrico 0,06	7,71	
32 33 34 35 36 37	CONDIÇÕES D TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO CARACTERÍSTI TIPO OPERAÇÃO / RESERVA	°C kg/cm² g CAS DO ACIONAMENTO		7,71 Motor Elétrico	
32 33 34 35 36 37 38 39 40	CONDIÇÕES D TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO CARACTERÍSTI TIPO OPERAÇÃO / RESERVA CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO	°C kg/cm² g CAS DO ACIONAMENTO kWh/h	0,06	7,71 Motor ⊟étrico 0,06	
32 33 34 35 36 37 38 39 40 41	CONDIÇÕES D TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO CARACTERÍSTI TIPO OPERAÇÃO / RESERVA CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO CONSUMO DE VAPOR ESTIMADO A VAZÃO PROJETO	°C kg/cm² g CAS DO ACIONAMENTO kWh/h	0,06	7,71 Motor ⊟étrico 0,06	
32 33 34 35 36 37 38 39 40 41 42	CONDIÇÕES D TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO CARACTERÍSTI TIPO OPERAÇÃO / RESERVA CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO CONSUMO DE VAPOR ESTIMADO A VAZÃO PROJETO	°C kg/cm² g CAS DO ACIONAMENTO kWh/h	0,06	7,71 Motor ⊟étrico 0,06	
32 33 34 35 36 37 38 39 40 41 42 43	CONDIÇÕES D TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO CARACTERÍSTI TIPO OPERAÇÃO / RESERVA CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO CONSUMO DE VAPOR ESTIMADO A VAZÃO PROJETO	°C kg/cm² g CAS DO ACIONAMENTO kWh/h	0,06	7,71 Motor ⊟étrico 0,06	
32 33 34 35 36 37 38 39 40 41 42 43 44	CONDIÇÕES D TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO CARACTERÍSTI TIPO OPERAÇÃO / RESERVA CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO CONSUMO DE VAPOR ESTIMADO A VAZÃO PROJETO	°C kg/cm² g CAS DO ACIONAMENTO kWh/h	0,06	7,71 Motor ⊟étrico 0,06	
32 33 34 35 36 37 38 39 40 41 42 43 44 45	CONDIÇÕES D TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO CARACTERÍSTI TIPO OPERAÇÃO / RESERVA CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO CONSUMO DE VAPOR ESTIMADO A VAZÃO PROJETO	°C kg/cm² g CAS DO ACIONAMENTO kWh/h	0,06	7,71 Motor ⊟étrico 0,06	
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	CONDIÇÕES D TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO CARACTERÍSTI TIPO OPERAÇÃO / RESERVA CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO CONSUMO DE VAPOR ESTIMADO A VAZÃO PROJETO	°C kg/cm² g CAS DO ACIONAMENTO kWh/h	0,06	7,71 Motor ⊟étrico 0,06	
32 33 34 35 36 37 38 39 40 41 42 43 44 45	CONDIÇÕES D TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO CARACTERÍSTI TIPO OPERAÇÃO / RESERVA CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO CONSUMO DE VAPOR ESTIMADO A VAZÃO PROJETO	°C kg/cm² g CAS DO ACIONAMENTO kWh/h	0,06	7,71 Motor ⊟étrico 0,06	
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	CONDIÇÕES D TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO CARACTERÍSTI TIPO OPERAÇÃO / RESERVA CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO CONSUMO DE VAPOR ESTIMADO A VAZÃO PROJETO	°C kg/cm² g CAS DO ACIONAMENTO kWh/h	0,06	7,71 Motor ⊟étrico 0,06	
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	CONDIÇÕES D TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO CARACTERÍSTI TIPO OPERAÇÃO / RESERVA CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO CONSUMO DE VAPOR ESTIMADO A VAZÃO PROJETO	°C kg/cm² g CAS DO ACIONAMENTO kWh/h	0,06	7,71 Motor ⊟étrico 0,06	
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	CONDIÇÕES D TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO CARACTERÍSTI TIPO OPERAÇÃO / RESERVA CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO CONSUMO DE VAPOR ESTIMADO A VAZÃO PROJETO	°C kg/cm² g CAS DO ACIONAMENTO kWh/h	0,06	7,71 Motor ⊟étrico 0,06	
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	CONDIÇÕES D TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO CARACTERÍSTI TIPO OPERAÇÃO / RESERVA CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO CONSUMO DE VAPOR ESTIMADO A VAZÃO PROJETO	°C kg/cm² g CAS DO ACIONAMENTO kWh/h	0,06	7,71 Motor ⊟étrico 0,06	
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	CONDIÇÕES D TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO CARACTERÍSTI TIPO OPERAÇÃO / RESERVA CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO CONSUMO DE VAPOR ESTIMADO A VAZÃO PROJETO	°C kg/cm² g CAS DO ACIONAMENTO kWh/h	0,06	7,71 Motor ⊟étrico 0,06	
32	CONDIÇÕES D TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO CARACTERÍSTI TIPO OPERAÇÃO / RESERVA CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO CONSUMO DE VAPOR ESTIMADO A VAZÃO PROJETO	°C kg/cm² g CAS DO ACIONAMENTO kWh/h	0,06	7,71 Motor ⊟étrico 0,06	
32	CONDIÇÕES D TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO CARACTERÍSTI TIPO OPERAÇÃO / RESERVA CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO CONSUMO DE VAPOR ESTIMADO A VAZÃO PROJETO	°C kg/cm² g CAS DO ACIONAMENTO kWh/h	0,06	7,71 Motor ⊟étrico 0,06	
32	CONDIÇÕES D TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO CARACTERÍSTI TIPO OPERAÇÃO / RESERVA CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO CONSUMO DE VAPOR ESTIMADO A VAZÃO PROJETO	°C kg/cm² g CAS DO ACIONAMENTO kWh/h	0,06	7,71 Motor ⊟étrico 0,06	
32 33 34 35 36 37 38 39 40 41 42 43 44 45 50 55 55 55 56 57	TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO CARACTERÍSTI TIPO OPERAÇÃO / RESERVA CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO CONSUMO DE VAPOR ESTIMADO A VAZÃO PROJETO NOTAS:	°C kg/cm² g CAS DO ACIONAMENTO kWh/h	0,06	7,71 Motor ⊟étrico 0,06	
32 33 34 35 36 37 38 39 40 41 42 43 44 45 50 51 55 55 56 56	TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO CARACTERÍSTI TIPO OPERAÇÃO / RESERVA CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO CONSUMO DE VAPOR ESTIMADO A VAZÃO PROJETO NOTAS: Para materiais ver la folha de seleção de materiais.	°C kg/cm² g CAS DO ACIONAMENTO kWh/h	0,06	7,71 Motor ⊟étrico 0,06	
32 33 34 35 36 37 38 39 40 41 42 43 44 45 50 51 55 55 55 55 55 5	TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO CARACTERÍSTI TIPO OPERAÇÃO / RESERVA CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO CONSUMO DE VAPOR ESTIMADO A VAZÃO PROJETO NOTAS:	°C kg/cm² g CAS DO ACIONAMENTO kWh/h	0,06	7,71 Motor ⊟étrico 0,06	

	PROJETO : Produção e UNIDADE : Bomba B-8	de metil-etil-cet	ona a partir d	le 2-butanol		EQUIPAM Pág.	IENTO nº		⊦8 2
R e v			FOLHA [DE CÁLCULO	DE BOMBAS				
1	SERVIÇO / CASO :	Transporte do	C-4 ao L-4						
2	ESQUEMA DE FLUXO :								
3									
4									
5									
5 6									
7									
7 8									
9					F-05				
10									
11		C-04)						
12		0.04	,						
13				\rightarrow					
14			\						
15				B-8					
16	NATUREZA DO FLUÍDO	-	Triclor	oetano			Q Nor		Q Des.
17	T de BOMBEIO	°C		42	P. IMPULSÃO	Circ. 1	Circ. 2	Circ. 3	
18	Viscosidade @T	cSt		23			kg/cm² g ó kg		
19	Densidade @T	kg/m³		5,66	P. destino	-	-	_	-
20				-,	ΔP distribuidor	-	_	-	-
21	Capacidade		Q Nor	Q des	Altura estática	-	_	-	-
22	Vazão mássica	kg/h	l -	-	ΔP linha	-	-	-	-
23	Vazão volumétrica	m³/h	0,19	0,21	ΔPfiltro	-	_	-	-
24			, .	,	ΔΡ	-	-	-	-
25	P. ASPIRAÇÃO		Q Nor	Q des	ΔΡ	-	_	-	-
26	P. recipiente	kg/cm² g	-	-	ΔΡ	_	-	_	-
27	H (LT a center line)	kg/cm ²	-	-	ΔΡ	† -	_	-	-
28	ΔP linha	kg/cm ²	_	_	ΔΡ	† -	_	_	-
29	ΔP filtro	kg/cm ²	-	-	ΔP placa	-	-	-	-
30	ΔPotros	kg/cm ²	-	-	ΔP Válv. Cont.	-	_	-	-
31	P. ASPIRAÇÃO	kg/cm² g	1,59	1,91	P. IMPULSÃO	4,93	_	-	5,91
32	3	3 3	,	, , ,		,			,.
33	NPSH DISPONÍVEL		Q Nor	Q des	P. Diferencial	@ Q des			Q des
34	PRESSÃO A SPIRAÇÃO	kg/cm² a		1,91	P. IMPULSÃO		kg/cn	n² q	5,91
35	P. vapor @T	kg/cm² a		2,51	P. ASPIRAÇÃO		kg/cn		1,91
36	Diferença	kg/cm ²		-	P. Diferencial		kg/c		4
37	NPSHA	m		-	Altura Diferenc	ial	m		-
38		·	<u> </u>						
39	Consumo estimado ACIO	NAMENTO	Q Nor	Q des	P. máx. ASPIR	AÇÃO			
40	HHP	CV	_	_	P. Recipiente (1		kg/cn	n² g	-
41	Eficiência bomba	%	-	45	H (HHL-Center		kg/c		-
42	BHP	CV	-	-	P máx. ASPIRA	ÇÃO	kg/cn	n² g	2,1
43	Motor				P. máx. IMPUL	.SÃO			
44	Eficiência motor	%	-	90	P difer. máx. m	otor (2)	kg/cn		-
45	Eletricidade	kWh/h	-	-	P difer. máx. tu	rbina (2)	kg/cn		-
46	Turbina				P máx. IMPULS	(S) OÃ	kg/cn	n² g	7,71
47	ΔH vapor isoentrópica.	kJ/Kg	-	-			-		
48	Eficiência turbina	%	-	-					
49	Consumo vapor	kg/h	-	-					
50						·			
51									
52									
53									
54									
55									
56									
57									
58									
	Rev. Por								
	Data Aprov	ado							
	-								


	PROJETO:	-	etil-etil-cetona	a partir de 2-bu	tanol		EQUIPAMENTO nº	B-9	
	UNIDADE:	Bomba B-9					Pág. 1	de 2	
R									
e					BOMBAS				
۷ 4				CARACTE	DÍCTICA C DO FOI	IIDAMENTO.			
2	CASO DE PROJE	TO		CARACTE	RÍSTICAS DO EQU	JIPAMENIO	Dianto do produ	ıção de metil-etil-cetona	
3	SERVIÇO	10					•	orte do L-5 a C-5	
4	EQUIPAMENTO N		ECED\/A				rransp	B-9	
5			AS OPERAÇÃO / R	PESER\/ A			1	1	
6			umétrica alternativa		tativa)			l <u>'</u> Centrífuga	
7			contínuo ; série / p		idiva)			tínuo/Paralelo	
8	TOTOGOTO MILLETT	o (00.11140 / 400	00.11.11.00 ; 00.110 /]		CTERÍSTICAS DO	FLUIDO			
9	NATUREZA DO F	LUIDO		_				MEK	
10	COMPONENTES (CORROSIVOS / T	ÓXICOS				Não	Não	
11	1		idade / DIÂMETRO	Equivalente)			Não	Não	
12	PONTO DE FLUID	EZ (POUR POINT)			°C		-	
13	TEMP. DE AUTO I	GNIÇÃO / IGNIÇÃ	0			°C	-	-	
14	TEMPERATURA D	DE BOMBEIO				°C		27,76	
15	Densidade @TB	OMBEIO				kg/m³		747,82	
16	Viscosidade @T	BOMBEIO				cSt		0,58	
17	PRESSÃO DE VA	POR @T BOMBE	10			kg/cm² a		0,13	
18				CARACTERÍS	TICAS DO PROJE				
19	VAZÃO DE PRO					m³/h		2,08	
20	1	DE PROCESSO (2	(1)			m³/h		1,14	
21	VAZÃO NORMAI					m³/h		1,89	
22	PRESSÃO DE IMP					kg/cm² g		6,46	
23		PIRAÇÃO @ Q ra				kg/cm² g		1,24	
24	PRESSÃO DIFERI					kg/cm ²		5,22	
25	ALTURA DIFEREN		(1)			m		- 4404	
26	NPSH DISPONÍVE					m		14,84	
27	MÁX. DP a IMPUL		4)			kg/cm²		4.07	
28 29	PRESSÃO MÁXIN PRESSÃO MÁXIN					kg/cm ² g kg/cm ² g		1,37 7,1	
30	DIÂMETRO TUBU					polegadas	0,5	0,5	
31	IMPULSOR / FECH		AO/ IIVIFULSAO			polegadas	0,5	0,5	
32	TRACEJADO / IS	. ,	ISHING (6)				-		
33	ПОСОДИДОТ Ю	OLAWLINIO / I EC	01 111 40 (0)	CONDICÕ	ES DE PROJETO I	MECÂNICO			
34	TEMPERATURA F	PROJETO MECÂN	ICO	00.12.90		°C		57,76	
35	PRESSÃO PROJE					kg/cm² g		8,26	
36				CARACTE	RÍSTICAS DO ACI		L	,	
37	TIPO OPERAÇÃO	/ RESERVA					Motor Elétrico	Motor ⊟étrico	
38			A VAZÃO PROJE	ETO .		kWh/h	0,73	0,73	
39	CONSUMO DE VA	A POR ESTIMA DO	A VAZÃO PROJE	TO		Kg/h	-	-	
40	NOTAS:								
41]								
42									
43	1								
44	4								
45	4								
46	4								
47	4								
48	4								
49	4								
50	4								
51 52	1								
53	-								
54	1								
55	1								
56	1								
57	1								
58	Para ma	teriais ver la folha	a de seleção de m	ateriais.					
	Rev.	Por	,						
	Data	Aprovado							
					-				

	PROJETO:	-	etil-etil-cetona a partir de	2-butanol		EQUIPAMENTO nº	B-10
	UNIDA DE :	Bomba B-10				Pág. 1	de 2
R e				BOMBAS			
v				BONIBAS			
1			CARA	CTERÍSTICAS DO EQ	UIPAMENTO		
2	CASO DE PROJE	TO					ıção de metil-etil-cetona
3	SERVIÇO	~~~~~~				Trasnp	orte da C-5 a L-2
4		POPERAÇÃO/RE	SERVA SOPERAÇÃO/RESERVA				B-10
5 6			nétrica alternativa / volumétri	ca rotativa)		1 (l 1 Centrífuga
7			ontínuo ; série / paralelo)	ou rotativa)			tínuo/Paralelo
8		,		ARACTERÍSTICAS DO	FLUIDO		
9	NATUREZA DO F						Alimento
0		CORROSIVOS / TÓ		`		Não	Não
2		SPENSAO (quantio DEZ (POUR POINT)	lade / DIÂMETRO Equivalente	2)	°C	Não	Não -
3		IGNIÇÃO / IGNIÇÃO			°C	-	<u> </u>
4	TEMPERATURA [°C		112,09
5	Densidade @TB	OMBEIO			kg/m³		701,77
6	Viscosidade @T				cSt		0,37
7	PRESSÃO DE VA	APOR @T BOMBEK		EDÍOTIO A C DO DE E ::	kg/cm² a		1,76
9	VAZÃO DE BBO	JETO Q (rated) (1)		ERÍSTICAS DO PROJI	ETO DA BOMBA m³/h		0,23
9		DE PROCESSO (2)			m ⁷ /h		0,23
11	VAZÃO NORMA	. ,			m³/h		0,21
22		PULSÃO @ Q rated	i		kg/cm² g		7,73
:3		SPIRAÇÃO @ Q rat	ed		kg/cm² g		1,23
24		ENCIAL @ Q rated			kg/cm²		6,51
5		NCIAL @ Q rated ((1)		m		-
26 27	NPSH DISPONÍVE	-L @ Q rated (3) ∟SÃO FECHADA (4	1		m Isa/am²		<u>.</u>
28	PRESSÃO MÁXIN		·)		kg/cm ² kg/cm ² g		1,35
29	PRESSÃO MÁXIN				kg/cm² g		8,51
30		JLAÇÃO ASPIRAÇÃ	ÃO/IMPULSÃO		polegadas	1	1
31	IMPULSOR / FECI						-
32	TRACEJADO / IS	OLAMENTO / FLUS	1 /				•
33				DIÇÕES DE PROJETO	MECANICO °C		440.00
	TEMPERATURA I				*C		112,09
34		PROJETO MECÂNICO	X)		ka/cm² a		9 53
34 35	TEMPERATURA F PRESSÃO PROJE			CTERÍSTICAS DO AC	kg/cm² g		9,53
5 5 6	PRESSÃO PROJE	ETO MECÂNICO O / RESERVA	CARA	CTERÍSTICAS DO AC		Motor ⊟étrico	9,53 Motor Elétrico
4 5 6 7 8	PRESSÃO PROJE TIPO OPERAÇÃO CONSUMO ELÉC	TO MECÂNICO O / RESERVA TRICO ESTIMADO	CARA A VAZÃO PROJETO	CTERÍSTICAS DO AC		0,1	Motor Elétrico 0,1
4 5 6 7 8 9	PRESSÃO PROJE TIPO OPERAÇÃO CONSUMO ELÉC CONSUMO DE VA	TO MECÂNICO O / RESERVA TRICO ESTIMADO	CARA	CTERÍSTICAS DO AC	IONAMENTO		Motor Elétrico
4 5 6 7 8 9	PRESSÃO PROJE TIPO OPERAÇÃO CONSUMO ELÉC	TO MECÂNICO O / RESERVA TRICO ESTIMADO	CARA A VAZÃO PROJETO	CTERÍSTICAS DO AC	IONAMENTO kWh/h	0,1	Motor Elétrico 0,1
4 5 6 7 8 9 0	PRESSÃO PROJE TIPO OPERAÇÃO CONSUMO ELÉC CONSUMO DE VA	TO MECÂNICO O / RESERVA TRICO ESTIMADO	CARA A VAZÃO PROJETO	CTERÍSTICAS DO AC	IONAMENTO kWh/h	0,1	Motor Elétrico 0,1
4 5 6 7 8 9 0	PRESSÃO PROJE TIPO OPERAÇÃO CONSUMO ELÉC CONSUMO DE VA	TO MECÂNICO O / RESERVA TRICO ESTIMADO	CARA A VAZÃO PROJETO	CTERÍSTICAS DO AC	IONAMENTO kWh/h	0,1	Motor Eétrico 0,1
4 5 6 7 8 9 0 1 1 2	PRESSÃO PROJE TIPO OPERAÇÃO CONSUMO ELÉC CONSUMO DE VA	TO MECÂNICO O / RESERVA TRICO ESTIMADO	CARA A VAZÃO PROJETO	CTERÍSTICAS DO AC	IONAMENTO kWh/h	0,1	Motor Eétrico 0,1
4 5 6 7 8 8 9 0 1 1 2 2 3 4	PRESSÃO PROJE TIPO OPERAÇÃO CONSUMO ELÉC CONSUMO DE VA	TO MECÂNICO O / RESERVA TRICO ESTIMADO	CARA A VAZÃO PROJETO	CTERÍSTICAS DO AC	IONAMENTO kWh/h	0,1	Motor Eétrico 0,1
4 5 6 7 8 9 0 1 1 2 3 4	PRESSÃO PROJE TIPO OPERAÇÃO CONSUMO ELÉC CONSUMO DE VA	TO MECÂNICO O / RESERVA TRICO ESTIMADO	CARA A VAZÃO PROJETO	CTERÍSTICAS DO AC	IONAMENTO kWh/h	0,1	Motor Eétrico 0,1
4	PRESSÃO PROJE TIPO OPERAÇÃO CONSUMO ELÉC CONSUMO DE VA	TO MECÂNICO O / RESERVA TRICO ESTIMADO	CARA A VAZÃO PROJETO	CTERÍSTICAS DO AC	IONAMENTO kWh/h	0,1	Motor Eétrico 0,1
4	PRESSÃO PROJE TIPO OPERAÇÃO CONSUMO ELÉC CONSUMO DE VA	TO MECÂNICO O / RESERVA TRICO ESTIMADO	CARA A VAZÃO PROJETO	CTERÍSTICAS DO AC	IONAMENTO kWh/h	0,1	Motor Eétrico 0,1
4	PRESSÃO PROJE TIPO OPERAÇÃO CONSUMO ELÉC CONSUMO DE VA	TO MECÂNICO O / RESERVA TRICO ESTIMADO	CARA A VAZÃO PROJETO	CTERÍSTICAS DO AC	IONAMENTO kWh/h	0,1	Motor Elétrico 0,1
44	PRESSÃO PROJE TIPO OPERAÇÃO CONSUMO ELÉC CONSUMO DE VA	TO MECÂNICO O / RESERVA TRICO ESTIMADO	CARA A VAZÃO PROJETO	CTERÍSTICAS DO AC	IONAMENTO kWh/h	0,1	Motor Elétrico 0,1
34	PRESSÃO PROJE TIPO OPERAÇÃO CONSUMO ELÉC CONSUMO DE VA	TO MECÂNICO O / RESERVA TRICO ESTIMADO	CARA A VAZÃO PROJETO	CTERÍSTICAS DO AC	IONAMENTO kWh/h	0,1	Motor Eétrico 0,1
344 355 366 377 388 399 400 411 422 433 444 445 456 477 488 499 500 501 502 503 503 503 504 505 605 605 605 605 605 605 605	PRESSÃO PROJE TIPO OPERAÇÃO CONSUMO ELÉC CONSUMO DE VA	TO MECÂNICO O / RESERVA TRICO ESTIMADO	CARA A VAZÃO PROJETO	CTERÍSTICAS DO AC	IONAMENTO kWh/h	0,1	Motor Elétrico 0,1
144	PRESSÃO PROJE TIPO OPERAÇÃO CONSUMO ELÉC CONSUMO DE VA	TO MECÂNICO O / RESERVA TRICO ESTIMADO	CARA A VAZÃO PROJETO	CTERÍSTICAS DO AC	IONAMENTO kWh/h	0,1	Motor Eétrico 0,1
144 155 156 157 158 159 150 151	PRESSÃO PROJE TIPO OPERAÇÃO CONSUMO ELÉC CONSUMO DE VA	TO MECÂNICO O / RESERVA TRICO ESTIMADO	CARA A VAZÃO PROJETO	CTERÍSTICAS DO AC	IONAMENTO kWh/h	0,1	Motor Eétrico 0,1
144	PRESSÃO PROJE TIPO OPERAÇÃO CONSUMO ELÉC CONSUMO DE VA	TO MECÂNICO O / RESERVA TRICO ESTIMADO	CARA A VAZÃO PROJETO	CTERÍSTICAS DO AC	IONAMENTO kWh/h	0,1	Motor Eétrico 0,1
14	PRESSÃO PROJE TIPO OPERAÇÃO CONSUMO ELÉC CONSUMO DE VI NOTAS :	ETO MECÂNICO O / RESERVA TRICO ESTIMADO / APOR ESTIMADO /	CARA A VAZÃO PROJETO A VAZÃO PROJETO	CTERÍSTICAS DO AC	IONAMENTO kWh/h	0,1	Motor Elétrico 0,1
344 355 366 37 388 399 400 411 42 43 44 44 45 46 47 48 49 49 50 50 51 51 51 55 56 66 66 67 77 88 88 88 89 89 89 89 80 80 80 80 80 80 80 80 80 80	PRESSÃO PROJE TIPO OPERAÇÃO CONSUMO ELÉC CONSUMO DE VI NOTAS :	ETO MECÂNICO O / RESERVA TRICO ESTIMADO / APOR ESTIMADO /	CARA A VAZÃO PROJETO	CTERÍSTICAS DO AC	IONAMENTO kWh/h	0,1	Motor Elétrico 0,1

	PROJETO : Produção o UNIDA DE : Bomba B-1	de metil-etil-cet 0	ona a partir d	le 2-butanol			EQUIPAM Pág.	ENTO nº		·10 2
R e v			FOLHA [DE CÁLCULO	DE BOMB	AS				
1	SERVIÇO / CASO :	Trasnporte da	C-5 a L-2							
2	ESQUEMA DE FLUXO :	Truomporto du	00022							
3	EGGGEW (DE 1 EG/G :									
4										
5										
6										
7					(
8					()				
9					L-01					
10										
11			_							
12		C-5	,(
13			(
14			_	/						
15			В	3-10						
16	NATUREZA DO FLUÍDO	-	Alim	ento				Q Nor		Q Des.
17	T de BOMBEIO	°C		2,09	P. IM	PULSÃO	Circ. 1	Circ. 2	Circ. 3	
18	Viscosidade @T	cSt		37		CLONG		kg/cm² g ó k		
19	Densidade @T	kg/m³		1,77	P. de	etino	_	kg/cm g o k	g/ciii (∆i)	_
20	Delisidade @ i	ilig/iii	10	1,77		stribuidor	-	_	_	_
21	Capacidade		Q Nor	Q des		a estática	<u> </u>	-	-	-
22	Vazão mássica	kg/h	-	-	ΔPlin		-	_	_	-
23	Vazão volumétrica	m³/h	0,21	0,23	ΔPfil		-	-		-
24	Vazao Volumetrica	111711	0,21	0,23	ΔΡ		-	-	_	-
25	P. ASPIRAÇÃO		Q Nor	Q des	ΔΡ		<u> </u>	-	_	
26	P. recipiente	kg/cm² g	- Q 1401	Q des	ΔΡ		-			
27	H (LT a center line)	kg/cm ²	-	-	ΔΡ		-	-	-	-
28	ΔP linha	kg/cm ²			ΔΡ		-			
29	ΔP filtro	kg/cm ²	-	-	ΔPpl	202	-	-	_	-
30	ΔPotros	kg/cm²	-	-		álv. Cont.	-	<u> </u>	_	-
31	P. ASPIRAÇÃO	kg/cm² g	1,03	1,23		PULSÃO	6,44	_	_	7,73
32	1. Aci ii vi Çato	ing/citi g	1,05	1,23	1	OLONO	0,44			1,13
33	NPSH DISPONÍVEL		Q Nor	Q des	P Di	erencial @	2 2 h O (6			Q des
34	PRESSÃO ASPIRAÇÃO	kg/cm² a	Q 1101	1,23		PULSÃO	e w ucs	kg/cn	n ² a	7,73
35	P. vapor @T	kg/cm² a		1,76		PIRAÇÃO		kg/cn		1,23
36	Diferença	kg/cm ²		-		erencial		kg/c		6,51
37	NPSHA	m		_		a Diferencia	ıl	m m		-
38							-	1	<u> </u>	l.
39	Consumo estimado ACIO	NAMENTO	Q Nor	Q des	P. m	áx. ASPIRA	ÇÃO			
40	HHP	CV	_	-		cipiente (1)		kg/cn	n² g	-
41	Eficiência bomba	%	-	45		L-Center lir	ne)	kg/c		-
42	BHP	CV	-	-		c. ASPIRAÇ		kg/cn		1,35
43	Motor			•		áx. IM PULS	_			• •
44	Eficiência motor	%	-	90		r. máx. mot		kg/cn	n² g	-
45	Eletricidade	kWh/h	-	-		r. máx. turb		kg/cn		-
46	Turbina	•	-	•		k. IMPULSÃ		kg/cn		9,53
47	ΔH vapor isoentrópica.	kJ/Kg	-	-				-		
48	Eficiência turbina	%	-	-						
49	Consumo vapor	kg/h	-	-						
50										
51										
52										
53										
54										
55										
56										
57										
58										
	Rev. Por									
	Data Aprova	ado				-				-

