

ESTUDO COMPARATIVO DA RESPOSTA DINÂMICA DE EDIFÍCIOS ALTOS COM SISTEMAS *OUTRRIGERS*

SÁLVIO MEDEIROS COSTA NETO

MONOGRAFIA DE PROJETO FINAL EM ENGENHARIA CIVIL

UNIVERSIDADE DE BRASÍLIA FACULDADE DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA CIVIL E AMBIENTAL

BRASÍLIA - DF JULHO/2019

UNIVERSIDADE DE BRASÍLIA FACULDADE DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA CIVIL E AMBIENTAL

ESTUDO COMPARATIVO DA RESPOSTA DINÂMICA DE EDIFÍCIOS ALTOS COM SISTEMAS *OUTRRIGERS*

SÁLVIO MEDEIROS COSTA NETO

ORIENTADOR: LUCIANO MENDES BEZERRA

MONOGRAFIA DE PROJETO FINAL EM ESTRUTURAS

BRASÍLIA - DF

JULHO/2019

UNIVERSIDADE DE BRASÍLIA FACULDADE DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA CIVIL E AMBIENTAL

ESTUDO COMPARATIVO DA RESPOSTA DINÂMICA DE EDIFÍCIOS ALTOS COM SISTEMAS OUTRRIGERS

SÁLVIO MEDEIROS COSTA NETO

MONOGRAFIA DE PROJETO FINAL SUBMETIDA AO DEPARTAMENTO DE ENGENHARIA CIVIL E AMBIENTAL DA UNIVERSIDADE DE BRASÍLIA COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE BACHAREL EM ENGENHARIA CIVIL.

APROVADA POR:	
Prof. Luciano Mendes Bezerra, Ph.D UnB	
(Orientador)	
Prof. Gilberto Gomes, Dsc UnB	
(Examinador Interno)	
Prof. Jorge Douglas Bonilla Rocha, Dr. Ing UNIC	
(Examinador Interno)	
BRASÍLIA, 2 DE AGOSTO DE 2019.	

FICHA CATALOGRÁFICA

MEDEIROS COSTA NETO, SÁLVIO

Estudo comparativo da resposta dinâmica de edifícios altos com sistemas outriggers, 2019.

IV, 151p., 297 mm (ENC/FT/UnB, Bacharel, Engenharia Civil, 2019)

Monografia de Projeto Final - Universidade de Brasília. Faculdade de Tecnologia.

Departamento de Engenharia Civil e Ambiental.

1. EDIFÍCIOS ALTOS 2. VENTO

3. OUTRIGGERS 4. ANÁLISE DINÂMICA

I. ENC/FT/UnB II. Título (série)

REFERÊNCIA BIBLIOGRÁFICA

NETO, S. M. C. (2019). Estudo comparativo da resposta dinâmica de edifícios altos com sistemas o*utriggers*. Monografia de Projeto Final, Publicação XXXXX, Departamento de Engenharia Civil e Ambiental, Universidade de Brasília, Brasília, DF. 151p.

CESSÃO DE DIREITOS

NOME DO AUTOR: Sálvio Medeiros Costa Neto

TÍTULO DA MONOGRAFIA DE PROJETO FINAL: Estudo comparativo da resposta dinâmica de edifícios altos com sistemas *outriggers*.

GRAU / ANO: Bacharel em Engenharia Civil / 2019

É concedida à Universidade de Brasília a permissão para reproduzir cópias desta monografia de Projeto Final e para emprestar ou vender tais cópias somente para propósitos acadêmicos e científicos. O autor reserva outros direitos de publicação e nenhuma parte desta monografia de Projeto Final pode ser reproduzida sem a autorização por escrito do autor.

RESUMO

O objetivo deste trabalho é comparar a resposta à ação dinâmica do vento de edifícios altos de diferentes geometrias e que usam sistemas *Outriggers*. No presente trabalho, é feita uma revisão bibliográfica de pesquisas sobre sistemas estruturais tipicamente usados em edifícios altos, tais como contraventamentos, pilares-parede e *outriggers*. Também é feita uma introdução sobre a ação do vento nas estruturas, e dada especial atenção às prescrições da NBR 6123:1988. Foram modelados dez edifícios de 300 m de altura, nas formas prismática, circular e piramidal, com e sem *Outriggers*, com o programa SAP2000. Do programa foram obtidos os modos de vibração dos edifícios para comparação e para utilização no cálculo da parcela flutuante do vento, conforme prescrição da norma. O carregamento total do vento foi aplicado nas estruturas e foram obtidos seus deslocamentos máximos, assim como deslocamentos entre pavimentos.

ABSTRACT

The main goal of this work is to compare the structural behaviour of high-rise buildings with different geometrical forms subjected to dynamic wind load, and making use of outrigger systems. Current research on structural systems tipically employed in high-rise buildings, such as bracings, shear-walls and outriggers, is reviewed. Wind-load on structures is briefly introduced, and special attention is given the relevant Brazilian code (NBR 6123:1988). Ten 300 m high buildings, in the shape of prisms, cilinders and pyramids were modeled in SAP2000. From the program analysis, the buildings' vibration modes were obtained for comparison and to be computed on the calculation of the fluctuating portion of wind load, in accordance with the referred design code. Total loading was applied on the models and their maximum displacement, as well as relative displacement between stories were obtained.

SUMÁRIO

1.	INT	RODUÇAO	9
	1.1.	Objetivos	10
	1.2.	Descrição deste trabalho	10
2.	REV	VISÃO BIBLIOGRÁFICA	12
,	2.1.	Pórticos contraventados	12
2	2.2.	Steel Plate Shear Walls (SPSWs)	13
,	2.3.	Outriggers	19
,	2.4.	Estruturas híbridas	22
3.	FUN	NDAMENTAÇÃO TEÓRICA	26
	3.1.	Desenvolvimento histórico de edifícios altos e seus sistemas estruturais	26
	3.2.	Classificação dos sistemas estruturais de edifícios altos	27
	3.3.	Pórticos rígidos	28
	3.4.	Pórticos contraventados	29
	3.5.	Pórtico tubular	29
	3.6.	Pilares-parede	31
	3.7.	Steel plate shear walls	32
	3.8.	Diagrid	34
	3.9.	Outriggers	36
	3.10.	Estruturas híbridas e mistas	38
	3.11.	Tendências emergentes	39
4.	ΑÇ	ÃO DO VENTO NAS ESTRUTURAS E PRESCRIÇÕES DA NBR 6123:1998	40
4	4.1.	Cálculo da parcela estática da ação do vento	42
4	4.2.	Fatores S ₁ S ₂ e S ₃ para o cálculo da velocidade característica	44
4	4.3.	Coeficientes de pressão, forma e força	45
4	4.4.	Efeitos dinâmicos devido à turbulência atmosférica	46
	4.4.	1. Modelo contínuo simplificado	47
	4.4.	2. Modelo discretizado	49
5.	ME	TODOLOGIA E MODELAGEM	52
:	5.1.	Modelos construídos no SAP2000	53
:	5.2.	Considerações sobre o modelo piramidal	55
:	5.3.	Pré-dimensionamento	55
:	5.4.	Cálculo das forças de arrasto estáticas para os modelos prismáticos	58
:	5.5.	Obtenção dos modos de vibração	59
:	5.6.	Cálculo da parcela dinâmica da ação do vento	61
:	5.7.	Obtenção dos deslocamentos máximos	62
	5.8.	Resumo esquemático do processo	62

6.	RES	ULTADOS E ANÁLISE	64
6	.1.	Influência dos <i>outriggers</i> nos modos de vibração (primeira análise modal)	64
6	.2.	Influência dos <i>outriggers</i> nos modos de vibração (segunda análise modal)	75
6	.3.	Comparação entre deslocamentos estáticos e totais (estáticos e dinâmicos)	80
6	.4.	Efeito dos <i>outriggers</i> nos deslocamentos máximos e relativos dos modelos	81
6	5.5.	Eficiência dos <i>outriggers</i> em função das diferentes geometrias	85
7.	CON	NSIDERAÇÕES FINAIS	87
RE	FERÊ	NCIAS BIBLIOGRÁFICAS	89
AN	EXO	A: MODELAGEM VIRTUAL NO SAP2000	91
A	1.1. D	efinição de materiais utilizados e suas propriedades	91
A	.2. D	efinição da seção transversal	92
A	1.3. A	nálise Estática9	93
AN	EXO	B – PROPRIEDADES GEOMÉTRICAS DOS PERFIS UTILIZADOS9	94
		C – TABELA DE PRÉ-DIMENSIONAMENTO DO MODELO PRISMÁTICO E ESCOLHA ÇÕES UTILIZADAS	
AN PRI	EXO SMÁ	D – TABELA DE CÁLCULO DAS FORÇAS DE ARRASTO ESTÁTICAS NOS EDIFÍCIOS TICOS E CILÍNDRICOS	; 98
DE	VIBR	E – TABELAS DE CÁLCULO DAS PARCELAS ESTÁTICA E DINÂMICA PARA CADA MODO AÇÃO DOS MODELOS 101 odelo A010	
		odelo A1	
		odelo B0	
		odelo B1	
		odelo C0	
Ŀ	.6. M	odelo C113	39

LISTA DE TABELAS

Tabela 4.1 – Parâmetros Meteorológicos b e p (ABNT NBR 6123:1988)	45
Tabela 4.2 – Parâmetros para determinação de efeitos dinâmicos (ABNT NBR 6123:1988)	47
Tabela 4.3 – Parâmetros p e b em função da rugosidade do terreno (ABNT NBR 6123:1988)	48
Tabela 5.1 – Materiais utilizados nos modelos e suas características	55
Tabela 5.2 - Cargas distribuídas para pré-dimensionamento (kN/m²)	56
Tabela 5.3 – Área útil e Carga por andar	56
Tabela 5.4 - Área de seção necessária aos pilares dos cinco primeiros andares	57
Tabela 5.5 - Seção escolhida e verificação do acréscimo de carga	57
Tabela 5.6 - Área de incidência de vento e coeficiente de arrasto para modelos primsáticos e cilíndrico	os 59
Tabela 5.7 – Forças de arrasto estáticas calculadas para os modelos prismáticos e cilíndricos	59
Tabela 5.8 - Cálculo da força total (parcelas estática e dinâmica) do vento para o primeiro modo de vibração do modelo A0	62
Tabela 6.1 – Período e tipo dos modos de vibração dos modelos prismáticos	74
Tabela 6.2 - Período e tipo dos modos de vibração dos modelos cilíndricos	75
Tabela 6.3 - Período e tipo dos modos de vibração dos modelos piramidais	75
Tabela 6.4 - Frequência e período para os modos de vibração dos modelos prismáticos	76
Tabela 6.5 - Frequência e período para os modos de vibração dos modelos cilíndricos	78
Tabela 6.6 - Frequência e período para os modos de vibração dos modelos piramidais	79
Tabela 6.7 - Deslocamentos estáticos e dinâmicos para os modelos prismáticos	80
Tabela 6.8 –Deslocamentos absolutos e relativos entre elementos e pavimentos (Modelos A0 e A1)	81
Tabela 6.9 - Deslocamentos absolutos e relativos entre elementos e pavimentos (Modelos B0 e B1)	83
Tabela 6.10 - Deslocamentos absolutos e relativos entre elementos e pavimentos (Modelos C0 e C1)	84
Tabela 6.11 - Redução de deslocamento e acréscimo de massa pelo sistema de outriggers	86

LISTA DE FIGURAS

Figura 2.1: Tipologias modeladas - pórtico rígido, contraventamento em X, V e V invertido (CHAVES, 2009)
Figura 2.2: Modelo ensaiado por Timler e Kulak (1983, apud KANG et al, 2013)14
Figura 2.3: Modelo com SPSW e pórtico rígido ensaiado por Driver et al (1998, apud KANG et al, 2013)
Figura 2.4: Detalhes do ensaio de conexões de Driver et al (1998 apud KANG et al, 2013)17
Figura 2.5: Diagrama tensão-deformação para ensaio de carregamento cíclico (Choi e Park 2008, apud KANG et al, 2013)
Figura 2.6: A) Modelo físico em mesa vibratória e B) modelos virtuais (Zhou e Li, 2014)20
Figura 2.7: Modelos estudado por Moghadam, Meshkat e Moghadam (2015)21
Figura 2.8: A) Beijing Wealth Center e B) modelo físico reduzido (Jiang, Fu, Liu, & Yin, 2014)25
Figura 3.1: Diferentes sistemas estruturais: A) pórtico tubular, B) associação de tubos, C) tubo dentro de tubo, D) <i>diagrid</i> , E) <i>outriggers</i> e F) estrutura híbrida, (Hallebrand e Jakobsson, 2016)26
Figura 3.2: Diferentes tipos de contraventamentos diagonais (Hallebrand & Jakobsson, 2016)29
Figura 3.3: Diagrama de tensões ao longo dos pórticos na direção de atuação da força horizontal, (Hallebrand & Jakobsson, 2016)
Figura 3.4: Estrutura de tubos dentro de tubo (Hallebrand & Jakobsson, 2016)31
Figura 3.5: Deformação de pórtico rígido, núcleo rígido de pilares parede, e da associação dos dois sistemas (Ali e Moon, 2007)
Figura 3.6: Deformação plástica de SPSWs A) espessas (na base) e B) finas (ao longo de toda a estrutura) (Kang et al, 2013)
Figura 3.7: Fachada do Hancock Center, (Skidmore, Owings & Merrill LLP, 2019)34
Figura 3.8: IBM Building, Pittsburgh, e 30 St. Mary Axe, Londres. (Peterson, 2010) e (Wikipedia, 2019)
Figura 3.9: Canoa polinésia com <i>outrigger</i> duplo (Wikipedia, 2019)36
Figura 3.10: Corte esquemático de edifício com outriggers (Hallebrand & Jakobsson, 2016)37
Figura 4.1: Mapa brasileiro de Isopletas de velocidade básica
Figura 4.2: Coeficiente de amplificação dinâmica para terreno de categoria II (ABNT NBR 6123:1988) 48

Figura 4.3 – Exemplo de modelo discretizado (ABNT NBR 6123:1988)	49
Figura 5.1 – Modelos desenhados no AutoCAD	52
Figura 5.2 - Modelos prismáticos A0, A1, A1a e A2	53
Figura 5.3 – Modelos cilíndricos B0, B1, B1a e B2	54
Figura 5.4 - Modelos piramidais C0 (sem <i>outrigger</i>) e C1 (com <i>outrigger</i>)	54
Figura 5.5 - Vista em planta da base dos modelos prismáticos e cilíndricos	56
Figura 5.6 – Configurações adotadas para a primeira análise modal	60
Figura 5.7 - Configurações adotadas para a segunda análise modal	60
Figura 5.8 - Obtenção dos deslocamentos para o primeiro modo de vibração do modelo A0	61
Figura 6.1 – Primeiros modos de vibração para o modelo A0	64
Figura 6.2 – Primeiros modos de vibração para o modelo A1	65
Figura 6.3 – Primeiros modos de vibração para o modelo A1a	66
Figura 6.4 – Primeiros modos de vibração para o modelo A2	67
Figura 6.5 – Primeiros modos de vibração para o modelo B0	68
Figura 6.6 – Primeiros modos de vibração para o modelo B1	69
Figura 6.7 – Primeiros modos de vibração para o modelo B1a	70
Figura 6.8 – Primeiros modos de vibração para o modelo B2	71
Figura 6.9 – Primeiros modos de vibração para o modelo C0	72
Figura 6.10 – Primeiros modos de vibração para o modelo C1	73
Figura 6.11 – Frequência e período dos modelos prismáticos	77
Figura 6.12 - Frequência e período dos modelos cilíndricos	78
Figura 6.13 - Frequência e período dos modelos piramidais	79
Figura 6.14 Deslocamentos estáticos e dinâmicos (totais) para os modelos A0 e A1	81
Figura 6.15 - Deslocamento dos modelos prismáticos	82
Figura 6.16 - Deslocamento dos modelos cilíndricos	83
Figura 6.17 - Deslocamento dos modelos piramidais	85

Figura A.0.1: Janela de entrada de dados de propriedades dos materiais	91
Figura A.0.2: Janela de entrada de dados da seção transversal	92
Figura A.0.3: Ferramenta de definição de padrões de carga	93
Figura A.0.4: Ferramenta de definição de casos de carga	93

LISTA DE SÍMBOLOS, NOMENCLATURA E ABREVIAÇÕES

A – área
A _{Ref} – área de referência ou área de sombra
$\mathbf{a}_{\mathbf{j}}-\mathbf{a}$ mplitude máxima de aceleração
b – parâmetro meteorológico
C – coeficiente de forma
c _p – coeficiente de pressão
d – diferença de nível entre base e topo de talude ou morro
E – módulo de deformação
F-força
$F_{ck}-{ m resist}$ ência a compressão característica do concreto
F_r – fator de rajada
F _X – força na direção X
F_y – tensão de escoamento do aço
f - frequência
h – dimensão vertical, altura
L – maior dimensão longitudinal ou comprimento
m - massa
p – parâmetro meteorológico
p _e – pressão externa
$p_{i}-press\~{a}o$ interna
q – pressão dinâmica
S1 – fator topográfico
S2 – fator de rugosidade
S3 – fator estatístico
T – período
t - tempo
u_j – deslocamento máximo no modo j
V ₀ – velocidade básica

 $V_k-velocidade\ caracter\'{\text{(stica)}}$

V_p – velocidade de projeto

 $V_t(h)$ – velocidade média do vento sobre t segundos em função da altura

 \overline{X} – parcela média da força do vento

 \hat{X} – parcela flutuante da força do vento

 x_i - deslocamento horizontal para o modo de vibração

z – altura a partir da superfície do terreno

 ζ – razão de amortecimento crítico

 ξ – coeficiente de amplificação dinâmica

ρ – massa específica

 θ – inclinação de talude ou morro

 ψ_i – razão entre uma massa de elemento i e uma massa de referência

ASCE – American Society of Civil Engineers

CTBUH - Council on Tall Buildings and Urban Habitat

SPSW – Steel plate shear walls

1. INTRODUÇÃO

A grande migração humana em escala global do campo para a cidade promove um aumento significativo da densidade populacional dos centros urbanos. Isso leva à escassez de terrenos e ao aumento dos custos dos espaços disponíveis. Mesmo tendo suas diversas fragilidades, tais como possível sobrecarga da rede de transporte para acesso ao edifício, grande consumo de energia elétrica na região da rede de distribuição, considerações especiais quanto à segurança em incêndios, o crescimento vertical dos edifícios surge tanto como solução quanto como necessidade para atender às demandas de moradia, trabalho e lazer da população.

Arranha-céus, aqui entendidos segundo a definição "Supertall" do CTBUH¹, são uma tipologia construtiva original dos Estados Unidos no final do século XIX, que se espalhou pelo mundo. Hoje a região que mais constrói esses prédios é a Ásia. De acordo com Zhou e Lee (2014), edifícios altos simbolizam prosperidade econômica e social, bem como evolução tecnológica. Além de possibilitar mais moradia em uma mesma área, representam, em sua grandeza, um monumento para suas cidades e um marco de desenvolvimento e poder.

A construção de edifícios cada vez mais altos só é possível devido à disponibilidade crescente de conhecimentos e tecnologias de construção: novos materiais mais resistentes, novos métodos de execução que superem dificuldades logísticas, e resultados cada vez mais refinados para o cálculo estrutural e verificação da segurança dos edifícios. Quanto mais alta uma estrutura, também se torna especialmente necessário em seu cálculo considerar a atuação das forças horizontais, como a ação do vento e os efeitos sísmicos, menos significativas em construções mais baixas. Para combatê-las, são utilizados diferentes sistemas típicos de arranhacéus, como estruturas tubulares, contraventamentos ou *outriggers*.

O comportamento real das estruturas depende de diversos fatores, como os materiais empregados na construção, suas formas de ligação e solicitações às quais elas devem responder. Essas solicitações dizem respeito tanto às solicitações de uso e ocupação, como às solicitações externas naturais, sejam térmicas, do vento ou do terreno. Conforme afirmado por Chaves (2009), as estruturas devem suportar as solicitações às quais estão expostas, sem perder sua integridade física e segurança, e ainda serem projetadas de forma econômica. O projeto estrutural

¹O Conselho de Edifícios Altos e Habitat Urbano (Council on Tall Buildings and Urban Habitat) define edifícios "superaltos" como aqueles de 300 metros de altura ou mais. Atualmente existem 146 estruturas no mundo que atendem este critério (CTBUH Height Criteria, 2019).

é, portanto, um problema excessivamente complexo para ser modelado em todas as suas variáveis, o que necessita que sejam feitas simplificações.

O modelo ideal é aquele que, em toda a sua simplicidade, ainda representa com precisão adequada como a estrutura se comporta ao ser solicitada. Neste contexto, ao permitir a criação de diversos modelos com diferentes níveis de complexidade, necessários nas várias etapas de um projeto, o computador se tornou uma ferramenta valiosa ao engenheiro calculista. Sua contínua evolução possibilita a análise numérica de estruturas cada vez mais complexas com resultados cada vez mais precisos.

Nesse trabalho se descreve o processo de modelagem de dez estruturas de diferentes geometrias, utilizando ou não o sistema de *outriggers*, e sujeitas à ação dinâmica do vento. Foi avaliado o efeito dos *outrrigers* nos períodos dos modos de vibrações dos modelos. Foram também calculadas as forças do vento atuantes, de acordo com as recomendações da NBR 6123:1988. Para esse cálculo foi necessário realizar uma análise modal das estruturas modeladas, para a qual foi utilizado o *software* comercial SAP2000. Com o programa, foram obtidos diversos modos de vibração das estruturas pra comparação. As forças calculadas foram aplicadas nas estruturas para se encontrar seus deslocamentos máximos, os quais foram finalmente comparados entre as alternativas estruturais com ou sem o sistema de *outriggers*.

1.1. Objetivos

Este trabalho tem por objetivo comparar o comportamento de diferentes geometrias de edfícios altos, de mesma altura e área construída, frente a solicitações dinâmicas do vento. Também foi comparada qual a influência do uso de *Outriggers* para combater essas solicitações. Os parâmetros utilizados no estudo foram o deslocamento de topo da estrutura e o deslocamento entre pavimentos.

Como objetivos específicos, têm-se a modelagem virtual no programa SAP2000 das estruturas estudadas e o aprofundamento do estudo da NBR 6123:1988, que durante a graduação tipicamente trata somente da ação estática do vento.

1.2. Descrição deste trabalho

Este trabalho está estruturado da seguinte maneira:

No capítulo 1, é introduzido o tema, sua justificativa e motivação, e se explica o que se pretende realizar com esta pesquisa.

No capítulo 2, é feita uma revisão bibliográfica do estado da arte de alguns dos sistemas estruturais tipicamente utilizados em edifícios altos.

No capítulo 3, é feita uma explicação teórica sobre os princípios de funcionamento desses sistemas estruturais.

No capítulo 4, é revisada a norma brasileira de ações dos ventos nas estruturas, NBR 6123:1988, e dada especial atenção a seu item 9, que determina como levar em consideração os efeitos dinâmicos da força do vento.

No capítulo 5, são descritas as etapas de modelagem das estruturas no SAP2000 e as hipóteses simplificadoras utilizadas. São descritos os modelos estudados e o cálculo de seu carregamento de vento.

No capítulo 0, são expostos os resultados obtidos e feitas as análises comparativas entre os diferentes modelos.

Finalmente, no capítulo 7, são feitas as considerações finais desse trabalho e indicações de continuidade de pesquisa.

2. REVISÃO BIBLIOGRÁFICA

2.1. Pórticos contraventados

Chaves (2009) realizou um estudo comparativo da resposta dinâmica de pórticos metálicos com diferentes contraventamentos, considerando a ação do vento e de sismos. Seu objetivo era avaliar a eficiência dos contraventamentos em relação aos deslocamentos máximos e quantidade de material utilizado. Foram modeladas virtualmente estruturas de trinta e de cinquenta pavimentos, e simulada a resposta de quatro tipologias de contraventamento, conforme a Figura 2.1 a seguir:

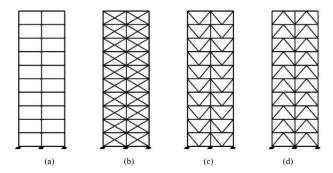


Figura 2.1: Tipologias modeladas - pórtico rígido, contraventamento em X, V e V invertido (CHAVES, 2009)

As ações consideradas foram o "vento sintético" (de Franco, 1993) e o sismo El Centro, de 1940 na Califórnia. A parcela flutuante do vento foi simulada a partir da formulação de Monte Carlo. Duas estruturas, com trinta e cinquenta pavimentos cada, foram modeladas em elementos finitos, utilizando o programa SAP2000. Os contraventamentos foram modelados como elementos de barra rígidos no seu plano axial, e as forças externas foram aplicadas somente nos nós da estrutura. Os resultados retornados pelas simulações foram o deslocamento lateral de topo, a massa total das estruturas e seus períodos fundamentais.

Chaves conclui que o contraventamento, de ambas as tipologias em "X" e em "V", é uma forma eficaz de reduzir deslocamentos laterais da estrutura decorrentes da ação do vento. Comparando os resultados das estruturas de trinta e de cinquenta pavimentos, ele observa que a restrição ao deslocamento lateral é maior para a menor estrutura, enquanto que para a maior o "contraventamento está próximo do seu limite de utilização". Quanto à ação de sismos, o contraventamento tornou a resposta estrutural imprevisível, em alguns casos provocando um

aumento dos deslocamentos laterais. Seu uso ainda pode ser justificado para mudar a frequência fundamental da estrutura, mas outros dispositivos de restrição dos deslocamentos, como isoladores de sismo, devem ser utilizados em paralelo.

Young e Adeli (2014) investigaram a acurácia de equações normatizadas para estimar o período fundamental de estruturas. O foco do estudo foi o contraventamento concêntrico em "X". Com o software ETABS, foram modeladas estruturas com diferentes irregularidades: vertical (recuos), horizontal (reentrâncias), e a combinação dos dois casos. O período fundamental de cada estrutura é estimado utilizando o método de Rayleigh, o método proposto por Adeli em 1985 e as equações da norma ASCE de 2010.

Entre as conclusões obtidas por Young e Adeli, destaca-se que estruturas regulares possuem período maior (vibram mais devagar), e que a irregularidade horizontal tem influência menor na diminuição do período. As equações da norma ASCE são muito mais conservadoras quando comparadas ao método de Rayleigh, e uma nova equação para estimar o período funtamental de estruturas com contraventamento concêntrico é proposta.

2.2. Steel Plate Shear Walls² (SPSWs)

Kang et al. (2013), em sua pesquisa, fizeram uma extensa revisão do estado da arte de SPSWs e um estudo de caso de um edifício alto que as usa como sistema primário de resistência às solicitações laterais, que são explorados aqui.

Apesar de inicialmente serem projetadas como placas espessas ou fortemente enrijecidas, desde os anos 80 são realizadas pesquisas sobre SPSWs finas. Thorburn (1983, apud KANG et al, 2013, p. 502) propôs um modelo de faixas (*strip model*) para analisar a resistência ao cisalhamento de SPSWs. O método de análise consistia em dividir a placa em no mínimo dez faixas, que representariam o campo de tensões resultante da aplicação de uma carga horizontal. A soma das faixas resulta na área da placa de preenchimento. Cada faixa possui uma inclinação alfa e é ligada por rótulas aos elementos de borda. O ângulo alfa é determinado a partir da teoria de energia mínima. A tensão resistente de cisalhamento é determinada pela componente horizontal da capacidade de escoamento das faixas de tensão.

13

² Painel formado por associação de elementos de borda horizontais e verticais, normalmente em aço, e placas metálicas de preenchimento que trabalha sob cisalhamento, de maneira que o comportamento global do sistema seja semelhante ao de um pilar-parede.

A pesquisa experimental de Timler e Kulak (1983, apud KANG et al, 2013, p. 502) sobre a capacidade portante pós-flambagem de placas finas não enrijecidas focava em sua resistência global e em seu comportamento histerético. Foi ensaiado um modelo físico, conforme ilustrado na Figura 2.2. Os ângulos de inclinação das faixas de tensão estavam em concordância com os estimados. Foram encontradas, porém, deformações maiores que as previstas para cargas altas.

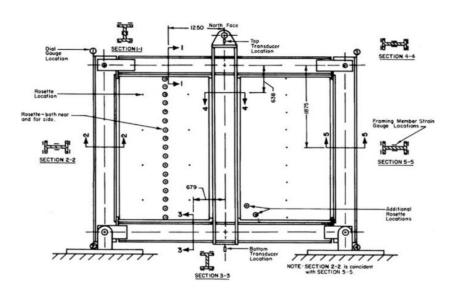


Figura 2.2: Modelo ensaiado por Timler e Kulak (1983, apud KANG et al, 2013)

Testes posteriores, de Tromposch e Kulak (1987, apud KANG et al, 2013, p. 502), concluíram que o modelo de faixas de Thorburn pode ser usado para estimar a resistência e capacidade última de placas finas não enrijecidas. Como o modelo assume conexões rotuladas entre as faixas da placa de preenchimento e os elementos de contorno, onde na verdade há alguma rigidez e transmissão de momento, sua estimativa ainda é conservadora. De maneira similar a pórticos contraventados e pilares parede de concreto armado, as SPSW apresentam comportamento histerético, dissipando energia por meio de deformações plásticas residuais ao soferem ciclos de carregamento em direções opostas. A histerese do modelo ensaiado, contudo, se afastou de um modelo ideal devido à descontinuidade das curvas de desenvolvimento tensão x deformação.

Um outro estudo, de Caccese et al. (1993, apud KANG et al, 2013, p.502), avaliou a influência da espessura da placa de preenchimento na resistência do pilar parede. Um aumento significativo da espessura não corresponde a aumento proporcional da resistência, já que o modo

de falha se torna outro: placas mais espessas não escoam, transferindo a plastificação para os elementos de contorno.

Driver et al. (1998, apud KANG et al, 2013, p. 503) fizeram uma avaliação de performance global de uma SPSW sujeita a cargas cíclicas com mudança de direção. Também foi avaliada a distribuição de esforços entre a placa e seu sistema de pórtico rígido de contorno. Apesar de o teste terminar prematuramente devido à fratura de uma das colunas na região de solda da placa de base, a evolução da dissipação de energia no ensaio indicou que o sistema resiste a cargas laterais extremamente cíclicas de maneira satisfatória. O modelo utilizado no estudo é mostrado na Figura 2.3.

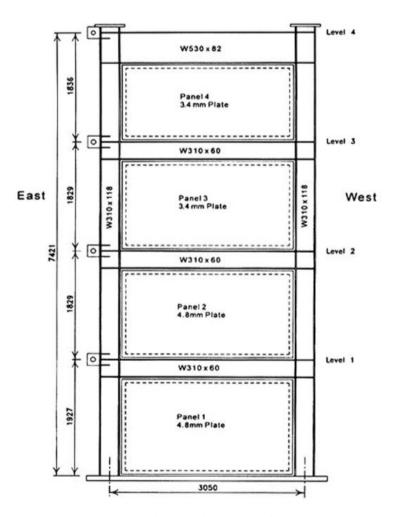


Figura 2.3: Modelo com SPSW e pórtico rígido ensaiado por Driver et al (1998, apud KANG et al, 2013)

O mesmo espécime foi testado por Behbahanifard (2003, apud KANG et al, 2013, p. 503) para avaliar o comportamento após deformações plásticas, exibindo boa ductilidade, capacidade de dissipação de energia e comportamento histerético estável. Dentre as conclusões desse estudo, são listadas:

- Uma razão entre largura e altura entre 1 e 2 tem influência desprezível no comportamento da SPSW. Para valores dessa relação menores que 1, há um aumento da rigidez normalizada e da capacidade resistente ao cisalhamento;
- Um aumento na razão entre a rigidez axial do painel de preenchimento e das colunas incorre em um acréscimo da rigidez lateral combinada, mas não afeta a capacidade normalizada ao cisalhamento;
- Com o aumento da flexibilidade das colunas, a rigidez e a capacidade do sistema diminui, porque o campo de tensão não se desenvolve uniformemente na placa de preenchimento.
- Imperfeições na placa de preenchimento prejudicam a rigidez da parede a cargas oscilatórias de baixas amplitude, mas não afeta sua capacidade resistente ao cisalhamento.

Também foram feitas pesquisas experimentais nos detalhes de conexões das SPSWs, incluindo efeitos de perfuração ao longo das bordas das placas de preenchimemnto. Estudos de Driver et al. (1998 apud KANG et al, 2013) e Schumacher et al. (1999 apud KANG et al, 2013) utilizaram modelos com conexões soldadas aos elementos de contorno, conexão soldada e de furos (*fish plate*), e conexão de furos nos dois lados nas regiões de canto da placa de preenchimento, conforme o esquema da Figura 2.4. Os resultados mostraram que as pequenas fraturas desenvolvidas nas conexões durante o carregamento cíclico não tiveram efeitos negativos na relação de carregamento e deflexão dos elementos.

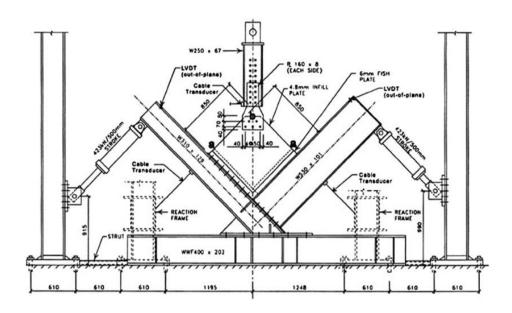


Figura 2.4: Detalhes do ensaio de conexões de Driver et al (1998 apud KANG et al, 2013)

Os estudos de Elgaaly (1998 apud KANG et al, 2013) comparando conexões soldadas e de parafuso concluíram que os modelos de parafuso apresentam rigidez elástica, resistência de escoamento e rigidez pós escoamento levemente reduzidos em relação aos modelos soldados.

Roberts e Sabouri-Ghomi (1992 apud KANG et al, 2013, p. 506) investigaram a influência de um furo circular centralizado em uma placa de SPSW, e concluíram que a perda de resistência pode ser quantificada por um fator que depende somente do diâmetro do furo e da espessura da placa.

Vian e Bruneau (2004 apud KANG et al, 2013, p. 506) estudaram formas de reduzir a solicitação transmitida pelas SPSWs aos seus elementos de contorno, seja por perfurações ao longo de seu perímetro, uso de aço com tensão de escoamento reduzidas, ou pela retirada de material dos cantos das placas. As três alternativas se mostraram eficazes para seu objetivo, tendo o elemento com menor tensão de escoamento iniciado a dissipar energia antes dos outros. Segundo os autores, os furos ao longo do perímetro ainda têm a vantagem de facilitar a passagem de instalações.

Zhao e Astaneg-Asl (2007 e 2008, respectivamente, apud KANG et al, 2013, p. 506) ensaiaram dois modelos reduzidos de um tribunal de Seattle que utiliza SPSW como sistema de resistência a forças laterais, com pilares mistos circulares e vigas de seção W. Enquanto os

elementos verticais permaneceram predominantemente elásticos, as vigas escoaram significativamente, confirmando sua capacidade de dissipação de energia.

Em pesquisas mais recentes, Park et al (2007, apud KANG et al, 2013, p.506) testaram modelos com painéis de preenchimento de diferentes espessuras e pilares de diferentes resistências. Os modelos com pilares mais resistentes tiveram um ganho de resistência e aumento na energia dissipada a cada ciclo de carregamento. Seu modo de falha típico foi de fratura em regiões soldadas, na base de pilares ou na união destes com as vigas. Para os modelos com pilares menos resistentes, ao contrário, a capacidade resistente máxima reduziu a cada ciclo e seu modo de falha foi por flambagem nos pilares. A conclusão do estudo foi que, em contraste com sistemas de contraventamento, o modo de deformação do sistema determina também sua capacidade máxima de deformação.

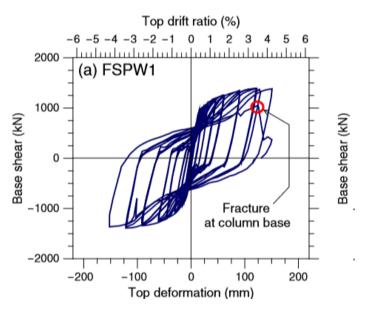


Figura 2.5: Diagrama tensão-deformação para ensaio de carregamento cíclico (Choi e Park 2008, apud KANG et al, 2013)

Choi e Park (2008, apud KANG et al, 2013, p. 508) ensaiaram modelos físicos para comparar a ductilidade e a capacidade de dissipação de energia entre SPSWs, pórticos rígidos e pórticos contraventados, concluindo que a capacidade de dissipação das SPSWs era bastante superior à dos seus sistemas alternativos. A Figura 2.5 ilustra o deslocamento de topo percentual e o cisalhlamento na base de um modelo durante os ciclos de carregamento, evidenciando seu

comportamento histerético. Em 2010, os mesmos autores propuseram um modelo simplificado do comportamento histerético de SPSWs, considerando a resistência de flambagem e critérios de falha do material, capaz de prever satisfatoriamente o seu comportamento cíclico.

Kang et al (2013) trazem ainda um estudo de caso de um edifício projetado pelo escritório Nabih Youseff Associados, em Los Angeles. O prédio possui 55 pavimentos de colunas metálicas sobre três pavimentos subterrâneos de concreto armado, e sua resistência a forças sísmicas é garantida pelo sistema de SPSWs. Apesar de não ter sido feito um estudo comparativo entre alternativas como contraventamentos, devido a requerimentos arquitetônicos preeliminares, o sistema foi escolhido por permitir um ganho significativo de área útil.

Como sistema secundário, os elementos verticais e horizontais foram unidos com conexões de momento, trabalhando como um pórtico rígido. Dessa forma, a resistência aos deslocamentos no edifício é compartilhada entre os painéis de SPSW nos andares inferiores e os pórticos rígidos no topo, o que elimina a necessidade de enrijecer ainda mais as placas na base. Ainda é interessante notar que o prédio também conta com *outriggers*, ilustrando como vários sistemas são usualmente utilizados em um mesmo projeto.

No projeto do edifício desse estudo de caso, um modelo detalhado não-linear foi calibrado com dados experimentais de larga escala para prever o comportamento do projeto. Uma análise linear foi feita para verificar se os resultados eram razoáveis. Os autores enfatizam ainda que uma análise não linear computacional deve ser usada somente para verificação posterior, e não como ferramenta primária de projeto.

2.3. Outriggers³

Zhou e Li (2014) fizeram uma análise experimental e computacional de uma estrutura metálica alta com *outriggers* atenuados por viscosidade. Foi construído um modelo físico de 7,2 m de altura, que foi ensaiado em mesa vibratória. Aos resultados, foi comparada a resposta de dois modelos virtuais de estruturas metálicas, construídos com o software SAP2000. Os modelos físicos e virtuais são ilustrados na A)

Figura 2.6 a seguir.

³ treliças transversais. Ambas as estruturas serão apresentadas em mais detalhes no capítulo 3.

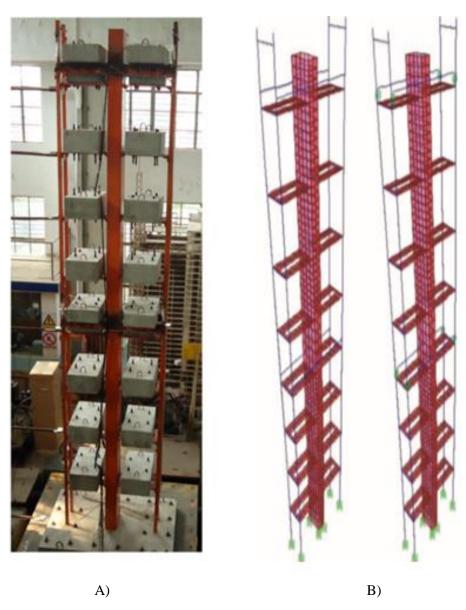


Figura 2.6: A) Modelo físico em mesa vibratória e B) modelos virtuais (Zhou e Li, 2014)

Em uma, os *outriggers* estavam engastados no núcleo e rotulados na união com os pilares externos, e na outra, essa união foi feita por atenuadores com fluido viscoso. Foram simuladas ondas de terremoto e artificiais geradas por computador.

As conclusões do estudo indicam que, ao se utilizar atenuadores de viscososidade, pequenas acelerações de terremotos causam deslocamentos internos e força cortante na base da estrutura superiores aos que ocorrem na estrutura sem atenuadores. Conforme a aceleração do terreno da base aumenta, a situação se inverte e o efeito dos atenuadores passa a ser significativo.

Os *outrrigers* atenuados, propostos por Smith e Willford (2007 apud ZHOU e LI, 2014, p.964) para edifícios que devem suportar altas cargas laterais, diferem dos comuns na sua conexão com o perímetro externo da estrutura. Ao invés de uma conexão fixa, são utilizados atenuadores com fluido viscoso. O deslocamento relativo vertical entre o *outrigger* e o pilar externo, causado por cargas de vento ou terremotos, coloca o atenuador em funcionamento.

Seu único exemplo de aplicação é o Saint Francis Shangri-la Place em Manila, um prédio de 217 m (60 pavimentos) e duas torres. Na altura média de cada torre, oito *outriggers* (neste caso feitos de paredes de concreto) de dois andares de altura são ligados ao núcleo rígido de concreto, e dois atenuadores de fluido viscoso estão no final da parede e da coluna exterior. Estima-se que isso confere à estrutura uma capacidade de atenuamento adicional entre 5 e 11%, para ventos de período de retorno de 100 anos.

Moghadam, Meshkat-Dini e Moghadam (2015) estudaram o desempenho de um sistema outrigger de três andares em uma estrutura metálica de pórticos contraventados. De acordo com o código de construção sísmica iraniano, foram modelados três edifícios virtuais de 30 pavimentos com diferentes configurações de outriggers, conforme a figura Figura 2.7. A pesquisa indicou que os parâmetros de estruturas em zonas de maior atividade sísmica (deslocamento lateral máximo e velocidade relativa) são melhores que aqueles de estruturas longe dessas zonas. Além disso, o sistema de outriggers reduziu o deslocamento lateral dos edifícios, apesar de aumentar o cisalhamento na base das estruturas e a força axial nos pilares externos. A redução do deslocamento lateral foi de 40% para a estrutura com outriggers a média altura, e de 50% para o sistema posicionado no topo, ambas em relação ao deslocamento do edifício sem o sistema.

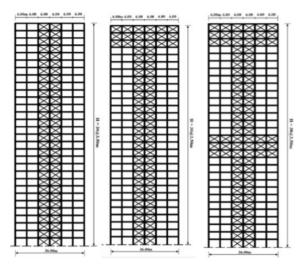


Figura 2.7: Modelos estudado por Moghadam, Meshkat e Moghadam (2015)

2.4. Estruturas híbridas

Vasconcellos (2015) estudou um sistema híbrido de contraventamentos utilizando aço e concreto e analisou o seu comportamento aplicado a um edifício de múltiplos andares com diversas solicitações, em especial a ação do vento. O sistema consiste em "painéis de contraventamento [...] compostos por paredes de cisalhamento com lintéis⁴ de aço embutidos, simplesmente articulados a colunas mistas em ambos os lados da parede". Enquanto a modelagem foi feita por método dos elementos finitos, a análise realizada foi linear estática, com efeitos de primeira e segunda ordem.

Os problemas que se buscava solucionar eram o do alto custo de fabricação de conexões resistentes a momento entre vigas e pilares metálicos e o da diferença na ordem de tolerância dimensional para elementos de aço (da ordem de milímetros) e de concreto (centímetros), o que impacta no planejamento da obra e na qualidade do serviço executado. Foram especialmente estudadas as conexões entre as vigas metálicas que unem a parede de concreto às colunas mistas laterais.

Utilizando diferentes perfis para os lintéis, afastamentos entre colunas e diferentes configurações de paredes de concreto, um total de 405 modelos foram avaliados em busca de uma forma mais eficiente. Essa busca foi feita pela dedução, por regressão linear, de funções de otimização do momento de inércia total do sistema, considerando a contribuição de diferentes perfis metálicos para os lintéis, e para diferentes larguras dos pilares parede. Ao se derivar essas funções, foi possível encontrar o comprimento ideal de lintel para cada perfil considerado, e para cada comprimento de pilar parede. O autor concluiu "que aumentando o comprimento da parede, reduz-se a distância ótima às colunas laterais do sistema híbrido para a mesma inércia de viga. Aumentando a inércia do perfil aumenta-se a distância ótima para o mesmo espaçamento" (Vasconcellos, 2015).

Jiang et al. (2014) realizaram um estudo da performance sísmica de uma estrutura híbrida de aço e concreto muito alta. Seu objetivo era apresentar uma avaliação do desempenho sísmico da estrutura em dois níveis: global e por elementos. Nesse estudo foi avaliada uma estrutura mista em pórtico tubular com um novo tipo de pilar parede, de altura maior que a máxima

⁴ Colunas mistas laterais

definida na norma chinesa. Foram comparadas as respostas de um modelo físico em escala 1/30 ensaiado em mesa vibratória e de um modelo virtual por simulação numérica com o software Perform-3D.

A) O edifício em foco nesse estudo foi o Beijing Wealth Center, um prédio comercial de 61 pavimentos, com altura total de 264 m, no distrito de Chaoyang, Beijing. A

Figura 2.8 ilustra o edifício junto ao modelo físico construído. Os sistemas estruturais utilizados nessa estrutura são um núcleo rígido de concreto armado tubular, os pilares periféricos em concreto armado, e as treliças metálicas do sistema de *outriggers*, que permitem a transmissão de esforços verticais e laterais entre o núcleo e os pilares externos.

Os *outriggers* estão posicionados somente na direção de menor inércia do edifício, em dois andares. Nos andares típicos, o núcleo e os pilares periféricos estão unidos pelas lajes que, sem grandes aberturas, funcionam como diafragma rígido. No núcleo rígido, estão embutidas placas e colunas de aço para reforço.

Devido à sua altura, o edifício está além do que é normatizado pelo CMC. Além disso, os andares reforçados constituem uma irregularidade vertical. Devido a essas complexidades, o código chinês exige um estudo aprofundado do desempenho sísmico da estrutura, que foi feito por ensaio de modelo físico em mesa vibratória e simulação numérica virtual.

Na construção do modelo físico em escala reduzida, a fim de se atenderem os requisitos da teoria de semelhança de modelos, era necessário que o material utilizado tivesse um baixo módulo de elasticidade e alta densidade. O modelo então foi construído com concreto de agregados finos e arame para simular o concreto armado, e placas de cobre para simular os reforços em aço. Foram utilizados os seguintes fatores de escala:

- Fator de escala de dimensão: 1/30
- Fator de escala de esforços: 0,22
- Fator de escala de aceleração: 3,00

A norma chinesa prevê o cálculo estrutural para situação de terremoto frequente, moderado, e raro, com probabilidades de acontecimento de 63,2%, 10% e 2,0% em 50 anos da construção, respectivamente. A intensidade de terremoto de Beijing é 8, e a aceleração do terreno para cada uma das situações é de 0,07g, 0,2g e 0,4g, respectivamente. Foram utilizadas quatro formas de movimento do solo por terremotos, sendo três naturais e uma artificial.

O teste foi dividido em três fases para cada uma das situações de cálculo. Em cada fase, as quatro formas de onda foram aplicadas sucessivamente. O tempo de aplicação foi reduzido a 1/11.66, conforme a teoria de semelhança. O modelo não apresentou danos visíveis para as situações de terremotos frequentes e moderados. Para terremotos raros, o modelo foi danificado somente na direção y, que não foi reforçada com placas de aço. Na direção x, mais crítica e que já tinha placas de reforço posicionadas, não houve danos.

A simulação numérica foi feita por meio de uma análise não-linear tempo-história com o programa PERFORM-3D. Foram utilizadas as mesmas formas de ondas que no teste de mesa vibratória e avaliadas as respostas da estrutura em nível global e elementar. Para o nível global, se considera o deslocamento máximo entre pavimentos, que ficou abaixo do limite normatizado para todas as situações. Também foi possível ver como os andares reforçados com *outriggers* apresentam deslocamentos significativamente menores que seus andares vizinhos.

O estudo sobre o Beijing Wealth Center concluiu que:

- O deslocamento máximo entre pavimentos, para terremotos do tipo frequente e raro, é
 inferior ao limite da norma de projeto sísmico chinesa;
- Os danos na direção Y são consideravelmente menores devido à disposição e ao reforço das paredes do núcleo rígido;
- A dissipação de energia sísmica ocorre satisfatoriamente por deformações plásticas de vigas periféricas. Os elementos verticais primários continuam funcionando em capacidade de ocupação mesmo para terremotos raros;
- A estrutura atende aos requisitos de resposta sísmica do código chinês;
- Devido à falta de estudos desse tipo de pilar-parede (reforçado com chapas de aço e colunas metálicas), a estrutura foi projetada de maneira conservadora. Desta forma, há uma reserva significativa de capacidade resistiva mesmo em situações de terremotos raros.

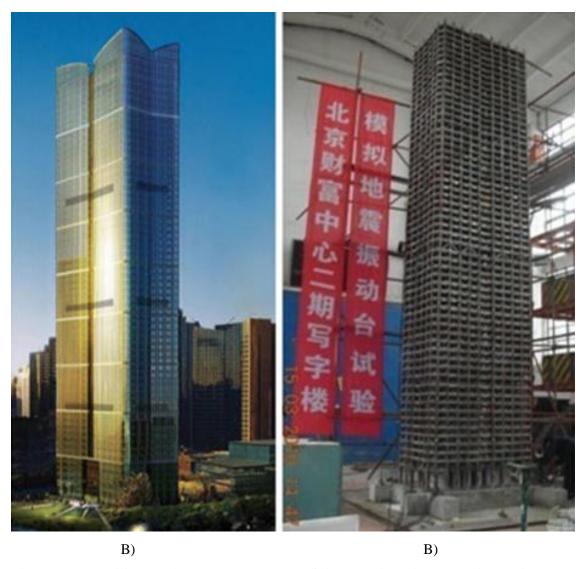


Figura 2.8: A) Beijing Wealth Center e B) modelo físico reduzido (Jiang, Fu, Liu, & Yin, 2014)

25

3. FUNDAMENTAÇÃO TEÓRICA

3.1. Desenvolvimento histórico de edifícios altos e seus sistemas estruturais

A história dos arranha-céus tem início quando o sistema de pórticos de vigas e pilares de aço se torna uma alternativa viável às espessas paredes estruturais, tradicionais até o início do século XX. Com os pórticos, a alvenaria pode ser mais fina e ter como função somente a proteção do clima externo, tornando os prédios mais leves e permitindo um ganho significativo de área útil interna (Hallebrand & Jakobsson, 2016).

Como o objetivo primário de construir cada vez mais alto e econômico (empilhando andares de escritório para locação), outra tendência que ganhou espaço foi permitir a maior entrada de luz natural possível, aumentando ainda mais o valor do aluguel destes escritórios. Isso se dá através do preenchimento das grandes aberturas dos pórticos nas fachadas com painéis de vidro não estrutural, conhecidos como *curtain walls* (Ali & Moon, 2007).

Até a primeira metade do século XX, o desenvolvimento dos arranha-céus foi razoavelmente restrito a cidades dos Estados Unidos, como Chicago e Nova Iorque, em uma competição pelo recorde de maior altura. Seu uso também era tipicamente comercial. Na Europa, em contraste, prédios mais altos só começaram a ser erguidos no período de reconstrução do pósguerra, para suprir a demanda reaquecida de espaços comerciais e residenciais.

Segundo Ali e Moon, o sistema estrutural mais usado para arranha-céus nesse período era o de pórticos rígidos com contraventamentos, que não eram tanto resultado de evolução tecnológica, como de uso excessivo de materiais e projetos conservadores. Alternativas surgiram a partir de avanços nos anos 60, quando os pórticos rígidos deram lugar a estruturas tubulares, núcleos rígidos, *outriggers*, estruturas com atenuadores artificiais e estruturas mistas com aço e concreto, como mostra a Figura 3.1.

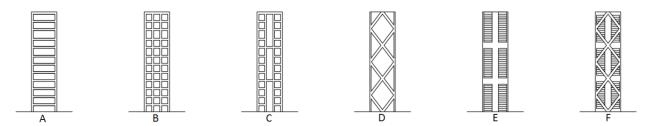


Figura 3.1: Diferentes sistemas estruturais: A) pórtico tubular, B) associação de tubos, C) tubo dentro de tubo, D) *diagrid*, E) *outriggers* e F) estrutura híbrida, (Hallebrand e Jakobsson, 2016)

Fazlur Kahn e Mark Lavery são dois engenheiros estruturais que, em diferentes momentos, respectivamente nos anos 70 e 2000, compartilharam a opinião de que a maior limitação para o crescimento dos edifícios não é tecnológica, mas psicológica. Para construir arranha-céus ainda mais altos, existem não só desafios próprios da engenharia, como a consideração especial de cargas de sismos e de vento. É necessário também pensar na distribuição vertical ao usuário de serviços básicos, como sinal de telefonia celular, que se torna mais difícil com a altura, e facilidade de acesso aos pavimentos, limitada hoje pelos sistemas de elevadores expressos e locais. A cada troca de elevador para se chegar em casa, se torna menos atrativo morar num arranha-céu (Vanderbilt, 2015).

Hoje em dia, arranha-céus têm caráter tipicamente residencial ou comercial, abrigando apartamentos supervalorizados pelo seu isolamento do nível térreo, centros comerciais ou a sede de grandes companhias. Para essas últimas, a própria ocupação de um espaço tão emblemático se constitui em mais propaganda. Para o futuro, se imaginam ainda outras possibilidades de uso para esses prédios. Desde que haja viabilidade econômica, a multiplicação de sua área de projeção pode vir a abrigar fazendas ecológicas verticais ou os centros de produção e manufatura das empresas que já os ocupam, hoje distantes dos centros urbanos (Lind, 2015).

3.2. Classificação dos sistemas estruturais de edifícios altos

A escolha do sistema estrutural depende de diversos fatores, inclusive externos à estabilidade estrutural, como a função do edifício, seu zoneamento, e o encaminhamento dos sistemas de serviço, além dos materiais e sistemas construtivos a serem utilizados. (Smith & Coull, 1991).

Entre os diversos sistemas estruturais que podem ser escolhidos para garantir a rigidez e estabilidade de edifícios, especialmente em resposta a cargas horizontais, há uma origem em comum, derivada do pórtico rígido simples e continuamente aperfeiçoada, e seus objetivos. Busca-se, por exemplo, distribuir as cargas verticais o mais próximo possível das fachadas dos edifícios, para aumentar sua rigidez à flexão. Os elementos estruturais verticais também costumam ser convenientemente alocados para que as tensões de compressão do peso próprio equilibrem as tensões de tração das cargas horizontais. (Hallebrand & Jakobsson, 2016).

Ali e Moon (2007) classificam os sistemas estruturais em interiores ou exteriores, a depender da região do edifício que resiste primariamente às cargas laterais. Nessa classificação, é importante notar que sistemas interiores normalmente têm alguns componentes distribuídos ao longo do perímetro do edifício, e sistemas exteriores também possuem componentes internos. Outra classificação diz respeito à eficiência do sistema escolhido para diferentes alturas. A seguir, são explorados sistemas dessas classificações.

3.3. Pórticos rígidos

Um sistema interno, de acordo com a classificação de Ali e Moon (2007), que consiste na união de pilares e vigas por conexões resistentes ao momento, o que faz com que a rigidez a solicitações laterais dependa da rigidez das colunas à flexão. Uma vantagem desse sistema é a facilidade de planejamento do posicionamento de janelas, devido às aberturas retangulares padronizadas.

É o sistema típico de estruturas de concreto armado, devido à estrutura monolítica de suas juntas. Podem ser fabricadas conexões rígidas de metal também, porém seu custo é superior. A conexão rígida faz surgir na estrutura momentos fletores negativos na região dos pilares, o que reduz o momento positivo no meio dos vãos, permitindo o uso de elementos de altura ou seção reduzida. Em estruturas metálicas, a economia de material decorrente dessa redução de momentos positivos é normalmente equilibrada pelo custo maior das conexões.

Um edifício alto corresponde, de maneira bastante simplificada, a uma barra engastada no solo, resistindo às cargas verticais, de utilização e peso próprio, e horizontais, decorrentes da ação do vento ou de sismos. Conforme a altura de um prédio aumenta, as solicitações decorrentes das cargas horizontais se tornam dominantes, e a estrutura na base, que já seria progressivamente mais robusta devido ao acúmulo de carga de todos os andares, requisitaria ainda mais material, seja aço ou concreto, para funcionar satisfatoriamente.

O sistema é eficiente para estruturas de até 25 pavimentos. Acima disso, a flexibilidade lateral das colunas tornaria necessário elementos muito grandes para limitar os deslocamentos horizontais.

3.4. Pórticos contraventados

Neste sistema, a resistência global é produto dos elementos diagonais, que em conjunto com as vigas e pilares formam um sistema de treliça vertical. Como a direção das solicitações horizontais é variável, o contraventamento mais usual é o aço, que trabalha bem a tração e compressão. O sistema ainda é economicamente atrativo, já que um pequeno acréscimo de material (o aço dos contraventamentos) confere rigidez significativa a um pórtico antes flexível, conforme Hallebrand e Jakobsson (2016). Sua desvantagem principal é a limitação no uso do espaço interno e a localização das janelas. Os contraventamentos ainda podem ser dispostos em formas diversas, conforme ilustrado na Figura 3.2.

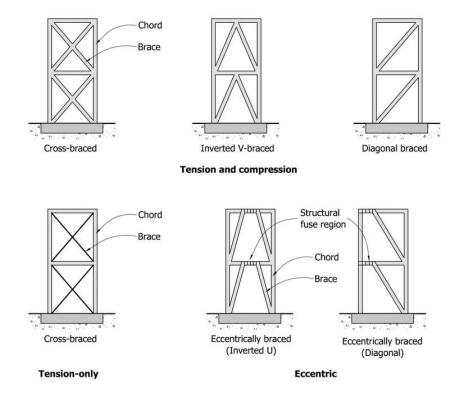


Figura 3.2: Diferentes tipos de contraventamentos diagonais (Hallebrand & Jakobsson, 2016)

3.5. Pórtico tubular

Este é o sistema estrutural exterior mais comum, segundo a classificação de Ali e Moon, que utiliza todo o perímetro do edifício para resistir aos esforços laterais. Sua rigidez é decorrente de pórticos rígidos que, dispostos ao longo do perímetro do edifício, formam um tubo. Esses pórticos são formados por pilares pouco espaçados ligados por vigas, o que pode ser

econômico ao não utilizar *curtain walls*. Um exemplo de prédio que utilizava esse sistema é o antigo World Trade Center, em Nova York.

O espaçamento ordenado entre os pilares se constitui no elemento principal de expressão estrutural do sistema, elogiado por seus defensores por sua lógica padronizada e visibilidade da estrutura, e criticado por sua repetitividade e pequenas aberturas.

Hallebrande e Jakobsson afirmam que o sistema é vantajoso para estruturas de 40 a 100 pavimentos, tanto de aço como de concreto armado. Seu funcionamento é semelhante ao de uma viga de aço, onde as estruturas paralelas à ação horizontal são como almas, e as estruturas perpendiculares são como mesas. Uma desvantagem desse sistema é a baixa eficiência das armações tipo "alma", que, para carregamentos horizontais, concentram tensões de cisalhamento, sobrecarregando os pilares de canto em relação aos pilares laterais.

Pode se fazer uma associação de pórticos tubulares, de maneira que em cada direção ortogonal se formem quatro pórticos rígidos. A estrutura resultante é um conjunto de nove tubos. Com as "mesas" internas, as tensões nos pilares são mais uniformemente distribuídas, como pode ser visto na Figura 3.3. Dessa maneira, sua contribuição para a rigidez lateral aumenta. Expressivamente, isso possibilita colunas mais espaçadas e um menor impacto visual. Talvez seu exemplo principal seja a Willis Tower (anteriormente chamada Sears Tower) em Chicago, projetada pelo engenheiro estrutural Fazlur Khan.

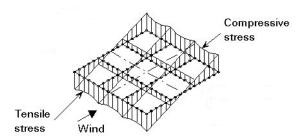


Figura 3.3: Diagrama de tensões ao longo dos pórticos na direção de atuação da força horizontal, (Hallebrand & Jakobsson, 2016)

Outra forma de associação é unir um pórtico tubular externo com um núcleo rígido, tradicionalmente a caixa de elevador e escadas, para que trabalhem de maneira solidária, como ilustrado na Figura 3.4.

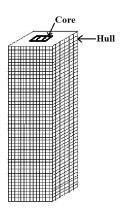


Figura 3.4: Estrutura de tubos dentro de tubo (Hallebrand & Jakobsson, 2016)

3.6. Pilares-parede⁵

Segundo Vasconcellos (2015), "utilizar pilares com uma das dimensões muito maior do que a outra, de comportamento preponderante de chapa, denominados pilares-parede, é uma solução, pois aumenta a rigidez às ações horizontais". Paredes ou elementos planos verticais de concreto armado são um sistema interior, segundo Ali e Moon, bastante difundido de resistência a forças laterais. Um pilar-parede pode ser entendido como uma viga vertical em balanço engastada na base. Dois ou mais elementos desse tipo podem ser associados, com lajes ou vigas, para que trabalhem de maneira solidária, restringindo os seus efeitos individuais de balanço. Podem ser analisados individualmente como elementos planos em sua direção principal, ou de forma tridimensional com o auxílio de computadores.

Essa associação confere ao edifício uma rigidez adicional superior à soma da rigidez de cada elemento. O posicionamento desse sistema é tradicionalmente ao redor das caixas de elevador, escadas ou serviços, nos chamados núcleos rígidos. Existem diversas possibilidades de disposição, forma ou número de núcleos rígidos que podem otimizar a resistência global da estrutura à ação de forças horizontais e seu deslocamento.

Individualmente, os pilares parede funcionam bem para restringir movimentos laterais de edifícios de até 35 pavimentos. Ainda é possível associá-los aos pórticos rígidos, criando sistemas de interação pilar-parede-pórtico que superam as limitações de ambos os sistemas e podem ser utilizadas em prédios de até 70 pavimentos. Forçados a deformar do mesmo modo pela ação de diafragma rígido das lajes, o núcleo rígido restringe o movimento dos andares

-

⁵ Paredes de cisalhamento

inferiores, enquanto o pórtico é responsável pela restrição de deslocamento do topo do edifício, como ilustrado a seguir na Figura 3.5.

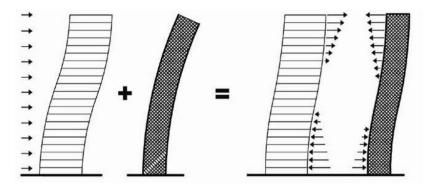


Figura 3.5: Deformação de pórtico rígido, núcleo rígido de pilares parede, e da associação dos dois sistemas (Ali e Moon, 2007)

3.7. Steel plate shear walls⁶

Kang et al. definem *steel plate shear walls* (SPSWs) como um sistema de elementos de contorno verticais e horizontais, unidos a placas internas que se deformam fora do plano, formando um campo de tensões diagonais que auxiliam na resistência a forças laterais. Esse sistema inovador tem como características favoráveis a sua utilização a eficiente dissipação de energia, seu baixo peso e baixa ocupação de espaço. Como pesam menos que pilares-paredes de concreto, representam um alívio de cargas transmitidas às fundações. Esses fatores, alinhados a seu tempo de montagem reduzido, permitem diminuir o custo total da estrutura, ao economizar em material e mão de obra.

São similares a alma de vigas metálicas soldadas de grandes dimensões, como as utilizadas em pontes. No entanto, em SPSWs as tensões residuais pós-flambagem conferem à estrutura maior rigidez, resistência e ductilidade. Outra diferença entre os dois elementos é seu ângulo de inclinação do campo de tensões pós flambagem, devido as suas diferentes condições de contorno.

Esses elementos são usados desde os anos 70. Até a metade da década de 80, considerava-se que seu modo de falha principal era flambagem fora do plano e, portanto, estas paredes eram projetadas com grande espessura, além de usualmente enrijecidas. Dessa maneira,

⁶Pilares parede com painéis metálicos de preenchimento

não havia vantagem econômica significativa na sua utilização em comparação com seu sistema alternativo usual, de pilares-paredes de concreto armado. Isso motivou estudos nos EUA, Canadá e Coréia sobre a viabilidade de uso do sistema com placas finas, que concluíram que a resistência das placas finas após flambagem ainda é substancial.

Em contraste com pilares paredes engastados, onde a flexão é dominante, com placas espessas ou enrijecidas, onde as maiores deformações plásticas ocorrem junto à base, paredes de placas finas funcionam com cisalhamento dominante e as deformações ocorrem de maneira distribuída por toda a estrutura, como ilustrado na Figura 3.6. Essa deformação constitui uma eficiente dissipação de energia e conserva os elementos na vertical. O escoamento das placas devido ao cisalhamento também ocorre antes do escoamento dos elementos verticais.

Enquanto a prática anterior proibia a flambagem das placas de preenchimento das *shear walls*, a prática corrente se aproveita dessa flambagem como mecanismo primário de dissipação de energia. Para isso, é necessário que os elementos de contorno sejam projetados para resistir às tensões decorrentes da flambagem da placa.

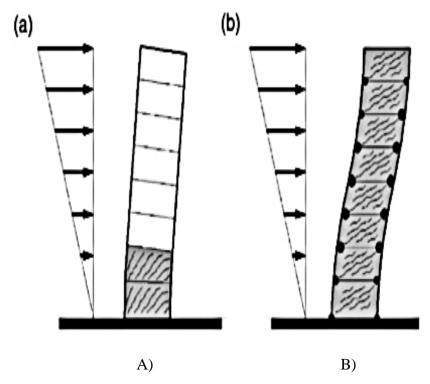


Figura 3.6: Deformação plástica de SPSWs A) espessas (na base) e B) finas (ao longo de toda a estrutura) (Kang et al, 2013)

3.8. Diagrid

Uma nova tendência estética de sistema construtivo de arranha-céus, o *Diagrid* é uma alternativa eficiente aos sistemas tubulares contraventados, devido à flexibilidade espacial vertical e horizontal que oferecem para os edifícios. Antes de ser aplicado em construções, o sistema já era usado para conectar diferentes membros com treliças em embarcações e aeronaves.

O sistema consiste em uma rede de treliças altas triangulares com elementos diagonais e horizontais no perímetro do edifício. Tanto cargas verticais quanto horizontais são redirecionadas nos elementos, eliminando a necessidade de colunas verticais. A ausência de pilares nos cantos oferece vistas panorâmicas do interior do edifício. Ao se aproveitar de todo o perímetro do prédio, o *Diagrid* é um sistema mais eficiente que confinar contraventamentos diagonais em pequenos núcleos de construções.

Segundo Ali e Moon (2007), a eficiência de contraventamentos diagonais era observada mesmo nos primeiros projetos de edifícios altos, que utilizavam pórticos metálicos contraventados em diversas formas. Seu potencial estético, contudo, era menosprezado devido à obstrução visual que seria criada nos planos das fachadas. Por isso eram usualmente escondidos no interior do edifício. Na contramão dessa tendência, nos anos 60 foi construído o John Hancock Center, do engenheiro Fazlur Khan, em Chicago, que possui elementos diagonais predominantes em suas fachadas. Apesar da associação harmônica entre sua forma e estrutura, o sistema não era amplamente adotado até ser redescoberto recentemente.