		-	etil-etil-cetona a partir de 2-bu	tanol		EQUIPAMENTO nº	B-11
	UNIDADE:	Bomba B-11				Pág. 1	de 2
R							
e				BOMBAS			
٧			0.151.055	-ío=:o . o . o . o			
1	04 00 DE DD0 IE	TO.	CARACTE	RÍSTICAS DO EQI	JIPAMENIO	Blanda I I	
3	CASO DE PROJE	10					ução de metil-etil-cetona fluxo da C-2
4	SERVIÇO	° OPERAÇÃO / R	TOTD\/A			Re	B-11
			AS OPERAÇÃO / RESERVA			1	1
6			umétrica alternativa / volumétrica ro	totivo)			l <u>'</u> Centrífuga
			contínuo ; série / paralelo)	itativa)			tínuo/Paralelo
8	1 OI VOIOI VAIVILIATO	o (continuo / ucs		CTERÍSTICAS DO	FLUIDO	0011	illido/i ai aicio
	NATUREZA DO F	LUIDO	<u> </u>	0.2.0000			MEK
10	COMPONENTES (ÓXICOS			Não	Não
11			idade / DIÂMETRO Equivalente)			Não	Não
12	PONTO DE FLUID				°C		•
13		GNIÇÃO / IGNIÇÃ	*		°C	-	-
14	TEMPERATURA D				°C		106,02
15	Densidade @TB	OMBEIO			kg/m³		740,79
16	Viscosidade @T	BOMBEIO			cSt		0,28
17	PRESSÃO DE VA	POR @T BOMBE	Ю		kg/cm² a		1,19
18			CARACTERÍS	TICAS DO PROJE	TO DA BOMBA		
19	VAZÃO DE PROJ	JETO Q (rated) (1	1)		m³/h		4,26
20		DE PROCESSO (2)		m³/h		2,33
21	VAZÃO NORMAI				m³/h		3,88
22	PRESSÃO DE IMP				kg/cm² g		4,13
23	PRESSÃO DE AS	•			kg/cm² g		1,27
24	PRESSÃO DIFERI				kg/cm ²		2,85
_	ALTURA DIFEREN		(1)		m		-
-	NPSH DISPONÍVE				m		1,12
27	MÁX. DP a IMPUL		4)		kg/cm²		-
28	PRESSÃO MÁXIN	//AASPIRAÇÃO			kg/cm² g		1,39
		~			kg/cm ² g		4,54
29	PRESSÃO MÁXIN		~				
29 30	PRESSÃO MÁXIN DIÂMETRO TUBU	LAÇÃO ASPIRAÇ	ÇÃO / IMPULSÃO		polegadas	2	2
29 30 31	PRESSÃO MÁXIN DIÂMETRO TUBU IMPULSOR / FECH	LAÇÃO ASPIRAÇ HAMENTO (5)				2	2
29 30 31 32	PRESSÃO MÁXIN DIÂMETRO TUBU	LAÇÃO ASPIRAÇ HAMENTO (5)	SHING (6)		polegadas	2	2
29 30 31 32 33	PRESSÃO MÁXIN DIÂMETRO TUBU IMPULSOR / FECH TRACEJADO / ISO	LAÇÃO ASPIRAÇ HAMENTO (5) OLAMENTO / FLU	SHING (6)	DES DE PROJETO	polegadas M ECÂNICO	2	
29 30 31 32 33 34	PRESSÃO MÁXIN DIÂMETRO TUBU IMPULSOR / FECH TRACEJADO / ISO TEMPERATURA F	LAÇÃO ASPIRAÇ HAMENTO (5) OLAMENTO / FLU PROJETO MECÂN	SHING (6)	DES DE PROJETO	polegadas MECÂNICO °C	2	- - 106,02
29 30 31 32 33 34 35	PRESSÃO MÁXIN DIÂMETRO TUBU IMPULSOR / FECH TRACEJADO / ISO	LAÇÃO ASPIRAÇ HAMENTO (5) OLAMENTO / FLU PROJETO MECÂN	ISHING (6) CONDIÇÕ		polegadas MECÂNICO °C kg/cm² g	2	
29 30 31 32 33 34 35 36	PRESSÃO MÁXIM DIÂMETRO TUBU IMPULSOR / FECH TRACEJADO / ISO TEMPERATURA F PRESSÃO PROJE	LAÇÃO A SPIRAÇ HAMENTO (5) OLAMENTO / FLU PROJETO MECÂNI ETO MECÂNICO	ISHING (6) CONDIÇÕ	ES DE PROJETO	polegadas MECÂNICO °C kg/cm² g		2 - - 106,02 5,93
29 30 31 32 33 34 35 36 37	PRESSÃO MÁXIM DIÂMETRO TUBU IMPULSOR / FECH TRACEJADO / ISO TEMPERATURA F PRESSÃO PROJE TIPO OPERAÇÃO	LAÇÃO A SPIRAÇ HAMENTO (5) OLAMENTO / FLU PROJETO MECÂNICO O MECÂNICO	ISHING (6) CONDIÇÕ CO CARACTE		polegadas MECÂNICO °C kg/cm² g ONAMENTO	Motor Elétrico	2 - - 106,02 5,93 Motor Elétrico
29 30 31 32 33 34 35 36 37 38	PRESSÃO MÁXIM DIÂMETRO TUBU IMPULSOR / FECH TRACEJADO / ISO TEMPERATURA F PRESSÃO PROJE TIPO OPERAÇÃO CONSUMO ELÉC	LAÇÃO A SPIRAÇ HAMENTO (5) OLAMENTO / FLU PROJETO MECÂNICO O/ RESERVA TRICO ESTIMADO	ISHING (6) CONDIÇÕ CO CARACTE A VAZÃO PROJETO		polegadas MECÂNICO °C kg/cm² g ONAMENTO kWh/h		2 - - 106,02 5,93
29 30 31 32 33 34 35 36 37 38 39	PRESSÃO MÁXIM DIÂMETRO TUBU IMPULSOR / FECH TRACEJADO / ISI TEMPERATURA F PRESSÃO PROJE TIPO OPERAÇÃO CONSUMO ELÉCT CONSUMO DE V/	LAÇÃO A SPIRAÇ HAMENTO (5) OLAMENTO / FLU PROJETO MECÂNICO O/ RESERVA TRICO ESTIMADO	ISHING (6) CONDIÇÕ CO CARACTE		polegadas MECÂNICO °C kg/cm² g ONAMENTO	Motor Bétrico 0,89	2 - - 106,02 5,93 Motor ⊟étrico 0,89
29 30 31 32 33 34 35 36 37 38 39 40	PRESSÃO MÁXIM DIÂMETRO TUBU IMPULSOR / FECH TRACEJADO / ISO TEMPERATURA F PRESSÃO PROJE TIPO OPERAÇÃO CONSUMO ELÉC	LAÇÃO A SPIRAÇ HAMENTO (5) OLAMENTO / FLU PROJETO MECÂNICO O/ RESERVA TRICO ESTIMADO	ISHING (6) CONDIÇÕ CO CARACTE A VAZÃO PROJETO		polegadas MECÂNICO °C kg/cm² g ONAMENTO kWh/h	Motor Bétrico 0,89	2 - - 106,02 5,93 Motor ⊟étrico 0,89
29 30 31 32 33 34 35 36 37 38 39	PRESSÃO MÁXIM DIÂMETRO TUBU IMPULSOR / FECH TRACEJADO / ISI TEMPERATURA F PRESSÃO PROJE TIPO OPERAÇÃO CONSUMO ELÉCT CONSUMO DE V/	LAÇÃO A SPIRAÇ HAMENTO (5) OLAMENTO / FLU PROJETO MECÂNICO O/ RESERVA TRICO ESTIMADO	ISHING (6) CONDIÇÕ CO CARACTE A VAZÃO PROJETO		polegadas MECÂNICO °C kg/cm² g ONAMENTO kWh/h	Motor Bétrico 0,89	2 - - 106,02 5,93 Motor ⊟étrico 0,89
29 30 31 32 33 34 35 36 37 38 39 40 41	PRESSÃO MÁXIM DIÂMETRO TUBU IMPULSOR / FECH TRACEJADO / ISI TEMPERATURA F PRESSÃO PROJE TIPO OPERAÇÃO CONSUMO ELÉCT CONSUMO DE V/	LAÇÃO A SPIRAÇ HAMENTO (5) OLAMENTO / FLU PROJETO MECÂNICO O/ RESERVA TRICO ESTIMADO	ISHING (6) CONDIÇÕ CO CARACTE A VAZÃO PROJETO		polegadas MECÂNICO °C kg/cm² g ONAMENTO kWh/h	Motor Bétrico 0,89	2 - - 106,02 5,93 Motor ⊟étrico 0,89
29 30 31 32 33 34 35 36 37 38 39 40 41 42	PRESSÃO MÁXIM DIÂMETRO TUBU IMPULSOR / FECH TRACEJADO / ISI TEMPERATURA F PRESSÃO PROJE TIPO OPERAÇÃO CONSUMO ELÉCT CONSUMO DE V/	LAÇÃO A SPIRAÇ HAMENTO (5) OLAMENTO / FLU PROJETO MECÂNICO O/ RESERVA TRICO ESTIMADO	ISHING (6) CONDIÇÕ CO CARACTE A VAZÃO PROJETO		polegadas MECÂNICO °C kg/cm² g ONAMENTO kWh/h	Motor Bétrico 0,89	2 - - 106,02 5,93 Motor ⊟étrico 0,89
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	PRESSÃO MÁXIM DIÂMETRO TUBU IMPULSOR / FECH TRACEJADO / ISI TEMPERATURA F PRESSÃO PROJE TIPO OPERAÇÃO CONSUMO ELÉCT CONSUMO DE V/	LAÇÃO A SPIRAÇ HAMENTO (5) OLAMENTO / FLU PROJETO MECÂNICO O/ RESERVA TRICO ESTIMADO	ISHING (6) CONDIÇÕ CO CARACTE A VAZÃO PROJETO		polegadas MECÂNICO °C kg/cm² g ONAMENTO kWh/h	Motor Bétrico 0,89	2 - - 106,02 5,93 Motor ⊟étrico 0,89
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	PRESSÃO MÁXIM DIÂMETRO TUBU IMPULSOR / FECH TRACEJADO / ISI TEMPERATURA F PRESSÃO PROJE TIPO OPERAÇÃO CONSUMO ELÉCT CONSUMO DE V/	LAÇÃO A SPIRAÇ HAMENTO (5) OLAMENTO / FLU PROJETO MECÂNICO O/ RESERVA TRICO ESTIMADO	ISHING (6) CONDIÇÕ CO CARACTE A VAZÃO PROJETO		polegadas MECÂNICO °C kg/cm² g ONAMENTO kWh/h	Motor Bétrico 0,89	2 - - 106,02 5,93 Motor ⊟étrico 0,89
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	PRESSÃO MÁXIM DIÂMETRO TUBU IMPULSOR / FECH TRACEJADO / ISI TEMPERATURA F PRESSÃO PROJE TIPO OPERAÇÃO CONSUMO ELÉCT CONSUMO DE V/	LAÇÃO A SPIRAÇ HAMENTO (5) OLAMENTO / FLU PROJETO MECÂNICO O/ RESERVA TRICO ESTIMADO	ISHING (6) CONDIÇÕ CO CARACTE A VAZÃO PROJETO		polegadas MECÂNICO °C kg/cm² g ONAMENTO kWh/h	Motor Bétrico 0,89	2 - - 106,02 5,93 Motor ⊟étrico 0,89
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	PRESSÃO MÁXIM DIÂMETRO TUBU IMPULSOR / FECH TRACEJADO / ISI TEMPERATURA F PRESSÃO PROJE TIPO OPERAÇÃO CONSUMO ELÉCT CONSUMO DE V/	LAÇÃO A SPIRAÇ HAMENTO (5) OLAMENTO / FLU PROJETO MECÂNICO O/ RESERVA TRICO ESTIMADO	ISHING (6) CONDIÇÕ CO CARACTE A VAZÃO PROJETO		polegadas MECÂNICO °C kg/cm² g ONAMENTO kWh/h	Motor Bétrico 0,89	2 - - 106,02 5,93 Motor ⊟étrico 0,89
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	PRESSÃO MÁXIM DIÂMETRO TUBU IMPULSOR / FECH TRACEJADO / ISI TEMPERATURA F PRESSÃO PROJE TIPO OPERAÇÃO CONSUMO ELÉCT CONSUMO DE V/	LAÇÃO A SPIRAÇ HAMENTO (5) OLAMENTO / FLU PROJETO MECÂNICO O/ RESERVA TRICO ESTIMADO	ISHING (6) CONDIÇÕ CO CARACTE A VAZÃO PROJETO		polegadas MECÂNICO °C kg/cm² g ONAMENTO kWh/h	Motor Bétrico 0,89	2 - - 106,02 5,93 Motor ⊟étrico 0,89
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	PRESSÃO MÁXIM DIÂMETRO TUBU IMPULSOR / FECH TRACEJADO / ISI TEMPERATURA F PRESSÃO PROJE TIPO OPERAÇÃO CONSUMO ELÉCT CONSUMO DE V/	LAÇÃO A SPIRAÇ HAMENTO (5) OLAMENTO / FLU PROJETO MECÂNICO O/ RESERVA TRICO ESTIMADO	ISHING (6) CONDIÇÕ CO CARACTE A VAZÃO PROJETO		polegadas MECÂNICO °C kg/cm² g ONAMENTO kWh/h	Motor Bétrico 0,89	2 - - 106,02 5,93 Motor ⊟étrico 0,89
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	PRESSÃO MÁXIM DIÂMETRO TUBU IMPULSOR / FECH TRACEJADO / ISI TEMPERATURA F PRESSÃO PROJE TIPO OPERAÇÃO CONSUMO ELÉCT CONSUMO DE V/	LAÇÃO A SPIRAÇ HAMENTO (5) OLAMENTO / FLU PROJETO MECÂNICO O/ RESERVA TRICO ESTIMADO	ISHING (6) CONDIÇÕ CO CARACTE A VAZÃO PROJETO		polegadas MECÂNICO °C kg/cm² g ONAMENTO kWh/h	Motor Bétrico 0,89	2 - - 106,02 5,93 Motor ⊟étrico 0,89
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 47 48 49 50 51 52	PRESSÃO MÁXIM DIÂMETRO TUBU IMPULSOR / FECH TRACEJADO / ISI TEMPERATURA F PRESSÃO PROJE TIPO OPERAÇÃO CONSUMO ELÉCT CONSUMO DE V/	LAÇÃO A SPIRAÇ HAMENTO (5) OLAMENTO / FLU PROJETO MECÂNICO O/ RESERVA TRICO ESTIMADO	ISHING (6) CONDIÇÕ CO CARACTE A VAZÃO PROJETO		polegadas MECÂNICO °C kg/cm² g ONAMENTO kWh/h	Motor Bétrico 0,89	2 - - 106,02 5,93 Motor ⊟étrico 0,89
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	PRESSÃO MÁXIM DIÂMETRO TUBU IMPULSOR / FECH TRACEJADO / ISI TEMPERATURA F PRESSÃO PROJE TIPO OPERAÇÃO CONSUMO ELÉCT CONSUMO DE V/	LAÇÃO A SPIRAÇ HAMENTO (5) OLAMENTO / FLU PROJETO MECÂNICO O/ RESERVA TRICO ESTIMADO	ISHING (6) CONDIÇÕ CO CARACTE A VAZÃO PROJETO		polegadas MECÂNICO °C kg/cm² g ONAMENTO kWh/h	Motor Bétrico 0,89	2 - - 106,02 5,93 Motor ⊟étrico 0,89
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	PRESSÃO MÁXIM DIÂMETRO TUBU IMPULSOR / FECH TRACEJADO / ISI TEMPERATURA F PRESSÃO PROJE TIPO OPERAÇÃO CONSUMO ELÉCT CONSUMO DE V/	LAÇÃO A SPIRAÇ HAMENTO (5) OLAMENTO / FLU PROJETO MECÂNICO O/ RESERVA TRICO ESTIMADO	ISHING (6) CONDIÇÕ CO CARACTE A VAZÃO PROJETO		polegadas MECÂNICO °C kg/cm² g ONAMENTO kWh/h	Motor Bétrico 0,89	2 - - 106,02 5,93 Motor ⊟étrico 0,89
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	PRESSÃO MÁXIM DIÂMETRO TUBU IMPULSOR / FECH TRACEJADO / ISI TEMPERATURA F PRESSÃO PROJE TIPO OPERAÇÃO CONSUMO ELÉCT CONSUMO DE V/	LAÇÃO A SPIRAÇ HAMENTO (5) OLAMENTO / FLU PROJETO MECÂNICO O/ RESERVA TRICO ESTIMADO	ISHING (6) CONDIÇÕ CO CARACTE A VAZÃO PROJETO		polegadas MECÂNICO °C kg/cm² g ONAMENTO kWh/h	Motor Bétrico 0,89	2 - - 106,02 5,93 Motor ⊟étrico 0,89
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 56	PRESSÃO MÁXIM DIÂMETRO TUBU IMPULSOR / FECH TRACEJADO / ISI TEMPERATURA F PRESSÃO PROJE TIPO OPERAÇÃO CONSUMO ELÉCT CONSUMO DE V/	LAÇÃO A SPIRAÇ HAMENTO (5) OLAMENTO / FLU PROJETO MECÂNICO O/ RESERVA TRICO ESTIMADO	ISHING (6) CONDIÇÕ CO CARACTE A VAZÃO PROJETO		polegadas MECÂNICO °C kg/cm² g ONAMENTO kWh/h	Motor Bétrico 0,89	2 - - 106,02 5,93 Motor ⊟étrico 0,89
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	PRESSÃO MÁXIM DIÂMETRO TUBU IMPULSOR / FECH TRACEJADO / ISO TEMPERATURA F PRESSÃO PROJE TIPO OPERAÇÃO CONSUMO BLÉC CONSUMO DE VA NOTAS:	LAÇÃO A SPIRAÇ HAMENTO (5) OLAMENTO / FLU PROJETO MECÂNICO O / RESERVA TRICO ESTIMADO APOR ESTIMADO	SHING (6) CONDIÇÕ CO CARACTE A VAZÃO PROJETO A VAZÃO PROJETO		polegadas MECÂNICO °C kg/cm² g ONAMENTO kWh/h	Motor Bétrico 0,89	2 - - 106,02 5,93 Motor ⊟étrico 0,89
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 56	PRESSÃO MÁXIM DIÂMETRO TUBU IMPULSOR / FECH TRACEJADO / ISO TEMPERATURA F PRESSÃO PROJE TIPO OPERAÇÃO CONSUMO BLÉC CONSUMO DE VA NOTAS:	LAÇÃO A SPIRAÇ- HAMENTO (5) OLAMENTO / FLU PROJETO MECÂNI ETO MECÂNICO O / RESERVA TRICO ESTIMADO APOR ESTIMADO teriais ver la folha	ISHING (6) CONDIÇÕ CO CARACTE A VAZÃO PROJETO		polegadas MECÂNICO °C kg/cm² g ONAMENTO kWh/h	Motor Bétrico 0,89	2 - - 106,02 5,93 Motor ⊟étrico 0,89
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	PRESSÃO MÁXIM DIÂMETRO TUBU IMPULSOR / FECH TRACEJADO / ISO TEMPERATURA F PRESSÃO PROJE TIPO OPERAÇÃO CONSUMO BLÉC CONSUMO DE VA NOTAS:	LAÇÃO A SPIRAÇ HAMENTO (5) OLAMENTO / FLU PROJETO MECÂNICO O / RESERVA TRICO ESTIMADO APOR ESTIMADO	SHING (6) CONDIÇÕ CO CARACTE A VAZÃO PROJETO A VAZÃO PROJETO		polegadas MECÂNICO °C kg/cm² g ONAMENTO kWh/h	Motor Bétrico 0,89	2 - - 106,02 5,93 Motor ⊟étrico 0,89

	DOCUMENTO BULL OF A STATE OF		1	FOLUDA MENTO A	D 10
	PROJETO: Produção de metil-etil-cetona a p	oartir de 2-butanol		EQUIPAMENTO nº	B-12
R	UNIDADE: Bomba B-12			Pág. 1	de 2
e e		DOMBAS			
v		BOMBAS			
		CARACTERÍSTICAS DO FOLURA	MENTO		
1	OA OO DE PROJETO	CARACTERÍSTICAS DO EQUIPA	AMENIO	Diam'r Is and Is	~~
2	CASO DE PROJETO		1		ção de metil-etil-cetona
	SERVIÇO			iranspo	orte do L-6 a L-7
	EQUIPAMENTO Nº OPERAÇÃO / RESERVA	OFD) (A	1		B-12
-	NÚMERO DE BOMBAS REQUERIDAS OPERAÇÃO / RES		1	1	1
6	TIPO DE BOMBA (centrífuga / volumétrica alternativa /	,	1		entrífuga
	FUNCIONA MENTO (continuo / descontínuo ; série / pa			Cont	ínuo/Paralelo
8	NATUREZA DO ELUDO	CARACTERÍSTICAS DO FLU	UIDO		MEK
	NATUREZA DO FLUIDO				MEK
10	COMPONENTES CORROSIVOS / TÓXICOS		1	NIW -	NIO -
	SÓLIDOS EN SUSPENSÃO (quantidade / DIÂMETRO E	quivalente)	00	Não	Não
	PONTO DE FLUIDEZ (POUR POINT)		°C	1	-
13	TEMP. DE AUTO IGNIÇÃO / IGNIÇÃO			-	- 02.07
14	TEMPERATURA DE BOMBEIO		°C		83,87
15	Densidade @T BOMBEIO Viscosidade @T BOMBEIO		kg/m³		0.24
16			cSt		0,31
	PRESSÃO DE VAPOR @T BOMBEIO		kg/cm² a		1,19
18		CARACTERÍSTICAS DO PROJETO I			4.72
	VAZÃO DE PROJETO Q (rated) (1)		m³/h		1,73
	VAZÃO MÍNIMO DE PROCESSO (2) VAZÃO NORMAL		m³/h		0,94
			m³/h		1,57
	PRESSÃO DE IMPULSÃO @ Q rated		kg/cm ² g		5,68
	PRESSÃO DE ASPIRAÇÃO @ Q rated		kg/cm² g		0,41
24	PRESSÃO DIFERENCIAL @ Q rated		kg/cm ²		5,27
	ALTURA DIFERENCIAL @ Q rated (1)		m		-
	NPSH DISPONÍVEL @ Q rated (3)		m · · · · · · · ·		•
	MÁX. DP a IMPULSÃO FECHADA (4)		kg/cm ²		
	PRESSÃO MÁXIMA ASPIRAÇÃO		kg/cm ² g		0,45
29	PRESSÃO MÁXIMA IMPULSÃO		kg/cm ² g		6,25
	DIÂMETRO TUBULAÇÃO ASPIRAÇÃO / IMPULSÃO	F	polegadas	1,25	1,25
	IMPULSOR / FECHAMENTO (5)				-
	TRACEJADO / ISOLAMENTO / FLUSHING (6)				-
	TIVIOLIADO / IOOLAIVILIATO / TEOGRIINO (0)		CANICO		
33		CONDIÇÕES DE PROJETO MEC	0.0		
34	TEMPERATURA PROJETO MECÂNICO		°C		83,87
34 35			kg/cm ² g		83,87 7,48
34 35 36	TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO		kg/cm ² g		7,48
34 35 36 37	TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO TIPO OPERAÇÃO / RESERVA	CARACTERÍSTICAS DO ACIONA	kg/cm² g AMENTO	Motor ⊟étrico	7,48 Motor Elétrico
34 35 36 37 38	TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO TIPO OPERAÇÃO / RESERVA CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO	CARACTERÍSTICAS DO ACIONA	kg/cm² g AMENTO kWh/h	0,61	7,48 Motor ⊟étrico 0,61
34 35 36 37 38 39	TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO TIPO OPERAÇÃO / RESERVA CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO CONSUMO DE VAPOR ESTIMADO A VAZÃO PROJETO	CARACTERÍSTICAS DO ACIONA	kg/cm² g AMENTO		7,48 Motor Elétrico
34 35 36 37 38 39 40	TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO TIPO OPERAÇÃO / RESERVA CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO	CARACTERÍSTICAS DO ACIONA	kg/cm² g AMENTO kWh/h	0,61	7,48 Motor ⊟étrico 0,61
34 35 36 37 38 39 40 41	TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO TIPO OPERAÇÃO / RESERVA CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO CONSUMO DE VAPOR ESTIMADO A VAZÃO PROJETO	CARACTERÍSTICAS DO ACIONA	kg/cm² g AMENTO kWh/h	0,61	7,48 Motor ⊟étrico 0,61
34 35 36 37 38 39 40 41 42	TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO TIPO OPERAÇÃO / RESERVA CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO CONSUMO DE VAPOR ESTIMADO A VAZÃO PROJETO	CARACTERÍSTICAS DO ACIONA	kg/cm² g AMENTO kWh/h	0,61	7,48 Motor ⊟étrico 0,61
34 35 36 37 38 39 40 41 42 43	TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO TIPO OPERAÇÃO / RESERVA CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO CONSUMO DE VAPOR ESTIMADO A VAZÃO PROJETO	CARACTERÍSTICAS DO ACIONA	kg/cm² g AMENTO kWh/h	0,61	7,48 Motor ⊟étrico 0,61
34 35 36 37 38 39 40 41 42 43 44	TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO TIPO OPERAÇÃO / RESERVA CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO CONSUMO DE VAPOR ESTIMADO A VAZÃO PROJETO	CARACTERÍSTICAS DO ACIONA	kg/cm² g AMENTO kWh/h	0,61	7,48 Motor ⊟étrico 0,61
34 35 36 37 38 39 40 41 42 43 44 45	TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO TIPO OPERAÇÃO / RESERVA CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO CONSUMO DE VAPOR ESTIMADO A VAZÃO PROJETO	CARACTERÍSTICAS DO ACIONA	kg/cm² g AMENTO kWh/h	0,61	7,48 Motor ⊟étrico 0,61
34 35 36 37 38 39 40 41 42 43 44 45 46	TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO TIPO OPERAÇÃO / RESERVA CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO CONSUMO DE VAPOR ESTIMADO A VAZÃO PROJETO	CARACTERÍSTICAS DO ACIONA	kg/cm² g AMENTO kWh/h	0,61	7,48 Motor ⊟étrico 0,61
34 35 36 37 38 39 40 41 42 43 44 45 46 47	TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO TIPO OPERAÇÃO / RESERVA CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO CONSUMO DE VAPOR ESTIMADO A VAZÃO PROJETO	CARACTERÍSTICAS DO ACIONA	kg/cm² g AMENTO kWh/h	0,61	7,48 Motor ⊟étrico 0,61
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO TIPO OPERAÇÃO / RESERVA CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO CONSUMO DE VAPOR ESTIMADO A VAZÃO PROJETO	CARACTERÍSTICAS DO ACIONA	kg/cm² g AMENTO kWh/h	0,61	7,48 Motor ⊟étrico 0,61
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO TIPO OPERAÇÃO / RESERVA CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO CONSUMO DE VAPOR ESTIMADO A VAZÃO PROJETO	CARACTERÍSTICAS DO ACIONA	kg/cm² g AMENTO kWh/h	0,61	7,48 Motor ⊟étrico 0,61
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO TIPO OPERAÇÃO / RESERVA CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO CONSUMO DE VAPOR ESTIMADO A VAZÃO PROJETO	CARACTERÍSTICAS DO ACIONA	kg/cm² g AMENTO kWh/h	0,61	7,48 Motor ⊟étrico 0,61
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO TIPO OPERAÇÃO / RESERVA CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO CONSUMO DE VAPOR ESTIMADO A VAZÃO PROJETO	CARACTERÍSTICAS DO ACIONA	kg/cm² g AMENTO kWh/h	0,61	7,48 Motor ⊟étrico 0,61
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO TIPO OPERAÇÃO / RESERVA CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO CONSUMO DE VAPOR ESTIMADO A VAZÃO PROJETO	CARACTERÍSTICAS DO ACIONA	kg/cm² g AMENTO kWh/h	0,61	7,48 Motor ⊟étrico 0,61
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO TIPO OPERAÇÃO / RESERVA CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO CONSUMO DE VAPOR ESTIMADO A VAZÃO PROJETO	CARACTERÍSTICAS DO ACIONA	kg/cm² g AMENTO kWh/h	0,61	7,48 Motor ⊟étrico 0,61
34 35 36 37 38 39 40 41 42 43 44 45 50 51 52 53 54	TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO TIPO OPERAÇÃO / RESERVA CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO CONSUMO DE VAPOR ESTIMADO A VAZÃO PROJETO	CARACTERÍSTICAS DO ACIONA	kg/cm² g AMENTO kWh/h	0,61	7,48 Motor ⊟étrico 0,61
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 55 55 55 55 55 55	TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO TIPO OPERAÇÃO / RESERVA CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO CONSUMO DE VAPOR ESTIMADO A VAZÃO PROJETO	CARACTERÍSTICAS DO ACIONA	kg/cm² g AMENTO kWh/h	0,61	7,48 Motor ⊟étrico 0,61
34 35 36 37 38 39 40 41 42 43 44 45 50 51 55 55 56 56	TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO TIPO OPERAÇÃO / RESERVA CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO CONSUMO DE VAPOR ESTIMADO A VAZÃO PROJETO	CARACTERÍSTICAS DO ACIONA	kg/cm² g AMENTO kWh/h	0,61	7,48 Motor Elétrico 0,61
34 35 36 37 38 39 40 41 42 43 44 45 50 51 55 55 55 55 55 5	TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO TIPO OPERAÇÃO / RESERVA CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO CONSUMO DE VAPOR ESTIMADO A VAZÃO PROJETO NOTAS:	CARACTERÍSTICAS DO ACIONA	kg/cm² g AMENTO kWh/h	0,61	7,48 Motor Elétrico 0,61
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 55 56 56	TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO TIPO OPERAÇÃO / RESERVA CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO CONSUMO DE VAPOR ESTIMADO A VAZÃO PROJETO NOTAS: Para materiais ver la folha de seleção de mate	CARACTERÍSTICAS DO ACIONA	kg/cm² g AMENTO kWh/h	0,61	7,48 Motor ⊟étrico 0,61
34 35 36 37 38 39 40 41 42 43 44 45 50 51 55 55 55 55 55 5	TEMPERATURA PROJETO MECÂNICO PRESSÃO PROJETO MECÂNICO TIPO OPERAÇÃO / RESERVA CONSUMO ELÉCTRICO ESTIMADO A VAZÃO PROJETO CONSUMO DE VAPOR ESTIMADO A VAZÃO PROJETO NOTAS:	CARACTERÍSTICAS DO ACIONA	kg/cm² g AMENTO kWh/h	0,61	7,48 Motor ⊟étrico 0,61

	PROJETO : Produção UNIDADE : Bomba B-	de metil-etil-cet 12	ona a partir d	le 2-butanol			EQUIPAM Pág.	ENTO nº		12 2
R e v			FOLHA [DE CÁLCUL	O DE E	BOMBAS				
1	SERVIÇO / CASO :	Transporte do	L-6 a L-7							
2	ESQUEMA DE FLUXO :									
3										
4										
5		L-04	,	1						
6				1						
7		<u></u>					\			
8						 (\	7			
9						E	-08			
10										
11 12					1	N.				
13					ノ)				
14				\	_	/				
15				B-1	12					
16	NATUREZA DO FLUÍDO	-	М	EK				Q Nor		Q Des.
17	T de BOMBEIO	°C		,87	1	P. IMPULSÃO	Circ. 1	Circ. 2	Circ. 3	
18	Viscosidade @T	cSt	†	31				kg/cm² g ó k	g/cm² (ΔP)	
19	Densidade @T	kg/m³		4,79	1	P. destino	-	-	_ `	-
20		•	•		-	ΔP distribuidor	-	-	-	-
21	Capacidade		Q Nor	Q des		Altura estática	-	-	-	-
22	Vazão mássica	kg/h	-	-		∆P linha	-	-	-	-
23	Vazão volumétrica	m³/h	1,57	1,73		ΔP filtro	-	-	-	-
24						ΔΡ	-	-	-	-
25	P. ASPIRAÇÃO		Q Nor	Q des	_	ΔΡ	-	-	-	-
-	P. recipiente	kg/cm² g	-	-		ΔΡ	-	-	-	-
27	H (LT a center line)	kg/cm ²	-	-		ΔΡ	-	-	-	-
28	∆P linha	kg/cm ²	-	-	1	ΔΡ	-	-	-	-
29	ΔPfiltro	kg/cm ²	-	-	4	ΔP placa	-	-	-	-
30	ΔPotros	kg/cm ²	-	-	4	ΔP Válv. Cont.	- 470	-	-	-
31 32	P. ASPIRAÇÃO	kg/cm² g	0,33	0,4	J	P. IMPULSÃO	4,73	-	-	5,68
33	NPSH DISPONÍVEL		Q Nor	Q des		P. Diferencial @	O dos			Q des
34	PRESSÃO ASPIRAÇÃO	kg/cm² a	Q NOI	0,4	1	P. IMPULSÃO	e u ues	kg/cr	n ² a	5,68
35	P. vapor @T	kg/cm² a		1,19	1	P. ASPIRAÇÃO		kg/cr		0,4
36	Diferença	kg/cm ²		-	1	P. Diferencial		kg/c		5,27
37	NPSHA	m		-	1	Altura Diferencia	I	m		-,
38				•				•		
39	Consumo estimado ACIO	NAMENTO	Q Nor	Q des		P. máx. ASPIRA	ÇÃO			
40	HHP	CV	-	-		P. Recipiente (1)		kg/cr	n² g	-
41	Eficiência bomba	%	-	45	1	H (HHL-Center lin		kg/c		-
42	BHP	CV	-	-	1	P máx. ASPIRAÇ		kg/cr	n² g	0,45
43	Motor			1 .	1	P. máx. IMPULS			2	
44	Eficiência motor	%	-	90	1	P difer. máx. mot	_ , ,	kg/cr		-
45	Eletricidade	kWh/h	-	-	4	P difer. máx. turb		kg/cr	-	- 7.40
46	Turbina	1.1/1/		1	1	P máx. IMPULSÃ	U (3)	kg/cr	n g	7,48
47 48	ΔH vapor isoentrópica.	kJ/Kg	-	-	1					
49	Eficiência turbina Consumo vapor	% kg/h	-	-	ł					
50	Soliouno Vapoi	Ng/11			<u> </u>					
51										
52										
53										
54										
55										
56										
57										
58										
	Rev. Po									
	Data Aprov	/ado	1			1			l	

5.7 Compressor

	PROJETO:	Produção de me	til-etil-cetona por	2-butanol	•	•	EQUIPAM		K-01
	UNIDADE :						Pág.		1 de
R e				COMP	RESSORES				
v				OO!III	KEGGGKEG				
1				CARACTERISTIC	AS DO EQUIPAM	ENTO			
2	CASO DE PR	ROJETO							
3	SERVIÇO					Co	mpressor		
5		TO № OPERAÇÃO / I QUERIDO OPERAÇÃO				4	K1		
6		MPRESOR (centrifugo		nositivo)		1 Iso	entrópico		
7		ENTO (continuo / desc					Contínuo		
8		,		/AZÕES E CARAC	TERÍSTICAS DO I	FLUIDO			
9	NÚMERO DE	ETAPAS					-		
10	ETAPA						-		
11	NATUREZA I		14000				Gás		
12		TES CORROSIVOS/TÓ SICA OPERAÇÃO	IXICOS	kg/h			Sim		
14		SICA PROJETO		kg/h					
15	1			·	S NA ASPIRAÇÃO)			
16	PRESSÃO			kg/cm ² a	2,97				
17	TEMPERATU			° C	157,46				
18	PESO MOLE			kg/kmol	74,13				-
19 20	DENSIDADE	OMPRESSIBILIDADE	@P, I	~ !ra/3	0,95 6,38	1			+
21	K = Cp / Cv			kg/m ³	1,08				
22		RVALHO @P ASPIRA	ÇÃO	°C	-				
23		JMÉTRICA PROJETO		m³/h	252,34				
24	DIÂMETRO T	UBULAÇÃO ASPIRAÇ	ÃO	polegadas	3,00				
25	~				NA IMPULSÃO ((2)	1		1
26	PRESSÃO	/MÁY DEDINEDA D	2005000	kg/cm ² a	3,23				
27 28		. / MÁX PERMITIDA P OMPRESSIBILIDADE		°C / °C	160,37/190,37 0,94				-
29	K = Cp / Cv		@F,I	~	1,08				
30		UBULAÇÃO IMPULSÃ	0	polegadas	3,00				
31			C	ARACTERÍSTICAS	DE FUNCIONAMI	ENTO (2)	•		•
32		COMPRESSÃO		~	1,09				
33		POLITRÓPICA / ADIAB		%	72,00				
34 35		.ITRÓPICA / ADIABÁTI EQUERIDA PELO GÁS		kNm/kg kW	3,77 1,51				-
36		OTAL NO EIXO (3)	5 (3)	kW	2,31				
37		0 17 12 110 217 (0)	REG	QUERIMENTOS DE		ROCESSO	1		<u> </u>
38	VAZÃO VOL	MÍNIMA DE PROCES	SO (4)	m³/h	15	1,40			
39		DE CAPACIDADE							
40	TIPO DE COI		10 (-: / ~)				1		
41 42	INJEÇAO DE	LÍQUIDO DE FLUSHIN	(sim / nao)	CONDICÕES DE	PROJETO MECÂI	NICO			
43	PRESSÃO P	ROJETO NA ASPIRAÇ	ÃO	kg/cm ² g		,69			
44		ROJETO NA IMPULSÃ		kg/cm ² g		,94			
45		RA DE PROJETO		°C		0,37			
46			~	CARACTERÍSTIC	AS DO ACIONAM				
47		ONAMENTO OPERAÇ	AO / RESERVA	0/		elétrico	<u> </u>		
48 49	EFICIENCIA CONSUMO E	ESTIMADA LÉCTRICO ESTIMADO) O Des	% kWh/h	_	2,00 ,51			
50		APOR ESTIMADO, Q		t/h		-			
51	NOTAS :	-,					•		
52	(1) Cap	acidade no ponto de ga	rantía.						
53		condições interetapas e							
54	```	ências para vazão de pr	•			%	do detalla	o / vondod	down opposite
55 56		ão de processo em cor lo mínima requerida PE					. ue detaine	s / vendedor	uevem especificar
57	1		, 0	F34					
58	Para	a materiais ver a folha d	e seleção de mate	riais.					
	Rev.	Por							
	Data	Aprovado							

		PROJET									EQUIPAMENTO n	
		UNIDAD	E:								Pág. 2	de 2
	R											
	е							COMPRE	SSORES			
	٧				_							
1		SERVIÇO	O / CASO		Compre	ssor K-1						
2		ESQUEN	//A DE FL	.UXU								
3												
4					Ω	7				\sim)	
0					Γ,	\vee 7				Γ,	\vee 7	
5 6 7					E 031	/				E-037	_	
0					E-02					L-03		
8												
10												
11								/	_ `			
10 11 12 13					l			/	1			
12								! 1				
1/1								\				
14 15 16								K-	01 /			
16												
17												
18								COMPOSICIÓN	EM ASPIRAÇÃO			
19		ETAPA						1	1			PEM
20			NENTES	/ PSEUD	O.		PM			%mol	<u> </u>	
21				ecbutan			74,10	98,10				
22				cloroeta			133,40	0,07				
23				MEK			72,10	1,82				
24							·	-				
25												
26												
27												
28												
29												
30												
31												
32												
33												
34												
35												
36												
37												
38												
39												
40	_											
41	_											
42												
43 44												
44 45	_											
46 47												
48												
48	_	Total						100				
50	-		otal úmid	a (kg/h)				100				
51	-		otal úmid		n)		$\overline{}$					
52		NOTAS :		a (K/1101/1	'/				1		<u>l</u>	
53		. 10 1/10 .										
54												
55												
56												
57												
58												
		Re	ev.	Р	or							
\dashv		Da		Apro								
					-							

5.8 Tubulações

		34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	9	œ	7	ნ თ	ω 4	2	_				
Г							_	_	_	NOTAS	ISO	٧EL	ΔΡ	DIÂ		PRE	TEN		POI	۷IS	DE7	PE		VA۶	VA	FAS	CO	NA.		Þ	DE	DE	aut	< 0	Z	S	PR
	_	Pa					(3)	(2) Inc	(1) Es	AS:	AMEN	OCIDAL	CALCUL	ME TRO		SSÃO	PERAT		TO DE	COSIDA	ISIDADI	SO MOL		ÃOVO	ÃOVO	E(1)/	/POST	UREZA				VTIFICA	TUBULAÇÃO №			UNIDADE :	PROJETO:
Data	Rev.	ara mate					e é requ	dicar ∆p	pecifica],],],],	DE CAL	ADA /	DIÂMETRO NOMINAL		OPERA	URA C		FLUIDE	DE GA	E GAS /	PESO MOLECULAR GAS		LUMÉTI	LUMÉTI	VAPOR	OS COF	NATUREZA DO FLUIDO				IDENTIFICAÇÃO NO P&ID	0 No				
		riais ver					erido es	e veloci	r se é v		ISOLAMENTO, TRACEJADO (3)	CULAD/	PERN	ΑL		ÇÃO / F	PERAÇ		Z (POU	S / LÍC	LÍQUI	R GAS		RICO LÍ	RICO V	RIZADO	ROSIV	JIDO				OP&ID					roduçã
		Para materiais ver a folha de seleção de materiais					pecifica	dade ma	Especificar se é vapor (V), líquido (L), o fase mista (M).		0(3)	VELOCIDADE CALCULADA / PERMITIDA (2)	AP CALCULADA / PERMITIDA (2)			PRESSÃO OPERAÇÃO / PROJETO	TEMPERATURA OPERAÇÃO / PROJETO		PONTO DE FLUIDEZ (POUR POINT)	VISCOSIDADE GAS / LÍQUIDO @P, T	DENSIDADE GAS / LÍQUIDO @P, T			VAZÃO VOLUMÉTRICO LÍQUIDO @P, T	VAZÃO VOLUMÉTRICO VAPOR @P, T	FASE (1) / VAPORIZADO (% peso)	COMPOSTOS CORROSIVOS / TÓXICOS (% peso / ppm p)										o de M
Aprovado	Por	de seleç					, Р:р	ixima pe	líquido			MITIDA	(2)				OJE TO		J	P, T	-			҈₽, T	P, T)	XICOS (etil Etil
do		ão de m					roteção	rmitida:	(L), o fas			(2)															% peso										Produção de Metil Etil Cetona a partir de 2-butanol
		ateriais.					pessoal	só se é	se mista							_				cF.						-	/ ppm p										a parti
							, H: co	um requ	<u>(</u> <u>M</u>			m/s	kg/cm²/ km	polegadas		kg/cm² g	റ്		ဂိ	cP (G) / cSt (L)	kg/m³			m³/h	m³/h		٠										r de 2-b
							nservaç	erimento					Ŕm	as		g				St (L)																	utanol
							ão decal	de pro			Ļ		0,07	_			33,9							1,61		_	747,6687866	Orgá		L-01			01				
							Se é requerido específicar, P : proteção pessoal, H : conservação decalor, C : conservação frio, ST : tracejado com vapor, ET : tracejado elétrico, SJ : encamisado com vapor, etc.	Indicar ∆p e velocidade máxima permitida só se é um requerimento de processo, corrosão, sólidos, fluidos especiais, etc			Ā		0,12	1/4			80			3,96	804,29			61			87866	Orgânico		2			1				
							onserva	orrosão,					0,03			0,013	33,9									_	747	o									
							ção frío,	sólidos,			Ä		0,12	1 1/2		3,5	80	CONDIÇÕES DE OPERAÇÃO / PROJETO		2,83	793,87			1,82			747,6687866	Orgânico	z	B-01	L-01		02	TUBU			
							ST: tra	fluidos							DADO	L		ÕES DE	_	3	87		PR						NATUREZA, FASE E VAZÃO					TUBULAÇÕES DE PROCESSO			
							cejado c	especiai			N N	_	0,03 (1 1/2	DADOS TUBULAÇÃO	2,51	34,2	OPER		_	79		PROPRIEDADES	1,82		_	747,6687866	Orgânico	'A, FAS	F0	P-01		03	ES DE			
							om vapo	s, etc.					0,12		LAÇÃO	4,31	80	ĄÇÃO∕		2,81	793,576		ADES				866	ŏ	EE VA					PRO			
							or, ET : 1				ļ		0,06	1 1/2		7,00	218,0	PROJE		0,017	4,53	18,02			42,72	<	0	Água	ÃO	E-01			04	CESS			
							tracejad				-		0,12	/2		8,8	248,0	ō				02			72			ua		3			4	0			
							o elétric						0,11			_	218,0									_											
							o, SJ : e				¥		0,12	1 1/2		3,50	248,0			0,15	887,13	18,02		0,22			0	Água			E-01		05				
							ncamisa						0			⊢				5	13						7						L				
							ado com				Ξ		06	1 1/4		1,97	100,0			_	7			2,01		_	47,6687866	Orgânico		E-02	E-01		06				
							vapor, e						0,12			3,5	130,0			0,51	718,88						866	8									
							etc.				_		0,06			1,94	158,3			2,23	6,37				226	<	747,6687866	Orgá		K-01	E-02						
											=		0,12	3		3,5	188,3								226,49		387866	Orgânico		2	02		07				
													0,06			2,14	161,2			2,23	6,77					<	747	0								Pág.	UBUT
											Ξ		0,12	ω		3,94	_			_	_	74,12			213,23		747,6687866	Orgânico		F-03	K-01		08				LAÇÕE
											_					H	191,2 4		_								-						Ļ			_	S de PF
											ı		0,05	3 1/2		2,07	446,6			2,23	3,80	74,12			380,04	<	747,6687866	Orgânico		R-01A	E-03		09			d	TUBULAÇÕES de PROCESSO
													0,12	.ٽ		3,87	476,6					2			4		7866	6		•	<i>,</i> -					8	Ö

		34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	9	œ	7	б	ω 4	2	_			I
H							Ļ	Ļ	Ļ	z	S	<	ΔF	D		₽	15		P	<	D	P		<	<	F,	C	z		≻	DE		П	< 0 70	+	τ.
Data Aprovado	Rev. Por	Para materiais ver a folha de seleção de materiais					(3) Se é requerido especificar, P : proteção pessoal, H : conservação decalor, C : conservação frío, ST : tracejado com vapor, ET : tracejado elétrico, SJ : encamisado com vapor, etc	(2) Indicar Ap e velocidade máxima permitida só se é um requerimento de processo, corrosão, sólidos, fluidos especiais, etc.	(1) Especificar se é vapor (V), líquido (L), o fase mista (M).	NOTAS:	ISOLAMENTO, TRACEJADO (3)	VELOCIDADE CALCULADA / PERMITIDA (2)	∆P CALCULADA / PERMITIDA (2)	DIÂMETRO NOMINAL		PRESSÃO OPERAÇÃO / PROJETO	TEMPERATURA OPERAÇÃO/PROJETO		PONTO DE FLUIDEZ (POUR POINT)	VISCOSIDADE GAS / LÍQUIDO @P, T	DENSIDADE GAS / LÍQUIDO @P, T	PESO MOLECULAR GAS		VAZÃO VOLUMÉTRICO LÍQUIDO @P, T	VAZÃO VOLUMÉTRICO VAPOR @P, T	FASE (1) / VAPORIZADO (% peso)	COMPOSTOS CORROSIVOS / TÓXICOS (% peso / ppm p)	NATUREZA DO FLUIDO			Е	IDENTIFICAÇÃO NO P&I	TUBULAÇÃO Nº		UNIDADE :	PROJETO : Produção de Metil Etil Cetona a partir de 2-butanol
		riais.					ssoal, H: conserva	se é um requerimen	mista (M).			m/s	kg/cm²/ km	polegadas		kg/cm² g	റ്		റ്	cP (G) / cSt (L)	kg/m³			m³/h	m³/h		pm p)									partir de 2-butanol
							ção deca	to de pro					0,05	3		2,07	446,6			2,23	3,80	74			38	٧	747,6	Org		Į.	m					
							lor, C:c	cesso, co			I		0,12	3 1/2		3,87	476,6					74,12			380,04	100	747,6687866	Orgânico		R-01B	E-03		10			
							onservaç	orrosão, s					0,10	3		1,82	450	Ω		0,02	1,82	39			79:	٧	46931	Org		m	꼬			_		
							ăo frío, ST	ólidos, flu			I		0,12	3 1/2	D	3,62	480	ONDIÇÕE				39,07			792,34	100	469319,7417	Orgânico	NAT	E-02	R-01A		11	.UBUL/		
Ī							: traceja	iidos espe					0,10	3	DADOS TUBULAÇÃO	1,82	450,0	S DE OP		0,02	1,82	39	PROPR		79:	٧	46931	Orgi	NATUREZA, FASE E VAZÃO	ф	7		,	\ÇÕES		
							do com va	ciais, etc			I		0,12	3 1/2	JBULAÇÂ	3,62	480,0	ERAÇÃO				39,07	PROPRIEDADES		792,77	100	469319,7417	Orgânico	:ASE E V	E-02	R-01B		12	DE PR		
							apor, ET: trad	•			I		0,11	4	Ó		540,0 5	CONDIÇÕES DE OPERAÇÃO / PROJETO		0,027	14,33	18,02			523,31	٧	0	Água	AZÃO	R-01A			13	TUBULAÇÕES DE PROCESSO		
L							cejado el						0,12			44,00	570,0									100										
							étrico, SJ				I		0,11	4		40,00	540,0			0,027	14,33	18,02			523,31	٧	0	Água		R-01B			14			
L							: encam						0,12			44,00	570,0								_	100				w						
							isado con				I		0,10	4		39,40	460,0			0,027	12,21	18,02			446,78	٧	0	Água		E-03	R-01A		15			
L							າ vapor, e						0,12			43,34	490,0					2			8	100										
							itc.				I		0,10	4		39,40	460,0			0,027	12,21	18,02			447,78	٧	0	Água		E-03	R-01B		16			
L													0,12			43,34	490,0					2			78	100		а		ω	В					
											I		0,08	4		39,40	376,4			0,024	13,99	18,02			389,07	٧	0	Água			E-03		17		Pág.	rubulaç
													0,12			43,34	406,4					02			07	100		ıa			13		7		2	OES de
													0,07	3 :		1,60	195,23			0,013	2,61	39			552	٧	46931	Orga		E-04	T.		1		de	7
											I		0,12	3 1/2		3,5	225,23					39,07			552,90	100	469319,7417	Organico		04	E-02		18			SSO

	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	თ თ	ω 4	2	_		Ţ	F
						(3)	(2)	3	NOTAS	ISOL	VEL:	ΔPC	DIÂN	H	PRE	TEM		PON	VISC	DEN	PES		VAZ	VAZ	FAS	CON	NAT	H	≻	DE	IDE	ant.	< 0 %	-	77.
Rev. Data	Para materiais ver						L		AS:	ISOLAMENTO, TRACEJADO (3)	VELOCIDADE CALCULADA / PERMITIDA (2)	AP CALCULADA / PERI	DIÂMETRO NOMINAL		PRESSÃO OPERAÇÃO / PROJETO	TEMPERATURA OPERAÇÃO/PROJETO		PONTO DE FLUIDEZ (POUR POINT)	VISCOSIDADE GAS / LÍQUIDO @P, T	DENSIDADE GAS / LÍQUIDO @P, T	PESO MOLECULAR GAS		VAZÃO VOLUMÉTRICO LÍQUIDO @P, T	VAZÃO VOLUMÉTRICO VAPOR @P, T	FASE (1) / VAPORIZADO (% peso)	MPOSTOS CORROSIV	NATUREZA DO FLUIDO				IDENTIFICAÇÃO NO P&I	TUBULAÇÃO №		UNIDADE :	
Por Aprovado	Para materiais ver a folha de seleção de materiais					Se é requerido específicar, P: proteção pessoal, H: conservação decalor, C: conservação firo, ST: tracejado com vapor, ET: tracejado elétrico, SJ: encamisado com vapor, etc.	Indicar ∆p e velocidade máxima permitida só se é um requerimento de processo, corrosão, sólidos, fluidos especiais, etc.	Especificar se é vapor (V), líquido (L), o fase mista (M).		00 (3)	A / PERMITIDA (2)	PERMITIDA (2)			PROJETO	,ÃΟ / PROJETO		JR POINT)	UIDO @P, T	DO @P, T			QUIDO @P, T	APOR @P, T	(% peso)	COMPOSTOS CORROSIVOS / TÓXICOS (% peso / ppm p)									Produção de Metil Etil Cetona a partir de 2-butanol
	iteriais.					essoal, H:conservaç	ó se é um requeriment	mista (M).			m/s	kg/cm²/ km	polegadas		kg/cm ² g	°C		°C	cP (G) / cSt (L)	kg/m³			m³/h	m³/h		ppm p)									partir de 2-butanoi
						ão decalor, C:c	to de processo, c			NA		0,10 0,12	21/2		1,11	24			0,93	994,92			13,35		Г 0	0	Água		E-04			19			
						onservação frío,	orrosão, sólidos,			NA		0,09 0,12	2 1/2		1,06	45,1	CONDIÇ		0,63	974,30			13,63		L 0	0	Água	N.		E-04		20	TUBUI		
						ST: tracejado co	fluidos especiais			NA NA		0,09 0,12	. 3	DADOS TUBULAÇÃO	1,35 1,35	29,9 29,9	CONDIÇÕES DE OPERAÇÃO / PROJETO		17,93 0,46	0 0,59 795,59		PROPRIEDADES	1,66	201,19	M 8,8	2,44	Orgânico/H2	NATUREZA, FASE E VAZÃO	6	E-04		21	TUBULAÇÕES DE PROCESSO		
						m vapor, ET: tr	etc.			NA		12 0,01	2 1/2	AÇÃO	35 1,42	,9 31,1	ÇÃO / PROJETO		46 0,011	,59 0,62	6,52	DES		198,22	,8 V	_	12 Orgânico/H2	EVAZÃO	C-02	C-01		22	PROCESSC		
	=					acejado elét						0,12 0,	2				0							22	100	-	ю/Н2		N .						
						rico, SJ : enca				¥		0,06 0,12	1 1/4		0,90	24			0,94	994,92			1,67		L 0	0	Água		B-03			23			
						amisado com va				NA		0,06 0,12	1 1/4		0,90	24			0,94	994,92			1,67		ᆫ 0	0	Água		C-02	В-03		24			
						por, etc.				NA		2 0,08	1 1/2		0,85	4 24,3			0,009	,92 0,17	2,32			237,49		982910,2805	Н2			C-02		25			
										P		0,12	/2								32			,49	100	1,2805	2			22		51		L	
										NA		0,07 0,12	ω		1,01	26,4			0,89	981,95			1,77		L 0	0,564331	Orgânico		B-04	C-02		26		Pág.	AÇOES
										NA		0,07 0,12	. 3		1,06	26,4			0,89	981,95			1,77		L 0	0,564331	Orgânico		C-03	B-04		27		3 de	THE PROCESSO

F	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	Sī	2 4	» N	_		т	L	
	H					િ	<u>(1)</u>		NOTAS:	ISOL	VEL	ΔP(DIÂN		PRE	TEM		PON	VISC	DEZ	PES		VAZ	VAZ	FAS	COV	TAN		≻	-	吊	IDEI	₽.	<	o 70	+	PR(
Rev.	Para materiais ver a					(3) Se é requerido espe	_	(1) Especificar se é vapo	TAS:	ISOLAMENTO, TRACEJADO (3)	VELOCIDADE CALCULADA / PERMITIDA (2)	AP CALCULADA / PERMITIDA	DIÂMETRO NOMINAL		PRESSÃO OPERAÇÃO / PROJETO	TEMPERATURA OPERAÇÃO / PROJETO		PONTO DE FLUIDEZ (POUR POINT)	VISCOSIDADE GAS / LÍQUIDO @P, T	DENSIDADE GAS / LÍQUIDO @P, T	PESO MOLECULAR GAS		VAZÃO VOLUMÉTRICO LÍQUIDO @P, T	VAZÃO VOLUMÉTRICO VAPOR @P, T	FASE (1) / VAPORIZADO (% peso)	COMPOSTOS CORROSIVOS / TÓXICOS (% peso / ppm p)	NATUREZA DO FLUIDO					IDENTIFICAÇAO NO P&I	TUBULAÇÃO №			UNIDADE :	PROJETO: Produção
Por	Para materiais ver a folha de seleção de materiais					Se é requerido especificar, P: proteção pessoal, H: conservação decalor, C: conservação frío, ST: tracejado com vapor, ET: tracejado elétrico, SJ:	Indicar ∆p e velocidade máxima permitida só se é um requerimento de processo, corrosão, sólidos, fluidos especiais, etc	Especificar se é vapor (V), líquido (L), o fase mista (M).		(3)	/ PERMITIDA (2)	1DA (2)			OJETO) / PROJETO		POINT)	DO @P, T	@P, T			IDO @P, T	OR @P, T	peso)	/ TÓXICOS (% peso / pp											Produção de Metil Etil Cetona a partir de 2-butanol
	nais.					soal, H: conservaç	se é um requerimen	nista (M).			m/s	kg/cm²/ km	polegadas		kg/cm ² g	°C		°C	cP (G) / cSt (L)	kg/m³			m³/h	m³/h		om p)											artir de 2-butanol
						ção decalor, C	to de processo,			Ā		0,09 0,12	3/4		1,31	29,6			0,67	1395,7			0,19		Г 0	933506,0072	Orgânica		C-03	,	B-06		28				
						conserv	corros ão					2 0,06				3,			_	,7					_					1							
						ação frío, ST:	o, sólidos, fluid			NA		0,12	3/4	DA	1,31	29,6	CONDIÇÕES DE OPERAÇÃO / PROJETO		0,67	1395,7			0,37	-	0	933506,0072	Orgânica	NATU	B-06	! !	L-02		29	1000			
						tracejado cor	os especiais,			¥		0,02	3/4	DADOS TUBULAÇÃO			DE OPERA			1:		PROPRIEDADES	0,18		_	933506,0072	Orgânica	NATUREZA, FASE E VAZÃO	L-02		E-05		30	3010	TIBIII ACÕES DE BROCESSO		
						n vapor,	etc.					0,12		AÇÃO	1,31	35)Ã0 / PR		0,62	1357,59		DES			\dashv	_	ca	E VAZÃO									
						ET : traceja				N.		0,02 0,12	3/4		1,31	24	OJETO		0,74	1434			0,19		Г 0	933506,0072	Orgânica	٥	L-02				31				
						do elétric						2 0,06				+			.4	34					_	2				1							
						o, SJ : encar				NA		6 0,12	1 1/4		0,90	27,8			0,86	991,3			1,68	-	0	não	Água				င္ပ		32				
						nis ado co				_		0,03	3										0,		_	59909	Org		œ.		0						
						encamisado com vapor, etc.				¥		0,12	3/4		1,01	27			0,60	1199,0			0,26		0	599095,4627	Orgânica		B-05		C-03		33				
						etc.				NA		0,03	3/4										0,26		L	599095,4627	Orgânica		E-05		B-05		34				
										Ĺ		0,12	1		1,20	27,1			0,60	1199,2			6		0	,4627	nica		5		Ġ.						
										N		0,03 0,12	3/4		1,	10			0,	108			0,29		_	599095,4627	Orgânica		C-04		E-05		35			Pág.	TUBULAÇÕES de PROCESSO
															1,20	101,9			0,29	1089,6										1						4	S de PR
										¥		0,09 0,12	21/2		0,24	83,7			0,31	737,75			0,09		0	0,436	Orgânica		E-06		Ç-04		36			de	CESSO

		34	33	32	3	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	1,	13	12	1	10	9	œ	7	_ග ග	ω 4	2	_		1	
		4	ω	2	_	ن	9	æ	7						Ì			8					ω						Ħ					< 0	_Ζ	
Data Aprovado	Rev. Por	Para materiais ver a folha de seleção de materiais					(3) Se é requerido especificar, P: proteção pes	(2) Indicar ∆p e velocidade máxima permitida só se é um requerimento de processo, corrosão, sólidos, fluidos especiais, etc.		NOTAS:	ISOLAMENTO, TRACEJADO (3)	VELOCIDADE CALCULADA / PERMITIDA (2)	ΔP CALCULADA / PERMITIDA (2)	DIÂMETRO NOMINAL		PRESSÃO OPERAÇÃO / PROJETO	TEMPERATURA OPERAÇÃO / PROJETO		PONTO DE FLUIDEZ (POUR POINT)	VISCOSIDADE GAS / LÍQUIDO @P, T	DENSIDADE GAS / LÍQUIDO @P, T	PESO MOLECULAR GAS		VAZÃO VOLUMÉTRICO LÍQUIDO @P, T	VAZÃO VOLUMÉTRICO VAPOR @P, T	FASE (1) / VAPORIZADO (% peso)	COMPOSTOS CORROSIVOS / TÓXICOS (% peso / ppm p)	NATUREZA DO FLUIDO		A	DE	IDENTIFICAÇÃO NO P&I	UN OĂÇAUUBUT		UNIDADE:	PROJETO: Produção de Metil Etil Cetona a partir de 2-butanol
		iais.					P : proteção pessoal, H : conservação decalor, C : conservação frío, ST : tracejado com vapor, ET : tracejado elétrico, SJ :	e é um requerimer	nista (M).			m/s	kg/cm²/ km	polegadas		kg/cm² g	റ്		റ്	cP (G) / cSt (L)	kg/m³			m³/h	m³/h		om p)									artir de 2-butano
							ıção dec	nto de p					0,09			0,6	94				4,03					٧		Q								-
							alor, C:	ocesso,			¥		0,12	2 1/2		3,5	124								65,44		0,436	Orgânica		L-03	C-04		37			
							conserva	corrosão,					0,04			3,1	24							1,3		_										
							ıção frío, s	sólidos,			N N		0,12	1 1/4		4,9	80	CONDIÇ		0,93	994,92			1,345836851			0	Água	Ŋ	E-06			38	TUBUL		
							ST : trace	fluidos es					0,04		DADOS	3,1	45)ES DE (2		PROF	H		٦			TUREZA					_AÇÕE		
							jado com	peciais, e			Ā		0,12	1 1/4	DADOS TUBULAÇÃO	┝	80	CONDIÇÕES DE OPERAÇÃO / PROJETO		0,61	974,1		PROPRIEDADES	1,374602197			0	Água	NATUREZA, FASE E VAZÃO		E-06		39	TUBULAÇÕES DE PROCESSO		
							vapor, ET	ťc.					0,03		Ã		84,9211	O / PROJ					Ö	h		L	•	Org	VAZÃO		_			ROCES		
							: tracejad				¥		0,12	3/4		3,5	1 114,921	ETO		0,30895	735,039			0,347090863			0,436	Orgânica		L-03	E-06		40	so		
							lo elétricc						0,03				1 84,9211 114,			5	9			0,34		L	•	Org			_					
							, SJ : enc				A		0,12	3/4		3,5	1 114,92			0,30895	735,039			0,347090863			0,436	Orgânica		B-07	L-03		41			
							camisado						0,02			0,24142	921 84,9211			5	9			0,25		L		Org			_					
							encamisado com vapor, etc.				¥		0,12	3/4		2 3,5	1 114,921			0,30895	735,039			0,258848642			0,436	Orgânica		ი 2	B-07		42			
							or, etc.						0,02			0,24142	1 84,9211			5	9			0,08		٦	0	Org		_	_					
											A		0,12	1/2		2 3,5	1 114,921			0,30895	735,039			0,088242222			0,436	Orgânica		B-09	B-07		43			
													0,03			1,24456				5	9			0,62		٦	8681	Org		E-07					Pag.	10B/L
											Ä		0,12	_		6 3,5	136,166 166,166			0,23884	1161,4			0,629393856			868145,9982	Orgânica		E-07 ou B-06	C-04		44			TUBULAÇÕES de PROCESSO
											-		0,02			2,25	6 147			4	9,10622				5	_	868	ò							de	be PROC
											¥		0,12	3/4		4,05	4410				2				58,9022		868145,9982	Orgânica		E-07	C-04		45			ESSO