Figura 3.7: Fachada do Hancock Center, (Skidmore, Owings & Merrill LLP, 2019)

Apesar de não ser um edifício alto, com apenas 13 andares, o prédio da IBM em Pittsburgh foi outra estrutura pioneira a utilizar os princípios do *Diagrid*, também na década de 60. Diferentemente da consideração atual do sistema como tridimensional, ele ainda foi calculado como elementos planos. Outra estrutura mais recente que utiliza o sistema, e talvez uma das mais icônicas, é o 30 St. Mary Axe, em Londres, de Norman Foster e calculado pelo escritório Arup. Ambos os prédios são ilustrados na Figura 3.8. O sistema *Diagrid* pode ser montado tanto com elementos metálicos, como nos exemplos citados, onde a fachada tem uma forma regular expressiva, como com elementos de concreto armado, nos quais novas expressões estruturais, com formas fluidas e irregulares, podem ser exploradas.

O que diferencia o *Diagrid* de estruturas de pórticos contraventados em sua fachada é a eliminação quase total de colunas verticais, de maneira que os elementos diagonais conduzam tanto as cargas verticais quanto as horizontais. Moon afirma também que as deformações decorrentes de esforços de cisalhamento nas estruturas de *Diagrid* são significativamente reduzidas em comparação com estruturas tubulares. Isso se dá porque o *Diagrid* responde ao cisalhamento com esforços axiais nas diagonais, em contraste com esforços de flexão nos pilares e vigas de pórticos convencionais de estruturas tubulares.

Ao contrário de estruturas com *outriggers*, que também ajudam a reduzir momentos fletores globais e deslocamentos nas estruturas, construções com *Diagrid* também possuem elevada rigidez ao cisalhamento em seu perímetro e, portanto, não precisam de um núcleo de rigidez elevada para resistir ao cisalhamento. Para garantir a rigidez e a resistência de prédios de alturas muito elevadas, contudo, é possível associar um núcleo rígido a um perímetro em *Diagrid*, formando um sistema semelhante a um tubo dentro de um tubo.

Figura 3.8: IBM Building, Pittsburgh, e 30 St. Mary Axe, Londres. (Peterson, 2010) e (Wikipedia, 2019)

3.9. Outriggers

São estruturas concebida de forma que o núcleo rígido possa transmitir esforços aos pilares externos para aumentar a rigidez de edifícios altos. O seu princípio de funcionamento é baseado na estrutura historicamente presente em algumas embarcações de povos da Oceania, como mostrado na Figura 3.9. Para evitar que o barco vire, uma peça longa é disposta paralela ao casco principal, conferindo a ele maior estabilidade e permitindo que o mastro principal do barco seja mais alto e esbelto ao ajudá-lo a resistir às forças do vento nas velas. Sem o sistema, o mastro sujeito à ação do vento funciona como uma viga em balanço, ao passo que, com o sistema, o momento fletor é reduzido ao ser transferido para os pilares de fachada.

Figura 3.9: Canoa polinésia com *outrigger* duplo (Wikipedia, 2019)

Hallebrand e Jakobsson (2016) explicam esse sistema estrutural em edifícios. De maneira análoga, o núcleo rígido, de pórticos contraventados ou pilares parede, corresponde ao mastro da embarcação, enquanto os *Outriggers*, vigas ou treliças extremamente rígidas que se conectam do núcleo às colunas externas, correspondem aos elementos de estabilização que se projetam do barco. Com o carregamento horizontal, e devido à sua restrição de movimento nos pilares externos, os *outriggers* resistem à rotação do núcleo. Com isso, pilares na face de atuação da carga são tracionados enquanto os na face oposta são comprimidos, como mostrado na Figura 3.10, de modo que o deslocamento horizontal global e o momento fletor no núcleo são reduzidos.

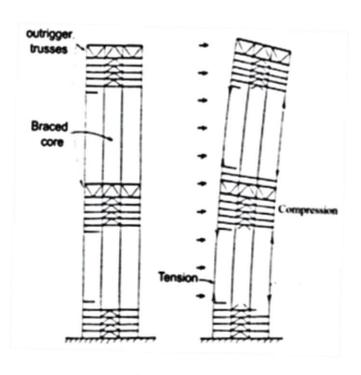


Figura 3.10: Corte esquemático de edifício com outriggers (Hallebrand & Jakobsson, 2016)

Treliças ao redor da estrutura podem ser ainda empregadas para cintar os *outriggers*, distribuindo os esforços de tração e compressão de maneira mais uniforme entre os pilares externos e uniformizando suas deformações relativas de alongamento ou encurtamento.

Como citado anteriormente, *outriggers* não conferem à estrutura grande capacidade de resistência global ao cisalhamento como o *Diagrid*, por isso a necessidade de se associar seus membros a um núcleo de elevada rigidez. Este núcleo pode ser posicionado tanto no centro do edifício, de maneira que o sistema se estenda na direção exterior, como em um de seus lados, fazendo que os *outriggers* se estendam em direção aos pilares do outro lado.

A utilização do sistema é justifica como forma de superar algumas limitações de sistemas mais simples, como um núcleo rígido de concreto ou de aço. Em relação aos primeiros, núcleos muito esbeltos sujeitos a forças horizontais podem ter uma face trabalhando sob tração, e invertendo os esforços nas fundações. Já em relação aos últimos, conexões rígidas soldadas ou aparafusadas muito resistentes têm custo e dificuldade de fabricação maiores. Em ambos os casos, é necessário um dimensionamento mais rigoroso, já que os materiais trabalham no limites de suas capacidades. O sistema ainda não atingiu o limite do seu potencial resistente. Hoje ele é utilizado em edifícios de até 70 andares, mas em teoria ainda pode ser eficaz para até 150

pavimentos (Ali & Moon, 2007). Como forma de aumentar sua eficiência, *Outriggers* com altura contínua superior a um pavimento podem fornecer aos edifícios resistência a momentos ainda mais elevada.

Entre outras vantagens que Ali e Moon listam para o sistema, podemos citar a flexibilidade estética e funcional que o espaçamento entre os pilares perimetrais confere às fachadas, que podem ser compostas de pórticos simples sem conexões rígidas. Elas também podem assumir diversas formas arquitetônicas, ao contrário dos padrões repetitivos de estruturas tubulares. Suas desvantagens incluem a possível ocupação de área útil para locação, se não forem posicionados em andares mecânicos ou de serviço, e a quebra de repetitividade durante sua construção, que sem um planejamento atencioso pode acarretar em atrasos.

3.10. Estruturas híbridas e mistas

Todos os sistemas citados ainda podem ser utilizados em paralelo numa mesma estrutura. Devido à grande complexidade do comportamento de grandes estruturas, chega a ser mais usual encontrar nelas diversos sistemas paralelos que sistemas isolados. Em diferentes níveis de análise (global, do elemento ou dos detalhes) também podem ser identificados diferentes sistemas. A utilização em conjunto deles configura uma estrutura híbrida.

Segundo Vasconcellos (2015), a combinação entre estruturas de aço e concreto permite maximizar as vantagens e minimizar as desvantagens de cada uma delas individualmente, "não apenas em termos estruturais, mas também nos aspectos construtivos, funcionais e estéticos." O autor trabalha com a definição de estrutura híbrida como aquela que tem elementos de diferentes materiais, sendo que estes se comportam de maneira independente. Já uma estrutura mista, segundo definição da NBR 8800:2008, é aquela em que os diferentes materiais empregados trabalham de maneira solidária, sem escorregamento relativo.

Como exemplo de estrutura híbrida, Vasconcellos cita a associação em edifícios altos de pilares parede de concreto armado, como nos núcleos rígidos, com pórticos metálicos, onde os primeiro resistem bem às solicitações horizontais, enquanto os segundos resistem às cargas verticais, o que também reduz a necessidade de conexões rígidas nos elementos metálicos.

3.11. Tendências emergentes

Ali e Moon (2007) ainda mencionam novas tendências em sistemas estruturais, necessárias para vencer os desafios de se construir cada vez mais alto.

Treliças espaciais, por exemplo, são pórticos tubulares contraventados que também possuem elementos diagonais, unindo seu interior ao exterior e não somente em planos paralelos às fachadas, como seria tradicional em sua tipologia originária.

Um "super-pórtico" seria um sistema de grandes pilares externos, nos cantos da estrutura, ligados por treliças de múltiplos andares a cada 20 pavimentos aproximadamente.

Estruturas de exoesqueleto, por fim, possuem seu sistema de resistência a forças laterais afastados na direção externa de suas fachadas. Enquanto sua posição externa lhes confere a vantagem de estarem pouco sujeitas à situações de incêndio, sua exposição ao clima e a altas variações de temperatura tornam necessárias, no cálculo e no projeto, análises térmicas e o cuidado com a formação de pontes de calor.

4. ACÃO DO VENTO NAS ESTRUTURAS E PRESCRIÇÕES DA NBR 6123:1998

Como mencionado anteriormente, para edifícios muito altos deve-se considerar especialmente em seu cálculo as cargas horizontais decorrentes da ação do vento. Para edifícios de até dez pavimentos, seu efeito não é significativo e as cargas verticais são dominantes, porém acima disso a situação já se inverte. É necessário, então, aumentar a rigidez da estrutura para se atingir a estabilidade desejada (Moghadam, Meshkat-Dini, & Moghadam, 2015).

O carregamento horizontal do vento é distribuído na fachada, que o transfere para os elementos estruturais de maneiras diferentes dependendo de suas conexões. Caso a conexão da fachada seja com as lajes, essas receberão os esforços do vento de maneira distribuída, e, a partir de seu funcionamento como diafragma rígido, transferirão as cargas para as vigas, ou diretamente para os pilares. Se a fachada estiver conectada aos pilares externos, estes já receberão o carregamento de forma concentrada, além de transferir uma parcela para os pilares internos com auxílio das vigas e lajes. Naturalmente, os elementos de maior rigidez assumirão uma parcela maior de carga.

Conforme Hallebrand e Jakobsson (2016), a carga do vento possui uma parcela estática e outra dinâmica. Para longos períodos de análise, pode-se considerar o efeito da parcela estática dominante e, para períodos mais curtos, domina a parcela dinâmica. A pressão dinâmica do vento induz vibrações aleatórias nas estruturas nas duas direções horizontais e provoca também torção em torno do eixo vertical do edifício. A magnitude dos esforços internos e deslocamentos resultantes depende não só de parâmetros do vento, como velocidade e direção de incidência, mas também de parâmetros estruturais, como massa, rigidez e forma do edifício. É importante levar em conta a resposta dinâmica da estrutura especialmente para garantir o conforto dos usuários. Grandes oscilações ou acelerações horizontais podem não compromenter a integridade de um edifício e mesmo assim causar mal estar em seus ocupantes.

Ao se analisar a resposta dinâmica de uma estrutura, é importante considerar seus modos de vibração, nas duas direções horizontais e em torno de seu eixo. Um prédio de rigidez significativa possui uma frequência de ressonância elevada e não deve ter deslocamentos dinâmicos significativos. Edifícios de grandes dimensões horizontais ou formas irregulares também tornam difícil a ocorrência de rajadas de vento simultâneas em todas as suas partes. Como seu cálculo é realizado para a situação de carregamento máximo em sua vida útil, é possível analisar a estrutura como estática e utilizar uma carga do vento normalizada.

Já para estruturas de baixa rigidez e flexibilidade significativa, suas frequências de ressonância são mais baixas, e sua resposta dinâmica dependerá da frequência da parcela flutuante do vento. Para rajadas de frequência próxima das frequências naturais da estrutura, a ressonância amplifica seus deslocamentos dinâmicos, que podem superar aqueles estáticos, tornando o deslocamento lateral dinâmico um parâmetro de projeto importante.

Afim de se prever a resposta dinâmica das estruturas sujeitas a ação do vento, é necessário avaliar ventos de diferentes velocidades médias e direções para encontrar a situação mais desfavorável. Como a força do vento possui amplitude variável e é distribuída em uma larga banda de frequências, nem todas elas influenciarão em sua resposta. De fato, somente a energia disponível em frequências de rajadas próximas à frequência natural da estrutura, portanto baixas, é responsável por sua excitação, o que significa que muitas vezes somente os primeiros modos de vibração precisam ser considerados no projeto (Hallebrand & Jakobsson, 2016).

Os efeitos dinâmicos do vento são especialmente importantes para se atender requisitos de segurança e de serviço. Situações de ressonância são um grande risco à segurança, enquanto que a resposta humana ao movimento da estrutura determina o funcionamento adequado à situação de serviço. Essa resposta também varia significativamente em função de fatores culturais e regionais. Diferentes pessoas também terão diferentes respostas a diferentes frequências, intensidades, ou durações de vibração. Longa exposição a essas vibrações também pode diminuir a tolerância dos usuários, nos quais o movimento das estruturas pode causar desde ansiedade até náusea, comprometendo suas possibilidades de ocupação. Vale lembrar que a resposta humana não é simplesmente baseada em parâmetros objetivos. Além de ser segura, uma estrutura precisa aparentar ser segura.

Ao mesmo tempo, seria economicamente inviável construir um edifício que resista a qualquer tipo de movimentação, tornando necessário estabelecer requisitos mínimos a serem atendidos em função da ocupação do prédio e também da possibilidade de mudanças futuras em sua utilização. Propriedades dos materiais variáveis ao longo do tempo, como resistência à fadiga em elementos metálicos ciclicamente carregados, ou a capacidade resistente de cabos de protensão, também devem ser cuidadosamente analisadas.

A NBR 6123, em sua edição mais recente de 1988, define em que condições é necessário considerar em projeto as cargas decorrentes da ação do vento nas estruturas e traz métodos de como calcular essas forças. Elas se dividem em uma parcela estática e outra dinâmica.

4.1. Cálculo da parcela estática da ação do vento

O processo para determinar a parcela estática é apresentado no item 4.2 da norma e resumido a seguir:

$$F = qA \tag{4.1}$$

Onde:

- F é a força aplicada, em N;
- A é a área na qual incide o vento, em direção perpendicular, em m²;
- q é a pressão dinâmica em N/m², dada por:

$$q = 0.613 \cdot V_k^2 \tag{4.2}$$

Onde V_k é a velocidade característica do vento, que depende da topografia do terreno, de sua rugosidade e de parâmetros estatísticos que levam em conta o grau de segurança necessário à estrutura e à vida útil a qual ela deve atender. V_k é calculada como:

$$V_k = V_0 \cdot S_1 \cdot S_2 \cdot S_3 \tag{4.3}$$

Onde:

- S₁, S₂, S₃ são os fatores topográfico, de rugosidade e estatístico, respectivamente, de modificação da velocidade base V₀, todos adimensionais;
- V_0 é a velocidade básica do vento, em m/s.

V_o corresponde a "velocidade de uma rajada de 3 s, excedida em média uma vez em 50 anos, a 1 m acima do terreno, em campo aberto e plano." A Figura 4.1 a seguir, retirada da norma, mostra o mapa de isopletas do Brasil, que são as curvas da velocidade básica do vento em diferentes regiões.

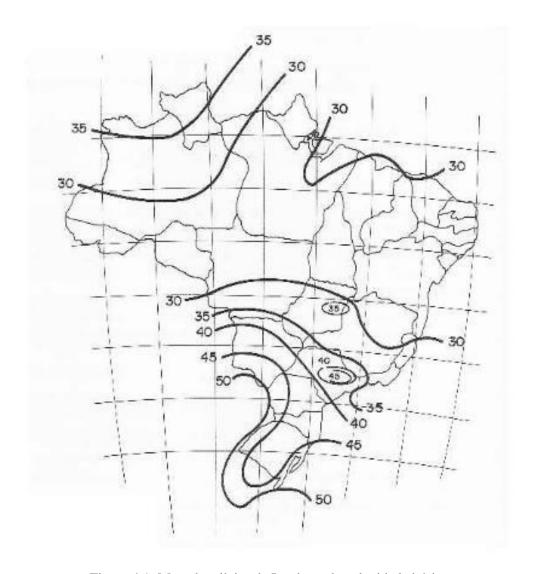


Figura 4.1: Mapa brasileiro de Isopletas de velocidade básica

Reunindo essas três equações, temos que a força decorrente da ação do vento é igual a:

$$F = A \cdot 0.613 \cdot (V_0 S_1 S_2 S_3)^2 \tag{4.4}$$

Ainda segundo a norma, deve ser analisada separadamente a atuação das forças para elementos de vedação, partes da estrutura, e seu comportamento global. Em situação de construção, pode ser admitida uma velocidade característica menor, uma vez que o período de retorno da máxima velocidade V_k é elevado, comparado ao tempo de execução da obra.

4.2. Fatores S₁ S₂ e S₃ para o cálculo da velocidade característica

O fator topográfico S_1 pode ser adotado igual a 1,0 para situações de terreno plano, ou pouco acidentado, bem como para regiões convenientemente afastadas de taludes e morros. Para encostas, S_1 é uma função da altura da estrutura medida a partir da superfície do terreno (z), da diferença de nível entre a base e o topo do talude/morro (d) e da inclinação θ do morro.

A norma traz duas expressões: para ângulos θ entre 6° e 17°, e para ângulos maiores que 45°. Para demais inclinações, é admitida uma interpolação linear. Para relevos muitos complexos, a norma recomenda estudos com modelos topográficos do terreno em túnel de vento.

Já o fator S₂ combina os efeitos "da rugosidade do terreno, da variação da velocidade do vento com a altura em cima do terreno e das dimensões da edifição". São definidas cinco categorias de rugosidade do terreno, do mais liso, como um lago, ao mais rugoso, como centros urbanos.

Além delas, são definidas três classes que dependem da maior dimensão horizontal da estrutura considerada. A cada classe corresponde um intervalo de tempo suficiente para uma rajada de vento envolver a edificação⁷. Uma vez determinadas as classes e categorias da edificação estudada, é possível utilizar os valores dos parâmetros meteorológicos b e p da "Tabela 1" da norma, aqui reproduzida como Tabela 4.1.

Esses parâmetros são utilizados na seguinte expressão para o cálculo do fator S₂:

$$S_2 = b \cdot F_r \cdot (z/10)^p \tag{4.5}$$

Onde:

Onac

- F_r é o fator de rajada, sempre considerado como da categoria II
- z é a altura considerada no cálculo, limitada pelo valor da coluna Z_g em m;

Alternativamente, diversos valores de S_2 estão tabelados para as diferentes categorias e classes de edificações, e podem ser encontrados na "Tabela 2" da norma.

Finalmente, o fator estatístico S_3 leva em conta o grau de segurança e a vida útil que a edificação deve atender. Sendo V_0 uma velocidade com tempo de recorrência de 50 anos, esse valor de vida útil, associado à probabilidade de que esse vento seja alcançado ou superado de

⁷ Para edifícios de maior dimensão horizontal ou vertical superior a 50 m, o fator S₂ deve ser calculado para um intervalo de tempo maior, conforme o Anexo A da NBR 6123.

0,63, é satisfatório para edificações usuais. Na Tabela 3 da norma são encontrados outros valores de S₃ mínimos para diferentes tipos de ocupação, enquanto o Anexo B explica como determinar o fator para outros níveis de probabilidade ou período de recorrência.

Categoria	Zg	Parâmetro	Classes			
Categoria	(m)	Tarametro	A	В	С	
I	250	b	1,10	1,11	1,12	
1	250	p	0,06	0,065	0,07	
		b	1,00	1,00	1,00	
II	300	F_{r}	1,00	0,98	0,95	
		p	0,085	0,09	0,10	
III	350	b	0,94	0,94	0,93	
	330	p	0,10	0,105	0,115	
IV	420	b	0,86	0,85	0,84	
1 4	420	p	0,12	0,125	0,135	
V	500	b	0,74	0,73	0,71	
v	300	p	0,15	0,16	0,175	

Tabela 4.1 – Parâmetros Meteorológicos b e p (ABNT NBR 6123:1988)

4.3. Coeficientes de pressão, forma e força

A norma traz ainda alguns coeficientes que permitem calcular diferentes parcelas da ação do vento, como força ou pressão, considerando diferentes aspectos físicos do problema.

Como a força do vento em uma superfície depende da diferença de pressão entre suas faces interna e externa, são definidas as parcelas de pressão efetiva interna e externa, Δp_i e Δp_e , respectivamente. Elas decorrem dos coeficientes de pressão interna e externa, c_{pi} e c_{pe} , e podem ser calculadas da seguinte forma:

$$\Delta p_i = c_{pi} \cdot q \tag{4.6}$$

$$\Delta p_e = c_{pe} \cdot q \tag{4.7}$$

Quanto à forma das edificações, a norma define os coeficientes de forma C_e e C_i , respectivamente externo e interno. As parcelas da força resultante F, interna e externa, são calculadas, de maneira análoga, da seguinte forma:

$$F_i = C_i \cdot qA \tag{4.8}$$

$$F_e = C_e \cdot qA \tag{4.9}$$

Por fim, a força do vento é a resultante da soma vetorial de diversas forças atuantes em uma região. Considerando um eixo de coordenadas x, a parcela componente da força resultante nesse eixo é dada por:

$$F_X = C_X \cdot q A_{Ref} \tag{4.10}$$

Onde C_X é o coeficiente de força para o eixo x e A_{Ref} é a área de referência, ou a "área de sombra", que corresponde à área da projeção ortogonal da estrutura sobre um plano perpendicular ao vento.

4.4. Efeitos dinâmicos devido à turbulência atmosférica

A ação do vento é constituída de uma parcela constante, devido à velocidade média do ar, e de uma parcela variável, devido às rajadas ou flutuações em torno da velocidade média. Essa segunda parcela induz uma chamada resposta flutuante em estruturas flexíveis, altas ou esbeltas, que consiste em oscilações na direção da velocidade média do vento.

Para estruturas com período fundamental de oscilação igual ou menor que 1 segundo, os efeitos da resposta flutuante já são incorporados ao fator S₂. Nessas situações, o efeito estático nas estruturas causado pela velocidade média é dominante. Porém, para estruturas com período fundamental maior, a resposta dinâmica é dominante, e se faz necessário calcular a resposta dinâmica total. O capítulo 9 da norma traz as prescrições de cálculo dessa resposta total, que é "igual à superposição das respostas média e flutuante".

A velocidade de projeto é calculada como:

$$V_p = 0.69 \cdot V_0 \cdot S_1 \cdot S_3 \tag{4.11}$$

4.4.1. Modelo contínuo simplificado

Pode ser utilizado um modelo contínuo simplificado para edificações de seção constante, distribuição razoavelmente uniforme de massa, inferiores a 150 m e apoiadas somente na base. Nesse modelo é considerada somente a resposta dinâmica do modo fundamental, o que incorre em erros inferiores a 10%. O primeiro modo de vibração, na forma do seus deslocamentos horizontais em função da altura, é calculado pela equação:

$$X = (z/h)^{\gamma} \tag{4.12}$$

Onde:

- X é o deslocamento horizontal;
- z é altura de cada ponto considerado da estrutura;
- h é a altura total do edifício;

Valores aproximados do parâmetro γ podem ser encontrados na "tabela 19" da norma, junto à razão de amortecimento crítico ζ e a equações aproximadas para o cálculo da frequência fundamental de edificações usuais, em função do tipo da estrutura. Essa tabela é aqui reproduzida como: Tabela 4.2.

Tipo de edificação	γ	ζ	$\mathbf{T_1} = \mathbf{1/f_1}$
Edifícios com estrutura aporticada de concreto, sem	1,2	0,020	0.05h + 0.015h (h em
cortinas	1,2	0,020	metros)
Edifícios com estrutura de concreto, com cortinas para a	1,6	0,015	0.05h + 0.012h
absorção de forças horizontais	1,0	0,010	3,0011 . 3,01211
Torres e chaminés de concreto, seção variável	2,7	0,015	0,02h
Torres, mastros e chaminés de concreto, seção constante	1,7	0,010	0,015h
Edifícios com estrutura de aço soldada	1,2	0,010	$0.29\sqrt{h} - 0.4$
Torres e chaminés de aço, seção uniforme	1,7	0,008	
Estruturas de madeira		0,030	

Tabela 4.2 – Parâmetros para determinação de efeitos dinâmicos (ABNT NBR 6123:1988)

A pressão dinâmica do vento em função da altura para o modelo contínuo simplificado é calculada pela equação:

$$q(z) = q_0 b^2 \left[\left(\frac{z}{z_r} \right)^{2p} + \left(\frac{h}{z} \right)^{\gamma} \frac{1 + 2\gamma}{1 + \gamma + p} \xi \right]$$
 (4.13)

Onde:

- A pressão básica q_0 é calculada como $0.613 \times V_p^2$;
- b e p são os parâmetros meteorológicos, encontrados na *Tabela 4.3* a seguir;
- z é a altura considerada, enquanto z_r é uma altura de referência igual a 10 m;
- h é a altura total da edificação;
- γ é o parâmetro referenciado anteriormente, encontrado na Tabela 4.2;
- ξ é o coeficiente de amplificação dinâmica, que é encontrado nas figuras 14 a 18 da norma. Uma delas é exemplificada como a Figura 4.2 a seguir.

Categoria de rugosidade	I	II	III	IV	V
p	0,095	0,15	0,185	0,23	0,31
b	1,23	1,00	0,86	0,71	0,50

Tabela 4.3 – Parâmetros p e b em função da rugosidade do terreno (ABNT NBR 6123:1988)

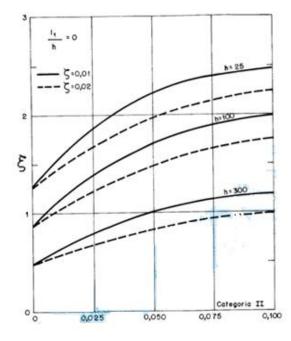


Figura 4.2: Coeficiente de amplificação dinâmica para terreno de categoria II (ABNT NBR 6123:1988)

4.4.2. Modelo discretizado

Já para edifícios com propriedades variáveis ao longo de sua altura, como geometria ou sistema estrutural, deve ser utilizado um modelo discreto, que reúne os parâmetros de deslocamento, área de influência, massa discreta, coeficiente de arrasto e altura de um elemento de coordenada i, além no número de graus de liberdade da estrutura.

Para estruturas de mais de 150 m de altura, deve ser feita a análise de um modelo discretizado, do qual cada modo j de vibração contribui com uma parcela flutuante para o cálculo da força total devido ao vento na direção de incidência.

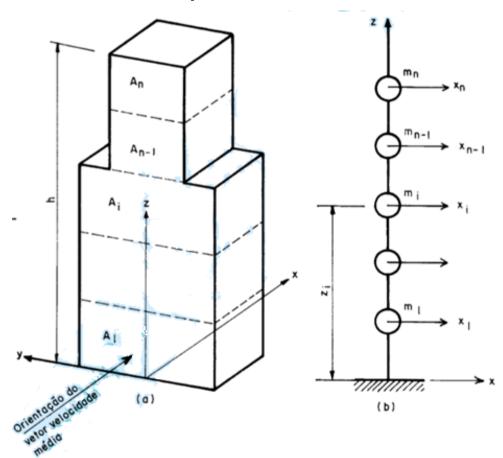


Figura 4.3 – Exemplo de modelo discretizado (ABNT NBR 6123:1988)

A parcela média da força \bar{X} é calculada para cada elemento i do modelo, de acordo com a seguinte equação:

$$\overline{X}_{i} = q_{0}b^{2}C_{ai}A_{i}\left(\frac{Z_{i}}{Z_{r}}\right)^{2p} \tag{4.14}$$

Onde:

- q_0 é a pressão dinâmica do vento, em N/m²;
- C_{ai} é o coeficiente de arrasto do elemento i;
- A_i é a área de projeção do elemento i , na direção de incidência do vento;
- Z_i é a altura do elemento i;
- Z_r é uma altura de referência, adotada 10 m;
- b e p são os parâmetros meteorológicos referidos anteriormente;

Já a parcela flutuante de cada modo para cada elemento \widehat{X}_{i} é calculada como:

$$\widehat{X}_i = F_H \psi_i \chi_i \tag{4.15}$$

Onde:

- x_i é o deslocamento do elemento i para o modo de vibração analisado, na direção de incidência do vento;
- O termo ψ_i é dado pela razão m_i/m_0 entre a massa do elemento i e uma massa arbitrária de referência, adotada como 10^6 kg;
- O termo F_H é calculado por:

$$F_H = q_0 b^2 A_0 \frac{\sum_{i=1}^n \beta_i x_i}{\sum_{i=1}^n \psi_i x_i^2} \xi$$
 (4.16)

Onde: ξ é o coeficiente de amplificação dinâmica, determinado com o auxílio dos ábacos da norma. Já o termo β_i é dado por:

$$\beta_i = C_{ai} \frac{A_i}{A_0} \left(\frac{Z_i}{Z_r}\right)^p \tag{4.17}$$

Onde:

- C_{ai} é o coeficiente de arrasto do elemento i;
- A_i é a área de projeção do elemento i, na direção de incidência do vento;
- A_0 é uma área de referência, normalmente tomada como a área total de projeção da fachada;
- Z_i é a altura do elemento i; enquanto Z_r é uma altura de referência, adotada 10 m;
- p é um dos parâmetros meteorológicos referidos anteriormente;

A força total atuante em cada elemento é a soma da parcela estática, e da parcela dinâmica dos modos de vibração retidos na solução. A combinação de contribuições modais é calculada pela raiz quadrada da soma dos quadrados, conforme o item 9.3.2.2 da norma.

$$\hat{X} = \sqrt{\sum_{j=1}^{r} \hat{X}_{j}^{2}} \tag{4.18}$$

Esse critério pode ser usado para a determinação de quaisquer variáveis estáticas ou geométricas para as quais o modo de vibração terá contribuição, como força, momento fletor, deformação ou giro.

Ainda se pode calcular a amplitude máxima de aceleração para cada modo j a partir da equação:

$$a_j = 4\pi^2 f_j^2 u_j^2 (4.19)$$

Onde:

- f_i é a frequência de vibração do modo;
- u_i é o deslocamento no nível z devido à resposta flutunte do modo

Limita-se a amplitude máxima em 0,1 m/s², sendo que a verificação de conforto deve ser feita para ventos com probabilidade de ocorrência maior que os considerados no projeto estrutural.

5. METODOLOGIA E MODELAGEM

Neste capítulo são apresentados os modelos de edifícios altos construídos no programa SAP2000, para análise estrutural. O programa se baseia no método dos elementos finitos, e oferece uma interface gráfica para modelagem tridimensional de estruturas, assim como permite a importação de geometrias criadas por outros programas. Com a geometria, propriedades dos materiais e carregamentos atuantes definidos, o programa permite encontrar esforços internos, assim como dimensionar alguns elementos.

Neste trabalho, os modelos analisados foram desenhados em 3D no AutoCAD em diferentes camadas, para serem depois importados paraa o SAP a cada camada. A Figura 5.1 mostra exemplos dos modelos desenhados no CAD. Cada faixa de altura em diferentes cores corresponde a um *layer* que foi importado individualmente para o SAP. A cada importação, um novo perfil metálico era associado aos novos elementos, de maneira que os pilares inferiores foram modelados com seções mais robustas e os superiores, com seções mais esbeltas.

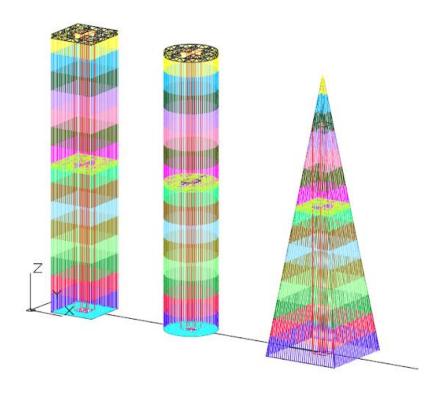


FIGURA 5.1 - MODELOS DESENHADOS NO AUTOCAD

5.1. Modelos construídos no SAP2000

Foram construídos no total dez modelos de edifícios de três geometrias diferentes: prismática quadrada, cilíndrica e pirâmidal. Para as geometrias prismática, identificada pela letra A, e cilíndrica, identificada pela letra B, foram construídos quatro modelos: sem *outriggers* (0), com um *outrigger* à média altura⁸ (1), com um *outrigger* no topo (1a), e com os dois *outriggers* (2). Foram construídos somente dois modelos de geometria piramidal (letra C), sem *outrigger* e com um *outrigger* a média altura.

Todos os modelos tiveram sua altura padronizada em 300 m, com 75 pavimentos de pé direito igual a 4 m. Suas dimensões em planta foram definidas de forma a totalizar uma mesma área construída. Os modelos são mostrados a seguir na Figura 5.2, Figura 5.3, e Figura 5.4, sem as lajes para melhor visualização:

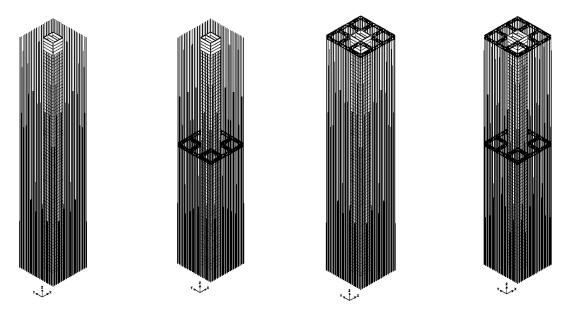


Figura 5.2 - Modelos prismáticos A0, A1, A1a e A2

⁸ Como as estruturas foram subdividas em grupos de andares com pilares de mesmos perfis metálicos, os *outriggers* foram posicionados no topo do grupo médio, a 160 m de altura em relação à base.

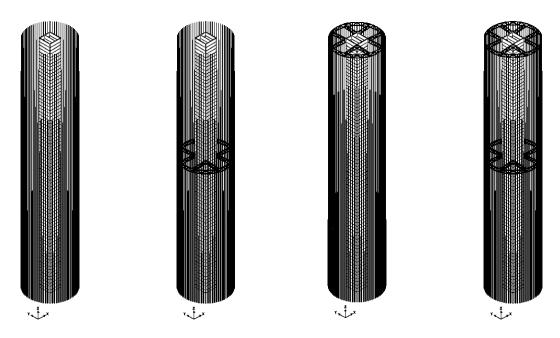


Figura 5.3 – Modelos cilíndricos B0, B1, B1a e B2

O sistema estrutural idealizado foi o de lajes lisas de concreto, cuja carga é suportada igualmente por um núcleo rígido central, de pilares parede de concreto, e por pilares perimetrais em aço. Foram utilizados elementos de barra para modelar os pilares, *outriggers* e lajes, e elementos de área para o núcleo rígido. Os pilares foram considerados simplesmente apoiados, enquanto o núcleo rígido foi considerado engastado na base.

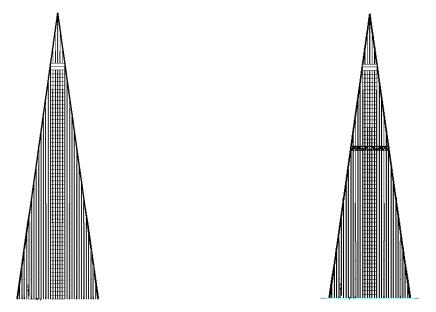


Figura 5.4 - Modelos piramidais C0 (sem *outrigger*) e C1 (com *outrigger*)

5.2. Considerações sobre o modelo piramidal

Para que os modelos piramidais igualassem os outros em área construída, suas dimensões de base são significativamente maiores que as dos modelos prismáticos. Isso resulta em vãos consideravelmente maiores entre os pilares externos e o núcleo rígido, que não seriam vencidos somente pelas lajes lisas. Considerou-se que a estrutura ainda poderia ser construída, utilizando-se treliças metálicas robustas trabalhando de forma solidária às lajes. Essas treliças seriam, de fato, novos *outriggers* na base da estrutura, que influenciariam na rigidez e nos deslocamentos máximos. Contudo, a fim de se manter certa semelhança entre as geometrias comparadas, essas treliças não foram incluídas no modelo.

Além disso, o núcleo rígido do modelo priamidal tem altura menor que seu correspondente nos modelos prismáticos e cilíndricos. Os andares acima do núcleo foram assumidos como pavimentos técnicos, de modo que um número reduzido de elevadores não comprometa seu acesso. Isso também reduz a rigidez dos pavimentos superiores, de modo que a comparação entre os deslocamentos máximos das três estruturas foi feita no nível superior do núcleo rígido do modelo piramidal.

5.3. Pré-dimensionamento

Foi definido o uso de concreto de 30 MPa para as lajes, 80 MPa para os pilares parede, e aço AR415. As propriedades dos materiais utilizados estão resumidas na Tabela 5.1 a seguir.

Material	F _{ck} /F _y (MPa)	Módulo de deformação E (MPa)	Massa específica ρ (kg/m³)	
Concreto C30	30	26071,59	2500	
Concreto C80	80	42574,73	2500	
Aço AR415	415	200000	7850	

Tabela 5.1 – Materiais utilizados nos modelos e suas características

O primeiro modelo a ser pré-dimensionado foi o prismático quadrado. Ao se encontrar perfis metálicos adequados ao suporte do peso próprio da estrutura junto a uma sobrecarga de utilização, o espaçamento entre os pilares foi reproduzido nas demais estruturas.

O edifício prismático foi modelado à semelhança de uma das antigas torres do World Trade Center original em Nova York. O prédio original, com pilares mistos externos, espaçados a cada metro em suas fachadas, tinha cerca de 400 m de altura, com plantas quadradas de 60 m

de lado, e um núcleo de elevadores que se estendia por uma área de 40 x 20 m. Como para o modelo foram utilizados pilares metálicos e um espaçamento maior, as dimensões iniciais foram reduzidas para 300 m de altura, com plantas quadradas de 50 m de lado. O núcleo rígido foi também reduzido para um quadrado central de 15 m de lado.

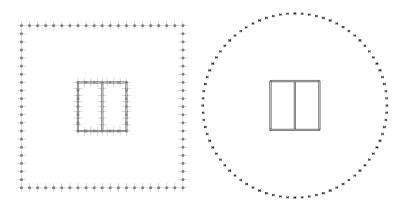


Figura 5.5 - Vista em planta da base dos modelos prismáticos e cilíndricos

As cargas consideradas para o pré-dimensionamento foram o peso próprio de lajes de 20 cm de espessura, o peso próprio de paredes em dry-wall⁹ e uma sobrecarga de utilização. Os valores utilizados estão relacionados na Tabela 5.2 a seguir:

Peso próprio da estrutura	Sobrecarga de	Carga de	Carga
	utilização	parede	distribuída total
7,30	3,00	0,55	10.85

Tabela 5.2 - Cargas distribuídas para pré-dimensionamento (kN/m²)

A carga total por andar é encontrada a partir da área útil, que corresponde à área total por andar subtraída da área do núcleo rígido. Assumiu-se que a carga seria distribuída igualmente entre o núcleo e os pilares externos. Essas informações estão relacionadas na Tabela 5.3.

Área por andar	Carga por andar	Metade para os pilares
2275 m^2	24674,65 kN	12337,325 kN

Tabela 5.3 – Área útil e Carga por andar

⁹Essa cargal foi considerada distribuída uniformemente sobre todas as lajes a uma altura de 42 cm.

Arbitrando-se um número de pilares, é possível encontrar a carga total nos pilares a cada andar. Como esse método assume uma carga de compressão centrada, esta foi multiplicada por um coeficiente de segurança de 2,5. Para cada andar é possível então encontrar a área de perfil metálico necessária aos pilares. A definição de 80 pilares ao longo de todo o perímetro resultou em cargas admissíveis na base, para perfis já bastante robustos. A carga acumulada por andar e por pilar, bem como a área necessária aos pilares são mostradas para os 5 primeiros andares, na Tabela 5.4 a seguir. A tabela completa para todos os andares se encontra no Anexo B.

Andar	Carga acumulada por andar (kN)	Carga acumulada por pilar (kN)	Área necessária ao pilar (cm²)
5	875950.075	27373.440	659.601
4	888287.400	27758.981	668.891
3	900624.725	28144.523	678.181
2	912962.050	28530.064	687.471
1	925299.375	28915.605	696.762

Tabela 5.4 - Área de seção necessária aos pilares dos cinco primeiros andares

Foram utilizados os mesmos perfis metálicos a cada 5 andares. Devido à grande altura do prédio, a definição de qualquer seção corresponde a um acréscimo de carga nos pilares inferiores decorrente do peso próprio dos pilares superiores. Para se compensar essa carga adicional, foram escolhidas seções com certa reserva de resistência, correspondente a uma maior área de seção. Foi verificado que o acréscimo percentual de área era superior ao acréscimo percentual de carga para cada andar, validando assim o pré-dimensionamento.

Novamente são apresentados na Tabela 5.5 esses dados para os pilares dos 5 andares inferiores, enquanto a tabela completa para todos os andares se encontra no Anexo B.

Os perfis metálicos utilizados para os *outriggers* correspondem aos dos andares nos quais eles foram instalados.

Andar	Seção escolhida	Área utilizada (cm²)	Acréscimo de carga acumulado (kN)	Acréscimo percentual de carga (%)	Acréscimo percentual de Área (%)	
5	CS 650x593	755,23	833.1648	3.04%	12.64%	
4	CS 650x593	755,23	856.7208	3.09%	11.41%	
3	CS 650x593	755,23	880.2768	3.13%	10.17%	
2	CS 650x593	755,23	903.8328	3.17%	8.94%	
1	CS 650x593	755,23	927.3888	3.21%	7.71%	

Tabela 5.5 - Seção escolhida e verificação do acréscimo de carga

5.4. Cálculo das forças de arrasto estáticas para os modelos prismáticos

Foram calculadas as forças de arrasto considerando-se somente a parcela estática do vento, para se comparar o deslocamento máximo dos modelos devido às duas parcelas de carregamento, estática e dinâmica. Para a análise estática, foram utilizados os seguintes dados:

- Velocidade básica do vento V₀ para Brasília: 35 m/s;
- Fator S₁ para terreno plano: 1,0;
- Fator S₃ para prédios residenciais e comerciais: 1,0;
- Terreno de categoria V, centro de grandes cidades;
- Edificação de Classe C, cuja maior dimensão da superfície frontal excede 50 m;

O fator S_2 foi calculado de acordo com o Anexo A da NBR 6123:1988. Para isso foi calculado o intervalo de tempo a se usar para obter a velocidade média vento conforme a equação do item A.2:

$$t = 7.5 \frac{L}{V_t(h)} = 7.5 \frac{300}{38.85} = 58.44 \approx 60 s$$
 (5.1)

Onde:

- L é a maior dimensão da superfície frontal da edificação;
- $V_t(h)$ é a velocidade média do vento sobre t segundos, no topo da edificação, calculada iterativamente por $V_t(h) = S_1S_2(h)V_0$:

Para T = 60 s, a Tabela 21 da norma define os seguintes parametros:

- b = 0.62;
- p = 0.23;
- $F_{r,II} = 0.82$;

O fator S_2 é então calculado então para cada altura de pavimento z por:

$$S_2 = b \cdot F_{r,II} \cdot \left(\frac{z}{10}\right)^p \tag{5.2}$$

Finalmente, a área de incidência do vento, por andar, assim como o coeficiente de arrasto, calculado de acordo com o item 6.3 da norma, para os modelos cilíndricos e prismáticos são dados na Tabela 5.6 a seguir:

	Prisma	Cilindro
Área de incidêncida do vento por andar (m²)	200,00	354,38
Coeficiente de arrasto	1,45	0,50

Tabela 5.6 - Área de incidência de vento e coeficiente de arrasto para modelos primsáticos e cilíndricos

As forças de arrasto a serem aplicadas em cada andar são finalmente calculadas conforme mostra a Tabela 5.7 a seguir, para os prmeiros andares da estrutura. A tabela completa se encontra no Anexo D.

						Prisma	(Cilindro
Andar	Altura Z _i (m)	Fator S2	V _k (m/s)	q (N/m²)	Força de arrasto (kN) Força distribuída linearmente (kN/m)		Força de arrasto (kN)	Força distribuída linearmente (kN/m)
1	4	0.4118	14.41	127.34	36.93	0.7386	22.56	0.4513
2	8	0.4830	16.90	175.16	50.80	1.0159	31.04	0.6207
3	12	0.5302	18.56	211.07	61.21	1.2242	37.40	0.7480
4	16	0.5664	19.82	240.94	69.87	1.3974	42.69	0.8538
5	20	0.5963	20.87	266.98	77.42	1.5485	47.31	0.9461

Tabela 5.7 – Forças de arrasto estáticas calculadas para os modelos prismáticos e cilíndricos

5.5. Obtenção dos modos de vibração

Neste trabalho foram realizadas análises modais com o *software* SAP2000 em dois momentos. Inicialmente foram encontrados os períodos e tipos dos 10 primeiros modos de vibração dos modelos. O objetivo desta análise foi o de avaliar a influência dos *outriggers* no comportamento global da estrutura.

Desta forma, ao se configurar o processamento no programa, considerou-se que as estruturas tinham comportamento de pórtico espacial, o que corresponde à liberdade de movimentação ao longo e de rotação em torno dos três eixos coordenados. A ferramenta de configuração do processamento é mostrada na Figura 5.6 a seguir.

Uma segunda análise modal foi realizada com os modelos A0, A1, B0, B1, C0 e C1, para se calcular as forças do vento atuantes sobre as estruturas, e finalmente se comparar os deslocamentos das esturuturas. O item 9 da NBR 6123:1988 determina que, para se considerar o efeito da parcela flutuante do vento, devem ser encontrados os modos de vibração de um modelo discretizado da estrutura a ser estudada, assim como, para cada modo, o deslocamento associado a cada elemento discreto desse modelo.

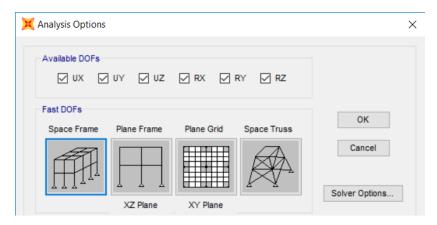


Figura 5.6 – Configurações adotadas para a primeira análise modal

Neste trabalho foi realizada essa segunda análise modal, também utilizando-se o SAP2000, para obtenção dos 20 primeiros modos de vibração das próprias estruturas modeladas, que só posteriormente foram subdivididas em elementos para análise, o que possibilitou a obtenção de dados de entrada mais sofisticados.

Contudo, para que os modos de vibração encontrados pelo programa para estruturas tridimensionais complexas correspondessem aos modos de vibração de um modelo simplificado unidimensional, foi necessário fazer ajustes nas configurações do processamento global. Considerou-se nesta segunda análise que as estruturas eram livres pare se deformar na direção horizontal X de incidência do vento, e rotacionar em torno da direção horizontal Y, transvereal à ação do vento. Desta maneira, não foram obtidos modos de vibração flexionais na direção transversal à incidência do vento, nem modos pulsantes. A consideração de ambos esses modos afasta o cálculo da parcela dinâmica da ação do vento da convergência.

A configuração dos parâmetros da segunda análise modal é mostrada na Figura 5.7 a seguir.

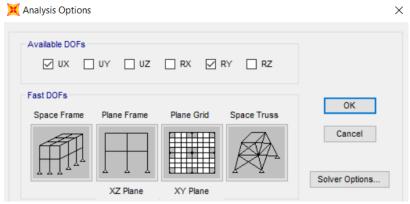


Figura 5.7 - Configurações adotadas para a segunda análise modal

5.6. Cálculo da parcela dinâmica da ação do vento

Com os modos de vibração da segunda análise modal encontrados, as estruturas A0, A1, B0, B1, C0 e C1 foram subdivididas em 15 elementos, correspondentes aos grupos de pavimentos com mesma seção de pilares. Para cada elemento, e para os 15 primeiros modos de vibração encontrados, foi obtido o deslocamento horizontal de um ponto externo na seção média do edifício para se calcular a parcela flutuante da ação do vento, como pode ser visto na Figura 5.8.

A parcela flutuante das forças foi calculada segundo o item 9 da NBR 6123:1988, conforme descrito na seção 4.4. A massa dos elementos foi obtida a partir da massa total do modelo calculada pelo programa. Como exemplo do procedimento, mostra-se aqui o cálculo da força total para o primeiro modo de vibração do modelo A0. As tabelas para todos os modos de vibração e modelos podem ser encontradas no Anexo E.

Foram utilizados os seguintes dados:

- $M_i = 62138 \text{ kg};$
- $A_i/A_0 = 1000/15000 = 0,0667 \text{ m}^2$
- $\psi_i = 0.62138$

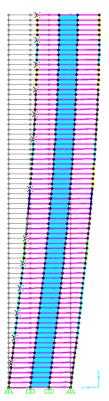


Figura 5.8 - Obtenção dos deslocamentos para o primeiro modo de vibração do modelo A0

i	$\mathbf{z}_{i}\left(\mathbf{m}\right)$	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F}_{\mathbf{H}}$	\overline{X}_{1}	$\widehat{\mathbf{X}}_{1}$	Xi
1	20	5.00E-04	0.1134	0.00006	1.55E-07	178094.940	359.462	55.33	414.79
2	40	0.001	0.1330	0.00013	6.21E-07	178094.940	494.455	110.66	605.12
3	60	0.0014	0.1460	0.00020	1.22E-06	178094.940	595.839	154.93	750.77
4	80	0.0019	0.1560	0.00030	2.24E-06	178094.940	680.144	210.26	890.41
5	100	0.0023	0.1642	0.00038	3.29E-06	178094.940	753.667	254.53	1008.20
6	120	0.0027	0.1712	0.00046	4.53E-06	178094.940	819.602	298.79	1118.40
7	140	0.0031	0.1774	0.00055	5.97E-06	178094.940	879.829	343.06	1222.89
8	160	0.0035	0.1829	0.00064	7.61E-06	178094.940	935.566	387.33	1322.89
9	180	0.0038	0.1879	0.00071	8.97E-06	178094.940	987.654	420.53	1408.18
10	200	0.004	0.1925	0.00077	9.94E-06	178094.940	1036.700	442.66	1479.36
11	220	0.0042	0.1968	0.00083	1.10E-05	178094.940	1083.163	464.79	1547.95
12	240	0.0044	0.2008	0.00088	1.20E-05	178094.940	1127.396	486.92	1614.32
13	260	0.0045	0.2045	0.00092	1.26E-05	178094.940	1169.680	497.99	1667.67
14	280	0.0046	0.2080	0.00096	1.31E-05	178094.940	1210.242	509.06	1719.30
15	300	0.0046	0.2114	0.00097	1.31E-05	178094.940	1249.267	509.06	1758.32

Tabela 5.8 - Cálculo da força total (parcelas estática e dinâmica) do vento para o primeiro modo de vibração do modelo A0

5.7. Obtenção dos deslocamentos máximos

As forças totais, considerando ação estática e a ação dinâmica para os primeiros quinze modos de vibração dos modelos A0, A1, B0, B1, C0 e C1, foram então neles aplicadas para obtenção dos deslocamentos máximos, da mesma maneira que no item anterior. Desta vez a análise foi feita considerando modelo livre para se deformar e rotacionar nas três direções, da mesma forma que para a primeira análise modal.

Os deslocamentos relativos foram considerados como o deslocamento entre elementos divididos pelo número de pavimentos do elemento.

5.8. Resumo esquemático do processo

Os passos descritos ao longo desse capítulo são aqui listados de forma resumida:

- Definição dos materiais utilizados e sua configuração no SAP2000;
- Lançamento estrutural e pré-dimensionamento da estrutura, com auxílio de planilhas do Excel;

- Desenho dos modelos tridimensionais em diferentes camadas no AutoCAD, e geração de arquivos DXF;
- Importação por camadas dos modelos em DXF para o SAP2000 e associação das informações de seção transversal para cada série de elementos importados;
- Cálculo de parcela estática do vento;
- Definição e aplicação da força estática no modelo do SAP2000;
- Análise modal livre de restrições para comparação do comportamento global (SAP 2000);
- Análise modal restrita à direção de incidência do vento para obtenção dos deslocamentos dos modelos para cada um de seus modos de vibração considerados (SAP2000);
- Cálculo da parcela dinâmica do vento segundo o item 9 da NBR 6123:1988 e conforme descrito no capítulo 4, utilizando os deslocamentos obtidos anteriormente.
- Definição e aplicação das forças totais (parcela estática e dinâmica nos modelos);
- Processamento das estruturas com todos os carregamentos definidos anteriormente, e combinação entre os carregamentos de peso-próprio e ação do vento;
- Obtenção das formas deformadas e deslocamentos totais do modelo.

6. RESULTADOS E ANÁLISE

6.1. Influência dos *outriggers* nos modos de vibração (primeira análise modal)

A primeira análise modal forneceu os modos de vibração dos modelos livres para se deslocar e rotacionar nas três direções. A seguir nas Figura 6.1 a 6.10 são mostradas as configurações deformadas para alguns desses modos de vibração.

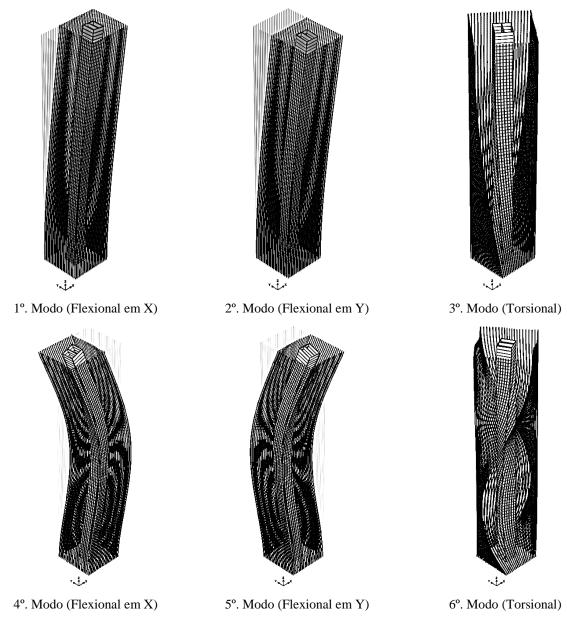


Figura 6.1 – Primeiros modos de vibração para o modelo A0

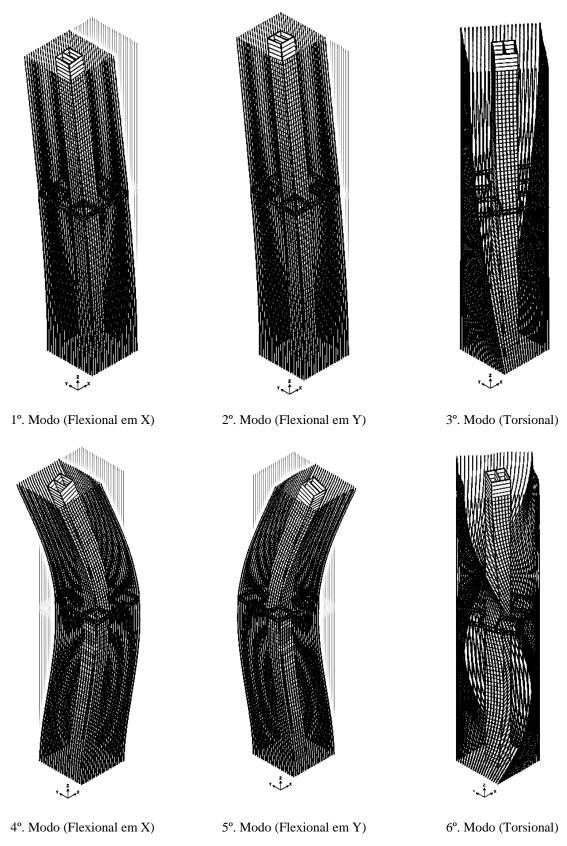


Figura 6.2 – Primeiros modos de vibração para o modelo A1

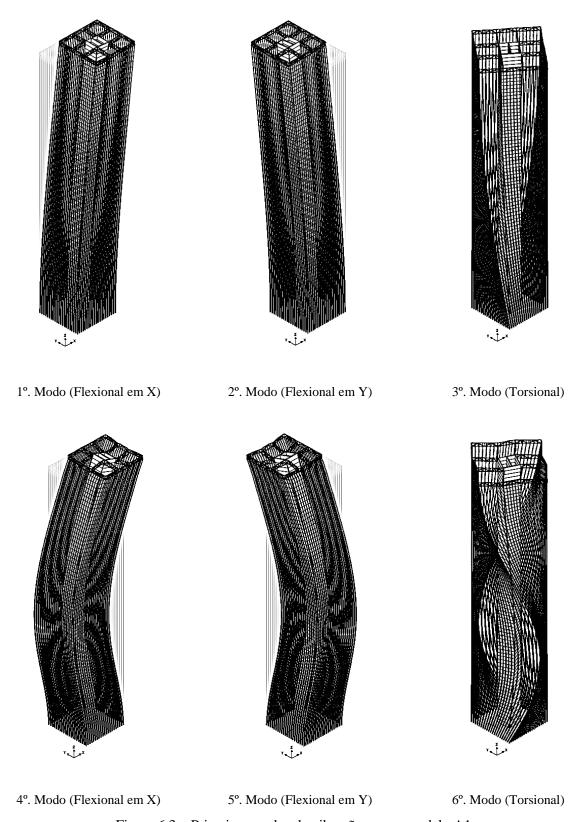


Figura 6.3 – Primeiros modos de vibração para o modelo A1a

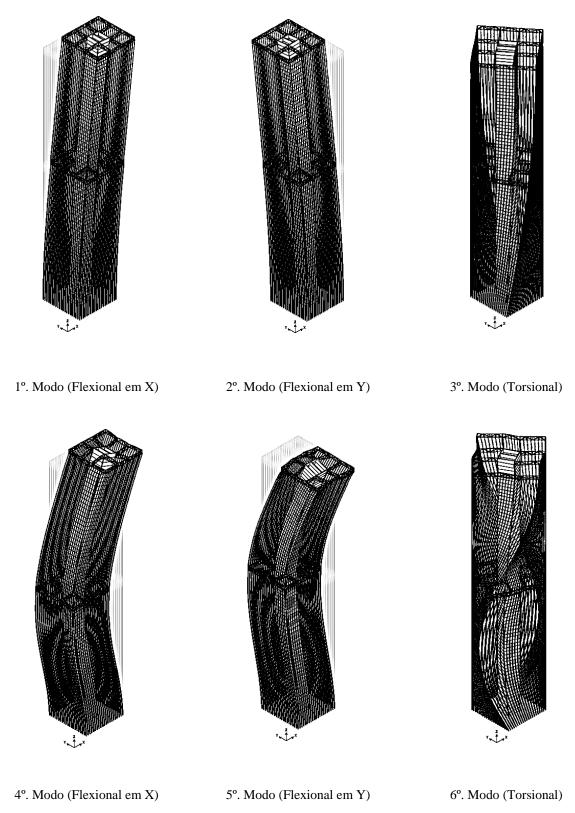


Figura 6.4 – Primeiros modos de vibração para o modelo A2

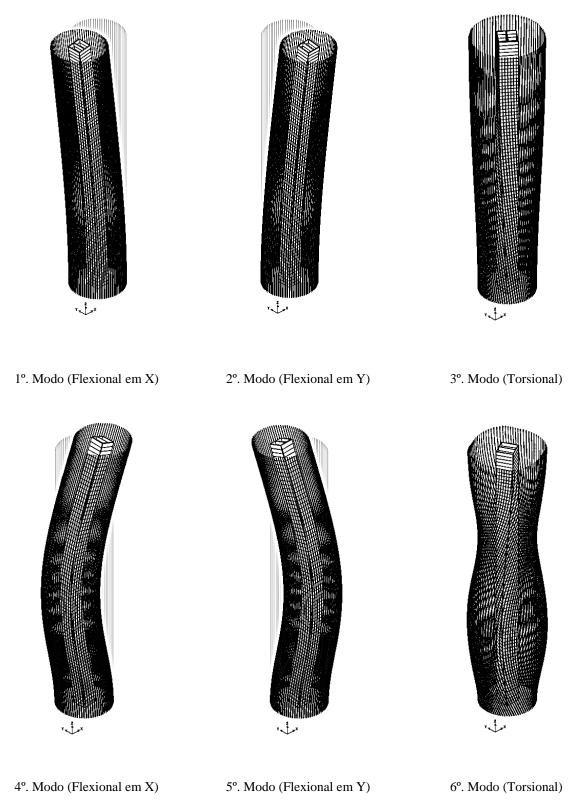


Figura 6.5 – Primeiros modos de vibração para o modelo B0

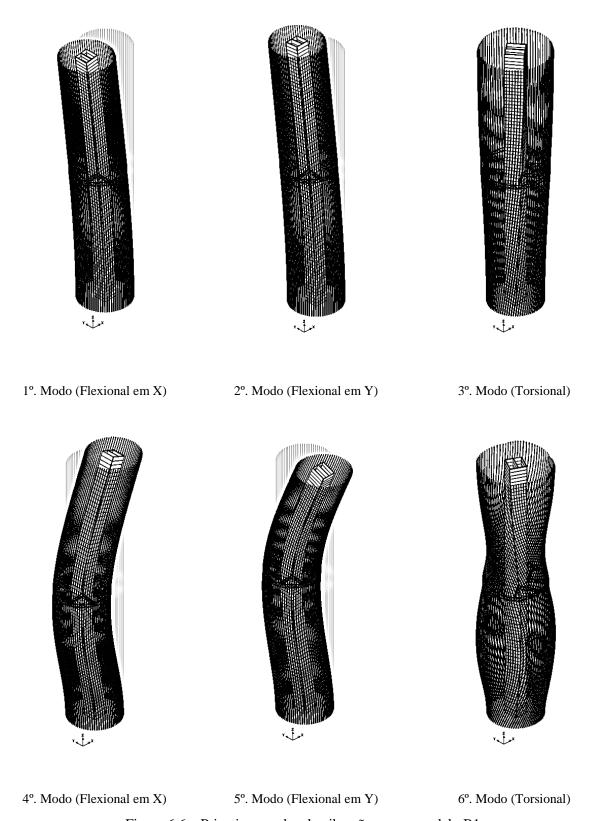


Figura 6.6 – Primeiros modos de vibração para o modelo B1

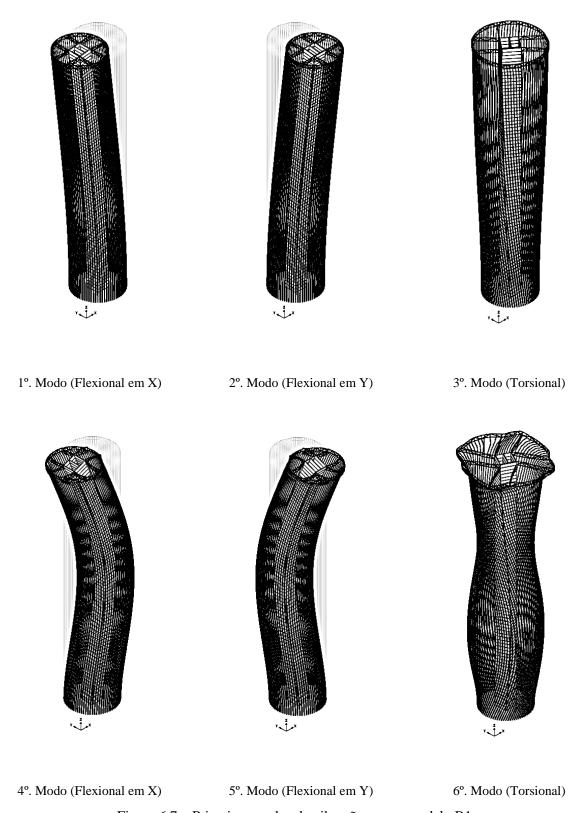


Figura 6.7 – Primeiros modos de vibração para o modelo B1a

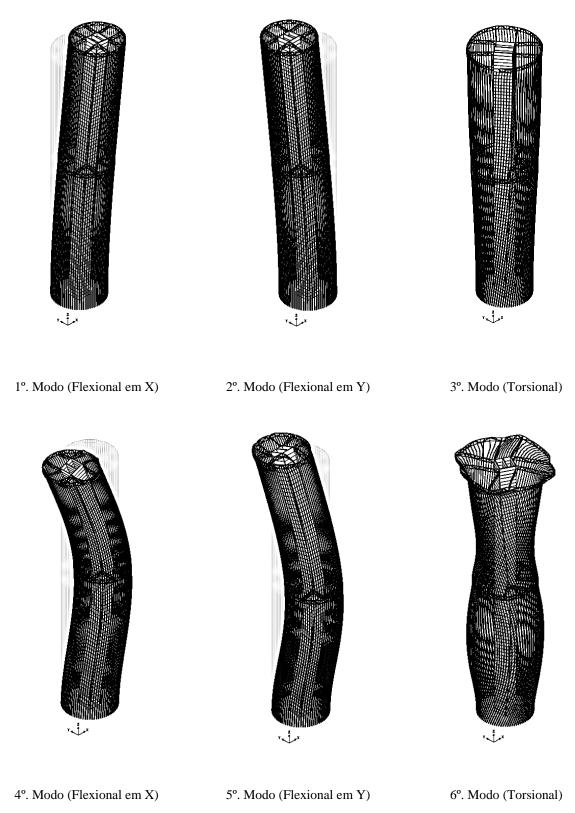


Figura 6.8 – Primeiros modos de vibração para o modelo B2

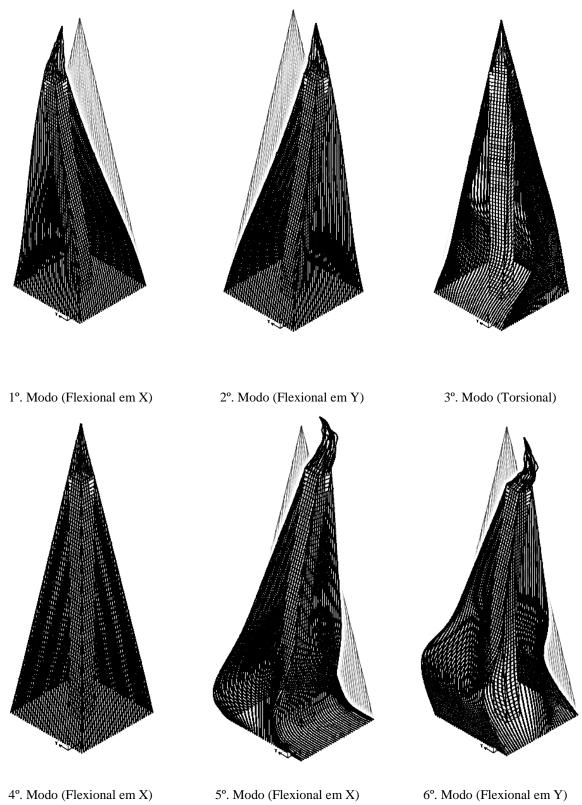


Figura 6.9 – Primeiros modos de vibração para o modelo C0

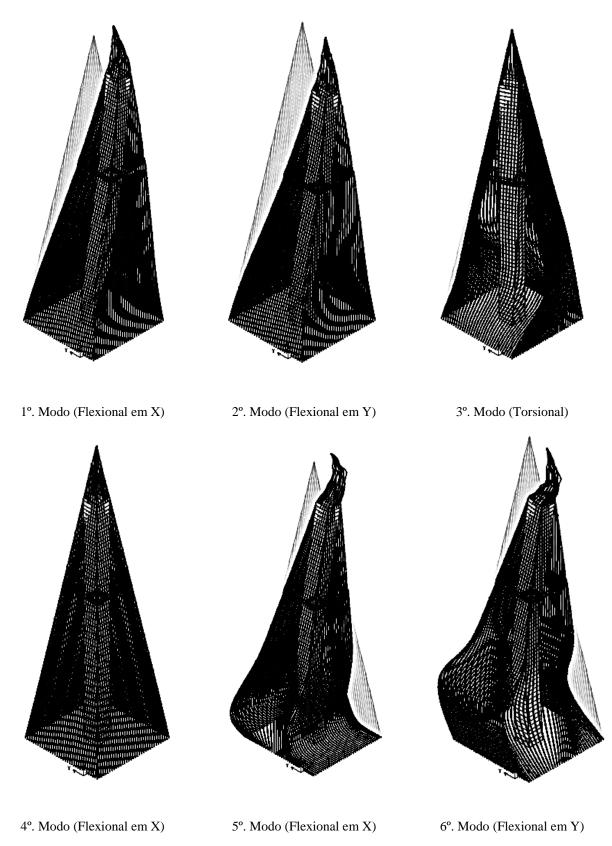


Figura 6.10 – Primeiros modos de vibração para o modelo C1

Os períodos e os tipos dos modos de vibração encontrados para os modelos prismáticos encontram-se resumidos na Tabela 6.1. Já para os modelos cilíndricos os dados estão na Tabela 6.2, enquanto que para os modelos piramidais, os resultados se encontram na Tabela 6.3 - Período e tipo dos modos de vibração dos modelos piramidais Tabela 6.3 a seguir.

	t de la constant de l								
	Mod	delo A0	Mod	Modelo A1		lelo A1a	Mod	delo A2	
Modo	T(s)	Tipo	T(s)	Tipo	T(s)	Tipo	T(s)	Tipo	
1	15,39248	Flexional (X)	12,98449	Flexional (X)	14,77222	Flexional (X)	12,64634	Flexional (X)	
2	14,66869	Flexional (Y)	12,66243	Flexional (Y)	14,12441	Flexional (Y)	12,34321	Flexional (Y)	
3	3,73673	Torsional	3,74300	Torsional	3,7381	Torsional	3,74435	Torsional	
4	2,78533	Flexional (X)	2,78452	Flexional (X)	2,74587	Flexional (X)	2,74541	Flexional (X)	
5	2,63359	Flexional (Y)	2,63509	Flexional (Y)	2,6011	Flexional (Y)	2,60291	Flexional (Y)	
6	1,55036	Torsional	1,54882	Torsional	1,55221	Torsional	1,55072	Torsional	
7	1,34094	Pulsante	1,34064	Pulsante	1,34059	Pulsante	1,34031	Pulsante	
8	1,33855	Pulsante	1,33854	Pulsante	1,33749	Pulsante	1,33749	Pulsante	
9	1,33779	Pulsante	1,33779	Pulsante	1,33681	Pulsante	1,33681	Pulsante	
10	1,33712	Pulsante	1,33712	Pulsante	1,33657	Pulsante	1,33655	Pulsante	

Tabela 6.1 – Período e tipo dos modos de vibração dos modelos prismáticos

	Modelo B0		Modelo B0 Modelo B1		Modelo B1a		Modelo B2	
Modo	T (s)	Tipo	T (s)	Tipo	T(s)	Tipo	T(s)	Tipo
1	15,38726	Flexional (X)	13,20124	Flexional (X)	15,01436	Flexional (X)	12,97393	Flexional (X)
2	14,63573	Flexional (Y)	12,63783	Flexional (Y)	14,25711	Flexional (Y)	12,40522	Flexional (Y)
3	3,60361	Torsional	3,60548	Torsional	3,60367	Torsional	3,60553	Torsional
4	2,76208	Flexional (X)	2,75928	Flexional (X)	2,73429	Flexional (X)	2,73143	Flexional (X)
5	2,60397	Flexional (Y)	2,60194	Flexional (Y)	2,57836	Flexional (Y)	2,5639	Flexional (Y)
6	1,50759	Torsional	1,50564	Torsional	1,52526	Torsional	1,52388	Torsional
7	1,45620	Pulsante	1,45577	Pulsante	1,46561	Pulsante	1,46561	Pulsante
8	1,45377	Pulsante	1,45376	Pulsante	1,46488	Pulsante	1,46486	Pulsante
9	1,45285	Pulsante	1,45285	Pulsante	1,45554	Pulsante	1,45516	Pulsante
10	1,45247	Pulsante	1,45243	Pulsante	1,45291	Pulsante	1,45291	Pulsante

Tabela 6.2 - Período e tipo dos modos de vibração dos modelos cilíndricos

	M	odelo C0	Modelo C1		
Modo	T (s)	Tipo	T (s)	Tipo	
1	4,29257	Flexional (X)	3,96971	Flexional (X)	
2	4,10528	Flexional (Y)	3,840,17	Flexional (Y)	
3	2,27776	Torsional	2,27734	Torsional	
4	2,05985	Flexional (X)	2,05982	Flexional (X)	
5	1,95028	Flexional (X)	1,93205	Flexional (X)	
6	1,92363	Flexional (Y)	1,91164	Flexional (Y)	
7	1,87171	Pulsante	1,87171	Pulsante	
8	1,87168	Pulsante	1,87168	Pulsante	
9	1,85668	Pulsante	1,85668	Pulsante	
10	1,85659	Pulsante	1,85659	Pulsante	

Tabela 6.3 - Período e tipo dos modos de vibração dos modelos piramidais

A partir dos dados das tabelas é possível ver que a presença de *outriggers* altera de forma significativa o período dos modos de vibração flexionais das estruturas, reduzindo especialmento o período de vibração fundamental. O posicionamento de *outriggers* no topo costuma apresentar mais eficiência na redução dos deslocamentos. Enquanto isso não foi análisado neste momento, foi possível ver que a redução do período de vibração foi maior para os *outriggers* posicionados a média altura. Isso pode ser dever à definição dos perfis metálicos para as treliças. Enquanto os *outriggers* a média altura foram modelados com seção CS 500x312, de 335,5 cm² de área, os *outriggers* do topo foram modelados com seção CS 200x39, de 49,4 cm², uma área mais de seis vezes menor.