		34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	ග ග	ω 4	2	1	< 0	D		F
Data	Rev.	Para materiais ver a folha de seleção de materiais					(3) Se é requerido especificar, P: proteção pessoal, H: conservação decalor, C: conservação frío, ST: tracejado com vapor, ET: tracejado elétrico, SJ:	(2) Indicar Δp e velocidade máxima permitida só se é um requerimento de processo, corrosão, sólidos, fluidos especiais, etc.	(1) Especificar se é vapor (V), líquido (L), o fase mista (M).	NOTAS:	ISOLAMENTO, TRACEJADO (3)	VELOCIDADE CALCULADA / PERMITIDA (2)	∆P CALCULADA / PERMITIDA (;	DIÂMETRO NOMINAL		PRESSÃO OPERAÇÃO / PROJETO	TEMPERATURA OPERAÇÃO / PROJETO		PONTO DE FLUIDEZ (POUR POINT)	VISCOSIDADE GAS / LÍQUIDO @P, T	DENSIDADE GAS / LÍQUIDO @P, T	PESO MOLECULAR GAS		VAZÃO VOLUMÉTRICO LÍQUIDO @P, T	VAZÃO VOLUMÉTRICO VAPOR @P, T	FASE (1) / VAPORIZADO (% peso)	COMPOSTOS CORROSIVOS / TÓXICOS (% peso / ppm p)	NATUREZA DO FLUIDO		Þ	DE	IDENTIFICAÇÃO NO P&I	TUBULAÇÃO №	< 0	Z)	UNIDADE :	
Aprovado	Por	e seleção de materiais.					P : proteção pessoal,	tima permitida só se é u	íquido (L), o fase mista			AITIDA (2)	(2) k				DJETO				7			P, T	э, Т		ICOS (% peso / ppm p)										Produção de Metil Etil Cetona a partir de z-butano
							H : conservaç	m requeriment	(M):			m/s	kg/cm²/ km	polegadas		kg/cm² g	റ്		റ്	cP (G) / cSt (L)	kg/m³			m³/h	m³/h												de 2-butanoi
							ção decalor, C	to de processo,			ΝĀ		0,02 0,12	3/4		0,8 3,5	112,1 142,1			0,23	1188,54			0,204		L	868146,0	Orgânica		B-06	C-04		46				
							: conservação f	corrosão, sólid			NA		0,02	3/4		2,5	112,3	CON						0,204		L	868146,0	Orgânica		E-05	B-06		47	TUE			
							río, ST : trace	os, fluidos es					0,12 0,04		DADOS	4,3 1,3	142,3 140,9	dições de c		0,23 0,01	1188,54 8,4		PROP			٧			NATUREZA					BULAÇÖE	ı		
							jado com vap	peciais, etc.			AA		0,12	2	DADOS TUBULAÇÃO	3,5	9 170,9	CONDIÇÕES DE OPERAÇÃO / PROJETO				120,6	PROPRIEDADES		56,76		868146,0	Orgânica	NATUREZA, FASE E VAZÃO	C-04	E-07		48	TUBULAÇÕES DE PROCESSO			
							or, ET: tracej				Ŧ		0,03 0,12			7 8,8	218 248	PROJETO		0,02	4,53	18,02			15,36	٧	0	Água	ZÃO	E-07			49	CESSO			
							ado elétrico, S				NA		2 0,02	1/2		7	8 218							0,08		L	0	Água			E-07		50				
							SJ: encamisa				_		0,12 0,	2		8,8 1,	248 2			0,15	887,13			8				ua)7		0				
							encamisado com vapor, etc.				¥		0,05 0,12	1 1/4		1,01 3,5	25 80			0,61	801,31			1,69	•	_	778,7112791	Orgânica		E-08	B-02		51				
							, etc.				NA		0,02 0,	1 1/2		1,01 3	25,0 ε			0,	801,31			1,89		L		Orgânica		E-08	P-09		52				
											L		0,12 0,02	1		3,5 1,00	80 73,6			0,61	1,31			1		L				<u>.</u>	m					Pág.	.000
											NA		0,12 0	1 1/2		3,5	103,6 1			0,37	747,812			1,89				Orgânica		C-05	E-08		53			6	LOBOLAÇOLO de L'NOCLOSO
											¥		0,05 0,12	2		1,00 3,5	117,4 147,4							6,7014		_		Orgânica		E-10 ou B-10	C-05		54			de	CEGGO

	34	33	32	3	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	ი თ	ω 4	2	_			_
	t					·			N _O	ISO	VEL	ΔP	DIÂI		PRE	TEV	Г	PO	VIS	DE	PES		VAZ	VAZ	FAS	S	NAT		Þ	DE	IDE	ᆵ	< 0 7	S	PR
Rev. Por Data Aprovado	nateriais ver a folha de s					(3) Se é requerido especificar, P : proteção pessoal, H : conservação decalor, C : conservação frio, ST : tracejado com vapor, ET : tracejado elétrico, SJ	(2) Indicar Δp e velocidade máxima permitida só se é um requerimento de processo, corrosão, sólidos, fluidos especiais, etc.	(1) Especificar se é vapor (V), líquido (L), o fase mista (M).	NOTAS:	ISOLAMENTO, TRACEJADO (3)	VELOCIDADE CALCULADA / PERMITIDA (2)	∆P CALCULADA / PERMITIDA (2)	DIÂMETRO NOMINAL		PRESSÃO OPERAÇÃO / PROJETO	TEMPERATURA OPERAÇÃO / PROJETO		PONTO DE FLUIDEZ (POUR POINT)	VISCOSIDADE GAS / LÍQUIDO @P, T	DENSIDADE GAS / LÍQUIDO @P, T	PESO MOLECULAR GAS		VAZÃO VOLUMÉTRICO LÍQUIDO @P, T	VAZÃO VOLUMÉTRICO VAPOR @P, T	FASE (1) / VAPORIZADO (% peso)	COMPOSTOS CORROSIVOS / TÓXICOS (% peso / ppm p)	NATUREZA DO FLUIDO				IDENTIFICAÇÃO NO P&I	⊓BULAÇÃO №			PROJETO: Produção de Metil Etil Cetona a partir de 2-butanol
	materiais.					ăo pessoal, H: conserva	la só se é um requerimer	fase mista (M).			m/s	kg/cm²/ km	polegadas		kg/cm ² g	റ്		റ്	cP (G) / cSt (L)	kg/m³			m³/h	m³/h		so / ppm p)									na a partir de 2-butanol
						ção deca	to de pro					0,05			1	117,4							1		٦	6557,	Org		т	c					
						llor, C:	cesso, c			Ā		0,12	2		3,5	147,4			0,27	747,81			1,89			6557,747813	Orgânico		E-10	C-05		55			
						conservaç	orrosão,					0,10	1		1,01	148,5	١								٦	6557	Org			•					
						ão frío, S	sólidos, fi			A		0,12			3,5	118,5	ONDIÇÕ		0,26	707,12			0,24			6557,747813	Orgânico	NA.	B-11	C-05		56	гивиг		
						T: tracej	uidos esp					0,10		DADOS T	1,01	118,5	ES DE O					PROP			_	6557	Org	TUREZA,	_				AÇÕES		
						ado com	eciais, et			¥		0,12	1	DADOS TUBULAÇÃO	3,5	148,5	PERAÇÃ		0,26	707,12		PROPRIEDADES	0,24			6557,747813	Orgânico	NATUREZA, FASE E VAZÃO	L-01	B-11		57	DE PF		
						vapor, ET	ī.					0,05		Ã	1,01	118,5	CONDIÇÕES DE OPERAÇÃO / PROJETO		0,02	2 4,83		S		3	<	6557	Org	VAZÃO					TUBULAÇÕES DE PROCESSO		
						: tracejao				¥		0,12	5		3,5	148,5	ETO							936,5		6557,747813	Orgânico		C-05	E-10		58	so		
						do elétrico						0,05			0,996	218			0,02	4,51				874	<		,								
										N N		0,12	2,5		3,5	248					18,02			874,9445676			Água		E-10			59			
						camis adc						0,08			7	218							4,44		_		,								
						encamisado com vapor, etc.				¥		0,12	1		8,8	248			0,15	887,13			4,448051582				Água			E-10		60			
						or, etc.						0,10			0,15984	83,8719				3,04487				11	<	0,1	Or								
										A		0,12	5		3,5	113,872				37				1896,67		0,000146	Orgânico		E-09	C-05		61			
	1											0,10			0,15984	72 83,8719			0,02	3,04487					<	0,	0							Pág.	TUBU
										A		0,12	5		84 3,5	19 113,872				37				0		0,000146	Orgânico		L-04	C-05		62		-	TUBULAÇOES de PROCESSO
\dagger										_		0,03			0,02	72 136			0,29	1083,9			6,71		_	0,	O							7 de	de PROC
										¥		3 0,12	2		2 3,5	166				9			6,701386138			0,000146	Orgânico		L-04	E-09		63			ESSO

	34	3	33	32	31	30	67	3 8	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	ი თ	4	0 12	_	< 0	Z)		F
Rev. Por	iateriais ver a tolha de s						(3) Se e requerido especificar, in ciproeção pessoar, in conservação decador, is conservação mo, si citadejado com vajor, en citadejado entinco, so encamisado com vajor, enc	1		(1) Especificar se é vapor (V), líquido (L), o fase mista (M).	NOTAS:	ISOLAMENTO, TRACEJADO (3)	VELOCIDADE CALCULADA / PERMITIDA (2)	∆P CALCULADA / PERMITIDA (2)	DIÂMETRO NOMINAL		PRESSÃO OPERAÇÃO / PROJETO	TEMPERATURA OPERAÇÃO / PROJETO		PONTO DE FLUIDEZ (POUR POINT)	VISCOSIDADE GAS / LÍQUIDO @P, T	DENSIDADE GAS / LÍQUIDO @P, T	PESO MOLECULAR GAS		VAZÃO VOLUMÉTRICO LÍQUIDO @P, T	VAZÃO VOLUMÉTRICO VAPOR @P, T	FASE (1) / VAPORIZADO (% peso)	COMPOSTOS CORROSIVOS / TÓXICOS (% peso / ppm p)	NATUREZA DO FLUIDO		>	DE	IDENTIFICAÇÃO NO P&I	TUBULAÇÃO №			UNIDADE :	PROJETO: Produção de Metil Etil Cetona a partir de 2-butanoi
	eriais.	i.					ssoal, n:conserva	oool H. ooponio	se é um requerimer	mista (M).			m/s	kg/cm²/ km	polegadas		kg/cm ² g	റ്		°C	cP (G) / cSt (L)	kg/m³			m³/h	m³/h		pm p)										partir de 2-butano
							çao decalor, C:	مق طموات ن	nto de processo, o			Ą		0,09 0,12	3		3,1 4,9	25 80			0,93	994,92	18,02		0,02		L	0	Água		E-09			64				
							conservação mo, a	concerns of the c	corrosão, sólidos,			NA		0,09 0,12	3		3,1 4,9	45 80	CONDIÇ		0,61	974,1	18,02		0,02		L	0	Água	NA		E-09		65	TUBUL			
							o i : tracejado con	T - transinda nom	fluidos especiais,			NA		0,04 0,12	1 1/4	DADOS TUBULAÇÃO	-0,014 35	78,8 108,8	CONDIÇÕES DE OPERAÇÃO / PROJETO		0,318	741	72,05	PROPRIEDADES	5,05		L	0,000146	Orgânica	NATUREZA, FASE E VAZÃO	B-11	L-04		66	TUBULAÇOES DE PROCESSO	2		
							vapor, E i : trace	T - tmoo	etc.			A		2 0,04 0,12	2	ÇÃO	-0,0135 3,5	8 78,8 108,8	ÃO / PROJETO		8 0,318	741	72,05	ES	5,05		L	0,000146	Orgânica	: VAZÃO	C-05	B-11		67	ROCESSO			
							lado eletrico, SJ:	indo olátrico o l				NA		0,04 0,	2		0,159	3,8 83,87 113,87			0	-	72,05		1,57		_	0,000146	Orgânica		B-12	L-04		68				
							encamis ado com					¥		12 0,04 0	1 1/4		3,5 1,0022 3	84,02			318 0,	741 795	72,05		1,57		_	•	1 Orgânica		E-08	B-12		69				
							vapor, etc.	2				NA		0,12 0,04	1 1/4		3,5 1,002	114,02 30			0,472	795,421	72,05		1,57		L	•	a Orgânica			E-08		70				
														0,12	_		3,5	80			0,472	795,421	5					46	ica								Pág.	IOBOLAÇA
																																					8 de	TOBULAÇUES de PRUCESSO
																																					8	Č

5.9 Instrumentos de Controle

		34	33	32	3	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	9	œ	7	6	Ŋ	4	ω	2	_		1		
			Н		Ę	Ę		L	L.																	H			Ţ					S	ラ	< o ;	D C		
Data	Rev.				(2) Indicar se o instrumen	 Especificar se é gas (NOTAS:	LOCALIZADO EM/IDENTIFICAÇÃO TUBULAÇÃO	TRACEJADO / DIAFRAGMA / FLUSHING	ENCRAVAMENTO ALTO / BAIXO	ALARMEBAIXO / MUITO BAIXO	ALARMEALTO / MUITO ALTO	PONTOS CONSIGNA (VAZÃO NORMAL: 100%)	SITUACIÓN (2)	TIPO ELEMENTO PRIMÁRIO		VISCOSIDADE @T	DENSIDADE @ P, T	POUR PONT DO LIQUIDO	DENSIDADE LÍQUIDO @15,4 °C	PESO MOLECULAR GAS		PRESSÃO ENTRADA	TEMPERATURA ENTRADA	VAZÃO MÍNIMA / MÁXIMA	VAPOR DE AGUA	GAS @ 0°C y 1 atm.	VAZÃO NORMAL LÍQUIDO @ 15,4°C	FASE (1)	COMPOSTOS CORROSIVOS / TÓXICOS (% peso / ppm p)	NATUREZA DO FLUIDO		CASO DE PROJETO	SERVIÇO	INSTRUMENTO Nº				PROJETO: Produção
Aprovado	Por				hdicar se o instrumento é local (L), painel (P) ou painel local (PL).	Especificar se é gas (G), líquido (L) ou vapor de água (V).		ÇÃOTUBULAÇÃO	LUSHING	BAIXO	AIXO	TO	NORMAL: 100%)															15,4 °C		TÓXICOS (% peso / pp									Produção de Metil Etil Cetona a Partir da Desidrogenação do Sec-Butanol
) ou painel local (F	r de água (V).				%	%	%					cP (G) / cSt (L)	kg/m³	°C	Sp. Gr.			kg/cm² g	°C	%	kg/h	Nm³/h	m³/h		mp)									Partir da Desid
					구.												3,96			804,3	74,12		-0,01	24				1,61	L	0	Orgânico			Entrada L-01	FT-001				rogenação do Sec-
																CARACTERÍSTICAS DO INSTRUMENTO	0,51			809,3	74,13	PROPRIEDADES DO FLUIDO	-0,01	33,9	-		-	1,84	L	747,7	Orgânico	DATOS GERAIS DE OPERAÇÃO		Entrada fluido frio em E-01 Entrada de vapor em E-01	FT-004	INSTRUMENTOS DE VAZÃO			Butanol
																INSTRUMENTO					18	DFLUIDO		218				1,464	٧		Vapor de água)PERAÇÃO			FT-005	DE VAZÃO			
																	0,02	1,76		1,83	39,36			450			•	1,464	٧	469319	Orgânico			Saída prod do reator	FT-009				
																					18		•	450				5,44	٧		Vapor			Saída vapor do R-01A	FT-012		- ay.	Pán	Intrumer
																	0,17	3,74	-		74,13		2,19	446	-	-		-	٧	747,7	Orgânico			Entrada reagente em R-01A	FT-013			1 de 7	Intrumentos de vazão

	32	۶	ر در	32	31	30	29	28	27	26	25	2,	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	QI	4	3	2	_		1	1		_
	Ë				_	Ĺ		L				1										Ĺ				J										<	Ф	R		_
Data Aprovado					" (2) Indicar se o instrumento é local (L), painel (P) ou painel local (PL).	(1) Especificar se é gas (G), líquido (L) ou vapor de água (V).	NOTAS:	LOCALIZADO EM/IDENTIFICAÇÃO TUBULAÇÃO	TRACEJADO / DIAFRAGMA / FLUSHING	ENCRAVAMENTO ALTO / BAIXO	ALARMEBAIXO / MUITO BAIXO	ALARME ALTO / MUITO ALTO	PONTOS CONSIGNA (VAZÃO NORMAL: 100%)	SITUACIÓN (2)	TIPO ELEMENTO PRIMÁRIO		VISCOSIDADE @T	DENSIDADE @ P, T	POUR POINT DO LIQUIDO	DENSIDADE LÍQUIDO @15,4 °C	PESO MOLECULAR GAS		PRESSÃO ENTRADA	TEMPERATURA ENTRADA	VAZÃO MÍNIMA / MÁXIMA	VAPOR DE AGUA	GAS @ 0°C y 1 atm.	VAZÃO NORMAL LÍQUIDO @ 15,4 °C	FASE(1)	COMPOSTOS CORROSIVOS / TÓXICOS (% peso / ppm p)	NATUREZA DO FLUIDO		CASO DE PROJETO	SERVIÇO	INSTRUMENTO Nº			_		PROJETO: Produção de Metil Etil Cetona a Partir da Desidrogenação do Sec-Butanol
					(P) ou painel local	por de água (V).				%	%	%					cP (G) / cSt (L)	kg/m³	°C	Sp. Gr.			kg/cm² g	°C	%	kg/h	Nm³/h	m³/h		ppmp)										a a Partir da Des
					(PL).											Ç.	60,65/0,61	801,3		807,98	72,35		1,01	25				1,69	L	778	Orgânico			Fluxo da corrente 51	FIC-036					idrogenação do Sec-Bu
																CARACTERISTICAS DO INSTRUMENTO	1,04/0,01	0,49			6,07	PROPRIEDADES DO FLUIDO	1,01	25					٧	943000	H2/Orgânico	DATOS GERAIS DE OPERAÇÃO		Fluxo da corrente 22	FIC-038		INSTRUMENTOS DE VAZÃO			itanol
																STRUMENTO	89,05/0,89	981,96		1,76	18,63	LUIDO	1,01	26,45				1,77	L		H2O/Orgânico	∓AÇÃO		Fluxo corrente 26	FIC-040		VAZÃO			
																	93,77/0,94	994,92		998,08	18,01		0,9	24				1,67	L		H20			Fluxo corrente 24	FIC-041					
																	0,94/0,009	0,17			2,32		0,85	24,27					٧	982900	H2			Fluxo corrente 25	FI-044			_	Pág.	Intrume
																	89,04/0,89	981,95		987,26	18,63		1,06	26,44				1,77	L		Água/Orgânico			Fluxo da corrente 27	FIC-046				3 de 7	Intrumentos de vazão

		34	33	32	ω <u></u>	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	ω	2	_		Т	Т
	F	É	Ĺ	Ė	L,	Ĺ																				Á										< o x	+	Ŧ
Data /	Rev.				(2) Indicar se o instrumento é local (L), painel (P) ou painel local (PL).		NOTAS:	LOCALIZADO EM/ IDENTIFICAÇÃO TUBULAÇÃO	TRACEJADO / DIAFRAGMA / FLUSHING	ENCRAVAMENTO ALTO / BAIXO	ALARME BAIXO / MUITO BAIXO	ALARME ALTO / MUITO ALTO	PONTOS CONSIGNA (VAZÃO NORMAL: 100%)	SITUACIÓN (2)	TIPO ELEMENTO PRIMÁRIO		VISCOSIDADE @T	DENSIDADE @ P, T	POUR POINT DO LIQUIDO	DENSIDADE LÍQUIDO @15,4 °C	PESO MOLECULAR GAS		PRESSÃO ENTRADA	TEMPERATURA ENTRADA	VAZÃO MÍNIMA / MÁXIMA	VAPOR DE AGUA	GAS @ 0°C y 1 atm.	VAZÃO NORMAL LÍQUIDO @ 15,4°C	FASE(1)	COMPOSTOS CORROSIVOS / TÓXICOS (% peso / ppm p)	NATUREZA DO FLUIDO		CASO DE PROJETO	SERVIÇO	INSTRUMENTO Nº		ONIDADE:	
Aprovado	Por				local (L), painel (P) ou	íquido (L) ou vapor de		TUBULAÇÃO	HING	0			RMAL: 100%)				сР											°C		ICOS (% peso / ppm								Metil Etil Cetona a Pa
					u painel local (F	e água (V).				%	%	%					cP (G) / cSt (L)	kg/m³	റ്	Sp. Gr.			kg/cm² g	റ്	%	kg/h	Nm³/h	m³/h		p)								artir da Desid
					<u>r</u>).											CA	89,04/0,89	981,95		987,26	18,63		1,06	26,45				1,76	_	1000000	Orgânico			Fluxo da corrente 31	FIC-047			Produção de Metil Etil Cetona a Partir da Desidrogenação do Sec-Butanol
																CARACTERISTICAS DO INSTRUMENTO	67,57/0,67	1399,48		1406,96	127,97	PROPRIEDADES DO FLUIDO	1,31	29,59				0,18	_	933000	Orgânico	DATOS GERAIS DE OPERAÇÃO		Fluxo de corrente 28	FIC-051	INSTRUMENTOS DE VAZÃO		tanol
																TRUMENTO	86,27/0,86	991,37		998,01	18,12	LUIDO	1,01	27,87				1,68	٢	70000	H2O	RAÇÃO		Fluxo corrente 32	FI-052	VAZÃO		
																	60,21/0,60	1199,84		1203,45	106,61		1,2	27,08				0,26	_	599000	Orgânico/H2O			Fluxo corrente 33	FIC-054			
																	60,21/0,61	1199,84		1203,45	106,61		1,2	27,08				1,26	٢	599001	Orgânico/H2O			Fluxo corrente 34	FIC-056		Pag.	Intrume
																	28,21/0,28	1083,73		1203,45	106,61		1,2	106,02		•	•	1,77	_	599095	Água/Orgânico			Fluxo da corrente 35	FIC-057		4 de 7	Vaz

		34	33	32	3	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	9	8	7	6	5	4	ω	2	_			
F					<u>L</u> ,	+		L	Ļ					SI	TF			DE	PC	DE	곮			Ц	/ /			11	ΑΉ	CC	Z,		C,A	SE	N.	< o x	+	
Data Ap					(2) Indicar se o instrumento e local (L), painel (P) ou painel local (PL).		٠,	LOCALIZADO EM/ IDENTIFICAÇÃO TUBULAÇÃO	TRACEJADO / DIAFRAGMA / FLUSHING	ENCRAVAMENTO ALTO / BAIXO	ALARME BAIXO / MUITO BAIXO	ALARME ALTO / MUITO ALTO	PONTOS CONSIGNA (VAZÃO NORMAL: 100%)	SITUACIÓN (2)	IPO ELEMENTO PRIMÁRIO		VISCOSIDADE @T	DENSIDADE @ P, T	POUR POINT DO LIQUIDO	DENSIDADE LÍQUIDO @15,4 °C	PESO MOLECULAR GAS		PRESSÃO ENTRADA	TEMPERATURA ENTRADA	VAZÃO MÍNIMA / MÁXIMA	VAPOR DE AGUA	GAS @ 0°C y 1 atm.	VAZÃO NORMAL LÍQUIDO @ 15,4°C	FASE(1)	COMPOSTOS CORROSIVOS / TÓXICOS (% peso / ppm p)	NATUREZA DO FLUIDO		CASO DE PROJETO	SERVIÇO	INSTRUMENTO Nº		UNIDADE:	
Aprovado	Por				cal (L), painel (P) o	uido (L) ou vapor d		UBULAÇÃO	်				ML: 100%)				сP													⊃S (% peso / ppm								til Etil Cetona a P
					u painel local (F	e água (V).				%	%	%					cP (G) / cSt (L)	kg/m³	°C	Sp. Gr.			kg/cm² g	°C	%	kg/h	Nm³/h	m³/h		p)								artir da Desid
					<u>,</u>											CA	23,11/0,23	1188,54		0,18	122,63		1,26	142,01		-		0,2	L	868145	Água/Orgânico			Fluxo da corrente 46	FT-058			Produção de Metil Etil Cetona a Partir da Desidrogenação do Sec-Butanol
																CARACTERÍSTICAS DO INSTRUMENTO	30,89/0,31	735,04		808,43	70,95	PROPRIEDADES DO FLUIDO	0,24	84,92				0,08	7	241	Água/Orgânico	DATOS GERAIS DE OPERAÇÃO		Fluxo de corrente 37	FI-059	INSTRUMENTOS DE VAZÃO		tanol
																STRUMENTO	86,27/0,86	991,37		998,01	18,12	LUIDO	0,24	84,92		•	•	1,34	L		H20	ERAÇÃO		Fluxo corrente 38	FIC-061	: VAZÃO		
																	30,89/0,31	735,04		808,43	70,95		0,24	84,92		-	-	0,08	L	240	Orgânico/Água			Fluxo corrente 41	FIC-065			
																	23,88/0,24	1161,4		1341,02			1,24	136,17		-	-	0,54	١-	•	Orgânico/Água			Fluxo corrente 42	FIC-068		Pág.	Intrume
																	0,23	1188,54					1,26	142				0,2	L		Orgânico			Fluxo corrente 45	FT-074		5 de 7	ntos

		34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	З	2	1	< 0 70	F	-
Data Aprovado	Rev. Por				(2) Indicar se o instrumento é local (L), painel (P) ou painel local (PL).		0,	LOCALIZADO EM/ IDENTIFICAÇÃO TUBULAÇÃO	TRACEJADO / DIAFRAGMA / FLUSHING	ENCRAVAMENTO ALTO / BAIXO	ALARME BAIXO / MUITO BAIXO	ALARME ALTO / MUITO ALTO	PONTOS CONSIGNA (VAZÃO NORMAL: 100%)	SITUACIÓN (2)	TIPO ELEMENTO PRIMÁRIO		VISCOSIDADE @T	DENSIDADE @ P, T	POUR POINT DO LIQUIDO	DENSIDADE LÍQUIDO @ 15,4 °C	PESO MOLECULAR GAS		PRESSÃO ENTRADA	TEMPERATURA ENTRADA	VAZÃO MÍNIMA / MÁXIMA	VAPOR DE AGUA	GAS @ 0°C y 1 atm.	VAZÃO NORMAL LÍQUIDO @ 15,4 °C	FASE(1)	COMPOSTOS CORROSIVOS / TÓXICOS (% peso / ppm p)	NATUREZA DO FLUIDO		CASO DE PROJETO	SERVIÇO	INSTRUMENTO Nº		UNIDADE:	PROJETO: Produção de Metil Etil Cetona a Partir da Desidrogenação do Sec-Butanol
					nel (P) ou painel local	vapor de água (V).		0		%	%	%	6)				cP (G) / cSt (L)	kg/m³	°C	Sp. Gr.			kg/cm² g	°C	%	kg/h	Nm³/h	m³/h		so / ppm p)								tona a Partir da Des
					(PL).											C/	0,24	1161,4					1,24	136,17				0,54	٧		Água			Fluxo da corrente 49	FT-076			idrogenação do Sec-Bu
																CARACTERÍSTICAS DO INSTRUMENTO	0,58	798,54				PROPRIEDADES DO FLUIDO	1	27,76				1,75	_		Orgânico	DATOS GERAIS DE OPERAÇÃO		Fluxo de corrente 37	FT-081	INSTRUMENTOS DE VAZÃO		itanol
																STRUMENTO	0,31	734,79				LUIDO	1	84,02				1,55	۲		Orgânico	∓RAÇÃO		Fluxo de corrente 63	FT-083	VAZÃO		
																	0,36	696,81					0,99	117,39				5,77	L		Água			Fluxo de corrente 64	FT-086			
																	0,32	741,02					-0,01	78,81				4,64	_		Orgânico			Fluxo de corrente 62	FT-095		Pag.	Intrume
																	0,37	707,12					0,82	112,09				0,21	_		Orgânico			Fluxo de corrente 56	FT-098		6 de 7	e vaz