6.2. Influência dos *outriggers* nos modos de vibração (segunda análise modal)

A segunda análise modal foi feita restringindo-se a liberdade dos modelos ao deslocamento ao longo do eixo X e rotação em torno do eixo Y para se aproximar do comportamento do modelo unidimensional requisitado pela NBR 6123:1988, para o cálculo da força dinâmica do vento.

Foram encontrados os seguintes modos de vibração para os modelos prismáticos A0 e A1, listados na Tabela 6.4 a seguir. Foi verificado que, após um aumento não significativo no período fundamental, os *outriggers* atuam reduzindo os períodos dos modos de vibração mais elevados.

	M	odelo A0	M	odelo A1	
Modo	Período (s)	Frequência (Hz)	Período (s)	Frequência (Hz)	Variação do período (%)
1	1.6809	0.5949	1.6831	0.5941	0.13%
2	0.6248	1.6006	0.6241	1.6023	-0.11%
3	0.4520	2.2123	0.4503	2.2206	-0.38%
4	0.4015	2.4909	0.4009	2.4946	-0.15%
5	0.3854	2.5949	0.3850	2.5977	-0.10%
6	0.3809	2.6255	0.3793	2.6363	-0.42%
7	0.3745	2.6700	0.3729	2.6817	-0.43%
8	0.3684	2.7148	0.3655	2.7360	-0.79%
9	0.3666	2.7281	0.3654	2.7367	-0.33%
10	0.3608	2.7719	0.3601	2.7774	-0.19%
11	0.3595	2.7817	0.3579	2.7937	-0.45%
12	0.3549	2.8177	0.3524	2.8378	-0.70%
13	0.3520	2.8406	0.3486	2.8687	-0.97%
14	0.3498	2.8591	0.3481	2.8730	-0.49%
15	0.3457	2.8930	0.3434	2.9121	-0.67%
16	0.3445	2.9024	0.3409	2.9335	-1.04%
17	0.3401	2.9404	0.3371	2.9663	-0.88%
18	0.3398	2.9433	0.3370	2.9677	-0.82%
19	0.3353	2.9826	0.3331	3.0019	-0.66%
20	0.3350	2.9854	0.3319	3.0130	-0.93%

Tabela 6.4 - Frequência e período para os modos de vibração dos modelos prismáticos

Os dados da tabela foram organizados no gráfico apresentado a seguir na Figura 6.11, cuja escala vertical foi ampliada para melhor visualização.

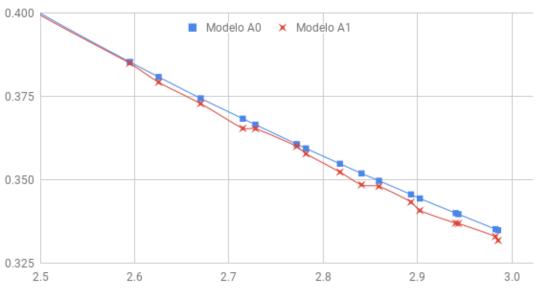


Figura 6.11 – Frequência e período dos modelos prismáticos

Os vinte primeiros modos de vibração encontrados para os modelos cilíndricos B0 e B1, relacionados a seguir na Tabela 6.5 evidenciam a mesma tendência verificada para os modelos prismáticos.

	M	odelo B0	M	odelo B1	
Modo	Período (s)	Frequência (Hz)	Período (s)	Frequência (Hz)	Variação do período (%)
1	1.6810	0.5949	1.6822	0.5945	0.07%
2	0.5979	1.6724	0.5974	1.6738	-0.08%
3	0.3986	2.5091	0.3975	2.5158	-0.28%
4	0.3289	3.0406	0.3283	3.0462	-0.18%
5	0.2987	3.3477	0.2968	3.3688	-0.64%
6	0.2856	3.5008	0.2855	3.5020	-0.04%
7	0.2831	3.5325	0.2819	3.5478	-0.42%
8	0.2760	3.6236	0.2755	3.6295	-0.18%
9	0.2732	3.6603	0.2722	3.6733	-0.37%
10	0.2692	3.7142	0.2691	3.7161	-0.04%
11	0.2660	3.7600	0.2634	3.7961	-0.98%
12	0.2631	3.8012	0.2622	3.8142	-0.34%
13	0.2601	3.8442	0.2589	3.8622	-0.46%
14	0.2577	3.8808	0.2571	3.8891	-0.23%

	M	odelo B0	M	odelo B1	
Modo	Período (s)	Frequência (Hz)	Período (s)	Frequência (Hz)	Variação do período (%)
15	0.2552	3.9182	0.2525	3.9599	-1.06%
16	0.2532	3.9493	0.2525	3.9612	-0.28%
17	0.2508	3.9871	0.2492	4.0130	-0.64%
18	0.2492	4.0133	0.2471	4.0463	-0.84%
19	0.2470	4.0492	0.2451	4.0801	-0.77%
20	0.2456	4.0716	0.2447	4.0863	-0.37%

Tabela 6.5 - Frequência e período para os modos de vibração dos modelos cilíndricos

Foi construído gráfico semelhante, mostrado a seguir na Figura 6.12:

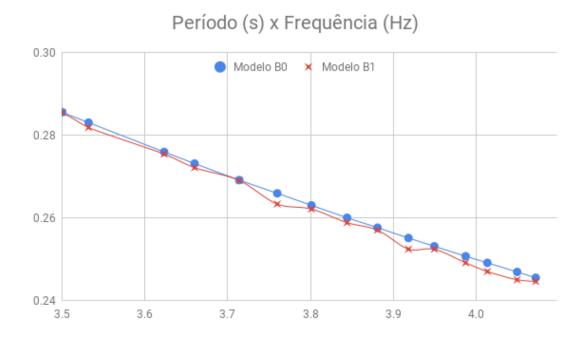


Figura 6.12 - Frequência e período dos modelos cilíndricos

Por fim, para os modos de vibração dos modelos piramidais C0 e C1, mostrados na Tabela 6.6 a seguir, percebeu-se que a tendência de redução dos períodos só se apresentou a partir do sétimo modo de vibração, e mesmo assim, de forma significativamente menor que para os modelos prismático e cilíndrico. No gráfico de comparação, apresentado Figura 6.13, é possível ver como as curvas estão mais próximas.

	M	odelo C0	M	odelo C1	
Modo	Período (s)	Frequência (Hz)	Período (s)	Frequência (Hz)	
1	1.1844	0.8443	1.1882	0.8416	0.32%
2	0.6738	1.4840	0.6742	1.4833	0.06%
3	0.6514	1.5352	0.6514	1.5352	0.00%
4	0.5321	1.8793	0.5321	1.8792	0.00%
5	0.5151	1.9413	0.5151	1.9414	0.00%
6	0.4701	2.1271	0.4701	2.1272	0.00%
7	0.4433	2.2559	0.4432	2.2561	-0.02%
8	0.4359	2.2943	0.4358	2.2945	-0.02%
9	0.3884	2.5746	0.3882	2.5758	-0.05%
10	0.3813	2.6224	0.3812	2.6232	-0.03%
11	0.3475	2.8776	0.3471	2.8806	-0.12%
12	0.3418	2.9260	0.3415	2.9284	-0.09%
13	0.3143	3.1819	0.3136	3.1888	-0.22%
14	0.3095	3.2315	0.3088	3.2380	-0.23%
15	0.2869	3.4852	0.2859	3.4980	-0.35%
16	0.2823	3.5428	0.2810	3.5589	-0.46%
17	0.2702	3.7008	0.2702	3.7009	0.00%
18	0.2592	3.8584	0.2573	3.8865	-0.73%
19	0.2579	3.8768	0.2559	3.9075	-0.78%
20	0.2438	4.1014	0.2417	4.1367	-0.86%

Tabela 6.6 - Frequência e período para os modos de vibração dos modelos piramidais

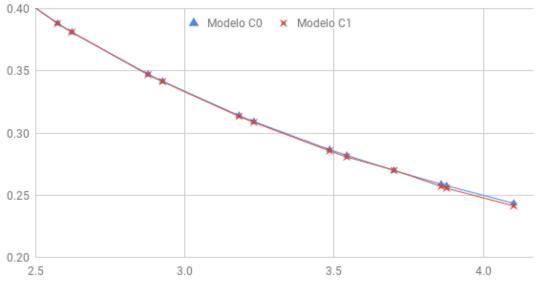


Figura 6.13 - Frequência e período dos modelos piramidais

6.3. Comparação entre deslocamentos estáticos e totais (estáticos e dinâmicos)

Para os modelos prismáticos, foi comparado o deslocamento considerando-se somente a parcela estática do vento com o deslocamento total, considerando a parcela dinâmica. Os resultados encontrados estão relacionados na Tabela 6.7 a seguir.

			Modelo A0		Modelo A1			
Xi	Altura z _i (m)	Deslocamento estático (m)	Deslocamento total (m)	Diferença percentual (%)	Deslocamento estático (m)	Deslocamento total (m)	Diferença percentual (%)	
1	20	0.017	0.026	48.16	0.014	0.022	50.70	
2	40	0.061	0.090	48.50	0.050	0.076	52.15	
3	60	0.128	0.189	48.46	0.103	0.157	52.48	
4	80	0.214	0.319	48.62	0.171	0.261	52.62	
5	100	0.318	0.473	48.71	0.250	0.382	52.74	
6	120	0.436	0.649	48.87	0.337	0.515	52.85	
7	140	0.565	0.841	48.97	0.428	0.655	52.98	
8	160	0.702	1.047	49.13	0.521	0.798	53.09	
9	180	0.846	1.263	49.26	0.621	0.952	53.29	
10	200	0.995	1.487	49.42	0.725	1.113	53.47	
11	220	1.146	1.715	49.59	0.833	1.281	53.67	
12	240	1.300	1.947	49.74	0.944	1.452	53.87	
13	260	1.454	2.180	49.91	1.055	1.626	54.08	
14	280	1.608	2.413	50.08	1.167	1.800	54.27	
15	300	1.759	2.644	50.30	1.277	1.974	54.50	

Tabela 6.7 - Deslocamentos estáticos e dinâmicos para os modelos prismáticos

Como pode ser visto na tabela, a consideração dos efeitos da parcela dinâmica do vento significa uma ampliação dos deslocamentos da estrutura da ordem de 50%, independentemente da presença dos *outriggers*.

Para o modelo A0, a consideração da parcela dinâmica elevou o deslocamento no topo da estrutura de 1,759 para 2,644 m, enquanto que para o modelo A1, essa elevação foi de 1,277 para 1,974 m. Com os valores da tabela anterior, foram construídos os gráficos mostrados na Figura 6.14 a seguir:

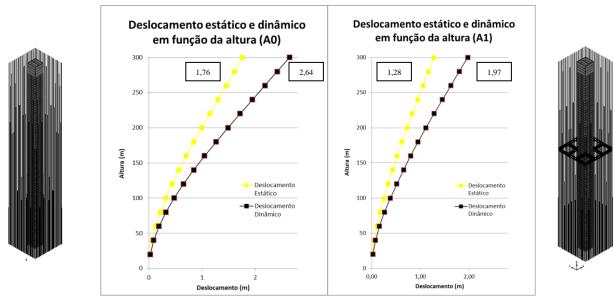


Figura 6.14 Deslocamentos estáticos e dinâmicos (totais) para os modelos A0 e A1

6.4. Efeito dos *outriggers* nos deslocamentos máximos e relativos dos modelos

Para os modelos prismáticos A0 e A1, os deslocamentos máximos absolutos e relativos estão relacionados na Tabela 6.8 a seguir:

			Modelo A0			Modelo A1	
Xi	Altura z _i (m)	Deslocamento absoluto (m)	Deslocamento relativo entre elementos (m)	Deslocamento relativo entre pavimentos (m)	Deslocamento absoluto (m)	Deslocamento relativo entre elementos (m)	Deslocamento relativo entre pavimentos (m)
1	20	0.026			0.022		
2	40	0.090	0.064	0.013	0.076	0.054	0.0022
3	60	0.189	0.099	0.020	0.157	0.082	0.0033
4	80	0.319	0.129	0.026	0.261	0.104	0.0041
5	100	0.473	0.154	0.031	0.382	0.121	0.0048
6	120	0.649	0.176	0.035	0.515	0.133	0.0053
7	140	0.841	0.192	0.038	0.655	0.141	0.0056
8	160	1.047	0.206	0.041	0.798	0.143	0.0057
9	180	1.263	0.216	0.043	0.952	0.154	0.0061
10	200	1.487	0.223	0.045	1.113	0.161	0.0065
11	220	1.715	0.228	0.046	1.281	0.168	0.0067
12	240	1.947	0.232	0.046	1.452	0.172	0.0069
13	260	2.180	0.233	0.047	1.626	0.174	0.0069
14	280	2.413	0.233	0.047	1.800	0.174	0.0070
15	300	2.644	0.231	0.046	1.974	0.173	0.0069

Tabela 6.8 – Deslocamentos absolutos e relativos entre elementos e pavimentos (Modelos A0 e A1)

O maior deslocamento relativo entre elementos se justifica devido à redução de rigidez decorrente do uso de perfis mais leves nos andares superiores. Com os dados da tabela, foi construído o gráfico apresentado na Figura 6.15 a seguir:

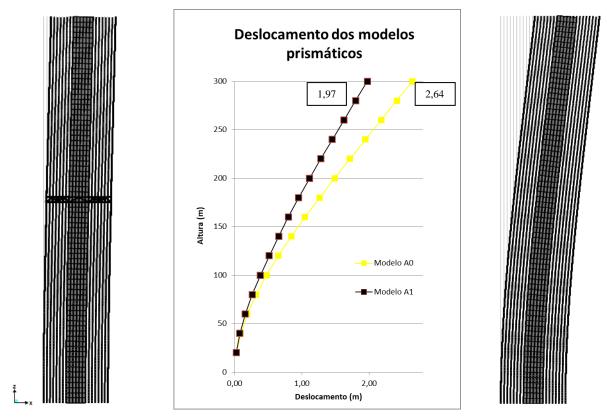


Figura 6.15 - Deslocamento dos modelos prismáticos

O sistema de *outriggers* permitiu reduzir o deslocamento no topo do modelo em 34%, de 1,97 para 2,64 m. A 260 m, que foi a altura de comparação entre os modelos de diferentes geometrias, essa redução foi de aproximadamente 25%.

Para os modelos cilíndricos, os deslocamentos máximos absolutos e relativos estão relacionados na Tabela 6.9 a seguir:

			Modelo B0		Modelo B1			
X _i	Altura z _i (m)	Deslocamento absoluto (m)	Deslocamento relativo entre elementos (m)	Deslocamento relativo entre pavimentos (m)	Deslocamento absoluto (m)	Deslocamento relativo entre elementos (m)	Deslocamento relativo entre pavimentos (m)	
1	20	0.016			0.014			
2	40	0.058	0.042	0.0083	0.047	0.034	0.0067	
3	60	0.122	0.064	0.0128	0.098	0.051	0.0102	

4	80	0.205	0.083	0.0167	0.164	0.065	0.0130
5	100	0.305	0.100	0.0200	0.240	0.076	0.0152
6	120	0.419	0.113	0.0227	0.324	0.084	0.0169
7	140	0.543	0.124	0.0249	0.414	0.090	0.0180
8	160	0.676	0.133	0.0266	0.502	0.087	0.0175
9	180	0.816	0.140	0.0280	0.603	0.102	0.0204
10	200	0.961	0.145	0.0289	0.707	0.103	0.0207
11	220	1.108	0.148	0.0296	0.814	0.107	0.0214
12	240	1.259	0.150	0.0300	0.923	0.110	0.0219
13	260	1.410	0.151	0.0302	1.034	0.111	0.0221
14	280	1.561	0.151	0.0303	1.145	0.111	0.0223
15	300	1.710	0.149	0.0299	1.255	0.109	0.0219

Tabela 6.9 - Deslocamentos absolutos e relativos entre elementos e pavimentos (Modelos B0 e B1)

Com os dados da tabela, foi construído o gráfico apresentado na Figura 6.16 a seguir:

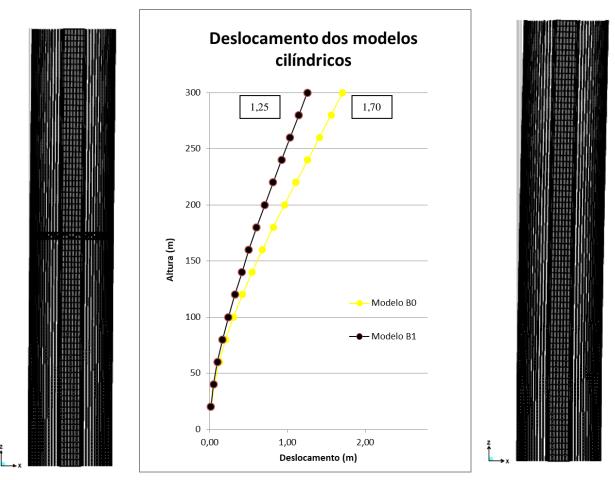


Figura 6.16 - Deslocamento dos modelos cilíndricos

Nesses modelos, o uso do sistema de *outriggers* reduziu o deslocamento de topo de 1,70 para 1,25 m, o que equivale a uma redução de 36%. Na altura de comparação das diferentes geometrias, 260 m, essa redução foi de aproximadamente 26,6%.

Por fim, para os modelos piramidais, os deslocamentos máximos absolutos e relativos estão relacionados na Tabela 6.10 a seguir, e de onde foram retirados os dados para construção da Figura 6.17 em sequência.

			Modelo C0		Modelo C1			
Xi	Altura z _i (m)	Deslocamento absoluto (m)	Deslocamento relativo entre elementos (m)	Deslocamento relativo entre pavimentos (m)	Deslocamento absoluto (m)	Deslocamento relativo entre elementos (m)	Deslocamento relativo entre pavimentos (m)	
1	20	0.006			0.006			
2	40	0.022	0.016	0.0033	0.021	0.015	0.0030	
3	60	0.047	0.024	0.0049	0.043	0.022	0.0044	
4	80	0.077	0.030	0.0060	0.069	0.027	0.0053	
5	100	0.111	0.034	0.0069	0.099	0.030	0.0059	
6	120	0.148	0.037	0.0074	0.130	0.031	0.0062	
7	140	0.186	0.038	0.0076	0.160	0.031	0.0061	
8	160	0.224	0.038	0.0076	0.189	0.029	0.0057	
9	180	0.262	0.037	0.0075	0.219	0.030	0.0060	
10	200	0.297	0.036	0.0071	0.249	0.030	0.0060	
11	220	0.330	0.033	0.0067	0.278	0.029	0.0058	
12	240	0.359	0.029	0.0057	0.303	0.025	0.0051	
13	260	0.794	0.434	0.0869	0.727	0.424	0.0848	
14	280	1.165	0.372	0.0743	1.101	0.374	0.0749	
15	300	0.899	-0.266	-0.0532	0.870	-0.232	-0.0463	

Tabela 6.10 - Deslocamentos absolutos e relativos entre elementos e pavimentos (Modelos C0 e C1)

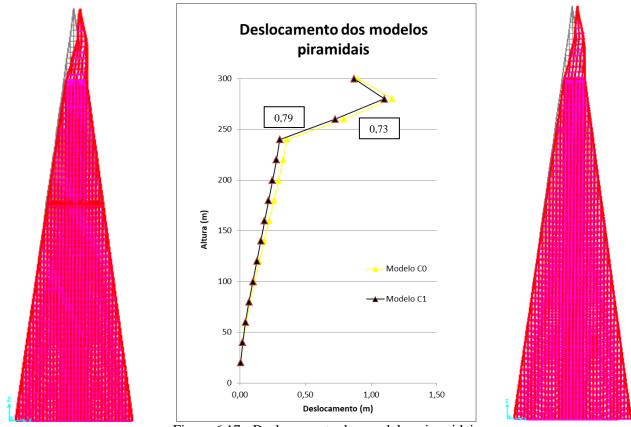


Figura 6.17 - Deslocamento dos modelos piramidais

Para esses últimos modelos, o comportamento no topo foi diferente devido à interrupção do núcleo rígido quando este encontra a face da estrutura. Por este motivo o topo do modelo apresentou maior flexibilidade e deslocamentos. A comparação da redução dos deslocamentos foi feita então à altura de 260 m, no limite do núcleo rígido.

Os deslocamentos do modelo foram reduzidos de 0,79 para 0,73 m, o que corresponde a uma redução de 8,44%.

6.5. Eficiência dos *outriggers* em função das diferentes geometrias

Para se comparar a eficiência do sistema de *outriggers*, nas diferentes geometrias estruturais, foram comparados o acréscimo percentual de massa que o sistema respresentou aos edifícios simples, junto à redução percentual do deslocamento. Foi estabelecida a altura de referencia de 260 m, correspondente ao topo do núcleo rígido nos modelos piramidais. Os dados de comparação estão abaixo relacionados na Tabela 6.11.

	Modelo A1 Prismático	Modelo B1 Cilíndrico	Modelo C1 Piramidal
Redução do deslocamento a 260 m (%)	25,41	26,66	8,44%
Acréscimo de massa (%)	0,61	0,281	0,37

Tabela 6.11 - Redução de deslocamento e acréscimo de massa pelo sistema de outriggers

Com o uso dos *outriggers*, o modelo cilíndrico teve tanto a maior redução de deslocamentos horizontais quanto o menor acréscimo de massa, enquanto o modelo prismático teve uma redução de deslocamentos da mesma ordem de grandeza.

Pela forma piramidal ser naturalmente mais estável, já era esperado que os deslocamentos encontrados já fossem menores. A comparação da análise, por esse motivo, foi feita entre a redução percentual dos deslocamentos permitida pelo sistema de *outriggers*. A eficiência apresentada pelo modelo piramidal foi consideravelmente menor, reafirmando a establidade inerente a essa geometria.

7. CONSIDERAÇÕES FINAIS

Foram modeladas dez estruturas de diferentes geometrias, cujos modos de vibração foram comparados para diferentes configurações de *outriggers*. Para seis dessas estruturas, foram comparadas suas respostas frente à ação do vento, na forma de seus deslocamentos máximos, considerando suas parcelas estática e dinâmica. Essa última parcela foi calculada seguindo-se as recomendações da NBR 6123:1988. Também foi observada a influência que o sistema de *outriggers* a média altura do edifício teve na redução desses deslocamentos.

A partir do trabalho desenvolvido, foi possível concluir que:

- O sistema de *outriggers* atua reduzindo os períodos dos modos de vibração superiores das estruturas. Essa redução é mais pronunciada nos modelos prismáticos e cilíndricos.
- Para os modelos cilíndricos, a alteração dos modos de vibração decorrente do uso de outriggers já correspondeu a menores parcelas dinâmicas da força do vento, de acordo com cálculo segundo a NBR 6123:1988. Para os modelos prismáticos e piramdais, as forças totais aplicadas foram próximas independentemente do emprego do sistema.
- Em todas as estruturas, o sistema de *outriggers* permitiu reduzir os deslocamentos horizontais de forma significativa.
- A redução dos deslocamentos máximos foi superior nos modelos prismáticos e cilíndricos, de forma que ao se buscar reduzir deslocamentos de estruturas piramidais, outros sistemas estruturais podem ser mais eficazes.
- Na estrutura cilíndrica, o sistema apresentou eficiência superior, ao se comparar a redução dos deslocamentos com o acréscimo de material.

A esse trabalho, pode ser dada continuidade com alguns dos enfoques a seguir:

- Como este trabalho considerou apoios rígidos, (engaste no núcleo e apoioso de esegundo gênero nos pilares externos), o estudo pode ser ampliado para considerar a interação soloestrutura na fundação, que contribui para atenuar oscilações dos edifícios;
- Estudo de novas formas estruturais, como a cônica;
- Variação no posicionamento dos *outriggers*, assim como utilização do sistema em mais pavimentos;

- Variação na altura ou na forma dos *outriggers*;
- Utilização de vigas parede de concreto em lugar das treliças metálicas para o sistema;
- Estudo de ações sísmicas e como o sistema influencia nessas solicitações;
- Estimar o acréscimo no consumo de aço para enrijecer a estrutura sem *outriggers*, e comparar com o acréscimo de material do sistema.

REFERÊNCIAS BIBLIOGRÁFICAS

- ABNT Associação Brasileira de Normas Técnicas. (1980). NBR 6120 Cargas para o cálculo de estruturas de edificações. Rio de Janeiro: ABNT.
- ABNT Associação Brasileira de Normas Técnicas. (1988). NBR 6123 Forças devidas ao vento em edificações. Rio de Janeiro: ABNT.
- ABNT Associação Brasileira de Normas Técnicas. (2008). *NBR 8800 Projeto de estruturas de aço e de estruturas mistas de aço e concreto de edifícios*. Rio de Janeiro: ABNT.
- ABNT Associação Brasileira de Normas Técnicas. (2014). NBR 6118 Projeto de Estruturas de Concreto Procedimento. Rio de Janeiro: ABNT.
- Ali, M. A., & Moon, K. S. (2007). Structural Developments in Tall Buildings: Current Trends and Future Prospects. *Architectural Science Review*(50.3), pp. 205-223.
- Badger, E. (2015). Buildings Are Not Supposed to Move. In: SOM Thinkers, & P. Nobel (Ed.), *The Future of the Skyscraper* (pp. 82-95). Twinsburg, Ohio, USA: Metropolis Books.
- Chaves, J. R. (2009). *Análise dinâmica de Pórticos Contraventados*. Brasília, DF, Brasil: Departamento de Engenharia Civil e Ambiental, Universidade de Brasília.
- Council on Tall Buildings and Urban Habitat. (2019). *CTBUH Height Criteria*. Acesso em 10 de Março de 2019, disponível em Council on Tall Buildings and Urban Habitat: http://ctbuh.org/criteria/
- Hallebrand, E., & Jakobsson, W. (2016). *Structural Design of High-Rise Buildings*. (L. U. Faculty of Engineering LTH, Ed.) Lund, Sweden: Media-Tryck LU.
- Ho, G. W. (March de 2016). The Evolution of Outrigger System in Tall Buildings. *International Journal of High-Rise Buildings*, 5(1), 21-30.
- Jiang, H., Fu, B., Liu, L., & Yin, X. (2014). Study on seismic performance of a super-tall steel-concrete hybrid structure. *The Structural Design of Tall and Special Buildings*(23), pp. 334-349.
- Kang, T. H.-K., Martin, R. D., Park, H.-G., Wilkerson, R., & Youssef, N. (2013). Tall building with steel plate shear walls subject to load reversal. *The Structural Design of Tall and Special Buildings*(22), pp. 500-520.
- Lee, D.-K., Starossek, U., & Shi, S.-M. (June de 2010). Optimized Topology Extraction of Steel-Framed DiaGrid Structure for Tall Buildings. *International Journal of Steel Structures*, 10(2), pp. 157-164.
- Lind, D. (2015). The Form Could Be Reborn. In: S. Thinkers, & P. Nobel (Ed.), *The Future of the Skyscraper* (p. 127). Twinsburg, Ohio, USA: Metropolis Books.
- Moghadam, M. A., Meshkat-Dini, A., & Moghadam, A.-R. S. (2015). Seismic Performance of Steel Tall Buildings With Outrigger System in Near Fault Zones. 7th. International Conference on Seismology & Earthquake Engineering.

- Peterson, I. (2010). *A Diamond-Lattice Exoskeleton*. Acesso em 10 de March de 2019, disponível em The Mathematical Tourist: http://mathtourist.blogspot.com/2010/08/diamond-lattice-exoskeleton.html
- Ribeiro, E. d. (2007). Análise de Torres Metálicas Estaiadas Submetidas à Ação do Vento. Brasília, DF, Brasil.
- Skidmore, Owings & Merrill LLP. (2019). 875 North Michigan Avenue (Formerly John Hancock Center). Acesso em 10 de March de 2019, disponível em SOM: https://www.som.com/projects/875_north_michigan_avenue_formerly_john_hancock_center
- Smith, B. S., & Coull, A. (1991). *Tall Building Structures Analysis and Design*. John Wiley & Sons, Inc.
- Vanderbilt, T. (2015). Never Have People Lived in Such Aerial Splendour. In: S. Thinkers, & P. Nobel (Ed.), *The Future of the Skyscraper* (pp. 24-37). Twinsburg, Ohio, USA: Metropolis Books.
- Vasconcellos, A. L. (2015). Análise de sistema de contraventamento híbrido aço/concreto para edifícios de múltiplos andares. Campinas, SP, Brasil.
- Wikipedia. (2019). 30 St Mary Axe. Acesso em 10 de March de 2019, disponível em Wikipedia: https://en.wikipedia.org/wiki/30_St_Mary_Axe
- Wikipedia. (2019). *Canoa Polinésia*. Acesso em 10 de Março de 2019, disponível em Wikipedia: https://pt.wikipedia.org/wiki/Canoa_polin%C3%A9sia
- Young, K., & Adeli, H. (2014). Fundamental period of irregular concentrically braced steel frame structures. *The Structural Design of Tall and Special Buildings*, 23, pp. 1211-1224.
- Zhou, Y., & Li, H. (2014). Analysis of a high-rise steel structure with viscous damped outriggers. *The Structural Design of Tall and Special Buildings*(23), pp. 963-979.

ANEXO A: MODELAGEM VIRTUAL NO SAP2000

Para se resistir satisfatoriamente às solicitações horizontais em edifícios altos, novos materiais mais resistentes e novos sistemas estruturais vêm sendo utilizados, o que requer novas formas mais complexas de análise de seu comportamento. O SAP2000 é um programa de análise estrutural baseado no método dos elementos finitos que possui diversas ferramentas para modelagem e avaliação do comportamento de sistemas com razoável complexidade. Ribeiro (2007) fez em seu trabalho uma extensa explicação das etapas de um processo de modelagem no programa. Algumas delas são descritas a seguir.

A.1. Definição de materiais utilizados e suas propriedades

O programa possui uma ferramenta na qual é possível definir quais materiais serão trabalhados no modelo e editar suas propriedades. Existe uma biblioteca de materiais carregada no programa, com diferentes tipos padronizados por região, mas pode-se inserir um novo tipo e suas propriedades manualmente. A Figura A.0.1 mostra a janela de inserção desses dados:

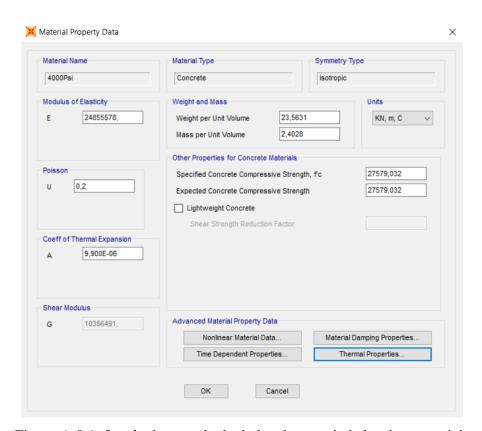


Figura A.0.1: Janela de entrada de dados de propriedades dos materiais

No caso mostrado, é possível ver, entre outros parâmetros, o peso específico do material, utilizado pelo programa no cálculo automático da carga de peso próprio, seu módulo de elasticidade e resistência característica a compressão do concreto.

A.2. Definição da seção transversal

A seguir, são definidas as seções transversais dos elementos a serem utilizados no projeto, que já consideram os materiais utilizados. Novamente, o programa já possui em sua biblioteca várias formas pré-programadas. Ao inserir suas dimensões, suas propriedades geométricas são calculadas de forma automática. Para o caso de uma seção transversal de perfil metálico I, temos a janela mostrada na Figura A.0.2 a seguir

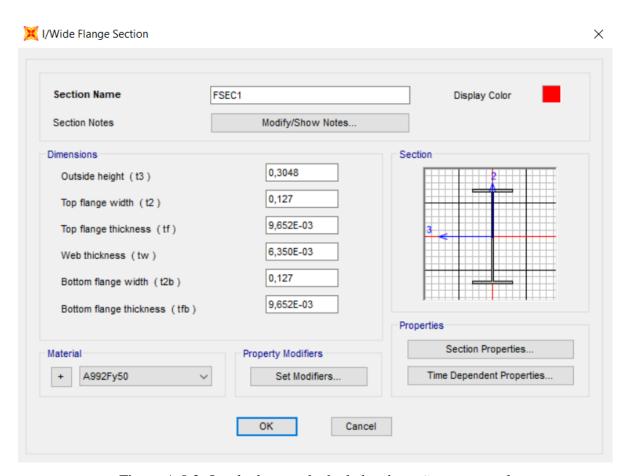


Figura A.O.2: Janela de entrada de dados da seção transversal

Com os materiais e seções definidos, a geometria da estrutura pode ser construída no próprio programa. Alternativamente, é possível importar a geometria modelada em outros programas, como o AutoCAD, e atribuir a cada elemento as propriedades desejadas.

A.3. Análise Estática

Para analisar o comportamento estático da estrutura, são definidos primeiramente os carregamentos atuantes a serem considerados na análise, e suas combinações, por meio da ferramenta mostradas na Figura A.0.3 e na Figura A.0.4.

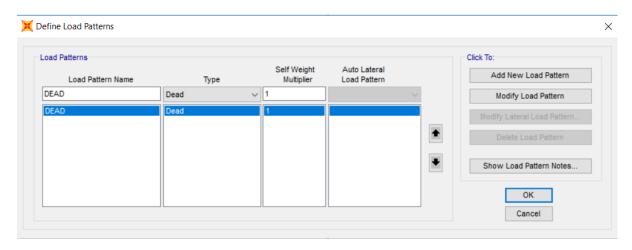


Figura A.0.3: Ferramenta de definição de padrões de carga

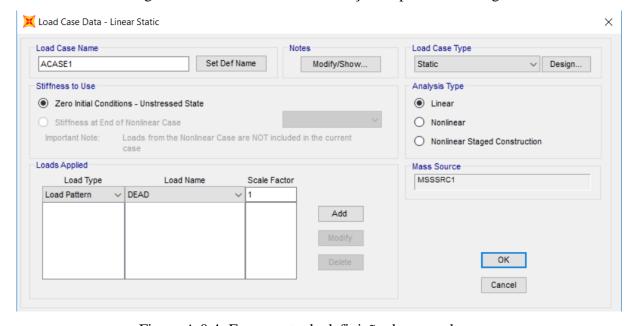


Figura A.0.4: Ferramenta de definição de casos de carga

ANEXO B – PROPRIEDADES GEOMÉTRICAS DOS PERFIS UTILIZADOS

Seção	Altura total (m)	Largura das mesas (m)	Espessura das mesas (m)	Espessura da alma (m)	Área da seção (m²)	Momento de Inércia em X (m ⁴)	Momento de Inércia em Y (m ⁴)
CS 200x39	0,20	0,20	0,0095	0,0063	0,004940	0,000038	0,000013
CS 250x76	0,25	0,25	0,0160	0,0080	0,009744	0,000117	0,000042
CS 300x115	0,30	0,30	0,0190	0,0125	0,014675	0,000244	0,000086
CS 300x149	0,30	0,30	0,0250	0,0160	0,019000	0,000305	0,000113
CS 400x185	0,40	0,40	0,0224	0,0160	0,023603	0,000699	0,000239
CS 450x227	0,45	0,45	0,0250	0,0160	0,028900	0,001103	0,000380
CS 500x263	0,50	0,50	0,0250	0,0190	0,033550	0,001556	0,000521
CS 500x312	0,50	0,50	0,0315	0,0190	0,039803	0,001863	0,000656
CS 500x369	0,50	0,50	0,0375	0,0224	0,047020	0,002153	0,000782
CS 500x378	0,50	0,50	0,0375	0,0250	0,048125	0,002170	0,000782
CS 550x417	0,55	0,55	0,0375	0,0250	0,053125	0,002937	0,001040
CS 600x456	0,60	0,60	0,0375	0,0250	0,058125	0,003866	0,001351
CS 650x496	0,65	0,65	0,0375	0,0250	0,063125	0,004974	0,001717
CS 650x593	0,65	0,65	0,0445	0,0315	0,075522	0,005775	0,002038

ANEXO C – TABELA DE PRÉ-DIMENSIONAMENTO DO MODELO PRISMÁTICO E ESCOLHA DAS SEÇÕES UTILIZADAS

Andar	Carga acumulada por andar (kN)	Carga acumulada por pilar (kN)	Área necessária ao pilar (cm²)	Seção Adotada	Área da seção (cm²)	Acrécsimo acumulado de carga (kN)	Acrécsimo percentual de carga (%)	Acréssimo percentual de area (%)
75	12337.325	385.541	9.290	CS 200x39	49,40	1.54	0.40%	81.19%
74	24674.650	771.083	18.580	CS 200x39	49,40	3.08	0.40%	62.39%
73	37011.975	1156.624	27.870	CS 200x39	49,40	4.62	0.40%	43.58%
72	49349.300	1542.166	37.161	CS 200x39	49,40	6.17	0.40%	24.78%
71	61686.625	1927.707	46.451	CS 200x39	49,40	7.71	0.40%	5.97%
70	74023.950	2313.248	55.741	CS 250x76	97,44	10.75	0.46%	42.77%
69	86361.275	2698.790	65.031	CS 250x76	97,44	13.78	0.51%	33.23%
68	98698.600	3084.331	74.321	CS 250x76	97,44	16.82	0.55%	23.69%
67	111035.925	3469.873	83.611	CS 250x76	97,44	19.86	0.57%	14.16%
66	123373.250	3855.414	92.902	CS 250x76	97,44	22.90	0.59%	4.62%
65	135710.575	4240.955	102.192	CS 300x115	146,75	27.46	0.65%	30.01%
64	148047.900	4626.497	111.482	CS 300x115	146,7	32.01	0.69%	23.64%
63	160385.225	5012.038	120.772	CS 300x115	146,75	36.57	0.73%	17.28%
62	172722.550	5397.580	130.062	CS 300x115	146,75	41.12	0.76%	10.92%
61	185059.875	5783.121	139.352	CS 300x115	146,75	45.68	0.79%	4.55%
60	197397.200	6168.663	148.642	CS 300x149	190,00	51.60	0.84%	21.77%
59	209734.525	6554.204	157.933	CS 300x149	190,00	57.53	0.88%	16.88%
58	222071.850	6939.745	167.223	CS 300x149	190,00	63.46	0.91%	11.99%
57	234409.175	7325.287	176.513	CS 300x149	190,00	69.39	0.95%	7.10%
56	246746.500	7710.828	185.803	CS 300x149	190,00	75.32	0.98%	2.21%
55	259083.825	8096.370	195.093	CS 400x185	236,03	82.68	1.02%	17.33%
54	271421.150	8481.911	204.383	CS 400x185	236,03	90.04	1.06%	13.40%
53	283758.475	8867.452	213.674	CS 400x185	236,03	97.41	1.10%	9.46%
52	296095.800	9252.994	222.964	CS 400x185	236,03	104.77	1.13%	5.52%
51	308433.125	9638.535	232.254	CS 400x185	236,03	112.13	1.16%	1.59%
50	320770.450	10024.077	241.544	CS 400x185	289,00	121.15	1.21%	16.42%
49	333107.775	10409.618	250.834	CS 400x185	289,00	130.17	1.25%	13.21%
48	345445.100	10795.159	260.124	CS 450x227	289,00	139.18	1.29%	9.99%
47	357782.425	11180.701	269.414	CS 450x227	289,00	148.20	1.33%	6.78%
46	370119.750	11566.242	278.705	CS 450x227	289,00	157.22	1.36%	3.56%
45	382457.075	11951.784	287.995	CS 500x263	335,50	167.67	1.40%	14.03%
44	394794.400	12337.325	297.285	CS 500x263	335,50	178.12	1.44%	11.26%
43	407131.725	12722.866	306.575	CS 500x263	335,50	188.57	1.48%	8.49%

Andar	Carga acumulada por andar (kN)	Carga acumulada por pilar (kN)	Área necessária ao pilar (cm²)	Seção Adotada	Área da seção (cm²)	Acrécsimo acumulado de carga (kN)	Acrécsimo percentual de carga (%)	Acréssimo percentual de area (%)
42	419469.050	13108.408	315.865	CS 500x263	335,50	199.02	1.52%	5.71%
41	431806.375	13493.949	325.155	CS 500x263	335,50	209.48	1.55%	2.94%
40	444143.700	13879.491	334.446	CS 500x312	398,03	221.89	1.60%	15.97%
39	456481.025	14265.032	343.736	CS 500x312	398,03	234.31	1.64%	13.63%
38	468818.350	14650.573	353.026	CS 500x312	398,03	246.73	1.68%	11.30%
37	481155.675	15036.115	362.316	CS 500x312	398,03	259.15	1.72%	8.97%
36	493493.000	15421.656	371.606	CS 500x312	398,03	271.56	1.76%	6.63%
35	505830.325	15807.198	380.896	CS 500x369	470,20	286.23	1.81%	18.96%
34	518167.650	16192.739	390.186	CS 500x369	470,20	300.89	1.86%	16.98%
33	530504.975	16578.280	399.477	CS 500x369	470,20	315.56	1.90%	15.00%
32	542842.300	16963.822	408.767	CS 500x369	470,20	330.22	1.95%	13.03%
31	555179.625	17349.363	418.057	CS 500x369	470,20	344.88	1.99%	11.05%
30	567516.950	17734.905	427.347	CS 500x378	481,25	359.89	2.03%	11.15%
29	579854.275	18120.446	436.637	CS 500x378	481,25	374.90	2.07%	9.22%
28	592191.600	18505.988	445.927	CS 500x378	481,25	389.91	2.11%	7.29%
27	604528.925	18891.529	455.218	CS 500x378	481,25	404.91	2.14%	5.36%
26	616866.250	19277.070	464.508	CS 500x378	481,25	419.92	2.18%	3.43%
25	629203.575	19662.612	473.798	CS 550x417	531,25	436.49	2.22%	10.77%
24	641540.900	20048.153	483.088	CS 550x417	531,25	453.06	2.26%	9.02%
23	653878.225	20433.695	492.378	CS 550x417	531,25	469.62	2.30%	7.27%
22	666215.550	20819.236	501.668	CS 550x417	531,25	486.19	2.34%	5.52%
21	678552.875	21204.777	510.958	CS 550x417	531,25	502.76	2.37%	3.77%
20	690890.200	21590.319	520.249	CS 600x546	581,25	520.88	2.41%	10.46%
19	703227.525	21975.860	529.539	CS 600x546	581,25	539.01	2.45%	8.86%
18	715564.850	22361.402	538.829	CS 600x546	581,25	557.14	2.49%	7.26%
17	727902.175	22746.943	548.119	CS 600x546	581,25	575.27	2.53%	5.66%
16	740239.500	23132.484	557.409	CS 600x546	581,25	593.39	2.57%	4.06%
15	752576.825	23518.026	566.699	CS 650x496	631,25	613.08	2.61%	10.19%
14	764914.150	23903.567	575.990	CS 650x496	631,25	632.77	2.65%	8.72%
13	777251.475	24289.109	585.280	CS 650x496	631,25	652.45	2.69%	7.25%
12	789588.800	24674.650	594.570	CS 650x496	631,25	672.14	2.72%	5.77%
11	801926.125	25060.191	603.860	CS 650x496	631,25	691.83	2.76%	4.30%
10	814263.450	25445.733	613.150	CS 650x593	755,23	715.38	2.81%	18.79%
9	826600.775	25831.274	622.440	CS 650x593	755,23	738.94	2.86%	17.56%
8	838938.100	26216.816	631.730	CS 650x593	755,23	762.50	2.91%	16.33%
7	851275.425	26602.357	641.021	CS 650x593	755,23	786.05	2.95%	15.10%

Andar	Carga acumulada por andar (kN)	Carga acumulada por pilar (kN)	Área necessária ao pilar (cm²)	Seção Adotada	Área da seção (cm²)	Acrécsimo acumulado de carga (kN)	Acrécsimo percentual de carga (%)	Acréssimo percentual de area (%)
6	863612.750	26987.898	650.311	CS 650x593	755,23	809.61	3.00%	13.87%
5	875950.075	27373.440	659.601	CS 650x593	755,23	833.16	3.04%	12.64%
4	888287.400	27758.981	668.891	CS 650x593	755,23	856.72	3.09%	11.41%
3	900624.725	28144.523	678.181	CS 650x593	755,23	880.28	3.13%	10.17%
2	912962.050	28530.064	687.471	CS 650x593	755,23	903.83	3.17%	8.94%
1	925299.375	28915.605	696.762	CS 650x593	755,23	927.39	3.21%	7.71%

ANEXO D – TABELA DE CÁLCULO DAS FORÇAS DE ARRASTO ESTÁTICAS NOS EDIFÍCIOS PRISMÁTICOS E CILÍNDRICOS

					P	risma	Ci	lindro
Andar	Altura Z _i (m)	Fator S2	V _k (m/s)	q (N/m²)	Força de arrasto (kN)	Força distribuída linearmente (kN/m)	Força de arrasto (kN)	Força distribuída linearmente (kN/m)
1	4	0.4118	14.4128	127.3372	36.9278	0.7386	22.5629	0.4513
2	8	0.4830	16.9038	175.1576	50.7957	1.0159	31.0362	0.6207
3	12	0.5302	18.5560	211.0722	61.2109	1.2242	37.3999	0.7480
4	16	0.5664	19.8254	240.9366	69.8716	1.3974	42.6916	0.8538
5	20	0.5963	20.8694	266.9817	77.4247	1.5485	47.3065	0.9461
6	24	0.6218	21.7632	290.3386	84.1982	1.6840	51.4451	1.0289
7	28	0.6442	22.5486	311.6738	90.3854	1.8077	55.2255	1.1045
8	32	0.6643	23.2519	331.4184	96.1113	1.9222	58.7240	1.1745
9	36	0.6826	23.8904	349.8701	101.4623	2.0292	61.9935	1.2399
10	40	0.6993	24.4764	367.2445	106.5009	2.1300	65.0720	1.3014
11	44	0.7148	25.0189	383.7036	111.2740	2.2255	67.9884	1.3598
12	48	0.7293	25.5246	399.3729	115.8181	2.3164	70.7649	1.4153
13	52	0.7428	25.9989	414.3518	120.1620	2.4032	73.4190	1.4684
14	56	0.7556	26.4458	428.7204	124.3289	2.4866	75.9650	1.5193
15	60	0.7677	26.8688	442.5448	128.3380	2.5668	78.4145	1.5683
16	64	0.7792	27.2706	455.8799	132.2052	2.6441	80.7774	1.6155
17	68	0.7901	27.6535	468.7721	135.9439	2.7189	83.0617	1.6612
18	72	0.8006	28.0195	481.2609	139.5657	2.7913	85.2746	1.7055
19	76	0.8106	28.3701	493.3804	143.0803	2.8616	87.4221	1.7484
20	80	0.8202	28.7068	505.1601	146.4964	2.9299	89.5093	1.7902
21	84	0.8294	29.0307	516.6258	149.8215	2.9964	91.5409	1.8308
22	88	0.8384	29.3430	527.8004	153.0621	3.0612	93.5209	1.8704
23	92	0.8470	29.6445	538.7038	156.2241	3.1245	95.4529	1.9091
24	96	0.8553	29.9362	549.3542	159.3127	3.1863	97.3401	1.9468
25	100	0.8634	30.2185	559.7675	162.3326	3.2467	99.1852	1.9837
26	104	0.8712	30.4924	569.9582	165.2879	3.3058	100.9909	2.0198
27	108	0.8788	30.7582	579.9393	168.1824	3.3636	102.7595	2.0552
28	112	0.8862	31.0166	589.7228	171.0196	3.4204	104.4930	2.0899
29	116	0.8934	31.2679	599.3194	173.8026	3.4761	106.1934	2.1239
30	120	0.9004	31.5127	608.7389	176.5343	3.5307	107.8624	2.1572
31	124	0.9072	31.7512	617.9902	179.2172	3.5843	109.5017	2.1900
32	128	0.9138	31.9839	627.0819	181.8537	3.6371	111.1126	2.2223

					Pi	risma	Ci	lindro
Andar	Altura Z _i (m)	Fator S2	V _k (m/s)	q (N/m²)	Força de arrasto (kN)	Força distribuída linearmente (kN/m)	Força de arrasto (kN)	Força distribuída linearmente (kN/m)
33	132	0.9203	32.2111	636.0213	184.4462	3.6889	112.6966	2.2539
34	136	0.9267	32.4330	644.8156	186.9965	3.7399	114.2549	2.2851
35	140	0.9329	32.6500	653.4713	189.5067	3.7901	115.7886	2.3158
36	144	0.9389	32.8622	661.9945	191.9784	3.8396	117.2988	2.3460
37	148	0.9449	33.0700	670.3908	194.4133	3.8883	118.7865	2.3757
38	152	0.9507	33.2734	678.6654	196.8130	3.9363	120.2527	2.4051
39	156	0.9564	33.4728	686.8232	199.1787	3.9836	121.6982	2.4340
40	160	0.9620	33.6683	694.8688	201.5120	4.0302	123.1238	2.4625
41	164	0.9674	33.8601	702.8066	203.8139	4.0763	124.5303	2.4906
42	168	0.9728	34.0482	710.6404	206.0857	4.1217	125.9184	2.5184
43	172	0.9781	34.2330	718.3742	208.3285	4.1666	127.2887	2.5458
44	176	0.9833	34.4145	726.0115	210.5433	4.2109	128.6420	2.5728
45	180	0.9884	34.5928	733.5555	212.7311	4.2546	129.9787	2.5996
46	184	0.9934	34.7682	741.0096	214.8928	4.2979	131.2995	2.6260
47	188	0.9983	34.9406	748.3767	217.0292	4.3406	132.6049	2.6521
48	192	1.0031	35.1102	755.6596	219.1413	4.3828	133.8953	2.6779
49	196	1.0079	35.2771	762.8610	221.2297	4.4246	135.1713	2.7034
50	200	1.0126	35.4414	769.9835	223.2952	4.4659	136.4334	2.7287
51	204	1.0172	35.6032	777.0295	225.3386	4.5068	137.6819	2.7536
52	208	1.0218	35.7625	784.0013	227.3604	4.5472	138.9172	2.7783
53	212	1.0263	35.9195	790.9010	229.3613	4.5872	140.1398	2.8028
54	216	1.0307	36.0743	797.7308	231.3419	4.6268	141.3499	2.8270
55	220	1.0351	36.2269	804.4926	233.3029	4.6661	142.5481	2.8510
56	224	1.0394	36.3773	811.1884	235.2446	4.7049	143.7345	2.8747
57	228	1.0436	36.5257	817.8199	237.1678	4.7434	144.9095	2.8982
58	232	1.0478	36.6721	824.3889	239.0728	4.7815	146.0735	2.9215
59	236	1.0519	36.8166	830.8970	240.9601	4.8192	147.2266	2.9445
60	240	1.0560	36.9592	837.3457	242.8303	4.8566	148.3693	2.9674
61	244	1.0600	37.0999	843.7368	244.6837	4.8937	149.5017	2.9900
62	248	1.0640	37.2390	850.0714	246.5207	4.9304	150.6242	3.0125
63	252	1.0679	37.3762	856.3512	248.3418	4.9668	151.7369	3.0347
64	256	1.0718	37.5119	862.5773	250.1474	5.0029	152.8401	3.0568
65	260	1.0756	37.6459	868.7511	251.9378	5.0388	153.9340	3.0787
66	264	1.0794	37.7783	874.8739	253.7134	5.0743	155.0189	3.1004
67	268	1.0831	37.9092	880.9467	255.4746	5.1095	156.0950	3.1219

					P	risma	Ci	lindro
Andar	Altura Z _i (m)	Fator S2	V _k (m/s)	q (N/m²)	Força de arrasto (kN)	Força distribuída linearmente (kN/m)	Força de arrasto (kN)	Força distribuída linearmente (kN/m)
68	272	1.0868	38.0386	886.9708	257.2215	5.1444	157.1624	3.1432
69	276	1.0905	38.1665	892.9473	258.9547	5.1791	158.2213	3.1644
70	280	1.0941	38.2930	898.8772	260.6744	5.2135	159.2720	3.1854
71	284	1.0977	38.4182	904.7614	262.3808	5.2476	160.3147	3.2063
72	288	1.1012	38.5420	910.6011	264.0743	5.2815	161.3494	3.2270
73	292	1.1047	38.6644	916.3972	265.7552	5.3151	162.3764	3.2475
74	296	1.1082	38.7856	922.1506	267.4237	5.3485	163.3959	3.2679
75	300	1.1116	38.9055	927.8621	269.0800	5.3816	164.4079	3.2882