							Aprovado	Data	
							Por	Rev.	
									34
									33
									32
					면).	P) ou painel local (Indicar se o instrumento é local (L), painel (P) ou painel local (PL).	(2) Indicar se o instru	31
						or de água (V).	Especificar se é gas (G), líquido (L) ou vapor de água (V).	(1) Especificar se é (30
								NOTAS:	29
							IFICAÇÃO TUBULAÇÃO	LOCALIZADO EM/ IDENTIFICAÇÃO TUBULAÇÃO	28
							/A / FLUSHING	TRACEJADO / DIAFRAGMA / FLUSHING	27
						%	TO / BAIXO	ENCRAVAMENTO ALTO / BAIXO	26
						%	TOBAIXO	ALARME BAIXO / MUITO BAIXO	25
						%	O ALTO	ALARME ALTO / MUITO ALTO	24
							ZÃO NORMAL : 100%)	PONTOS CONSIGNA (VAZÃO NORMAL: 100%)	23
								SITUACIÓN (2)	
								TIPO ELEMENTO PRIMÁRIO	21
			RUMENTO	CARACTERÍSTICAS DO INSTRUMENTO	CARAC				20
					0,36	cP (G) / cSt (L)		VISCOSIDADE @T	
					696,81	kg/m³		DENSIDADE @ P, T	18
						°C		POUR POINT DO LIQUIDO	17
						Sp. Gr.	5,4 °C	DENSIDADE LÍQUIDO @15,4 °C	
								PESO MOLECULAR GAS	15
			UIDO	PROPRIEDADES DO FLUIDO	P				14
					0,99	kg/cm² g		PRESSÃO ENTRADA	13
					117,39	°C	I.	TEMPERATURA ENTRADA	12
						%	<i>D</i>	VAZÃO MÍNIMA / MÁXIMA	11
						kg/h		VAPOR DE AGUA	10
						Nm³/h	n,	GAS @ 0°C y 1 atm.	9
					5,77	m³/h	O @ 15,4 °C	VAZÃO NORMAL LÍQUIDO @ 15,4 °C	8
					٧			FASE(1)	7
						ppmp)	COMPOSTOS CORROSIVOS / TÓXICOS (% peso / ppm p)	COMPOSTOS CORROSIVO	6
					Água			NATUREZA DO FLUIDO	5
			ração	DATOS GERAIS DE OPERAÇÃO	DA				4
								CASO DE PROJETO	ω
					Fluxo da corrente 59			SERVIÇO	2
					FT-103			INSTRUMENTO Nº	_
			!	!	;				<
			ΛΑΖÃΟ	INSTRUMENTOS DE VAZÃO	INO.				Ф д
Pág. 7 de 7								UNIDADE:	
Intrumentos de vazão	=			_	Produção de Metil Etil Cetona a Partir da Desidrogenação do Sec-Butanol	a Partir da Desi	ção de Metil Etil Cetona		

PROJETO: Produção de Metil Etil Cetona a Partir da Desidrogenação do Sec-Butanol UNIDADE: R e V	etona a Partir da De	sidrogenação do Se	c-Bu	INSTRUMENTOS DE	TRUMENTOS DE NÍVEL	TRUMENTOS DE NÍVEL	TRUMENTOS DE NÍVEL
1 INSTRUMENTO N°		LIC-002	LIC-035	LIC-039	LIC-048	LIC-064	LIC-073
2 SERVIÇO		Nível do Pulmão L-01	Nível do Flash C-01	Nível de Fundo C-02	Nível do Pulmão L-02	Nível do Pulmão L-03	Nível de Fundo C-04
3 CASO DE PROJETO						-	
4			DATOS GERAIS DE OPERAÇÃO	RAÇÃO			
5 NATUREZA DO FLUIDO SUPERIOR / INFERIOR		Orgânico	Orgânico/Água/H2	Orgânico/Água/H2	Orgânico	Orgânico/Água	Orgânico/Água
6 COMPOSTOS CORROSIVOS / TÓXICOS (% peso / ppm p)	eso / ppm p)		725000	18330	1000000	241	
7 TIPO DE INTERFASE (1)			D-1	٦	٦	٦	
8 TEMPERATURA	°C	33,87	31,57	26,47	29,59	84,92	
9 PRESSÃO	kg/cm² g	-0,01	1,28	1,01	1,31	0,24	
10			PROPRIEDADES DO FLUIDO	LUIDO			
DENSIDADE FASE SUP. @ P, T	kg/m³		0,62				
VISCOSIDADE FASE SUP. @ T	cP/cSt		0,01/0,0001				
11 DENSIDADE FASE INF. @ P, T	kg/m ⁵	794,34	794,34	981,96	1399,48	735,04	
12 VISCOSIDADE FASE INF. @ T	cP/cSt	27,56/0,28	56,18/0,56	89,05/0,89	67,57/0,68	30,90/0,31	23,11/0,23
13		C.A	CARACTERÍSTICAS DO INSTRUMENTO	STRUMENTO			
14 TIPO ELEMENTO PRIMARIO							
15 SITUAÇÃO (2)							
16 PONTOS CONSIGNA (NÍVEL NORMAL :) (3)							
17 ALARME ALTO / MUITO ALTO	mm						
18 ALARME BAIXO / MUITO BAIXO	mm						
19 ENCRAVAMENTO ALTO / BAIXO	mm						
20 TRACEJADO, FLUSHING							
21 LOCALIZADO EM RECIPIENTE							
22 NOTAS:							
23 (1) Especificar se é líquido - líquido (L-L) ou líquido - vapor (L-V)	ou líquido - vapor (L-	S					
24 (2) Indicar se o instrumento é local (L), painel (P) ou painel local (PL)	ainel (P) ou painel loc	al (PL)					
25 (3) Indicar o nível normal en mm sobre LT o % intervalo medida e os pontos de consigna de ALARMEs e encravamentos nas mesmas unidades	Γo % intervalo medida	a e os pontos de consigna d	e ALARMEs e encravame	ntos nas mesmas unidades	6		
28							
29							
30							
31							
32							
33							
34							
Data Aprovado							

						Aprovado	Data		
						Por	Rev.		
								34	(c)
								33	100
								32	(-)
								31	(-)
								30	6.5
								29	١,٠
								28	۱ <u>۸</u> ۰
	unidades	ntos nas mesmas	ALARMEs e encravame	os pontos de consigna de	ntervalo medida e	Indicar o nível normal en mm sobre LT o % intervalo medida e os pontos de consigna de ALARVIEs e encravamentos nas mesmas unidades	(3) Indicar on	25	N.
				(PL)) ou painel local	Indicar se o instrumento é local (L), painel (P) ou painel local (PL)	(2) Indicar se	24	N.
					ido - vapor (L-V)	Especificar se é líquido - líquido (L-L) ou líquido - vapor (L-V)	(1) Especifica	23	h.
							NOTAS:	22	h.
						ECIPIENTE	LOCALIZADO EM RECIPIENTE	21	N.
						HNG	TRACEJADO, FLUSHING	20	h.
					mm	ENCRAVAMENTO ALTO / BAIXO	ENCRAVAMENT	19	I\
					mm	ALARME BAIXO / MUITO BAIXO	ALARME BAIXO	18	L
					mm	/ MUITO ALTO	ALARME ALTO / MUITO ALTO	17	L
						PONTOS CONSIGNA (NÍVEL NORMAL :) (3)	PONTOS CONSIGN	16	
							SITUAÇÃO (2)	15	ادرا
						IMARIO	TIPO ELEMENTO PRIMARIO	14	_`
		STRUMENTO	CARACTERÍSTICAS DO INSTRUMENTO	CA				13	
			37,42/0,37	30,81/0,31	cP / cSt	EINF. @ T	VISCOSIDADE FASE INF. @ T	12	ادرا
			707,12	734,97	kg/m⁵	VF. @ P, T	DENSIDADE FASE INF. @ P, T	11	
					cP/cSt	ESUP. @ T	VISCOSIDADE FASE SUP. @ T		
					kg/m³	3UP. @ P, T	DENSIDADE FASE SUP. @ P, T		
		LUIDO	PROPRIEDADES DO FLUIDO					10	
			0,82	0,16	kg/cm² g		PRESSÃO	9	
			112,09	83,87	റ്		TEMPERATURA	8	ı
			_	L		<u>:(1)</u>	TIPO DE INTERFASE (1)	7	
			6557		pm p)	COMPOSTOS CORROSIVOS / TÓXICOS (% peso / ppm p)	COMPOSTOS COR	6	
			Orgânico	Orgânico		NATUREZA DO FLUIDO SUPERIOR / INFERIOR	NATUREZA DO FLU	5	
		∓AÇÃO	DATOS GERAIS DE OPERAÇÃO					4	
							CASO DE PROJETO	ω	
			Nível de Fundo C-05	Nível do Pulmão I-04			SERVIÇO	2	
			LIC-097	LIC-090			INSTRUMENTO N°	1	
		N	ING I ROMEN I CO DE NIVEL					< 0	-
								R	
Pág. 2 de 2							UNIDADE:		
Intrumentos de NIVEL			anol	drogenação do Sec-But	a Partir da Des	Produção de Metil Etil Cetona a Partir da Desidrogenação do Sec-Butanol	PROJETO:		

29 (3) 30 31 31 32 32 34			-	Щ,	Н,	_	•		28 (2)	ļ		26 NOTAS	25 PI	24 PI	23 PI	22 PI	21 PI	20 PI	19 PI	18 PIC	17 PI	16 PI	15 PI	14 PIC	13 PI	12 PI	11 PIC	10 PI	9 PIC	ld 8	7 PI	6 PI	5 PI	4	ω	2 INSTR	-	< 0	R	UNIDADE	PROJETO:
Rev.								Indicar se o ins	Especificam-s	ne somooden	Especificar se	-	PI - 055 F	PI - 052 F	PI - 049 F	PI - 047 F	PI - 046 F	PI - 045 F	PI - 044 F	PIC - 043 F	PI - 042 F	PI - 037 F	PI - 028 F	PIC - 025 F	PI - 019 F	PI - 021 F	PIC - 016	PI - 012 F	PIC - 010	PI - 008			PI - 001		N _o	INSTRUMENTO					
								strumento é local (l	e candições de ape	open (o), inhance	é ass (G) liquido (P corrente 33	P corrente 32	P corrente 28	P corrente 31	P corrente 24	P corrente 24	P corrente 25	P corrente 25	P corrente 24	P corrente 26	P corrente 17	P corrente 12	P corrente 13	P corrente 16	P fundo R-1	P corrente 14	P corrente 9	P corrente 8	P corrente 3	P corrente 3	P corrente 1		Ochrano	SEBVICO					dução de metil-e
Par								Indicar se o instrumento é local (L), painel (P) o painel local (PL).	ração. Para condiç	Especiation as a gas (a), induced (c), respector as agas (v) a mission (w).	L) vanor de agua ()																								PROJETO	CASO DE					Produção de metil-etil-cetona a partir de 2-butanol
								ti local (PL).	ses de projeto mecan	A to the second of the	(M) a mista (M)		Orgánico	Água	Tricloroetano	Tricloroetano	Água	Água	H2	H2	Água	Orgánico	Água	Orgánico/H2O	Água	Água	Orgánico/H2O	Orgánico	Orgánico	Orgánico	Orgánico	Orgánico	Orgánico	FLUIDO	The state of the s	NATIDEZA					e 2-butanol
									Especificam-se condições de operação. Para condições de projeto mecánico reterir-se as condições da fundação ou equipamento associado				Sim	Não	Sim	Sim	Não	Não	Sim	Sim	Sim	Sim	Não	Sim	Não	Sim	Sim	Não	Não	Não	Não	Não	Não	TÓXICOS	CORROSIVOS O	COMPUEST	DATOS GERAIS DE OPERAÇÃO (2)				
									ilições da tuni				L	<	L	-	L	-	٧	<	٦	_	<	٧	٧	٧	٧	L	٦	_	٦	_	٦		O FASE (1)		RAIS DE OPE				
	4								ifação ou eq.				27	30	30	30	26	26	24	24	24	25	376	450	450	450	450	450	161	158	34	34	¥	(4)	1000	TEMP	ERAÇÃO (2)	INSTRUI			
									inpamento as																									MÍN NORM.	PRES. (2000		INSTRUMENTOS DE PRESSÃO			
									sociado.				1	1	1	1	1	1	1	1	1	_	39	2	2	2	2	2	2	2	⇔	ω	\dashv	RM. MAX.	risco. (sgum g)	24		DE PRES			
																																		X. (a)	On Only	OF CALLEDS		SSÃO			
																																		PAL							
																																	\dashv	PALL	ALARMES	PONTO:					
																																	_	Ξ	ES	PONTOS CONSIGNA (kg/cm2 g)	CARACT				
																																	_	PAHH B		VA (kg/cm²	ERISTICA				
																																		BAIXO A	ENCRAV.	2g)	CARACTERÍSTICAS INSTRUMENTO				
	Н																																_	0		TF	MENTO			F	Irbri
													L																						(sim	TRAC.				Pág.	imentos de
													E-05	C-03	L-02	L-02	C-03	C-03	C-02	C-02	C-02	C-02	E-03	R-01B	R-01A	R-01B	R-01A	R-01A	E-02	E-03	E-01	E-01	L-01	TUBUDYÇAO / RECIPIENTE	TOUR DECIDENTS	I OC ALIZADO EM				1 de 2	Infrumentos de PRESSÃO

	PROJETO:	Produção de meti-et	Produção de methetil-cetona a partir de 2-butanol	mol														Intrumento	Intrumentos de PRESSÃO		
	UNIDADE:																	Pág.	2	8	
Z)	~										a b							İ			- 1
< 0	< 0						INST	RUMEN	INSTRUMENTOS DE PRESSÃO	PRESS	Ã										
1					DATOS	DATOS GERAIS DE OPERAÇÃO (2)	OPERAÇÃ	0(2)						Ç	RACTER	İSTICASI	CARACTERÍSTICAS INSTRUMENTO	ENTO			
2	TOTAL STREET	2001	2222222222		COMPUEST			- 1					PONT	PONTOS CONSIGNA (kg/cm2 g)	GNA (kg/	om2g)			\dashv		- 1
ω	INSTRUMENTO N	SERVIÇO	CASO DE PROJETO	NATUREZA	CORROSIVOS	FASE (1)	TEMP.	PR	PRES. (kg/cm*g)	(B	SITUAÇÃO (3)		ALAF	ALARMES		EN	ENCRAV.	TRAC.	LOCALIZ	DEM TUBUL	
4					O TÓXICOS		(3)	NİN	NORM.	MAX.		PAL	PALL	PAH	PAHH	g	ALTO	(sum mao)		RECIPIENTE	
ch	PI - 056	P corrente 33		Orgánico	Não	٦	27		_											E-05	- 1
6	PI - 058	P corrente 31		Tricloetano	Sim	٦	141		-											E-05	- 1
7	PIC - 059	P corrente 35		Orgánico	Sim	٦	22		_											L-03	- 1
80	PI - 066	P corrente 41		Orgánico	Sim	٦	84		-											C-04	- 1
9	PI - 067	P corrente 42		Orgánico	Sim	٦	84		1											E-05	
10	PI - 069	P corrente 47		Tricloetano	Sim	٦	141		_											E-05	- 1
11	PI - 070	P corrente 47		Tricloetano	Sim	٦	141		1											E-05	
12	PI - 075	P corrente 47		Tricloetano	Sim	٦	141		1											C-04	
13	PI - 079	P corente 51		Orgánico	Sim	٦	84		1											C-04	
14	PI - 081	P corrente 52		Orgánico	Sim	٦	84		1											C-04	
15	PI - 084	P corrente 61		Orgánico	Não	٦	79		1											E-09	
16	PI - 092	P corrente 66		Orgánico	Não	٦	79		1											E-08	
17	PI - 093	P corrente 66		Orgánico	Não	L	79		1											E-08	
18	PI - 094	P corrente 66		Orgánico	Não	L	70		1											C-05	ı
19	PI - 095	P corrente 67		Orgánico	Não	L	70		1											C-05	1
20	PI - 096	P corrente 70		Orgánico	Sim	L	30		1											E-08	ı
21	PI - 098	P corrente 20		Orgánico	Sim	L	119		-											C-05	I
22	PI - 099	P corrente 54		Orgánico	Não	L	119		1											C-05	
23	PIC - 100	P corrente 55		Orgánico	Não	٦	119		_											L-01	I
24	PI - 101	P corrente 57		Orgánico	Não	L	119		1											C-05	1
25	PI - 106	P corrente 62		Orgánico	Não	٢	119		ω					Г						L-01	1
26	NOTAS:																				
27	(1) Especificar	se é gas (G), líquido (L)	Especificar se é gas (G), líquido (L), vapor de agua (V) o mista (M).	M).																	
28	(2) Especificam	1-se candições de opera	Especificam-se condições de operação. Para condições de projeto mecánico referir-se às condições da tunulação ou equipamento associado	sto mecánico refe	rir-se às condições	da tunulação	ou equipan	territo assoc	ziado.												
29	(3) Indicar se o	instrumento é local (L),	Indicar se o instrumento é local (L), painel (P) o painel local (PL).	7																	
30																					
31																					
32																					
33																					
34																					ı
	Rev.		Par													T					1
	Data		Aprovado																		ı

		34	33	3 -	2 6		29 (3)	28 (2)	27 (1)	26 NOTAS:	25 TI		23 TI	22 TI	21 TIC	20 TI	19 TI	18 TI	17 T I			14 T I	13 TI	12 TI	11 TIC	10 TT	9 1	8 TIC	7 TI	6 TI	5 TI	4		2 NSTF		< Φ π	UNIDADE:	PROJETO:
	Rev.						Indicar se o	Especificam	Especificar	. **	TI-032 T c	TIC-030 T c	ТІ-029 Т с	TI-028 T c	TIC-026 T c	TI-024 T t	TI-023 T fu	TI-021 T c		ТІ-019 Т с		TI-015 T t		TI-012 T c		ТТ-008 Т		TIC-006 T	TI-005 T	TI-004 T	TI-001 T			INSTRUMENT			E:	10.
							instrumento é	⊦se condições	se é gas (G), I		T corrente 19	T corrente 21	T corrente 18	T corrente 17	T corrente 12	T topo do R-1	fundo do R-1	T corrente 16	T corrente 10	T corrente 13	T corrente 11	T topo do R-1	T fundo do R-1	T corrente 15	T corrente 9	T corrente 7	T corrente 5	T corrente 6	T corrente 4	T corrente 3	T corrente 1		SERVIÇO					
-	Por					100	local (L), painel	de operação. Pa	íquido (L), vapor																								PROJETO	CASO DE				
							Indicar se o instrumento é local (L), painel (P) o painel local (PL).	ara condições de	Especificar se é gas (G), líquido (L), vapor de agua (V) o mista (M)		H2O	Orgânico/H2O	Orgânico/H2O	Água	Or gân ico/H2O	Or gân ico/H2O	Orgânico	Água	Orgânico	Água	Orgânico/H2O	Orgânico/H2O	Orgânico	Água	Orgânico	Orgânico	Água	Orgânico	Água	Orgânico	Orgânico	FLOIDO	NATUREZA					
						(PL)	Específicam-se condições de operação. Para condições de projeto mecânico referir-se às condições da tunulação ou equipamento associado.	ista (M).		Não	Sim	Sim	Não	Sim		Não	Não	Não				Não	Não	Não	Não	Não	Não	Não	Não	Não	OU TÓXICOS	CORROSIVOS	COMPUESTOS	DATOS GERAIS DE OPERAÇÃO (2)			
								referir-se			_	L-V	<	<	٧	٧	٧	<	L	٧	<	٧	٧	٧	٢	٧	٢	L	<	L	٦	(1)	FASE		AIS DE O	INS		
								às condi			24	31,57	196,29	540	450	450	450	460	160,37	540	450	450	450	460	160,37	157,46	100	100	218	33,87	24	(,)	EMP.	1 3	PERAÇÃO	TRUMEN		
								ções da tu			L																					MN.	TEMPE	Į	(2)	INSTRUMENTOS DE TEMPERATURA		
								ınulação c			24	31,57	196,29	540	450	450	450	460	160,37	540	450	450	450	460	160,37	157,46	100	100	218	33,87		NORM.	TEMPERATURA (°C)			ETEMPE		
								u equipan																								MÁX.		!		RATUR		
								nento associa																									SITUAÇÃO (3)			>		
								do.																								TAL						
																																TALL	ALARMES	PON	CAR.			
																																_	S	PONTOS CONSIGNA (°C)	CARACTERÍSTICAS INSTRUMENTO			
																																TAHH B	_	SIGNA (°C	CAS INS			
																																BAIXO A	ENCRAV.		RUMEN		L	. 3
																																ALTO	.<	-	Ö		Pág.	rumentos
											19	21	18	17	12	R-1	R-1	16	10	13	11	R-1	R-1	15	9	7	5	6	4	3	1	RECIPIENTE	TUBULAÇÃO/	LOCALIZADO EM			1 de	Intrumentos de temperatura

Especificam-se condições de operação. Para condições de projeto mecânico referir-se às condições da tunulação ou equipamento associado.	ou equipamento associado.
-	
TAL	TAL T
	SITUAÇÃO (3)
	CARACTERÍSTICAS INSTRUMENTO
INSTRUMENTOS DE TEMPERATURA	ATURA
▗▕▕▕▕▕▕▕▐▐▍▍▍▍▍▍▍▍▍▍▍▍▍▍▍▍▍▍▍▍▍▍▍▍▍▋▋▋▃▍▐	ACTERIS ANES TAH

	T	[34	33	32	2	N N	30	29	28	2 2	27 0	36	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	9	∞	7	6	5	4	ω	2	_		7		
F	_	ļ				ļ	1				ļ		Į	_	Ļ															П	_	ļ	0	7		0	S	=	< 0	R	_	_
Data Aprovado														(2) Para cromatógrafos especificar composição da corrente no formato J-6	(1) Especificar se é gas (G), líquido (L), vapor de agua (V) o mista (M).	NOTAS:	LOCALIZADO NA PLANTA / EQUIPAMENTO	ENCRAVAMENTO BAIXO / ALTO	ALARME BAJA / MUITO BAJA	ALARME ALTA / MUITO ALTA	PONTOS CONSIGNA	SITUA CIÓN (3)	PRINCÍPIO DE MEDIDA (2)		VALOR MÁXIMO	VALOR MÍNIMO	VALOR NORMAL	PROPIEDAD A ANALISAR		PRESSÃO	TEMPERA TURA	FASE (1)	COMPOSTOS CORROSIVOS / TÓXICOS (% peso / ppm p)	NATUREZA DO FLUIDO		CA SO DE PROJETO	SERVIÇO	INSTRUMENTO Nº			UNIDA DE :	PROJETO:
													nainel (P) o nainel local (posição da corrente no	vapor de agua (V) o mis			%	%	%										kg/cm² g	°C		beso/ppmp)									
												,		formato J-6.	sta (M).										0,0112	0,0110	0,0111	Fração molar		1,006204973	26,44600021	L	0,5643	Orgânico			C-02	XT-040				
																								CARACTERÍSTICAS DO INSTRUMENTO					PROPRIEDADES DO FLUIDO (2)						DATOS GERAIS DE OPERAÇÃO				ANALIS.			
																								S DO INSTRUME	_				S DO FLUIDO (2) DE OPERAÇÃO				ANALISADORES			
																								NTO)						0							
																						1																				
																																									Pág. 1	ANALISA DORES
																																									1 de 1	S

		34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	9	8	7	6	4 10	ω	2	_	< o	R		
r				(4)	(3)	(2)	(1)	NOTAS	_													П	F	П	П	П	П	П	П	Ţ	<u> </u>	<,	<u> </u>		7	ىد	UNIDADE	PRQJ
Dala	Rev.			Blo				Ś	TOTAL													FSV-09	SV-08	FSV-07	FSV-06	FSV-05	FSV-04	FSV-03	FSV-02	FSV-01		VÁLVULA					\DE	ETO:
2				queio, fa	anceada	icar tam	ripamen:																															
F				alha vál	Balanceada (B) ou não (NB)	Indicar tamano do orifício	to prote															L-04	C-05	L-03	C-04	C-03	C-02	L-02	C-01	L-01		SERVIÇO (1)						
Apic	,			/ula con	não (NE	orifício	gido e de															04	05	03	04	03	02	02	01	2		ÇO (1)						
Aprovado	Por			trole, fal	۳		Equipamento protegido e descrição																															
F				Bloqueio, falha válvula controle, falha refluxo, etc.																											r :	FT	TAMA					
				(o, etc.																											((FTIPO (3)						
																						3,5	3,5	3,5	3,5	3,7	3,5	3,7	3,9	3,5	/g/cm²g	Pres.	SET					
																						2005	1724	272	1534	1061	1293	374	1367	15142	kg/h				70			
																															P		FOGO		RESUM			
																															(°C)				RESUMO DE VALVULAS DE SEGURANÇA			
																						263	4389	263	187	307	250	1734	1351	1464	kg/h				/ALVU			
																															₽		FALHA CW		LAS D			
f																															(°C)		CW)E SEG			
																															kg/h		Ę		ÜRAN			
F																															PM		ALHA EI	CAS	ÇA			
																															(°C)		FALHA ELÉTRICA	CA SOS DE DESCARGA				
F																															kg/h			DESCAR				
																																VAPOR		GA				
ŀ		-																													PM B							
										L																					m3/h D	LÍQUIDO						
L																															Dens.	O	OUTRAS					R
																															ĉ		Ś				Pág.	√ omnse
L																															ر ک							Resumo Válv. de segurança
																															CA SO (4)						de	seguran
																																						ça

	PROJETO	:						Válvulas	de segui	rança	
	UNIDADE:	:						Pág.	1	de	9
R				,	VÁLVULAS D	E SEGURANÇA	A				
٧					CARACTERÍS	TICAS GERAIS					
┢	VÁLVULA	Nº			OAIGOTEGO	TIOAC CENAIC	PS\	V-01			
H			SERVIÇO / RESER	(AV				. <u> </u>			
T		•) PROTEGIDO (S)	,			L-	01			
Ħ	PRESSÃ	O NOF	RMAL DE OPERAÇ	ÕÃO	kg/cm ² g		-0,	014			
T	TEMPER.	ATUR/	A NORMAL DE OF	PERAÇÃO	°C		2	24			
	PRESSÃ	O DE F	PROJETO MECÂN	ICO	kg/cm ² g		3	,5			
	TEMPER.	ATUR/	A DE PROJETO ME	ECÂNICO	°C		8	30			
	NATUREZ <i>A</i>						Orgá	ànico			
			RROS. / TÓXICOS		p)			7,67			
L	CASO DE F	PROJE	TO DA VÁLVULA			Fogo	Falha válvula				
╙	7			CONDIÇO		À ÈNTRADA DA					
▙	,		IONAMENTO		kg/cm ² g	3,5	3,5				
₩	MÁXIMA S			DEDDECCÃO)	%						
⊢			RGA (Pdisp+SOB DE DESCARGA	REPRESSAU)	kg/cm²g °C	80	80				
_			CARGA GAS OU \	/ A DOD	kg/h	80	80				
-	PESO M			ATOR	kg/kmol						
┢	Cp/Cv	IOLLO	JLAIN		rg/kiiloi -						
┢	<u> </u>	DE CO	MPRESSIBILIDA D	E	-						
H			CARGA LÍQUIDO (m3/h	19,06113568	1,843042245		-		
\vdash			QUIDO @P, T	- , ()	kg/m³	794,34	794,34				
T			LÍQUIDO @P, T		cSt	2,756	2,756				
				CONDIÇ	DES DE DESCARO	GA À SAÍDA DA V	ÁLVULA				
	TEMPERAT	URA			°C	80	80				
	VAZÃO DE	E GAS	OVAPOR		kg/h						
	PESO M				kg/kmol						
L			MPRESSIBILIDA D	E	-						
┖	VAZÃO DE				m3/h	19,06113568	1,843042245				
┡			QUIDO @P, T		kg/m³	794,34	794,34				
⊢			ARGA A (Atm/		-	TOCHA	TOCHA				
┢			O SUPERIMPOSEI	D	kg/cm ² g						
-			O TOTAL / MÁXIN	110	kg/cm ² g kg/cm ² g						
┢	CONTRAFT	NEGGA	O TOTAL / IVIANII			AS DA VÁLVUL	Δ	l.			
┢	PRESSÃO	DE DIS	PARO (1ª VÁLVI		kg/cm ² g	3,5	3,5	1			
Т			SPARO (outras)		kg/cm ² g	- ,-	-,-				
	BALANCE	ADA (s	sim/não)		~						
	PILOTADA	(sim/n	ão)		~						
			DA / SELECCIONA	NDA	polegadas 2						
	ORIFICIO A	PI <u>EST</u>	TIMA DO		~						
L			·	COMPR		VÁLVULAS EXIS	TENTES				
<u> </u>			DA VÁLVULA		kg/cm²g						
▙	PRESSÃO				kg/cm ² g						
┢	BALANCE				~						
┢	PILOTADA ORIFICIO A				~						
┢	VALIDEZ D				~						
┢	NOTAS:	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	L V OLJ (1)			1	l	<u> </u>			
F	(1) In			•		ura de tubos, sob a de refluxo ou re					
L	(2) No	caso	de recipientes ch	neios de líquido, a		de descarga, indi					ado e
\vdash			total de líquido de		morizor de fluíd-						
⊢			rar "pour point" ou			ar mudança da vá	hula ou modificas		10 c mo		
⊢	(4) Inc	uical S	e e valiua ou nao	valiua. INAU VAL	Liba podera indica	ar muuança da Val	ivula ou modilicaç	oes na m	collid.		
\vdash											
\vdash											
۲	Rev.		Por		1	1		I	$\overline{}$		
	Data		Aprovado			1					