ANEXO E – TABELAS DE CÁLCULO DAS PARCELAS ESTÁTICA E DINÂMICA PARA CADA MODO DE VIBRAÇÃO DOS MODELOS

E.1. Modelo A0

	i	z _i (m)	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X}_{_{1}}$	$\widehat{\mathbf{X}}_{1}$	Xi (kN)
	1	20	5.00E-04	0.1134	0.00006	1.55E-07	178094.940	359.462	55.33	414.79
	2	40	0.001	0.1330	0.00013	6.21E-07	178094.940	494.455	110.66	605.12
	3	60	0.0014	0.1460	0.00020	1.22E-06	178094.940	595.839	154.93	750.77
Primeiro	4	80	0.0019	0.1560	0.00030	2.24E-06	178094.940	680.144	210.26	890.41
modo de	5	100	0.0023	0.1642	0.00038	3.29E-06	178094.940	753.667	254.53	1008.20
vibração	6	120	0.0027	0.1712	0.00046	4.53E-06	178094.940	819.602	298.79	1118.40
F: 0,59Hz	7	140	0.0031	0.1774	0.00055	5.97E-06	178094.940	879.829	343.06	1222.89
m 4.60	8	160	0.0035	0.1829	0.00064	7.61E-06	178094.940	935.566	387.33	1322.89
T: 1.68s	9	180	0.0038	0.1879	0.00071	8.97E-06	178094.940	987.654	420.53	1408.18
ξ: 0,8	10	200	0.004	0.1925	0.00077	9.94E-06	178094.940	1036.700	442.66	1479.36
	11	220	0.0042	0.1968	0.00083	1.10E-05	178094.940	1083.163	464.79	1547.95
	12	240	0.0044	0.2008	0.00088	1.20E-05	178094.940	1127.396	486.92	1614.32
	13	260	0.0045	0.2045	0.00092	1.26E-05	178094.940	1169.680	497.99	1667.67
	14	280	0.0046	0.2080	0.00096	1.31E-05	178094.940	1210.242	509.06	1719.30
	15	300	0.0046	0.2114	0.00097	1.31E-05	178094.940	1249.267	509.06	1758.32
	i	z _i (m)	$x_i(m)$	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X}_{_{1}}$	\widehat{X}_{1}	Xi (kN)
	1	20	1.2E-03	0.1134	0.00014	8.95E-07	19420.62	359.462	14.48	373.943
	2	40	2.3E-03	0.1330	0.00031	3.29E-06	19420.62	494.455	27.76	522.211
	3	60	3.2E-03	0.1460	0.00047	6.36E-06	19420.62	595.839	38.62	634.455
Segundo	4	80	3.7E-03	0.1560	0.00058	8.51E-06	19420.62	680.144	44.65	724.794
modo de	5	100	3.8E-03	0.1642	0.00062	8.97E-06	19420.62	753.667	45.86	799.524
vibração	6			0.4=40	0.000.62		10100 10	819.602	43.44	863.045
		120	3.6E-03	0.1712	0.00062	8.05E-06	19420.62	019.002	43.44	803.043
F: 0,62Hz	7	120 140	3.6E-03 3.0E-03	0.1712	0.00062	8.05E-06 5.59E-06	19420.62 19420.62	879.829	36.20	916.032
F: 0,62Hz	7									
F: 0,62Hz T: 1.60s		140	3.0E-03	0.1774	0.00053	5.59E-06	19420.62	879.829	36.20	916.032
T: 1.60s	8	140 160	3.0E-03 2.1E-03	0.1774 0.1829	0.00053 0.00038	5.59E-06 2.74E-06	19420.62 19420.62	879.829 935.566	36.20 25.34	916.032 960.908
	8	140 160 180	3.0E-03 2.1E-03 1.0E-03	0.1774 0.1829 0.1879	0.00053 0.00038 0.00019	5.59E-06 2.74E-06 6.21E-07	19420.62 19420.62 19420.62	879.829 935.566 987.654	36.20 25.34 12.07	916.032 960.908 999.722
T: 1.60s	8 9 10	140 160 180 200	3.0E-03 2.1E-03 1.0E-03 -2.0E-04	0.1774 0.1829 0.1879 0.1925	0.00053 0.00038 0.00019 -0.00004	5.59E-06 2.74E-06 6.21E-07 2.49E-08	19420.62 19420.62 19420.62 19420.62	879.829 935.566 987.654 1036.700	36.20 25.34 12.07 -2.41	916.032 960.908 999.722 1034.29
T: 1.60s	8 9 10 11	140 160 180 200 220	3.0E-03 2.1E-03 1.0E-03 -2.0E-04 -1.4E-03	0.1774 0.1829 0.1879 0.1925 0.1968	0.00053 0.00038 0.00019 -0.00004 -0.00028	5.59E-06 2.74E-06 6.21E-07 2.49E-08 1.22E-06	19420.62 19420.62 19420.62 19420.62 19420.62	879.829 935.566 987.654 1036.700 1083.163	36.20 25.34 12.07 -2.41 -16.89	916.032 960.908 999.722 1034.29 1066.27
T: 1.60s	8 9 10 11 12	140 160 180 200 220 240	3.0E-03 2.1E-03 1.0E-03 -2.0E-04 -1.4E-03 -2.4E-03	0.1774 0.1829 0.1879 0.1925 0.1968 0.2008	0.00053 0.00038 0.00019 -0.00004 -0.00028 -0.00048	5.59E-06 2.74E-06 6.21E-07 2.49E-08 1.22E-06 1.20E-05	19420.62 19420.62 19420.62 19420.62 19420.62	879.829 935.566 987.654 1036.700 1083.163 1127.396	36.20 25.34 12.07 -2.41 -16.89 -28.96	916.032 960.908 999.722 1034.29 1066.27 1098.43

	i	z _i (m)	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$ar{\mathbf{X_i}}$	$\widehat{X_1}$	Xi (kN)
	1	20	1.50E-03	0.1134	0.00017	1.40E-06	34982.73	359.462	32.61	392.07
	2	40	2.50E-03	0.1330	0.00033	3.88E-06	34982.73	494.455	54.34	548.80
	3	60	2.60E-03	0.1460	0.00038	4.20E-06	34982.73	595.839	56.52	652.36
Terceiro	4	80	2.00E-03	0.1560	0.00031	2.49E-06	34982.73	680.144	43.48	723.62
modo de	5	100	8.00E-04	0.1642	0.00013	3.98E-07	34982.73	753.667	17.39	771.06
vibração	6	120	-6.00E-04	0.1712	-0.00010	2.24E-07	34982.73	819.602	-13.04	806.56
F: 2,21Hz	7	140	-1.80E-03	0.1774	-0.00032	2.01E-06	34982.73	879.829	-39.13	840.70
m 0.45	8	160	-2.60E-03	0.1829	-0.00048	4.20E-06	34982.73	935.566	-56.52	879.05
T: 0,45s	9	180	-2.60E-03	0.1879	-0.00049	4.20E-06	34982.73	987.654	-56.52	931.14
ξ: 0,6	10	200	-2.10E-03	0.1925	-0.00040	2.74E-06	34982.73	1036.700	-45.65	991.05
	11	220	-1.00E-03	0.1968	-0.00020	6.21E-07	34982.73	1083.163	-21.74	1061.43
	12	240	3.00E-04	0.2008	0.00006	5.59E-08	34982.73	1127.396	6.52	1133.92
	13	260	1.50E-03	0.2045	0.00031	1.40E-06	34982.73	1169.680	32.61	1202.29
	14	280	2.40E-03	0.2080	0.00050	3.58E-06	34982.73	1210.242	52.17	1262.41
	15	300	2.70E-03	0.2114	0.00057	4.53E-06	34982.73	1249.267	58.69	1307.96
	i	$\mathbf{z}_{i}\left(\mathbf{m}\right)$	$x_i(m)$	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{\mathbf{X}_{1}}$	Xi (kN)
	1	20	-1.40E-03	0.1134	-0.00016	1.22E-06	2179.77	359.462	-1.90	357.57
	2	40	-1.70E-03	0.1330	-0.00023	1.80E-06	2179.77	494.455	-2.30	492.15
	3	60	-8.00E-04	0.1460	-0.00012	3.98E-07	2179.77	595.839	-1.08	594.76
	4	80	6.00E-04	0.1560	0.00009	2.24E-07	2179.77	680.144	0.81	680.96
Quarto modo de	5	100	1.60E-03	0.1642	0.00026	1.59E-06	2179.77	753.667	2.17	755.83
vibração	6	120	1.70E-03	0.1712	0.00029	1.80E-06	2179.77	819.602	2.30	821.90
F: 2,49Hz	7	140	9.00E-04	0.1774	0.00016	5.03E-07	2179.77	879.829	1.22	881.05
1.2,47112	8	160	-4.00E-04	0.1829	-0.00007	9.94E-08	2179.77	935.566	-0.54	935.02
T: 0,40s	9	180	-1.40E-03	0.1879	-0.00026	1.22E-06	2179.77	987.654	-1.90	985.76
ξ: 0,6	10	200	-1.80E-03	0.1925	-0.00035	2.01E-06	2179.77	1036.700	-2.44	1034.26
5. 0,0	11	220	-1.50E-03	0.1968	-0.00030	1.40E-06	2179.77	1083.163	-2.03	1081.13
	12	240	-5.00E-04	0.2008	-0.00010	1.55E-07	2179.77	1127.396	-0.68	1126.72
	13	260	6.00E-04	0.2045	0.00012	2.24E-07	2179.77	1169.680	0.81	1170.49
	14	280	1.40E-03	0.2080	0.00029	1.22E-06	2179.77	1210.242	1.90	1212.14
	15	300	1.80E-03	0.2114	0.00038	2.01E-06	2179.77	1249.267	2.44	1251.70

	i	z _i (m)	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{\mathbf{X}}_{\mathbf{i}}$	Xi (kN)
	1	20	7.35E-10	0.1134	8.33E-11	3.36E-19	1.28E+11	359.462	58.68	418.14
	2	40	3.35E-09	0.1330	4.46E-10	6.99E-18	1.28E+11	494.455	267.74	762.19
	3	60	9.99E-10	0.1460	1.46E-10	6.20E-19	1.28E+11	595.839	79.74	675.58
	4	80	1.53E-09	0.1560	2.38E-10	1.45E-18	1.28E+11	680.144	121.81	801.96
Quinto modo de	5	100	1.40E-09	0.1642	2.30E-10	1.22E-18	1.28E+11	753.667	111.84	865.50
vibração	6	120	-9.37E-10	0.1712	-1.60E-10	5.45E-19	1.28E+11	819.602	-74.77	744.83
F: 2,59Hz	7	140	1.05E-09	0.1774	1.86E-10	6.86E-19	1.28E+11	879.829	83.90	963.73
T: 0,38s	8	160	-1.44E-09	0.1829	-2.64E-10	1.29E-18	1.28E+11	935.566	-115.13	820.43
1.0,368	9	180	1.53E-10	0.1879	2.88E-11	1.46E-20	1.28E+11	987.654	12.23	999.88
ξ: 0,6	10	200	-2.11E-10	0.1925	-4.07E-11	2.77E-20	1.28E+11	1036.700	-16.87	1019.83
	11	220	-9.02E-10	0.1968	-1.77E-10	5.05E-19	1.28E+11	1083.163	-72.00	1011.17
	12	240	9.67E-10	0.2008	1.94E-10	5.81E-19	1.28E+11	1127.396	77.18	1204.57
	13	260	2.01E-09	0.2045	4.10E-10	2.50E-18	1.28E+11	1169.680	160.05	1329.73
	14	280	6.71E-10	0.2080	1.40E-10	2.80E-19	1.28E+11	1210.242	53.57	1263.81
	15	300	-4.69E-10	0.2114	-9.91E-11	1.37E-19	1.28E+11	1249.267	-37.42	1211.84
	<u>.</u>	$\mathbf{z}_{\mathbf{i}}$. 2	_		~	
	i	(m)	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F}_{\mathbf{H}}$	$\overline{X_1}$	$\widehat{X_1}$	Xi (kN)
	1		-1.10E-03	β _i 0.1134	$\beta_{i}x_{i}$ -0.00012	ψ _i x _i ² 7.52E-07	-26684.68	X ₁ 359.462	X ₁ 18.24	Xi (kN) 357.57
		(m)								
	1	(m) 20	-1.10E-03	0.1134	-0.00012	7.52E-07	-26684.68	359.462	18.24	357.57
	1 2	(m) 20 40	-1.10E-03 -7.00E-04	0.1134 0.1330	-0.00012 -0.00009	7.52E-07 3.04E-07	-26684.68 -26684.68	359.462 494.455	18.24 11.61	357.57 492.15
Sexto modo de	1 2 3	(m) 20 40 60	-1.10E-03 -7.00E-04 7.00E-04	0.1134 0.1330 0.1460	-0.00012 -0.00009 0.00010	7.52E-07 3.04E-07 3.04E-07	-26684.68 -26684.68 -26684.68	359.462 494.455 595.839	18.24 11.61 -11.61	357.57 492.15 594.76
Sexto modo de vibração	1 2 3 4	(m) 20 40 60 80	-1.10E-03 -7.00E-04 7.00E-04 1.40E-03	0.1134 0.1330 0.1460 0.1560	-0.00012 -0.00009 0.00010 0.00022	7.52E-07 3.04E-07 3.04E-07 1.22E-06	-26684.68 -26684.68 -26684.68	359.462 494.455 595.839 680.144	18.24 11.61 -11.61 -23.21	357.57 492.15 594.76 680.96
modo de	1 2 3 4 5	(m) 20 40 60 80 100	-1.10E-03 -7.00E-04 7.00E-04 1.40E-03 6.00E-04	0.1134 0.1330 0.1460 0.1560 0.1642	-0.00012 -0.00009 0.00010 0.00022 0.00010	7.52E-07 3.04E-07 3.04E-07 1.22E-06 2.24E-07	-26684.68 -26684.68 -26684.68 -26684.68 -26684.68	359.462 494.455 595.839 680.144 753.667	18.24 11.61 -11.61 -23.21 -9.95	357.57 492.15 594.76 680.96 755.83
modo de vibração F: 2,62Hz	1 2 3 4 5 6	(m) 20 40 60 80 100 120	-1.10E-03 -7.00E-04 7.00E-04 1.40E-03 6.00E-04 -8.00E-04	0.1134 0.1330 0.1460 0.1560 0.1642 0.1712	-0.00012 -0.00009 0.00010 0.00022 0.00010 -0.00014	7.52E-07 3.04E-07 3.04E-07 1.22E-06 2.24E-07 3.98E-07	-26684.68 -26684.68 -26684.68 -26684.68 -26684.68	359.462 494.455 595.839 680.144 753.667 819.602	18.24 11.61 -11.61 -23.21 -9.95 13.27	357.57 492.15 594.76 680.96 755.83 821.90
modo de vibração	1 2 3 4 5 6	(m) 20 40 60 80 100 120	-1.10E-03 -7.00E-04 7.00E-04 1.40E-03 6.00E-04 -8.00E-04 -1.40E-03	0.1134 0.1330 0.1460 0.1560 0.1642 0.1712 0.1774	-0.00012 -0.00009 0.00010 0.00022 0.00010 -0.00014 -0.00025	7.52E-07 3.04E-07 3.04E-07 1.22E-06 2.24E-07 3.98E-07 1.22E-06	-26684.68 -26684.68 -26684.68 -26684.68 -26684.68 -26684.68	359.462 494.455 595.839 680.144 753.667 819.602 879.829	18.24 11.61 -11.61 -23.21 -9.95 13.27 23.21	357.57 492.15 594.76 680.96 755.83 821.90 881.05
modo de vibração F: 2,62Hz	1 2 3 4 5 6 7 8	(m) 20 40 60 80 100 120 140 160	-1.10E-03 -7.00E-04 7.00E-04 1.40E-03 6.00E-04 -8.00E-04 -1.40E-03 -9.00E-04	0.1134 0.1330 0.1460 0.1560 0.1642 0.1712 0.1774 0.1829	-0.00012 -0.00009 0.00010 0.00022 0.00010 -0.00014 -0.00025 -0.00016	7.52E-07 3.04E-07 3.04E-07 1.22E-06 2.24E-07 3.98E-07 1.22E-06 5.03E-07	-26684.68 -26684.68 -26684.68 -26684.68 -26684.68 -26684.68 -26684.68	359.462 494.455 595.839 680.144 753.667 819.602 879.829 935.566	18.24 11.61 -11.61 -23.21 -9.95 13.27 23.21 14.92	357.57 492.15 594.76 680.96 755.83 821.90 881.05 935.02
modo de vibração F: 2,62Hz T: 0,38s	1 2 3 4 5 6 7 8	(m) 20 40 60 80 100 120 140 160 180	-1.10E-03 -7.00E-04 7.00E-04 1.40E-03 6.00E-04 -8.00E-04 -1.40E-03 -9.00E-04 3.00E-04	0.1134 0.1330 0.1460 0.1560 0.1642 0.1712 0.1774 0.1829 0.1879	-0.00012 -0.00009 0.00010 0.00022 0.00010 -0.00014 -0.00025 -0.00016 0.00006	7.52E-07 3.04E-07 3.04E-07 1.22E-06 2.24E-07 3.98E-07 1.22E-06 5.03E-07 5.59E-08	-26684.68 -26684.68 -26684.68 -26684.68 -26684.68 -26684.68 -26684.68 -26684.68	359.462 494.455 595.839 680.144 753.667 819.602 879.829 935.566 987.654	18.24 11.61 -11.61 -23.21 -9.95 13.27 23.21 14.92 -4.97	357.57 492.15 594.76 680.96 755.83 821.90 881.05 935.02
modo de vibração F: 2,62Hz T: 0,38s	1 2 3 4 5 6 7 8 9	(m) 20 40 60 80 100 120 140 160 180 200	-1.10E-03 -7.00E-04 7.00E-04 1.40E-03 6.00E-04 -8.00E-04 -1.40E-03 -9.00E-04 3.00E-04 1.20E-03	0.1134 0.1330 0.1460 0.1560 0.1642 0.1712 0.1774 0.1829 0.1879 0.1925	-0.00012 -0.00009 0.00010 0.00022 0.00010 -0.00014 -0.00025 -0.00016 0.00006 0.00023	7.52E-07 3.04E-07 3.04E-07 1.22E-06 2.24E-07 3.98E-07 1.22E-06 5.03E-07 5.59E-08	-26684.68 -26684.68 -26684.68 -26684.68 -26684.68 -26684.68 -26684.68 -26684.68 -26684.68	359.462 494.455 595.839 680.144 753.667 819.602 879.829 935.566 987.654 1036.700	18.24 11.61 -11.61 -23.21 -9.95 13.27 23.21 14.92 -4.97 -19.90	357.57 492.15 594.76 680.96 755.83 821.90 881.05 935.02 985.76 1034.26
modo de vibração F: 2,62Hz T: 0,38s	1 2 3 4 5 6 7 8 9	(m) 20 40 60 80 100 120 140 160 200 220	-1.10E-03 -7.00E-04 7.00E-04 1.40E-03 6.00E-04 -8.00E-04 -1.40E-03 -9.00E-04 3.00E-04 1.20E-03 1.30E-03	0.1134 0.1330 0.1460 0.1560 0.1642 0.1712 0.1774 0.1829 0.1879 0.1925 0.1968	-0.00012 -0.00009 0.00010 0.00022 0.00010 -0.00014 -0.00025 -0.00016 0.00006 0.00023	7.52E-07 3.04E-07 3.04E-07 1.22E-06 2.24E-07 3.98E-07 1.22E-06 5.03E-07 5.59E-08 8.95E-07 1.05E-06	-26684.68 -26684.68 -26684.68 -26684.68 -26684.68 -26684.68 -26684.68 -26684.68 -26684.68 -26684.68	359.462 494.455 595.839 680.144 753.667 819.602 879.829 935.566 987.654 1036.700 1083.163	18.24 11.61 -11.61 -23.21 -9.95 13.27 23.21 14.92 -4.97 -19.90 -21.56	357.57 492.15 594.76 680.96 755.83 821.90 881.05 935.02 985.76 1034.26 1081.13
modo de vibração F: 2,62Hz T: 0,38s	1 2 3 4 5 6 7 8 9 10 11	(m) 20 40 60 80 100 120 140 160 200 220 240	-1.10E-03 -7.00E-04 7.00E-04 1.40E-03 6.00E-04 -1.40E-03 -9.00E-04 1.20E-03 1.30E-03 8.00E-04	0.1134 0.1330 0.1460 0.1560 0.1642 0.1712 0.1774 0.1829 0.1879 0.1925 0.1968 0.2008	-0.00012 -0.00009 0.00010 0.00022 0.00010 -0.00014 -0.00025 -0.00016 0.00023 0.00026 0.00016	7.52E-07 3.04E-07 3.04E-07 1.22E-06 2.24E-07 3.98E-07 1.22E-06 5.03E-07 5.59E-08 8.95E-07 1.05E-06 3.98E-07	-26684.68 -26684.68 -26684.68 -26684.68 -26684.68 -26684.68 -26684.68 -26684.68 -26684.68 -26684.68 -26684.68	359.462 494.455 595.839 680.144 753.667 819.602 879.829 935.566 987.654 1036.700 1083.163 1127.396	18.24 11.61 -11.61 -23.21 -9.95 13.27 23.21 14.92 -4.97 -19.90 -21.56 -13.27	357.57 492.15 594.76 680.96 755.83 821.90 881.05 935.02 985.76 1034.26 1081.13 1126.72

	i	z _i (m)	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	F _H	$\overline{X_1}$	$\widehat{X_1}$	Xi (kN)
	1	20	-2.89E-09	0.1134	-3.27E-10	5.18E-18	-2.95E+10	359.462	53.03	412.49
	2	40	-6.73E-09	0.1330	-8.94E-10	2.81E-17	-2.95E+10	494.455	123.46	617.92
	3	60	-4.29E-09	0.1460	-6.26E-10	1.14E-17	-2.95E+10	595.839	78.72	674.56
Sétimo	4	80	-9.80E-09	0.1560	-1.53E-09	5.97E-17	-2.95E+10	680.144	179.97	860.11
modo de	5	100	-1.90E-09	0.1642	-3.11E-10	2.23E-18	-2.95E+10	753.667	34.81	788.48
vibração	6	120	-9.36E-09	0.1712	-1.60E-09	5.45E-17	-2.95E+10	819.602	171.91	991.51
F: 2,67Hz	7	140	1.09E-09	0.1774	1.93E-10	7.36E-19	-2.95E+10	879.829	-19.98	859.84
m 0.25	8	160	-6.41E-09	0.1829	-1.17E-09	2.55E-17	-2.95E+10	935.566	117.69	1,053.25
T: 0,37s	9	180	2.74E-09	0.1879	5.15E-10	4.66E-18	-2.95E+10	987.654	-50.30	937.36
ξ: 0,6	10	200	-1.72E-09	0.1925	-3.31E-10	1.84E-18	-2.95E+10	1036.700	31.57	1,068.27
	11	220	3.78E-09	0.1968	7.44E-10	8.88E-18	-2.95E+10	1083.163	-69.40	1,013.77
	12	240	-2.50E-09	0.2008	-5.02E-10	3.88E-18	-2.95E+10	1127.396	45.89	1,173.29
	13	260	5.19E-09	0.2045	1.06E-09	1.67E-17	-2.95E+10	1169.680	-95.22	1,074.46
	14	280	3.85E-09	0.2080	8.02E-10	9.22E-18	-2.95E+10	1210.242	-70.73	1,139.51
	15	300	-1.30E-09	0.2114	-2.74E-10	1.04E-18	-2.95E+10	1249.267	23.81	1,273.07
	i	$\mathbf{z_{i}}\left(\mathbf{m}\right)$	$x_i(m)$	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{\mathbf{X}_{1}}$	Xi (kN)
	1	20	-7.85E-04	0.1134	-8.90E-05	3.83E-07	16561.33	359.462	-8.08	351.39
	2	40	4.02E-05	0.1330	5.34E-06	1.00E-09	16561.33	494.455	0.41	494.87
	3	60	9.88E-04	0.1460	1.44E-04	6.07E-07	16561.33	595.839	10.17	606.01
0:4	4	80	2.81E-04	0.1560	4.38E-05	4.91E-08	16561.33	680.144	2.89	683.04
Oitavo modo de	5	100	-1.00E-03	0.1642	-1.65E-04	6.27E-07	16561.33	753.667	-10.34	743.33
vibração	6	120	-8.41E-04	0.1712	-1.44E-04	4.40E-07	16561.33	819.602	-8.66	810.95
F: 2,71Hz	7	140	5.11E-04	0.1774	9.06E-05	1.62E-07	16561.33	879.829	5.26	885.08
1.2,71112	8	160	1.23E-03	0.1829	2.25E-04	9.39E-07	16561.33	935.566	12.65	948.22
T: 0,37s	9	180	5.89E-04	0.1879	1.11E-04	2.16E-07	16561.33	987.654	6.07	993.72
ξ: 0,6	10	200	-5.99E-04	0.1925	-1.15E-04	2.23E-07	16561.33	1036.700	-6.17	1,030.53
, ,,,,,	11	220	-1.20E-03	0.1968	-2.36E-04	8.93E-07	16561.33	1083.163	-12.34	1,070.83
	12	240	-9.38E-04	0.2008	-1.88E-04	5.47E-07	16561.33	1127.396	-9.65	1,117.74
	13	260	-1.37E-04	0.2045	-2.81E-05	1.17E-08	16561.33	1169.680	-1.41	1,168.27
	14	280	7.72E-04	0.2080	1.61E-04	3.71E-07	16561.33	1210.242	7.95	1,218.19
	15	300	1.18E-03	0.2114	2.50E-04	8.70E-07	16561.33	1249.267	12.18	1,261.44

	i	z _i (m)	$x_i(m)$	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{X_1}$	Xi (kN)
	1	20	1.05E-08	0.1134	1.19E-09	6.89E-17	1.66E+10	359.462	108.31	467.77
	2	40	2.10E-08	0.1330	2.79E-09	2.73E-16	1.66E+10	494.455	215.70	710.16
	3	60	1.43E-08	0.1460	2.09E-09	1.28E-16	1.66E+10	595.839	147.45	743.29
	4	80	2.24E-08	0.1560	3.49E-09	3.11E-16	1.66E+10	680.144	230.11	910.25
Nono modo de	5	100	4.47E-09	0.1642	7.34E-10	1.24E-17	1.66E+10	753.667	46.01	799.68
vibração	6	120	1.62E-08	0.1712	2.77E-09	1.62E-16	1.66E+10	819.602	166.29	985.89
F: 2,73Hz	7	140	-4.00E-09	0.1774	-7.10E-10	9.95E-18	1.66E+10	879.829	-41.16	838.67
1. 2,73112	8	160	8.72E-09	0.1829	1.59E-09	4.72E-17	1.66E+10	935.566	89.68	1025.25
T: 0,36s	9	180	-6.85E-09	0.1879	-1.29E-09	2.92E-17	1.66E+10	987.654	-70.49	917.16
ξ: 0,6	10	200	3.55E-09	0.1925	6.83E-10	7.82E-18	1.66E+10	1036.700	36.49	1073.19
5. 0,0	11	220	-9.61E-09	0.1968	-1.89E-09	5.74E-17	1.66E+10	1083.163	-98.84	984.33
	12	240	6.23E-09	0.2008	1.25E-09	2.41E-17	1.66E+10	1127.396	64.08	1191.48
	13	260	-6.37E-09	0.2045	-1.30E-09	2.52E-17	1.66E+10	1169.680	-65.49	1104.19
	14	280	-3.98E-09	0.2080	-8.28E-10	9.84E-18	1.66E+10	1210.242	-40.95	1169.29
	15	300	8.41E-09	0.2114	1.78E-09	4.39E-17	1.66E+10	1249.267	86.47	1335.74
	i	$\mathbf{z_{i}}\left(\mathbf{m}\right)$	$x_i(m)$	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F}_{\mathbf{H}}$	$\overline{X_1}$	$\widehat{X_1}$	Xi (kN)
	1	20	3.77E-09	0.1134	4.27E-10	8.83E-18	1.49E+10	359.462	35.01	394.47
	2									
1	1	40	6.38E-09	0.1330	8.49E-10	2.53E-17	1.49E+10	494.455	59.25	553.71
	3	40 60	6.38E-09 5.05E-09	0.1330 0.1460	8.49E-10 7.38E-10	2.53E-17 1.59E-17	1.49E+10 1.49E+10	494.455 595.839	59.25 46.92	553.71 642.76
Dárina										
Décimo modo de	3	60	5.05E-09	0.1460	7.38E-10	1.59E-17	1.49E+10	595.839	46.92	642.76
Décimo modo de vibração	3 4	60 80	5.05E-09 6.64E-09	0.1460 0.1560	7.38E-10 1.04E-09	1.59E-17 2.74E-17	1.49E+10 1.49E+10	595.839 680.144	46.92 61.62	642.76 741.77
modo de vibração	3 4 5	60 80 100	5.05E-09 6.64E-09 1.22E-10	0.1460 0.1560 0.1642	7.38E-10 1.04E-09 2.00E-11	1.59E-17 2.74E-17 9.23E-21	1.49E+10 1.49E+10 1.49E+10	595.839 680.144 753.667	46.92 61.62 1.13	642.76 741.77 754.80
modo de vibração F: 2,77Hz	3 4 5 6	60 80 100 120	5.05E-09 6.64E-09 1.22E-10 5.15E-09	0.1460 0.1560 0.1642 0.1712	7.38E-10 1.04E-09 2.00E-11 8.81E-10	1.59E-17 2.74E-17 9.23E-21 1.65E-17	1.49E+10 1.49E+10 1.49E+10 1.49E+10	595.839 680.144 753.667 819.602	46.92 61.62 1.13 47.80	642.76 741.77 754.80 867.40
modo de vibração	3 4 5 6 7	60 80 100 120 140	5.05E-09 6.64E-09 1.22E-10 5.15E-09 -4.11E-09	0.1460 0.1560 0.1642 0.1712 0.1774	7.38E-10 1.04E-09 2.00E-11 8.81E-10 -7.29E-10	1.59E-17 2.74E-17 9.23E-21 1.65E-17 1.05E-17	1.49E+10 1.49E+10 1.49E+10 1.49E+10 1.49E+10	595.839 680.144 753.667 819.602 879.829	46.92 61.62 1.13 47.80 -38.18	642.76 741.77 754.80 867.40 841.64
modo de vibração F: 2,77Hz T: 0,36	3 4 5 6 7 8	60 80 100 120 140 160	5.05E-09 6.64E-09 1.22E-10 5.15E-09 -4.11E-09 4.09E-09	0.1460 0.1560 0.1642 0.1712 0.1774 0.1829	7.38E-10 1.04E-09 2.00E-11 8.81E-10 -7.29E-10 7.47E-10	1.59E-17 2.74E-17 9.23E-21 1.65E-17 1.05E-17 1.04E-17	1.49E+10 1.49E+10 1.49E+10 1.49E+10 1.49E+10 1.49E+10	595.839 680.144 753.667 819.602 879.829 935.566	46.92 61.62 1.13 47.80 -38.18 37.94	642.76 741.77 754.80 867.40 841.64 973.51
modo de vibração F: 2,77Hz	3 4 5 6 7 8 9	60 80 100 120 140 160 180	5.05E-09 6.64E-09 1.22E-10 5.15E-09 -4.11E-09 4.09E-09 -5.31E-09	0.1460 0.1560 0.1642 0.1712 0.1774 0.1829 0.1879	7.38E-10 1.04E-09 2.00E-11 8.81E-10 -7.29E-10 7.47E-10 -9.98E-10	1.59E-17 2.74E-17 9.23E-21 1.65E-17 1.05E-17 1.04E-17 1.75E-17	1.49E+10 1.49E+10 1.49E+10 1.49E+10 1.49E+10 1.49E+10 1.49E+10	595.839 680.144 753.667 819.602 879.829 935.566 987.654	46.92 61.62 1.13 47.80 -38.18 37.94 -49.31	642.76 741.77 754.80 867.40 841.64 973.51 938.34
modo de vibração F: 2,77Hz T: 0,36	3 4 5 6 7 8 9	60 80 100 120 140 160 180 200	5.05E-09 6.64E-09 1.22E-10 5.15E-09 -4.11E-09 4.09E-09 -5.31E-09	0.1460 0.1560 0.1642 0.1712 0.1774 0.1829 0.1879 0.1925	7.38E-10 1.04E-09 2.00E-11 8.81E-10 -7.29E-10 7.47E-10 -9.98E-10 8.06E-10	1.59E-17 2.74E-17 9.23E-21 1.65E-17 1.05E-17 1.04E-17 1.75E-17 1.09E-17	1.49E+10 1.49E+10 1.49E+10 1.49E+10 1.49E+10 1.49E+10 1.49E+10	595.839 680.144 753.667 819.602 879.829 935.566 987.654 1036.700	46.92 61.62 1.13 47.80 -38.18 37.94 -49.31 38.86	642.76 741.77 754.80 867.40 841.64 973.51 938.34 1,075.56
modo de vibração F: 2,77Hz T: 0,36	3 4 5 6 7 8 9 10	60 80 100 120 140 160 180 200 220	5.05E-09 6.64E-09 1.22E-10 5.15E-09 -4.11E-09 4.09E-09 -5.31E-09 4.19E-09 -8.63E-09	0.1460 0.1560 0.1642 0.1712 0.1774 0.1829 0.1879 0.1925 0.1968	7.38E-10 1.04E-09 2.00E-11 8.81E-10 -7.29E-10 7.47E-10 -9.98E-10 8.06E-10 -1.70E-09	1.59E-17 2.74E-17 9.23E-21 1.65E-17 1.05E-17 1.04E-17 1.75E-17 1.09E-17 4.63E-17	1.49E+10 1.49E+10 1.49E+10 1.49E+10 1.49E+10 1.49E+10 1.49E+10 1.49E+10	595.839 680.144 753.667 819.602 879.829 935.566 987.654 1036.700 1083.163	46.92 61.62 1.13 47.80 -38.18 37.94 -49.31 38.86 -80.12	642.76 741.77 754.80 867.40 841.64 973.51 938.34 1,075.56 1,003.05
modo de vibração F: 2,77Hz T: 0,36	3 4 5 6 7 8 9 10 11	60 80 100 120 140 160 180 200 220 240	5.05E-09 6.64E-09 1.22E-10 5.15E-09 -4.11E-09 4.09E-09 -5.31E-09 -8.63E-09 -3.11E-09	0.1460 0.1560 0.1642 0.1712 0.1774 0.1829 0.1879 0.1925 0.1968 0.2008	7.38E-10 1.04E-09 2.00E-11 8.81E-10 -7.29E-10 7.47E-10 -9.98E-10 8.06E-10 -1.70E-09 -6.25E-10	1.59E-17 2.74E-17 9.23E-21 1.65E-17 1.05E-17 1.04E-17 1.75E-17 1.09E-17 4.63E-17 6.02E-18	1.49E+10 1.49E+10 1.49E+10 1.49E+10 1.49E+10 1.49E+10 1.49E+10 1.49E+10 1.49E+10	595.839 680.144 753.667 819.602 879.829 935.566 987.654 1036.700 1083.163 1127.396	46.92 61.62 1.13 47.80 -38.18 37.94 -49.31 38.86 -80.12 -28.90	642.76 741.77 754.80 867.40 841.64 973.51 938.34 1,075.56 1,003.05 1,098.50

	i	z _i (m)	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{\mathbf{X}}_{\mathbf{i}}$	Xi (kN)
	1	20	5.98E-04	0.1134	6.78E-05	2.22E-07	3.37E+04	359.462	12.52	371.98
	2	40	-2.91E-04	0.1330	-3.86E-05	5.25E-08	3.37E+04	494.455	-6.08	488.37
	3	60	-6.59E-04	0.1460	-9.62E-05	2.70E-07	3.37E+04	595.839	-13.79	582.05
11°.	4	80	4.80E-04	0.1560	7.49E-05	1.43E-07	3.37E+04	680.144	10.04	690.19
modo de	5	100	7.20E-04	0.1642	1.18E-04	3.22E-07	3.37E+04	753.667	15.06	768.73
vibração	6	120	-5.98E-04	0.1712	-1.02E-04	2.23E-07	3.37E+04	819.602	-12.52	807.08
F: 2,78Hz	7	140	-7.96E-04	0.1774	-1.41E-04	3.94E-07	3.37E+04	879.829	-16.66	863.17
	8	160	5.25E-04	0.1829	9.60E-05	1.71E-07	3.37E+04	935.566	10.98	946.55
T: 0,36s	9	180	1.08E-03	0.1879	2.04E-04	7.29E-07	3.37E+04	987.654	22.66	1,010.31
ξ: 0,6	10	200	1.28E-04	0.1925	2.46E-05	1.01E-08	3.37E+04	1036.700	2.67	1,039.37
	11	220	-9.39E-04	0.1968	-1.85E-04	5.48E-07	3.37E+04	1083.163	-19.65	1,063.51
	12	240	-1.13E-03	0.2008	-2.27E-04	7.94E-07	3.37E+04	1127.396	-23.65	1,103.74
	13	260	-4.21E-04	0.2045	-8.61E-05	1.10E-07	3.37E+04	1169.680	-8.81	1,160.87
	14	280	6.82E-04	0.2080	1.42E-04	2.89E-07	3.37E+04	1210.242	14.27	1,224.51
	15	300	1.22E-03	0.2114	2.58E-04	9.23E-07	3.37E+04	1249.267	25.50	1,274.77
	i	$\mathbf{z_{i}}\left(\mathbf{m}\right)$	$\mathbf{x_{i}}\left(\mathbf{m}\right)$	β_i	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F}_{\mathbf{H}}$	$\overline{X_1}$	$\widehat{\mathbf{X}_{1}}$	Xi (kN)
	1	20	-2.20E-09	0.1134	-2.49E-10	3.01E-18	-1.73E+10	359.462	23.70	383.17
	2	40	-7.84E-09	0.1330	-1.04E-09	3.82E-17	-1.73E+10	494.455	84.42	578.87
	3	60	-5.60E-09	0.1460	-8.17E-10	1.95E-17	-1.73E+10	595.839	60.31	656.15
12°.	4	80	-1.32E-08	0.1560	-2.06E-09	1.08E-16	-1.73E+10	680.144	142.12	822.26
modo de	5	100	-5.92E-09	0.1642	-9.72E-10	2.18E-17	-1.73E+10	753.667	63.80	817.47
vibração	6	120	-1.53E-08	0.1712	-2.62E-09	1.45E-16	-1.73E+10	819.602	164.58	984.18
F: 2,82Hz	7	140	-3.74E-09	0.1774	-6.63E-10	8.69E-18	-1.73E+10	879.829	40.28	920.11
	8	160	-1.12E-08	0.1829	-2.05E-09	7.80E-17	-1.73E+10	935.566	120.71	1056.27
T: 0,35s	9	180	6.78E-10	0.1879	1.27E-10	2.86E-19	-1.73E+10	987.654	-7.30	980.35
ξ: 0,6	10	200	-6.57E-09	0.1925	-1.26E-09	2.68E-17	-1.73E+10	1036.700	70.74	1107.44
	11	220	1.05E-08	0.1968	2.06E-09	6.82E-17	-1.73E+10	1083.163	-112.82	970.34
	12	240	-3.04E-09	0.2008	-6.10E-10	5.73E-18	-1.73E+10	1127.396	32.70	1160.10
	13	260	1.25E-08	0.2045	2.55E-09	9.69E-17	-1.73E+10	1169.680	-134.50	1035.18
	14	280	6.88E-09	0.2080	1.43E-09	2.95E-17	-1.73E+10	1210.242	-74.15	1136.09
	15	300	-4.24E-09	0.2114	-8.96E-10	1.12E-17	-1.73E+10	1249.267	2.44	1251.70

	i	z _i (m)	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	F _H	$ar{\mathbf{X_i}}$	$\widehat{X_1}$	Xi (kN)
	1	20	-4.61E-04	0.1134	-5.23E-05	1.32E-07	3.03E+04	359.462	-8.69	350.78
	2	40	3.51E-04	0.1330	4.66E-05	7.65E-08	3.03E+04	494.455	6.61	501.07
	3	60	3.31E-04	0.1460	4.83E-05	6.81E-08	3.03E+04	595.839	6.24	602.08
13°.	4	80	-6.06E-04	0.1560	-9.44E-05	2.28E-07	3.03E+04	680.144	-11.41	668.73
modo de	5	100	-2.48E-05	0.1642	-4.07E-06	3.82E-10	3.03E+04	753.667	-0.47	753.20
vibração	6	120	7.24E-04	0.1712	1.24E-04	3.25E-07	3.03E+04	819.602	13.64	833.24
F: 2,84 Hz	7	140	-3.58E-04	0.1774	-6.35E-05	7.97E-08	3.03E+04	879.829	-6.75	873.08
T. 0.25	8	160	-7.43E-04	0.1829	-1.36E-04	3.43E-07	3.03E+04	935.566	-14.00	921.57
T: 0,35s	9	180	5.17E-04	0.1879	9.72E-05	1.66E-07	3.03E+04	987.654	9.74	997.39
ξ: 0,6	10	200	9.03E-04	0.1925	1.74E-04	5.07E-07	3.03E+04	1036.700	17.02	1,053.72
	11	220	-2.27E-04	0.1968	-4.48E-05	3.21E-08	3.03E+04	1083.163	-4.29	1,078.88
	12	240	-1.24E-03	0.2008	-2.49E-04	9.58E-07	3.03E+04	1127.396	-23.39	1,104.00
	13	260	-8.00E-04	0.2045	-1.64E-04	3.97E-07	3.03E+04	1169.680	-15.07	1,154.61
	14	280	5.84E-04	0.2080	1.21E-04	2.12E-07	3.03E+04	1210.242	11.00	1,221.24
	15	300	1.34E-03	0.2114	2.83E-04	1.12E-06	3.03E+04	1249.267	25.24	1,274.51
	i	$z_{i}(m)$	$x_i(m)$	β_i	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{X_1}$	Xi (kN)
	1	20	-2.24E-09	0.1134	-2.54E-10	3.12E-18	5.83E+10	359.462	-81.12	278.34
	2	40	-1.45E-09	0.1330	-1.92E-10	1.30E-18	5.83E+10	494.455	-52.39	442.07
	3	60	-9.09E-10	0.1460	-1.33E-10	5.13E-19	5.83E+10	595.839	-32.89	562.95
14°.	4	80	3.59E-09	0.1560	5.60E-10	8.01E-18	5.83E+10	680.144	129.93	810.08
modo de	5	100	3.00E-09	0.1642	4.92E-10	5.58E-18	5.83E+10	753.667	108.45	862.12
vibração	6	120	9.50E-09	0.1712	1.63E-09	5.61E-17	5.83E+10	819.602	343.80	1,163.40
F: 2,86Hz	7	140	4.98E-09	0.1774	8.83E-10	1.54E-17	5.83E+10	879.829	180.22	1,060.05
	8	160	1.05E-08	0.1829	1.92E-09	6.83E-17	5.83E+10	935.566	379.60	1,315.17
T: 0,35s	9	180	4.84E-09	0.1879	9.09E-10	1.45E-17	5.83E+10	987.654	175.03	1,162.68
ξ: 0,6	10	200	8.69E-09	0.1925	1.67E-09	4.69E-17	5.83E+10	1036.700	314.60	1,351.30
, ,,,,,	11	220	-1.94E-09	0.1968	-3.82E-10	2.34E-18	5.83E+10	1083.163	-70.29	1,012.87
	12	240	3.76E-09	0.2008	7.56E-10	8.80E-18	5.83E+10	1127.396	136.25	1,263.65
	13	260	-6.00E-10	0.2045	-1.23E-10	2.24E-19	5.83E+10	1169.680	-21.72	1,147.96
	14	280	3.54E-09	0.2080	7.37E-10	7.80E-18	5.83E+10	1210.242	128.28	1,338.52
	15	300	8.91E-09	0.2114	1.88E-09	4.93E-17	5.83E+10	1249.267	322.42	1,571.68

	i	z _i (m)	$x_i(m)$	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F}_{\mathbf{H}}$	$\overline{\mathbf{X_1}}$	$\widehat{X_1}$	Xi (kN)
	1	20	-4.22E-04	0.1134	-4.79E-05	1.11E-07	-5.72E+04	359.462	15.00	374.47
	2	40	4.01E-04	0.1330	5.34E-05	1.00E-07	-5.72E+04	494.455	-14.26	480.20
	3	60	1.41E-04	0.1460	2.06E-05	1.23E-08	-5.72E+04	595.839	-5.01	590.83
4.50	4	80	-5.77E-04	0.1560	-9.00E-05	2.07E-07	-5.72E+04	680.144	20.50	700.64
15°. modo de	5	100	3.70E-04	0.1642	6.08E-05	8.53E-08	-5.72E+04	753.667	-13.16	740.50
vibração	6	120	3.26E-04	0.1712	5.59E-05	6.62E-08	-5.72E+04	819.602	-11.60	808.01
F: 2,89Hz	7	140	-7.02E-04	0.1774	-1.24E-04	3.06E-07	-5.72E+04	879.829	24.94	904.77
1. 2,09112	8	160	2.42E-04	0.1829	4.43E-05	3.65E-08	-5.72E+04	935.566	-8.61	926.96
T: 0,35s	9	180	7.45E-04	0.1879	1.40E-04	3.45E-07	-5.72E+04	987.654	-26.47	961.19
ξ: 0,6	10	200	-6.33E-04	0.1925	-1.22E-04	2.49E-07	-5.72E+04	1036.700	22.49	1,059.19
5. 0,0	11	220	-7.95E-04	0.1968	-1.56E-04	3.93E-07	-5.72E+04	1083.163	28.25	1,111.41
	12	240	7.17E-04	0.2008	1.44E-04	3.19E-07	-5.72E+04	1127.396	-25.47	1,101.93
	13	260	8.86E-04	0.2045	1.81E-04	4.88E-07	-5.72E+04	1169.680	-31.48	1,138.20
	14	280	-2.79E-04	0.2080	-5.81E-05	4.84E-08	-5.72E+04	1210.242	9.92	1,220.16
	15	300	-1.06E-03	0.2114	-2.23E-04	6.93E-07	-5.72E+04	1249.267	37.53	1,286.80

- $M_i = 621380 \text{ kg};$ $A_i/A_0 = 1000/15000 = 0,0667$
- $\psi_i = 0,62138$

E.2. Modelo A1

	i	z _i (m)	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{\mathbf{X}_{1}}$	$\widehat{X_1}$	Xi (kN)
	1	20	4.86E-04	5.51E-05	-4.79E-05	1.47E-07	1.78E+05	359.462	53.62	413.09
	2	40	9.69E-04	1.29E-04	5.34E-05	5.83E-07	1.78E+05	494.455	106.92	601.37
	3	60	1.44E-03	2.10E-04	2.06E-05	1.29E-06	1.78E+05	595.839	159.00	754.84
40	4	80	1.90E-03	2.96E-04	-9.00E-05	2.23E-06	1.78E+05	680.144	209.09	889.23
1°. modo de	5	100	2.33E-03	3.82E-04	6.08E-05	3.37E-06	1.78E+05	753.667	256.87	1,010.53
vibração	6	120	2.73E-03	4.68E-04	5.59E-05	4.64E-06	1.78E+05	819.602	301.55	1,121.15
F: 0,59Hz	7	140	3.11E-03	5.51E-04	-1.24E-04	6.00E-06	1.78E+05	879.829	342.93	1,222.76
1.0,39112	8	160	3.43E-03	6.27E-04	4.43E-05	7.97E-06	1.78E+05	935.566	412.74	1,348.31
T: 1,68s	9	180	3.74E-03	7.02E-04	1.40E-04	8.68E-06	1.78E+05	987.654	412.33	1,399.98
ξ: 0,8	10	200	3.99E-03	7.69E-04	-1.22E-04	9.91E-06	1.78E+05	1036.700	440.69	1,477.39
ς. ο,ο	11	220	4.21E-03	8.28E-04	-1.56E-04	1.10E-05	1.78E+05	1083.163	464.30	1,547.46
	12	240	4.38E-03	8.79E-04	1.44E-04	1.19E-05	1.78E+05	1127.396	482.95	1,610.34
	13	260	4.50E-03	9.20E-04	1.81E-04	1.26E-05	1.78E+05	1169.680	496.41	1,666.09
	14	280	4.57E-03	9.51E-04	-5.81E-05	1.30E-05	1.78E+05	1210.242	504.57	1,714.81
	15	300	4.60E-03	9.72E-04	-2.23E-04	1.31E-05	1.78E+05	1249.267	507.55	1,756.82

	i	z _i (m)	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{X_1}$	Xi (kN)
	1	20	-1.23E-03	0.1134	-1.39E-04	9.40E-07	-1.94E+04	359.462	14.86	374.32
	2	40	-2.33E-03	0.1330	-3.10E-04	3.37E-06	-1.94E+04	494.455	28.14	522.59
	3	60	-3.17E-03	0.1460	-4.63E-04	6.26E-06	-1.94E+04	595.839	38.35	634.19
••	4	80	-3.69E-03	0.1560	-5.75E-04	8.45E-06	-1.94E+04	680.144	44.56	724.70
2°. modo de	5	100	-3.82E-03	0.1642	-6.27E-04	9.07E-06	-1.94E+04	753.667	46.15	799.82
vibração	6	120	-3.57E-03	0.1712	-6.11E-04	7.91E-06	-1.94E+04	819.602	43.09	862.70
F: 1,60Hz	7	140	-2.95E-03	0.1774	-5.23E-04	5.41E-06	-1.94E+04	879.829	35.64	915.47
·	8	160	-2.07E-03	0.1829	-3.78E-04	2.90E-06	-1.94E+04	935.566	27.28	962.85
T: 0,62s	9	180	-9.80E-04	0.1879	-1.84E-04	5.97E-07	-1.94E+04	987.654	11.84	999.49
ξ: 0,75	10	200	2.15E-04	0.1925	4.14E-05	2.87E-08	-1.94E+04	1036.700	-2.60	1,034.10
3. 0,72	11	220	1.39E-03	0.1968	2.73E-04	1.20E-06	-1.94E+04	1083.163	-16.76	1,066.41
	12	240	2.43E-03	0.2008	4.88E-04	3.67E-06	-1.94E+04	1127.396	-29.35	1,098.05
	13	260	3.25E-03	0.2045	6.64E-04	6.56E-06	-1.94E+04	1169.680	-39.25	1,130.43
	14	280	3.78E-03	0.2080	7.86E-04	8.86E-06	-1.94E+04	1210.242	-45.63	1,164.61
	15	300	3.97E-03	0.2114	8.40E-04	9.80E-06	-1.94E+04	1249.267	-47.99	1,201.28
	i	$\mathbf{z_{i}}\left(\mathbf{m}\right)$	$x_i(m)$	β_i	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{X_1}$	Xi (kN)
	1	20	1.49E-03	0.1134	1.69E-04	1.38E-06	3.44E+04	359.462	31.83	391.29
						1.302 00	S	0071102	31.03	
	2	40	2.47E-03	0.1330	3.28E-04	3.78E-06	3.44E+04	494.455	52.68	547.14
	3	40 60	2.47E-03 2.63E-03							
				0.1330	3.28E-04	3.78E-06	3.44E+04	494.455	52.68	547.14
3°.	3	60	2.63E-03	0.1330 0.1460	3.28E-04 3.84E-04	3.78E-06 4.29E-06	3.44E+04 3.44E+04	494.455 595.839	52.68 56.14	547.14 651.98
3°. modo de vibração	3 4	60 80	2.63E-03 1.99E-03	0.1330 0.1460 0.1560	3.28E-04 3.84E-04 3.10E-04	3.78E-06 4.29E-06 2.46E-06	3.44E+04 3.44E+04 3.44E+04	494.455 595.839 680.144	52.68 56.14 42.53	547.14 651.98 722.68
modo de vibração	3 4 5	60 80 100	2.63E-03 1.99E-03 7.69E-04	0.1330 0.1460 0.1560 0.1642	3.28E-04 3.84E-04 3.10E-04 1.26E-04	3.78E-06 4.29E-06 2.46E-06 3.67E-07	3.44E+04 3.44E+04 3.44E+04 3.44E+04	494.455 595.839 680.144 753.667	52.68 56.14 42.53 16.43	547.14 651.98 722.68 770.09
modo de vibração F: 2,22Hz	3 4 5 6	60 80 100 120	2.63E-03 1.99E-03 7.69E-04 -6.69E-04	0.1330 0.1460 0.1560 0.1642 0.1712	3.28E-04 3.84E-04 3.10E-04 1.26E-04 -1.15E-04	3.78E-06 4.29E-06 2.46E-06 3.67E-07 2.78E-07	3.44E+04 3.44E+04 3.44E+04 3.44E+04 3.44E+04	494.455 595.839 680.144 753.667 819.602	52.68 56.14 42.53 16.43 -14.29	547.14 651.98 722.68 770.09 805.31
modo de vibração	3 4 5 6 7	60 80 100 120 140	2.63E-03 1.99E-03 7.69E-04 -6.69E-04 -1.89E-03	0.1330 0.1460 0.1560 0.1642 0.1712 0.1774	3.28E-04 3.84E-04 3.10E-04 1.26E-04 -1.15E-04 -3.36E-04	3.78E-06 4.29E-06 2.46E-06 3.67E-07 2.78E-07 2.23E-06	3.44E+04 3.44E+04 3.44E+04 3.44E+04 3.44E+04	494.455 595.839 680.144 753.667 819.602 879.829	52.68 56.14 42.53 16.43 -14.29 -40.44	547.14 651.98 722.68 770.09 805.31 839.39
modo de vibração F: 2,22Hz	3 4 5 6 7 8	60 80 100 120 140 160	2.63E-03 1.99E-03 7.69E-04 -6.69E-04 -1.89E-03 -2.47E-03	0.1330 0.1460 0.1560 0.1642 0.1712 0.1774 0.1829	3.28E-04 3.84E-04 3.10E-04 1.26E-04 -1.15E-04 -3.36E-04 -4.51E-04	3.78E-06 4.29E-06 2.46E-06 3.67E-07 2.78E-07 2.23E-06 4.12E-06	3.44E+04 3.44E+04 3.44E+04 3.44E+04 3.44E+04 3.44E+04	494.455 595.839 680.144 753.667 819.602 879.829 935.566	52.68 56.14 42.53 16.43 -14.29 -40.44 -57.48	547.14 651.98 722.68 770.09 805.31 839.39 878.09
modo de vibração F: 2,22Hz T:0,45s	3 4 5 6 7 8 9	60 80 100 120 140 160 180	2.63E-03 1.99E-03 7.69E-04 -6.69E-04 -1.89E-03 -2.47E-03 -2.70E-03	0.1330 0.1460 0.1560 0.1642 0.1712 0.1774 0.1829 0.1879	3.28E-04 3.84E-04 3.10E-04 1.26E-04 -1.15E-04 -3.36E-04 -4.51E-04 -5.07E-04	3.78E-06 4.29E-06 2.46E-06 3.67E-07 2.78E-07 2.23E-06 4.12E-06 4.53E-06	3.44E+04 3.44E+04 3.44E+04 3.44E+04 3.44E+04 3.44E+04 3.44E+04	494.455 595.839 680.144 753.667 819.602 879.829 935.566 987.654	52.68 56.14 42.53 16.43 -14.29 -40.44 -57.48 -57.68	547.14 651.98 722.68 770.09 805.31 839.39 878.09 929.97
modo de vibração F: 2,22Hz T:0,45s	3 4 5 6 7 8 9	60 80 100 120 140 160 180 200	2.63E-03 1.99E-03 7.69E-04 -6.69E-04 -1.89E-03 -2.47E-03 -2.70E-03 -2.12E-03	0.1330 0.1460 0.1560 0.1642 0.1712 0.1774 0.1829 0.1879 0.1925	3.28E-04 3.84E-04 3.10E-04 1.26E-04 -1.15E-04 -3.36E-04 -4.51E-04 -5.07E-04 -4.09E-04	3.78E-06 4.29E-06 2.46E-06 3.67E-07 2.78E-07 2.23E-06 4.12E-06 4.53E-06 2.80E-06	3.44E+04 3.44E+04 3.44E+04 3.44E+04 3.44E+04 3.44E+04 3.44E+04 3.44E+04	494.455 595.839 680.144 753.667 819.602 879.829 935.566 987.654 1036.700	52.68 56.14 42.53 16.43 -14.29 -40.44 -57.48 -57.68 -45.37	547.14 651.98 722.68 770.09 805.31 839.39 878.09 929.97 991.33
modo de vibração F: 2,22Hz T:0,45s	3 4 5 6 7 8 9 10	60 80 100 120 140 160 180 200 220	2.63E-03 1.99E-03 7.69E-04 -6.69E-04 -1.89E-03 -2.47E-03 -2.70E-03 -1.02E-03	0.1330 0.1460 0.1560 0.1642 0.1712 0.1774 0.1829 0.1879 0.1925 0.1968	3.28E-04 3.84E-04 3.10E-04 1.26E-04 -1.15E-04 -3.36E-04 -4.51E-04 -5.07E-04 -4.09E-04 -2.02E-04	3.78E-06 4.29E-06 2.46E-06 3.67E-07 2.78E-07 2.23E-06 4.12E-06 4.53E-06 2.80E-06 6.52E-07	3.44E+04 3.44E+04 3.44E+04 3.44E+04 3.44E+04 3.44E+04 3.44E+04 3.44E+04 3.44E+04	494.455 595.839 680.144 753.667 819.602 879.829 935.566 987.654 1036.700 1083.163	52.68 56.14 42.53 16.43 -14.29 -40.44 -57.48 -57.68 -45.37 -21.88	547.14 651.98 722.68 770.09 805.31 839.39 878.09 929.97 991.33 1,061.29
modo de vibração F: 2,22Hz T:0,45s	3 4 5 6 7 8 9 10 11	60 80 100 120 140 160 180 200 220 240	2.63E-03 1.99E-03 7.69E-04 -6.69E-04 -1.89E-03 -2.47E-03 -2.70E-03 -1.02E-03 3.13E-04	0.1330 0.1460 0.1560 0.1642 0.1712 0.1774 0.1829 0.1879 0.1925 0.1968 0.2008	3.28E-04 3.84E-04 3.10E-04 1.26E-04 -1.15E-04 -3.36E-04 -4.51E-04 -5.07E-04 -4.09E-04 -2.02E-04 6.28E-05	3.78E-06 4.29E-06 2.46E-06 3.67E-07 2.78E-07 2.23E-06 4.12E-06 4.53E-06 2.80E-06 6.52E-07 6.09E-08	3.44E+04 3.44E+04 3.44E+04 3.44E+04 3.44E+04 3.44E+04 3.44E+04 3.44E+04 3.44E+04 3.44E+04	494.455 595.839 680.144 753.667 819.602 879.829 935.566 987.654 1036.700 1083.163 1127.396	52.68 56.14 42.53 16.43 -14.29 -40.44 -57.68 -45.37 -21.88 6.69	547.14 651.98 722.68 770.09 805.31 839.39 878.09 929.97 991.33 1,061.29 1,134.08

	i	z _i (m)	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{X_1}$	Xi (kN)
	1	20	1.39E-03	0.1134	1.58E-04	1.21E-06	-5.60E+03	359.462	-4.85	354.62
	2	40	1.70E-03	0.1330	2.26E-04	1.80E-06	-5.60E+03	494.455	-5.92	488.53
	3	60	7.85E-04	0.1460	1.15E-04	3.83E-07	-5.60E+03	595.839	-2.73	593.11
40	4	80	-6.10E-04	0.1560	-9.51E-05	2.31E-07	-5.60E+03	680.144	2.12	682.27
4º. modo de	5	100	-1.62E-03	0.1642	-2.65E-04	1.62E-06	-5.60E+03	753.667	5.62	759.29
vibração	6	120	-1.70E-03	0.1712	-2.91E-04	1.80E-06	-5.60E+03	819.602	5.92	825.52
F: 2,49Hz	7	140	-8.44E-04	0.1774	-1.50E-04	4.43E-07	-5.60E+03	879.829	2.94	882.77
	8	160	2.66E-04	0.1829	4.87E-05	4.80E-08	-5.60E+03	935.566	-1.01	934.56
T: 0,40s	9	180	1.38E-03	0.1879	2.59E-04	1.18E-06	-5.60E+03	987.654	-4.80	982.86
ξ: 0,6	10	200	1.86E-03	0.1925	3.57E-04	2.14E-06	-5.60E+03	1036.700	-6.45	1,030.25
3. 0,0	11	220	1.52E-03	0.1968	2.99E-04	1.43E-06	-5.60E+03	1083.163	-5.28	1,077.88
	12	240	5.69E-04	0.2008	1.14E-04	2.01E-07	-5.60E+03	1127.396	-1.98	1,125.42
	13	260	-5.86E-04	0.2045	-1.20E-04	2.13E-07	-5.60E+03	1169.680	2.04	1,171.72
	14	280	-1.51E-03	0.2080	-3.14E-04	1.41E-06	-5.60E+03	1210.242	5.25	1,215.49
	15	300	-1.88E-03	0.2114	-3.98E-04	2.21E-06	-5.60E+03	1249.267	6.56	1,255.82
	i	$\mathbf{z_{i}}\left(\mathbf{m}\right)$	$x_i(m)$	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{X_1}$	Xi (kN)
	1	20	-4.27E-09	0.1134	-4.84E-10	1.13E-17	-6.31E+10	359.462	167.38	526.84
						1.138 17	0.012.10		107.50	
	2	40	-8.15E-09	0.1330	-1.08E-09	4.12E-17	-6.31E+10	494.455	319.16	813.62
	3	40 60	-8.15E-09 -6.52E-09							
				0.1330	-1.08E-09	4.12E-17	-6.31E+10	494.455	319.16	813.62
5°.	3	60	-6.52E-09	0.1330 0.1460	-1.08E-09 -9.51E-10	4.12E-17 2.64E-17	-6.31E+10 -6.31E+10	494.455 595.839	319.16 255.34	813.62 851.18
5°. modo de vibração	3	60 80	-6.52E-09 -8.31E-09	0.1330 0.1460 0.1560	-1.08E-09 -9.51E-10 -1.30E-09	4.12E-17 2.64E-17 4.29E-17	-6.31E+10 -6.31E+10 -6.31E+10	494.455 595.839 680.144	319.16 255.34 325.43	813.62 851.18 1,005.58
modo de vibração	3 4 5	60 80 100	-6.52E-09 -8.31E-09 -4.47E-09	0.1330 0.1460 0.1560 0.1642	-1.08E-09 -9.51E-10 -1.30E-09 -7.34E-10	4.12E-17 2.64E-17 4.29E-17 1.24E-17	-6.31E+10 -6.31E+10 -6.31E+10 -6.31E+10	494.455 595.839 680.144 753.667	319.16 255.34 325.43 175.25	813.62 851.18 1,005.58 928.92
modo de vibração F: 2,60Hz	3 4 5 6	60 80 100 120	-6.52E-09 -8.31E-09 -4.47E-09 -5.26E-09	0.1330 0.1460 0.1560 0.1642 0.1712	-1.08E-09 -9.51E-10 -1.30E-09 -7.34E-10 -9.00E-10	4.12E-17 2.64E-17 4.29E-17 1.24E-17 1.72E-17	-6.31E+10 -6.31E+10 -6.31E+10 -6.31E+10 -6.31E+10	494.455 595.839 680.144 753.667 819.602	319.16 255.34 325.43 175.25 205.97	813.62 851.18 1,005.58 928.92 1,025.57
modo de vibração	3 4 5 6 7	60 80 100 120 140	-6.52E-09 -8.31E-09 -4.47E-09 -5.26E-09 -4.83E-10	0.1330 0.1460 0.1560 0.1642 0.1712 0.1774	-1.08E-09 -9.51E-10 -1.30E-09 -7.34E-10 -9.00E-10 -8.56E-11	4.12E-17 2.64E-17 4.29E-17 1.24E-17 1.72E-17 1.45E-19	-6.31E+10 -6.31E+10 -6.31E+10 -6.31E+10 -6.31E+10	494.455 595.839 680.144 753.667 819.602 879.829	319.16 255.34 325.43 175.25 205.97 18.90	813.62 851.18 1,005.58 928.92 1,025.57 898.73
modo de vibração F: 2,60Hz	3 4 5 6 7 8	60 80 100 120 140 160	-6.52E-09 -8.31E-09 -4.47E-09 -5.26E-09 -4.83E-10 2.01E-09	0.1330 0.1460 0.1560 0.1642 0.1712 0.1774 0.1829	-1.08E-09 -9.51E-10 -1.30E-09 -7.34E-10 -9.00E-10 -8.56E-11 3.67E-10	4.12E-17 2.64E-17 4.29E-17 1.24E-17 1.72E-17 1.45E-19 2.74E-18	-6.31E+10 -6.31E+10 -6.31E+10 -6.31E+10 -6.31E+10 -6.31E+10	494.455 595.839 680.144 753.667 819.602 879.829 935.566	319.16 255.34 325.43 175.25 205.97 18.90 -85.92	813.62 851.18 1,005.58 928.92 1,025.57 898.73 849.65
modo de vibração F: 2,60Hz T: 0,38s	3 4 5 6 7 8 9	60 80 100 120 140 160 180	-6.52E-09 -8.31E-09 -4.47E-09 -5.26E-09 -4.83E-10 2.01E-09 -3.37E-09	0.1330 0.1460 0.1560 0.1642 0.1712 0.1774 0.1829 0.1879	-1.08E-09 -9.51E-10 -1.30E-09 -7.34E-10 -9.00E-10 -8.56E-11 3.67E-10 -6.33E-10	4.12E-17 2.64E-17 4.29E-17 1.24E-17 1.72E-17 1.45E-19 2.74E-18	-6.31E+10 -6.31E+10 -6.31E+10 -6.31E+10 -6.31E+10 -6.31E+10 -6.31E+10 -6.31E+10	494.455 595.839 680.144 753.667 819.602 879.829 935.566 987.654	319.16 255.34 325.43 175.25 205.97 18.90 -85.92 131.92	813.62 851.18 1,005.58 928.92 1,025.57 898.73 849.65 1,119.57
modo de vibração F: 2,60Hz T: 0,38s	3 4 5 6 7 8 9	60 80 100 120 140 160 180 200	-6.52E-09 -8.31E-09 -4.47E-09 -5.26E-09 -4.83E-10 2.01E-09 -3.37E-09 1.58E-09	0.1330 0.1460 0.1560 0.1642 0.1712 0.1774 0.1829 0.1879 0.1925	-1.08E-09 -9.51E-10 -1.30E-09 -7.34E-10 -9.00E-10 -8.56E-11 3.67E-10 -6.33E-10 3.03E-10	4.12E-17 2.64E-17 4.29E-17 1.24E-17 1.72E-17 1.45E-19 2.74E-18 7.04E-18 1.54E-18	-6.31E+10 -6.31E+10 -6.31E+10 -6.31E+10 -6.31E+10 -6.31E+10 -6.31E+10 -6.31E+10	494.455 595.839 680.144 753.667 819.602 879.829 935.566 987.654 1036.700	319.16 255.34 325.43 175.25 205.97 18.90 -85.92 131.92 -61.75	813.62 851.18 1,005.58 928.92 1,025.57 898.73 849.65 1,119.57 974.95
modo de vibração F: 2,60Hz T: 0,38s	3 4 5 6 7 8 9 10	60 80 100 120 140 160 180 200 220	-6.52E-09 -8.31E-09 -4.47E-09 -5.26E-09 -4.83E-10 2.01E-09 -3.37E-09 1.58E-09 -2.26E-09	0.1330 0.1460 0.1560 0.1642 0.1712 0.1774 0.1829 0.1879 0.1925 0.1968	-1.08E-09 -9.51E-10 -1.30E-09 -7.34E-10 -9.00E-10 -8.56E-11 3.67E-10 -6.33E-10 3.03E-10 -4.46E-10	4.12E-17 2.64E-17 4.29E-17 1.24E-17 1.72E-17 1.45E-19 2.74E-18 7.04E-18 1.54E-18 3.19E-18	-6.31E+10 -6.31E+10 -6.31E+10 -6.31E+10 -6.31E+10 -6.31E+10 -6.31E+10 -6.31E+10 -6.31E+10	494.455 595.839 680.144 753.667 819.602 879.829 935.566 987.654 1036.700 1083.163	319.16 255.34 325.43 175.25 205.97 18.90 -85.92 131.92 -61.75 88.70	813.62 851.18 1,005.58 928.92 1,025.57 898.73 849.65 1,119.57 974.95 1,171.87
modo de vibração F: 2,60Hz T: 0,38s	3 4 5 6 7 8 9 10 11	60 80 100 120 140 160 180 200 220 240	-6.52E-09 -8.31E-09 -4.47E-09 -5.26E-09 -4.83E-10 2.01E-09 -3.37E-09 1.58E-09 -2.26E-09 -1.06E-09	0.1330 0.1460 0.1560 0.1642 0.1712 0.1774 0.1829 0.1879 0.1925 0.1968 0.2008	-1.08E-09 -9.51E-10 -1.30E-09 -7.34E-10 -9.00E-10 -8.56E-11 3.67E-10 -6.33E-10 3.03E-10 -4.46E-10 -2.12E-10	4.12E-17 2.64E-17 4.29E-17 1.24E-17 1.72E-17 1.45E-19 2.74E-18 7.04E-18 1.54E-18 3.19E-18 6.92E-19	-6.31E+10	494.455 595.839 680.144 753.667 819.602 879.829 935.566 987.654 1036.700 1083.163 1127.396	319.16 255.34 325.43 175.25 205.97 18.90 -85.92 131.92 -61.75 88.70 41.34	813.62 851.18 1,005.58 928.92 1,025.57 898.73 849.65 1,119.57 974.95 1,171.87 1,168.73

	i	z _i (m)	x _i (m)	β_i	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{X_1}$	Xi (kN)
	1	20	1.17E-03	0.1134	1.33E-04	8.52E-07	4.54E+04	359.462	33.06	392.52
	2	40	6.52E-04	0.1330	8.67E-05	2.64E-07	4.54E+04	494.455	18.41	512.86
	3	60	-8.43E-04	0.1460	-1.23E-04	4.42E-07	4.54E+04	595.839	-23.80	572.04
	4	80	-1.41E-03	0.1560	-2.19E-04	1.23E-06	4.54E+04	680.144	-39.67	640.48
6º. modo de	5	100	-4.42E-04	0.1642	-7.26E-05	1.21E-07	4.54E+04	753.667	-12.48	741.19
vibração	6	120	9.61E-04	0.1712	1.65E-04	5.74E-07	4.54E+04	819.602	27.13	846.73
F: 2,63Hz	7	140	1.37E-03	0.1774	2.43E-04	1.17E-06	4.54E+04	879.829	38.68	918.51
	8	160	7.62E-04	0.1829	1.39E-04	3.94E-07	4.54E+04	935.566	23.48	959.05
T: 0,38s	9	180	-6.10E-05	0.1879	-1.15E-05	2.31E-09	4.54E+04	987.654	-1.72	985.93
ξ: 0,6	10	200	-9.53E-04	0.1925	-1.83E-04	5.64E-07	4.54E+04	1036.700	-26.91	1,009.79
	11	220	-1.22E-03	0.1968	-2.41E-04	9.31E-07	4.54E+04	1083.163	-34.56	1,048.60
	12	240	-7.65E-04	0.2008	-1.54E-04	3.64E-07	4.54E+04	1127.396	-21.60	1,105.80
	13	260	1.06E-04	0.2045	2.17E-05	6.98E-09	4.54E+04	1169.680	2.99	1,172.67
	14	280	9.03E-04	0.2080	1.88E-04	5.07E-07	4.54E+04	1210.242	25.50	1,235.74
	15	300	1.24E-03	0.2114	2.63E-04	9.62E-07	4.54E+04	1249.267	35.12	1,284.39
	i	$\mathbf{z_{i}}\left(\mathbf{m}\right)$	$x_i(m)$	β_i	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_H}$	$\overline{\mathbf{X_1}}$	$\widehat{\mathbf{X}_{1}}$	Xi (kN)
									-	
	1	20	-4.96E-09	0.1134	-5.62E-10	1.13E-17	1.53E-17	-3.72E+10	114.44	473.91
	1 2	20 40	-4.96E-09 -1.10E-08	0.1134 0.1330	-5.62E-10 -1.46E-09		1.53E-17 7.48E-17	-3.72E+10 -3.72E+10		473.91 747.77
						1.13E-17			114.44	
	2	40	-1.10E-08	0.1330	-1.46E-09	1.13E-17 4.12E-17	7.48E-17	-3.72E+10	114.44 253.32	747.77
7°.	2 3	40 60	-1.10E-08 -7.70E-09	0.1330 0.1460	-1.46E-09 -1.12E-09	1.13E-17 4.12E-17 2.64E-17	7.48E-17 3.68E-17	-3.72E+10 -3.72E+10	114.44 253.32 177.78	747.77 773.62
7°. modo de vibração	2 3 4	40 60 80	-1.10E-08 -7.70E-09 -1.20E-08	0.1330 0.1460 0.1560	-1.46E-09 -1.12E-09 -1.87E-09	1.13E-17 4.12E-17 2.64E-17 4.29E-17	7.48E-17 3.68E-17 8.96E-17	-3.72E+10 -3.72E+10 -3.72E+10	114.44 253.32 177.78 277.33	747.77 773.62 957.48
modo de vibração	2 3 4 5	40 60 80 100	-1.10E-08 -7.70E-09 -1.20E-08 -4.78E-09	0.1330 0.1460 0.1560 0.1642	-1.46E-09 -1.12E-09 -1.87E-09 -7.85E-10	1.13E-17 4.12E-17 2.64E-17 4.29E-17 1.24E-17	7.48E-17 3.68E-17 8.96E-17 1.42E-17	-3.72E+10 -3.72E+10 -3.72E+10 -3.72E+10	114.44 253.32 177.78 277.33 110.47	747.77 773.62 957.48 864.14
modo de vibração F: 2,68Hz	2 3 4 5 6	40 60 80 100 120	-1.10E-08 -7.70E-09 -1.20E-08 -4.78E-09 -7.98E-09	0.1330 0.1460 0.1560 0.1642 0.1712	-1.46E-09 -1.12E-09 -1.87E-09 -7.85E-10 -1.37E-09	1.13E-17 4.12E-17 2.64E-17 4.29E-17 1.24E-17 1.72E-17	7.48E-17 3.68E-17 8.96E-17 1.42E-17 3.96E-17	-3.72E+10 -3.72E+10 -3.72E+10 -3.72E+10 -3.72E+10	114.44 253.32 177.78 277.33 110.47 184.30	747.77 773.62 957.48 864.14 1,003.90
modo de vibração	2 3 4 5 6 7	40 60 80 100 120 140	-1.10E-08 -7.70E-09 -1.20E-08 -4.78E-09 -7.98E-09 -5.16E-10	0.1330 0.1460 0.1560 0.1642 0.1712 0.1774	-1.46E-09 -1.12E-09 -1.87E-09 -7.85E-10 -1.37E-09 -9.15E-11	1.13E-17 4.12E-17 2.64E-17 4.29E-17 1.24E-17 1.72E-17 1.45E-19	7.48E-17 3.68E-17 8.96E-17 1.42E-17 3.96E-17 1.65E-19	-3.72E+10 -3.72E+10 -3.72E+10 -3.72E+10 -3.72E+10 -3.72E+10	114.44 253.32 177.78 277.33 110.47 184.30 11.91	747.77 773.62 957.48 864.14 1,003.90 891.74
modo de vibração F: 2,68Hz	2 3 4 5 6 7 8	40 60 80 100 120 140	-1.10E-08 -7.70E-09 -1.20E-08 -4.78E-09 -7.98E-09 -5.16E-10 -3.07E-09	0.1330 0.1460 0.1560 0.1642 0.1712 0.1774 0.1829	-1.46E-09 -1.12E-09 -1.87E-09 -7.85E-10 -1.37E-09 -9.15E-11 -5.61E-10	1.13E-17 4.12E-17 2.64E-17 4.29E-17 1.24E-17 1.72E-17 1.45E-19 2.74E-18	7.48E-17 3.68E-17 8.96E-17 1.42E-17 3.96E-17 1.65E-19 6.38E-18	-3.72E+10 -3.72E+10 -3.72E+10 -3.72E+10 -3.72E+10 -3.72E+10 -3.72E+10	114.44 253.32 177.78 277.33 110.47 184.30 11.91 77.28	747.77 773.62 957.48 864.14 1,003.90 891.74 1,012.85
modo de vibração F: 2,68Hz T: 0,37s	2 3 4 5 6 7 8	40 60 80 100 120 140 160 180	-1.10E-08 -7.70E-09 -1.20E-08 -4.78E-09 -7.98E-09 -5.16E-10 -3.07E-09 -1.21E-09	0.1330 0.1460 0.1560 0.1642 0.1712 0.1774 0.1829 0.1879	-1.46E-09 -1.12E-09 -1.87E-09 -7.85E-10 -1.37E-09 -9.15E-11 -5.61E-10 -2.27E-10	1.13E-17 4.12E-17 2.64E-17 4.29E-17 1.24E-17 1.72E-17 1.45E-19 2.74E-18	7.48E-17 3.68E-17 8.96E-17 1.42E-17 3.96E-17 1.65E-19 6.38E-18 9.07E-19	-3.72E+10 -3.72E+10 -3.72E+10 -3.72E+10 -3.72E+10 -3.72E+10 -3.72E+10 -3.72E+10	114.44 253.32 177.78 277.33 110.47 184.30 11.91 77.28 27.89	747.77 773.62 957.48 864.14 1,003.90 891.74 1,012.85 1,015.55
modo de vibração F: 2,68Hz T: 0,37s	2 3 4 5 6 7 8 9	40 60 80 100 120 140 160 180 200	-1.10E-08 -7.70E-09 -1.20E-08 -4.78E-09 -7.98E-09 -5.16E-10 -3.07E-09 -1.21E-09 3.47E-10	0.1330 0.1460 0.1560 0.1642 0.1712 0.1774 0.1829 0.1879 0.1925	-1.46E-09 -1.12E-09 -1.87E-09 -7.85E-10 -1.37E-09 -9.15E-11 -5.61E-10 -2.27E-10 6.69E-11	1.13E-17 4.12E-17 2.64E-17 4.29E-17 1.24E-17 1.72E-17 1.45E-19 2.74E-18 7.04E-18	7.48E-17 3.68E-17 8.96E-17 1.42E-17 3.96E-17 1.65E-19 6.38E-18 9.07E-19 7.50E-20	-3.72E+10 -3.72E+10 -3.72E+10 -3.72E+10 -3.72E+10 -3.72E+10 -3.72E+10 -3.72E+10	114.44 253.32 177.78 277.33 110.47 184.30 11.91 77.28 27.89 -8.02	747.77 773.62 957.48 864.14 1,003.90 891.74 1,012.85 1,015.55 1,028.68
modo de vibração F: 2,68Hz T: 0,37s	2 3 4 5 6 7 8 9 10	40 60 80 100 120 140 160 180 200 220	-1.10E-08 -7.70E-09 -1.20E-08 -4.78E-09 -7.98E-09 -5.16E-10 -3.07E-09 -1.21E-09 3.47E-10 1.43E-09	0.1330 0.1460 0.1560 0.1642 0.1712 0.1774 0.1829 0.1879 0.1925 0.1968	-1.46E-09 -1.12E-09 -1.87E-09 -7.85E-10 -1.37E-09 -9.15E-11 -5.61E-10 -2.27E-10 6.69E-11 2.81E-10	1.13E-17 4.12E-17 2.64E-17 4.29E-17 1.24E-17 1.72E-17 1.45E-19 2.74E-18 7.04E-18 1.54E-18 3.19E-18	7.48E-17 3.68E-17 8.96E-17 1.42E-17 3.96E-17 1.65E-19 6.38E-18 9.07E-19 7.50E-20 1.27E-18	-3.72E+10	114.44 253.32 177.78 277.33 110.47 184.30 11.91 77.28 27.89 -8.02 -32.95	747.77 773.62 957.48 864.14 1,003.90 891.74 1,012.85 1,015.55 1,028.68 1,050.21
modo de vibração F: 2,68Hz T: 0,37s	2 3 4 5 6 7 8 9 10 11	40 60 80 100 120 140 160 180 200 220 240	-1.10E-08 -7.70E-09 -1.20E-08 -4.78E-09 -7.98E-09 -5.16E-10 -3.07E-09 -1.21E-09 3.47E-10 1.43E-09 4.26E-11	0.1330 0.1460 0.1560 0.1642 0.1712 0.1774 0.1829 0.1879 0.1925 0.1968 0.2008	-1.46E-09 -1.12E-09 -1.87E-09 -7.85E-10 -1.37E-09 -9.15E-11 -5.61E-10 -2.27E-10 6.69E-11 2.81E-10 8.55E-12	1.13E-17 4.12E-17 2.64E-17 4.29E-17 1.24E-17 1.72E-17 1.45E-19 2.74E-18 7.04E-18 1.54E-18 3.19E-18 6.92E-19	7.48E-17 3.68E-17 8.96E-17 1.42E-17 3.96E-17 1.65E-19 6.38E-18 9.07E-19 7.50E-20 1.27E-18 1.13E-21	-3.72E+10	114.44 253.32 177.78 277.33 110.47 184.30 11.91 77.28 27.89 -8.02 -32.95 -0.98	747.77 773.62 957.48 864.14 1,003.90 891.74 1,012.85 1,015.55 1,028.68 1,050.21 1,126.41

	i	z _i (m)	$x_i(m)$	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F}_{\mathbf{H}}$	$\overline{\mathbf{X_1}}$	$\widehat{X_1}$	Xi (kN)
	1	20	-7.43E-04	0.1134	-8.42E-05	3.43E-07	5.27E+04	359.462	-24.33	335.13
	2	40	1.22E-04	0.1330	1.62E-05	9.25E-09	5.27E+04	494.455	3.99	498.45
	3	60	9.43E-04	0.1460	1.38E-04	5.53E-07	5.27E+04	595.839	30.88	626.72
	4	80	5.20E-05	0.1560	8.11E-06	1.68E-09	5.27E+04	680.144	1.70	681.85
8°. modo de	5	100	-1.08E-03	0.1642	-1.77E-04	7.23E-07	5.27E+04	753.667	-35.33	718.33
vibração	6	120	-5.15E-04	0.1712	-8.82E-05	1.65E-07	5.27E+04	819.602	-16.86	802.74
F: 2,74Hz	7	140	7.68E-04	0.1774	1.36E-04	3.67E-07	5.27E+04	879.829	25.15	904.98
	8	160	1.07E-03	0.1829	1.95E-04	7.72E-07	5.27E+04	935.566	38.14	973.70
T: 0,36s	9	180	9.95E-04	0.1879	1.87E-04	6.15E-07	5.27E+04	987.654	32.58	1,020.24
ξ: 0,6	10	200	-2.04E-04	0.1925	-3.93E-05	2.59E-08	5.27E+04	1036.700	-6.68	1,030.02
	11	220	-1.25E-03	0.1968	-2.46E-04	9.72E-07	5.27E+04	1083.163	-40.97	1,042.20
	12	240	-1.20E-03	0.2008	-2.41E-04	8.96E-07	5.27E+04	1127.396	-39.33	1,088.07
	13	260	-2.27E-04	0.2045	-4.64E-05	3.20E-08	5.27E+04	1169.680	-7.43	1,162.25
	14	280	8.76E-04	0.2080	1.82E-04	4.77E-07	5.27E+04	1210.242	28.69	1,238.93
	15	300	1.38E-03	0.2114	2.92E-04	1.19E-06	5.27E+04	1249.267	45.22	1,294.49
	i	$\mathbf{z_{i}}\left(\mathbf{m}\right)$	$x_i(m)$	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{X_1}$	Xi (kN)
	1	20	-7.30E-10	0.1134	-8.28E-11	3.31E-19	-3.45E+10	359.462	15.63	375.09
	2	40	-2.53E-09	0.1330	-3.37E-10	3.99E-18	-3.45E+10	494.455	54.25	548.70
	3				0 40T 40			505.000		(40.00
1	3	60	-2.53E-09	0.1460	-3.69E-10	3.97E-18	-3.45E+10	595.839	54.14	649.98
00	4	60 80	-2.53E-09 -6.29E-09	0.1460	-3.69E-10 -9.81E-10	3.97E-18 2.46E-17	-3.45E+10 -3.45E+10	680.144	54.14 134.63	814.78
9°. modo de										
	4	80	-6.29E-09	0.1560	-9.81E-10	2.46E-17	-3.45E+10	680.144	134.63	814.78
modo de	4 5	80 100	-6.29E-09 -1.82E-09	0.1560 0.1642	-9.81E-10 -2.99E-10	2.46E-17 2.07E-18	-3.45E+10 -3.45E+10	680.144 753.667	134.63 39.03	814.78 792.69
modo de vibração F: 2,74Hz	4 5 6	80 100 120	-6.29E-09 -1.82E-09 -8.13E-09	0.1560 0.1642 0.1712	-9.81E-10 -2.99E-10 -1.39E-09	2.46E-17 2.07E-18 4.11E-17	-3.45E+10 -3.45E+10 -3.45E+10	680.144 753.667 819.602	134.63 39.03 174.13	814.78 792.69 993.73
modo de vibração F: 2,74Hz T: 0,36s	4 5 6 7	80 100 120 140	-6.29E-09 -1.82E-09 -8.13E-09 2.20E-11	0.1560 0.1642 0.1712 0.1774	-9.81E-10 -2.99E-10 -1.39E-09 3.90E-12	2.46E-17 2.07E-18 4.11E-17 3.01E-22	-3.45E+10 -3.45E+10 -3.45E+10 -3.45E+10	680.144 753.667 819.602 879.829	134.63 39.03 174.13 -0.47	814.78 792.69 993.73 879.36
modo de vibração F: 2,74Hz	4 5 6 7 8	80 100 120 140 160	-6.29E-09 -1.82E-09 -8.13E-09 2.20E-11 -1.06E-08	0.1560 0.1642 0.1712 0.1774 0.1829	-9.81E-10 -2.99E-10 -1.39E-09 3.90E-12 -1.94E-09	2.46E-17 2.07E-18 4.11E-17 3.01E-22 7.65E-17	-3.45E+10 -3.45E+10 -3.45E+10 -3.45E+10 -3.45E+10	680.144 753.667 819.602 879.829 935.566	134.63 39.03 174.13 -0.47 248.16	814.78 792.69 993.73 879.36 1,183.73
modo de vibração F: 2,74Hz T: 0,36s	4 5 6 7 8 9	80 100 120 140 160 180	-6.29E-09 -1.82E-09 -8.13E-09 2.20E-11 -1.06E-08 -3.67E-10	0.1560 0.1642 0.1712 0.1774 0.1829 0.1879	-9.81E-10 -2.99E-10 -1.39E-09 3.90E-12 -1.94E-09 -6.89E-11	2.46E-17 2.07E-18 4.11E-17 3.01E-22 7.65E-17 8.35E-20	-3.45E+10 -3.45E+10 -3.45E+10 -3.45E+10 -3.45E+10 -3.45E+10	680.144 753.667 819.602 879.829 935.566 987.654	134.63 39.03 174.13 -0.47 248.16 7.85	814.78 792.69 993.73 879.36 1,183.73 995.50
modo de vibração F: 2,74Hz T: 0,36s	4 5 6 7 8 9	80 100 120 140 160 180 200	-6.29E-09 -1.82E-09 -8.13E-09 2.20E-11 -1.06E-08 -3.67E-10 -3.72E-09	0.1560 0.1642 0.1712 0.1774 0.1829 0.1879 0.1925	-9.81E-10 -2.99E-10 -1.39E-09 3.90E-12 -1.94E-09 -6.89E-11 -7.15E-10	2.46E-17 2.07E-18 4.11E-17 3.01E-22 7.65E-17 8.35E-20 8.58E-18	-3.45E+10 -3.45E+10 -3.45E+10 -3.45E+10 -3.45E+10 -3.45E+10 -3.45E+10	680.144 753.667 819.602 879.829 935.566 987.654 1036.700	134.63 39.03 174.13 -0.47 248.16 7.85 79.55	814.78 792.69 993.73 879.36 1,183.73 995.50 1,116.25
modo de vibração F: 2,74Hz T: 0,36s	4 5 6 7 8 9 10	80 100 120 140 160 180 200 220	-6.29E-09 -1.82E-09 -8.13E-09 2.20E-11 -1.06E-08 -3.67E-10 -3.72E-09 4.17E-09	0.1560 0.1642 0.1712 0.1774 0.1829 0.1879 0.1925 0.1968	-9.81E-10 -2.99E-10 -1.39E-09 3.90E-12 -1.94E-09 -6.89E-11 -7.15E-10 8.21E-10	2.46E-17 2.07E-18 4.11E-17 3.01E-22 7.65E-17 8.35E-20 8.58E-18 1.08E-17	-3.45E+10 -3.45E+10 -3.45E+10 -3.45E+10 -3.45E+10 -3.45E+10 -3.45E+10 -3.45E+10	680.144 753.667 819.602 879.829 935.566 987.654 1036.700 1083.163	134.63 39.03 174.13 -0.47 248.16 7.85 79.55 -89.29	814.78 792.69 993.73 879.36 1,183.73 995.50 1,116.25 993.87
modo de vibração F: 2,74Hz T: 0,36s	4 5 6 7 8 9 10 11	80 100 120 140 160 180 200 220 240	-6.29E-09 -1.82E-09 -8.13E-09 2.20E-11 -1.06E-08 -3.67E-10 -3.72E-09 4.17E-09 -5.29E-09	0.1560 0.1642 0.1712 0.1774 0.1829 0.1879 0.1925 0.1968 0.2008	-9.81E-10 -2.99E-10 -1.39E-09 3.90E-12 -1.94E-09 -6.89E-11 -7.15E-10 8.21E-10 -1.06E-09	2.46E-17 2.07E-18 4.11E-17 3.01E-22 7.65E-17 8.35E-20 8.58E-18 1.08E-17 1.74E-17	-3.45E+10 -3.45E+10 -3.45E+10 -3.45E+10 -3.45E+10 -3.45E+10 -3.45E+10 -3.45E+10 -3.45E+10	680.144 753.667 819.602 879.829 935.566 987.654 1036.700 1083.163 1127.396	134.63 39.03 174.13 -0.47 248.16 7.85 79.55 -89.29 113.18	814.78 792.69 993.73 879.36 1,183.73 995.50 1,116.25 993.87 1,240.58

	i	z _i (m)	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{X_1}$	Xi (kN)
	1	20	3.98E-09	0.1134	4.51E-10	9.82E-18	2.53E+10	359.462	62.60	422.06
	2	40	6.78E-09	0.1330	9.01E-10	2.85E-17	2.53E+10	494.455	106.72	601.17
	3	60	4.49E-09	0.1460	6.56E-10	1.25E-17	2.53E+10	595.839	70.71	666.55
	4	80	8.05E-09	0.1560	1.25E-09	4.02E-17	2.53E+10	680.144	126.68	806.82
10°. modo de	5	100	1.45E-09	0.1642	2.37E-10	1.30E-18	2.53E+10	753.667	22.75	776.42
vibração	6	120	7.57E-09	0.1712	1.30E-09	3.56E-17	2.53E+10	819.602	119.20	938.80
F: 2,78Hz	7	140	1.58E-10	0.1774	2.80E-11	1.54E-20	2.53E+10	879.829	2.48	882.31
	8	160	1.27E-08	0.1829	2.32E-09	1.09E-16	2.53E+10	935.566	217.74	1,153.31
T: 0,36s	9	180	-2.26E-09	0.1879	-4.25E-10	3.17E-18	2.53E+10	987.654	-35.57	952.09
ξ: 0,6	10	200	5.50E-09	0.1925	1.06E-09	1.88E-17	2.53E+10	1036.700	86.58	1,123.28
	11	220	-8.36E-09	0.1968	-1.65E-09	4.34E-17	2.53E+10	1083.163	-131.65	951.51
	12	240	3.95E-09	0.2008	7.93E-10	9.69E-18	2.53E+10	1127.396	62.17	1,189.57
	13	260	-7.12E-09	0.2045	-1.46E-09	3.15E-17	2.53E+10	1169.680	-112.13	1,057.55
	14	280	4.19E-10	0.2080	8.72E-11	1.09E-19	2.53E+10	1210.242	6.60	1,216.84
	15	300	-8.41E-10	0.2114	-1.78E-10	4.40E-19	2.53E+10	1249.267	-13.24	1,236.02
	i	$\mathbf{z_{i}}\left(\mathbf{m}\right)$	$x_i(m)$	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F}_{\mathbf{H}}$	\overline{X}_{1}	$\widehat{X_1}$	Xi (kN)
	1	20	5.94E-04	0.1134	6.73E-05	2.19E-07	5.30E+04	359.462	19.54	379.01
					0.702 00	2.17.20 07	0.002.0.	337.402	19.34	317.01
	2	40	-3.06E-04	0.1330	-4.07E-05	5.82E-08	5.30E+04	494.455	-10.07	484.39
	3	40 60								
			-3.06E-04	0.1330	-4.07E-05	5.82E-08	5.30E+04	494.455	-10.07	484.39
11°.	3	60	-3.06E-04 -6.36E-04	0.1330 0.1460	-4.07E-05 -9.28E-05	5.82E-08 2.51E-07	5.30E+04 5.30E+04	494.455 595.839	-10.07 -20.93	484.39 574.91
11°. modo de vibração	3	60 80	-3.06E-04 -6.36E-04 5.21E-04	0.1330 0.1460 0.1560	-4.07E-05 -9.28E-05 8.13E-05	5.82E-08 2.51E-07 1.69E-07	5.30E+04 5.30E+04 5.30E+04	494.455 595.839 680.144	-10.07 -20.93 17.14	484.39 574.91 697.29
modo de vibração	3 4 5	60 80 100	-3.06E-04 -6.36E-04 5.21E-04 6.63E-04	0.1330 0.1460 0.1560 0.1642	-4.07E-05 -9.28E-05 8.13E-05 1.09E-04	5.82E-08 2.51E-07 1.69E-07 2.73E-07	5.30E+04 5.30E+04 5.30E+04 5.30E+04	494.455 595.839 680.144 753.667	-10.07 -20.93 17.14 21.81	484.39 574.91 697.29 775.48
modo de vibração F: 2,79Hz	3 4 5 6	60 80 100 120	-3.06E-04 -6.36E-04 5.21E-04 6.63E-04 -6.70E-04	0.1330 0.1460 0.1560 0.1642 0.1712	-4.07E-05 -9.28E-05 8.13E-05 1.09E-04 -1.15E-04	5.82E-08 2.51E-07 1.69E-07 2.73E-07 2.79E-07	5.30E+04 5.30E+04 5.30E+04 5.30E+04 5.30E+04	494.455 595.839 680.144 753.667 819.602	-10.07 -20.93 17.14 21.81 -22.04	484.39 574.91 697.29 775.48 797.56
modo de vibração	3 4 5 6 7	60 80 100 120 140	-3.06E-04 -6.36E-04 5.21E-04 6.63E-04 -6.70E-04	0.1330 0.1460 0.1560 0.1642 0.1712 0.1774	-4.07E-05 -9.28E-05 8.13E-05 1.09E-04 -1.15E-04 -1.25E-04	5.82E-08 2.51E-07 1.69E-07 2.73E-07 2.79E-07 3.10E-07	5.30E+04 5.30E+04 5.30E+04 5.30E+04 5.30E+04 5.30E+04	494.455 595.839 680.144 753.667 819.602 879.829	-10.07 -20.93 17.14 21.81 -22.04 -23.23	484.39 574.91 697.29 775.48 797.56 856.60
modo de vibração F: 2,79Hz	3 4 5 6 7 8	60 80 100 120 140 160	-3.06E-04 -6.36E-04 5.21E-04 6.63E-04 -6.70E-04 -7.06E-04 2.51E-04	0.1330 0.1460 0.1560 0.1642 0.1712 0.1774 0.1829	-4.07E-05 -9.28E-05 8.13E-05 1.09E-04 -1.15E-04 -1.25E-04 4.59E-05	5.82E-08 2.51E-07 1.69E-07 2.73E-07 2.79E-07 3.10E-07 4.27E-08	5.30E+04 5.30E+04 5.30E+04 5.30E+04 5.30E+04 5.30E+04	494.455 595.839 680.144 753.667 819.602 879.829 935.566	-10.07 -20.93 17.14 21.81 -22.04 -23.23 9.01	484.39 574.91 697.29 775.48 797.56 856.60 944.58
modo de vibração F: 2,79Hz T: 0,36s	3 4 5 6 7 8 9	60 80 100 120 140 160 180	-3.06E-04 -6.36E-04 5.21E-04 6.63E-04 -6.70E-04 -7.06E-04 2.51E-04 1.12E-03	0.1330 0.1460 0.1560 0.1642 0.1712 0.1774 0.1829 0.1879	-4.07E-05 -9.28E-05 8.13E-05 1.09E-04 -1.15E-04 -1.25E-04 4.59E-05 2.10E-04	5.82E-08 2.51E-07 1.69E-07 2.73E-07 2.79E-07 3.10E-07 4.27E-08 7.77E-07	5.30E+04 5.30E+04 5.30E+04 5.30E+04 5.30E+04 5.30E+04 5.30E+04	494.455 595.839 680.144 753.667 819.602 879.829 935.566 987.654	-10.07 -20.93 17.14 21.81 -22.04 -23.23 9.01 36.79	484.39 574.91 697.29 775.48 797.56 856.60 944.58 1,024.44
modo de vibração F: 2,79Hz T: 0,36s	3 4 5 6 7 8 9	60 80 100 120 140 160 180 200	-3.06E-04 -6.36E-04 5.21E-04 6.63E-04 -6.70E-04 -7.06E-04 2.51E-04 1.12E-03 5.88E-04	0.1330 0.1460 0.1560 0.1642 0.1712 0.1774 0.1829 0.1879 0.1925	-4.07E-05 -9.28E-05 8.13E-05 1.09E-04 -1.15E-04 -1.25E-04 4.59E-05 2.10E-04 1.13E-04	5.82E-08 2.51E-07 1.69E-07 2.73E-07 2.79E-07 3.10E-07 4.27E-08 7.77E-07 2.15E-07	5.30E+04 5.30E+04 5.30E+04 5.30E+04 5.30E+04 5.30E+04 5.30E+04 5.30E+04	494.455 595.839 680.144 753.667 819.602 879.829 935.566 987.654 1036.700	-10.07 -20.93 17.14 21.81 -22.04 -23.23 9.01 36.79 19.35	484.39 574.91 697.29 775.48 797.56 856.60 944.58 1,024.44 1,056.05
modo de vibração F: 2,79Hz T: 0,36s	3 4 5 6 7 8 9 10	60 80 100 120 140 160 180 200 220	-3.06E-04 -6.36E-04 5.21E-04 6.63E-04 -6.70E-04 -7.06E-04 1.12E-03 5.88E-04 -7.49E-04	0.1330 0.1460 0.1560 0.1642 0.1712 0.1774 0.1829 0.1879 0.1925 0.1968	-4.07E-05 -9.28E-05 8.13E-05 1.09E-04 -1.15E-04 -1.25E-04 4.59E-05 2.10E-04 1.13E-04 -1.47E-04	5.82E-08 2.51E-07 1.69E-07 2.73E-07 2.79E-07 3.10E-07 4.27E-08 7.77E-07 2.15E-07 3.49E-07	5.30E+04 5.30E+04 5.30E+04 5.30E+04 5.30E+04 5.30E+04 5.30E+04 5.30E+04 5.30E+04	494.455 595.839 680.144 753.667 819.602 879.829 935.566 987.654 1036.700 1083.163	-10.07 -20.93 17.14 21.81 -22.04 -23.23 9.01 36.79 19.35 -24.64	484.39 574.91 697.29 775.48 797.56 856.60 944.58 1,024.44 1,056.05 1,058.52
modo de vibração F: 2,79Hz T: 0,36s	3 4 5 6 7 8 9 10 11	60 80 100 120 140 160 180 200 220 240	-3.06E-04 -6.36E-04 5.21E-04 6.63E-04 -6.70E-04 -7.06E-04 1.12E-03 5.88E-04 -7.49E-04	0.1330 0.1460 0.1560 0.1642 0.1712 0.1774 0.1829 0.1879 0.1925 0.1968 0.2008	-4.07E-05 -9.28E-05 8.13E-05 1.09E-04 -1.15E-04 -1.25E-04 4.59E-05 2.10E-04 1.13E-04 -1.47E-04 -2.44E-04	5.82E-08 2.51E-07 1.69E-07 2.73E-07 2.79E-07 3.10E-07 4.27E-08 7.77E-07 2.15E-07 3.49E-07 9.16E-07	5.30E+04 5.30E+04 5.30E+04 5.30E+04 5.30E+04 5.30E+04 5.30E+04 5.30E+04 5.30E+04	494.455 595.839 680.144 753.667 819.602 879.829 935.566 987.654 1036.700 1083.163 1127.396	-10.07 -20.93 17.14 21.81 -22.04 -23.23 9.01 36.79 19.35 -24.64 -39.94	484.39 574.91 697.29 775.48 797.56 856.60 944.58 1,024.44 1,056.05 1,058.52 1,087.45

	i	z _i (m)	x _i (m)	β_i	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{\mathbf{X_{1}}}$	$\widehat{\mathbf{X}_{1}}$	Xi (kN)
	1	20	2.87E-09	0.1134	3.25E-10	5.12E-18	3.33E+10	359.462	59.38	418.84
	2	40	3.54E-09	0.1330	4.70E-10	7.77E-18	3.33E+10	494.455	73.16	567.61
	3	60	3.10E-10	0.1460	4.53E-11	5.98E-20	3.33E+10	595.839	6.42	602.26
	4	80	4.92E-09	0.1560	7.67E-10	1.50E-17	3.33E+10	680.144	101.75	781.89
12°. modo de	5	100	-2.32E-09	0.1642	-3.80E-10	3.33E-18	3.33E+10	753.667	-47.90	705.77
vibração	6	120	1.14E-08	0.1712	1.94E-09	8.02E-17	3.33E+10	819.602	235.03	1,054.63
F: 2,84Hz	7	140	-5.04E-09	0.1774	-8.94E-10	1.58E-17	3.33E+10	879.829	-104.25	775.58
	8	160	1.79E-08	0.1829	3.27E-09	2.16E-16	3.33E+10	935.566	403.34	1,338.90
T: 0,35s	9	180	7.48E-09	0.1879	1.41E-09	3.47E-17	3.33E+10	987.654	154.69	1,142.35
ξ: 0,6	10	200	1.30E-08	0.1925	2.50E-09	1.05E-16	3.33E+10	1036.700	268.55	1,305.25
	11	220	4.71E-09	0.1968	9.27E-10	1.38E-17	3.33E+10	1083.163	97.43	1,180.59
	12	240	1.39E-08	0.2008	2.79E-09	1.20E-16	3.33E+10	1127.396	287.99	1,415.39
	13	260	-1.07E-09	0.2045	-2.20E-10	7.17E-19	3.33E+10	1169.680	-22.22	1,147.46
	14	280	1.79E-08	0.2080	3.72E-09	1.98E-16	3.33E+10	1210.242	369.51	1,579.75
	15	300	1.62E-08	0.2114	3.41E-09	1.62E-16	3.33E+10	1249.267	334.13	1,583.40
	i	$\mathbf{z_{i}}\left(\mathbf{m}\right)$	$x_i(m)$	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{X_1}$	Xi (kN)
	1	20	-6.44E-10	0.1134	-7.30E-11	2.58E-19	-3.11E+10	359.462	12.45	371.91
	2	40	-5.24E-09	0.1330	-6.97E-10	1.71E-17	-3.11E+10	494.455	101.24	595.70
	3								101.24	
	3	60	-3.51E-09	0.1460	-5.12E-10	7.65E-18	-3.11E+10	595.839	67.81	663.65
	4	60 80	-3.51E-09 -1.11E-08	0.1460 0.1560	-5.12E-10 -1.73E-09	7.65E-18 7.64E-17	-3.11E+10 -3.11E+10	595.839 680.144		663.65 894.46
13°.									67.81	
13°. modo de vibração	4	80	-1.11E-08	0.1560	-1.73E-09	7.64E-17	-3.11E+10	680.144	67.81 214.32	894.46
modo de vibração	4 5	80 100	-1.11E-08 -2.57E-09	0.1560 0.1642	-1.73E-09 -4.21E-10	7.64E-17 4.09E-18	-3.11E+10 -3.11E+10	680.144 753.667	67.81 214.32 49.57	894.46 803.24
modo de vibração F: 2,87Hz	4 5 6	80 100 120	-1.11E-08 -2.57E-09 -1.45E-08	0.1560 0.1642 0.1712	-1.73E-09 -4.21E-10 -2.48E-09	7.64E-17 4.09E-18 1.30E-16	-3.11E+10 -3.11E+10 -3.11E+10	680.144 753.667 819.602	67.81 214.32 49.57 279.83	894.46 803.24 1,099.43
modo de vibração	4 5 6 7	80 100 120 140	-1.11E-08 -2.57E-09 -1.45E-08 -1.35E-09	0.1560 0.1642 0.1712 0.1774	-1.73E-09 -4.21E-10 -2.48E-09 -2.39E-10	7.64E-17 4.09E-18 1.30E-16 1.12E-18	-3.11E+10 -3.11E+10 -3.11E+10 -3.11E+10	680.144 753.667 819.602 879.829	67.81 214.32 49.57 279.83 25.99	894.46 803.24 1,099.43 905.82
modo de vibração F: 2,87Hz	4 5 6 7 8	80 100 120 140 160	-1.11E-08 -2.57E-09 -1.45E-08 -1.35E-09 -1.94E-08	0.1560 0.1642 0.1712 0.1774 0.1829	-1.73E-09 -4.21E-10 -2.48E-09 -2.39E-10 -3.54E-09	7.64E-17 4.09E-18 1.30E-16 1.12E-18 2.54E-16	-3.11E+10 -3.11E+10 -3.11E+10 -3.11E+10 -3.11E+10	680.144 753.667 819.602 879.829 935.566	67.81 214.32 49.57 279.83 25.99 408.17	894.46 803.24 1,099.43 905.82 1,343.74
modo de vibração F: 2,87Hz T: 0,35s	4 5 6 7 8 9	80 100 120 140 160 180	-1.11E-08 -2.57E-09 -1.45E-08 -1.35E-09 -1.94E-08 -2.38E-09	0.1560 0.1642 0.1712 0.1774 0.1829 0.1879	-1.73E-09 -4.21E-10 -2.48E-09 -2.39E-10 -3.54E-09 -4.46E-10	7.64E-17 4.09E-18 1.30E-16 1.12E-18 2.54E-16 3.50E-18	-3.11E+10 -3.11E+10 -3.11E+10 -3.11E+10 -3.11E+10 -3.11E+10	680.144 753.667 819.602 879.829 935.566 987.654	67.81 214.32 49.57 279.83 25.99 408.17 45.90	894.46 803.24 1,099.43 905.82 1,343.74 1,033.55
modo de vibração F: 2,87Hz T: 0,35s	4 5 6 7 8 9	80 100 120 140 160 180 200	-1.11E-08 -2.57E-09 -1.45E-08 -1.35E-09 -1.94E-08 -2.38E-09 -4.61E-09	0.1560 0.1642 0.1712 0.1774 0.1829 0.1879 0.1925	-1.73E-09 -4.21E-10 -2.48E-09 -2.39E-10 -3.54E-09 -4.46E-10 -8.87E-10	7.64E-17 4.09E-18 1.30E-16 1.12E-18 2.54E-16 3.50E-18 1.32E-17	-3.11E+10 -3.11E+10 -3.11E+10 -3.11E+10 -3.11E+10 -3.11E+10 -3.11E+10	680.144 753.667 819.602 879.829 935.566 987.654 1036.700	67.81 214.32 49.57 279.83 25.99 408.17 45.90 88.99	894.46 803.24 1,099.43 905.82 1,343.74 1,033.55 1,125.69
modo de vibração F: 2,87Hz T: 0,35s	4 5 6 7 8 9 10	80 100 120 140 160 180 200 220	-1.11E-08 -2.57E-09 -1.45E-08 -1.35E-09 -1.94E-08 -2.38E-09 -4.61E-09 5.98E-10	0.1560 0.1642 0.1712 0.1774 0.1829 0.1879 0.1925 0.1968	-1.73E-09 -4.21E-10 -2.48E-09 -2.39E-10 -3.54E-09 -4.46E-10 -8.87E-10 1.18E-10	7.64E-17 4.09E-18 1.30E-16 1.12E-18 2.54E-16 3.50E-18 1.32E-17 2.22E-19	-3.11E+10 -3.11E+10 -3.11E+10 -3.11E+10 -3.11E+10 -3.11E+10 -3.11E+10 -3.11E+10	680.144 753.667 819.602 879.829 935.566 987.654 1036.700 1083.163	67.81 214.32 49.57 279.83 25.99 408.17 45.90 88.99 -11.55	894.46 803.24 1,099.43 905.82 1,343.74 1,033.55 1,125.69 1,071.61
modo de vibração F: 2,87Hz T: 0,35s	4 5 6 7 8 9 10 11	80 100 120 140 160 180 200 220 240	-1.11E-08 -2.57E-09 -1.45E-08 -1.35E-09 -1.94E-08 -2.38E-09 -4.61E-09 5.98E-10 -6.64E-09	0.1560 0.1642 0.1712 0.1774 0.1829 0.1879 0.1925 0.1968 0.2008	-1.73E-09 -4.21E-10 -2.48E-09 -2.39E-10 -3.54E-09 -4.46E-10 -8.87E-10 1.18E-10 -1.33E-09	7.64E-17 4.09E-18 1.30E-16 1.12E-18 2.54E-16 3.50E-18 1.32E-17 2.22E-19 2.74E-17	-3.11E+10 -3.11E+10 -3.11E+10 -3.11E+10 -3.11E+10 -3.11E+10 -3.11E+10 -3.11E+10 -3.11E+10	680.144 753.667 819.602 879.829 935.566 987.654 1036.700 1083.163 1127.396	67.81 214.32 49.57 279.83 25.99 408.17 45.90 88.99 -11.55	894.46 803.24 1,099.43 905.82 1,343.74 1,033.55 1,125.69 1,071.61 1,255.64

	i	z _i (m)	$x_i(m)$	β_i	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F}_{\mathbf{H}}$	$\overline{X_1}$	$\widehat{\mathbf{X}_{1}}$	Xi (kN)
	1	20	4.89E-04	0.1134	5.54E-05	1.49E-07	1.76E+04	359.462	5.34	364.80
	2	40	-4.28E-04	0.1330	-5.69E-05	1.14E-07	1.76E+04	494.455	-4.67	489.78
	3	60	-2.42E-04	0.1460	-3.53E-05	3.64E-08	1.76E+04	595.839	-2.64	593.20
	4	80	6.76E-04	0.1560	1.05E-04	2.84E-07	1.76E+04	680.144	7.38	687.52
14°. modo de	5	100	-2.56E-04	0.1642	-4.20E-05	4.07E-08	1.76E+04	753.667	-2.79	750.87
vibração	6	120	-5.86E-04	0.1712	-1.00E-04	2.13E-07	1.76E+04	819.602	-6.40	813.20
F: 2,87Hz	7	140	7.72E-04	0.1774	1.37E-04	3.70E-07	1.76E+04	879.829	8.43	888.26
	8	160	8.75E-04	0.1829	1.60E-04	5.19E-07	1.76E+04	935.566	10.43	945.99
T: 0,35s	9	180	2.83E-04	0.1879	5.32E-05	4.98E-08	1.76E+04	987.654	3.09	990.74
ξ: 0,6	10	200	-9.60E-04	0.1925	-1.85E-04	5.73E-07	1.76E+04	1036.700	-10.48	1,026.22
	11	220	-4.34E-04	0.1968	-8.54E-05	1.17E-07	1.76E+04	1083.163	-4.74	1,078.43
	12	240	9.09E-04	0.2008	1.83E-04	5.13E-07	1.76E+04	1127.396	9.92	1,137.32
	13	260	8.07E-04	0.2045	1.65E-04	4.05E-07	1.76E+04	1169.680	8.81	1,178.49
	14	280	-3.76E-04	0.2080	-7.82E-05	8.78E-08	1.76E+04	1210.242	-4.10	1,206.14
	15	300	-1.09E-03	0.2114	-2.30E-04	7.36E-07	1.76E+04	1249.267	-11.88	1,237.39
	i	$\mathbf{z_{i}}\left(\mathbf{m}\right)$	$x_i(m)$	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{\mathbf{X}_{\mathbf{i}}}$	Xi (kN)
	i	z _i (m) 20	x _i (m) 4.29E-04	β _i 0.1134	$\beta_{i}x_{i}$ 4.86E-05	ψ _i x _i ² 1.14E-07	F _H 6.77E+04	X ₁ 359.462	$\widehat{\mathbf{X_i}}$ 18.06	Xi (kN) 377.52
	1	20	4.29E-04	0.1134	4.86E-05	1.14E-07	6.77E+04	359.462	18.06	377.52
	1 2	20 40	4.29E-04 -4.35E-04	0.1134 0.1330	4.86E-05 -5.78E-05	1.14E-07 1.18E-07	6.77E+04 6.77E+04	359.462 494.455	18.06 -18.31	377.52 476.15
15°.	1 2 3	20 40 60	4.29E-04 -4.35E-04 -7.60E-05	0.1134 0.1330 0.1460	4.86E-05 -5.78E-05 -1.11E-05	1.14E-07 1.18E-07 3.59E-09	6.77E+04 6.77E+04 6.77E+04	359.462 494.455 595.839	18.06 -18.31 -3.20	377.52 476.15 592.64
15°. modo de vibração	1 2 3 4	20 40 60 80	4.29E-04 -4.35E-04 -7.60E-05 5.64E-04	0.1134 0.1330 0.1460 0.1560	4.86E-05 -5.78E-05 -1.11E-05 8.80E-05	1.14E-07 1.18E-07 3.59E-09 1.98E-07	6.77E+04 6.77E+04 6.77E+04 6.77E+04	359.462 494.455 595.839 680.144	18.06 -18.31 -3.20 23.74	377.52 476.15 592.64 703.88
modo de vibração	1 2 3 4 5	20 40 60 80 100	4.29E-04 -4.35E-04 -7.60E-05 5.64E-04 -4.88E-04	0.1134 0.1330 0.1460 0.1560 0.1642	4.86E-05 -5.78E-05 -1.11E-05 8.80E-05 -8.01E-05	1.14E-07 1.18E-07 3.59E-09 1.98E-07 1.48E-07	6.77E+04 6.77E+04 6.77E+04 6.77E+04 6.77E+04	359.462 494.455 595.839 680.144 753.667	18.06 -18.31 -3.20 23.74 -20.54	377.52 476.15 592.64 703.88 733.13
modo de vibração F: 2,91Hz	1 2 3 4 5 6	20 40 60 80 100 120	4.29E-04 -4.35E-04 -7.60E-05 5.64E-04 -4.88E-04 -1.27E-04	0.1134 0.1330 0.1460 0.1560 0.1642 0.1712	4.86E-05 -5.78E-05 -1.11E-05 8.80E-05 -8.01E-05 -2.17E-05	1.14E-07 1.18E-07 3.59E-09 1.98E-07 1.48E-07 1.00E-08	6.77E+04 6.77E+04 6.77E+04 6.77E+04 6.77E+04 6.77E+04	359.462 494.455 595.839 680.144 753.667 819.602	18.06 -18.31 -3.20 23.74 -20.54 -5.35	377.52 476.15 592.64 703.88 733.13 814.26
modo de vibração	1 2 3 4 5 6 7	20 40 60 80 100 120 140	4.29E-04 -4.35E-04 -7.60E-05 5.64E-04 -4.88E-04 -1.27E-04 7.31E-04	0.1134 0.1330 0.1460 0.1560 0.1642 0.1712 0.1774	4.86E-05 -5.78E-05 -1.11E-05 8.80E-05 -8.01E-05 -2.17E-05 1.30E-04	1.14E-07 1.18E-07 3.59E-09 1.98E-07 1.48E-07 1.00E-08 3.32E-07	6.77E+04 6.77E+04 6.77E+04 6.77E+04 6.77E+04 6.77E+04 6.77E+04	359.462 494.455 595.839 680.144 753.667 819.602 879.829	18.06 -18.31 -3.20 23.74 -20.54 -5.35 30.77	377.52 476.15 592.64 703.88 733.13 814.26 910.60
modo de vibração F: 2,91Hz	1 2 3 4 5 6 7 8	20 40 60 80 100 120 140	4.29E-04 -4.35E-04 -7.60E-05 5.64E-04 -4.88E-04 -1.27E-04 7.31E-04 2.20E-05	0.1134 0.1330 0.1460 0.1560 0.1642 0.1712 0.1774 0.1829	4.86E-05 -5.78E-05 -1.11E-05 8.80E-05 -8.01E-05 -2.17E-05 1.30E-04 4.02E-06	1.14E-07 1.18E-07 3.59E-09 1.98E-07 1.48E-07 1.00E-08 3.32E-07 3.28E-10	6.77E+04 6.77E+04 6.77E+04 6.77E+04 6.77E+04 6.77E+04 6.77E+04	359.462 494.455 595.839 680.144 753.667 819.602 879.829 935.566	18.06 -18.31 -3.20 23.74 -20.54 -5.35 30.77 1.01	377.52 476.15 592.64 703.88 733.13 814.26 910.60 936.58
modo de vibração F: 2,91Hz T: 0,34s	1 2 3 4 5 6 7 8	20 40 60 80 100 120 140 160 180	4.29E-04 -4.35E-04 -7.60E-05 5.64E-04 -4.88E-04 -1.27E-04 7.31E-04 2.20E-05 -8.06E-04	0.1134 0.1330 0.1460 0.1560 0.1642 0.1712 0.1774 0.1829 0.1879	4.86E-05 -5.78E-05 -1.11E-05 8.80E-05 -8.01E-05 -2.17E-05 1.30E-04 4.02E-06 -1.51E-04	1.14E-07 1.18E-07 3.59E-09 1.98E-07 1.48E-07 1.00E-08 3.32E-07 3.28E-10 4.04E-07	6.77E+04 6.77E+04 6.77E+04 6.77E+04 6.77E+04 6.77E+04 6.77E+04 6.77E+04	359.462 494.455 595.839 680.144 753.667 819.602 879.829 935.566 987.654	18.06 -18.31 -3.20 23.74 -20.54 -5.35 30.77 1.01 -33.92	377.52 476.15 592.64 703.88 733.13 814.26 910.60 936.58 953.73
modo de vibração F: 2,91Hz T: 0,34s	1 2 3 4 5 6 7 8 9	20 40 60 80 100 120 140 160 180 200	4.29E-04 -4.35E-04 -7.60E-05 5.64E-04 -4.88E-04 -1.27E-04 7.31E-04 2.20E-05 -8.06E-04 1.56E-04	0.1134 0.1330 0.1460 0.1560 0.1642 0.1712 0.1774 0.1829 0.1879 0.1925	4.86E-05 -5.78E-05 -1.11E-05 8.80E-05 -8.01E-05 -2.17E-05 1.30E-04 4.02E-06 -1.51E-04 3.00E-05	1.14E-07 1.18E-07 3.59E-09 1.98E-07 1.48E-07 1.00E-08 3.32E-07 3.28E-10 4.04E-07 1.51E-08	6.77E+04 6.77E+04 6.77E+04 6.77E+04 6.77E+04 6.77E+04 6.77E+04 6.77E+04 6.77E+04	359.462 494.455 595.839 680.144 753.667 819.602 879.829 935.566 987.654 1036.700	18.06 -18.31 -3.20 23.74 -20.54 -5.35 30.77 1.01 -33.92 6.57	377.52 476.15 592.64 703.88 733.13 814.26 910.60 936.58 953.73 1,043.27
modo de vibração F: 2,91Hz T: 0,34s	1 2 3 4 5 6 7 8 9 10	20 40 60 80 100 120 140 160 180 200 220	4.29E-04 -4.35E-04 -7.60E-05 5.64E-04 -4.88E-04 -1.27E-04 7.31E-04 2.20E-05 -8.06E-04 1.56E-04 9.44E-04	0.1134 0.1330 0.1460 0.1560 0.1642 0.1712 0.1774 0.1829 0.1879 0.1925 0.1968	4.86E-05 -5.78E-05 -1.11E-05 8.80E-05 -8.01E-05 -2.17E-05 1.30E-04 4.02E-06 -1.51E-04 3.00E-05 1.86E-04	1.14E-07 1.18E-07 3.59E-09 1.98E-07 1.48E-07 1.00E-08 3.32E-07 3.28E-10 4.04E-07 1.51E-08 5.54E-07	6.77E+04 6.77E+04 6.77E+04 6.77E+04 6.77E+04 6.77E+04 6.77E+04 6.77E+04 6.77E+04 6.77E+04	359.462 494.455 595.839 680.144 753.667 819.602 879.829 935.566 987.654 1036.700 1083.163	18.06 -18.31 -3.20 23.74 -20.54 -5.35 30.77 1.01 -33.92 6.57 39.73	377.52 476.15 592.64 703.88 733.13 814.26 910.60 936.58 953.73 1,043.27 1,122.90
modo de vibração F: 2,91Hz T: 0,34s	1 2 3 4 5 6 7 8 9 10 11	20 40 60 80 100 120 140 160 180 200 220 240	4.29E-04 -4.35E-04 -7.60E-05 5.64E-04 -4.88E-04 -1.27E-04 7.31E-04 2.20E-05 -8.06E-04 1.56E-04 9.44E-04 -4.33E-04	0.1134 0.1330 0.1460 0.1560 0.1642 0.1712 0.1774 0.1829 0.1879 0.1925 0.1968 0.2008	4.86E-05 -5.78E-05 -1.11E-05 8.80E-05 -8.01E-05 -2.17E-05 1.30E-04 4.02E-06 -1.51E-04 3.00E-05 1.86E-04 -8.69E-05	1.14E-07 1.18E-07 3.59E-09 1.98E-07 1.48E-07 1.00E-08 3.32E-07 3.28E-10 4.04E-07 1.51E-08 5.54E-07 1.17E-07	6.77E+04 6.77E+04 6.77E+04 6.77E+04 6.77E+04 6.77E+04 6.77E+04 6.77E+04 6.77E+04 6.77E+04 6.77E+04	359.462 494.455 595.839 680.144 753.667 819.602 879.829 935.566 987.654 1036.700 1083.163 1127.396	18.06 -18.31 -3.20 23.74 -20.54 -5.35 30.77 1.01 -33.92 6.57 39.73 -18.22	377.52 476.15 592.64 703.88 733.13 814.26 910.60 936.58 953.73 1,043.27 1,122.90 1,109.17

- $M_i = 621380 \text{ kg};$
- M_i (i = 8) = 678262 kg;
- $A_i/A_0 = 1000/15000 = 0,0667$ $\psi_i = 0,62138$ $\psi_i (i = 8) = 0,67826$

E.3. Modelo B0

	i	z _i (m)	$\mathbf{x_{i}}\left(\mathbf{m}\right)$	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F}_{\mathbf{H}}$	$\overline{\mathbf{X}}_{1}$	$\widehat{X_1}$	Xi (kN)
	1	20	4.89E-04	0.0391	1.91E-05	1.51E-07	6.81E+04	139.90	20.96	160.86
	2	40	9.75E-04	0.0459	4.47E-05	5.98E-07	6.81E+04	192.44	41.79	234.23
	3	60	1.45E-03	0.0503	7.29E-05	1.32E-06	6.81E+04	231.90	62.07	293.96
	4	80	1.91E-03	0.0538	1.02E-04	2.28E-06	6.81E+04	264.71	81.65	346.36
Primeiro modo de	5	100	2.34E-03	0.0566	1.32E-04	3.45E-06	6.81E+04	293.32	100.30	393.62
vibração	6	120	2.75E-03	0.0590	1.62E-04	4.75E-06	6.81E+04	318.98	117.79	436.77
F: 0,59Hz	7	140	3.12E-03	0.0612	1.91E-04	6.14E-06	6.81E+04	342.42	133.90	476.33
·	8	160	3.46E-03	0.0631	2.18E-04	7.55E-06	6.81E+04	364.12	148.48	512.59
T: 1.68s	9	180	3.77E-03	0.0648	2.44E-04	8.93E-06	6.81E+04	384.39	161.42	545.81
ξ: 0,8	10	200	4.03E-03	0.0664	2.67E-04	1.02E-05	6.81E+04	403.48	172.61	576.09
	11	220	4.24E-03	0.0679	2.88E-04	1.13E-05	6.81E+04	421.56	181.87	603.43
	12	240	4.41E-03	0.0692	3.06E-04	1.23E-05	6.81E+04	438.77	189.20	627.97
	13	260	4.54E-03	0.0705	3.20E-04	1.30E-05	6.81E+04	455.23	194.47	649.70
	14	280	4.61E-03	0.0717	3.31E-04	1.34E-05	6.81E+04	471.02	197.68	668.70
	15	300	4.64E-03	0.0729	3.38E-04	1.35E-05	6.81E+04	486.21	198.84	685.05
	i	z _i (m)	$x_i(m)$	β_i	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F}_{\mathbf{H}}$	$\overline{\mathbf{X}}_{1}$	$\widehat{\mathbf{X}_{1}}$	Xi (kN)
	i 1	z _i (m) 20	x _i (m) 1.2E-03	β _i 0.0391	β _i x _i 5.38E-05	ψ _i x _i ² 1.19E-06	F _H 7.46E+03	X̄ ₁	X ₁ 6.46	Xi (kN) 146.36
	1	20	1.2E-03	0.0391	5.38E-05	1.19E-06	7.46E+03	139.90	6.46	146.36
	1 2	20 40	1.2E-03 2.3E-03	0.0391 0.0459	5.38E-05 1.20E-04	1.19E-06 4.29E-06	7.46E+03 7.46E+03	139.90 192.44	6.46 12.26	146.36 204.70
Segundo modo da	1 2 3	20 40 60	1.2E-03 2.3E-03 3.2E-03	0.0391 0.0459 0.0503	5.38E-05 1.20E-04 1.79E-04	1.19E-06 4.29E-06 8.00E-06	7.46E+03 7.46E+03 7.46E+03	139.90 192.44 231.90	6.46 12.26 16.75	146.36 204.70 248.64
Segundo modo de vibração	1 2 3 4	20 40 60 80	1.2E-03 2.3E-03 3.2E-03 3.7E-03	0.0391 0.0459 0.0503 0.0538	5.38E-05 1.20E-04 1.79E-04 2.23E-04	1.19E-06 4.29E-06 8.00E-06 1.09E-05	7.46E+03 7.46E+03 7.46E+03 7.46E+03	139.90 192.44 231.90 264.71	6.46 12.26 16.75 19.51	146.36 204.70 248.64 284.22
modo de vibração	1 2 3 4 5	20 40 60 80 100	1.2E-03 2.3E-03 3.2E-03 3.7E-03 3.8E-03	0.0391 0.0459 0.0503 0.0538 0.0566	5.38E-05 1.20E-04 1.79E-04 2.23E-04 2.44E-04	1.19E-06 4.29E-06 8.00E-06 1.09E-05 1.17E-05	7.46E+03 7.46E+03 7.46E+03 7.46E+03 7.46E+03	139.90 192.44 231.90 264.71 293.32	6.46 12.26 16.75 19.51 20.28	146.36 204.70 248.64 284.22 313.61
modo de vibração F: 0,60Hz	1 2 3 4 5 6	20 40 60 80 100 120	1,2E-03 2,3E-03 3,2E-03 3,7E-03 3,8E-03 3,6E-03	0.0391 0.0459 0.0503 0.0538 0.0566 0.0590	5.38E-05 1.20E-04 1.79E-04 2.23E-04 2.44E-04 2.39E-04	1.19E-06 4.29E-06 8.00E-06 1.09E-05 1.17E-05 1.03E-05	7.46E+03 7.46E+03 7.46E+03 7.46E+03 7.46E+03	139.90 192.44 231.90 264.71 293.32 318.98	6.46 12.26 16.75 19.51 20.28 19.03	146.36 204.70 248.64 284.22 313.61 338.02
modo de vibração	1 2 3 4 5 6 7	20 40 60 80 100 120 140	1.2E-03 2.3E-03 3.2E-03 3.7E-03 3.8E-03 3.6E-03 3.0E-03	0.0391 0.0459 0.0503 0.0538 0.0566 0.0590 0.0612	5.38E-05 1.20E-04 1.79E-04 2.23E-04 2.44E-04 2.39E-04 2.07E-04	1.19E-06 4.29E-06 8.00E-06 1.09E-05 1.17E-05 1.03E-05 7.20E-06	7.46E+03 7.46E+03 7.46E+03 7.46E+03 7.46E+03 7.46E+03	139.90 192.44 231.90 264.71 293.32 318.98 342.42	6.46 12.26 16.75 19.51 20.28 19.03 15.88	146.36 204.70 248.64 284.22 313.61 338.02 358.31
modo de vibração F: 0,60Hz	1 2 3 4 5 6 7 8	20 40 60 80 100 120 140	1.2E-03 2.3E-03 3.2E-03 3.7E-03 3.8E-03 3.6E-03 3.0E-03 2.1E-03	0.0391 0.0459 0.0503 0.0538 0.0566 0.0590 0.0612 0.0631	5.38E-05 1.20E-04 1.79E-04 2.23E-04 2.44E-04 2.39E-04 2.07E-04	1.19E-06 4.29E-06 8.00E-06 1.09E-05 1.17E-05 1.03E-05 7.20E-06 3.56E-06	7.46E+03 7.46E+03 7.46E+03 7.46E+03 7.46E+03 7.46E+03 7.46E+03	139.90 192.44 231.90 264.71 293.32 318.98 342.42 364.12	6.46 12.26 16.75 19.51 20.28 19.03 15.88 11.17	146.36 204.70 248.64 284.22 313.61 338.02 358.31 375.28
modo de vibração F: 0,60Hz T: 1.67s	1 2 3 4 5 6 7 8	20 40 60 80 100 120 140 160 180	1.2E-03 2.3E-03 3.2E-03 3.7E-03 3.6E-03 3.0E-03 2.1E-03 1.0E-03	0.0391 0.0459 0.0503 0.0538 0.0566 0.0590 0.0612 0.0631 0.0648	5.38E-05 1.20E-04 1.79E-04 2.23E-04 2.44E-04 2.39E-04 2.07E-04 1.50E-04 7.43E-05	1.19E-06 4.29E-06 8.00E-06 1.09E-05 1.17E-05 1.03E-05 7.20E-06 3.56E-06 8.28E-07	7.46E+03 7.46E+03 7.46E+03 7.46E+03 7.46E+03 7.46E+03 7.46E+03 7.46E+03	139.90 192.44 231.90 264.71 293.32 318.98 342.42 364.12 384.39	6.46 12.26 16.75 19.51 20.28 19.03 15.88 11.17 5.39	146.36 204.70 248.64 284.22 313.61 338.02 358.31 375.28 389.78
modo de vibração F: 0,60Hz T: 1.67s	1 2 3 4 5 6 7 8 9	20 40 60 80 100 120 140 160 180 200	1.2E-03 2.3E-03 3.2E-03 3.7E-03 3.8E-03 3.6E-03 2.1E-03 1.0E-03 -2.0E-04	0.0391 0.0459 0.0503 0.0538 0.0566 0.0590 0.0612 0.0631 0.0648 0.0664	5.38E-05 1.20E-04 1.79E-04 2.23E-04 2.44E-04 2.39E-04 2.07E-04 1.50E-04 7.43E-05 -1.26E-05	1.19E-06 4.29E-06 8.00E-06 1.09E-05 1.17E-05 1.03E-05 7.20E-06 3.56E-06 8.28E-07 2.27E-08	7.46E+03 7.46E+03 7.46E+03 7.46E+03 7.46E+03 7.46E+03 7.46E+03 7.46E+03 7.46E+03	139.90 192.44 231.90 264.71 293.32 318.98 342.42 364.12 384.39 403.48	6.46 12.26 16.75 19.51 20.28 19.03 15.88 11.17 5.39 -0.89	146.36 204.70 248.64 284.22 313.61 338.02 358.31 375.28 389.78 402.58
modo de vibração F: 0,60Hz T: 1.67s	1 2 3 4 5 6 7 8 9	20 40 60 80 100 120 140 160 180 200 220	1.2E-03 2.3E-03 3.2E-03 3.7E-03 3.6E-03 3.0E-03 2.1E-03 1.0E-03 -2.0E-04 -1.4E-03	0.0391 0.0459 0.0503 0.0538 0.0566 0.0590 0.0612 0.0631 0.0648 0.0664 0.0679	5.38E-05 1.20E-04 1.79E-04 2.23E-04 2.44E-04 2.39E-04 1.50E-04 7.43E-05 -1.26E-05 -1.02E-04	1.19E-06 4.29E-06 8.00E-06 1.09E-05 1.17E-05 1.03E-05 7.20E-06 3.56E-06 8.28E-07 2.27E-08 1.43E-06	7.46E+03 7.46E+03 7.46E+03 7.46E+03 7.46E+03 7.46E+03 7.46E+03 7.46E+03 7.46E+03 7.46E+03	139.90 192.44 231.90 264.71 293.32 318.98 342.42 364.12 384.39 403.48 421.56	6.46 12.26 16.75 19.51 20.28 19.03 15.88 11.17 5.39 -0.89 -7.07	146.36 204.70 248.64 284.22 313.61 338.02 358.31 375.28 389.78 402.58 414.49
modo de vibração F: 0,60Hz T: 1.67s	1 2 3 4 5 6 7 8 9 10	20 40 60 80 100 120 140 160 180 200 220 240	1.2E-03 2.3E-03 3.2E-03 3.7E-03 3.6E-03 3.0E-03 2.1E-03 1.0E-03 -2.0E-04 -1.4E-03 -2.4E-03	0.0391 0.0459 0.0503 0.0538 0.0566 0.0590 0.0612 0.0631 0.0648 0.0664 0.0679 0.0692	5.38E-05 1.20E-04 1.79E-04 2.23E-04 2.44E-04 2.39E-04 1.50E-04 7.43E-05 -1.26E-05 -1.02E-04 -1.86E-04	1.19E-06 4.29E-06 8.00E-06 1.09E-05 1.17E-05 1.03E-05 7.20E-06 3.56E-06 8.28E-07 2.27E-08 1.43E-06 4.53E-06	7.46E+03 7.46E+03 7.46E+03 7.46E+03 7.46E+03 7.46E+03 7.46E+03 7.46E+03 7.46E+03 7.46E+03 7.46E+03	139.90 192.44 231.90 264.71 293.32 318.98 342.42 364.12 384.39 403.48 421.56 438.77	6.46 12.26 16.75 19.51 20.28 19.03 15.88 11.17 5.39 -0.89 -7.07 -12.60	146.36 204.70 248.64 284.22 313.61 338.02 358.31 375.28 389.78 402.58 414.49 426.18

	i	z _i (m)	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{X_1}$	Xi (kN)
	1	20	-2.04E-03	0.0391	-7.97E-05	2.62E-06	-1.01E+04	139.90	12.94	152.85
	2	40	-3.45E-03	0.0459	-1.58E-04	7.49E-06	-1.01E+04	192.44	21.90	214.34
	3	60	-3.82E-03	0.0503	-1.92E-04	9.18E-06	-1.01E+04	231.90	24.24	256.14
	4	80	-3.10E-03	0.0538	-1.67E-04	6.04E-06	-1.01E+04	264.71	19.67	284.38
Terceiro modo de	5	100	-1.51E-03	0.0566	-8.55E-05	1.44E-06	-1.01E+04	293.32	9.59	302.91
vibração	6	120	4.87E-04	0.0590	2.87E-05	1.49E-07	-1.01E+04	318.98	-3.09	315.89
F: 2,51Hz	7	140	2.34E-03	0.0612	1.43E-04	3.44E-06	-1.01E+04	342.42	-14.83	327.59
	8	160	3.54E-03	0.0631	2.23E-04	7.89E-06	-1.01E+04	364.12	-22.48	341.64
T: 0,40s	9	180	3.81E-03	0.0648	2.47E-04	9.15E-06	-1.01E+04	384.39	-24.20	360.19
ξ: 0,6	10	200	3.10E-03	0.0664	2.06E-04	6.07E-06	-1.01E+04	403.48	-19.71	383.77
	11	220	1.62E-03	0.0679	1.10E-04	1.65E-06	-1.01E+04	421.56	-10.29	411.27
	12	240	-2.57E-04	0.0692	-1.78E-05	4.16E-08	-1.01E+04	438.77	1.63	440.41
	13	260	-2.06E-03	0.0705	-1.45E-04	2.66E-06	-1.01E+04	455.23	13.05	468.28
	14	280	-3.36E-03	0.0717	-2.41E-04	7.09E-06	-1.01E+04	471.02	21.31	492.32
	15	300	-3.87E-03	0.0729	-2.82E-04	9.41E-06	-1.01E+04	486.21	24.54	510.75
	i	$\mathbf{z_{i}}(\mathbf{m})$	$\mathbf{x_{i}}\left(\mathbf{m}\right)$	β_i	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{\mathbf{X_1}}$	$\widehat{\mathbf{X}_{1}}$	Xi (kN)
1		1 (/		F1	Plal	Ψi^i	* H	2×1	Λ_1	2XI (KI1)
	1	20	2.39E-03	0.0391	9.34E-05	3.60E-06	5.97E+02	139.90	0.90	140.80
	1 2									
		20	2.39E-03	0.0391	9.34E-05	3.60E-06	5.97E+02	139.90	0.90	140.80
04	2	20 40	2.39E-03 3.25E-03	0.0391 0.0459	9.34E-05 1.49E-04	3.60E-06 6.64E-06	5.97E+02 5.97E+02	139.90 192.44	0.90 1.22	140.80 193.66
Quarto modo de	2	20 40 60	2.39E-03 3.25E-03 2.12E-03	0.0391 0.0459 0.0503	9.34E-05 1.49E-04 1.07E-04	3.60E-06 6.64E-06 2.83E-06	5.97E+02 5.97E+02 5.97E+02	139.90 192.44 231.90	0.90 1.22 0.80	140.80 193.66 232.69
Quarto modo de vibração	2 3 4	20 40 60 80	2.39E-03 3.25E-03 2.12E-03 -1.65E-04	0.0391 0.0459 0.0503 0.0538	9.34E-05 1.49E-04 1.07E-04 -8.87E-06	3.60E-06 6.64E-06 2.83E-06 1.71E-08	5.97E+02 5.97E+02 5.97E+02 5.97E+02	139.90 192.44 231.90 264.71	0.90 1.22 0.80 -0.06	140.80 193.66 232.69 264.65
modo de vibração	2 3 4 5	20 40 60 80 100	2.39E-03 3.25E-03 2.12E-03 -1.65E-04 -2.32E-03	0.0391 0.0459 0.0503 0.0538 0.0566	9.34E-05 1.49E-04 1.07E-04 -8.87E-06 -1.31E-04	3.60E-06 6.64E-06 2.83E-06 1.71E-08 3.39E-06	5.97E+02 5.97E+02 5.97E+02 5.97E+02 5.97E+02	139.90 192.44 231.90 264.71 293.32	0.90 1.22 0.80 -0.06 -0.87	140.80 193.66 232.69 264.65 292.45
modo de vibração F: 3,04Hz	2 3 4 5 6	20 40 60 80 100 120	2.39E-03 3.25E-03 2.12E-03 -1.65E-04 -2.32E-03 -3.21E-03	0.0391 0.0459 0.0503 0.0538 0.0566 0.0590	9.34E-05 1.49E-04 1.07E-04 -8.87E-06 -1.31E-04 -1.89E-04	3.60E-06 6.64E-06 2.83E-06 1.71E-08 3.39E-06 6.48E-06	5.97E+02 5.97E+02 5.97E+02 5.97E+02 5.97E+02 5.97E+02	139.90 192.44 231.90 264.71 293.32 318.98	0.90 1.22 0.80 -0.06 -0.87 -1.21	140.80 193.66 232.69 264.65 292.45 317.78
modo de vibração	2 3 4 5 6 7	20 40 60 80 100 120 140	2.39E-03 3.25E-03 2.12E-03 -1.65E-04 -2.32E-03 -3.21E-03 -2.39E-03	0.0391 0.0459 0.0503 0.0538 0.0566 0.0590 0.0612	9.34E-05 1.49E-04 1.07E-04 -8.87E-06 -1.31E-04 -1.89E-04 -1.46E-04	3.60E-06 6.64E-06 2.83E-06 1.71E-08 3.39E-06 6.48E-06 3.60E-06	5.97E+02 5.97E+02 5.97E+02 5.97E+02 5.97E+02 5.97E+02 5.97E+02	139.90 192.44 231.90 264.71 293.32 318.98 342.42	0.90 1.22 0.80 -0.06 -0.87 -1.21 -0.90	140.80 193.66 232.69 264.65 292.45 317.78 341.52
modo de vibração F: 3,04Hz T: 0,33s	2 3 4 5 6 7 8	20 40 60 80 100 120 140	2.39E-03 3.25E-03 2.12E-03 -1.65E-04 -2.32E-03 -3.21E-03 -2.39E-03 -3.54E-04	0.0391 0.0459 0.0503 0.0538 0.0566 0.0590 0.0612 0.0631	9.34E-05 1.49E-04 1.07E-04 -8.87E-06 -1.31E-04 -1.89E-04 -1.46E-04 -2.23E-05	3.60E-06 6.64E-06 2.83E-06 1.71E-08 3.39E-06 6.48E-06 3.60E-06 7.89E-08	5.97E+02 5.97E+02 5.97E+02 5.97E+02 5.97E+02 5.97E+02 5.97E+02 5.97E+02	139.90 192.44 231.90 264.71 293.32 318.98 342.42 364.12	0.90 1.22 0.80 -0.06 -0.87 -1.21 -0.90 -0.13	140.80 193.66 232.69 264.65 292.45 317.78 341.52 363.98
modo de vibração F: 3,04Hz	2 3 4 5 6 7 8	20 40 60 80 100 120 140 160 180	2.39E-03 3.25E-03 2.12E-03 -1.65E-04 -2.32E-03 -3.21E-03 -2.39E-03 -3.54E-04 1.81E-03	0.0391 0.0459 0.0503 0.0538 0.0566 0.0590 0.0612 0.0631 0.0648	9.34E-05 1.49E-04 1.07E-04 -8.87E-06 -1.31E-04 -1.89E-04 -1.46E-04 -2.23E-05 1.17E-04	3.60E-06 6.64E-06 2.83E-06 1.71E-08 3.39E-06 6.48E-06 3.60E-06 7.89E-08 2.07E-06	5.97E+02 5.97E+02 5.97E+02 5.97E+02 5.97E+02 5.97E+02 5.97E+02 5.97E+02 5.97E+02	139.90 192.44 231.90 264.71 293.32 318.98 342.42 364.12 384.39	0.90 1.22 0.80 -0.06 -0.87 -1.21 -0.90 -0.13 0.68	140.80 193.66 232.69 264.65 292.45 317.78 341.52 363.98 385.07
modo de vibração F: 3,04Hz T: 0,33s	2 3 4 5 6 7 8 9	20 40 60 80 100 120 140 160 180 200	2.39E-03 3.25E-03 2.12E-03 -1.65E-04 -2.32E-03 -3.21E-03 -3.54E-04 1.81E-03 3.08E-03	0.0391 0.0459 0.0503 0.0538 0.0566 0.0590 0.0612 0.0631 0.0648 0.0664	9.34E-05 1.49E-04 1.07E-04 -8.87E-06 -1.31E-04 -1.89E-04 -1.46E-04 -2.23E-05 1.17E-04 2.05E-04	3.60E-06 6.64E-06 2.83E-06 1.71E-08 3.39E-06 6.48E-06 3.60E-06 7.89E-08 2.07E-06 5.98E-06	5.97E+02 5.97E+02 5.97E+02 5.97E+02 5.97E+02 5.97E+02 5.97E+02 5.97E+02 5.97E+02 5.97E+02	139.90 192.44 231.90 264.71 293.32 318.98 342.42 364.12 384.39 403.48	0.90 1.22 0.80 -0.06 -0.87 -1.21 -0.90 -0.13 0.68 1.16	140.80 193.66 232.69 264.65 292.45 317.78 341.52 363.98 385.07 404.64
modo de vibração F: 3,04Hz T: 0,33s	2 3 4 5 6 7 8 9 10	20 40 60 80 100 120 140 160 180 200 220	2.39E-03 3.25E-03 2.12E-03 -1.65E-04 -2.32E-03 -3.21E-03 -3.54E-04 1.81E-03 3.08E-03 2.91E-03	0.0391 0.0459 0.0503 0.0538 0.0566 0.0590 0.0612 0.0631 0.0648 0.0664 0.0679	9.34E-05 1.49E-04 1.07E-04 -8.87E-06 -1.31E-04 -1.89E-04 -1.46E-04 -2.23E-05 1.17E-04 2.05E-04 1.97E-04	3.60E-06 6.64E-06 2.83E-06 1.71E-08 3.39E-06 6.48E-06 3.60E-06 7.89E-08 2.07E-06 5.98E-06 5.33E-06	5.97E+02 5.97E+02 5.97E+02 5.97E+02 5.97E+02 5.97E+02 5.97E+02 5.97E+02 5.97E+02 5.97E+02 5.97E+02	139.90 192.44 231.90 264.71 293.32 318.98 342.42 364.12 384.39 403.48 421.56	0.90 1.22 0.80 -0.06 -0.87 -1.21 -0.90 -0.13 0.68 1.16 1.09	140.80 193.66 232.69 264.65 292.45 317.78 341.52 363.98 385.07 404.64 422.65
modo de vibração F: 3,04Hz T: 0,33s	2 3 4 5 6 7 8 9 10 11	20 40 60 80 100 120 140 160 180 200 220 240	2.39E-03 3.25E-03 2.12E-03 -1.65E-04 -2.32E-03 -3.21E-03 -3.54E-04 1.81E-03 3.08E-03 2.91E-03 1.43E-03	0.0391 0.0459 0.0503 0.0538 0.0566 0.0590 0.0612 0.0631 0.0648 0.0664 0.0679 0.0692	9.34E-05 1.49E-04 1.07E-04 -8.87E-06 -1.31E-04 -1.89E-04 -1.46E-04 -2.23E-05 1.17E-04 2.05E-04 1.97E-04 9.88E-05	3.60E-06 6.64E-06 2.83E-06 1.71E-08 3.39E-06 6.48E-06 3.60E-06 7.89E-08 2.07E-06 5.98E-06 5.33E-06 1.28E-06	5.97E+02 5.97E+02 5.97E+02 5.97E+02 5.97E+02 5.97E+02 5.97E+02 5.97E+02 5.97E+02 5.97E+02 5.97E+02 5.97E+02	139.90 192.44 231.90 264.71 293.32 318.98 342.42 364.12 384.39 403.48 421.56 438.77	0.90 1.22 0.80 -0.06 -0.87 -1.21 -0.90 -0.13 0.68 1.16 1.09 0.54	140.80 193.66 232.69 264.65 292.45 317.78 341.52 363.98 385.07 404.64 422.65 439.31