		PROJET	0:			-		•	Válvulas de seg	urança	
		UNIDA D	E:						Pág.	de	
	R e v				,	VÁLVULAS DI	E SEGURANÇ	A			
1						CARACTERÍS	TICAS GERAIS				
2		VÁLVUL						PS\	/-02		
3			,	SERVIÇO / RESER	(VA)						
5	H			S) PROTEGIDO (S) RMAL DE OPERAÇ	- ÃO	ka/om²a			-01		
6	H			A NORMAL DE OF		kg/cm²g °C			277 1,6		
7				PROJETO MECÂN		kg/cm ² g			,9		
8				A DE PROJETO ME		°C			80		
9		NATURE							ànico		
10		COMPOS	STOS CC	RROS. / TÓXICOS	G (% peso / ppm	p)			319,8		
11		CASO D	E PROJE	TO DA VÁLVULA	. (1)		Fogo	Falha válvula	Falha válvula		
12					CONDIÇÕE	S DE DESCARGA	À ÈNTRADA DA	VÁLVULA			
13				CIONAMENTO		kg/cm ² g	3,9	3,9	3,9		
14				PRESSÃO		%					
15				RGA (Pdisp+SOB	REPRESSAO)	kg/cm²g °C	80	00	00		
16 17				DE DESCARGA CARGA GAS OU \	/ A DOD	kg/h	80	80	80 112,49		
18	H		MOLEC		VAPOR	kg/kmol			6,08		
19		Cp/Cv		OLITIC		-			1,337		
20				MPRESSIBILIDA D	E	-			1,001		
21				CARGA LÍQUIDO (m3/h	1,71	1,69	,		
22		DENSI	DA DE LÍ	QUIDO @P, T		kg/m³	801,31	801,31			
23		VISCO	SIDA DE	LÍQUIDO @P, T		cSt	0,607	0,607			
24					CONDIÇÕ	ES DE DESCARG	A à SALIDA DA	VÁLVULA			
25	Ш	TEMPER/				°C	80	80	80		
26				OVAPOR		kg/h			1366,60		
27			MOLEC		_	kg/kmol			6,08		
28 29		-		OMPRESSIBILIDAD IDO @P,T	E	- m3/h	4.74	4 74	1,337		
30				QUIDO @P, T		kg/m ³	1,71 801,31	1,71 801,31			
31	H			ARGA A (Atm/	tocha) (3)		TOCHA	TOCHA	TOCHA		
32				O SUPERIMPOSE	. , , ,	kg/cm ² g	100121	100121			
33				O BUILT-UP		kg/cm ² g					
34		CONTRA	PRESSÃ	O TOTAL / MÁXII	ИA	kg/cm²g					
35						CARACTERÍSTIC	AS DA VÁLVUL	Α			
36				SPARO (1ª VÁLVI	JLA)	kg/cm ² g	3,9	3,9	3,9		
37				SPARO (outras)		kg/cm ² g					
38		BALANC	,			~					
39 40		PILOTAD	•	DA / SELECCIONA	· DA	polegadas 2					
41	H	ORIFICIO			NDA .	polegadas z					
42		0.1	7 tt 1 <u>20 t</u>		COMPR	OBAÇÃO PARA	VÁLVULAS EXIS	STENTES			
43		MARCA	E MODO	DA VÁLVULA		kg/cm ² g					
44	_	PRESSÃ				kg/cm ² g					
45		BALANC	EADA (sim/não)		~					
46		PILOTAD	A (sim/r	ıão)		~					
47		ORIFICIO				~					
48				LVULA (4)		~	l				
49		NOTAS:			. fama blancata					- ~ - £ - II	
50 51	Н	(1)						reenchimento, fall efluxo circulante, r		•	
52	Н							icar-se-à vazão d			ado e
53	Н			total de líquido de		da vazao	as accounge, inte	00 a vazao u	quido il iloidii i Ei	400100	
54	H			/ar "pour point" ou		merizar do fluído.					
55	H						ar mudança da vá	ılvula ou modificaç	ões na mesma.		
56											
57											
58	Щ			•		Ī	1	Ţ			
	H	Re		Por							
		Da	ld	Aprovado	i	1		1		i	

	PROJETO:	· · · · · · · · · · · · · · · · · · ·					Válvulas de seg	ıranca
	UNIDADE:						Pág.	de
R	ONE TOE						r ug.	uo
e			,	VÁLVULAS DI	E SEGURANÇ	A		
1				CARACTERÍS	TICAS GERAIS			
2	VÁLVULA №					PS'	V-03	
3) (SERVIÇO / RESER						
4		O(S) PROTEGIDO (S)					-02	
5		IORMAL DE OPERA		kg/cm ² g			006	
6		JRA NORMAL DE OF		°C			5,45	
7		DE PROJETO MECÂN		kg/cm ² g °C	ļ		3,7	
9	NATUREZA DO	JRA DE PROJETO M	ECANICO	°C			30 ânico	
10		CORROS. / TÓXICOS	S (% neso / nnm	n)			78,7	
11		JETO DA VÁLVULA		P)	Fogo	Falha válvula		1
12	G. 100 BE 1 110	02.0 2.0 0.0	. ,	S DE DESCARGA			Tunia tantala	
13	PRESSÃO DE	A CIONA MENTO		kg/cm ² g	3,7	3,7	3,7	
14	MÁXIMA SOBI	REPRESSÃO		%				
15	PRES. DE DES	CARGA (Pdisp+SOE	BREPRESSÃO)	kg/cm ² g				
16		A DE DESCARGA	<u> </u>	۰C	80	80	80	
17		SCARGA GAS OU	VAPOR	kg/h			41,18	
18	PESO MOL	ECULAR		kg/kmol			2,32	
19	Cp/Cv			-			1,405	
20		COMPRESSIBILIDAD		-	4.00		1,002	
21		SCARGA LÍQUIDO	@P,1 (2)	m3/h	1,32	1,77	-	
22 23		LÍQUIDO @P, T DE LÍQUIDO @P, T		kg/m³ cSt	981,96 0,890	981,96 0,890	+	
24	VISCOSIDA	DE LIQUIDO @P, T	CONDICÕ	DES DE DESCARG				
25	TEMPERATUR.	Α	CONDIÇC	°C	80	80	80	
26	VAZÃO DE G			kg/h	- 55	"	1734,12	
27	PESO MOL			kg/kmol			2,32	
28	FATOR DE	COMPRESSIBILIDAD	Σ	-			1,405	
29	VAZÃO DE LÍO	QUIDO @P,T		m3/h	1,77	1,77		
30	DENSIDA DE	LÍQUIDO @P, T		kg/m³	981,96	981,96		
31		SCARGA A (Atm/		-	TOCHA	TOCHA	TOCHA	
32		SÃO SUPERIMPOSE	D	kg/cm ² g				
33		SÃO BUILT-UP		kg/cm ² g				
34	CONTRAPRES	SÃO TOTAL / MÁXI		kg/cm²g				
35 36	DDESSÃO DE	DISPARO (1ª VÁLV		CARACTERÍSTIC	3,7	A 3,7	2.7	ı
37		DISPARO (1* VALVI	ULA)	kg/cm ² g kg/cm ² g	3,1	3,7	3,7	
38	BALANCEADA			kg/cm g			 	
39	PILOTADA (sir	,		~	 	 	 	
40	,	_ADA / SELECCIONA	ADA	polegadas 2	<u> </u>	<u> </u>	1	
41	ORIFICIO API E			~				
42			COMPR	OBAÇÃO PARA	VÁLVULAS EXIS	STENTES		
43	MARCA E MOI	OO DA VÁLVULA		kg/cm ² g				
44	PRESSÃO DE	DISPA RO		kg/cm ² g				
45	BALANCEADA			~				
46	PILOTADA (sir	•		~	ļ	<u> </u>		
47	ORIFICIO API II			~	-	-	-	
48	VALIDEZ DA \	ALVULA (4)		~	1			1
49 50	NOTAS : (1) Indica	ar caso considerado	o fogo bloqueio	evn térmica runt	ura de tubos, sob	reenchimento fol	ha de instrumento	cão falha
51	` '	ar caso considerado :a local, falha elétric	•					•
52	_	so de recipientes cl	<u> </u>	• ,				
53		en total de líquido de					7	
54		rovar "pour point" o		merizar do fluído.				
55		r se é válida ou não			ar mudança da vá	lvula ou modificaç	ões na mesma.	
56								
57								
58								
	Rev.	Por						
	Data	Aprovado						

		PROJET							Válvulas	de segu	ırança	
		UNIDAD	E:						Pág.		de	
	R e				,	VÁLVULAS DI	E SEGURANÇA	Α.				
	٧						TICAS GERAIS					
2		VÁLVU	ΙΛ ΝΙΟ			CARACTERIS	IICAS GERAIS	De/	/-04			
3				SERVIÇO / RESER	ν/Δ)			FSV	7-04			
4				S) PROTEGIDO (S)	(VA)			1	02			
5				RMAL DE OPERA	CÃO	kg/cm ² g			312			
6				A NORMAL DE OF		°C			,59			
7				PROJETO MECÂN		kg/cm ² g			,5 ,5			
8				A DE PROJETO ME	-	°C			, 0			
9			ZA DO F						inico			
10				ORROS. / TÓXICOS	S (% peso / ppm)	p)			95,5			
11				TO DA VÁLVULA		,	Fogo	Falha válvula				
12					CONDIÇÕE	S DE DESCARGA	À ENTRADA DA	VÁLVULA				
13		PRESSÃ	O DE AC	CIONA MENTO		kg/cm²g	3,5	3,5				
14		MÁXIMA	SOBRE	PRESSÃO		%						
15		PRES. D	E DESCA	RGA (Pdisp+SOE	REPRESSÃO)	kg/cm²g						
16		TEMPER	'ATURA I	DE DESCARGA		۰C	80	80				
17		VAZÃO	DE DESC	CARGA GAS OU	/APOR	kg/h						
18			MOLEC	ULAR		kg/kmol						
19		Cp/C				-						
20				OMPRESSIBILIDA D		-						
21				CARGA LÍQUIDO (@P,T (2)	m3/h	0,27	0,18				
22				QUIDO @P, T		kg/m³	1399,48	1399,48				
23		VISCO	OSIDA DE	LÍQUIDO @P, T		cSt	0,676	0,676				
24		TEM IDED	A TI ID A		CONDIÇO		A à SALIDA DA		ı			
25		TEMPER		201/4505		°C	80	80				
26				SOVAPOR		kg/h						
27			MOLEC		<u> </u>	kg/kmol						
28 29				OMPRESSIBILIDAD IIDO @P,T	<u> </u>	/b-	0.07	0.27				
29 30				QUIDO @P, T		m3/h kg/m³	0,27 1399,48	0,27 1399,48				
31				ARGA A (Atm/	toobo \ (2)	Kg/III	TOCHA	TOCHA				
32				Ó SUPERIMPOSE		kg/cm ² g	TOCHA	TOCHA				
33				ÁO BUILT-UP	<u> </u>	kg/cm ² g						
34				ÁO TOTAL / MÁXII	ΜΔ	kg/cm ² g						
35		CONTIN	(I I I LOO)	to TOTAL TIME OF			AS DA VÁLVUL	Δ	l.			
36		PRESSÃ	O DE DIS	SPARO (1ª VÁLVI		kg/cm ² g	3,5	3,5				
37				SPARO (outras)	- ,	kg/cm ² g	- ,-	-,-				
38			CEADA (, ,		~						
39		PILOTA	DA (sim/r	não)		~						
40	П			DA / SELECCIONA	ADA	polegadas 2						
41		ORIFICIO	API <u>ES</u> 1	TIMA DO_		~						
42					COMPR	OBAÇÃO PARA	VÁLVULAS EXIS	TENTES				
43				DA VÁLVULA		kg/cm ² g						
44	Ш		O DE DIS			kg/cm ² g						
45			CEADA (,		~						
46			DA (sim/r	•		~						
47				TALADO		~						
48				LVULA (4)		~						
49		NOTAS				., .					~	
50		(1)		caso considerado	0 , 1 ,		,	,				ı
51	Н	(2)		local, falha elétrica	•	- ,						ande a
52	Н	(2)		de recipientes ch		uerrais da vazao	ue uescarga, indi	car-se-a vazao di	= iiquido ir	ııcıaımen	ne desio	Jauo e
53 54	Н	(2)		n total de líquido de var "pour point" ou		marizar da fluída						
55	Н	(3)		var pour point ot se é válida ou não			ar mudanca da vá	lvula ou modificas	ñes no m	eema		
56	H	(+)	niulcai S	oc e valida du Had	valida. INAO VAL	non podera malca	a muuança ua Va	ıvala ou moullicaç	oco na III	coma.		
57	H											
58	\vdash											
55	H	Re	ev.	Por								
			ata	Aprovado								

		PROJET	O:						Válvulas	de segu	ırança	
		UNIDAD	E:						Pág.		de	
	R e v				,	VÁLVULAS DI	E SEGURANÇA	A				
1						CARACTERÍS	TICAS GERAIS					
2		VÁLVUL						PS\	/-05			
3	H			SERVIÇO / RESER	(VA)				03			
4 5				S) PROTEGIDO (S) RMAL DE OPERA(- Ñ O	kg/cm ² g			·03 904			
6				A NORMAL DE OF		°C			,87			
7				PROJETO MECÂN	,	kg/cm ² g			, 7			
8				A DE PROJETO ME		°C			80			
9		NATURE						Orgá	inico			
10		COMPOS	STOS CC	RROS. / TÓXICOS	6 (% peso / ppm	p)		5990	95,5			
11		CASO D	E PROJE	TO DA VÁLVULA	(1)		Fogo	Falha válvula				
12		~			CONDIÇÕE		À ENTRADA DA	VÁLVULA				
13				CIONAMENTO		kg/cm ² g	3,5	3,5				
14				PRESSÃO	DEDDEOQ (0)	%						
15				RGA (Pdisp+SOE	REPRESSAO)	kg/cm²g °C	00	00				
16 17				DE DESCARGA CARGA GAS OU V	/A POP		80	80				
18	H) MOLEC		/AI OR	kg/h kg/kmol						
19		Cp/C		OL III		-						
20				MPRESSIBILIDA D	E	-						
21		VAZÃO	DE DESC	CARGA LÍQUIDO (@P,T (2)	m3/h	0,89	0,26	1,68	8		
22		DENS	IDA DE LÍ	QUIDO @P, T		kg/m³	1199,84	1199,84	991,	37		
23		VISCO	OSIDA DE	LÍQUIDO @P, T		cSt	0,602	0,676	0,86	3		
24					CONDIÇÕ		A à SALIDA DA \					
25		TEMPER				°C	80	80				
26				SOVAPOR		kg/h						
27			MOLEC			kg/kmol						
28 29				OMPRESSIBILIDAD IDO @P,T	E	- m3/h	0,885	0,885				
30				QUIDO @P, T		kg/m ³	1199,84	1199,84				
31				ARGA A (Atm/	tocha) (3)	-	TOCHA	TOCHA				
32				O SUPERIMPOSE	. , , ,	kg/cm ² g	100.21					
33				O BUILT-UP		kg/cm ² g						
34		CONTRA	APRESSÃ	O TOTAL / MÁXI	ИA	kg/cm ² g						
35						CARACTERÍSTIC	AS DA VÁLVUL	A				
36				SPARO (1ª VÁLVI	JLA)	kg/cm ² g	3,5	3,5	3,5	i		
37				SPARO (outras)		kg/cm ² g						
38		BALANC	,	,		~						
39 40		PILOTA	,	nao) DA / SELECCIONA	DA	~						
41	_	ORIFICIO			NDA	polegadas 2						
42		Ortin loic	7 A I I <u>LO I</u>	HVV CDC	COMPR	OBAÇÃO PARA	L VÁLVULAS EXIS	TENTES				
43		MARCA	E MODO	DA VÁLVULA		kg/cm ² g						
44			O DE DIS			kg/cm ² g				\neg		
45		BALANG	CEADA (s	sim/não)		~						
46		PILOTA	DA (sim/r	não)		~						
47		ORIFICIO	API INS	TALADO		~						
48				LVULA (4)		~						
49		NOTAS										
50	Н	(1)			0 / 1 /		ura de tubos, sobi	,			•	
51 52	Н	(2)			<u> </u>	_ , ,	a de refluxo ou re de descarga, indi		, ,			ado o
52 53	Н	(2)		total de líquido de		ucitais ua vazao	ue uescarga, mui	Jai-Se-a Vä∠äÜ Ü	e iiquiuo IN	ciaiiiteli	ie 062100	auu e
54	\vdash	(3)		/ar "pour point" o		merizar do fluído						
55	H	(4)					ar mudança da vál	vula ou modificac	ões na me	sma.		
56	П	. ,				,	3					
57	П											
58												
		Re	ev.	Por								
		Da	ata	Aprovado								

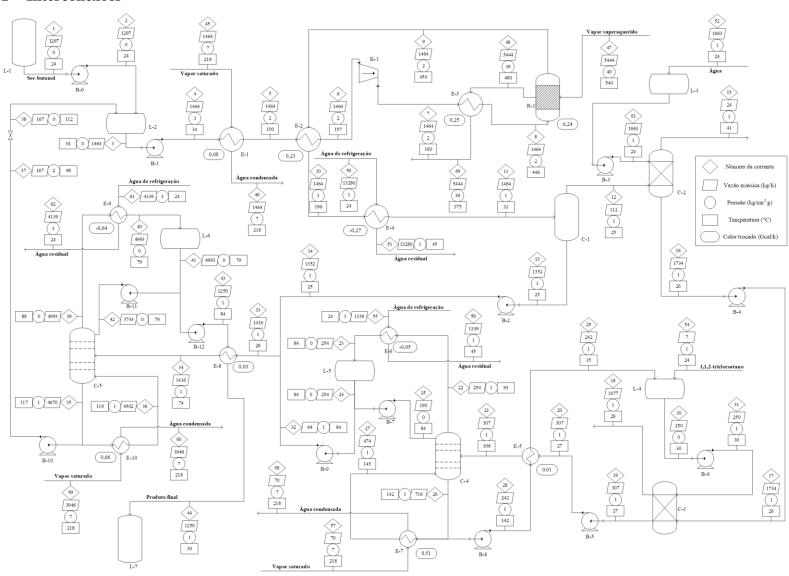
	PROJETO:		•			•	Válvulas de se	gurança
	UNIDADE:						Pág.	de
R								
е			,	VÁLVULAS DI	E SEGURANÇA	4		
V				O A D A OTEDÍO	TIO A C OFFI A IC			
2	VÁLVULA №			CARACTERIS	TICAS GERAIS	DC	V-06	
3		O (SERVIÇO / RESER	RVA)			гэ	V-00	
4		O(S) PROTEGIDO (S)				С	-04	
5		NORMAL DE OPERA		kg/cm ² g			904	
6	TEMPERAT	URA NORMAL DE OF	PERAÇÃO	°C		13	6,66	
7	PRESSÃO	DE PROJETO MECÂN	IICO	kg/cm ² g		3	3,5	
8		URA DE PROJETO M	ECÂNICO	۰C			6,66	
9	NATUREZA D						ânico	
10 11		CORROS. / TÓXICOS DJETO DA VÁLVULA		p)	Fore	Falha refe	095,5 Falha válvula	1
12	CASO DE PRO	DIETO DA VALVOLA	. ,	S DE DESCARGA	Fogo À À ENTRADA DA		railia vaivula	
13	PRESSÃO DE	A CIONA MENTO	CONDIÇO	kg/cm ² g	3,5	3,5	3,5	
14	MÁXIMA SOB			%	-,-		1 .,,	
15		SCARGA (Pdisp+SOE	BREPRESSÃO)	kg/cm ² g			1	
16	TEMPERATUR	A DE DESCARGA		°C	136,66	136,66	136,66	
17		ESCARGA GAS OU'	VAPOR	kg/h				
18	PESO MOL	ECULAR		kg/kmol			ļ	1
19	Cp/Cv	OOMEDDECORD II IE : T	\	-			-	-
20		COMPRESSIBILIDAD ESCARGA LÍQUIDO		- m3/h	1,29	0,43	0,19	+
22		ESCARGA LIQUIDO (ELÍQUIDO @P, T	@P, I (2)	kg/m ³	1188,54	1188,54	991,37	+
23		DE LÍQUIDO @P, T		cSt	0,602	0,602	0,863	+
24	1.0000.27		CONDIÇÕ		A à SALIDA DA	<u> </u>	0,000	1
25	TEMPERATUR	ZA.		°C	166,66	0,00	0,00	
26	VAZÃO DE (SAS O VAPOR		kg/h				
27	PESO MOL	ECULAR		kg/kmol				
28		COMPRESSIBILIDAD	Œ	-				
29	VAZÃO DE L			m3/h	0,19	0,19	0,19	
30		E LÍQUIDO @P, T	(1b) (O)	kg/m³	1188,54	1188,54	991,37	
31		SCARGA A (Atm/ SSÃO SUPERIMPOSE	. , , ,	kg/cm ² g	TOCHA	TOCHA	TOCHA	-
33		SSÃO BUILT-UP	עב	kg/cm ² g				
34		SSÃO TOTAL / MÁXI	MA	kg/cm ² g				
35					AS DA VÁLVUL	A		<u>.</u>
36	PRESSÃO DE	DISPARO (1ª VÁLV	ULA)	kg/cm ² g	3,5	3,5	3,5	
37	PRESSÃO DE	DISPARO (outras)		kg/cm ² g				
38	BALANCEAD	,		~				
39	PILOTADA (s	,		~			1	
40		ILADA / SELECCIONA	ADA	polegadas 2				1
41 42	ORIFICIO API	ESTIMADO	COMPR		 VÁLVULAS EXIS	I TENTES	1	1
43	MARCA F MC	DO DA VÁLVULA	COWIPR	kg/cm ² g	VALVULAS EXIS			
44	PRESSÃO DE			kg/cm²g			1	
45	BALANCEAD			~			1	
46	PILOTADA (s			~			1	
47	ORIFICIO API	NSTALADO		~				
48		VÁLVULA (4)		~				
49	NOTAS:							
50	. ,	ar caso considerado	•					•
51 52		ca local, falha elétric					· · · · · · · · · · · · · · · · · · ·	
53		aso de recipientes cl nen total de líquido de		ueriais ua vazao	ue uescarga, indi	uai-se-a vazao o	ie ilquiuo inicialme	ane desiocado e
54		provar "pour point" o		merizar do fluído				
55	. ,	ar se é válida ou não			ar mudança da vá	lvula ou modificad	ções na mesma.	
56	(,			1			,	
57								
58								
	Rev.	Por						
	Data	Aprovado						

									liver i i	
		PROJET							Válvulas de segu	
_	_	UNIDAD)E:						Pág.	de
	R				,	VÁLVIII AC DI	E SECUDANO	• A		
	e v				· ·	VÁLVULAS DI	E SEGURANÇ	,A		
1	Н					CARACTERÍS	TICAS GERAIS			
2		VÁLVU	A Nº			O/HOTO I ENG	110/10 02/1/10	PS	V-07	
3				SERVIÇO / RESER	(AV				1	
4				S) PROTEGIDO (S)	,			L-	·03	
5				RMAL DE OPERA		kg/cm ² g			057	
6				A NORMAL DE OF	<u> </u>	°C			,06	
7				PROJETO MECÂN		kg/cm ² g		3,5	500	
8		TEMP	ERATUR.	A DE PROJETO ME	ECÂNICO	°C		115	5,06	
9		NATURE	ZA DO F	FLUIDO		•		Orgá	ànico	
10		COMPOS	STOS CC	DRROS. / TÓXICOS	6 (% peso / ppm	p)		240,78	370369	
11		CASO D	E PROJE	TO DA VÁLVULA	. (1)		Fogo	Falha válvula		
12					CONDIÇÕE	S DE DESCARGA	À À ENTRADA D	A VÁLVULA		
13		PRESSÃ	O DE AC	CIONAMENTO		kg/cm²g	3,5	3,5		
14				PRESSÃO		%				
15				RGA (Pdisp+SOB	REPRESSÃO)	kg/cm ² g				
16		_		DE DESCARGA		°C	115,06	115,06		
17				CARGA GAS OU \	/APOR	kg/h				
18			MOLEC	ULAR		kg/kmol				
19		Cp/C		MODECCIDII IDAD	·-	-				
20 21				OMPRESSIBILIDAD CARGA LÍQUIDO (- m2/h	0,27	0,27		
22				QUIDO @P, T	⊌F,1 (2)	m3/h kg/m³	991,37	991,37		
23				LÍQUIDO @P. T		cSt	0,863	0,863		
24		VISCO	JOIDADL	LIQUIDO @1, 1	CONDICÕ	ES DE DESCARG				
25	Н	TEMPER	ATURA		OONDIÇO	°C	I	TALVOLA		
26				SOVAPOR		kg/h		+		
27			MOLEC			kg/kmol				
28		FATO	OR DE CO	OMPRESSIBILIDA D	E	-				
29		VAZÃO	DE LÍQU	IDO @P,T		m3/h	0,27	0,27		
30		DENS	IDA DE LÍ	QUIDO @P, T		kg/m³	991,37	991,37		
31		VÁLVU	LA DESC	ARGA A (Atm/	tocha,) (3)	-	TOCHA	TOCHA		
32		CONTRA	A PRESSÂ	O SUPERIMPOSE	D	kg/cm²g				
33		CONTRA	A PRESSÂ	O BUILT-UP		kg/cm ² g				
34		CONTRA	A PRESSÂ	ÁO TOTAL / MÁXII		kg/cm ² g				
35						CARACTERÍSTIC	AS DA VÁLVUL	-A		
36				SPARO (1ª VÁLVI	JLA)	kg/cm ² g	3,5	3,5		
37				SPARO (outras)		kg/cm ² g				
38			CEADA (,		~				
39			DA (sim/r		- DA	~				
40		0.0151010		DA / SELECCIONA	ADA .	polegadas 2				
41 42		OKIFICIC) API <u>ES</u> I	IIVADO	COMPR	~ OBAÇÃO PARA	VÁLVIII AS EVI	etentee	l	
43		ΜΑ ΡΟΔ	E MODO	DA VÁLVULA	COWIFR	kg/cm ² g	VALVOLAS EXI	3164163		
44			O DE DIS			kg/cm²g				
45	Н		CEADA (~ ~		+		
46			DA (sim/r	-		~		+		
47				TALADO		~				
48				LVULA (4)		~				
49		NOTAS		. ,			•	•	•	•
50		(1)	Indicar	caso considerado	: fogo, bloqueio, e	exp. térmica, rupt	ura de tubos, sol	breenchimento, fall	ha de instrumenta	ção falha
51					•			efluxo circulante, r		•
52		(2)	No caso	de recipientes ch	neios de líquido, a	demais da vazão	de descarga, inc	dicar-se-à vazão d	e líquido inicialmer	nte deslocado e
53			volumen	total de líquido de	eslocado.					
54		(3)		var "pour point" ou						
55		(4)	Indicar s	se é válida ou não	válida. NÃO VÁL	IDA poderá indica	ar mudança da va	álvula ou modificaç	ões na mesma.	
56	Ш									
57										
58	Щ					ı	T		·	ı
_	Ш		ev.	Por				1		
		ı Da	ata	Aprovado		I		1		1

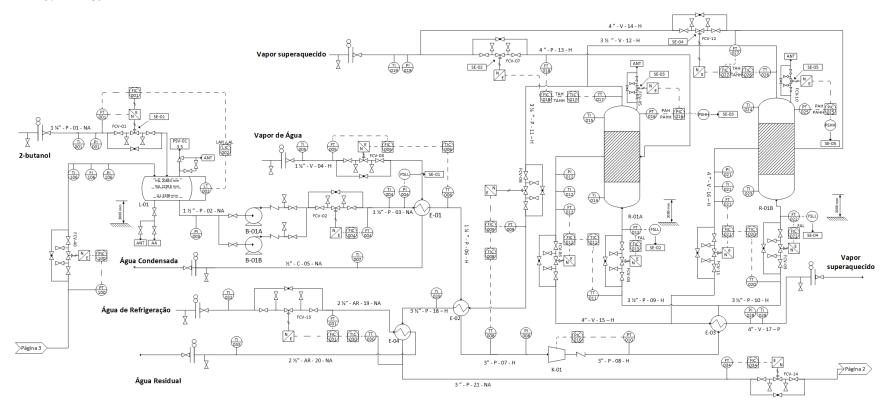
	PROJETO	٦.						Válvulas de seg	uranaa
	UNIDADE							Pág.	de
R	ONIDADE	-						r ag.	uc
e				,	VÁLVULAS DI	E SEGURANÇ	A		
1					CARACTERÍS	TICAS GERAIS			
2	VÁLVUL						PS	V-08	
3			SERVIÇO / RESER	,				<u> </u>	
4) PROTEGIDO (S)		1 2			-05	
5			RMAL DE OPERAC A NORMAL DE OF	•	kg/cm²g °C			220	
6 7			PROJETO MECÂN		kg/cm ² g			9,14 500	
8			A DE PROJETO M		°C			9,14	
9	NATUREZ			20/114100				ânico	
10				S (% peso / ppm	p)			747813	
11	CASO DE	PROJE	TO DA VÁLVULA	(1)	-	Fogo	Falha refe	Falha válvula	
12				CONDIÇÕE	S DE DESCARGA	À À ENTRADA DA	VÁLVULA		
13			CIONAMENTO		kg/cm ² g	3,5	3,5	4,5	
14			PRESSÃO	. ~	%				
15			RGA (Pdisp+SOE	BREPRESSÃO)	kg/cm ² g	405 ::	405 11	100 11	
16			DE DESCARGA	/A DOD	°C	139,14	139,14	139,14	<u> </u>
17 18		MOLEC MOLEC	CARGA GAS OU	VAPOK	kg/h	1	1	 	1
19	Cp/Cv		ULAN		kg/kmol	1	1	+	
20	<u> </u>)MPRESSIBILIDAD	F	-				
21			CARGA LÍQUIDO		m3/h	2,44	6,21	3,91	
22			QUIDO @P, T	- , ()	kg/m³	706,84	706,84	734,79	
23	VISCO	SIDA DE	LÍQUIDO @P, T		cSt	0,373	0,373	0,308	
24				CONDIÇÕ	ES DE DESCARG	A à SALIDA DA	VÁLVULA		
25	TEMPERA				۰C	139,14	139,14	139,14	
26			SO VAPOR		kg/h				
27		MOLEC			kg/kmol				
28			MPRESSIBILIDAD	DE .	-		224	201	
29 30			IDO @P,T		m3/h	6,21	6,21	6,21 734,79	
31			QUIDO @P, T ARGA A (Atm/	tocha) (3)	kg/m³	706,84 TOCHA	706,84 TOCHA	TOCHA	
32			O SUPERIMPOSE		kg/cm ² g	TOOTER	100114	100114	
33			O BUILT-UP		kg/cm ² g				
34	CONTRA	PRESSÃ	O TOTAL / MÁXI	MA	kg/cm ² g				
35				(CARACTERÍSTIC	AS DA VÁLVUL	A		
36			SPARO (1ª VÁLVI	JLA)	kg/cm ² g	3,5	3,5	3,5	
37			SPARO (outras)		kg/cm ² g				
38	BALANC	,	,		~				
39	PILOTAD	,	,	\ DA	~				
40 41	ORIFICIO		DA / SELECCIONA	NDA	polegadas 2			 	
42	OI (III-IOIO	ALI <u>ESI</u>	HVV DO	COMPR	OBAÇÃO PARA	L VÁLVULAS FYIS	STENTES	<u> </u>	<u> </u>
43	MARCA F	E MODO	DA VÁLVULA	JOHN N	kg/cm ² g	CENT EN	T =		
44	PRESSÃO				kg/cm ² g	1	1	1	1
45	BALANC				~				
46	PILOTAD				~				
47	ORIFICIO			-	~				
48		DA VÁ	LVULA (4)		~	<u> </u>	<u> </u>		<u> </u>
49	NOTAS:				., .				~
50	. ,							lha de instrumenta reação química, el	•
51 52				· ·	• ,			reação quimica, e le líquido inicialme	
53			total de líquido de		aonais ua vazau	ao aosoarga, iilu	our so-a vazao o	o iquido il ilotali (let	no acolocado e
54			· · · · · · · · · · · · · · · · · · ·	u tendência a poli	merizar do fluído.				
55					IDA poderá indica	ar mudança da vá	Ivula ou modificad	ções na mesma.	
56	<u> </u>					,			
57									
58									
	Rev		Por						
	Dat	ta	Aprovado						