	i	z _i (m)	$x_i(m)$	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F}_{\mathbf{H}}$	$\overline{X_1}$	$\widehat{\mathbf{X}_1}$	Xi (kN)
	1	20	-2.52E-03	0.0391	-9.84E-05	3.98E-06	-7.90E+03	139.90	12.51	152.41
	2	40	-2.22E-03	0.0459	-1.02E-04	3.10E-06	-7.90E+03	192.44	11.04	203.47
	3	60	4.05E-04	0.0503	2.04E-05	1.03E-07	-7.90E+03	231.90	-2.01	229.88
	4	80	2.54E-03	0.0538	1.36E-04	4.05E-06	-7.90E+03	264.71	-12.61	252.09
Quinto modo de	5	100	2.28E-03	0.0566	1.29E-04	3.27E-06	-7.90E+03	293.32	-11.34	281.98
vibração	6	120	2.80E-05	0.0590	1.65E-06	4.94E-10	-7.90E+03	318.98	-0.14	318.84
F: 3,35Hz	7	140	-2.17E-03	0.0612	-1.33E-04	2.97E-06	-7.90E+03	342.42	10.81	353.23
T: 0,30s	8	160	-2.53E-03	0.0631	-1.60E-04	4.03E-06	-7.90E+03	364.12	12.59	376.70
1. 0,508	9	180	-9.49E-04	0.0648	-6.15E-05	5.67E-07	-7.90E+03	384.39	4.72	389.11
ξ: 0,6	10	200	1.28E-03	0.0664	8.46E-05	1.02E-06	-7.90E+03	403.48	-6.34	397.14
	11	220	2.55E-03	0.0679	1.73E-04	4.08E-06	-7.90E+03	421.56	-12.67	408.89
	12	240	2.07E-03	0.0692	1.43E-04	2.69E-06	-7.90E+03	438.77	-10.29	428.49
	13	260	2.59E-04	0.0705	1.83E-05	4.22E-08	-7.90E+03	455.23	-1.29	453.94
	14	280	-1.67E-03	0.0717	-1.20E-04	1.76E-06	-7.90E+03	471.02	8.33	479.34
	15	300	-2.56E-03	0.0729	-1.87E-04	4.14E-06	-7.90E+03	486.21	12.75	498.95
			210 02 00							
	i	z _i (m)	x _i (m)	βί	$\beta_i x_i$	$\psi_i x_i^2$	F _H	$\overline{X_1}$	$\widehat{\mathbf{X}}_{1}$	Xi (kN)
		Zi							X ₁ -74.98	
	i	z _i (m)	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$		Xi (kN)
	i 1	z _i (m) 20	x _i (m) -8.54E-07	β _i 0.0391	β _i x _i -3.34E-08	ψ _i x _i ² 4.59E-13	F _H 1.40E+08	X̄₁ 139.90	-74.98	Xi (kN) 64.92
	i 1 2	z _i (m) 20 40	x _i (m) -8.54E-07 2.68E-07	β _i 0.0391 0.0459	β _i x _i -3.34E-08 1.23E-08	ψ _i x _i ² 4.59E-13 4.53E-14	F _H 1.40E+08 1.40E+08	X ₁ 139.90 192.44	-74.98 23.57	Xi (kN) 64.92 216.01
Sexto modo de	i 1 2 3	z _i (m) 20 40 60	x _i (m) -8.54E-07 2.68E-07 1.33E-06	β _i 0.0391 0.0459 0.0503	β _i x _i -3.34E-08 1.23E-08 6.71E-08	ψ _i x _i ² 4.59E-13 4.53E-14 1.12E-12	F _H 1.40E+08 1.40E+08 1.40E+08	\bar{X}_1 139.90 192.44 231.90	-74.98 23.57 117.08	Xi (kN) 64.92 216.01 348.98
Sexto modo de vibração	i 1 2 3 4	z _i (m) 20 40 60 80	x _i (m) -8.54E-07 2.68E-07 1.33E-06 1.07E-06	β _i 0.0391 0.0459 0.0503 0.0538	β _i x _i -3.34E-08 1.23E-08 6.71E-08 5.75E-08	ψ _i x _i ² 4.59E-13 4.53E-14 1.12E-12 7.19E-13	F _H 1.40E+08 1.40E+08 1.40E+08 1.40E+08	X̄1 139.90 192.44 231.90 264.71	-74.98 23.57 117.08 93.89	Xi (kN) 64.92 216.01 348.98 358.60
modo de	i 1 2 3 4 5	z _i (m) 20 40 60 80 100	x _i (m) -8.54E-07 2.68E-07 1.33E-06 1.07E-06 7.10E-07	β _i 0.0391 0.0459 0.0503 0.0538 0.0566	β _i x _i -3.34E-08 1.23E-08 6.71E-08 5.75E-08 4.02E-08	ψ _i x _i ² 4.59E-13 4.53E-14 1.12E-12 7.19E-13 3.17E-13	F _H 1.40E+08 1.40E+08 1.40E+08 1.40E+08 1.40E+08	\overline{X}_1 139.90 192.44 231.90 264.71 293.32	-74.98 23.57 117.08 93.89 62.33	Xi (kN) 64.92 216.01 348.98 358.60 355.65
modo de vibração F: 3,50Hz	i 1 2 3 4 5 6	z _i (m) 20 40 60 80 100	x _i (m) -8.54E-07 2.68E-07 1.33E-06 1.07E-06 7.10E-07 3.52E-07	β _i 0.0391 0.0459 0.0503 0.0538 0.0566 0.0590	β _i x _i -3.34E-08 1.23E-08 6.71E-08 5.75E-08 4.02E-08 2.08E-08	ψ _i x _i ² 4.59E-13 4.53E-14 1.12E-12 7.19E-13 3.17E-13 7.81E-14	F _H 1.40E+08 1.40E+08 1.40E+08 1.40E+08 1.40E+08 1.40E+08	\overline{X}_1 139.90 192.44 231.90 264.71 293.32 318.98	-74.98 23.57 117.08 93.89 62.33 30.94	Xi (kN) 64.92 216.01 348.98 358.60 355.65 349.93
modo de vibração	i 1 2 3 4 5 6	z _i (m) 20 40 60 80 100 120	x _i (m) -8.54E-07 2.68E-07 1.33E-06 1.07E-06 7.10E-07 3.52E-07 9.11E-07	β _i 0.0391 0.0459 0.0503 0.0538 0.0566 0.0590 0.0612	β ₁ x ₁ -3.34E-08 1.23E-08 6.71E-08 5.75E-08 4.02E-08 2.08E-08 5.57E-08	ψ _i x _i ² 4.59E-13 4.53E-14 1.12E-12 7.19E-13 3.17E-13 7.81E-14 5.22E-13	F _H 1.40E+08 1.40E+08 1.40E+08 1.40E+08 1.40E+08 1.40E+08 1.40E+08	\overline{X}_1 139.90 192.44 231.90 264.71 293.32 318.98 342.42	-74.98 23.57 117.08 93.89 62.33 30.94 79.99	Xi (kN) 64.92 216.01 348.98 358.60 355.65 349.93 422.41
modo de vibração F: 3,50Hz	i 1 2 3 4 5 6 7 8	z _i (m) 20 40 60 80 100 120 140	x _i (m) -8.54E-07 2.68E-07 1.33E-06 1.07E-06 7.10E-07 3.52E-07 9.11E-07 1.51E-06	β _i 0.0391 0.0459 0.0503 0.0538 0.0566 0.0590 0.0612 0.0631	β _i x _i -3.34E-08 1.23E-08 6.71E-08 5.75E-08 4.02E-08 2.08E-08 5.57E-08 9.55E-08	ψ _i x _i ² 4.59E-13 4.53E-14 1.12E-12 7.19E-13 3.17E-13 7.81E-14 5.22E-13 1.44E-12	F _H 1.40E+08 1.40E+08 1.40E+08 1.40E+08 1.40E+08 1.40E+08 1.40E+08 1.40E+08	\overline{X}_1 139.90 192.44 231.90 264.71 293.32 318.98 342.42 364.12	-74.98 23.57 117.08 93.89 62.33 30.94 79.99 132.98	Xi (kN) 64.92 216.01 348.98 358.60 355.65 349.93 422.41 497.09
modo de vibração F: 3,50Hz T: 0,29s	i 1 2 3 4 5 6 7 8	z _i (m) 20 40 60 80 100 120 140 160 180	x _i (m) -8.54E-07 2.68E-07 1.33E-06 1.07E-06 7.10E-07 3.52E-07 9.11E-07 1.51E-06 1.56E-06	β _i 0.0391 0.0459 0.0503 0.0538 0.0566 0.0590 0.0612 0.0631 0.0648	β _i x _i -3.34E-08 1.23E-08 6.71E-08 5.75E-08 4.02E-08 2.08E-08 5.57E-08 9.55E-08 1.01E-07	ψ _i x _i ² 4.59E-13 4.53E-14 1.12E-12 7.19E-13 3.17E-13 7.81E-14 5.22E-13 1.44E-12 1.54E-12	F _H 1.40E+08 1.40E+08 1.40E+08 1.40E+08 1.40E+08 1.40E+08 1.40E+08 1.40E+08 1.40E+08	\overline{X}_1 139.90 192.44 231.90 264.71 293.32 318.98 342.42 364.12 384.39	-74.98 23.57 117.08 93.89 62.33 30.94 79.99 132.98 137.37	Xi (kN) 64.92 216.01 348.98 358.60 355.65 349.93 422.41 497.09 521.76
modo de vibração F: 3,50Hz T: 0,29s	i 1 2 3 4 5 6 7 8 9	z _i (m) 20 40 60 80 100 120 140 160 180	x _i (m) -8.54E-07 2.68E-07 1.33E-06 1.07E-06 7.10E-07 3.52E-07 9.11E-07 1.51E-06 1.56E-06 7.19E-07	β _i 0.0391 0.0459 0.0503 0.0538 0.0566 0.0590 0.0612 0.0631 0.0648 0.0664	β _i x _i -3.34E-08 1.23E-08 6.71E-08 5.75E-08 4.02E-08 2.08E-08 9.55E-08 1.01E-07 4.77E-08	ψ _i x _i ² 4.59E-13 4.53E-14 1.12E-12 7.19E-13 3.17E-13 7.81E-14 5.22E-13 1.44E-12 1.54E-12 3.25E-13	F _H 1.40E+08 1.40E+08 1.40E+08 1.40E+08 1.40E+08 1.40E+08 1.40E+08 1.40E+08 1.40E+08	\overline{X}_1 139.90 192.44 231.90 264.71 293.32 318.98 342.42 364.12 384.39 403.48	-74.98 23.57 117.08 93.89 62.33 30.94 79.99 132.98 137.37 63.15	Xi (kN) 64.92 216.01 348.98 358.60 355.65 349.93 422.41 497.09 521.76 466.63
modo de vibração F: 3,50Hz T: 0,29s	i 1 2 3 4 5 6 7 8 9 10	z _i (m) 20 40 60 80 100 120 140 160 180 200	x _i (m) -8.54E-07 2.68E-07 1.33E-06 1.07E-06 7.10E-07 3.52E-07 9.11E-07 1.51E-06 7.19E-07 2.43E-08	β _i 0.0391 0.0459 0.0503 0.0538 0.0566 0.0590 0.0612 0.0631 0.0648 0.0664 0.0679	β _i x _i -3.34E-08 1.23E-08 6.71E-08 5.75E-08 4.02E-08 2.08E-08 5.57E-08 9.55E-08 1.01E-07 4.77E-08 1.65E-09	ψ _i x _i ² 4.59E-13 4.53E-14 1.12E-12 7.19E-13 3.17E-13 7.81E-14 5.22E-13 1.44E-12 1.54E-12 3.25E-13 3.70E-16	F _H 1.40E+08	\overline{X}_1 139.90 192.44 231.90 264.71 293.32 318.98 342.42 364.12 384.39 403.48 421.56	-74.98 23.57 117.08 93.89 62.33 30.94 79.99 132.98 137.37 63.15 2.13	Xi (kN) 64.92 216.01 348.98 358.60 355.65 349.93 422.41 497.09 521.76 466.63 423.69
modo de vibração F: 3,50Hz T: 0,29s	i 1 2 3 4 5 6 7 8 9 10 11	z _i (m) 20 40 60 80 100 120 140 160 180 200 220	x _i (m) -8.54E-07 2.68E-07 1.33E-06 1.07E-06 7.10E-07 3.52E-07 9.11E-07 1.51E-06 7.19E-07 2.43E-08 -2.73E-07	β _i 0.0391 0.0459 0.0503 0.0538 0.0566 0.0590 0.0612 0.0631 0.0648 0.0664 0.0679 0.0692	β ₁ x ₁ -3.34E-08 1.23E-08 6.71E-08 5.75E-08 4.02E-08 2.08E-08 9.55E-08 1.01E-07 4.77E-08 1.65E-09 -1.89E-08	ψ _i x _i ² 4.59E-13 4.53E-14 1.12E-12 7.19E-13 3.17E-13 7.81E-14 5.22E-13 1.44E-12 1.54E-12 3.25E-13 3.70E-16 4.69E-14	F _H 1.40E+08 1.40E+08	\overline{X}_1 139.90 192.44 231.90 264.71 293.32 318.98 342.42 364.12 384.39 403.48 421.56 438.77	-74.98 23.57 117.08 93.89 62.33 30.94 79.99 132.98 137.37 63.15 2.13 -23.98	Xi (kN) 64.92 216.01 348.98 358.60 355.65 349.93 422.41 497.09 521.76 466.63 423.69 414.80

	i	z _i (m)	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	F _H	$\overline{X_1}$	$\widehat{\mathbf{X}}_{1}$	Xi (kN)
	1	20	2.27E-03	0.0391	8.87E-05	3.24E-06	-2.76E+03	139.90	-3.95	135.95
	2	40	6.96E-04	0.0459	3.19E-05	3.05E-07	-2.76E+03	192.44	-1.21	191.23
	3	60	-2.07E-03	0.0503	-1.04E-04	2.69E-06	-2.76E+03	231.90	3.60	235.50
Sétimo	4	80	-1.76E-03	0.0538	-9.45E-05	1.95E-06	-2.76E+03	264.71	3.06	267.77
modo de	5	100	1.00E-03	0.0566	5.68E-05	6.33E-07	-2.76E+03	293.32	-1.75	291.58
vibração	6	120	2.41E-03	0.0590	1.42E-04	3.67E-06	-2.76E+03	318.98	-4.20	314.78
F: 3,53Hz	7	140	7.75E-04	0.0612	4.74E-05	3.78E-07	-2.76E+03	342.42	-1.35	341.07
m 0 20	8	160	-1.72E-03	0.0631	-1.08E-04	1.85E-06	-2.76E+03	364.12	2.99	367.10
T: 0,28s	9	180	-2.24E-03	0.0648	-1.45E-04	3.16E-06	-2.76E+03	384.39	3.90	388.28
ξ: 0,6	10	200	-4.75E-04	0.0664	-3.15E-05	1.42E-07	-2.76E+03	403.48	0.83	404.30
	11	220	1.68E-03	0.0679	1.14E-04	1.77E-06	-2.76E+03	421.56	-2.92	418.64
	12	240	2.23E-03	0.0692	1.54E-04	3.13E-06	-2.76E+03	438.77	-3.88	434.89
	13	260	8.24E-04	0.0705	5.81E-05	4.27E-07	-2.76E+03	455.23	-1.43	453.80
	14	280	-1.22E-03	0.0717	-8.75E-05	9.37E-07	-2.76E+03	471.02	2.12	473.14
	15	300	-2.25E-03	0.0729	-1.64E-04	3.19E-06	-2.76E+03	486.21	3.92	490.13
	i	$\mathbf{z_{i}}\left(\mathbf{m}\right)$	$x_i(m)$	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{\mathbf{X}_{\mathbf{i}}}$	Xi (kN)
	1	20	-7.77E-07	0.0391	-3.04E-08	3.80E-13	-1.05E+08	139.90	51.21	191.11
	2	40	5.85E-07	0.0459	2.68E-08	2.15E-13	-1.05E+08	192.44	-38.55	153.89
	3	60	1.08E-06	0.0503	5.46E-08	7.40E-13	-1.05E+08	231.90	-71.47	160.43
0:4	4	80	-1.63E-07	0.0538	-8.74E-09	1.66E-14	-1.05E+08	264.71	10.72	275.43
Oitavo modo de	5	100	-7.26E-07	0.0566	-4.11E-08	3.31E-13	-1.05E+08	293.32	47.83	341.15
vibração	6	120	-4.02E-08	0.0590	-2.37E-09	1.02E-15	-1.05E+08	318.98	2.65	321.63
F: 3,623Hz	7	140	-1.53E-07	0.0612	-9.37E-09	1.48E-14	-1.05E+08	342.42	10.10	352.52
1.3,023112	8	160	-1.04E-06	0.0631	-6.55E-08	6.78E-13	-1.05E+08	364.12	68.43	432.55
T: 0,28s	9	180	-2.09E-06	0.0648	-1.35E-07	2.75E-12	-1.05E+08	384.39	137.79	522.18
ξ: 0,6	10	200	-2.08E-06	0.0664	-1.38E-07	2.73E-12	-1.05E+08	403.48	137.19	540.67
], ,,,,,	11	220	-1.81E-06	0.0679	-1.23E-07	2.07E-12	-1.05E+08	421.56	119.53	541.09
	12	240	-1.27E-06	0.0692	-8.77E-08	1.01E-12	-1.05E+08	438.77	83.53	522.30
	13	260	-1.26E-06	0.0705	-8.89E-08	9.99E-13	-1.05E+08	455.23	83.07	538.30
	14	280	-1.86E-06	0.0717	-1.34E-07	2.19E-12	-1.05E+08	471.02	122.89	593.91
	15	300	-1.59E-06	0.0729	-1.16E-07	1.60E-12	-1.05E+08	486.21	104.96	591.16

	i	z _i (m)	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{X_1}$	Xi (kN)
	1	20	-1.92E-03	0.0391	-7.52E-05	2.33E-06	-7.47E+03	139.90	9.04	148.94
	2	40	5.18E-04	0.0459	2.38E-05	1.69E-07	-7.47E+03	192.44	-2.43	190.00
	3	60	2.06E-03	0.0503	1.04E-04	2.68E-06	-7.47E+03	231.90	-9.69	222.20
	4	80	-5.83E-04	0.0538	-3.14E-05	2.14E-07	-7.47E+03	264.71	2.74	267.45
Nono modo de	5	100	-2.23E-03	0.0566	-1.26E-04	3.12E-06	-7.47E+03	293.32	10.46	303.78
vibração	6	120	2.05E-04	0.0590	1.21E-05	2.65E-08	-7.47E+03	318.98	-0.96	318.02
F: 3,66 Hz	7	140	2.22E-03	0.0612	1.36E-04	3.11E-06	-7.47E+03	342.42	-10.44	331.98
·	8	160	6.11E-04	0.0631	3.85E-05	2.35E-07	-7.47E+03	364.12	-2.87	361.24
T: 0,27s	9	180	-1.82E-03	0.0648	-1.18E-04	2.07E-06	-7.47E+03	384.39	8.53	392.92
ξ: 0,6	10	200	-1.69E-03	0.0664	-1.12E-04	1.80E-06	-7.47E+03	403.48	7.95	411.43
3. 0,0	11	220	5.49E-04	0.0679	3.73E-05	1.90E-07	-7.47E+03	421.56	-2.58	418.98
	12	240	2.06E-03	0.0692	1.42E-04	2.66E-06	-7.47E+03	438.77	-9.67	429.11
	13	260	1.22E-03	0.0705	8.58E-05	9.31E-07	-7.47E+03	455.23	-5.71	449.52
	14	280	-8.57E-04	0.0717	-6.15E-05	4.62E-07	-7.47E+03	471.02	4.03	475.05
	15	300	-2.03E-03	0.0729	-1.48E-04	2.58E-06	-7.47E+03	486.21	9.52	495.73
	i	$\mathbf{z_{i}}\left(\mathbf{m}\right)$	$x_i(m)$	β_i	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{X_1}$	Xi (kN)
	1	20	-9.39E-08	0.0391	-3.67E-09	5.54E-15	-6.51E+07	139.90	3.84	143.74
	2	40	3.92E-07	0.0459	1.80E-08	9.66E-14	-6.51E+07	192.44	-16.04	176.40
	3	40 60	3.92E-07 -1.57E-07	0.0459 0.0503	1.80E-08 -7.88E-09	9.66E-14 1.54E-14	-6.51E+07	192.44 231.90	-16.04 6.41	176.40 238.31
D.									-	
Décimo modo de	3	60	-1.57E-07	0.0503	-7.88E-09	1.54E-14	-6.51E+07	231.90	6.41	238.31
Décimo modo de vibração	3	60 80	-1.57E-07 -1.05E-07	0.0503 0.0538	-7.88E-09 -5.62E-09	1.54E-14 6.87E-15	-6.51E+07 -6.51E+07	231.90 264.71	6.41 4.28	238.31 268.99
modo de vibração	3 4 5	60 80 100	-1.57E-07 -1.05E-07 3.93E-07	0.0503 0.0538 0.0566	-7.88E-09 -5.62E-09 2.22E-08	1.54E-14 6.87E-15 9.72E-14	-6.51E+07 -6.51E+07 -6.51E+07	231.90 264.71 293.32	6.41 4.28 -16.10	238.31 268.99 277.23
modo de	3 4 5 6	60 80 100 120	-1.57E-07 -1.05E-07 3.93E-07 1.28E-06	0.0503 0.0538 0.0566 0.0590	-7.88E-09 -5.62E-09 2.22E-08 7.56E-08	1.54E-14 6.87E-15 9.72E-14 1.03E-12	-6.51E+07 -6.51E+07 -6.51E+07 -6.51E+07	231.90 264.71 293.32 318.98	6.41 4.28 -16.10 -52.42	238.31 268.99 277.23 266.56
modo de vibração	3 4 5 6 7	60 80 100 120 140	-1.57E-07 -1.05E-07 3.93E-07 1.28E-06 1.15E-06	0.0503 0.0538 0.0566 0.0590 0.0612	-7.88E-09 -5.62E-09 2.22E-08 7.56E-08 7.03E-08	1.54E-14 6.87E-15 9.72E-14 1.03E-12 8.31E-13	-6.51E+07 -6.51E+07 -6.51E+07 -6.51E+07	231.90 264.71 293.32 318.98 342.42	6.41 4.28 -16.10 -52.42 -47.06	238.31 268.99 277.23 266.56 295.36
modo de vibração F: 3,71Hz T: 0,27	3 4 5 6 7 8	60 80 100 120 140 160	-1.57E-07 -1.05E-07 3.93E-07 1.28E-06 1.15E-06 5.82E-07	0.0503 0.0538 0.0566 0.0590 0.0612 0.0631	-7.88E-09 -5.62E-09 2.22E-08 7.56E-08 7.03E-08 3.67E-08	1.54E-14 6.87E-15 9.72E-14 1.03E-12 8.31E-13 2.13E-13	-6.51E+07 -6.51E+07 -6.51E+07 -6.51E+07 -6.51E+07	231.90 264.71 293.32 318.98 342.42 364.12	6.41 4.28 -16.10 -52.42 -47.06 -23.82	238.31 268.99 277.23 266.56 295.36 340.30
modo de vibração F: 3,71Hz	3 4 5 6 7 8 9	60 80 100 120 140 160 180	-1.57E-07 -1.05E-07 3.93E-07 1.28E-06 1.15E-06 5.82E-07 -4.35E-07	0.0503 0.0538 0.0566 0.0590 0.0612 0.0631 0.0648	-7.88E-09 -5.62E-09 2.22E-08 7.56E-08 7.03E-08 3.67E-08 -2.82E-08	1.54E-14 6.87E-15 9.72E-14 1.03E-12 8.31E-13 2.13E-13 1.19E-13	-6.51E+07 -6.51E+07 -6.51E+07 -6.51E+07 -6.51E+07 -6.51E+07	231.90 264.71 293.32 318.98 342.42 364.12 384.39	6.41 4.28 -16.10 -52.42 -47.06 -23.82 17.81	238.31 268.99 277.23 266.56 295.36 340.30 402.20
modo de vibração F: 3,71Hz T: 0,27	3 4 5 6 7 8 9	60 80 100 120 140 160 180 200	-1.57E-07 -1.05E-07 3.93E-07 1.28E-06 1.15E-06 5.82E-07 -4.35E-07	0.0503 0.0538 0.0566 0.0590 0.0612 0.0631 0.0648 0.0664	-7.88E-09 -5.62E-09 2.22E-08 7.56E-08 7.03E-08 3.67E-08 -2.82E-08 -9.18E-08	1.54E-14 6.87E-15 9.72E-14 1.03E-12 8.31E-13 2.13E-13 1.19E-13 1.20E-12	-6.51E+07 -6.51E+07 -6.51E+07 -6.51E+07 -6.51E+07 -6.51E+07 -6.51E+07	231.90 264.71 293.32 318.98 342.42 364.12 384.39 403.48	6.41 4.28 -16.10 -52.42 -47.06 -23.82 17.81 56.60	238.31 268.99 277.23 266.56 295.36 340.30 402.20 460.08
modo de vibração F: 3,71Hz T: 0,27	3 4 5 6 7 8 9 10	60 80 100 120 140 160 180 200 220	-1.57E-07 -1.05E-07 3.93E-07 1.28E-06 1.15E-06 5.82E-07 -4.35E-07 -1.38E-06 -2.10E-06	0.0503 0.0538 0.0566 0.0590 0.0612 0.0631 0.0648 0.0664 0.0679	-7.88E-09 -5.62E-09 2.22E-08 7.56E-08 7.03E-08 3.67E-08 -2.82E-08 -9.18E-08 -1.42E-07	1.54E-14 6.87E-15 9.72E-14 1.03E-12 8.31E-13 2.13E-13 1.19E-13 1.20E-12 2.77E-12	-6.51E+07 -6.51E+07 -6.51E+07 -6.51E+07 -6.51E+07 -6.51E+07 -6.51E+07 -6.51E+07	231.90 264.71 293.32 318.98 342.42 364.12 384.39 403.48 421.56	6.41 4.28 -16.10 -52.42 -47.06 -23.82 17.81 56.60 85.88	238.31 268.99 277.23 266.56 295.36 340.30 402.20 460.08 507.44
modo de vibração F: 3,71Hz T: 0,27	3 4 5 6 7 8 9 10 11 12	60 80 100 120 140 160 180 200 220 240	-1.57E-07 -1.05E-07 3.93E-07 1.28E-06 1.15E-06 5.82E-07 -4.35E-07 -1.38E-06 -2.10E-06 -2.26E-06	0.0503 0.0538 0.0566 0.0590 0.0612 0.0631 0.0648 0.0664 0.0679 0.0692	-7.88E-09 -5.62E-09 2.22E-08 7.56E-08 7.03E-08 3.67E-08 -2.82E-08 -9.18E-08 -1.42E-07 -1.56E-07	1.54E-14 6.87E-15 9.72E-14 1.03E-12 8.31E-13 2.13E-13 1.19E-13 1.20E-12 2.77E-12 3.21E-12	-6.51E+07 -6.51E+07 -6.51E+07 -6.51E+07 -6.51E+07 -6.51E+07 -6.51E+07 -6.51E+07	231.90 264.71 293.32 318.98 342.42 364.12 384.39 403.48 421.56 438.77	6.41 4.28 -16.10 -52.42 -47.06 -23.82 17.81 56.60 85.88 92.52	238.31 268.99 277.23 266.56 295.36 340.30 402.20 460.08 507.44 531.29

	i	z _i (m)	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	F _H	$\overline{X_1}$	$\widehat{\mathbf{X}}_{1}$	Xi (kN)
	1	20	-1.52E-03	0.0391	-5.95E-05	1.46E-06	4.35E+03	139.90	-4.17	135.73
	2	40	1.12E-03	0.0459	5.14E-05	7.91E-07	4.35E+03	192.44	3.07	195.51
	3	60	1.03E-03	0.0503	5.17E-05	6.64E-07	4.35E+03	231.90	2.82	234.71
11°.	4	80	-1.81E-03	0.0538	-9.75E-05	2.07E-06	4.35E+03	264.71	-4.97	259.73
modo de	5	100	-3.39E-04	0.0566	-1.92E-05	7.23E-08	4.35E+03	293.32	-0.93	292.39
vibração	6	120	2.11E-03	0.0590	1.24E-04	2.79E-06	4.35E+03	318.98	5.77	324.75
F: 3,76 Hz	7	140	-1.94E-04	0.0612	-1.19E-05	2.37E-08	4.35E+03	342.42	-0.53	341.89
FD 0.27	8	160	-2.15E-03	0.0631	-1.35E-04	2.90E-06	4.35E+03	364.12	-5.88	358.23
T: 0,27s	9	180	5.40E-05	0.0648	3.50E-06	1.84E-09	4.35E+03	384.39	0.15	384.54
ξ: 0,6	10	200	2.11E-03	0.0664	1.40E-04	2.81E-06	4.35E+03	403.48	5.79	409.26
	11	220	6.90E-04	0.0679	4.68E-05	3.00E-07	4.35E+03	421.56	1.89	423.45
	12	240	-1.72E-03	0.0692	-1.19E-04	1.87E-06	4.35E+03	438.77	-4.72	434.05
	13	260	-1.61E-03	0.0705	-1.14E-04	1.64E-06	4.35E+03	455.23	-4.42	450.81
	14	280	5.70E-04	0.0717	4.09E-05	2.05E-07	4.35E+03	471.02	1.56	472.58
	15	300	2.00E-03	0.0729	1.46E-04	2.51E-06	4.35E+03	486.21	5.47	491.68
	i	$\mathbf{z_{i}}\left(\mathbf{m}\right)$	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{X_1}$	Xi (kN)
	1	20	-1.27E-06	0.0391	-4.97E-08	1.02E-12	-1.84E+07	139.90	14.70	154.60
	2	40	-9.63E-07	0.0459	-4.42E-08	5.84E-13	-1.84E+07	192.44	11.14	203.58
	3	60	2.53E-06	0.0503	1.28E-07	4.04E-12	-1.84E+07	231.90	-29.30	202.60
120	4	80	-1.48E-07	0.0538	-7.94E-09	1.37E-14	-1.84E+07	264.71	1.71	266.42
12°. modo de	5	100	-2.49E-06	0.0566	-1.41E-07	3.90E-12	-1.84E+07	293.32	28.79	322.11
vibração	6	120	8.67E-07	0.0590	5.12E-08	4.73E-13	-1.84E+07	318.98	-10.02	308.96
F: 3,80Hz	7	140	2.30E-06	0.0612	1.41E-07	3.33E-12	-1.84E+07	342.42	-26.58	315.84
1.3,00112	8	160	-5.98E-07	0.0631	-3.77E-08	2.25E-13	-1.84E+07	364.12	6.91	371.03
T: 0,26s	9	180	1.46E-08	0.0648	9.44E-10	1.34E-16	-1.84E+07	384.39	-0.17	384.22
ξ: 0,6	10	200	2.20E-06	0.0664	1.46E-07	3.03E-12	-1.84E+07	403.48	-25.38	378.10
7. 0,0	11	220	9.41E-07	0.0679	6.39E-08	5.57E-13	-1.84E+07	421.56	-10.88	410.68
	12	240	-3.03E-06	0.0692	-2.10E-07	5.77E-12	-1.84E+07	438.77	35.01	473.79
	13	260	-4.31E-06	0.0705	-3.04E-07	1.17E-11	-1.84E+07	455.23	49.81	505.05
	14	280	-2.09E-06	0.0717	-1.50E-07	2.74E-12	-1.84E+07	471.02	24.11	495.13
	15	300	5.09E-07	0.0729	3.71E-08	1.63E-13	-1.84E+07	486.21	-5.88	480.32

	i	z _i (m)	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F}_{\mathbf{H}}$	$\overline{X_1}$	$\widehat{\mathbf{X}}_{1}$	Xi (kN)
	1	20	1.25E-03	0.0391	4.89E-05	9.87E-07	7.18E+03	139.90	5.66	145.56
	2	40	-1.34E-03	0.0459	-6.14E-05	1.13E-06	7.18E+03	192.44	-6.05	186.39
	3	60	-5.00E-05	0.0503	-2.52E-06	1.57E-09	7.18E+03	231.90	-0.23	231.67
13°.	4	80	1.60E-03	0.0538	8.58E-05	1.60E-06	7.18E+03	264.71	7.21	271.92
modo de	5	100	-1.41E-03	0.0566	-7.99E-05	1.25E-06	7.18E+03	293.32	-6.37	286.95
vibração	6	120	-5.97E-04	0.0590	-3.52E-05	2.24E-07	7.18E+03	318.98	-2.70	316.29
F: 3,84 Hz	7	140	1.97E-03	0.0612	1.21E-04	2.45E-06	7.18E+03	342.42	8.92	351.34
	8	160	-6.21E-04	0.0631	-3.92E-05	2.43E-07	7.18E+03	364.12	-2.81	361.31
T: 0,26s	9	180	-1.85E-03	0.0648	-1.20E-04	2.15E-06	7.18E+03	384.39	-8.34	376.04
ξ: 0,6	10	200	1.09E-03	0.0664	7.24E-05	7.48E-07	7.18E+03	403.48	4.92	408.40
	11	220	1.81E-03	0.0679	1.23E-04	2.06E-06	7.18E+03	421.56	8.17	429.73
	12	240	-9.64E-04	0.0692	-6.67E-05	5.85E-07	7.18E+03	438.77	-4.36	434.42
	13	260	-1.93E-03	0.0705	-1.36E-04	2.34E-06	7.18E+03	455.23	-8.72	446.52
	14	280	2.29E-04	0.0717	1.64E-05	3.30E-08	7.18E+03	471.02	1.03	472.05
	15	300	2.00E-03	0.0729	1.45E-04	2.51E-06	7.18E+03	486.21	9.01	495.22
	i	$\mathbf{z_{i}}\left(\mathbf{m}\right)$	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{X_1}$	Xi (kN)
	1	20	-2.64E-06	0.0391	-1.03E-07	4.38E-12	5.11E+06	139.90	-8.49	131.41
	2	40	-4.90E-07	0.0459	-2.25E-08	1.51E-13	5.11E+06	192.44	-1.58	190.86
	3	60	5.21E-06	0.0503	2.62E-07	1.71E-11	5.11E+06	231.90	16.78	248.68
1.40	4	80	-1.81E-06	0.0538	-9.72E-08	2.06E-12	5.11E+06	264.71	-5.82	258.89
14°. modo de	5	100	-2.73E-06	0.0566	-1.54E-07	4.68E-12	5.11E+06	293.32	-8.78	284.54
vibração	6	120	4.17E-06	0.0590	2.46E-07	1.10E-11	5.11E+06	318.98	13.43	332.42
F: 3,88Hz	7	140	-4.84E-07	0.0612	-2.96E-08	1.47E-13	5.11E+06	342.42	-1.56	340.87
	8	160	-2.27E-06	0.0631	-1.43E-07	3.25E-12	5.11E+06	364.12	-7.32	356.80
T: 0,26s	9	180	1.86E-06	0.0648	1.20E-07	2.17E-12	5.11E+06	384.39	5.98	390.37
ξ: 0,6	10	200	-1.25E-06	0.0664	-8.30E-08	9.84E-13	5.11E+06	403.48	-4.02	399.45
, ,,,,,	11	220	-4.77E-06	0.0679	-3.23E-07	1.43E-11	5.11E+06	421.56	-15.34	406.22
	12	240	8.58E-07	0.0692	5.94E-08	4.64E-13	5.11E+06	438.77	2.76	441.54
	13	260	5.30E-06	0.0705	3.73E-07	1.77E-11	5.11E+06	455.23	17.05	472.28
	14	280	3.14E-06	0.0717	2.25E-07	6.20E-12	5.11E+06	471.02	10.10	481.12
	15	300	-1.26E-06	0.0729	-9.17E-08	9.96E-13	5.11E+06	486.21	-4.05	482.16

	i	z _i (m)	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F}_{\mathbf{H}}$	$\overline{X_1}$	$\widehat{X_1}$	Xi (kN)
	1	20	-1.01E-03	0.0391	-3.94E-05	6.38E-07	6.03E+03	139.90	-3.82	136.08
	2	40	1.31E-03	0.0459	5.99E-05	1.08E-06	6.03E+03	192.44	4.96	197.40
	3	60	-5.92E-04	0.0503	-2.98E-05	2.21E-07	6.03E+03	231.90	-2.25	229.65
	4	80	-7.51E-04	0.0538	-4.04E-05	3.55E-07	6.03E+03	264.71	-2.85	261.86
15°. modo de	5	100	1.64E-03	0.0566	9.28E-05	1.69E-06	6.03E+03	293.32	6.22	299.54
vibração	6	120	-1.20E-03	0.0590	-7.08E-05	9.05E-07	6.03E+03	318.98	-4.55	314.43
F: 2,89Hz	7	140	-3.51E-04	0.0612	-2.15E-05	7.76E-08	6.03E+03	342.42	-1.33	341.09
	8	160	1.83E-03	0.0631	1.15E-04	2.10E-06	6.03E+03	364.12	6.93	371.04
T: 0,35s	9	180	-1.32E-03	0.0648	-8.55E-05	1.10E-06	6.03E+03	384.39	-5.00	379.38
ξ: 0,6	10	200	-1.06E-03	0.0664	-7.06E-05	7.11E-07	6.03E+03	403.48	-4.03	399.44
,	11	220	2.07E-03	0.0679	1.40E-04	2.69E-06	6.03E+03	421.56	7.85	429.41
	12	240	2.69E-04	0.0692	1.86E-05	4.56E-08	6.03E+03	438.77	1.02	439.80
	13	260	-2.13E-03	0.0705	-1.50E-04	2.85E-06	6.03E+03	455.23	-8.07	447.17
	14	280	-2.14E-04	0.0717	-1.54E-05	2.88E-08	6.03E+03	471.02	-0.81	470.21
	15	300	2.10E-03	0.0729	1.53E-04	2.78E-06	6.03E+03	486.21	7.97	494.17

- M_i = 629504 kg;
 A_i/A₀ = 1128,66/16929,9 = 0,0667
- $\psi_i = 0.62950$

E.4. Modelo B1

	i	z _i (m)	x _i (m)	β_i	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{\mathbf{X}}_{1}$	$\widehat{X_1}$	Xi (kN)
	1	20	-4.89E-04	0.0391	-1.91E-05	1.51E-07	-6.80E+04	139.90	20.94	160.84
	2	40	-9.75E-04	0.0459	-4.47E-05	5.98E-07	-6.80E+04	192.44	41.75	234.19
	3	60	-1.45E-03	0.0503	-7.29E-05	1.32E-06	-6.80E+04	231.90	62.05	293.94
40	4	80	-1.91E-03	0.0538	-1.02E-04	2.29E-06	-6.80E+04	264.71	81.62	346.33
1°. modo de	5	100	-2.34E-03	0.0566	-1.33E-04	3.45E-06	-6.80E+04	293.32	100.25	393.57
vibração	6	120	-2.75E-03	0.0590	-1.62E-04	4.76E-06	-6.80E+04	318.98	117.76	436.74
F: 0,59Hz	7	140	-3.13E-03	0.0612	-1.91E-04	6.16E-06	-6.80E+04	342.42	133.90	476.33
1.0,37112	8	160	-3.44E-03	0.0631	-2.17E-04	7.77E-06	-6.80E+04	364.12	153.62	517.74
T: 1,68s	9	180	-3.76E-03	0.0648	-2.44E-04	8.90E-06	-6.80E+04	384.39	161.01	545.40
ξ: 0,8	10	200	-4.02E-03	0.0664	-2.67E-04	1.02E-05	-6.80E+04	403.48	172.10	575.58
y. 0,0	11	220	-4.24E-03	0.0679	-2.87E-04	1.13E-05	-6.80E+04	421.56	181.35	602.91
	12	240	-4.41E-03	0.0692	-3.05E-04	1.22E-05	-6.80E+04	438.77	188.63	627.40
	13	260	-4.53E-03	0.0705	-3.19E-04	1.29E-05	-6.80E+04	455.23	193.90	649.13
	14	280	-4.60E-03	0.0717	-3.30E-04	1.33E-05	-6.80E+04	471.02	197.11	668.12
	15	300	-4.63E-03	0.0729	-3.37E-04	1.35E-05	-6.80E+04	486.21	198.26	684.47

	i	z _i (m)	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{X_1}$	Xi (kN)
	1	20	-1.38E-03	0.0391	-5.38E-05	1.19E-06	-7.30E+03	139.90	6.33	146.23
	2	40	-2.61E-03	0.0459	-1.20E-04	4.29E-06	-7.30E+03	192.44	12.00	204.44
	3	60	-3.56E-03	0.0503	-1.79E-04	7.99E-06	-7.30E+03	231.90	16.38	248.28
	4	80	-4.15E-03	0.0538	-2.23E-04	1.08E-05	-7.30E+03	264.71	19.08	283.79
2º. modo de	5	100	-4.31E-03	0.0566	-2.44E-04	1.17E-05	-7.30E+03	293.32	19.83	313.15
vibração	6	120	-4.04E-03	0.0590	-2.39E-04	1.03E-05	-7.30E+03	318.98	18.59	337.57
F: 1,67Hz	7	140	-3.37E-03	0.0612	-2.06E-04	7.14E-06	-7.30E+03	342.42	15.49	357.91
	8	160	-2.36E-03	0.0631	-1.49E-04	3.66E-06	-7.30E+03	364.12	11.31	375.43
T: 0,60s	9	180	-1.16E-03	0.0648	-7.52E-05	8.47E-07	-7.30E+03	384.39	5.33	389.72
ξ: 0,75	10	200	1.84E-04	0.0664	1.22E-05	2.13E-08	-7.30E+03	403.48	-0.85	402.63
	11	220	1.51E-03	0.0679	1.02E-04	1.43E-06	-7.30E+03	421.56	-6.93	414.63
	12	240	2.69E-03	0.0692	1.86E-04	4.56E-06	-7.30E+03	438.77	-12.37	426.41
	13	260	3.62E-03	0.0705	2.55E-04	8.25E-06	-7.30E+03	455.23	-16.65	438.58
	14	280	4.22E-03	0.0717	3.03E-04	1.12E-05	-7.30E+03	471.02	-19.41	451.61
	15	300	4.45E-03	0.0729	3.24E-04	1.24E-05	-7.30E+03	486.21	-20.43	465.77
	i	$\mathbf{z_{i}}\left(\mathbf{m}\right)$	$x_i(m)$	β_i	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{X_1}$	Xi (kN)
	1	20	2.06E-03	0.0391	8.04E-05	2.66E-06	1.02E+04	139.90	13.15	153.05
	2	40	2 40E 02	0.0450	4 707 04	= 40 = 04		100 11		
1		40	3.48E-03	0.0459	1.59E-04	7.60E-06	1.02E+04	192.44	22.22	214.66
	3	60	3.48E-03 3.83E-03	0.0459	1.59E-04 1.93E-04	7.60E-06 9.25E-06	1.02E+04 1.02E+04	231.90	22.22 24.52	214.66 256.42
	3									
3°.		60	3.83E-03	0.0503	1.93E-04	9.25E-06	1.02E+04	231.90	24.52	256.42
3°. modo de vibração	4	60 80	3.83E-03 3.09E-03	0.0503 0.0538	1.93E-04 1.66E-04	9.25E-06 6.02E-06	1.02E+04 1.02E+04	231.90 264.71	24.52 19.77	256.42 284.48
modo de vibração	4 5	60 80 100	3.83E-03 3.09E-03 1.48E-03	0.0503 0.0538 0.0566	1.93E-04 1.66E-04 8.36E-05	9.25E-06 6.02E-06 1.37E-06	1.02E+04 1.02E+04 1.02E+04	231.90 264.71 293.32	24.52 19.77 9.44	256.42 284.48 302.76
modo de vibração F: 2,52Hz	4 5 6	60 80 100 120	3.83E-03 3.09E-03 1.48E-03 -5.42E-04	0.0503 0.0538 0.0566 0.0590	1.93E-04 1.66E-04 8.36E-05 -3.20E-05	9.25E-06 6.02E-06 1.37E-06 1.85E-07	1.02E+04 1.02E+04 1.02E+04 1.02E+04	231.90 264.71 293.32 318.98	24.52 19.77 9.44 -3.47	256.42 284.48 302.76 315.52
modo de vibração	4 5 6 7	60 80 100 120 140	3.83E-03 3.09E-03 1.48E-03 -5.42E-04 -2.40E-03	0.0503 0.0538 0.0566 0.0590 0.0612	1.93E-04 1.66E-04 8.36E-05 -3.20E-05 -1.47E-04	9.25E-06 6.02E-06 1.37E-06 1.85E-07 3.61E-06	1.02E+04 1.02E+04 1.02E+04 1.02E+04 1.02E+04	231.90 264.71 293.32 318.98 342.42	24.52 19.77 9.44 -3.47 -15.32	256.42 284.48 302.76 315.52 327.10
modo de vibração F: 2,52Hz	4 5 6 7 8	60 80 100 120 140 160	3.83E-03 3.09E-03 1.48E-03 -5.42E-04 -2.40E-03 -3.28E-03	0.0503 0.0538 0.0566 0.0590 0.0612 0.0631	1.93E-04 1.66E-04 8.36E-05 -3.20E-05 -1.47E-04 -2.07E-04	9.25E-06 6.02E-06 1.37E-06 1.85E-07 3.61E-06 7.04E-06	1.02E+04 1.02E+04 1.02E+04 1.02E+04 1.02E+04 1.02E+04	231.90 264.71 293.32 318.98 342.42 364.12	24.52 19.77 9.44 -3.47 -15.32 -21.84	256.42 284.48 302.76 315.52 327.10 342.28
modo de vibração F: 2,52Hz T:0,40s	4 5 6 7 8 9	60 80 100 120 140 160 180	3.83E-03 3.09E-03 1.48E-03 -5.42E-04 -2.40E-03 -3.28E-03 -3.86E-03	0.0503 0.0538 0.0566 0.0590 0.0612 0.0631 0.0648	1.93E-04 1.66E-04 8.36E-05 -3.20E-05 -1.47E-04 -2.07E-04 -2.50E-04	9.25E-06 6.02E-06 1.37E-06 1.85E-07 3.61E-06 7.04E-06 9.37E-06	1.02E+04 1.02E+04 1.02E+04 1.02E+04 1.02E+04 1.02E+04 1.02E+04	231.90 264.71 293.32 318.98 342.42 364.12 384.39	24.52 19.77 9.44 -3.47 -15.32 -21.84 -24.68	256.42 284.48 302.76 315.52 327.10 342.28 359.71
modo de vibração F: 2,52Hz T:0,40s	4 5 6 7 8 9	60 80 100 120 140 160 180 200	3.83E-03 3.09E-03 1.48E-03 -5.42E-04 -2.40E-03 -3.28E-03 -3.86E-03 -3.16E-03	0.0503 0.0538 0.0566 0.0590 0.0612 0.0631 0.0648 0.0664	1.93E-04 1.66E-04 8.36E-05 -3.20E-05 -1.47E-04 -2.07E-04 -2.50E-04 -2.10E-04	9.25E-06 6.02E-06 1.37E-06 1.85E-07 3.61E-06 7.04E-06 9.37E-06 6.27E-06	1.02E+04 1.02E+04 1.02E+04 1.02E+04 1.02E+04 1.02E+04 1.02E+04	231.90 264.71 293.32 318.98 342.42 364.12 384.39 403.48	24.52 19.77 9.44 -3.47 -15.32 -21.84 -24.68 -20.19	256.42 284.48 302.76 315.52 327.10 342.28 359.71 383.29
modo de vibração F: 2,52Hz T:0,40s	4 5 6 7 8 9 10	60 80 100 120 140 160 180 200 220	3.83E-03 3.09E-03 1.48E-03 -5.42E-04 -2.40E-03 -3.28E-03 -3.86E-03 -3.16E-03	0.0503 0.0538 0.0566 0.0590 0.0612 0.0631 0.0648 0.0664 0.0679	1.93E-04 1.66E-04 8.36E-05 -3.20E-05 -1.47E-04 -2.07E-04 -2.50E-04 -2.10E-04 -1.13E-04	9.25E-06 6.02E-06 1.37E-06 1.85E-07 3.61E-06 7.04E-06 9.37E-06 6.27E-06 1.74E-06	1.02E+04 1.02E+04 1.02E+04 1.02E+04 1.02E+04 1.02E+04 1.02E+04 1.02E+04	231.90 264.71 293.32 318.98 342.42 364.12 384.39 403.48 421.56	24.52 19.77 9.44 -3.47 -15.32 -21.84 -24.68 -20.19 -10.64	256.42 284.48 302.76 315.52 327.10 342.28 359.71 383.29 410.92
modo de vibração F: 2,52Hz T:0,40s	4 5 6 7 8 9 10 11	60 80 100 120 140 160 180 200 220 240	3.83E-03 3.09E-03 1.48E-03 -5.42E-04 -2.40E-03 -3.28E-03 -3.16E-03 -1.66E-03 2.38E-04	0.0503 0.0538 0.0566 0.0590 0.0612 0.0631 0.0648 0.0664 0.0679 0.0692	1.93E-04 1.66E-04 8.36E-05 -3.20E-05 -1.47E-04 -2.07E-04 -2.50E-04 -1.13E-04 1.65E-05	9.25E-06 6.02E-06 1.37E-06 1.85E-07 3.61E-06 7.04E-06 9.37E-06 6.27E-06 1.74E-06 3.57E-08	1.02E+04 1.02E+04 1.02E+04 1.02E+04 1.02E+04 1.02E+04 1.02E+04 1.02E+04 1.02E+04	231.90 264.71 293.32 318.98 342.42 364.12 384.39 403.48 421.56 438.77	24.52 19.77 9.44 -3.47 -15.32 -21.84 -24.68 -20.19 -10.64 1.52	256.42 284.48 302.76 315.52 327.10 342.28 359.71 383.29 410.92 440.30

	i	z _i (m)	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{X_1}$	Xi (kN)
	1	20	2.42E-03	0.0391	9.47E-05	3.69E-06	4.52E+02	139.90	0.69	140.59
	2	40	3.28E-03	0.0459	1.50E-04	6.76E-06	4.52E+02	192.44	0.93	193.37
	3	60	2.11E-03	0.0503	1.06E-04	2.81E-06	4.52E+02	231.90	0.60	232.50
40	4	80	-2.15E-04	0.0538	-1.16E-05	2.91E-08	4.52E+02	264.71	-0.06	264.65
4°. modo de	5	100	-2.38E-03	0.0566	-1.35E-04	3.57E-06	4.52E+02	293.32	-0.68	292.64
vibração	6	120	-3.24E-03	0.0590	-1.91E-04	6.62E-06	4.52E+02	318.98	-0.92	318.06
F: 3,05Hz	7	140	-2.33E-03	0.0612	-1.42E-04	3.41E-06	4.52E+02	342.42	-0.66	341.76
1.3,03112	8	160	-3.69E-04	0.0631	-2.33E-05	8.93E-08	4.52E+02	364.12	-0.11	364.01
T: 0,33s	9	180	1.76E-03	0.0648	1.14E-04	1.94E-06	4.52E+02	384.39	0.50	384.89
ξ: 0,6	10	200	3.05E-03	0.0664	2.02E-04	5.85E-06	4.52E+02	403.48	0.87	404.34
5. 0,0	11	220	2.90E-03	0.0679	1.97E-04	5.29E-06	4.52E+02	421.56	0.82	422.38
	12	240	1.44E-03	0.0692	9.94E-05	1.30E-06	4.52E+02	438.77	0.41	439.18
	13	260	-6.34E-04	0.0705	-4.47E-05	2.53E-07	4.52E+02	455.23	-0.18	455.05
	14	280	-2.41E-03	0.0717	-1.73E-04	3.65E-06	4.52E+02	471.02	-0.68	470.33
	15	300	-3.16E-03	0.0729	-2.30E-04	6.27E-06	4.52E+02	486.21	-0.90	485.31
	i	$\mathbf{z_{i}}\left(\mathbf{m}\right)$	$\mathbf{x_{i}}\left(\mathbf{m}\right)$	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{\mathbf{X}_{1}}$	$\widehat{\mathbf{X}_{1}}$	Xi (kN)
						1		=		` /
	1	20	-2.63E-03	0.0391	-1.03E-04	4.36E-06	-8.42E+03	139.90	13.94	153.84
	2	20 40	-2.63E-03 -2.19E-03							
				0.0391	-1.03E-04	4.36E-06	-8.42E+03	139.90	13.94	153.84
50	2	40	-2.19E-03	0.0391 0.0459	-1.03E-04 -1.00E-04	4.36E-06 3.01E-06	-8.42E+03 -8.42E+03	139.90 192.44	13.94 11.59	153.84 204.03
5°. modo de	2 3	40 60	-2.19E-03 6.57E-04	0.0391 0.0459 0.0503	-1.03E-04 -1.00E-04 3.31E-05	4.36E-06 3.01E-06 2.72E-07	-8.42E+03 -8.42E+03 -8.42E+03	139.90 192.44 231.90	13.94 11.59 -3.48	153.84 204.03 228.41
	2 3 4	40 60 80	-2.19E-03 6.57E-04 2.73E-03	0.0391 0.0459 0.0503 0.0538	-1.03E-04 -1.00E-04 3.31E-05 1.47E-04	4.36E-06 3.01E-06 2.72E-07 4.70E-06	-8.42E+03 -8.42E+03 -8.42E+03 -8.42E+03	139.90 192.44 231.90 264.71	13.94 11.59 -3.48 -14.48	153.84 204.03 228.41 250.23
modo de	2 3 4 5	40 60 80 100	-2.19E-03 6.57E-04 2.73E-03 2.13E-03	0.0391 0.0459 0.0503 0.0538 0.0566	-1.03E-04 -1.00E-04 3.31E-05 1.47E-04 1.21E-04	4.36E-06 3.01E-06 2.72E-07 4.70E-06 2.86E-06	-8.42E+03 -8.42E+03 -8.42E+03 -8.42E+03	139.90 192.44 231.90 264.71 293.32	13.94 11.59 -3.48 -14.48 -11.30	153.84 204.03 228.41 250.23 282.02
modo de vibração F: 3,37Hz	2 3 4 5 6	40 60 80 100 120	-2.19E-03 6.57E-04 2.73E-03 2.13E-03 -4.09E-04	0.0391 0.0459 0.0503 0.0538 0.0566 0.0590	-1.03E-04 -1.00E-04 3.31E-05 1.47E-04 1.21E-04 -2.41E-05	4.36E-06 3.01E-06 2.72E-07 4.70E-06 2.86E-06 1.05E-07	-8.42E+03 -8.42E+03 -8.42E+03 -8.42E+03 -8.42E+03	139.90 192.44 231.90 264.71 293.32 318.98	13.94 11.59 -3.48 -14.48 -11.30 2.17	153.84 204.03 228.41 250.23 282.02 321.15
modo de vibração F: 3,37Hz T: 0,30s	2 3 4 5 6 7	40 60 80 100 120 140	-2.19E-03 6.57E-04 2.73E-03 2.13E-03 -4.09E-04 -2.41E-03	0.0391 0.0459 0.0503 0.0538 0.0566 0.0590 0.0612	-1.03E-04 -1.00E-04 3.31E-05 1.47E-04 1.21E-04 -2.41E-05 -1.47E-04	4.36E-06 3.01E-06 2.72E-07 4.70E-06 2.86E-06 1.05E-07 3.66E-06	-8.42E+03 -8.42E+03 -8.42E+03 -8.42E+03 -8.42E+03 -8.42E+03	139.90 192.44 231.90 264.71 293.32 318.98 342.42	13.94 11.59 -3.48 -14.48 -11.30 2.17 12.77	153.84 204.03 228.41 250.23 282.02 321.15 355.20
modo de vibração F: 3,37Hz	2 3 4 5 6 7 8	40 60 80 100 120 140 160	-2.19E-03 6.57E-04 2.73E-03 2.13E-03 -4.09E-04 -2.41E-03 -1.96E-03	0.0391 0.0459 0.0503 0.0538 0.0566 0.0590 0.0612 0.0631	-1.03E-04 -1.00E-04 3.31E-05 1.47E-04 1.21E-04 -2.41E-05 -1.47E-04 -1.23E-04	4.36E-06 3.01E-06 2.72E-07 4.70E-06 2.86E-06 1.05E-07 3.66E-06 2.51E-06	-8.42E+03 -8.42E+03 -8.42E+03 -8.42E+03 -8.42E+03 -8.42E+03 -8.42E+03	139.90 192.44 231.90 264.71 293.32 318.98 342.42 364.12	13.94 11.59 -3.48 -14.48 -11.30 2.17 12.77 10.81	153.84 204.03 228.41 250.23 282.02 321.15 355.20 374.93
modo de vibração F: 3,37Hz T: 0,30s	2 3 4 5 6 7 8 9	40 60 80 100 120 140 160 180	-2.19E-03 6.57E-04 2.73E-03 2.13E-03 -4.09E-04 -2.41E-03 -1.96E-03 -1.13E-03	0.0391 0.0459 0.0503 0.0538 0.0566 0.0590 0.0612 0.0631 0.0648	-1.03E-04 -1.00E-04 3.31E-05 1.47E-04 1.21E-04 -2.41E-05 -1.47E-04 -1.23E-04 -7.30E-05	4.36E-06 3.01E-06 2.72E-07 4.70E-06 2.86E-06 1.05E-07 3.66E-06 2.51E-06 7.98E-07	-8.42E+03 -8.42E+03 -8.42E+03 -8.42E+03 -8.42E+03 -8.42E+03 -8.42E+03 -8.42E+03	139.90 192.44 231.90 264.71 293.32 318.98 342.42 364.12 384.39	13.94 11.59 -3.48 -14.48 -11.30 2.17 12.77 10.81 5.97	153.84 204.03 228.41 250.23 282.02 321.15 355.20 374.93 390.36
modo de vibração F: 3,37Hz T: 0,30s	2 3 4 5 6 7 8 9	40 60 80 100 120 140 160 180 200	-2.19E-03 6.57E-04 2.73E-03 2.13E-03 -4.09E-04 -2.41E-03 -1.96E-03 1.09E-03	0.0391 0.0459 0.0503 0.0538 0.0566 0.0590 0.0612 0.0631 0.0648 0.0664	-1.03E-04 -1.00E-04 3.31E-05 1.47E-04 1.21E-04 -2.41E-05 -1.47E-04 -1.23E-04 -7.30E-05 7.25E-05	4.36E-06 3.01E-06 2.72E-07 4.70E-06 2.86E-06 1.05E-07 3.66E-06 2.51E-06 7.98E-07 7.51E-07	-8.42E+03 -8.42E+03 -8.42E+03 -8.42E+03 -8.42E+03 -8.42E+03 -8.42E+03 -8.42E+03 -8.42E+03	139.90 192.44 231.90 264.71 293.32 318.98 342.42 364.12 384.39 403.48	13.94 11.59 -3.48 -14.48 -11.30 2.17 12.77 10.81 5.97 -5.79	153.84 204.03 228.41 250.23 282.02 321.15 355.20 374.93 390.36 397.69
modo de vibração F: 3,37Hz T: 0,30s	2 3 4 5 6 7 8 9 10	40 60 80 100 120 140 160 180 200 220	-2.19E-03 6.57E-04 2.73E-03 2.13E-03 -4.09E-04 -2.41E-03 -1.96E-03 -1.13E-03 1.09E-03 2.47E-03	0.0391 0.0459 0.0503 0.0538 0.0566 0.0590 0.0612 0.0631 0.0648 0.0664 0.0679	-1.03E-04 -1.00E-04 3.31E-05 1.47E-04 1.21E-04 -2.41E-05 -1.47E-04 -1.23E-04 -7.30E-05 7.25E-05 1.67E-04	4.36E-06 3.01E-06 2.72E-07 4.70E-06 2.86E-06 1.05E-07 3.66E-06 2.51E-06 7.98E-07 7.51E-07 3.83E-06	-8.42E+03 -8.42E+03 -8.42E+03 -8.42E+03 -8.42E+03 -8.42E+03 -8.42E+03 -8.42E+03 -8.42E+03 -8.42E+03	139.90 192.44 231.90 264.71 293.32 318.98 342.42 364.12 384.39 403.48 421.56	13.94 11.59 -3.48 -14.48 -11.30 2.17 12.77 10.81 5.97 -5.79 -13.08	153.84 204.03 228.41 250.23 282.02 321.15 355.20 374.93 390.36 397.69 408.48
modo de vibração F: 3,37Hz T: 0,30s	2 3 4 5 6 7 8 9 10 11	40 60 80 100 120 140 160 180 200 220 240	-2.19E-03 6.57E-04 2.73E-03 2.13E-03 -4.09E-04 -2.41E-03 -1.96E-03 1.09E-03 2.47E-03 2.09E-03	0.0391 0.0459 0.0503 0.0538 0.0566 0.0590 0.0612 0.0631 0.0648 0.0664 0.06692	-1.03E-04 -1.00E-04 3.31E-05 1.47E-04 1.21E-04 -2.41E-05 -1.47E-04 -1.23E-04 -7.30E-05 7.25E-05 1.67E-04 1.44E-04	4.36E-06 3.01E-06 2.72E-07 4.70E-06 2.86E-06 1.05E-07 3.66E-06 2.51E-06 7.98E-07 7.51E-07 3.83E-06 2.74E-06	-8.42E+03	139.90 192.44 231.90 264.71 293.32 318.98 342.42 364.12 384.39 403.48 421.56 438.77	13.94 11.59 -3.48 -14.48 -11.30 2.17 12.77 10.81 5.97 -5.79 -13.08 -11.06	153.84 204.03 228.41 250.23 282.02 321.15 355.20 374.93 390.36 397.69 408.48 427.71