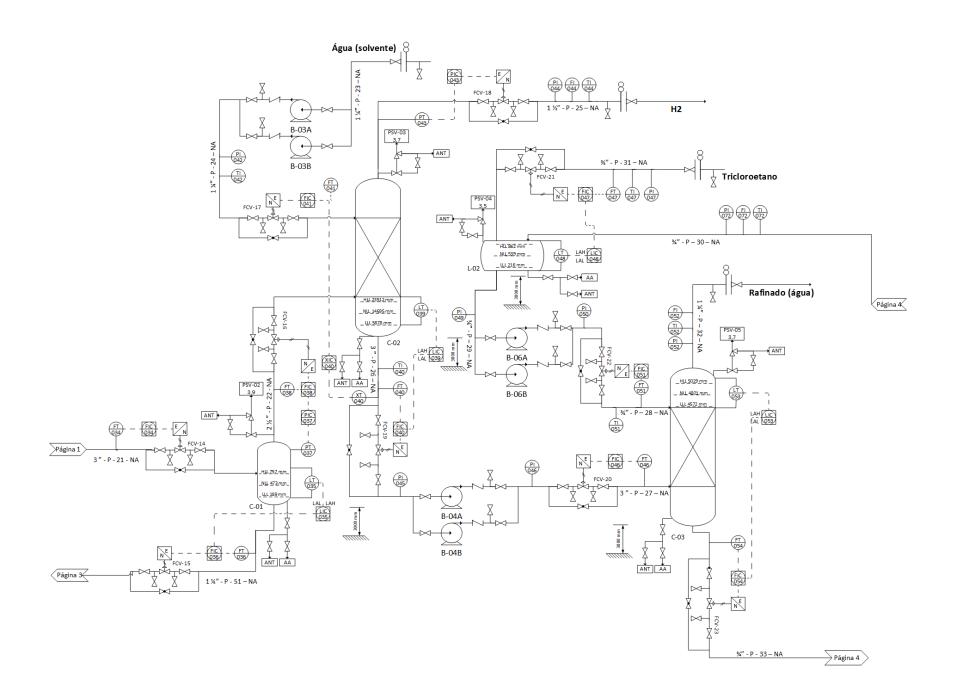
	PROJET	<u> </u>						Válvulas de seg	ıranca
	UNIDAD							Pág.	de
R								. ug.	40
е				•	VÁLVULAS DI	E SEGURANC	A		
V									
1	,				CARACTERÍS	TICAS GERAIS			
2	VÁLVUL						PS	V-09	
3		,	SERVIÇO / RESER	,				0.4	
5			S) PROTEGIDO (S) RMAL DE OPERAC		ka/om²a			-04 057	
6			A NORMAL DE OF	•	kg/cm²g °C			1,02	
7	1		PROJETO MECÂN		kg/cm ² g			500	
8			A DE PROJETO M		°C			4,02	
9	NATURE							ânico	
10			RROS. / TÓXICOS	S (% peso / ppm	p)			0146	
11	CASO D	E PROJE	TO DA VÁLVULA	(1)		Fogo	Falha válvula		
12				CONDIÇÕE	S DE DESCARGA	À À ENTRADA DA	VÁLVULA		
13	PRESSÃ	O DE AC	CIONAMENTO		kg/cm ² g	3,5	3,5		
14			PRESSÃO		%				
15			RGA (Pdisp+SOE	REPRESSÃO)	kg/cm ² g				
16			DE DESCARGA	/A POP	°C	114,02	114,02		
17			CARGA GAS OU	VAPOR	kg/h		-	-	
18		MOLEC	ULAK		kg/kmol		-	-	
19 20	Cp/C\)MPRESSIBILIDAD	Œ	-				
21			CARGA LÍQUIDO (m3/h	5,63	0,36	†	
22			QUIDO @P, T	91,1 (2)	kg/m³	734,79	734,79	1	
23			LÍQUIDO @P, T		cSt	0,308	0,308		
24				CONDIÇÕ	ES DE DESCARG	,	<u> </u>		
25	TEMPER	ATURA		3.	°C				
26	VAZÃO	DE GAS	OVAPOR		kg/h				
27	PESC	MOLEC	ULAR		kg/kmol				
28	FATC	OR DE CO)MPRESSIBILIDAD	E	-				
29	VAZÃO	DE LÍQU	IDO @P,T		m3/h	5,63	5,63		
30			QUIDO @P, T		kg/m³	734,79	734,79		
31			ARGA A (Atm/	. , , ,	-	TOCHA	TOCHA		
32			O SUPERIMPOSE	D	kg/cm ² g				
33			O BUILT-UP	440	kg/cm ² g			-	
34 35	CONTRA	(PRESSA	O TOTAL / MÁXI		kg/cm²g CARACTERÍSTIC	A C DA VÁLVIII	^	<u>l</u>	ļ
36	DDESSÃ	O DE DIS	SPARO (1ª VÁLVI		kg/cm ² g	3,5	3,5	1	1
37			SPARO (outras)	JLA)	kg/cm²g	3,3	3,3	 	
38	BALANC				- Ng/5/11 g				
39	PILOTAE	•	,		~				
40		•	DA / SELECCIONA	ADA	polegadas 2				
41	ORIFICIO	API <u>ES</u> T	TIMA DO_		~				
42				COMPR	OBAÇÃO PARA	VÁLVULAS EXIS	STENTES		
43	MARCA	E MODO	DA VÁLVULA		kg/cm ² g				
44	•	O DE DIS			kg/cm ² g				
45		CEADA (~				
46		DA (sim/r			~				
47			TALADO		~		-	-	
48	_		LVULA (4)		~	1			1
49 50	NOTAS:		naco considerada	v fogo blogueis	avn tármica rust	ura de tubos sob	reenchimente fol	ha de instrumenta	cão falho
51	(1)							ria de instrumenta reação química, et	•
52			· ·	<u> </u>	- ,			e líquido inicialme	
53			total de líquido de	-		accounge, inc			400.00440 0
54			ar "pour point" o		merizar do fluído.				
55						ar mudança da vá	lvula ou modificaç	ões na mesma.	
56									
57									
58									
	Re		Por						
	Da	ıta	Aprovado						

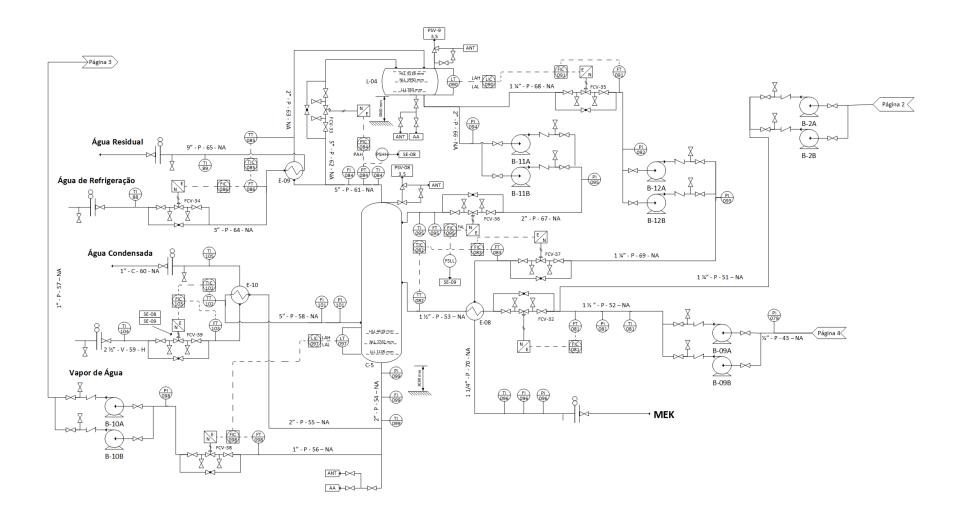
5.10 Serviços Auxiliares

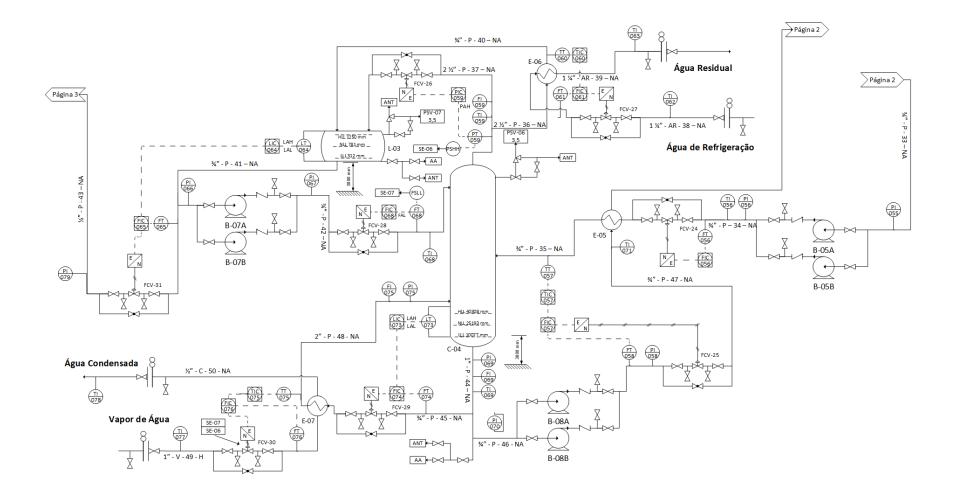

		PROJETO:	Produç	ão de m	etil-etil-cetona	a partir de 2-bu	tanol		SERVIÇ	OS AUXIL	IARES	
		UNIDADE:							Pág.	1	de	2
	R e v			CONSU	MO DE SERV		ARES (AGUA D)		
1		CASO DE PROJE	TO:			Planta d	e produção de r	n etil-etil-cetona	1			
3		EQUIPA MEN	ПО		D	ESCRIÇÃO		CONSUMO	(m³/h) (1	,2)	NOT	AS
4		E-04		Refrige	rador			13,6				
5		E-06		Conden	sador da colun	a de destilação	1	1,3				
6		E-09		Conden	sador da colun	a de destilação	2	4,4	484			
7												
9												
10	=											
11												
12												
13												
14												
15												
16												
17 18	\dashv											
19	H											
20	\exists											
21												
22												
23												
24												
25												
26 27												
27 28												
29												
30												
31												
32												
33												
34												
35												
36 37												
38	H											
39												
40												
41		TOTAL										
42		NOTAS:										
43	Щ											
44 45												
46												
47												
48												
49												
50												
51												
52 53	Н											
53 54	\vdash											
55												
56	Ħ											
57												
58												
		Rev.		Por								
		Data	Apro	ovado			1					

		34	33	32	٥	2 6	3	29	28	17	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	9	œ	7	6	Ŋ	4	ω	2	_				
								(3)	(2)			NOTAS:	TOTAL																					Ę	1		CASO D	< 0	R	UNIDADE:	PROJETO:
Data	Rev.							Os valores entre aspas são consumos intermitentes para alguma operação especial. Nestes casos se se adicionará uma nota indicando a circunstância em que se necessita o serviço	Os valores entre parénteses são consumos de equipamentos em reserva não aditivos para o consumo total da unidade	valores com sinais positivos são consumo, valores com sinais negativos são produções	Voloroo oor																		F-10	E-07	E-03	E-01		EQUIPANENTO			CASO DE PROJETO:				
								entre aspas	entre parén	n smals pos																									MOI						Produção de metil-etil-cetona a partir de 2-butanol
Aprovado	Por							são consu	teses são c	IIIVOS SAO C	5																						°C	kg/cm² g	MUITO ALTA		Planta de produção de metil-etil-cetona				metil-etil-
								mos intermi	onsumos d	onsumo, va																					5,44408		460 °C	39,4 kg/cm² g	ALTA		ıção de m	CON			cetona a p
								itentes para	le equipame	alores com	North Committee																				8					VA	etil-etil-ce	SUMO DE			artir de 2-
								alguma ope	ntos em res	sinais negai	5																						°C	kg/cm² g	MEDIA	VAPOR (t/h)	tona	: SERVIÇ			butanol
								eração espe	serva não a	IVOS São pr	0																		3,946	0,0696		1,46406	218	7	BAIXA			OS AUXI			
								ecial. Neste	ditivos para	seoźnpo	2																		6	6)6		m² g				LIARES (
								s casos se	o consumo																								°C	kg/cm² g	MUITO BAIXA			CONSUMO DE SERVIÇOS AUXILIARES (CONSUMO DE VAPOR E GENERAÇÃO DE			
								se adiciona	total da un																										MUITO ALTA			NO DE VA			
								ırá uma nota	idade																								°C	g/cm² g	ALTA			POR E G			
								a indicando																									°C	kg/cm² g	ALTA			ENERAÇ			
								a circunstâ																											MEDIA	CONDENSADOS (t/h)					
								ncia em que																									С	kg/cm² g	AIC	\DOS (t/h)		CONDENSADOS)			
								se necess																									°C	kg/cm² g	BAIXA			ADOS)			
								ita o serviç																											OLINW						
								Ó																									°C	kg/cm² g	MUITO BAIXA					Pág.	SERVIÇOS.
																																				NOTAS				2 de	SERVIÇOS AUXILIARES
																																				FAS				е 2	S


		PROJET	0:	Produç	ão de m	etil-etil-cetona	a partir de 2-but	anol		SERVIÇO	S AUXII	IARES	
		UNIDAD	E:							Pág.	1	de	1
	R e v				C	ONSUMO DE	SERVIÇOS A	UXILIARES (E	LETRICIDADE	()			
1		CASO D	E PROJE	TO:									
3		EQ	UIPAMEN	ПО		D	ESCRIÇÃO		CONSUM	O (kw h/h)		NOTA	AS
4		B-0				orte para L-2			0,				
5 6		B-1 B-2				rte para E-2			0,; 0,				
7		B-3				rte para C-3			0,				
8		B-4				orte para C-3			0,				
9		B-5				orte para C-4			0,				
10		B-6				orte para C-3			0,0				
11		B-7				de topo C-4			0,0				
12 13		B-8 B-9				orte para L-4 orte para C-5			0,: 0,:				
14		B-10				orte para C-3			0,				
15		B-11				de topo C-5			0,				
16		B-12				orte para L-7			0,	61			
17													
18	Щ												
19 20	Н												
21													
22													
23													
24													
25 26													
∠6 27													
28													
29													
30													
31													
32 33													
34													
35													
36													
37													
38													
39 40	H												
41	\vdash	TOTAL											-
42		NOTAS	:		1								
43							, valores com sina						
44							s de equipamento						
45 46	\vdash					io consumos inte em que se neces	rmitentes para alg	juma operação es	pecial. Nestes ca	sos se se	adicion	ara uma n	.ota
46 47	\vdash		ii lulcai lu	o a cii cu	ii iotal IUId	om que se neces	oska u selviçu.						
48													
49													
50													
51													
52 53													
54	\vdash												
55													
56													
57													
58	Н	D.	ev.		or								
Н			ata		vado								


6 DIAGRAMAS


6.1 Interconexões



6.2 P&ID

7 ANÁLISE HAZOP

O equipamento com a operação mais perigosa da planta é a coluna de destilação C-05. E por este motivo, foi o equipamento escolhido para a realização de um estudo HAZOP (*Hazard and Operability Studies*) para verificar o seu sistema de controle e segurança.

7.1 Descrição do Equipamento Estudado

O equipamento analisado é a coluna de destilação C-05 responsável pela separação final de MEK de uma corrente contendo água, 2-butanol e alguns traços residuais de 1,1,2-Tricloroetano. A corrente de saída contendo esses três componentes é bombeada para o recipiente L-01, no início de processo afim de reutilizar o 2-butanol não reagido. A corrente de entrada da coluna entra a 106,02°C e 1,2 bar e tem sua vazão controlada pela válvula FCV-32. Um esquema simplificado é mostrado na Figura 24.

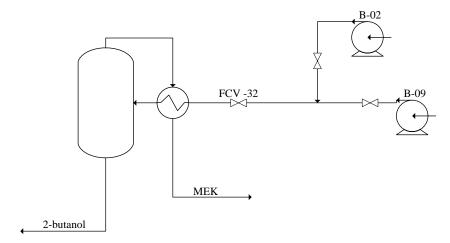


Figura 24 - Diagrama de fluxo simplificado da coluna C-05

7.2 Análise Preliminar

Considerando que o processo ocorre em condições normais, pode-se assumir:

- As bombas B-02A e B-09A impulsionam a corrente de entrada para o preaquecedor e em seguida para a coluna.
- As bombas B-02B e B-09B são bombas reservas que entram em ação apenas quando detectada uma queda de pressão na corrente de entrada.

 A tabela abaixo mostra a matriz de interação dentro da coluna, para a determinação da periculosidade das condições de processo

Tabela 27 - Análise Preliminar

	MEK	H ₂ O	2-Butanol	1,1,2- Tricloroetano	Comentários
MEK	-	-	-	-	-
H_2O	-	-	-	-	-
2-Butanol	-	-	-	-	-
1,1,2-					T
Tricloroetano	-	-	-	-	Traços

 Pela análise preliminar é possível inferir que não existe risco de reação dentro da coluna, de modo que não há atmosfera perigosa ou reativa dentro da coluna.

7.3 Análise HAZOP da corrente de entrada da coluna C-05

Tabela 28 - Análise Hazop da Coluna de Destilação C-05

Variável	Palavra Guia	Causas possíveis	Consequências Possíveis	Proteção do Sistema	Medidas Corretivas
Temperatura	Maior	1. Falha no controle da temperatura de preaquecimento; 2. Vazão baixa devido a falhas na bomba B-09 ou B-02; 3. Vazão de vapor alta; 4. Falha no condensador.	 Degradação do produto; Autoignição; Impedimento da separação; Aumento da pressão; Mudança de fase. 	Detecção da temperatura alta e atuação do controlador, exceto em caso de defeito do mesmo.	 Instalação de indicadores de temperatura.
	Menor	1. Falha no controle da temperatura de preaquecimento; 2. Vazão alta devido a falhas na bomba B-09 ou B-02.	 Menor rendimento de separação; Perda de produto; Qualidade inferior do produto; Mudança de fase. 	Detecção da temperatura baixa e atuação do controlador, exceto em caso de defeito do mesmo.	 Instalação de indicadores de temperatura.
Vazão	Não /Menos	1. Falha na bomba B-09 ou B-02; 2. Falha no controle das válvulas FCV-32 ou FCV- 37; 3. Bloqueio da tubulação; 4. Vazamento na tubulação.	1. Aumento da pressão na coluna; 2. Diminuição do nível de líquido na coluna; 3. Esvaziamento da coluna; 4. Parada da unidade; 5. Diminuição da qualidade do produto.	Detecção da vazão baixa e atuação do controlador da válvula, exceto em caso de defeito do mesmo.	1. Instalação de alarme de nível baixo; 2. Bypass; 3. Aumento da frequência de manutenção; 4. Interrupção de emergência da planta.
	Mais	1. Falha na bomba B-09 ou B-02;	1. Diminuição da pressão na coluna;	 Detecção da vazão alta e atuação do 	1. Alarme de nível alto; 2. Bypass;

		2. Falha no controle das válvulas FCV-32 ou FCV- 37.	2. Aumento do nível de líquido na coluna;3. Diminuição da temperatura;4. Inundação da coluna.	controlador da válvula, exceto em caso de defeito do mesmo.	3. Aumento da frequência de manutenção;4. Instalação de indicador de vazão.
Pressão	Maior	1. Válvula de alívio da coluna travada fechada; 2. Maior vazão devido à falha no controle da bomba B-09 ou B-02; 3. Maior vazão devido á falha no controle das válvulas FCV-32 ou FCV-37.	1. Rompimento da tubulação; 2. Cavitação da bomba; 3. Desgaste do casco e pratos da coluna; 4. Aumento de temperatura na coluna; 5. Menor rendimento de separação; 6. Perda de Produto.	Detecção da pressão alta e atuação do controlador da válvula ou da bomba, exceto em caso de defeito do mesmo.	1. Instalar indicador de pressão
	Menor	1. Válvula de alívio da coluna travada aberta; 2. Menor vazão devido à falha no controle da bomba B-09 ou B-02; 3. Menor vazão devido á falha no controle das válvulas FCV-32 ou FCV-37; 4. Vazamento de vapor.	 Diminuição da temperatura na coluna Diminuição do nível de líquido na coluna Menor rendimento de separação; Perda de Produto. 	Detecção da pressão baixa e atuação do controlador da válvula ou da bomba, exceto em caso de defeito do mesmo.	1. Instalar indicador de pressão

8 ANÁLISE AMBIENTAL

Com o intenso crescimento das demandas, expansão da atuação da indústria e desenvolvimento tecnológico vem sendo cada vez mais necessária a análise acerca do impacto ambiental dos processos, com o empenho de amenizar ou conter os efeitos negativos causados na natureza e alcançar objetivos econômicos sustentáveis.

Por essa razão, a *International Standardization Organization* criou as normas ISO 14000, que estabelecem condutas a serem tomadas por empresas em relação ao Sistema de Gestão Ambiental (SGA), a fim de garantir o equilíbrio e a conservação do ambiente, por meio de regulamentações e padronizações, realizando fiscalizações periódicas para verificar o cumprimento dos requisitos estabelecidos. [35] As normas ISO 14000 são padrões de gerenciamento ambiental de caráter voluntário que as empresas utilizam para seguir um sistema de gestão ambiental. Esse sistema auxilia as empresas a identificar, gerenciar, monitorar e controlar questões ambientais. A finalidade dessa norma é equilibrar a proteção ambiental e a prevenção de poluição. [36, 37] Para atender aos requisitos previstos na ISO 14000, a empresa deve:

- a) Desenvolver uma política ambiental com um compromisso com as necessidades de prevenção da poluição, e melhoria contínua;
- b) Conduzir um plano que identifique os aspectos ambientais de uma operação e as exigências legais, além de estabelecer um programa de gerenciamento ambiental;
- c) Implementar e operacionalizar um programa que inclua estrutura e responsabilidades definidas, treinamento, comunicação, documentação, controle operacional e preparação para atendimento a emergências;
 - d) Desenvolver ações corretivas incluindo monitoramento, correção e auditoria. [38]

Neste projeto pretende-se reduzir ao máximo a quantidade de rejeitos do processo através do reaproveitamento de matérias-primas e serviços auxiliares, bem como sugerir o tratamento adequado dos resíduos e rejeitos descartados dando a destinação correta, com o objetivo de causar o menor impacto possível na natureza. Nenhum resíduo será tratado diretamente na planta, sendo proposto apenas sugestões para o tratamento adequado e posterior disposição.

Para evitar o gasto excessivo de serviços auxiliares dentro da planta, optamos por realizar reciclos de correntes do próprio processo para promover o aquecimento dos equipamentos e troca térmica. Assim, temos a corrente de topo e fundo das colunas de destilação promovendo o aquecimento de correntes que precisam ser aquecidas durante o processo.

O primeiro resíduo que é gerado na planta é o catalisador utilizado no reator. O catalisador escolhido para atuar nessa planta é composto de óxido de zinco-latão. Com o uso, o catalisador diminui sua capacidade de catálise devendo ser substituído constantemente no processo. [39] O catalisador retirado do processo pode ser recuperado em outras unidades ou descartado como resíduo. Além disso, ao passo que a reação está acontecendo, partículas do catalisador ficam retidas no reator formando resíduos sólidos de catalisador dentro do reator. Com o tempo faz-se necessário dispor adequadamente o coque gerado dentro do reator. Hoje, existem várias tecnologias para reciclagem de cinzas e óxidos de zinco, deste modo todo o resíduo do catalisador gerado nessa planta será destinado para indústrias de reciclagem do material. O processo consiste nas operações cominuição, coqueifação, redução e destilação para gerar zinco como produto final. A cominuição é uma operação unitária de briquetagem e moagem, para que a partícula seja reduzida a uma granulometria conveniente. A coqueifação é um processo onde o material é cozido a fim de expulsar matérias voláteis e produzir o coque. A redução e destilação terminar de separar o zinco de compostos voláteis. Assim, o zinco está pronto para ser reutilizado novamente. [40]

O próximo resíduo gerado é referente à formação de gás hidrogênio (H₂) como subproduto da reação, o qual é separado na coluna de absorção, com grau de pureza já elevado, entretanto na mesma corrente existe também água e resquícios de MEK e 2-butanol. Tendo em vista que o H2 é um produto muito valioso no mercado devido às suas propriedades de combustão e altos níveis de energia acumulados, a comercialização do gás remanescente como produto da absorção é extremamente rentável. Logo, o H₂ gerado nessa planta será todo comercializado. O tratamento sugerido para a corrente de H₂ consiste apenas na etapa de secagem, onde o material será aquecido a temperaturas elevadas para a retirada da água, o qual é suficiente para remover quaisquer impurezas provenientes das etapas anteriores do processo, assim será obtido o gás com um nível de pureza adequado. [41]

Ainda na etapa de absorção, é necessário realizar o tratamento da água, que é utilizada como solvente de tratamento, a qual sai no topo da coluna de extração com resíduos de MEK, 2-butanol

e 1,1,2-tricloroetano. Tendo em vista que a principal fonte de contaminação da água de processo provém de resíduos de compostos orgânicos, é possível promover a sua purificação através de um filtro de leito com o uso de carvão ativado. Esse método tem como base a adsorção de partículas na superfície porosa do carvão ativado granular, que retém os compostos e tem como produto a água purificada, que pode ser disposta propriamente, ou até mesmo reutilizada. [42, 43]

Por fim, a água utilizada para lavar os equipamentos também deve ser tratada, podendo ser descartada adequadamente ou reutilizada para o mesmo fim. Para isso, o tratamento pode ser realizado na própria planta (*in plant design*) ou em uma estação de tratamento de esgoto, o que depende da finalidade a ser dada para o material, bem como o tipo e origem dos contaminantes. [44]

Nesse processo, a água de lavagem pode conter resquícios de materiais orgânicos, como MEK, 2-butanol e traços de TCE, além de resíduos provenientes da exposição à poluição e contaminantes suspensos no ar. O tratamento do efluente consiste de etapas de tratamento preliminar, para promover sua equalização e neutralização, e tratamento secundário no qual será removida a matéria orgânica a partir de processos biológicos [45]

9 ANÁLISE ECONÔMICA

Nenhum projeto deve passar para as etapas finais sem antes seus custos serem considerados, ou seja, a primeira análise a ser feita antes de se colocar um projeto em funcionamento é a sua avaliação econômica. O engenheiro químico ou engenheiro de custos deve estimar todos os custos brutos para poder decidir a melhor alternativa de projeto e otimizá-lo ao máximo. A maioria dos projetos, não só os de engenharia química, são feitos para produzir lucro, e é preciso avaliar previamente a estimativa do investimento requerido e o custo de produção para saber a rentabilidade do projeto. A rentabilidade só será aceitável se for maior do que qualquer uso alternativo que possa ser dado aos fundos próprios das empresas ou maior do que os juros no caso de fundos emprestados por terceiros. [22]

Não se tem certeza do custo de investimento total de um projeto antes da planta ser colocada em funcionamento. Porém, se o engenheiro de projeto estiver bem familiarizado com os vários métodos de estimativa, é possível fazer estimativas de custo muito boas antes mesmo que o projeto final forneça especificações detalhadas. [47]

Na avaliação econômica são necessárias diversas aproximações e geralmente ela é dividida em duas etapas sendo elas a preliminar e a definitiva. A preliminar é menos precisa do que a definitiva, pois é feita nas etapas iniciais sem o conhecimento detalhado dos equipamentos, ela deve ser capaz de fornecer uma base para a gestão da empresa decidir ou não investir capital. [47]

A avaliação econômica realizada no projeto foi a preliminar e para sua estimativa dividiuse em 3 partes, sendo elas: Investimento, vendas e custos.

9.1 Investimento

9.1.1 Capital imobilizado

O capital imobilizado consiste no conjunto de bens adquiridos que são necessários para o funcionamento e para a manutenção das operações de trabalho, nele é somado os valores do espaço físico de funcionamento, maquinário e equipamentos. E pode ainda ser qualificado pelo capital em que a empresa disponha e use por mais de doze meses, e com expectativas de aumentar os benefícios econômicos em detrimento da sua utilização. [48]

Para a sua estimação primeiramente estima-se o custo dos equipamentos e então aplica-se o método das porcentagens. No método das porcentagens o imobilizado é dividido em várias partes, descritas a seguir.

9.1.1.1 Equipamentos principais: maquinaria e aparelhos

O custo da planta ISBL (Inside Battery Limits) corresponde aos custos de aquisição e instalação de cada equipamento que constitui a planta. O método proposto para o cálculo pode ser expresso por:

$$C = F \times \sum C_e \tag{85}$$

Onde F é o fator de Lang, cujo valor é 4,74 para processos que envolvem fluidos. Dado que a moeda varia ao longo do tempo, é necessário converter os valores para 2017 e por isso utiliza-se o índice de CEPCI (*Chemical Engineering Plant Cost Index*) de 2018 e 2006, 567,5 e 499,6 respectivamente, e para converter o valor em reais considera-se a média de US\$ = 3,19 R\$, como mostrado abaixo.

$$C_{2017} (US\$) = \frac{C_{2006} \cdot CEPCI_{2017}}{CEPCI_{2006}}$$
(86)

$$C_{2017}(R\$) = C_{2017}(US\$) \cdot 3,19$$
 (87)

Em resumo, os custos dos equipamentos da planta podem ser expressos na Tabela 29.