	i	z _i (m)	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{X_1}$	Xi (kN)
	1	20	4.15E-07	0.0391	1.62E-08	1.08E-13	-8.11E+07	139.90	-21.19	118.71
	2	40	-5.01E-07	0.0459	-2.30E-08	1.58E-13	-8.11E+07	192.44	25.58	218.01
	3	60	-9.57E-07	0.0503	-4.82E-08	5.77E-13	-8.11E+07	231.90	48.90	280.80
	4	80	-7.03E-07	0.0538	-3.78E-08	3.11E-13	-8.11E+07	264.71	35.91	300.62
6º. modo de	5	100	-7.26E-07	0.0566	-4.11E-08	3.31E-13	-8.11E+07	293.32	37.06	330.39
vibração	6	120	-8.97E-07	0.0590	-5.29E-08	5.06E-13	-8.11E+07	318.98	45.81	364.79
F: 3,50Hz	7	140	-2.17E-06	0.0612	-1.33E-07	2.97E-12	-8.11E+07	342.42	110.89	453.32
	8	160	1.06E-06	0.0631	6.67E-08	7.34E-13	-8.11E+07	364.12	-56.33	307.79
T: 0,28s	9	180	2.41E-07	0.0648	1.56E-08	3.66E-14	-8.11E+07	384.39	-12.31	372.08
ξ: 0,6	10	200	-6.36E-07	0.0664	-4.22E-08	2.54E-13	-8.11E+07	403.48	32.47	435.94
	11	220	-1.68E-06	0.0679	-1.14E-07	1.77E-12	-8.11E+07	421.56	85.76	507.32
	12	240	-1.71E-06	0.0692	-1.18E-07	1.84E-12	-8.11E+07	438.77	87.24	526.02
	13	260	-7.94E-07	0.0705	-5.60E-08	3.97E-13	-8.11E+07	455.23	40.57	495.80
	14	280	3.32E-07	0.0717	2.38E-08	6.94E-14	-8.11E+07	471.02	-16.96	454.06
	15	300	9.77E-07	0.0729	7.12E-08	6.01E-13	-8.11E+07	486.21	-49.89	436.32
	i	$\mathbf{z}_{i}\left(\mathbf{m}\right)$	$x_i(m)$	β_i	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{X_1}$	Xi (kN)
	1	20	2.14E-03	0.0391	8.35E-05	2.87E-06	-3.77E+03	139.90	-5.07	134.83
	_									
	2	40	5.22E-04	0.0459	2.39E-05	1.72E-07	-3.77E+03	192.44	-1.24	191.20
	3	40 60	5.22E-04 -2.05E-03	0.0459	2.39E-05 -1.03E-04	1.72E-07 2.64E-06	-3.77E+03	192.44 231.90	-1.24 4.86	191.20 236.76
7°.	3	60	-2.05E-03	0.0503	-1.03E-04	2.64E-06	-3.77E+03	231.90	4.86	236.76
7°. modo de vibração	3	60 80	-2.05E-03 -1.47E-03	0.0503 0.0538	-1.03E-04 -7.89E-05	2.64E-06 1.35E-06	-3.77E+03	231.90 264.71	4.86 3.48	236.76 268.19
modo de vibração	3 4 5	60 80 100	-2.05E-03 -1.47E-03 1.24E-03	0.0503 0.0538 0.0566	-1.03E-04 -7.89E-05 7.03E-05	2.64E-06 1.35E-06 9.71E-07	-3.77E+03 -3.77E+03 -3.77E+03	231.90 264.71 293.32	4.86 3.48 -2.95	236.76 268.19 290.37
modo de vibração F: 3,55Hz	3 4 5 6	60 80 100 120	-2.05E-03 -1.47E-03 1.24E-03 2.23E-03	0.0503 0.0538 0.0566 0.0590	-1.03E-04 -7.89E-05 7.03E-05 1.31E-04	2.64E-06 1.35E-06 9.71E-07 3.12E-06	-3.77E+03 -3.77E+03 -3.77E+03 -3.77E+03	231.90 264.71 293.32 318.98	4.86 3.48 -2.95 -5.29	236.76 268.19 290.37 313.70
modo de vibração	3 4 5 6 7	60 80 100 120 140	-2.05E-03 -1.47E-03 1.24E-03 2.23E-03 3.39E-04	0.0503 0.0538 0.0566 0.0590 0.0612	-1.03E-04 -7.89E-05 7.03E-05 1.31E-04 2.07E-05	2.64E-06 1.35E-06 9.71E-07 3.12E-06 7.23E-08	-3.77E+03 -3.77E+03 -3.77E+03 -3.77E+03 -3.77E+03	231.90 264.71 293.32 318.98 342.42	4.86 3.48 -2.95 -5.29 -0.81	236.76 268.19 290.37 313.70 341.62
modo de vibração F: 3,55Hz	3 4 5 6 7 8	60 80 100 120 140 160	-2.05E-03 -1.47E-03 1.24E-03 2.23E-03 3.39E-04 -1.26E-03	0.0503 0.0538 0.0566 0.0590 0.0612 0.0631	-1.03E-04 -7.89E-05 7.03E-05 1.31E-04 2.07E-05 -7.94E-05	2.64E-06 1.35E-06 9.71E-07 3.12E-06 7.23E-08 1.04E-06	-3.77E+03 -3.77E+03 -3.77E+03 -3.77E+03 -3.77E+03 -3.77E+03	231.90 264.71 293.32 318.98 342.42 364.12	4.86 3.48 -2.95 -5.29 -0.81 3.12	236.76 268.19 290.37 313.70 341.62 367.23
modo de vibração F: 3,55Hz T: 0,28s	3 4 5 6 7 8 9	60 80 100 120 140 160 180	-2.05E-03 -1.47E-03 1.24E-03 2.23E-03 3.39E-04 -1.26E-03 -2.56E-03	0.0503 0.0538 0.0566 0.0590 0.0612 0.0631 0.0648	-1.03E-04 -7.89E-05 7.03E-05 1.31E-04 2.07E-05 -7.94E-05 -1.66E-04	2.64E-06 1.35E-06 9.71E-07 3.12E-06 7.23E-08 1.04E-06 4.13E-06	-3.77E+03 -3.77E+03 -3.77E+03 -3.77E+03 -3.77E+03 -3.77E+03	231.90 264.71 293.32 318.98 342.42 364.12 384.39	4.86 3.48 -2.95 -5.29 -0.81 3.12 6.08	236.76 268.19 290.37 313.70 341.62 367.23 390.47
modo de vibração F: 3,55Hz T: 0,28s	3 4 5 6 7 8 9	60 80 100 120 140 160 180 200	-2.05E-03 -1.47E-03 1.24E-03 2.23E-03 3.39E-04 -1.26E-03 -2.56E-03 -7.33E-04	0.0503 0.0538 0.0566 0.0590 0.0612 0.0631 0.0648 0.0664	-1.03E-04 -7.89E-05 7.03E-05 1.31E-04 2.07E-05 -7.94E-05 -1.66E-04 -4.87E-05	2.64E-06 1.35E-06 9.71E-07 3.12E-06 7.23E-08 1.04E-06 4.13E-06 3.38E-07	-3.77E+03 -3.77E+03 -3.77E+03 -3.77E+03 -3.77E+03 -3.77E+03 -3.77E+03 -3.77E+03	231.90 264.71 293.32 318.98 342.42 364.12 384.39 403.48	4.86 3.48 -2.95 -5.29 -0.81 3.12 6.08 1.74	236.76 268.19 290.37 313.70 341.62 367.23 390.47 405.22
modo de vibração F: 3,55Hz T: 0,28s	3 4 5 6 7 8 9 10	60 80 100 120 140 160 180 200 220	-2.05E-03 -1.47E-03 1.24E-03 2.23E-03 3.39E-04 -1.26E-03 -2.56E-03 -7.33E-04 1.81E-03	0.0503 0.0538 0.0566 0.0590 0.0612 0.0631 0.0648 0.0664 0.0679	-1.03E-04 -7.89E-05 7.03E-05 1.31E-04 2.07E-05 -7.94E-05 -1.66E-04 -4.87E-05 1.22E-04	2.64E-06 1.35E-06 9.71E-07 3.12E-06 7.23E-08 1.04E-06 4.13E-06 3.38E-07 2.05E-06	-3.77E+03 -3.77E+03 -3.77E+03 -3.77E+03 -3.77E+03 -3.77E+03 -3.77E+03 -3.77E+03	231.90 264.71 293.32 318.98 342.42 364.12 384.39 403.48 421.56	4.86 3.48 -2.95 -5.29 -0.81 3.12 6.08 1.74 -4.29	236.76 268.19 290.37 313.70 341.62 367.23 390.47 405.22 417.27
modo de vibração F: 3,55Hz T: 0,28s	3 4 5 6 7 8 9 10 11	60 80 100 120 140 160 180 200 220 240	-2.05E-03 -1.47E-03 1.24E-03 2.23E-03 3.39E-04 -1.26E-03 -2.56E-03 -7.33E-04 1.81E-03 2.56E-03	0.0503 0.0538 0.0566 0.0590 0.0612 0.0631 0.0648 0.0664 0.0679 0.0692	-1.03E-04 -7.89E-05 7.03E-05 1.31E-04 2.07E-05 -7.94E-05 -1.66E-04 -4.87E-05 1.22E-04 1.77E-04	2.64E-06 1.35E-06 9.71E-07 3.12E-06 7.23E-08 1.04E-06 4.13E-06 3.38E-07 2.05E-06 4.13E-06	-3.77E+03	231.90 264.71 293.32 318.98 342.42 364.12 384.39 403.48 421.56 438.77	4.86 3.48 -2.95 -5.29 -0.81 3.12 6.08 1.74 -4.29 -6.08	236.76 268.19 290.37 313.70 341.62 367.23 390.47 405.22 417.27 432.69

	i	z _i (m)	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{X_1}$	Xi (kN)
	1	20	-9.00E-07	0.0391	-3.52E-08	5.09E-13	6.59E+07	139.90	-37.33	102.57
	2	40	-3.55E-07	0.0459	-1.63E-08	7.93E-14	6.59E+07	192.44	-14.73	177.71
	3	60	7.67E-07	0.0503	3.86E-08	3.71E-13	6.59E+07	231.90	31.84	263.74
	4	80	2.61E-07	0.0538	1.40E-08	4.29E-14	6.59E+07	264.71	10.84	275.55
8°. modo de	5	100	-1.17E-06	0.0566	-6.61E-08	8.59E-13	6.59E+07	293.32	-48.47	244.85
vibração	6	120	-4.27E-07	0.0590	-2.52E-08	1.15E-13	6.59E+07	318.98	-17.70	301.28
F: 3,63Hz	7	140	2.78E-06	0.0612	1.70E-07	4.87E-12	6.59E+07	342.42	115.36	457.78
	8	160	-1.16E-06	0.0631	-7.32E-08	8.83E-13	6.59E+07	364.12	-50.17	313.94
T: 0,27s	9	180	1.27E-06	0.0648	8.24E-08	1.02E-12	6.59E+07	384.39	52.74	437.13
ξ: 0,6	10	200	1.40E-06	0.0664	9.31E-08	1.24E-12	6.59E+07	403.48	58.22	461.70
·	11	220	2.51E-06	0.0679	1.71E-07	3.98E-12	6.59E+07	421.56	104.28	525.84
	12	240	2.73E-06	0.0692	1.89E-07	4.70E-12	6.59E+07	438.77	113.41	552.19
	13	260	2.14E-06	0.0705	1.51E-07	2.88E-12	6.59E+07	455.23	88.80	544.03
	14	280	1.37E-06	0.0717	9.80E-08	1.17E-12	6.59E+07	471.02	56.68	527.70
	15	300	4.26E-07	0.0729	3.10E-08	1.14E-13	6.59E+07	486.21	17.68	503.88
	i	$\mathbf{z}_{i}\left(\mathbf{m}\right)$	$x_i(m)$	β_i	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{X_1}$	Xi (kN)
	1	20	-2.06E-03	0.0391	-8.04E-05	2.66E-06	-6.31E+03	139.90	8.17	148.07
	2	4.0	C 0.4E 0.4							
		40	6.84E-04	0.0459	3.14E-05	2.95E-07	-6.31E+03	192.44	-2.72	189.72
	3	60	6.84E-04 2.16E-03	0.0459	3.14E-05 1.09E-04	2.95E-07 2.93E-06	-6.31E+03	231.90	-2.72 -8.57	189.72 223.32
	3									
9°.		60	2.16E-03	0.0503	1.09E-04	2.93E-06	-6.31E+03	231.90	-8.57	223.32
9°. modo de vibração	4	60 80	2.16E-03 -9.06E-04	0.0503 0.0538	1.09E-04 -4.87E-05	2.93E-06 5.17E-07	-6.31E+03	231.90 264.71	-8.57 3.60	223.32 268.31
modo de vibração	4 5	60 80 100	2.16E-03 -9.06E-04 -2.31E-03	0.0503 0.0538 0.0566	1.09E-04 -4.87E-05 -1.31E-04	2.93E-06 5.17E-07 3.37E-06	-6.31E+03 -6.31E+03	231.90 264.71 293.32	-8.57 3.60 9.19	223.32 268.31 302.51
modo de vibração F: 3,67Hz	4 5 6	60 80 100 120	2.16E-03 -9.06E-04 -2.31E-03 6.65E-04	0.0503 0.0538 0.0566 0.0590	1.09E-04 -4.87E-05 -1.31E-04 3.93E-05	2.93E-06 5.17E-07 3.37E-06 2.78E-07	-6.31E+03 -6.31E+03 -6.31E+03	231.90 264.71 293.32 318.98	-8.57 3.60 9.19 -2.64	223.32 268.31 302.51 316.34
modo de vibração	4 5 6 7	60 80 100 120 140	2.16E-03 -9.06E-04 -2.31E-03 6.65E-04 2.22E-03	0.0503 0.0538 0.0566 0.0590 0.0612	1.09E-04 -4.87E-05 -1.31E-04 3.93E-05 1.36E-04	2.93E-06 5.17E-07 3.37E-06 2.78E-07 3.10E-06	-6.31E+03 -6.31E+03 -6.31E+03 -6.31E+03	231.90 264.71 293.32 318.98 342.42	-8.57 3.60 9.19 -2.64 -8.81	223.32 268.31 302.51 316.34 333.61
modo de vibração F: 3,67Hz	4 5 6 7 8	60 80 100 120 140 160	2.16E-03 -9.06E-04 -2.31E-03 6.65E-04 2.22E-03 4.23E-04	0.0503 0.0538 0.0566 0.0590 0.0612 0.0631	1.09E-04 -4.87E-05 -1.31E-04 3.93E-05 1.36E-04 2.67E-05	2.93E-06 5.17E-07 3.37E-06 2.78E-07 3.10E-06 1.17E-07	-6.31E+03 -6.31E+03 -6.31E+03 -6.31E+03 -6.31E+03	231.90 264.71 293.32 318.98 342.42 364.12	-8.57 3.60 9.19 -2.64 -8.81 -1.75	223.32 268.31 302.51 316.34 333.61 362.36
modo de vibração F: 3,67Hz T: 0,27s	4 5 6 7 8 9	60 80 100 120 140 160 180	2.16E-03 -9.06E-04 -2.31E-03 6.65E-04 2.22E-03 4.23E-04 -1.47E-03	0.0503 0.0538 0.0566 0.0590 0.0612 0.0631 0.0648	1.09E-04 -4.87E-05 -1.31E-04 3.93E-05 1.36E-04 2.67E-05 -9.55E-05	2.93E-06 5.17E-07 3.37E-06 2.78E-07 3.10E-06 1.17E-07 1.37E-06	-6.31E+03 -6.31E+03 -6.31E+03 -6.31E+03 -6.31E+03 -6.31E+03	231.90 264.71 293.32 318.98 342.42 364.12 384.39	-8.57 3.60 9.19 -2.64 -8.81 -1.75 5.86	223.32 268.31 302.51 316.34 333.61 362.36 390.24
modo de vibração F: 3,67Hz T: 0,27s	4 5 6 7 8 9	60 80 100 120 140 160 180 200	2.16E-03 -9.06E-04 -2.31E-03 6.65E-04 2.22E-03 4.23E-04 -1.47E-03 -1.61E-03	0.0503 0.0538 0.0566 0.0590 0.0612 0.0631 0.0648 0.0664	1.09E-04 -4.87E-05 -1.31E-04 3.93E-05 1.36E-04 2.67E-05 -9.55E-05 -1.07E-04	2.93E-06 5.17E-07 3.37E-06 2.78E-07 3.10E-06 1.17E-07 1.37E-06 1.63E-06	-6.31E+03 -6.31E+03 -6.31E+03 -6.31E+03 -6.31E+03 -6.31E+03 -6.31E+03	231.90 264.71 293.32 318.98 342.42 364.12 384.39 403.48	-8.57 3.60 9.19 -2.64 -8.81 -1.75 5.86 6.39	223.32 268.31 302.51 316.34 333.61 362.36 390.24 409.86
modo de vibração F: 3,67Hz T: 0,27s	4 5 6 7 8 9 10	60 80 100 120 140 160 180 200 220	2.16E-03 -9.06E-04 -2.31E-03 6.65E-04 2.22E-03 4.23E-04 -1.47E-03 -1.61E-03 3.66E-04	0.0503 0.0538 0.0566 0.0590 0.0612 0.0631 0.0648 0.0664 0.0679	1.09E-04 -4.87E-05 -1.31E-04 3.93E-05 1.36E-04 2.67E-05 -9.55E-05 -1.07E-04 2.48E-05	2.93E-06 5.17E-07 3.37E-06 2.78E-07 3.10E-06 1.17E-07 1.37E-06 1.63E-06 8.43E-08	-6.31E+03 -6.31E+03 -6.31E+03 -6.31E+03 -6.31E+03 -6.31E+03 -6.31E+03	231.90 264.71 293.32 318.98 342.42 364.12 384.39 403.48 421.56	-8.57 3.60 9.19 -2.64 -8.81 -1.75 5.86 6.39 -1.45	223.32 268.31 302.51 316.34 333.61 362.36 390.24 409.86 420.11
modo de vibração F: 3,67Hz T: 0,27s	4 5 6 7 8 9 10 11	60 80 100 120 140 160 180 200 220 240	2.16E-03 -9.06E-04 -2.31E-03 6.65E-04 2.22E-03 4.23E-04 -1.47E-03 -1.61E-03 3.66E-04 1.82E-03	0.0503 0.0538 0.0566 0.0590 0.0612 0.0631 0.0648 0.0664 0.0679 0.0692	1.09E-04 -4.87E-05 -1.31E-04 3.93E-05 1.36E-04 2.67E-05 -9.55E-05 -1.07E-04 2.48E-05 1.26E-04	2.93E-06 5.17E-07 3.37E-06 2.78E-07 3.10E-06 1.17E-07 1.37E-06 1.63E-06 8.43E-08 2.09E-06	-6.31E+03 -6.31E+03 -6.31E+03 -6.31E+03 -6.31E+03 -6.31E+03 -6.31E+03 -6.31E+03	231.90 264.71 293.32 318.98 342.42 364.12 384.39 403.48 421.56 438.77	-8.57 3.60 9.19 -2.64 -8.81 -1.75 5.86 6.39 -1.45 -7.23	223.32 268.31 302.51 316.34 333.61 362.36 390.24 409.86 420.11 431.54

	i	z _i (m)	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{X_1}$	Xi (kN)
	1	20	-2.37E-06	0.0391	-9.28E-08	3.55E-12	2.76E+07	139.90	-41.20	98.70
	2	40	9.10E-07	0.0459	4.17E-08	5.21E-13	2.76E+07	192.44	15.80	208.23
	3	60	2.34E-06	0.0503	1.18E-07	3.44E-12	2.76E+07	231.90	40.58	272.47
	4	80	-1.89E-06	0.0538	-1.02E-07	2.26E-12	2.76E+07	264.71	-32.85	231.85
10°. modo de	5	100	-2.48E-06	0.0566	-1.41E-07	3.88E-12	2.76E+07	293.32	-43.11	250.21
vibração	6	120	1.03E-06	0.0590	6.10E-08	6.73E-13	2.76E+07	318.98	17.95	336.93
F: 3,72Hz	7	140	-1.03E-07	0.0612	-6.28E-09	6.64E-15	2.76E+07	342.42	-1.78	340.64
	8	160	6.01E-07	0.0631	3.79E-08	2.37E-13	2.76E+07	364.12	10.87	374.99
T: 0,27s	9	180	-5.89E-07	0.0648	-3.81E-08	2.18E-13	2.76E+07	384.39	-10.22	374.17
ξ: 0,6	10	200	-9.35E-07	0.0664	-6.21E-08	5.50E-13	2.76E+07	403.48	-16.23	387.25
	11	220	1.88E-06	0.0679	1.27E-07	2.22E-12	2.76E+07	421.56	32.56	454.12
	12	240	4.27E-06	0.0692	2.96E-07	1.15E-11	2.76E+07	438.77	74.18	512.95
	13	260	3.93E-06	0.0705	2.77E-07	9.74E-12	2.76E+07	455.23	68.28	523.51
	14	280	1.77E-06	0.0717	1.27E-07	1.97E-12	2.76E+07	471.02	30.70	501.72
	15	300	-3.96E-07	0.0729	-2.88E-08	9.85E-14	2.76E+07	486.21	-6.86	479.34
	i	$\mathbf{z_{i}}\left(\mathbf{m}\right)$	$x_i(m)$	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F}_{\mathbf{H}}$	\overline{X}_1	$\widehat{X_1}$	Xi (kN)
	1	20	1.47E-03	0.0391	5.76E-05	1.37E-06	-3.04E+03	139.90	-2.82	137.08
	2									
Ī	2	40	-1.31E-03	0.0459	-6.01E-05	1.08E-06	-3.04E+03	192.44	2.51	194.95
	3	40 60	-1.31E-03 -6.25E-04	0.0459	-6.01E-05 -3.15E-05	1.08E-06 2.46E-07	-3.04E+03	192.44 231.90	2.51 1.20	194.95 233.09
11°.	3	60	-6.25E-04	0.0503	-3.15E-05	2.46E-07	-3.04E+03	231.90	1.20	233.09
11°. modo de vibração	3	60 80	-6.25E-04 1.95E-03	0.0503 0.0538	-3.15E-05 1.05E-04	2.46E-07 2.40E-06	-3.04E+03	231.90 264.71	1.20	233.09 260.97
modo de vibração	3 4 5	60 80 100	-6.25E-04 1.95E-03 -5.66E-04	0.0503 0.0538 0.0566	-3.15E-05 1.05E-04 -3.20E-05	2.46E-07 2.40E-06 2.02E-07	-3.04E+03 -3.04E+03 -3.04E+03	231.90 264.71 293.32	1.20 -3.74 1.08	233.09 260.97 294.41
modo de vibração F: 3,80Hz	3 4 5 6	60 80 100 120	-6.25E-04 1.95E-03 -5.66E-04 -1.88E-03	0.0503 0.0538 0.0566 0.0590	-3.15E-05 1.05E-04 -3.20E-05 -1.11E-04	2.46E-07 2.40E-06 2.02E-07 2.23E-06	-3.04E+03 -3.04E+03 -3.04E+03 -3.04E+03	231.90 264.71 293.32 318.98	1.20 -3.74 1.08 3.61	233.09 260.97 294.41 322.59
modo de vibração	3 4 5 6 7	60 80 100 120 140	-6.25E-04 1.95E-03 -5.66E-04 -1.88E-03 1.18E-03	0.0503 0.0538 0.0566 0.0590 0.0612	-3.15E-05 1.05E-04 -3.20E-05 -1.11E-04 7.19E-05	2.46E-07 2.40E-06 2.02E-07 2.23E-06 8.69E-07	-3.04E+03 -3.04E+03 -3.04E+03 -3.04E+03	231.90 264.71 293.32 318.98 342.42	1.20 -3.74 1.08 3.61 -2.25	233.09 260.97 294.41 322.59 340.17
modo de vibração F: 3,80Hz	3 4 5 6 7 8	60 80 100 120 140 160	-6.25E-04 1.95E-03 -5.66E-04 -1.88E-03 1.18E-03 1.38E-03	0.0503 0.0538 0.0566 0.0590 0.0612 0.0631	-3.15E-05 1.05E-04 -3.20E-05 -1.11E-04 7.19E-05 8.67E-05	2.46E-07 2.40E-06 2.02E-07 2.23E-06 8.69E-07 1.24E-06	-3.04E+03 -3.04E+03 -3.04E+03 -3.04E+03 -3.04E+03	231.90 264.71 293.32 318.98 342.42 364.12	1.20 -3.74 1.08 3.61 -2.25 -2.75	233.09 260.97 294.41 322.59 340.17 361.37
modo de vibração F: 3,80Hz T: 0,26s	3 4 5 6 7 8 9	60 80 100 120 140 160 180	-6.25E-04 1.95E-03 -5.66E-04 -1.88E-03 1.18E-03 1.38E-03 7.53E-04	0.0503 0.0538 0.0566 0.0590 0.0612 0.0631 0.0648	-3.15E-05 1.05E-04 -3.20E-05 -1.11E-04 7.19E-05 8.67E-05 4.88E-05	2.46E-07 2.40E-06 2.02E-07 2.23E-06 8.69E-07 1.24E-06 3.57E-07	-3.04E+03 -3.04E+03 -3.04E+03 -3.04E+03 -3.04E+03 -3.04E+03	231.90 264.71 293.32 318.98 342.42 364.12 384.39	1.20 -3.74 1.08 3.61 -2.25 -2.75 -1.44	233.09 260.97 294.41 322.59 340.17 361.37 382.95
modo de vibração F: 3,80Hz T: 0,26s	3 4 5 6 7 8 9	60 80 100 120 140 160 180 200	-6.25E-04 1.95E-03 -5.66E-04 -1.88E-03 1.18E-03 1.38E-03 7.53E-04 -2.02E-03	0.0503 0.0538 0.0566 0.0590 0.0612 0.0631 0.0648 0.0664	-3.15E-05 1.05E-04 -3.20E-05 -1.11E-04 7.19E-05 8.67E-05 4.88E-05 -1.34E-04	2.46E-07 2.40E-06 2.02E-07 2.23E-06 8.69E-07 1.24E-06 3.57E-07 2.58E-06	-3.04E+03 -3.04E+03 -3.04E+03 -3.04E+03 -3.04E+03 -3.04E+03 -3.04E+03	231.90 264.71 293.32 318.98 342.42 364.12 384.39 403.48	1.20 -3.74 1.08 3.61 -2.25 -2.75 -1.44 3.88	233.09 260.97 294.41 322.59 340.17 361.37 382.95 407.35
modo de vibração F: 3,80Hz T: 0,26s	3 4 5 6 7 8 9 10	60 80 100 120 140 160 180 200 220	-6.25E-04 1.95E-03 -5.66E-04 -1.88E-03 1.18E-03 7.53E-04 -2.02E-03 -1.29E-03	0.0503 0.0538 0.0566 0.0590 0.0612 0.0631 0.0648 0.0664 0.0679	-3.15E-05 1.05E-04 -3.20E-05 -1.11E-04 7.19E-05 8.67E-05 4.88E-05 -1.34E-04 -8.73E-05	2.46E-07 2.40E-06 2.02E-07 2.23E-06 8.69E-07 1.24E-06 3.57E-07 2.58E-06 1.04E-06	-3.04E+03 -3.04E+03 -3.04E+03 -3.04E+03 -3.04E+03 -3.04E+03 -3.04E+03 -3.04E+03	231.90 264.71 293.32 318.98 342.42 364.12 384.39 403.48 421.56	1.20 -3.74 1.08 3.61 -2.25 -2.75 -1.44 3.88 2.47	233.09 260.97 294.41 322.59 340.17 361.37 382.95 407.35
modo de vibração F: 3,80Hz T: 0,26s	3 4 5 6 7 8 9 10 11	60 80 100 120 140 160 180 200 220 240	-6.25E-04 1.95E-03 -5.66E-04 -1.88E-03 1.18E-03 7.53E-04 -2.02E-03 -1.29E-03 1.58E-03	0.0503 0.0538 0.0566 0.0590 0.0612 0.0631 0.0648 0.0664 0.0679 0.0692	-3.15E-05 1.05E-04 -3.20E-05 -1.11E-04 7.19E-05 8.67E-05 4.88E-05 -1.34E-04 -8.73E-05 1.09E-04	2.46E-07 2.40E-06 2.02E-07 2.23E-06 8.69E-07 1.24E-06 3.57E-07 2.58E-06 1.04E-06 1.56E-06	-3.04E+03 -3.04E+03 -3.04E+03 -3.04E+03 -3.04E+03 -3.04E+03 -3.04E+03 -3.04E+03 -3.04E+03	231.90 264.71 293.32 318.98 342.42 364.12 384.39 403.48 421.56 438.77	1.20 -3.74 1.08 3.61 -2.25 -2.75 -1.44 3.88 2.47 -3.02	233.09 260.97 294.41 322.59 340.17 361.37 382.95 407.35 424.02 435.76

	i	z _i (m)	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	F _H	$\overline{X_1}$	$\widehat{X_1}$	Xi (kN)
	1	20	3.37E-06	0.0391	1.32E-07	7.16E-12	1.67E+06	139.90	3.54	143.44
	2	40	-6.49E-07	0.0459	-2.98E-08	2.65E-13	1.67E+06	192.44	-0.68	191.76
	3	60	-3.58E-06	0.0503	-1.80E-07	8.07E-12	1.67E+06	231.90	-3.76	228.14
	4	80	2.62E-06	0.0538	1.41E-07	4.31E-12	1.67E+06	264.71	2.74	267.45
12°. modo de	5	100	1.63E-06	0.0566	9.20E-08	1.66E-12	1.67E+06	293.32	1.70	295.03
vibração	6	120	-3.95E-06	0.0590	-2.33E-07	9.82E-12	1.67E+06	318.98	-4.14	314.84
F: 3,81Hz	7	140	-1.91E-06	0.0612	-1.17E-07	2.31E-12	1.67E+06	342.42	-2.01	340.42
	8	160	7.61E-06	0.0631	4.80E-07	3.80E-11	1.67E+06	364.12	8.33	372.44
T: 0,26s	9	180	3.88E-06	0.0648	2.52E-07	9.49E-12	1.67E+06	384.39	4.07	388.46
ξ: 0,6	10	200	-8.93E-06	0.0664	-5.93E-07	5.02E-11	1.67E+06	403.48	-9.37	394.10
	11	220	-7.17E-06	0.0679	-4.87E-07	3.24E-11	1.67E+06	421.56	-7.53	414.03
	12	240	7.91E-06	0.0692	5.48E-07	3.94E-11	1.67E+06	438.77	8.30	447.08
	13	260	1.20E-05	0.0705	8.46E-07	9.06E-11	1.67E+06	455.23	12.59	467.82
	14	280	8.62E-07	0.0717	6.19E-08	4.68E-13	1.67E+06	471.02	0.90	471.92
	15	300	-8.30E-06	0.0729	-6.05E-07	4.34E-11	1.67E+06	486.21	-8.71	477.50
	i	$\mathbf{z_{i}}\left(\mathbf{m}\right)$	$x_i(m)$	β_i	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F}_{\mathbf{H}}$	\overline{X}_1	$\widehat{X_1}$	Xi (kN)
	1	20	-1.20E-03	0.0391	-4.68E-05	9.00E-07	-7.82E+03	139.90	5.89	145.79
	2	40	1.35E-03	0.0459	6.20E-05	1.15E-06	-7.82E+03	192.44	-6.66	185.78
	3	60	-1.33E-04	0.0503	-6.69E-06	1.11E-08	-7.82E+03	231.90	0.65	232.55
	4	80	-1.43E-03	0.0538	-7.66E-05	1.28E-06	-7.82E+03	264.71		271.72
13°.	-				7.002 03	1.20L-00	-7.62E±03	204.71	7.02	271.72
modo do	5	100	1.60E-03	0.0566	9.07E-05	1.62E-06	-7.82E+03	293.32	7.02 -7.89	285.43
modo de vibração	6	100 120	1.60E-03 1.01E-04	0.0566 0.0590						
vibração					9.07E-05	1.62E-06	-7.82E+03	293.32	-7.89	285.43
vibração F: 3,86Hz	6	120	1.01E-04	0.0590	9.07E-05 5.96E-06	1.62E-06 6.42E-09	-7.82E+03 -7.82E+03	293.32 318.98	-7.89 -0.50	285.43 318.49
vibração	6 7	120 140	1.01E-04 -1.74E-03	0.0590 0.0612	9.07E-05 5.96E-06 -1.06E-04	1.62E-06 6.42E-09 1.90E-06	-7.82E+03 -7.82E+03 -7.82E+03	293.32 318.98 342.42	-7.89 -0.50 8.56	285.43 318.49 350.98
vibração F: 3,86Hz	6 7 8	120 140 160	1.01E-04 -1.74E-03 2.85E-04	0.0590 0.0612 0.0631	9.07E-05 5.96E-06 -1.06E-04 1.80E-05	1.62E-06 6.42E-09 1.90E-06 5.33E-08	-7.82E+03 -7.82E+03 -7.82E+03 -7.82E+03	293.32 318.98 342.42 364.12	-7.89 -0.50 8.56 -1.46	285.43 318.49 350.98 362.65
vibração F: 3,86Hz T: 0,26s	6 7 8 9	120 140 160 180	1.01E-04 -1.74E-03 2.85E-04 2.06E-03	0.0590 0.0612 0.0631 0.0648	9.07E-05 5.96E-06 -1.06E-04 1.80E-05 1.33E-04	1.62E-06 6.42E-09 1.90E-06 5.33E-08 2.67E-06	-7.82E+03 -7.82E+03 -7.82E+03 -7.82E+03 -7.82E+03	293.32 318.98 342.42 364.12 384.39	-7.89 -0.50 8.56 -1.46 -10.13	285.43 318.49 350.98 362.65 374.26
vibração F: 3,86Hz T: 0,26s	6 7 8 9 10	120 140 160 180 200	1.01E-04 -1.74E-03 2.85E-04 2.06E-03 -7.01E-04	0.0590 0.0612 0.0631 0.0648 0.0664	9.07E-05 5.96E-06 -1.06E-04 1.80E-05 1.33E-04 -4.65E-05	1.62E-06 6.42E-09 1.90E-06 5.33E-08 2.67E-06 3.09E-07	-7.82E+03 -7.82E+03 -7.82E+03 -7.82E+03 -7.82E+03 -7.82E+03	293.32 318.98 342.42 364.12 384.39 403.48	-7.89 -0.50 8.56 -1.46 -10.13 3.45	285.43 318.49 350.98 362.65 374.26 406.93
vibração F: 3,86Hz T: 0,26s	6 7 8 9 10	120 140 160 180 200 220	1.01E-04 -1.74E-03 2.85E-04 2.06E-03 -7.01E-04 -2.14E-03	0.0590 0.0612 0.0631 0.0648 0.0664 0.0679	9.07E-05 5.96E-06 -1.06E-04 1.80E-05 1.33E-04 -4.65E-05 -1.45E-04	1.62E-06 6.42E-09 1.90E-06 5.33E-08 2.67E-06 3.09E-07 2.87E-06	-7.82E+03 -7.82E+03 -7.82E+03 -7.82E+03 -7.82E+03 -7.82E+03 -7.82E+03	293.32 318.98 342.42 364.12 384.39 403.48 421.56	-7.89 -0.50 8.56 -1.46 -10.13 3.45 10.52	285.43 318.49 350.98 362.65 374.26 406.93 432.08
vibração F: 3,86Hz T: 0,26s	6 7 8 9 10 11	120 140 160 180 200 220 240	1.01E-04 -1.74E-03 2.85E-04 2.06E-03 -7.01E-04 -2.14E-03 7.77E-04	0.0590 0.0612 0.0631 0.0648 0.0664 0.0679 0.0692	9.07E-05 5.96E-06 -1.06E-04 1.80E-05 1.33E-04 -4.65E-05 -1.45E-04 5.38E-05	1.62E-06 6.42E-09 1.90E-06 5.33E-08 2.67E-06 3.09E-07 2.87E-06 3.80E-07	-7.82E+03 -7.82E+03 -7.82E+03 -7.82E+03 -7.82E+03 -7.82E+03 -7.82E+03	293.32 318.98 342.42 364.12 384.39 403.48 421.56 438.77	-7.89 -0.50 8.56 -1.46 -10.13 3.45 10.52 -3.83	285.43 318.49 350.98 362.65 374.26 406.93 432.08 434.95

	i	$\mathbf{z_{i}}\left(\mathbf{m}\right)$	x _i (m)	β_i	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{X_1}$	Xi (kN)
	1	20	-5.68E-06	0.0391	-2.22E-07	2.03E-11	3.09E+06	139.90	-11.05	128.85
	2	40	3.47E-06	0.0459	1.59E-07	7.59E-12	3.09E+06	192.44	6.76	199.19
	3	60	3.96E-06	0.0503	1.99E-07	9.88E-12	3.09E+06	231.90	7.70	239.60
	4	80	-5.13E-06	0.0538	-2.76E-07	1.66E-11	3.09E+06	264.71	-9.98	254.73
14°. modo de	5	100	2.33E-06	0.0566	1.32E-07	3.43E-12	3.09E+06	293.32	4.54	297.86
vibração	6	120	2.22E-06	0.0590	1.31E-07	3.10E-12	3.09E+06	318.98	4.32	323.30
F: 2,87Hz	7	140	-4.49E-06	0.0612	-2.75E-07	1.27E-11	3.09E+06	342.42	-8.73	333.69
	8	160	2.70E-06	0.0631	1.70E-07	4.77E-12	3.09E+06	364.12	5.46	369.58
T: 0,35s	9	180	1.35E-06	0.0648	8.77E-08	1.15E-12	3.09E+06	384.39	2.63	387.02
ξ: 0,6	10	200	-1.28E-06	0.0664	-8.52E-08	1.04E-12	3.09E+06	403.48	-2.50	400.98
	11	220	-6.26E-06	0.0679	-4.25E-07	2.47E-11	3.09E+06	421.56	-12.18	409.38
	12	240	7.17E-07	0.0692	4.96E-08	3.24E-13	3.09E+06	438.77	1.39	440.17
	13	260	6.62E-06	0.0705	4.67E-07	2.76E-11	3.09E+06	455.23	12.88	468.12
	14	280	3.69E-06	0.0717	2.65E-07	8.58E-12	3.09E+06	471.02	7.18	478.20
	15	300	-1.86E-06	0.0729	-1.35E-07	2.17E-12	3.09E+06	486.21	-3.61	482.60
	i	$\mathbf{z_{i}}\left(\mathbf{m}\right)$	$x_i(m)$	β_i	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{\mathbf{X_1}}$	$\widehat{X_1}$	Xi (kN)
	i 1	z _i (m) 20	x _i (m) -2.00E-05	β _i 0.0391	β _i x _i -7.82E-07	$\psi_{i}x_{i}^{2}$ 2.52E-10	F _H 3.39E+05	X ₁ 139.90	-4.27	Xi (kN) 135.63
	1	20	-2.00E-05	0.0391	-7.82E-07	2.52E-10	3.39E+05	139.90	-4.27	135.63
	1 2	20 40	-2.00E-05 3.40E-05	0.0391 0.0459	-7.82E-07 1.56E-06	2.52E-10 7.28E-10	3.39E+05 3.39E+05	139.90 192.44	-4.27 7.26	135.63 199.70
15°.	1 2 3	20 40 60	-2.00E-05 3.40E-05 -3.10E-05	0.0391 0.0459 0.0503	-7.82E-07 1.56E-06 -1.56E-06	2.52E-10 7.28E-10 6.05E-10	3.39E+05 3.39E+05 3.39E+05	139.90 192.44 231.90	-4.27 7.26 -6.62	135.63 199.70 225.28
15°. modo de vibração	1 2 3 4	20 40 60 80	-2.00E-05 3.40E-05 -3.10E-05 -4.70E-08	0.0391 0.0459 0.0503 0.0538	-7.82E-07 1.56E-06 -1.56E-06 -2.53E-09	2.52E-10 7.28E-10 6.05E-10 1.39E-15	3.39E+05 3.39E+05 3.39E+05 3.39E+05	139.90 192.44 231.90 264.71	-4.27 7.26 -6.62 -0.01	135.63 199.70 225.28 264.70
modo de vibração	1 2 3 4 5	20 40 60 80 100	-2.00E-05 3.40E-05 -3.10E-05 -4.70E-08 3.80E-05	0.0391 0.0459 0.0503 0.0538 0.0566	-7.82E-07 1.56E-06 -1.56E-06 -2.53E-09 2.15E-06	2.52E-10 7.28E-10 6.05E-10 1.39E-15 9.09E-10	3.39E+05 3.39E+05 3.39E+05 3.39E+05 3.39E+05	139.90 192.44 231.90 264.71 293.32	-4.27 7.26 -6.62 -0.01 8.11	135.63 199.70 225.28 264.70 301.43
modo de vibração F: 2,91Hz	1 2 3 4 5 6	20 40 60 80 100 120	-2.00E-05 3.40E-05 -3.10E-05 -4.70E-08 3.80E-05 -5.20E-05	0.0391 0.0459 0.0503 0.0538 0.0566 0.0590	-7.82E-07 1.56E-06 -1.56E-06 -2.53E-09 2.15E-06 -3.07E-06	2.52E-10 7.28E-10 6.05E-10 1.39E-15 9.09E-10 1.70E-09	3.39E+05 3.39E+05 3.39E+05 3.39E+05 3.39E+05 3.39E+05	139.90 192.44 231.90 264.71 293.32 318.98	-4.27 7.26 -6.62 -0.01 8.11 -11.10	135.63 199.70 225.28 264.70 301.43 307.88
modo de vibração	1 2 3 4 5 6 7	20 40 60 80 100 120 140	-2.00E-05 3.40E-05 -3.10E-05 -4.70E-08 3.80E-05 -5.20E-05 2.10E-05	0.0391 0.0459 0.0503 0.0538 0.0566 0.0590 0.0612	-7.82E-07 1.56E-06 -1.56E-06 -2.53E-09 2.15E-06 -3.07E-06 1.28E-06	2.52E-10 7.28E-10 6.05E-10 1.39E-15 9.09E-10 1.70E-09 2.78E-10	3.39E+05 3.39E+05 3.39E+05 3.39E+05 3.39E+05 3.39E+05	139.90 192.44 231.90 264.71 293.32 318.98 342.42	-4.27 7.26 -6.62 -0.01 8.11 -11.10 4.48	135.63 199.70 225.28 264.70 301.43 307.88 346.91
modo de vibração F: 2,91Hz	1 2 3 4 5 6 7 8	20 40 60 80 100 120 140	-2.00E-05 3.40E-05 -3.10E-05 -4.70E-08 3.80E-05 -5.20E-05 2.10E-05 3.30E-05	0.0391 0.0459 0.0503 0.0538 0.0566 0.0590 0.0612 0.0631	-7.82E-07 1.56E-06 -1.56E-06 -2.53E-09 2.15E-06 -3.07E-06 1.28E-06 2.08E-06	2.52E-10 7.28E-10 6.05E-10 1.39E-15 9.09E-10 1.70E-09 2.78E-10 7.15E-10	3.39E+05 3.39E+05 3.39E+05 3.39E+05 3.39E+05 3.39E+05 3.39E+05	139.90 192.44 231.90 264.71 293.32 318.98 342.42 364.12	-4.27 7.26 -6.62 -0.01 8.11 -11.10 4.48 7.34	135.63 199.70 225.28 264.70 301.43 307.88 346.91 371.46
modo de vibração F: 2,91Hz T: 0,34s	1 2 3 4 5 6 7 8	20 40 60 80 100 120 140 160 180	-2.00E-05 3.40E-05 -3.10E-05 -4.70E-08 3.80E-05 -5.20E-05 2.10E-05 3.30E-05 3.17E-06	0.0391 0.0459 0.0503 0.0538 0.0566 0.0590 0.0612 0.0631 0.0648	-7.82E-07 1.56E-06 -1.56E-06 -2.53E-09 2.15E-06 -3.07E-06 1.28E-06 2.08E-06 2.05E-07	2.52E-10 7.28E-10 6.05E-10 1.39E-15 9.09E-10 1.70E-09 2.78E-10 7.15E-10 6.33E-12	3.39E+05 3.39E+05 3.39E+05 3.39E+05 3.39E+05 3.39E+05 3.39E+05 3.39E+05	139.90 192.44 231.90 264.71 293.32 318.98 342.42 364.12 384.39	-4.27 7.26 -6.62 -0.01 8.11 -11.10 4.48 7.34 0.68	135.63 199.70 225.28 264.70 301.43 307.88 346.91 371.46 385.06
modo de vibração F: 2,91Hz T: 0,34s	1 2 3 4 5 6 7 8 9	20 40 60 80 100 120 140 160 180	-2.00E-05 3.40E-05 -3.10E-05 -4.70E-08 3.80E-05 -5.20E-05 2.10E-05 3.30E-05 3.17E-06 -5.40E-05	0.0391 0.0459 0.0503 0.0538 0.0566 0.0590 0.0612 0.0631 0.0648 0.0664	-7.82E-07 1.56E-06 -1.56E-06 -2.53E-09 2.15E-06 -3.07E-06 1.28E-06 2.08E-06 2.05E-07 -3.59E-06	2.52E-10 7.28E-10 6.05E-10 1.39E-15 9.09E-10 1.70E-09 2.78E-10 7.15E-10 6.33E-12 1.84E-09	3.39E+05 3.39E+05 3.39E+05 3.39E+05 3.39E+05 3.39E+05 3.39E+05 3.39E+05 3.39E+05	139.90 192.44 231.90 264.71 293.32 318.98 342.42 364.12 384.39 403.48	-4.27 7.26 -6.62 -0.01 8.11 -11.10 4.48 7.34 0.68 -11.53	135.63 199.70 225.28 264.70 301.43 307.88 346.91 371.46 385.06 391.95
modo de vibração F: 2,91Hz T: 0,34s	1 2 3 4 5 6 7 8 9 10	20 40 60 80 100 120 140 160 180 200 220	-2.00E-05 3.40E-05 -3.10E-05 -4.70E-08 3.80E-05 -5.20E-05 3.30E-05 3.17E-06 -5.40E-05 3.30E-05	0.0391 0.0459 0.0503 0.0538 0.0566 0.0590 0.0612 0.0631 0.0648 0.0664 0.0679	-7.82E-07 1.56E-06 -1.56E-06 -2.53E-09 2.15E-06 -3.07E-06 1.28E-06 2.08E-06 2.05E-07 -3.59E-06 2.24E-06	2.52E-10 7.28E-10 6.05E-10 1.39E-15 9.09E-10 1.70E-09 2.78E-10 7.15E-10 6.33E-12 1.84E-09 6.86E-10	3.39E+05 3.39E+05 3.39E+05 3.39E+05 3.39E+05 3.39E+05 3.39E+05 3.39E+05 3.39E+05 3.39E+05	139.90 192.44 231.90 264.71 293.32 318.98 342.42 364.12 384.39 403.48 421.56	-4.27 7.26 -6.62 -0.01 8.11 -11.10 4.48 7.34 0.68 -11.53 7.04	135.63 199.70 225.28 264.70 301.43 307.88 346.91 371.46 385.06 391.95 428.60
modo de vibração F: 2,91Hz T: 0,34s	1 2 3 4 5 6 7 8 9 10 11	20 40 60 80 100 120 140 160 180 200 220 240	-2.00E-05 3.40E-05 -3.10E-05 -4.70E-08 3.80E-05 -5.20E-05 3.30E-05 3.17E-06 -5.40E-05 3.30E-05	0.0391 0.0459 0.0503 0.0538 0.0566 0.0590 0.0612 0.0631 0.0648 0.0664 0.0679 0.0692	-7.82E-07 1.56E-06 -1.56E-06 -2.53E-09 2.15E-06 -3.07E-06 1.28E-06 2.08E-06 2.05E-07 -3.59E-06 2.24E-06 2.08E-06	2.52E-10 7.28E-10 6.05E-10 1.39E-15 9.09E-10 1.70E-09 2.78E-10 7.15E-10 6.33E-12 1.84E-09 6.86E-10 5.67E-10	3.39E+05 3.39E+05 3.39E+05 3.39E+05 3.39E+05 3.39E+05 3.39E+05 3.39E+05 3.39E+05 3.39E+05 3.39E+05	139.90 192.44 231.90 264.71 293.32 318.98 342.42 364.12 384.39 403.48 421.56 438.77	-4.27 7.26 -6.62 -0.01 8.11 -11.10 4.48 7.34 0.68 -11.53 7.04 6.40	135.63 199.70 225.28 264.70 301.43 307.88 346.91 371.46 385.06 391.95 428.60 445.18

- $M_i = 629504 \text{ kg};$
- M_i (i = 8) = 656116 kg;
- $A_i/A_0 = 1128,66/16929,9 = 0,0667$
- $\psi_i = 0.62950$ $\psi_i (i = 8) = 0.65612$

E.5. Modelo C0

	i	z _i (m)	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F}_{\mathbf{H}}$	\overline{X}_{1}	$\widehat{X_1}$	Xi (kN)
	1	20	8.26E-04	0.2164	1.79E-04	7.80E-07	1.34E+05	592.23	126.45	718.67
	2	40	1.61E-03	0.2366	3.81E-04	2.76E-06	1.34E+05	759.39	229.61	989.00
	3	60	2.35E-03	0.2408	5.67E-04	5.48E-06	1.34E+05	848.30	311.40	1159.70
Primeiro	4	80	3.01E-03	0.2370	7.13E-04	8.24E-06	1.34E+05	892.08	366.59	1258.67
modo de	5	100	3.57E-03	0.2282	8.14E-04	1.06E-05	1.34E+05	904.03	397.45	1301.47
vibração	6	120	4.03E-03	0.2157	8.69E-04	1.22E-05	1.34E+05	891.23	406.88	1298.11
F: 0,84Hz	7	140	4.39E-03	0.2004	8.80E-04	1.30E-05	1.34E+05	858.09	397.83	1255.92
T 110	8	160	4.67E-03	0.1829	8.55E-04	1.31E-05	1.34E+05	807.57	374.80	1182.37
T: 1,18s	9	180	4.88E-03	0.1636	7.98E-04	1.24E-05	1.34E+05	741.82	340.71	1082.53
ξ: 0,8	10	200	5.02E-03	0.1426	7.16E-04	1.12E-05	1.34E+05	662.44	298.29	960.73
	11	220	5.11E-03	0.1202	6.14E-04	9.55E-06	1.34E+05	570.70	250.22	820.92
	12	240	5.15E-03	0.0965	4.97E-04	7.64E-06	1.34E+05	467.62	198.56	666.18
	13	260	5.69E-03	0.0717	4.08E-04	6.80E-06	1.34E+05	354.04	160.03	514.06
	14	280	6.28E-03	0.0459	2.88E-04	5.21E-06	1.34E+05	230.64	111.19	341.83
	15	300	6.56E-03	0.0187	1.22E-04	2.28E-06	1.34E+05	95.23	46.46	141.70
	i	$z_{i}(m)$	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{\mathbf{X}}_{1}$	$\widehat{X_1}$	Xi (kN)
	1	20	-7.71E-04	0.2164	-1.67E-04	6.80E-07	1.29E+05	592.23	-114.02	478.21
	2	40	-1.12E-03	0.2366	-2.65E-04	1.33E-06	1.29E+05	759.39	-154.12	605.27
	3	60	-9.22E-04	0.2408	-2.22E-04	8.40E-07	1.29E+05	848.30	-117.83	730.47
C	4	80	-3.23E-04	0.2370	-7.66E-05	9.50E-08	1.29E+05	892.08	-38.03	854.05
Segundo modo de	5	100	4.22E-04	0.2282	9.63E-05	1.48E-07	1.29E+05	904.03	45.44	949.46
vibração	6	120	1.14E-03	0.2157	2.46E-04	9.79E-07	1.29E+05	891.23	111.17	1002.41
F: 0,67Hz	7	140	1.74E-03	0.2004	3.49E-04	2.05E-06	1.29E+05	858.09	152.50	1010.60
	8	160	2.23E-03	0.1829	4.09E-04	2.99E-06	1.29E+05	807.57	173.09	980.67
T: 1,48	9	180	2.61E-03	0.1636	4.27E-04	3.55E-06	1.29E+05	741.82	175.96	917.78
ξ: 0,75s	10	200	2.87E-03	0.1426	4.10E-04	3.66E-06	1.29E+05	662.44	164.84	827.28
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11	220	3.04E-03	0.1202	3.65E-04	3.38E-06	1.29E+05	570.70	143.77	714.48
	12	240	3.12E-03	0.0965	3.01E-04	2.80E-06	1.29E+05	467.62	116.16	583.79
	13	260	4.67E-03	0.0717	3.35E-04	4.57E-06	1.29E+05	354.04	126.77	480.81
	14	280	6.59E-03	0.0459	3.03E-04	5.75E-06	1.29E+05	230.64	112.77	343.41
	15	300	7.58E-03	0.0187	1.42E-04	3.04E-06	1.29E+05	95.23	51.89	147.12

	i	z _i (m)	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	F _H	$\overline{X_1}$	$\widehat{\mathbf{X}}_{1}$	Xi (kN)
	1	20	-3.10E-05	0.2164	-6.71E-06	1.10E-09	2.22E+06	592.23	-78.65	513.58
	2	40	-4.90E-05	0.2366	-1.16E-05	2.56E-09	2.22E+06	759.39	-115.89	643.50
	3	60	-4.50E-05	0.2408	-1.08E-05	2.00E-09	2.22E+06	848.30	-98.66	749.64
Terceiro	4	80	-2.10E-05	0.2370	-4.98E-06	4.01E-10	2.22E+06	892.08	-42.42	849.67
modo de	5	100	1.10E-05	0.2282	2.51E-06	1.01E-10	2.22E+06	904.03	20.32	924.34
vibração	6	120	4.30E-05	0.2157	9.28E-06	1.40E-09	2.22E+06	891.23	72.00	963.24
F: 1,53Hz	7	140	7.10E-05	0.2004	1.42E-05	3.41E-09	2.22E+06	858.09	106.63	964.73
T 0.65	8	160	9.30E-05	0.1829	1.70E-05	5.18E-09	2.22E+06	807.57	123.62	931.20
T: 0,65 s	9	180	1.10E-04	0.1636	1.80E-05	6.31E-09	2.22E+06	741.82	127.23	869.05
ξ: 0,6s	10	200	1.22E-04	0.1426	1.74E-05	6.60E-09	2.22E+06	662.44	120.05	782.49
,	11	220	1.30E-04	0.1202	1.56E-05	6.18E-09	2.22E+06	570.70	105.48	676.18
	12	240	1.33E-04	0.0965	1.28E-05	5.09E-09	2.22E+06	467.62	84.95	552.57
	13	260	2.09E-04	0.0717	1.50E-05	9.18E-09	2.22E+06	354.04	97.42	451.45
	14	280	3.04E-04	0.0459	1.40E-05	1.22E-08	2.22E+06	230.64	89.22	319.86
	15	300	3.53E-04	0.0187	6.59E-06	6.59E-09	2.22E+06	95.23	41.44	136.67
	i	$z_{i}(m)$	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{X_1}$	Xi (kN)
	1	20	-3.00E-05	0.2164	-6.49E-06	1.03E-09	-4.25E+04	592.23	1.46	593.68
	2	40	4.55E-04	0.2366	1.08E-04	2.21E-07	-4.25E+04	759.39	-20.61	738.78
	3	60	1.18E-03	0.2408	2.83E-04	1.36E-06	-4.25E+04	848.30	-49.33	798.97
0	4	80	1.36E-03	0.2370	3.23E-04	1.69E-06	-4.25E+04	892.08	-52.76	839.32
Quarto modo de	5	100	8.31E-04	0.2282	1.90E-04	5.75E-07	-4.25E+04	904.03	-29.40	874.63
vibração	6	120	-6.90E-05	0.2157	-1.49E-05	3.59E-09	-4.25E+04	891.23	2.21	893.45
F: 1,87Hz	7	140	-9.55E-04	0.2004	-1.91E-04	6.17E-07	-4.25E+04	858.09	27.47	885.56
1.1,07112	8	160	-1.73E-03	0.1829	-3.16E-04	1.78E-06	-4.25E+04	807.57	43.91	851.49
T: 0,53s	9	180	-2.34E-03	0.1636	-3.82E-04	2.85E-06	-4.25E+04	741.82	51.79	793.60
ξ: 0,6	10	200	-2.79E-03	0.1426	-3.97E-04	3.44E-06	-4.25E+04	662.44	52.48	714.92
7. 0,0	11	220	-3.08E-03	0.1202	-3.70E-04	3.46E-06	-4.25E+04	570.70	47.83	618.53
	12	240	-3.24E-03	0.0965	-3.13E-04	3.02E-06	-4.25E+04	467.62	39.62	507.24
	13	260	-8.74E-03	0.0717	-6.27E-04	1.60E-05	-4.25E+04	354.04	78.01	432.04
	14	280	-1.65E-02	0.0459	-7.60E-04	3.62E-05	-4.25E+04	230.64	92.96	323.61
	15	300	-2.09E-02	0.0187	-3.90E-04	2.31E-05	-4.25E+04	95.23	46.93	142.16

	i	z _i (m)	$x_{i}(m)$	β_i	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{\mathbf{X}_1}$	Xi (kN)
	1	20	-1.20E-05	0.2164	-2.60E-06	1.65E-10	-3.57E+05	592.23	4.90	597.13
	2	40	2.20E-05	0.2366	5.21E-06	5.16E-10	-3.57E+05	759.39	-8.38	751.01
	3	60	9.20E-05	0.2408	2.22E-05	8.36E-09	-3.57E+05	848.30	-32.48	815.82
	4	80	1.26E-04	0.2370	2.99E-05	1.45E-08	-3.57E+05	892.08	-40.99	851.09
Quinto modo de	5	100	9.10E-05	0.2282	2.08E-05	6.89E-09	-3.57E+05	904.03	-27.07	876.95
vibração	6	120	1.30E-05	0.2157	2.80E-06	1.28E-10	-3.57E+05	891.23	-3.51	887.73
F: 1,94Hz	7	140	-6.90E-05	0.2004	-1.38E-05	3.22E-09	-3.57E+05	858.09	16.69	874.78
T: 0,51s	8	160	-1.41E-04	0.1829	-2.58E-05	1.19E-08	-3.57E+05	807.57	30.18	837.76
1.0,518	9	180	-1.99E-04	0.1636	-3.25E-05	2.06E-08	-3.57E+05	741.82	37.07	778.89
ξ: 0,6	10	200	-2.42E-04	0.1426	-3.45E-05	2.60E-08	-3.57E+05	662.44	38.35	700.79
	11	220	-2.70E-04	0.1202	-3.24E-05	2.67E-08	-3.57E+05	570.70	35.28	605.98
	12	240	-2.87E-04	0.0965	-2.77E-05	2.37E-08	-3.57E+05	467.62	29.52	497.15
	13	260	-9.51E-04	0.0717	-6.82E-05	1.90E-07	-3.57E+05	354.04	71.39	425.42
	14	280	-1.92E-03	0.0459	-8.81E-05	4.86E-07	-3.57E+05	230.64	90.60	321.25
	15	300	-2.46E-03	0.0187	-4.60E-05	3.21E-07	-3.57E+05	95.23	46.55	141.78
	i	z _i (m)	$x_i(m)$	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{X_1}$	Xi (kN)
	1	20	-1.17E-04	0.2164	-2.53E-05	1.57E-08	5.26E+03	592.23	-0.70	591.52
					1.515.05	4.075.00		770.20		
	2	40	-6.40E-05	0.2366	-1.51E-05	4.37E-09	5.26E+03	759.39	-0.36	759.03
	3	60	-6.40E-05 -9.70E-05	0.2366	-1.51E-05 -2.34E-05	4.37E-09 9.30E-09	5.26E+03 5.26E+03	759.39 848.30	-0.36 -0.50	759.03 847.80
g .										
Sexto modo de	3	60	-9.70E-05	0.2408	-2.34E-05	9.30E-09	5.26E+03	848.30	-0.50	847.80
Sexto modo de vibração	3	60 80	-9.70E-05 -4.31E-04	0.2408 0.2370	-2.34E-05 -1.02E-04	9.30E-09 1.69E-07	5.26E+03 5.26E+03	848.30 892.08	-0.50 -2.07	847.80 890.02
modo de	3 4 5	60 80 100	-9.70E-05 -4.31E-04 -7.92E-04	0.2408 0.2370 0.2282	-2.34E-05 -1.02E-04 -1.81E-04	9.30E-09 1.69E-07 5.22E-07	5.26E+03 5.26E+03 5.26E+03	848.30 892.08 904.03	-0.50 -2.07 -3.47	847.80 890.02 900.55
modo de vibração F: 2,12Hz	3 4 5 6	60 80 100 120	-9.70E-05 -4.31E-04 -7.92E-04 -8.99E-04	0.2408 0.2370 0.2282 0.2157	-2.34E-05 -1.02E-04 -1.81E-04 -1.94E-04	9.30E-09 1.69E-07 5.22E-07 6.10E-07	5.26E+03 5.26E+03 5.26E+03 5.26E+03	848.30 892.08 904.03 891.23	-0.50 -2.07 -3.47 -3.57	847.80 890.02 900.55 887.66
modo de vibração	3 4 5 6 7	60 80 100 120 140	-9.70E-05 -4.31E-04 -7.92E-04 -8.99E-04 -7.72E-04	0.2408 0.2370 0.2282 0.2157 0.2004	-2.34E-05 -1.02E-04 -1.81E-04 -1.94E-04 -1.55E-04	9.30E-09 1.69E-07 5.22E-07 6.10E-07 4.03E-07	5.26E+03 5.26E+03 5.26E+03 5.26E+03 5.26E+03	848.30 892.08 904.03 891.23 858.09	-0.50 -2.07 -3.47 -3.57 -2.75	847.80 890.02 900.55 887.66 855.34
modo de vibração F: 2,12Hz	3 4 5 6 7 8	60 80 100 120 140 160	-9.70E-05 -4.31E-04 -7.92E-04 -8.99E-04 -7.72E-04 -5.18E-04	0.2408 0.2370 0.2282 0.2157 0.2004 0.1829	-2.34E-05 -1.02E-04 -1.81E-04 -1.94E-04 -1.55E-04 -9.48E-05	9.30E-09 1.69E-07 5.22E-07 6.10E-07 4.03E-07 1.61E-07	5.26E+03 5.26E+03 5.26E+03 5.26E+03 5.26E+03	848.30 892.08 904.03 891.23 858.09 807.57	-0.50 -2.07 -3.47 -3.57 -2.75 -1.63	847.80 890.02 900.55 887.66 855.34 805.94
modo de vibração F: 2,12Hz T: 0,47s	3 4 5 6 7 8	60 80 100 120 140 160	-9.70E-05 -4.31E-04 -7.92E-04 -8.99E-04 -7.72E-04 -5.18E-04 -2.11E-04	0.2408 0.2370 0.2282 0.2157 0.2004 0.1829 0.1636	-2.34E-05 -1.02E-04 -1.81E-04 -1.94E-04 -1.55E-04 -9.48E-05 -3.45E-05	9.30E-09 1.69E-07 5.22E-07 6.10E-07 4.03E-07 1.61E-07 2.32E-08	5.26E+03 5.26E+03 5.26E+03 5.26E+03 5.26E+03 5.26E+03	848.30 892.08 904.03 891.23 858.09 807.57 741.82	-0.50 -2.07 -3.47 -3.57 -2.75 -1.63 -0.58	847.80 890.02 900.55 887.66 855.34 805.94 741.24
modo de vibração F: 2,12Hz T: 0,47s	3 4 5 6 7 8 9	60 80 100 120 140 160 180	-9.70E-05 -4.31E-04 -7.92E-04 -8.99E-04 -7.72E-04 -5.18E-04 -2.11E-04 1.09E-04	0.2408 0.2370 0.2282 0.2157 0.2004 0.1829 0.1636 0.1426	-2.34E-05 -1.02E-04 -1.81E-04 -1.94E-04 -1.55E-04 -9.48E-05 -3.45E-05 1.55E-05	9.30E-09 1.69E-07 5.22E-07 6.10E-07 4.03E-07 1.61E-07 2.32E-08 5.27E-09	5.26E+03 5.26E+03 5.26E+03 5.26E+03 5.26E+03 5.26E+03 5.26E+03	848.30 892.08 904.03 891.23 858.09 807.57 741.82 662.44	-0.50 -2.07 -3.47 -3.57 -2.75 -1.63 -0.58 0.25	847.80 890.02 900.55 887.66 855.34 805.94 741.24 662.69
modo de vibração F: 2,12Hz T: 0,47s	3 4 5 6 7 8 9 10	60 80 100 120 140 160 180 200 220	-9.70E-05 -4.31E-04 -7.92E-04 -8.99E-04 -7.72E-04 -5.18E-04 -2.11E-04 1.09E-04 4.20E-04	0.2408 0.2370 0.2282 0.2157 0.2004 0.1829 0.1636 0.1426 0.1202	-2.34E-05 -1.02E-04 -1.81E-04 -1.94E-04 -1.55E-04 -9.48E-05 -3.45E-05 1.55E-05 5.05E-05	9.30E-09 1.69E-07 5.22E-07 6.10E-07 4.03E-07 1.61E-07 2.32E-08 5.27E-09 6.45E-08	5.26E+03 5.26E+03 5.26E+03 5.26E+03 5.26E+03 5.26E+03 5.26E+03 5.26E+03	848.30 892.08 904.03 891.23 858.09 807.57 741.82 662.44 570.70	-0.50 -2.07 -3.47 -3.57 -2.75 -1.63 -0.58 0.25 0.81	847.80 890.02 900.55 887.66 855.34 805.94 741.24 662.69 571.51
modo de vibração F: 2,12Hz T: 0,47s	3 4 5 6 7 8 9 10 11	60 80 100 120 140 160 180 200 220 240	-9.70E-05 -4.31E-04 -7.92E-04 -8.99E-04 -7.72E-04 -5.18E-04 -2.11E-04 1.09E-04 4.20E-04 7.87E-04	0.2408 0.2370 0.2282 0.2157 0.2004 0.1829 0.1636 0.1426 0.1202 0.0965	-2.34E-05 -1.02E-04 -1.81E-04 -1.94E-04 -1.55E-04 -9.48E-05 -3.45E-05 1.55E-05 5.05E-05 7.59E-05	9.30E-09 1.69E-07 5.22E-07 6.10E-07 4.03E-07 1.61E-07 2.32E-08 5.27E-09 6.45E-08 1.78E-07	5.26E+03 5.26E+03 5.26E+03 5.26E+03 5.26E+03 5.26E+03 5.26E+03 5.26E+03 5.26E+03	848.30 892.08 904.03 891.23 858.09 807.57 741.82 662.44 570.70 467.62	-0.50 -2.07 -3.47 -3.57 -2.75 -1.63 -0.58 0.25 0.81 1.19	847.80 890.02 900.55 887.66 855.34 805.94 741.24 662.69 571.51 468.82

	i	z _i (m)	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	F _H	$\overline{X_1}$	$\widehat{\mathbf{X}}_{1}$	Xi (kN)
	1	20	1.49E-04	0.2164	3.22E-05	2.54E-08	1.05E+04	592.23	1.79	594.02
	2	40	-2.00E-05	0.2366	-4.73E-06	4.26E-10	1.05E+04	759.39	-0.22	759.17
	3	60	2.21E-04	0.2408	5.32E-05	4.83E-08	1.05E+04	848.30	2.30	850.60
Sétimo	4	80	9.60E-04	0.2370	2.28E-04	8.39E-07	1.05E+04	892.08	9.20	901.28
modo de	5	100	1.12E-03	0.2282	2.56E-04	1.04E-06	1.05E+04	904.03	9.81	913.84
vibração	6	120	4.10E-04	0.2157	8.84E-05	1.27E-07	1.05E+04	891.23	3.26	894.49
F: 2,26Hz	7	140	-5.47E-04	0.2004	-1.10E-04	2.03E-07	1.05E+04	858.09	-3.90	854.20
	8	160	-1.40E-03	0.1829	-2.56E-04	1.17E-06	1.05E+04	807.57	-8.83	798.75
T: 0,44s	9	180	-2.05E-03	0.1636	-3.34E-04	2.18E-06	1.05E+04	741.82	-11.22	730.60
ξ: 0,6	10	200	-2.48E-03	0.1426	-3.53E-04	2.72E-06	1.05E+04	662.44	-11.55	650.88
	11	220	-2.71E-03	0.1202	-3.25E-04	2.68E-06	1.05E+04	570.70	-10.42	560.29
	12	240	-2.73E-03	0.0965	-2.63E-04	2.14E-06	1.05E+04	467.62	-8.26	459.36
	13	260	9.43E-03	0.0717	6.77E-04	1.87E-05	1.05E+04	354.04	20.86	374.90
	14	280	3.01E-02	0.0459	1.38E-03	1.20E-04	1.05E+04	230.64	41.94	272.58
	15	300	4.28E-02	0.0187	7.98E-04	9.68E-05	1.05E+04	95.23	23.82	119.05
	i	$\mathbf{z_{i}}\left(\mathbf{m}\right)$	$x_i(m)$	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{\mathbf{X}_{\mathbf{i}}}$	Xi (kN)
	1	20	-5.80E-05	0.2164	-1.26E-05	3.85E-09	-5.03E+04	592.23	3.34	595.56
	2	40	-1.40E-05	0.2366	-3.31E-06	2.09E-10	-5.03E+04	759.39	0.75	760.14
	3	60	-4.30E-05	0.2408	-1.04E-05	1.83E-09	-5.03E+04	848.30	2.14	850.44
0:4	4	80	-2.20E-04	0.2370	-5.21E-05	4.41E-08	-5.03E+04	892.08	10.08	902.16
Oitavo modo de	5	100	-2.87E-04	0.2282	-6.55E-05	6.86E-08	-5.03E+04	904.03	12.03	916.05
vibração	6	120	-1.34E-04	0.2157	-2.89E-05	1.36E-08	-5.03E+04	891.23	5.09	896.33
F: 2,29Hz	7	140	9.70E-05	0.2004	1.94E-05	6.37E-09	-5.03E+04	858.09	-3.31	854.79
ĺ	8	160	3.09E-04	0.1829	5.65E-05	5.72E-08	-5.03E+04	807.57	-9.32	798.26
T: 0,44s	9	180	4.73E-04	0.1636	7.74E-05	1.17E-07	-5.03E+04	741.82	-12.41	729.40
ξ: 0,6	10	200	5.85E-04	0.1426	8.34E-05	1.52E-07	-5.03E+04	662.44	-13.06	649.38
3. 0,0	11	220	6.47E-04	0.1202	7.77E-05	1.53E-07	-5.03E+04	570.70	-11.91	558.79
	12	240	6.60E-04	0.0965	6.37E-05	1.25E-07	-5.03E+04	467.62	-9.56	458.06
	13	260	-1.59E-03	0.0717	-1.14E-04	5.29E-07	-5.03E+04	354.04	16.78	370.82
	14	280	-5.50E-03	0.0459	-2.53E-04	4.00E-06	-5.03E+04	230.64	36.62	267.26
	15	300	-7.92E-03	0.0187	-1.48E-04	3.32E-06	-5.03E+04	95.23	21.09	116.32