Tabela 29 - Custos dos equipamentos da planta

Liste des aguinementes	Nome do equipamento na	Custo do equipamento
Lista dos equipamentos	planta	(R\$ 2017)
Reator	R-1	10.907.607,34
Preaquecedor	E-01	163.536,34
Vaporizador	E-02	455.878,26
Super aquecedor	E-03	448.729,50
Refrigerador	E-04	456.207,98
Preaquecedor	E-05	165.145,90
Condensador Coluna 1	E-06	449.294,39

(Continuação)

		(Commuzue)
Lista dos equipamentos	Nome do equipamento na	Custo do equipamento
Lista dos equipamentos	planta	(R\$ 2017)
Refervedor Coluna 1	E-07	471.774,31
Preaquecedor	E-08	2.062.998,83
Condensador Coluna 2	E-09	467.033,57
Refervedor Coluna 2	E-10	502.408,20
Bomba	B-0	91.312,66
Bomba	B-1	93.177,36
Bomba	B-2	92.153,53
Bomba	B-3	92.804,73
Bomba	B-4	90.669,54
Bomba	B-5	85.539,29
Bomba	B-6	84.671,75
Bomba	B-7	73.729,89
Bomba	B-8	84.571,83
Bomba	B-9	92.445,51
Bomba	B-10	85.361,18
Bomba	B-11	82.909,66
Bomba	B-12	91.343,58
Vaso inicial	A-01	2.709.273,27
Vaso sec-butanol	L-02	81.626,00
Vaso água	L-03	76.314,00
Vaso TCE	L-04	18.150,29
Vaso MEK	L-07	1.461.633,64
Vaso da destilação 1	L-05	89.885,73
Vaso da destilação 2	L-06	197.289,93
Flash	C-1	4.336.041,18
Absorção	C-2	1.217.491,63
Extração	C-3	132.853,85
Coluna de destilação	C-4	316.426,27

(Continuação)

Lista das assinamentos	Nome do equipamento na	Custo do equipamento
Lista dos equipamentos	planta	(R\$ 2017)
Coluna de destilação	C-5	925.751,60
Compressor	K-1	198.989,15
Total		30.593.722,17

9.1.1.2 Materiais

A estimativa do valor total gasto com materiais é dividida em obra civil e edifícios, tubulações e infraestruturas, instrumentação, eletricidade, isolamento e pintura. Os valores encontrados assim como a porcentagem de cada material estão dispostos na Tabela 30.

Tabela 30 - Custo estimado para materiais

	Porcentagem (%)	Custo 2017 (MR\$)	
Equipamento (E)	100	30.593.722,17	
Materiais (M)	65	19.885.919,41	
Obra Civil e	20	5 560 057 44	
Edifícios	28	5.568.057,44	
Tubulações e	45	0.049.662.74	
Infraestrutura	45	8.948.663,74	
Instrumentação	10	1.988.591,94	
Eletricidade	10	1.988.591,94	
Isolamento	5	994.295,97	
Pintura	2	397.718,39	
Total	165	50.479.641,58	

9.1.1.3 Gastos Em Engenharia De Detalhe

Segundo o método das porcentagens, o seu custo é relacionado com o tamanho do projeto. Este projeto foi considerado um projeto pequeno, então a porcentagem utilizada foi de 45% do custo total dos equipamentos e materiais que é o valor para este tamanho de projeto.

Tabela 31 - Custos de engenharia de detalhe

	Porcentagem (%)	Custo 2017 (R\$)
Equipamentos e	100	50 450 641 50
materiais	100	50.479.641,58
Engenharia de	45	
detalhes	43	22.715.838,71

9.1.1.4 Gastos em engenharia de processo

Tabela 32 - Custos de engenharia de processo

	Custo 2017 (R\$)
Licença	2.800.000,00
Engenharia básica	3.000.000,00
Total	5.800.000,00

9.1.1.5 Construção e supervisão

Para o cálculo com os gastos com construção e supervisão é usado 70% da soma dos equipamentos e materiais. Sendo esses 70% dividos em 60% na construção e 10% na supervisão da própria.

Tabela 33 - Custos construção e supervisão

	Porcentagem (%)	Custo 2017 (R\$)
Construção	60	30.287.784,95
Supervisão	10	5047964,16
	Total	35.335.749,11

9.1.1.6 Gastos gerais de processo

A soma de todos os valores supracitados é chamada de ISBL (*Inside Battery Limits*), e é a partir da qual se estimam custos de serviços auxiliares, gastos de arranque, *off-sites*, contingências e imprevistos. Os valores obtidos encontram-se na Tabela 34.

Tabela 34 - Custo de limite de bateria interno da planta, relativo ao ano de 2017

	Porcentagem (%)	Custo 2017 (R\$)
ISBL	100	114.331.229,41
Serviços Auxiliares	4	4.573.249,18
Off-Sites	8	9.146.498,353
Gastos de Arranque	3,5	4.573.249,18
Contingências e Imprevistos	10	17.149.684,41
Investimento total		35.442.681,12

9.2 Capital de giro

É o capital necessário para o funcionamento normal da empresa, caracteriza-se primordialmente, por ser o capital que financia a continuidade das operações de trabalho e econômicas da empresa: despesas operacionais; aquisições para estoque; pagamento de fornecedores; impostos; salários. Ele pode ser facilmente transformado em dinheiro, já que é o capital que é movimentado constantemente pela empresa. [48]

Para este processo, o capital de giro é calculado como o investimento necessário para estocar matéria prima suficiente para operação de 168h da planta. Este pode ser encontrado na Tabela 35.

Tabela 35 - Capital de giro

	Vazão mássica (ton/h)	Preço (R\$/ton)	Valor (R\$)
Sec-butanol ⁴	1,297	2.572,58	560.554,89
Água destilada ⁵	3,066	1.030,78	530.915,89
Tricloroetano 6	0,007	6.380,00	7.845,87
Total			1.099.316,65

9.3 Investimento total

O investimento total do projeto é a soma do capital de giro e do capital imobilizado, como expresso na Tabela 36.

Tabela 36 - Valor total do investimento.

	Valor (R\$)
Capital de Giro	1.099.316,65
Capital Imobilizado	149.773.910,52
Investimento total	150.873.227,18

9.4 Rentabilidade do projeto

A rentabilidade de um projeto deve-se às vendas, aos custos anuais e aos impostos. E para uma análise mais precisa, é necssário levar em consideração a passagem do tempo, tanto em termos do andamento do empreendimento, como de desvalorização do dinheiro. No ramo de indústrias químicas, costuma-se considerar 3 anos de projeto e 15 anos de operação.

9.5 Vendas

O valor das vendas anuais é obtido pela produção anual de MEK, a 99,7% de pureza, multiplicados pelo preço de venda destes no mercado, dados na Tabela 37. O H₂ é um subproduto da reação que têm grande valor agregado, este pode ser destinado a outra indústria, mas não foi considerado seu valor de venda, pois ele é obtido no estado gasoso e impuro, portanto, seria necessário um tratamento para caracteriza-lo na forma comercializável.

Tabela 37 - Valores vendas anuais

Droduto	Produção anual	Preço de	Vandas (B\$)
Produto	(ton)	$venda^{7}(R\$/t)$	Vendas (R\$)
MEK	10.000	22.649,00	226.490.000,00

9.6 Custos

O custo nada mais significa que o valor pago ao trabalho de uma produção de bens e/ou serviços utilizados (muito embora o conceito de custo seja associado erroneamente aos conceitos

"preço" e "despesa", é corriqueiro falar que um bem ou um serviço de alto preço possui um alto custo), de forma geral, um custo é o investimento implícito da produção de algo. Podem ser classificados como fixos (como por exemplo: valor de aluguéis) e variáveis (como por exemplo: valores de matérias primas), onde a soma dos custos fixos e variáveis gera o custo total. E ainda, os custos fixos e variáveis podem ocorrer de forma direta e indireta. [48]

Neste projeto foram estimados os custos de fabricação diretos, indiretos que podem ser fixos ou variáveis. Sendo considerado diretos matérias primas, mão de obra e patentes. Os indiretos são mão de obra indireta, serviços gerais (inclui serviços auxiliares), fornecimentos, manutenção e embalagem. Também se tem os custos fixos como expedição, diretivos e empregados, amortização, alugueis, impostos e seguros.

Tabela 38 - Custos anuais

Recurso	Custo (R\$)
Matéria-prima	51.974.799,25
Mão de obra	864.000,00
Mão de obra indireta	259.200,00
Serviços gerais	14.223.075,76
Abastecimento	8.689.173,43
Manutenção	6.859.873,76
Embalagens	62.284.750,00
Diretivos e empregados	216.000,00
Amortização	14.977.391,05
Impostos	857.484,22
Seguros	1.143.312,29
Gastos comerciais	7.504.823,23
Gerência	4.002.572,39
Pesquisa e serviço técnico	2.264.900,00
TOTAL	176.121.355,40

Considerações para o cálculo do custo anual:

• Para o cálculo da mão de obra foi considerada 4 vagas de trabalho sendo 6 operadores por vaga no valor de R\$ 3.000/operador;

- O valor da mão de obra indireta foi considerada 30% da mão de obra direta.
- Abastecimento e manutenção representam 7,6% e 6% do ISBL.
- As despesas com laboratório e patentes são nulas por se tratar de tecnologia bem estabelecida.
- Os custos de derivativos e empregados são estimados para 25% da mão de obra direta.
 - Para essa seção os impostos, a amortização e seguro são considerados em 10%.
 - Os gastos comercias são 7,5% da soma dos custos de fabricação.
 - Os gastos de gerência são de 4% da soma dos custos de fabricação
 - Pesquisa e serviço técnico foram considerados 10%
 - Os serviços gerais incluem os serviços auxiliares.
 - Os gastos com embalagem são 27,5% da receita anual.

Os valores de preço de serviços auxiliares utilizados nesta planta são indicados na tabela abaixo.

Tabela 39 - Preço dos serviços auxiliares

Serviço auxiliar	Valor	
Eletricidade	0,15 R\$/KW	
Água de refrigeração	0.12 R/m³	
Vapor saturado	25,96 R\$/ton	
Vapor superaquecido	37,00 R\$/ton	
Ar de instrumentação	0.04 R\$/m³	

E portanto, o custo anual dos serviços auxiliares está indicado na Tabela 40.

Tabela 40 - Custo anual dos servicos auxiliares

1 abeia 40 - Custo anuai uos sei viços auxinai es				
Serviço auxiliar	Custo anual (R\$)			
Eletricidade	10.136,66			
Água de refrigeração	12.317.886,21			
Vapor saturado	1.868.812,89			
Vapor superaquecido	1.611.446,81			
Válvula de controle	26.240,00			

9.7 Determinação da rentabilidade

Um método para indicar a rentabilidade do projeto é o método do valor atualizado liquido (VAL) que é a soma de todos os movimentos dos fundos ao longo da vida do projeto, com seu sinal, corrigidos ao ano atual. Os dados importantes, o horizonte temporal do projeto e o valor cronológico do dinheiro (inflação), para o método seguem na tabela abaixo:

Tabela 41 - Dados para cálculo do VAL

Parâmetro	Valor			
Uorizonto tomporol	3 anos de posta em funcionamento + 15 anos de			
Horizonte temporal	operação			
Imobilizado	R\$ 149.773.910,52			
	Ano 0: 10 %			
Curva de investimento	Ano 1: 60 %			
	Ano 2: 30 %			
Capital de giro	R\$ 1.099.316,65			
Vendas	R\$ 226.490.000,00			
Amortização	Linear 10 % por 10 anos			
Impostos	35%			
Inflação	5%			
Juros de referência	10%			

Com os dados da acima tabela foram feitos os cálculos para avaliar a rentabilidade pelo fluxo de caixa, expresso na Tabela 42. Considerou-se para preencher a tabela de fluxo de caixa:

- O capital de giro é gasto no segundo ano e recuperado ao final dos quinze anos de operação.
- Os fundos investidos em um ano são a soma do capital imobilizado e do de giro (investimento) do ano.
 - Considera-se a inflação de 5% a cada ano para o cálculo das vendas e dos custos anuais.
- Os benefícios brutos (BAI), ou seja, antes dos impostos são as vendas menos a soma dos custos e amortização.
 - Os benefícios líquidos (BDI) são os benefícios brutos menos a amortização.

- Os fundos gerados são os benefícios líquidos menos a amortização.
- Os fluxos de caixa (cash flow) são os fundos gerados menos os investidos de cada ano.

Tabela 42 - Fluxo de caixa do projeto

ANO	0	1	2	3	4	5
Imobilizado	-14.977.391,00	-89.864.346,00	-44.932.173,00			
Giro			-1.099.316,70			
Fundos Investidos	-14.977.391,00	-89.864.346,00	-46.031.490,00			
Vendas				226.490.000,00	237.814.500,00	249.705.225,00
Custos				176.121.355,00	184.927.423,00	194.173.794,00
Amortização				14.977.391,10	14.977.391,10	14.977.391,10
Benefícios antes de				35.391.253,50	37.909.685,80	40.554.039,60
impostos				33.391.233,30	37.909.083,80	40.334.039,00
Impostos				12.386.938,70	13.268.390,00	14.193.913,90
Benefícios depois				23.004.314,80	24.641.295,80	26.360.125,80
de impostos				23.004.314,80	24.041.293,80	20.300.123,80
Fundos Gerados				37.981.705,90	39.618.686,80	41.337.516,80
Cash Flow (CF)	-14.977.391,00	-89.864.346,00	-46.031.490,00	37.981.705,90	39.618.686,80	41.337.516,80
CF atualizado	-14977.391,00	-81.694.860,00	-38.042.554,00	28.536.217,80	27.060.096,20	25.667.345,60
anual	-149/7.391,00	-81.094.800,00	-38.042.334,00	28.330.217,80	27.000.090,20	23.007.343,00
CF atualizado	-14.977.391,00	-96.672.251,00	-134.714.805,00	-106.178.587,00	-79.118.491,00	-53.451.145,00
acumulado	-14.7//.371,00	-70.072.231,00	-134./14.003,00	-100.170.307,00	-77.110.471,00	-55.451.145,00

(Continuação)

ANO	6	7	8	9	10	11
Imobilizado						
Giro						
Fundos Investidos						
Vendas	262190486	275.300.011,00	289.065.011,00	303.518.262,00	318.694.175,00	334.628.883,00
Custos	203882484	214.076.608,00	224.780.439,00	236.019.461,00	247.820.434,00	260.211.455,00
Amortização	14977391,1	14.977.391,10	14.977.391,10	14.977.391,10	14.977.391,10	14.977.391,10
Benefícios antes de		46 246 011 20	40 207 191 40	52 521 410 00	55 906 250 10	50 440 027 10
impostos	43330611,2	46.246.011,30	49.307.181,40	52.521.410,00	55.896.350,10	59.440.037,10
Impostos	15165713,9	16.186.103,90	17.257.513,50	18.382.493,50	1.956.722,50	20.804.013,00
Benefícios depois de		20.050.007.20	22 040 667 00	24 129 016 50	26 222 627 50	29 626 024 10
impostos	28164897,2	30.059.907,30	32.049.667,90	34.138.916,50	36.332.627,50	38.636.024,10
Fundos Gerados	43142288,3	45.037.298,40	47.027.058,90	49.116.307,60	51.310.018,60	53.613.415,20
Cash Flow (CF)	43142288,3	45.037.298,40	47.027.058,90	49.116.307,60	51.310.018,60	53.613.415,20
CF atualizado anual	24352697	23111255,30	21.938.470,10	20.830.109,10	19.782.233,30	18.791.174,90
CF atualizado		5 097 102 00	15 051 277 10	26 701 206 10	56.563.619,50	75.354.794,40
acumulado	-29098448	-5.987.193,00	15.951.277,10	36.781.386,10	50.505.019,50	13.334.174,40

(Continuação)

ANO	12	13	14	15	16	17
Imobilizado						
Giro						
Fundos						
Investidos						
Vendas	351.360.328,00	368.928.344,00	387.374.761,00	406.743.499,00	427.080.674,00	448.434.708,00
Custos	273.222.028,00	286.883.129,00	301.227.286,00	316.288.650,00	332.103.083,00	348.708.237,00
Amortização	14.977.391,10					
Benefícios antes	63.160.908,50	82.045.214,50	86.147.475,30	90.454.849,00	94.977.591,50	99.726.471,10
de impostos	05.100.700,50	02.013.211,50	00.117.175,50	70.13 1.017,00	71.777.571,50	<i>77.72</i> 0.771,10
Impostos	22.106.318,00	28.715.825,10	30.151.616,30	31.659.197,20	33.242.157,00	34904264,90
Benefícios depois	41.054.590,50	53.329.389,50	55.995.858,90	58.795.651,90	61.735.434,50	64.822.206,20
de impostos	11.05 1.570,50	33.327.307,30	33.773.030,70	30.773.031,70	01.733.131,30	01.022.200,20
Fundos Gerados	56.031.981,60	53.329.389,50	55.995.858,90	58.795.651,90	61.735.434,50	64.822.206,20
Cash Flow (CF)	56.031.981,60	53.329.389,50	55.995.858,90	58.795.651,90	61.735.434,50	64.822.206,20
CF atualizado	17.853.516,10	15.447.624,50	14.745.459,80	14.075.211,60	13.435.429,30	12.824.727,90
anual	17.033.310,10	13.117.021,30	11.715.157,00	11.073.211,00	13.133.127,30	12.021.727,50
CF atualizado	93.208.310,50	108.655.935,00	123.401.395,00	137.476.606,00	150.912.036,00	163.736.764,00
acumulado						

Para o cálculo do VAL usa-se a seguinte equação:

$$VAL_{k} = \sum_{i=0}^{n} \frac{F_{i}}{(1+k)^{i}} \tag{89}$$

Onde F_i é o fluxo de caixa de cada ano i e k é o juros de referência do projeto que neste caso é 0,10. Assim, tem-se que a planta é rentável, já que o VAL é maior que zero , como expresso na Tabela 43.

Tabela 43 - Resultado VAL

	Rentabilidade (R\$)
VAL	163.736.763,60

A seguir apresenta-se um gráfico do fluxo de caixa ao decorrer dos anos.

Figura 25 - Evolução dos fluxos de caixa

Pelos fluxos de caixa anuais atualizado é possível verificar quando a planta começa a funcionar, tem-se fluxo de caixa positivo. É feito o fluxo de caixa acumulado e pelo gráfico é possível observar também que a partir de que ano de operação a planta já obtém lucro, ou seja, a partir do quinto ano de operação a planta é rentável.

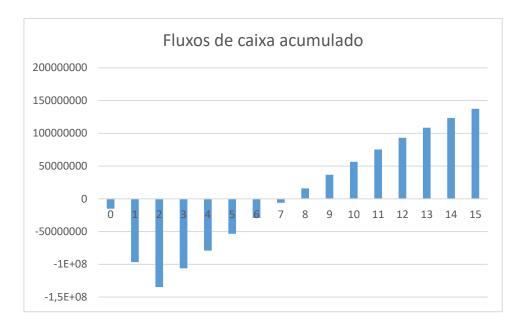


Figura 26 - Fluxo de caixa acumulado

9.8 Cálculo Taxa Interna de Rentabilidade (TIR)

O valor da TIR é o valor de juros de referência quando o VAL se iguala a zero, ou seja, é feita a variação do k na formula do VAL até convergir a zero.

$$TIR = \sum_{i=0}^{n} \frac{F_i}{(1+TIR)^i} = 0 \tag{90}$$

Se o valor de TIR for maior do que o k de referência (juros) significa que o projeto é rentável. Observa-se que o valor para taxa interna de rentabilidade, foi de 24% que indica o quanto é rentável. Simulando um caso de um aumento de 20% no imobilizado, para avaliar a sensibilidade do projeto, o novo histograma de fluxo de caixa é mostrado na figura abaixo.

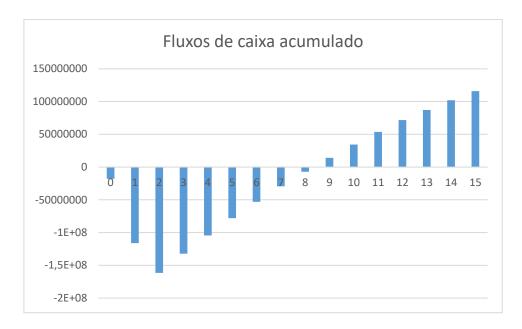


Figura 27 - Fluxo de caixa acumulado com 20% a mais de investimento

Pode-se observar que a planta continua dando lucro em seu primeiro ano de operação. Neste caso, a TIR atinge o valor de 20%.

10 CONSIDERAÇÕES FINAIS

Projetar uma planta química envolve o estudo de diversas áreas, desde dimensionamento e otimização, análise ambiental e de fatores de segurança para alcançar um projeto viável. Foi projetada uma unidade para produção de metil-etil-cetona a partir da desidrogenação de sec-butanol e a operacionalização da via de processo escolhida se mostrou viável. Também vale ressaltar que se tem uma vazão de produto significativa para o mercado com 99,7% de pureza, que é potencializado pelo reciclo de sec-butanol, apresentando indicativos de alta eficiência do processo.

Fica evidente que pela complexidade de operacionalização que a unidade apresenta é válido uma análise mais detalhada dos custos em um geral para aproximar de maneira ainda mais precisa os investimentos necessários e garantir que este projeto ainda será rentável para aquele que o executar. Assim como também avaliar com mais rigor a necessidade econômica e ambiental de recuperação do vapor não condensado ao sair do vaso flash.

11 REFERÊNCIAS

- [1]https://pubchem.ncbi.nlm.nih.gov/compound/2-Butanone#section=Use-and Manufacturing>. Acesso em: 04 de junho de 2018.
- [2]https://pubchem.ncbi.nlm.nih.gov/compound/2-Butanone#section=Experimental-Properties. Acesso em: 04 de junho de 2018.
- [3]https://www.icis.com/resources/news/2007/11/05/9076041/methyl-ethyl-ketone-mek-uses-and-market-data/ Acesso em: 04 de junho de 2018.
- [4]<https://search.epa.gov/epasearch/epasearch?querytext=methyl+ethyl+ketone&areana me=&areacontacts=&areasearchurl=&typeofsearch=epa&result_template=2col.ftl> Acesso em: 04 de junho de 2018.
 - [5]https://www.chemeo.com/cid/23-903-3/2-Butanone Acesso em: 04 de junho de 2018.
- [6]<https://www.mordorintelligence.com/industry-reports/methyl-ethyl-ketone-market> Acesso em: 04 de junho de 2018.
- [7]<https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/318348/hpa_Methyl_ethyl_ketone__General_Information_v1.pdf> Acesso em: 07 de junho de 2018.
- [8]<https://pubchem.ncbi.nlm.nih.gov/compound/2-Butanone#section=Human-Toxicity-Excerpts> Acesso em: 07 de junho de 2018.
- [9]<https://www51.honeywell.com/sm/common/documents/Public_Risk_Summary_MEK O.pdf> Acesso em: 07 de junho de 2018.
- [10]https://www.prnewswire.com/news-releases/global-methyl-ethyl-ketone-mek-market-2015-2019-with-exxon-mobil-lanzhou-petrochemicals-maruzen-petrochemical-royal-dutch-shell--sasol-dominating-300120531.html Acesso em: 07 de junho de 2018.
- [11]https://www.icis.com/resources/news/2010/06/07/9365325/us-chemical-profile-methyl-ketone/ Acesso em: 11 de junho de 2018.
- [12]https://ihsmarkit.com/products/methyl-ethyl-ketone-chemical-economics-handbook.html Acesso em: 11 de junho de 2018.
- [13]http://www.crossroadstoday.com/story/38248603/methyl-ethyl-ketone-market-size-expected-to-raise-due-to-growing-pharmaceutical-and-personal-care-industry-by-2024-grand-view-research-inc Acesso em: 11 de junho de 2018.

- [14]https://globenewswire.com/news-release/2016/05/09/837593/0/en/Methyl-Ethyl Ketone-MEK-Market-size-forecast-to-reach-3-64-Billion-by-2022-Global-Market-Insights Inc.html> Acesso em: 11 de junho de 2018.
- [15]https://www.japanchemicaldaily.com/2018/02/13/mek-price-remains-high-in-asian-market/ Acesso em: 11 de junho de 2018.
- [16]https://www.icis.com/resources/news/2017/08/15/10133593/europe-mek-prices-up-over-40-on-pernis-force-majeure/?redirect=english Acesso em: 11 de junho de 2018.
- [17]As'ad AM, Yeneneh AM, Obanijesu EO (2015) Solvent Dewaxing of Heavy Crude Oil with Methyl Ethyl Ketone. J Pet Environ Biotechnol 6: 213.
- [18]Ullmann, F., Gerhartz, W., Yamamoto, Y. S., Campbell, F. T., Pfefferkorn, R., Rounsaville, J. F., & Ullmann, F. (1985). Ullmann's encyclopedia of industrial chemistry. Weinheim, Federal Republic of Germany: VCH.
- [19] SMITH, Carlos A.; CORRIPIO, Armando B. Principles and Practice of Automatic Process Control. New York: J. Wiley, 1997.
- [20] LIPTÁK, Béla G. Instrument Engineers' Handbook: Process Measurement and Analysis, v. 01. p, 1014 1031, 4 ed. Boca Raton: CRC Press, 1995.
- [21] API, API Standard 521 Pressure-relieving and Depressuring Systems, 6° edição, 2014.
- [22] TOWLER, Gavin. SINNOTT, Ray. Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design. Elsevier: 1^a edição, 2008.
- [23] McCabe, W. L., Smith, J. C., & Harriott, P. (1993). Unit operations of chemical engineering (5th ed.). New York; London: McGraw-Hill.
- [24] TERRON, L. R., Operações Unitárias para Químicos Farmacêuticos e Engenheiros, 2012, Editora LTC.
- [25] ROBBINS, L. A. e CUSACK, R. W., Section 15 Liquid-Liquid Extraction Operations and Equipment, 1999, Editora McGraw-Hill.
- [26] FOGLER, S. C., Elementos de Engenharia das Reações Químicas, 4ª ed., Editora LTC, 2012.
- [27] Perona, J. J. Thodos, G. Reaction kinetic studies: Catalytic dehydrogenation of secbutyl alcohol to methyl ethyl ketone. AIChE Journal, v. 3: p.230-235, Illinois 1957.
 - [28] Pardo, G. C., Introducción a la Ingeniería Química, 1ªEd, Editorial Síntesis, S.A., 1999.

- [29] http://s1.downloadmienphi.net/file/downloadfile2/200/1402405.pdf
- [30] SAUNDERS, E. A. D., Heat Exchangers: Selection, Rating and Thermal Design and Construction, 1988.
- [31] ÇENGEL, Y. A. Transferência de calor e massa: Um Enfoque Prático. Terceira Edição. Mac Graw Hill. 2007.
- [32] Treybal, R. E. Mass-Transfer Operations. Singapura: McGraw-Hill International Editions, 1980.
- [33] SANDLER, Stanley I. Using AspenPlus® in thermodynamics instructions: A step-by-step Guide. 1a ed. Hoboken, New Jersey: Wiley, 2015.
- [34] Brito, Felipe de Oliveira, Avaliação da Influência da Pressão, Temperatura e Condições de Operação sobre um Sistema de Destilação Fracionada de uma Solução Glicerinosa Proveniente de uma Unidade de Produção de Biodiesel. 2010. 60f. Monografia Universidade Federal do Ceará, Fortaleza, 2010.
- [35] Série Iso 14000. Disponível Em: https://www.Normastecnicas.Com/Iso/Serie-Iso-14000/> Acesso Em 22 Jun.2018.
- [36] Gestão Ambiental Em Pequenas E Média Empresas. Reis, Luís Filipe Sousa Dias; Queiroz, Sandra Mara Pereira De. Rio De Janeiro: Qualitymark, 2002. 123 P. Isbn 9788573033410.
- [37] Estratégia E Implantação De Sistema De Gestão Ambiental: (Modelo Isso 14000). Moreira, Maria Suely. Belo Horizonte: Dg, C2001. 286 P. Isbn 8586948314.
 - [38] Entendendo a Iso 14000. Silva, Danilo José P. Universidade Federal De Viçosa, 2011.
- [39] Características Dos Resíduos De Catalisador Gerados No. Brasil E As Potencialidades Do Seu Reuso. U. S. Prado. 1., J. R. Martinelli.
- [40] Zinco. Reciclagem De Materiais Metáilicos. Disponível Em: <https://Www.Ufrgs.Br/Napead/Repositorio/Objetos/Reciclagem-Materiais-etalicos/Pag12.Php> Acesso Em: 22 Jun. 2018.
- [41] Patnaik, P. A Comprehensive Guide To The Hazardous Properties Of Chemical Substances. Wiley-Interscience, 2007.
- [42] "Os Benefícios Do Carvão Ativado No Tratamento Da Água Industrial". Disponível Em: https://www.Tratamentodeagua.Com.Br/Artigo/Carvao-Ativado-Tratamento-Agua-Industrial . Acesso Em 18 Jun. 2018.

- [43] Coal Mine Water Treatment. Disponível Em: Http://www.Miwatekwater.Com/Solutions/Coal-Mine-Water-Treatment Acesso Em 20 Jun. 2018.
- [44] Manual De Conservação E Reuso De Água Na Indústria. Disponível Em: <https://www2.Cead.Ufv.Br/Sgal/Files/Apoio/Saibamais/Saibamais4.Pdf> Acesso Em 22 Jun. 2018.
- [45] Biological Wastewater Treatment. Disponível Em: <https://Www.Watertoday.Org/Article%20archieve/Aquatech%2012.Pdf> Acesso Em 22 Jun. 2018.
- [46] MATOS, Juliana Schmitz Guarilha Costa. Aplicação do Hazop Dinâmico na Avaliação de Perigo Operacional em uma Coluna de Destilação de uma Planta de Separação de Ar. 2009. 96 f. Dissertação (Mestrado em Tecnologia dos Processos Químicos e Bioquímicos) Escola de Química, Universidade Federal do Rio de Janeiro, Ro de Janeiro.
- [47] PETERS, Max S. TIMMERHAUS, Klaus D. Plant Design And Economics For Chemical Engineers. McGraw-Hill: 4ª edição, 1991.
 - [48] MANKIW, Gregory N. Princípios da Macroeconomia 5ª edição 2009.
- [49] High Quality 2-Butanol And Formic Acid Msds Molarity. Disponível em: . Acesso em: 24 jun 2018.
- [50] Process Water Price History & Forecast. Disponível em: https://www.intratec.us/chemical-markets/process-water-price. Acesso em 24 jun 2018.
- [51] Methyl Ethyl Ketone. Disponível em: < https://dir.indiamart.com/impcat/methyl-ethyl-ketone.html>. Acesso em 24 jun 2018.