	i	z _i (m)	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{X_1}$	Xi (kN)
	1	20	-2.35E-04	0.2164	-5.09E-05	6.31E-08	-1.20E+04	592.23	3.24	595.46
	2	40	-4.86E-04	0.2366	-1.15E-04	2.52E-07	-1.20E+04	759.39	6.24	765.63
	3	60	-2.25E-04	0.2408	-5.42E-05	5.00E-08	-1.20E+04	848.30	2.68	850.98
	4	80	-4.68E-04	0.2370	-1.11E-04	1.99E-07	-1.20E+04	892.08	5.13	897.21
Nono	5	100	-1.31E-03	0.2282	-3.00E-04	1.44E-06	-1.20E+04	904.03	13.16	917.19
modo de	6	120	-1.26E-03	0.2157	-2.72E-04	1.20E-06	-1.20E+04	891.23	11.47	902.70
vibração	7	140	-3.03E-04	0.2004	-6.07E-05	6.21E-08	-1.20E+04	858.09	2.47	860.56
F: 2,57Hz	8	160	8.17E-04	0.1829	1.49E-04	4.00E-07	-1.20E+04	807.57	-5.89	801.68
m 0 20	9	180	1.74E-03	0.1636	2.85E-04	1.58E-06	-1.20E+04	741.82	-10.92	730.89
T: 0,38s	10	200	2.41E-03	0.1426	3.43E-04	2.57E-06	-1.20E+04	662.44	-12.86	649.58
	11	220	2.82E-03	0.1202	3.39E-04	2.90E-06	-1.20E+04	570.70	-12.41	558.29
	12	240	2.97E-03	0.0965	2.87E-04	2.55E-06	-1.20E+04	467.62	-10.31	457.31
	13	260	-8.35E-04	0.0717	-5.99E-05	1.46E-07	-1.20E+04	354.04	2.11	356.15
	14	280	-8.95E-03	0.0459	-4.11E-04	1.06E-05	-1.20E+04	230.64	14.26	244.90
	15	300	-1.44E-02	0.0187	-2.70E-04	1.10E-05	-1.20E+04	95.23	9.21	104.44
	i	$\mathbf{z_{i}}\left(\mathbf{m}\right)$	$x_i(m)$	β_i	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{X_1}$	Xi (kN)
	1	20	3.00E-05	0.2164	6.49E-06	1.03E-09	4.73E+04	592.23	1.60	502.05
				0.2104	0.45E-00	1.03L-07	4.73ET04	372.23	1.62	593.85
	2	40	1.05E-04	0.2366	2.48E-05	1.18E-08	4.73E+04 4.73E+04	759.39	5.29	764.69
	3									
D.		40	1.05E-04	0.2366	2.48E-05	1.18E-08	4.73E+04	759.39	5.29	764.69
Décimo modo de	3	40 60	1.05E-04 6.00E-05	0.2366 0.2408	2.48E-05 1.44E-05	1.18E-08 3.56E-09	4.73E+04 4.73E+04	759.39 848.30	5.29 2.80	764.69 851.11
Décimo modo de vibração	3	40 60 80	1.05E-04 6.00E-05 8.70E-05	0.2366 0.2408 0.2370	2.48E-05 1.44E-05 2.06E-05	1.18E-08 3.56E-09 6.89E-09	4.73E+04 4.73E+04 4.73E+04	759.39 848.30 892.08	5.29 2.80 3.75	764.69 851.11 895.83
modo de vibração	3 4 5	40 60 80 100	1.05E-04 6.00E-05 8.70E-05 2.81E-04	0.2366 0.2408 0.2370 0.2282	2.48E-05 1.44E-05 2.06E-05 6.41E-05	1.18E-08 3.56E-09 6.89E-09 6.57E-08	4.73E+04 4.73E+04 4.73E+04 4.73E+04	759.39 848.30 892.08 904.03	5.29 2.80 3.75 11.07	764.69 851.11 895.83 915.09
modo de vibração F: 2,62Hz	3 4 5 6	40 60 80 100 120	1.05E-04 6.00E-05 8.70E-05 2.81E-04 2.99E-04	0.2366 0.2408 0.2370 0.2282 0.2157	2.48E-05 1.44E-05 2.06E-05 6.41E-05 6.45E-05	1.18E-08 3.56E-09 6.89E-09 6.57E-08 6.75E-08	4.73E+04 4.73E+04 4.73E+04 4.73E+04 4.73E+04	759.39 848.30 892.08 904.03 891.23	5.29 2.80 3.75 11.07 10.68	764.69 851.11 895.83 915.09 901.91
modo de vibração	3 4 5 6 7	40 60 80 100 120 140	1.05E-04 6.00E-05 8.70E-05 2.81E-04 2.99E-04 9.20E-05	0.2366 0.2408 0.2370 0.2282 0.2157 0.2004	2.48E-05 1.44E-05 2.06E-05 6.41E-05 6.45E-05 1.84E-05	1.18E-08 3.56E-09 6.89E-09 6.57E-08 6.75E-08 5.73E-09	4.73E+04 4.73E+04 4.73E+04 4.73E+04 4.73E+04 4.73E+04	759.39 848.30 892.08 904.03 891.23 858.09	5.29 2.80 3.75 11.07 10.68 2.95	764.69 851.11 895.83 915.09 901.91 861.04
modo de vibração F: 2,62Hz T: 0,38	3 4 5 6 7 8	40 60 80 100 120 140	1.05E-04 6.00E-05 8.70E-05 2.81E-04 2.99E-04 9.20E-05 -1.64E-04	0.2366 0.2408 0.2370 0.2282 0.2157 0.2004 0.1829	2.48E-05 1.44E-05 2.06E-05 6.41E-05 6.45E-05 1.84E-05 -3.00E-05	1.18E-08 3.56E-09 6.89E-09 6.57E-08 6.75E-08 5.73E-09 1.61E-08	4.73E+04 4.73E+04 4.73E+04 4.73E+04 4.73E+04 4.73E+04 4.73E+04	759.39 848.30 892.08 904.03 891.23 858.09 807.57	5.29 2.80 3.75 11.07 10.68 2.95 -4.65	764.69 851.11 895.83 915.09 901.91 861.04 802.93
modo de vibração F: 2,62Hz	3 4 5 6 7 8 9	40 60 80 100 120 140 160 180	1.05E-04 6.00E-05 8.70E-05 2.81E-04 2.99E-04 9.20E-05 -1.64E-04 -3.77E-04	0.2366 0.2408 0.2370 0.2282 0.2157 0.2004 0.1829 0.1636	2.48E-05 1.44E-05 2.06E-05 6.41E-05 6.45E-05 1.84E-05 -3.00E-05 -6.17E-05	1.18E-08 3.56E-09 6.89E-09 6.57E-08 6.75E-08 5.73E-09 1.61E-08 7.41E-08	4.73E+04 4.73E+04 4.73E+04 4.73E+04 4.73E+04 4.73E+04 4.73E+04	759.39 848.30 892.08 904.03 891.23 858.09 807.57 741.82	5.29 2.80 3.75 11.07 10.68 2.95 -4.65 -9.30	764.69 851.11 895.83 915.09 901.91 861.04 802.93 732.52
modo de vibração F: 2,62Hz T: 0,38	3 4 5 6 7 8 9	40 60 80 100 120 140 160 180 200	1.05E-04 6.00E-05 8.70E-05 2.81E-04 2.99E-04 9.20E-05 -1.64E-04 -3.77E-04	0.2366 0.2408 0.2370 0.2282 0.2157 0.2004 0.1829 0.1636 0.1426	2.48E-05 1.44E-05 2.06E-05 6.41E-05 6.45E-05 1.84E-05 -3.00E-05 -6.17E-05 -7.58E-05	1.18E-08 3.56E-09 6.89E-09 6.57E-08 6.75E-08 5.73E-09 1.61E-08 7.41E-08 1.26E-07	4.73E+04 4.73E+04 4.73E+04 4.73E+04 4.73E+04 4.73E+04 4.73E+04 4.73E+04	759.39 848.30 892.08 904.03 891.23 858.09 807.57 741.82 662.44	5.29 2.80 3.75 11.07 10.68 2.95 -4.65 -9.30 -11.16	764.69 851.11 895.83 915.09 901.91 861.04 802.93 732.52 651.28
modo de vibração F: 2,62Hz T: 0,38	3 4 5 6 7 8 9 10	40 60 80 100 120 140 160 180 200 220	1.05E-04 6.00E-05 8.70E-05 2.81E-04 2.99E-04 9.20E-05 -1.64E-04 -3.77E-04 -5.32E-04 -6.28E-04	0.2366 0.2408 0.2370 0.2282 0.2157 0.2004 0.1829 0.1636 0.1426 0.1202	2.48E-05 1.44E-05 2.06E-05 6.41E-05 6.45E-05 1.84E-05 -3.00E-05 -6.17E-05 -7.58E-05	1.18E-08 3.56E-09 6.89E-09 6.57E-08 6.75E-08 5.73E-09 1.61E-08 7.41E-08 1.26E-07 1.44E-07	4.73E+04 4.73E+04 4.73E+04 4.73E+04 4.73E+04 4.73E+04 4.73E+04 4.73E+04 4.73E+04	759.39 848.30 892.08 904.03 891.23 858.09 807.57 741.82 662.44 570.70	5.29 2.80 3.75 11.07 10.68 2.95 -4.65 -9.30 -11.16 -10.86	764.69 851.11 895.83 915.09 901.91 861.04 802.93 732.52 651.28 559.84
modo de vibração F: 2,62Hz T: 0,38	3 4 5 6 7 8 9 10 11	40 60 80 100 120 140 160 180 200 220 240	1.05E-04 6.00E-05 8.70E-05 2.81E-04 2.99E-04 9.20E-05 -1.64E-04 -3.77E-04 -5.32E-04 -6.28E-04	0.2366 0.2408 0.2370 0.2282 0.2157 0.2004 0.1829 0.1636 0.1426 0.1202 0.0965	2.48E-05 1.44E-05 2.06E-05 6.41E-05 6.45E-05 1.84E-05 -3.00E-05 -6.17E-05 -7.58E-05 -7.55E-05 -6.42E-05	1.18E-08 3.56E-09 6.89E-09 6.57E-08 6.75E-08 5.73E-09 1.61E-08 7.41E-08 1.26E-07 1.44E-07	4.73E+04 4.73E+04 4.73E+04 4.73E+04 4.73E+04 4.73E+04 4.73E+04 4.73E+04 4.73E+04 4.73E+04	759.39 848.30 892.08 904.03 891.23 858.09 807.57 741.82 662.44 570.70 467.62	5.29 2.80 3.75 11.07 10.68 2.95 -4.65 -9.30 -11.16 -10.86 -9.06	764.69 851.11 895.83 915.09 901.91 861.04 802.93 732.52 651.28 559.84 458.57

	i	z _i (m)	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F}_{\mathbf{H}}$	$\overline{X_1}$	$\widehat{\mathbf{X}}_{1}$	Xi (kN)
	1	20	1.53E-04	0.2164	3.31E-05	2.68E-08	1.54E+04	592.23	2.69	594.91
	2	40	4.09E-04	0.2366	9.68E-05	1.78E-07	1.54E+04	759.39	6.69	766.08
	3	60	7.00E-04	0.2408	1.69E-04	4.84E-07	1.54E+04	848.30	10.62	858.92
11°.	4	80	3.60E-04	0.2370	8.53E-05	1.18E-07	1.54E+04	892.08	5.03	897.11
modo de	5	100	9.02E-04	0.2282	2.06E-04	6.77E-07	1.54E+04	904.03	11.53	915.55
vibração	6	120	1.62E-03	0.2157	3.50E-04	1.99E-06	1.54E+04	891.23	18.79	910.03
F: 2,88Hz	7	140	9.86E-04	0.2004	1.98E-04	6.58E-07	1.54E+04	858.09	10.25	868.34
T. 0.25	8	160	-3.04E-04	0.1829	-5.56E-05	5.54E-08	1.54E+04	807.57	-2.80	804.78
T: 0,35s	9	180	-1.46E-03	0.1636	-2.39E-04	1.12E-06	1.54E+04	741.82	-11.71	730.11
ξ: 0,6	10	200	-2.33E-03	0.1426	-3.32E-04	2.40E-06	1.54E+04	662.44	-15.84	646.59
	11	220	-2.88E-03	0.1202	-3.46E-04	3.03E-06	1.54E+04	570.70	-16.15	554.55
	12	240	-3.10E-03	0.0965	-3.00E-04	2.77E-06	1.54E+04	467.62	-13.72	453.90
	13	260	-8.83E-04	0.0717	-6.33E-05	1.64E-07	1.54E+04	354.04	-2.85	351.19
	14	280	5.69E-03	0.0459	2.61E-04	4.29E-06	1.54E+04	230.64	11.56	242.20
	15	300	1.07E-02	0.0187	2.00E-04	6.08E-06	1.54E+04	95.23	8.71	103.94
	i	$z_{i}(m)$	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{\mathbf{X_1}}$	$\widehat{X_1}$	Xi (kN)
	1	20	4.30E-05	0.2164	9.31E-06	2.11E-09	1.42E+05	592.23	6.97	599.19
	2	40	7.00E-05	0.2366	1.66E-05	5.22E-09	1.42E+05	759.39	10.57	769.96
	3	60	1.21E-04	0.2408	2.91E-05	1.45E-08	1.42E+05	848.30	16.94	865.24
12°.	4	80	6.80E-05	0.2370	1.61E-05	4.21E-09	1.42E+05	892.08	8.77	900.85
modo de	5	100	1.25E-04	0.2282	2.85E-05	1.30E-08	1.42E+05	904.03	14.74	918.77
vibração	6	120	2.45E-04	0.2157	5.28E-05	4.53E-08	1.42E+05	891.23	26.19	917.43
F: 2,92Hz	7	140	1.62E-04	0.2004	3.25E-05	1.78E-08	1.42E+05	858.09	15.53	873.63
	8	160	-3.30E-05	0.1829	-6.04E-06	6.52E-10	1.42E+05	807.57	-2.80	804.77
T: 0,34s	9	180	-2.11E-04	0.1636	-3.45E-05	2.32E-08	1.42E+05	741.82	-15.58	726.24
ξ: 0,6	10	200	-3.44E-04	0.1426	-4.90E-05	5.25E-08	1.42E+05	662.44	-21.61	640.83
, ,,,,,	11	220	-4.30E-04	0.1202	-5.17E-05	6.76E-08	1.42E+05	570.70	-22.27	548.43
	12	240	-4.65E-04	0.0965	-4.49E-05	6.22E-08	1.42E+05	467.62	-18.96	448.66
	13	260	-1.61E-04	0.0717	-1.15E-05	5.44E-09	1.42E+05	354.04	-4.79	349.25
	14	280	8.07E-04	0.0459	3.71E-05	8.61E-08	1.42E+05	230.64	15.12	245.76
	15	300	1.56E-03	0.0187	2.92E-05	1.29E-07	1.42E+05	95.23	11.71	106.95

	i	z _i (m)	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	F _H	$\overline{\mathbf{X}}_{1}$	$\widehat{X_1}$	Xi (kN)
	1	20	-9.59E-04	-9.59E-04	-9.59E-04	2.25E-07	-3.86E+04	592.23	19.60	611.83
	2	40	-9.59E-04	-9.59E-04	-9.59E-04	4.34E-07	-3.86E+04	759.39	26.26	785.65
	3	60	-9.59E-04	-9.59E-04	-9.59E-04	9.09E-07	-3.86E+04	848.30	36.59	884.89
13°.	4	80	-9.59E-04	-9.59E-04	-9.59E-04	8.89E-07	-3.86E+04	892.08	34.73	926.81
modo de	5	100	-9.59E-04	-9.59E-04	-9.59E-04	3.23E-07	-3.86E+04	904.03	20.03	924.05
vibração	6	120	-9.59E-04	-9.59E-04	-9.59E-04	1.78E-06	-3.86E+04	891.23	44.73	935.97
F: 2,93Hz	7	140	-9.59E-04	-9.59E-04	-9.59E-04	1.61E-06	-3.86E+04	858.09	40.33	898.42
T. 0.21	8	160	-9.59E-04	-9.59E-04	-9.59E-04	3.77E-08	-3.86E+04	807.57	5.81	813.38
T: 0,31s	9	180	-9.59E-04	-9.59E-04	-9.59E-04	6.49E-07	-3.86E+04	741.82	-22.46	719.35
ξ: 0,6	10	200	-9.59E-04	-9.59E-04	-9.59E-04	2.08E-06	-3.86E+04	662.44	-37.12	625.31
	11	220	-9.59E-04	-9.59E-04	-9.59E-04	2.98E-06	-3.86E+04	570.70	-40.31	530.39
	12	240	-9.59E-04	-9.59E-04	-9.59E-04	2.86E-06	-3.86E+04	467.62	-35.05	432.58
	13	260	-9.59E-04	-9.59E-04	-9.59E-04	8.31E-07	-3.86E+04	354.04	-16.13	337.90
	14	280	-9.59E-04	-9.59E-04	-9.59E-04	2.50E-06	-3.86E+04	230.64	22.20	252.84
	15	300	-9.59E-04	-9.59E-04	-9.59E-04	5.28E-06	-3.86E+04	95.23	20.40	115.63
	i	$\mathbf{z_{i}}\left(\mathbf{m}\right)$	$\mathbf{x_{i}}\left(\mathbf{m}\right)$	β_i	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{\mathbf{X}_{1}}$	$\widehat{X_1}$	Xi (kN)
	1	20	2.60E-05	0.2164	5.63E-06	7.73E-10	4.76E+05	592.23	14.16	606.39
	2	40	4.70E-05	0.2366	1.11E-05	2.35E-09	4.76E+05	759.39	23.86	783.25
	3	60	7.00E-05	0.2408	1.69E-05	4.84E-09	4.76E+05	848.30	32.94	881.25
14°.	4	80	8.20E-05	0.2370	1.94E-05	6.12E-09	4.76E+05	892.08	35.55	927.63
modo de	5	100	4.70E-05	0.2282	1.07E-05	1.84E-09	4.76E+05	904.03	18.64	922.66
vibração	6	120	1.17E-04	0.2157	2.52E-05	1.03E-08	4.76E+05	891.23	42.06	933.29
F: 3,18Hz	7	140	1.27E-04	0.2004	2.55E-05	1.09E-08	4.76E+05	858.09	40.94	899.04
	8	160	2.70E-05	0.1829	4.94E-06	4.37E-10	4.76E+05	807.57	7.70	815.28
T: 0,31s	9	180	-8.30E-05	0.1636	-1.36E-05	3.59E-09	4.76E+05	741.82	-20.61	721.21
ξ: 0,6	10	200	-1.68E-04	0.1426	-2.39E-05	1.25E-08	4.76E+05	662.44	-35.49	626.95
7. 0,0	11	220	-2.24E-04	0.1202	-2.69E-05	1.83E-08	4.76E+05	570.70	-39.01	531.69
	12	240	-2.48E-04	0.0965	-2.39E-05	1.77E-08	4.76E+05	467.62	-34.00	433.62
	13	260	-1.70E-04	0.0717	-1.22E-05	6.07E-09	4.76E+05	354.04	-17.01	337.03
	14	280	3.31E-04	0.0459	1.52E-05	1.45E-08	4.76E+05	230.64	20.85	251.49
	15	300	7.91E-04	0.0187	1.48E-05	3.31E-08	4.76E+05	95.23	19.93	115.16

	i	z _i (m)	x _i (m)	β_i	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F}_{\mathbf{H}}$	$\overline{X_1}$	$\widehat{X_1}$	Xi (kN)
	1	20	8.58E-04	0.2164	1.86E-04	8.42E-07	6.46E+04	592.23	63.36	655.59
	2	40	1.55E-03	0.2366	3.66E-04	2.54E-06	6.46E+04	759.39	106.36	865.75
	3	60	1.70E-03	0.2408	4.09E-04	2.85E-06	6.46E+04	848.30	108.29	956.60
150	4	80	1.99E-03	0.2370	4.70E-04	3.59E-06	6.46E+04	892.08	116.70	1008.78
15°. modo de	5	100	1.33E-03	0.2282	3.02E-04	1.46E-06	6.46E+04	904.03	71.24	975.26
vibração	6	120	1.37E-03	0.2157	2.95E-04	1.41E-06	6.46E+04	891.23	66.68	957.91
F: 3,48Hz	7	140	1.94E-03	0.2004	3.89E-04	2.55E-06	6.46E+04	858.09	84.90	942.99
1. 3,40112	8	160	8.37E-04	0.1829	1.53E-04	4.20E-07	6.46E+04	807.57	32.38	839.96
T: 0,29s	9	180	-7.62E-04	0.1636	-1.25E-04	3.03E-07	6.46E+04	741.82	-25.65	716.16
ξ: 0,6	10	200	-2.05E-03	0.1426	-2.93E-04	1.87E-06	6.46E+04	662.44	-58.83	603.61
5. 0,0	11	220	-2.92E-03	0.1202	-3.51E-04	3.11E-06	6.46E+04	570.70	-68.91	501.79
	12	240	-3.31E-03	0.0965	-3.19E-04	3.15E-06	6.46E+04	467.62	-61.50	406.12
	13	260	-3.30E-03	0.0717	-2.37E-04	2.29E-06	6.46E+04	354.04	-44.83	309.21
	14	280	3.90E-03	0.0459	1.79E-04	2.01E-06	6.46E+04	230.64	33.34	263.98
	15	300	1.17E-02	0.0187	2.18E-04	7.20E-06	6.46E+04	95.23	39.87	135.10

	i	z _i (m)	M _i (kg)	$A_i (m^2)$	Ai/Ao	ψ_{i}
	1	20	1143387.66	1647.53	0.1273	1.14339
	2	40	1065852.84	1535.81	0.1186	1.06585
	3	60	988053.36	1423.71	0.1100	0.98805
	4	80	910253.89	1311.61	0.1013	0.91025
	5	100	832454.41	1199.50	0.0927	0.83245
	6	120	754654.93	1087.40	0.0840	0.75465
Características	7	140	676855.45	975.30	0.0753	0.67686
geométricas e físicas do	8	160	599055.98	863.19	0.0667	0.59906
modelo C0	9	180	521256.50	751.09	0.0580	0.52126
	10	200	443457.02	638.99	0.0494	0.44346
	11	220	365657.54	526.88	0.0407	0.36566
	12	240	287858.07	414.78	0.0320	0.28786
	13	260	210058.59	302.68	0.0234	0.21006
	14	280	132259.11	190.58	0.0147	0.13226
	15	300	52903.65	76.23	0.0059	0.05290
		Σ	8984019.00	12945.28		

E.6. Modelo C1

	i	z _i (m)	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F}_{\mathbf{H}}$	\overline{X}_{1}	$\widehat{X_1}$	Xi (kN)
	1	20	8.23E-04	0.2164	1.78E-04	7.74E-07	1.33E+05	592.23	125.62	717.85
	2	40	1.60E-03	0.2366	3.79E-04	2.74E-06	1.33E+05	759.39	227.94	987.33
	3	60	2.35E-03	0.2408	5.65E-04	5.43E-06	1.33E+05	848.30	309.31	1157.61
Primeiro	4	80	3.00E-03	0.2370	7.11E-04	8.18E-06	1.33E+05	892.08	364.30	1256.38
modo de	5	100	3.56E-03	0.2282	8.11E-04	1.05E-05	1.33E+05	904.03	395.07	1299.09
vibração	6	120	4.02E-03	0.2157	8.67E-04	1.22E-05	1.33E+05	891.23	404.79	1296.02
F: 0,84Hz	7	140	4.38E-03	0.2004	8.78E-04	1.30E-05	1.33E+05	858.09	395.95	1254.04
	8	160	4.66E-03	0.1829	8.52E-04	1.37E-05	1.33E+05	807.57	392.93	1200.50
T: 1.18s	9	180	4.87E-03	0.1636	7.96E-04	1.24E-05	1.33E+05	741.82	338.81	1080.63
ξ: 0,8	10	200	5.01E-03	0.1426	7.14E-04	1.11E-05	1.33E+05	662.44	296.59	959.03
	11	220	5.10E-03	0.1202	6.12E-04	9.50E-06	1.33E+05	570.70	248.76	819.46
	12	240	5.14E-03	0.0965	4.96E-04	7.59E-06	1.33E+05	467.62	197.37	664.99
	13	260	5.67E-03	0.0717	4.07E-04	6.75E-06	1.33E+05	354.04	158.94	512.98
	14	280	6.25E-03	0.0459	2.87E-04	5.17E-06	1.33E+05	230.64	110.39	341.03
	15	300	6.53E-03	0.0187	1.22E-04	2.26E-06	1.33E+05	95.23	46.11	141.34
	i	$z_{i}(m)$	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{X_1}$	Xi (kN)
	1	20	-7.73E-04	0.2164	-1.67E-04	6.83E-07	1.29E+05	592.23	-113.90	478.32
	2	40	-1.12E-03	0.2366	-2.66E-04	1.35E-06	1.29E+05	759.39	-154.39	605.00
	3	60	-9.31E-04	0.2408	-2.24E-04	8.56E-07	1.29E+05	848.30	-118.55	729.75
C J.	4	80	-3.34E-04	0.2370	-7.92E-05	1.02E-07	1.29E+05	892.08	-39.18	852.90
Segundo modo de	5	100	4.09E-04	0.2282	9.33E-05	1.39E-07	1.29E+05	904.03	43.88	947.90
vibração	6	120	1.13E-03	0.2157	2.43E-04	9.59E-07	1.29E+05	891.23	109.61	1000.84
F: 1,48Hz	7	140	1.73E-03	0.2004	3.47E-04	2.03E-06	1.29E+05	858.09	151.08	1009.18
	8	160	2.20E-03	0.1829	4.03E-04	3.07E-06	1.29E+05	807.57	179.60	987.17
T: 0,67s	9	180	2.59E-03	0.1636	4.23E-04	3.49E-06	1.29E+05	741.82	173.85	915.67
ξ: 0,75	10	200	2.85E-03	0.1426	4.06E-04	3.60E-06	1.29E+05	662.44	162.88	825.32
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11	220	3.01E-03	0.1202	3.62E-04	3.32E-06	1.29E+05	570.70	141.99	712.69
	12	240	3.09E-03	0.0965	2.98E-04	2.75E-06	1.29E+05	467.62	114.74	582.37
	13	260	4.62E-03	0.0717	3.32E-04	4.49E-06	1.29E+05	354.04	125.15	479.19
	14	280	6.53E-03	0.0459	3.00E-04	5.64E-06	1.29E+05	230.64	111.27	341.91
	15	300	7.51E-03	0.0187	1.40E-04	2.98E-06	1.29E+05	95.23	51.20	146.43

	i	z _i (m)	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	F _H	$\overline{X_1}$	$\widehat{\mathbf{X}}_{1}$	Xi (kN)
	1	20	3.10E-05	0.2164	6.71E-06	1.10E-09	-2.25E+06	592.23	-79.84	512.39
	2	40	4.80E-05	0.2366	1.14E-05	2.46E-09	-2.25E+06	759.39	-115.24	644.15
	3	60	4.40E-05	0.2408	1.06E-05	1.91E-09	-2.25E+06	848.30	-97.92	750.38
Terceiro	4	80	2.10E-05	0.2370	4.98E-06	4.01E-10	-2.25E+06	892.08	-43.06	849.02
modo de	5	100	-1.10E-05	0.2282	-2.51E-06	1.01E-10	-2.25E+06	904.03	20.63	924.65
vibração	6	120	-4.20E-05	0.2157	-9.06E-06	1.33E-09	-2.25E+06	891.23	71.39	962.63
F: 1,53Hz	7	140	-6.90E-05	0.2004	-1.38E-05	3.22E-09	-2.25E+06	858.09	105.19	963.29
m 0.45	8	160	-9.00E-05	0.1829	-1.65E-05	5.12E-09	-2.25E+06	807.57	128.18	935.75
T: 0,65	9	180	-1.08E-04	0.1636	-1.77E-05	6.08E-09	-2.25E+06	741.82	126.80	868.62
ξ: 0,6s	10	200	-1.19E-04	0.1426	-1.70E-05	6.28E-09	-2.25E+06	662.44	118.86	781.30
	11	220	-1.27E-04	0.1202	-1.53E-05	5.90E-09	-2.25E+06	570.70	104.60	675.30
	12	240	-1.31E-04	0.0965	-1.26E-05	4.94E-09	-2.25E+06	467.62	84.94	552.56
	13	260	-2.04E-04	0.0717	-1.46E-05	8.74E-09	-2.25E+06	354.04	96.52	450.56
	14	280	-2.97E-04	0.0459	-1.36E-05	1.17E-08	-2.25E+06	230.64	88.48	319.12
	15	300	-3.45E-04	0.0187	-6.44E-06	6.30E-09	-2.25E+06	95.23	41.11	136.34
	i	$z_{i}(m)$	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{X_1}$	Xi (kN)
	1	20	3.00E-05	0.2164	6.49E-06	1.03E-09	4.27E+04	592.23	1.46	593.69
	2	40	-4.55E-04	0.2366	-1.08E-04	2.21E-07	4.27E+04	759.39	-20.70	738.69
	3	60	-1.18E-03	0.2408	-2.83E-04	1.37E-06	4.27E+04	848.30	-49.64	798.67
0	4	80	-1.37E-03	0.2370	-3.24E-04	1.70E-06	4.27E+04	892.08	-53.07	839.01
Quarto modo de	5	100	-8.32E-04	0.2282	-1.90E-04	5.76E-07	4.27E+04	904.03	-29.56	874.46
vibração	6	120	6.80E-05	0.2157	1.47E-05	3.49E-09	4.27E+04	891.23	2.19	893.42
F: 1,87Hz	7	140	9.55E-04	0.2004	1.91E-04	6.17E-07	4.27E+04	858.09	27.59	885.68
1.1,07112	8	160	1.69E-03	0.1829	3.10E-04	1.81E-06	4.27E+04	807.57	45.66	853.24
T: 0,53	9	180	2.32E-03	0.1636	3.79E-04	2.79E-06	4.27E+04	741.82	51.50	793.32
ξ: 0,6s	10	200	2.76E-03	0.1426	3.93E-04	3.37E-06	4.27E+04	662.44	52.20	714.64
7. 3,00	11	220	3.05E-03	0.1202	3.66E-04	3.39E-06	4.27E+04	570.70	47.55	618.26
	12	240	3.21E-03	0.0965	3.09E-04	2.96E-06	4.27E+04	467.62	39.40	507.02
	13	260	8.65E-03	0.0717	6.21E-04	1.57E-05	4.27E+04	354.04	77.57	431.61
	14	280	1.64E-02	0.0459	7.52E-04	3.55E-05	4.27E+04	230.64	92.44	323.08
	15	300	2.07E-02	0.0187	3.86E-04	2.26E-05	4.27E+04	95.23	46.66	141.90

	i	z _i (m)	$x_i(m)$	β_i	$\beta_i x_i$	$\psi_i x_i^2$	F _H	$\overline{X_1}$	$\widehat{\mathbf{X}}_{1}$	Xi (kN)
	1	20	-1.20E-05	0.2164	-2.60E-06	1.65E-10	-3.59E+05	592.23	4.93	597.15
	2	40	2.20E-05	0.2366	5.21E-06	5.16E-10	-3.59E+05	759.39	-8.42	750.97
	3	60	9.20E-05	0.2408	2.22E-05	8.36E-09	-3.59E+05	848.30	-32.64	815.66
	4	80	1.27E-04	0.2370	3.01E-05	1.47E-08	-3.59E+05	892.08	-41.51	850.57
Quinto modo de	5	100	9.10E-05	0.2282	2.08E-05	6.89E-09	-3.59E+05	904.03	-27.20	876.82
vibração	6	120	1.20E-05	0.2157	2.59E-06	1.09E-10	-3.59E+05	891.23	-3.25	887.98
F: 1,94Hz	7	140	-6.90E-05	0.2004	-1.38E-05	3.22E-09	-3.59E+05	858.09	16.77	874.86
T: 0,51s	8	160	-1.38E-04	0.1829	-2.52E-05	1.20E-08	-3.59E+05	807.57	31.33	838.91
1.0,513	9	180	-1.97E-04	0.1636	-3.22E-05	2.02E-08	-3.59E+05	741.82	36.87	778.69
ξ: 0,6	10	200	-2.39E-04	0.1426	-3.41E-05	2.53E-08	-3.59E+05	662.44	38.06	700.50
	11	220	-2.67E-04	0.1202	-3.21E-05	2.61E-08	-3.59E+05	570.70	35.06	605.76
	12	240	-2.84E-04	0.0965	-2.74E-05	2.32E-08	-3.59E+05	467.62	29.36	496.98
	13	260	-9.42E-04	0.0717	-6.76E-05	1.86E-07	-3.59E+05	354.04	71.05	425.09
	14	280	-1.90E-03	0.0459	-8.72E-05	4.77E-07	-3.59E+05	230.64	90.19	320.83
	15	300	-2.44E-03	0.0187	-4.55E-05	3.14E-07	-3.59E+05	95.23	46.31	141.55
	i	z _i (m)	$x_i(m)$	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{X_1}$	Xi (kN)
	1	20	1 1 CE 04	0.0164	-2.51E-05	1.540.00	5 0 CF 00			
	1	20	-1.16E-04	0.2164	-2.51E-05	1.54E-08	5.26E+03	592.23	-0.70	591.53
	2	40	-1.16E-04 -6.30E-05	0.2164	-2.31E-03 -1.49E-05	1.54E-08 4.23E-09	5.26E+03 5.26E+03	592.23 759.39	-0.70 -0.35	591.53 759.04
	2	40	-6.30E-05	0.2366	-1.49E-05	4.23E-09	5.26E+03	759.39	-0.35	759.04
Sexto modo de	2	40 60	-6.30E-05 -9.60E-05	0.2366 0.2408	-1.49E-05 -2.31E-05	4.23E-09 9.11E-09	5.26E+03 5.26E+03	759.39 848.30	-0.35 -0.50	759.04 847.80
Sexto modo de vibração	2 3 4	40 60 80	-6.30E-05 -9.60E-05 -4.27E-04	0.2366 0.2408 0.2370	-1.49E-05 -2.31E-05 -1.01E-04	4.23E-09 9.11E-09 1.66E-07	5.26E+03 5.26E+03 5.26E+03	759.39 848.30 892.08	-0.35 -0.50 -2.04	759.04 847.80 890.04
modo de	2 3 4 5	40 60 80 100	-6.30E-05 -9.60E-05 -4.27E-04 -7.84E-04	0.2366 0.2408 0.2370 0.2282	-1.49E-05 -2.31E-05 -1.01E-04 -1.79E-04	4.23E-09 9.11E-09 1.66E-07 5.12E-07	5.26E+03 5.26E+03 5.26E+03	759.39 848.30 892.08 904.03	-0.35 -0.50 -2.04 -3.43	759.04 847.80 890.04 900.59
modo de vibração F: 2,13Hz	2 3 4 5 6	40 60 80 100 120	-6.30E-05 -9.60E-05 -4.27E-04 -7.84E-04 -8.90E-04	0.2366 0.2408 0.2370 0.2282 0.2157	-1.49E-05 -2.31E-05 -1.01E-04 -1.79E-04 -1.92E-04	4.23E-09 9.11E-09 1.66E-07 5.12E-07 5.98E-07	5.26E+03 5.26E+03 5.26E+03 5.26E+03 5.26E+03	759.39 848.30 892.08 904.03 891.23	-0.35 -0.50 -2.04 -3.43 -3.53	759.04 847.80 890.04 900.59 887.70
modo de vibração	2 3 4 5 6 7	40 60 80 100 120 140	-6.30E-05 -9.60E-05 -4.27E-04 -7.84E-04 -8.90E-04 -7.63E-04	0.2366 0.2408 0.2370 0.2282 0.2157 0.2004	-1.49E-05 -2.31E-05 -1.01E-04 -1.79E-04 -1.92E-04 -1.53E-04	4.23E-09 9.11E-09 1.66E-07 5.12E-07 5.98E-07 3.94E-07	5.26E+03 5.26E+03 5.26E+03 5.26E+03 5.26E+03	759.39 848.30 892.08 904.03 891.23 858.09	-0.35 -0.50 -2.04 -3.43 -3.53 -2.71	759.04 847.80 890.04 900.59 887.70 855.38
modo de vibração F: 2,13Hz	2 3 4 5 6 7 8	40 60 80 100 120 140	-6.30E-05 -9.60E-05 -4.27E-04 -7.84E-04 -8.90E-04 -7.63E-04 -5.22E-04	0.2366 0.2408 0.2370 0.2282 0.2157 0.2004 0.1829	-1.49E-05 -2.31E-05 -1.01E-04 -1.79E-04 -1.92E-04 -1.53E-04 -9.55E-05	4.23E-09 9.11E-09 1.66E-07 5.12E-07 5.98E-07 3.94E-07 1.72E-07	5.26E+03 5.26E+03 5.26E+03 5.26E+03 5.26E+03 5.26E+03	759.39 848.30 892.08 904.03 891.23 858.09 807.57	-0.35 -0.50 -2.04 -3.43 -3.53 -2.71 -1.74	759.04 847.80 890.04 900.59 887.70 855.38 805.84
modo de vibração F: 2,13Hz T: 0,47s	2 3 4 5 6 7 8	40 60 80 100 120 140 160 180	-6.30E-05 -9.60E-05 -4.27E-04 -7.84E-04 -8.90E-04 -7.63E-04 -5.22E-04 -2.19E-04	0.2366 0.2408 0.2370 0.2282 0.2157 0.2004 0.1829 0.1636	-1.49E-05 -2.31E-05 -1.01E-04 -1.79E-04 -1.92E-04 -1.53E-04 -9.55E-05 -3.58E-05	4.23E-09 9.11E-09 1.66E-07 5.12E-07 5.98E-07 3.94E-07 1.72E-07 2.50E-08	5.26E+03 5.26E+03 5.26E+03 5.26E+03 5.26E+03 5.26E+03 5.26E+03	759.39 848.30 892.08 904.03 891.23 858.09 807.57 741.82	-0.35 -0.50 -2.04 -3.43 -3.53 -2.71 -1.74 -0.60	759.04 847.80 890.04 900.59 887.70 855.38 805.84 741.22
modo de vibração F: 2,13Hz T: 0,47s	2 3 4 5 6 7 8 9	40 60 80 100 120 140 160 180 200	-6.30E-05 -9.60E-05 -4.27E-04 -7.84E-04 -8.90E-04 -7.63E-04 -5.22E-04 -1.00E-04	0.2366 0.2408 0.2370 0.2282 0.2157 0.2004 0.1829 0.1636 0.1426	-1.49E-05 -2.31E-05 -1.01E-04 -1.79E-04 -1.92E-04 -1.53E-04 -9.55E-05 -3.58E-05 1.43E-05	4.23E-09 9.11E-09 1.66E-07 5.12E-07 5.98E-07 3.94E-07 1.72E-07 2.50E-08 4.43E-09	5.26E+03 5.26E+03 5.26E+03 5.26E+03 5.26E+03 5.26E+03 5.26E+03 5.26E+03	759.39 848.30 892.08 904.03 891.23 858.09 807.57 741.82 662.44	-0.35 -0.50 -2.04 -3.43 -3.53 -2.71 -1.74 -0.60 0.23	759.04 847.80 890.04 900.59 887.70 855.38 805.84 741.22 662.67
modo de vibração F: 2,13Hz T: 0,47s	2 3 4 5 6 7 8 9 10	40 60 80 100 120 140 160 180 200 220	-6.30E-05 -9.60E-05 -4.27E-04 -7.84E-04 -8.90E-04 -7.63E-04 -2.19E-04 1.00E-04 4.10E-04	0.2366 0.2408 0.2370 0.2282 0.2157 0.2004 0.1829 0.1636 0.1426 0.1202	-1.49E-05 -2.31E-05 -1.01E-04 -1.79E-04 -1.92E-04 -1.53E-04 -9.55E-05 -3.58E-05 1.43E-05 4.93E-05	4.23E-09 9.11E-09 1.66E-07 5.12E-07 5.98E-07 3.94E-07 1.72E-07 2.50E-08 4.43E-09 6.15E-08	5.26E+03 5.26E+03 5.26E+03 5.26E+03 5.26E+03 5.26E+03 5.26E+03 5.26E+03 5.26E+03	759.39 848.30 892.08 904.03 891.23 858.09 807.57 741.82 662.44 570.70	-0.35 -0.50 -2.04 -3.43 -3.53 -2.71 -1.74 -0.60 0.23 0.79	759.04 847.80 890.04 900.59 887.70 855.38 805.84 741.22 662.67 571.49
modo de vibração F: 2,13Hz T: 0,47s	2 3 4 5 6 7 8 9 10 11	40 60 80 100 120 140 160 180 200 220 240	-6.30E-05 -9.60E-05 -4.27E-04 -7.84E-04 -8.90E-04 -7.63E-04 -2.19E-04 1.00E-04 4.10E-04 7.77E-04	0.2366 0.2408 0.2370 0.2282 0.2157 0.2004 0.1829 0.1636 0.1426 0.1202 0.0965	-1.49E-05 -2.31E-05 -1.01E-04 -1.79E-04 -1.92E-04 -1.53E-04 -9.55E-05 -3.58E-05 1.43E-05 4.93E-05 7.50E-05	4.23E-09 9.11E-09 1.66E-07 5.12E-07 5.98E-07 3.94E-07 1.72E-07 2.50E-08 4.43E-09 6.15E-08 1.74E-07	5.26E+03 5.26E+03 5.26E+03 5.26E+03 5.26E+03 5.26E+03 5.26E+03 5.26E+03 5.26E+03 5.26E+03	759.39 848.30 892.08 904.03 891.23 858.09 807.57 741.82 662.44 570.70 467.62	-0.35 -0.50 -2.04 -3.43 -3.53 -2.71 -1.74 -0.60 0.23 0.79 1.18	759.04 847.80 890.04 900.59 887.70 855.38 805.84 741.22 662.67 571.49 468.80

	i	z _i (m)	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	F _H	$\overline{X_1}$	$\widehat{\mathbf{X}}_{1}$	Xi (kN)
	1	20	1.49E-04	0.2164	3.22E-05	2.54E-08	1.07E+04	592.23	1.82	594.05
	2	40	-2.10E-05	0.2366	-4.97E-06	4.70E-10	1.07E+04	759.39	-0.24	759.15
	3	60	2.21E-04	0.2408	5.32E-05	4.83E-08	1.07E+04	848.30	2.33	850.63
Sétimo	4	80	9.61E-04	0.2370	2.28E-04	8.41E-07	1.07E+04	892.08	9.34	901.42
modo de	5	100	1.12E-03	0.2282	2.56E-04	1.04E-06	1.07E+04	904.03	9.96	913.98
vibração	6	120	4.08E-04	0.2157	8.80E-05	1.26E-07	1.07E+04	891.23	3.29	894.52
F: 2,26Hz	7	140	-5.53E-04	0.2004	-1.11E-04	2.07E-07	1.07E+04	858.09	-4.00	854.10
	8	160	-1.37E-03	0.1829	-2.50E-04	1.18E-06	1.07E+04	807.57	-9.23	798.34
T: 0,44s	9	180	-2.02E-03	0.1636	-3.31E-04	2.13E-06	1.07E+04	741.82	-11.26	730.56
ξ: 0,6	10	200	-2.45E-03	0.1426	-3.49E-04	2.66E-06	1.07E+04	662.44	-11.60	650.83
	11	220	-2.68E-03	0.1202	-3.22E-04	2.62E-06	1.07E+04	570.70	-10.46	560.24
	12	240	-2.70E-03	0.0965	-2.60E-04	2.10E-06	1.07E+04	467.62	-8.30	459.33
	13	260	9.32E-03	0.0717	6.68E-04	1.82E-05	1.07E+04	354.04	20.91	374.95
	14	280	2.98E-02	0.0459	1.37E-03	1.17E-04	1.07E+04	230.64	42.05	272.69
	15	300	4.23E-02	0.0187	7.89E-04	9.45E-05	1.07E+04	95.23	23.88	119.11
	i	$\mathbf{z_{i}}\left(\mathbf{m}\right)$	$x_i(m)$	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{\mathbf{X}_{\mathbf{i}}}$	Xi (kN)
	1	20	-5.80E-05	0.2164	-1.26E-05	3.85E-09	-5.10E+04	592.23	3.38	595.61
	2	40	-1.40E-05	0.2366	-3.31E-06	2.09E-10	-5.10E+04	759.39	0.76	760.15
	3	60	-4.30E-05	0.2408	-1.04E-05	1.83E-09	-5.10E+04	848.30	2.17	850.47
0.4	4	80	-2.20E-04	0.2370	-5.21E-05	4.41E-08	-5.10E+04	892.08	10.21	902.29
Oitavo modo de	5	100	-2.87E-04	0.2282	-6.55E-05	6.86E-08	-5.10E+04	904.03	12.18	916.21
vibração	6	120	-1.32E-04	0.2157	-2.85E-05	1.31E-08	-5.10E+04	891.23	5.08	896.31
F: 2,29Hz	7	140	9.90E-05	0.2004	1.98E-05	6.63E-09	-5.10E+04	858.09	-3.42	854.68
ĺ	8	160	3.02E-04	0.1829	5.52E-05	5.77E-08	-5.10E+04	807.57	-9.74	797.84
T: 0,44s	9	180	4.69E-04	0.1636	7.67E-05	1.15E-07	-5.10E+04	741.82	-12.47	729.35
ξ: 0,6	10	200	5.79E-04	0.1426	8.25E-05	1.49E-07	-5.10E+04	662.44	-13.09	649.34
7. 0,0	11	220	6.42E-04	0.1202	7.71E-05	1.51E-07	-5.10E+04	570.70	-11.97	558.73
	12	240	6.54E-04	0.0965	6.31E-05	1.23E-07	-5.10E+04	467.62	-9.60	458.02
	13	260	-1.57E-03	0.0717	-1.13E-04	5.18E-07	-5.10E+04	354.04	16.82	370.85
	14	280	-5.44E-03	0.0459	-2.50E-04	3.92E-06	-5.10E+04	230.64	36.71	267.35
	15	300	-7.84E-03	0.0187	-1.46E-04	3.25E-06	-5.10E+04	95.23	21.15	116.38

	i	z _i (m)	$\mathbf{x_{i}}\left(\mathbf{m}\right)$	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{X_1}$	Xi (kN)
	1	20	2.34E-04	0.2164	5.06E-05	6.26E-08	1.23E+04	592.23	3.30	595.53
	2	40	4.82E-04	0.2366	1.14E-04	2.48E-07	1.23E+04	759.39	6.34	765.73
	3	60	2.20E-04	0.2408	5.30E-05	4.78E-08	1.23E+04	848.30	2.68	850.98
	4	80	4.66E-04	0.2370	1.10E-04	1.98E-07	1.23E+04	892.08	5.23	897.31
Nono modo de	5	100	1.31E-03	0.2282	2.98E-04	1.42E-06	1.23E+04	904.03	13.42	917.45
vibração	6	120	1.25E-03	0.2157	2.69E-04	1.17E-06	1.23E+04	891.23	11.59	902.83
F: 2,58Hz	7	140	2.77E-04	0.2004	5.55E-05	5.19E-08	1.23E+04	858.09	2.31	860.41
·	8	160	-7.89E-04	0.1829	-1.44E-04	3.94E-07	1.23E+04	807.57	-6.15	801.42
T: 0,39s	9	180	-1.71E-03	0.1636	-2.80E-04	1.53E-06	1.23E+04	741.82	-11.01	730.81
ξ: 0,6	10	200	-2.37E-03	0.1426	-3.38E-04	2.49E-06	1.23E+04	662.44	-12.97	649.47
7. ~,~	11	220	-2.78E-03	0.1202	-3.34E-04	2.82E-06	1.23E+04	570.70	-12.53	558.17
	12	240	-2.93E-03	0.0965	-2.83E-04	2.47E-06	1.23E+04	467.62	-10.41	457.22
	13	260	8.13E-04	0.0717	5.83E-05	1.39E-07	1.23E+04	354.04	2.11	356.14
	14	280	8.80E-03	0.0459	4.04E-04	1.02E-05	1.23E+04	230.64	14.35	244.99
	15	300	1.42E-02	0.0187	2.65E-04	1.07E-05	1.23E+04	95.23	9.27	104.50
	i	$\mathbf{z_{i}}\left(\mathbf{m}\right)$	$x_i(m)$	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{X_1}$	Xi (kN)
	1	20	3.10E-05	0.2164	6.71E-06	1.10E-09	4.80E+04	592.23	1.70	593.93
	2									
	2	40	1.05E-04	0.2366	2.48E-05	1.18E-08	4.80E+04	759.39	5.37	764.76
	3	60	1.05E-04 5.90E-05	0.2366	2.48E-05 1.42E-05	1.18E-08 3.44E-09	4.80E+04 4.80E+04	759.39 848.30	5.37 2.80	764.76 851.10
D ()										
Décimo modo de	3	60	5.90E-05	0.2408	1.42E-05	3.44E-09	4.80E+04	848.30	2.80	851.10
Décimo modo de vibração	3	60 80	5.90E-05 8.80E-05	0.2408 0.2370	1.42E-05 2.09E-05	3.44E-09 7.05E-09	4.80E+04 4.80E+04	848.30 892.08	2.80 3.84	851.10 895.93
modo de vibração	3 4 5	60 80 100	5.90E-05 8.80E-05 2.84E-04	0.2408 0.2370 0.2282	1.42E-05 2.09E-05 6.48E-05	3.44E-09 7.05E-09 6.71E-08	4.80E+04 4.80E+04 4.80E+04	848.30 892.08 904.03	2.80 3.84 11.35	851.10 895.93 915.37
modo de vibração F: 2,62Hz	3 4 5 6	60 80 100 120	5.90E-05 8.80E-05 2.84E-04 2.99E-04	0.2408 0.2370 0.2282 0.2157	1.42E-05 2.09E-05 6.48E-05 6.45E-05	3.44E-09 7.05E-09 6.71E-08 6.75E-08	4.80E+04 4.80E+04 4.80E+04 4.80E+04	848.30 892.08 904.03 891.23	2.80 3.84 11.35 10.83	851.10 895.93 915.37 902.07
modo de vibração	3 4 5 6 7	60 80 100 120 140	5.90E-05 8.80E-05 2.84E-04 2.99E-04 8.60E-05	0.2408 0.2370 0.2282 0.2157 0.2004	1.42E-05 2.09E-05 6.48E-05 6.45E-05 1.72E-05	3.44E-09 7.05E-09 6.71E-08 6.75E-08 5.01E-09	4.80E+04 4.80E+04 4.80E+04 4.80E+04 4.80E+04	848.30 892.08 904.03 891.23 858.09	2.80 3.84 11.35 10.83 2.79	851.10 895.93 915.37 902.07 860.89
modo de vibração F: 2,62Hz T: 0,38	3 4 5 6 7 8	60 80 100 120 140 160	5.90E-05 8.80E-05 2.84E-04 2.99E-04 8.60E-05 -1.60E-04	0.2408 0.2370 0.2282 0.2157 0.2004 0.1829	1.42E-05 2.09E-05 6.48E-05 6.45E-05 1.72E-05 -2.93E-05	3.44E-09 7.05E-09 6.71E-08 6.75E-08 5.01E-09 1.62E-08	4.80E+04 4.80E+04 4.80E+04 4.80E+04 4.80E+04 4.80E+04	848.30 892.08 904.03 891.23 858.09 807.57	2.80 3.84 11.35 10.83 2.79 -4.86	851.10 895.93 915.37 902.07 860.89 802.72
modo de vibração F: 2,62Hz	3 4 5 6 7 8 9	60 80 100 120 140 160 180	5.90E-05 8.80E-05 2.84E-04 2.99E-04 8.60E-05 -1.60E-04 -3.76E-04	0.2408 0.2370 0.2282 0.2157 0.2004 0.1829 0.1636	1.42E-05 2.09E-05 6.48E-05 6.45E-05 1.72E-05 -2.93E-05 -6.15E-05	3.44E-09 7.05E-09 6.71E-08 6.75E-08 5.01E-09 1.62E-08 7.37E-08	4.80E+04 4.80E+04 4.80E+04 4.80E+04 4.80E+04 4.80E+04	848.30 892.08 904.03 891.23 858.09 807.57 741.82	2.80 3.84 11.35 10.83 2.79 -4.86	851.10 895.93 915.37 902.07 860.89 802.72 732.41
modo de vibração F: 2,62Hz T: 0,38	3 4 5 6 7 8 9	60 80 100 120 140 160 180 200	5.90E-05 8.80E-05 2.84E-04 2.99E-04 8.60E-05 -1.60E-04 -3.76E-04 -5.31E-04	0.2408 0.2370 0.2282 0.2157 0.2004 0.1829 0.1636 0.1426	1.42E-05 2.09E-05 6.48E-05 6.45E-05 1.72E-05 -2.93E-05 -6.15E-05 -7.57E-05	3.44E-09 7.05E-09 6.71E-08 6.75E-08 5.01E-09 1.62E-08 7.37E-08 1.25E-07	4.80E+04 4.80E+04 4.80E+04 4.80E+04 4.80E+04 4.80E+04 4.80E+04	848.30 892.08 904.03 891.23 858.09 807.57 741.82 662.44	2.80 3.84 11.35 10.83 2.79 -4.86 -9.41 -11.30	851.10 895.93 915.37 902.07 860.89 802.72 732.41 651.14
modo de vibração F: 2,62Hz T: 0,38	3 4 5 6 7 8 9 10	60 80 100 120 140 160 180 200 220	5.90E-05 8.80E-05 2.84E-04 2.99E-04 8.60E-05 -1.60E-04 -3.76E-04 -5.31E-04 -6.26E-04	0.2408 0.2370 0.2282 0.2157 0.2004 0.1829 0.1636 0.1426 0.1202	1.42E-05 2.09E-05 6.48E-05 6.45E-05 1.72E-05 -2.93E-05 -6.15E-05 -7.57E-05	3.44E-09 7.05E-09 6.71E-08 6.75E-08 5.01E-09 1.62E-08 7.37E-08 1.25E-07 1.43E-07	4.80E+04 4.80E+04 4.80E+04 4.80E+04 4.80E+04 4.80E+04 4.80E+04 4.80E+04	848.30 892.08 904.03 891.23 858.09 807.57 741.82 662.44 570.70	2.80 3.84 11.35 10.83 2.79 -4.86 -9.41 -11.30	851.10 895.93 915.37 902.07 860.89 802.72 732.41 651.14 559.71
modo de vibração F: 2,62Hz T: 0,38	3 4 5 6 7 8 9 10 11	60 80 100 120 140 160 180 200 220 240	5.90E-05 8.80E-05 2.84E-04 2.99E-04 8.60E-05 -1.60E-04 -3.76E-04 -5.31E-04 -6.26E-04	0.2408 0.2370 0.2282 0.2157 0.2004 0.1829 0.1636 0.1426 0.1202 0.0965	1.42E-05 2.09E-05 6.48E-05 6.45E-05 1.72E-05 -2.93E-05 -6.15E-05 -7.57E-05 -7.52E-05 -6.41E-05	3.44E-09 7.05E-09 6.71E-08 6.75E-08 5.01E-09 1.62E-08 7.37E-08 1.25E-07 1.43E-07	4.80E+04 4.80E+04 4.80E+04 4.80E+04 4.80E+04 4.80E+04 4.80E+04 4.80E+04 4.80E+04	848.30 892.08 904.03 891.23 858.09 807.57 741.82 662.44 570.70 467.62	2.80 3.84 11.35 10.83 2.79 -4.86 -9.41 -11.30 -10.99 -9.17	851.10 895.93 915.37 902.07 860.89 802.72 732.41 651.14 559.71 458.45

	i	z _i (m)	$x_i(m)$	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F}_{\mathbf{H}}$	$\overline{X_1}$	$\widehat{X_1}$	Xi (kN)
	1	20	-1.51E-04	0.2164	-3.27E-05	2.61E-08	-1.61E+04	592.23	2.79	595.01
	2	40	-4.07E-04	0.2366	-9.63E-05	1.77E-07	-1.61E+04	759.39	7.00	766.39
	3	60	-6.94E-04	0.2408	-1.67E-04	4.76E-07	-1.61E+04	848.30	11.07	859.37
11°.	4	80	-3.54E-04	0.2370	-8.39E-05	1.14E-07	-1.61E+04	892.08	5.20	897.28
modo de	5	100	-9.06E-04	0.2282	-2.07E-04	6.83E-07	-1.61E+04	904.03	12.17	916.20
vibração	6	120	-1.61E-03	0.2157	-3.47E-04	1.96E-06	-1.61E+04	891.23	19.61	910.85
F: 2,88Hz	7	140	-9.39E-04	0.2004	-1.88E-04	5.97E-07	-1.61E+04	858.09	10.26	868.35
T. 0.25	8	160	2.90E-04	0.1829	5.31E-05	5.32E-08	-1.61E+04	807.57	-2.96	804.61
T: 0,35s	9	180	1.43E-03	0.1636	2.34E-04	1.07E-06	-1.61E+04	741.82	-12.03	729.79
ξ: 0,6	10	200	2.28E-03	0.1426	3.25E-04	2.30E-06	-1.61E+04	662.44	-16.31	646.13
	11	220	2.82E-03	0.1202	3.39E-04	2.91E-06	-1.61E+04	570.70	-16.64	554.06
	12	240	3.04E-03	0.0965	2.94E-04	2.67E-06	-1.61E+04	467.62	-14.14	453.48
	13	260	8.78E-04	0.0717	6.30E-05	1.62E-07	-1.61E+04	354.04	-2.98	351.06
	14	280	-5.56E-03	0.0459	-2.55E-04	4.09E-06	-1.61E+04	230.64	11.87	242.51
	15	300	-1.05E-02	0.0187	-1.96E-04	5.82E-06	-1.61E+04	95.23	8.96	104.19
	i	$z_{i}(m)$	$\mathbf{x_{i}}\left(\mathbf{m}\right)$	β_i	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{\mathbf{X_i}}$	$\widehat{X_1}$	Xi (kN)
	1	20	-4.30E-05	0.2164	-9.31E-06	2.11E-09	-1.46E+05	592.23	7.17	599.39
	2	40	-7.10E-05	0.2366	-1.68E-05	5.37E-09	-1.46E+05	759.39	11.03	770.42
	3	60	-1.22E-04	0.2408	-2.94E-05	1.47E-08	-1.46E+05	848.30	17.57	865.87
120	4	80	-6.80E-05	0.2370	-1.61E-05	4.21E-09	-1.46E+05	892.08	9.02	901.10
12°. modo de	5	100	-1.29E-04	0.2282	-2.94E-05	1.39E-08	-1.46E+05	904.03	15.65	919.68
vibração	6	120	-2.48E-04	0.2157	-5.35E-05	4.64E-08	-1.46E+05	891.23	27.28	918.51
F: 2,92Hz	7	140	-1.57E-04	0.2004	-3.15E-05	1.67E-08	-1.46E+05	858.09	15.49	873.58
	8	160	3.20E-05	0.1829	5.85E-06	6.47E-10	-1.46E+05	807.57	-2.95	804.63
T: 0,34s	9	180	2.10E-04	0.1636	3.43E-05	2.30E-08	-1.46E+05	741.82	-15.95	725.86
ξ: 0,6	10	200	3.43E-04	0.1426	4.89E-05	5.22E-08	-1.46E+05	662.44	-22.17	640.27
j. 0,0	11	220	4.29E-04	0.1202	5.15E-05	6.73E-08	-1.46E+05	570.70	-22.86	547.84
	12	240	4.64E-04	0.0965	4.48E-05	6.20E-08	-1.46E+05	467.62	-19.47	448.16
	13	260	1.62E-04	0.0717	1.16E-05	5.51E-09	-1.46E+05	354.04	-4.96	349.08
	14	280	-8.03E-04	0.0459	-3.69E-05	8.53E-08	-1.46E+05	230.64	15.48	246.12
	15	300	-1.56E-03	0.0187	-2.91E-05	1.28E-07	-1.46E+05	95.23	12.01	107.24

	i	z _i (m)	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F}_{\mathbf{H}}$	$\overline{\mathbf{X}}_{1}$	$\widehat{X_1}$	Xi (kN)
	1	20	-4.51E-04	0.2164	-9.76E-05	2.33E-07	-4.16E+04	592.23	21.45	613.68
	2	40	-0.00065	0.2366	-1.54E-04	4.50E-07	-4.16E+04	759.39	28.82	788.21
	3	60	-0.000978	0.2408	-2.36E-04	9.45E-07	-4.16E+04	848.30	40.19	888.50
13°.	4	80	-0.000993	0.2370	-2.35E-04	8.98E-07	-4.16E+04	892.08	37.60	929.68
modo de	5	100	-0.000645	0.2282	-1.47E-04	3.46E-07	-4.16E+04	904.03	22.33	926.36
vibração	6	120	-0.001562	0.2157	-3.37E-04	1.84E-06	-4.16E+04	891.23	49.03	940.27
F: 3,19 Hz	7	140	-0.00149	0.2004	-2.99E-04	1.50E-06	-4.16E+04	858.09	41.95	900.04
	8	160	-0.000239	0.1829	-4.37E-05	3.61E-08	-4.16E+04	807.57	6.29	813.86
T: 0,31s	9	180	0.001083	0.1636	1.77E-04	6.11E-07	-4.16E+04	741.82	-23.48	718.34
ξ: 0,6	10	200	0.002115	0.1426	3.02E-04	1.98E-06	-4.16E+04	662.44	-39.01	623.43
	11	220	0.002789	0.1202	3.35E-04	2.84E-06	-4.16E+04	570.70	-42.42	528.28
	12	240	0.003082	0.0965	2.97E-04	2.73E-06	-4.16E+04	467.62	-36.90	430.72
	13	260	0.0020	0.0717	1.41E-04	8.14E-07	-4.16E+04	354.04	-17.20	336.84
	14	280	-0.0042	0.0459	-1.94E-04	2.37E-06	-4.16E+04	230.64	23.27	253.91
	15	300	-0.0098	0.0187	-1.82E-04	5.05E-06	-4.16E+04	95.23	21.49	116.72
	i	$z_{i}(m)$	x _i (m)	β_{i}	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F_{H}}$	$\overline{X_1}$	$\widehat{X_1}$	Xi (kN)
	1	20	-2.70E-05	0.2164	-5.84E-06	8.34E-10	-5.11E+05	592.23	15.77	608.00
	2	40	-4.90E-05	0.2366	-1.16E-05	2.56E-09	-5.11E+05	759.39	26.68	786.07
	3	60	-7.30E-05	0.2408	-1.76E-05	5.27E-09	-5.11E+05	848.30	36.85	885.15
1.40	4	80	-8.30E-05	0.2370	-1.97E-05	6.27E-09	-5.11E+05	892.08	38.60	930.68
14°. modo de	5	100	-4.90E-05	0.2282	-1.12E-05	2.00E-09	-5.11E+05	904.03	20.84	924.87
vibração	6	120	-1.21E-04	0.2157	-2.61E-05	1.10E-08	-5.11E+05	891.23	46.66	937.89
F: 3,24Hz	7	140	-1.24E-04	0.2004	-2.49E-05	1.04E-08	-5.11E+05	858.09	42.88	900.98
1.3,24112	8	160	-2.60E-05	0.1829	-4.76E-06	4.27E-10	-5.11E+05	807.57	8.40	815.97
T: 0,31s	9	180	8.10E-05	0.1636	1.32E-05	3.42E-09	-5.11E+05	741.82	-21.57	720.24
ξ: 0,6	10	200	1.66E-04	0.1426	2.37E-05	1.22E-08	-5.11E+05	662.44	-37.61	624.83
7. 0,0	11	220	2.21E-04	0.1202	2.66E-05	1.79E-08	-5.11E+05	570.70	-41.29	529.41
	12	240	2.45E-04	0.0965	2.36E-05	1.73E-08	-5.11E+05	467.62	-36.03	431.59
	13	260	1.70E-04	0.0717	1.22E-05	6.07E-09	-5.11E+05	354.04	-18.25	335.79
	14	280	-3.26E-04	0.0459	-1.50E-05	1.41E-08	-5.11E+05	230.64	22.03	252.67
	15	300	-7.82E-04	0.0187	-1.46E-05	3.24E-08	-5.11E+05	95.23	21.14	116.37

	i	z _i (m)	x _i (m)	β_i	$\beta_i x_i$	$\psi_i x_i^2$	$\mathbf{F}_{\mathbf{H}}$	$\overline{X_1}$	$\widehat{X_1}$	Xi (kN)
	1	20	-9.65E-04	0.2164	-2.09E-04	1.06E-06	-6.70E+04	592.23	73.96	666.19
	2	40	-1.72E-03	0.2366	-4.07E-04	3.16E-06	-6.70E+04	759.39	122.96	882.35
	3	60	-1.90E-03	0.2408	-4.58E-04	3.58E-06	-6.70E+04	848.30	126.04	974.34
	4	80	-2.18E-03	0.2370	-5.17E-04	4.33E-06	-6.70E+04	892.08	133.07	1025.15
15°.	5	100	-1.47E-03	0.2282	-3.36E-04	1.80E-06	-6.70E+04	904.03	82.08	986.11
modo de	6	120	-1.53E-03	0.2157	-3.30E-04	1.77E-06	-6.70E+04	891.23	77.40	968.63
vibração	7	140	-1.96E-03	0.2004	-3.94E-04	2.61E-06	-6.70E+04	858.09	89.11	947.20
F: 3,50Hz	8	160	-8.17E-04	0.1829	-1.49E-04	4.22E-07	-6.70E+04	807.57	34.63	842.20
T 0.26	9	180	7.50E-04	0.1636	1.23E-04	2.93E-07	-6.70E+04	741.82	-26.21	715.61
T: 0,26s	10	200	2.06E-03	0.1426	2.93E-04	1.87E-06	-6.70E+04	662.44	-61.09	601.35
	11	220	2.93E-03	0.1202	3.52E-04	3.14E-06	-6.70E+04	570.70	-71.79	498.91
	12	240	3.32E-03	0.0965	3.21E-04	3.18E-06	-6.70E+04	467.62	-64.14	403.49
	13	260	3.38E-03	0.0717	2.43E-04	2.40E-06	-6.70E+04	354.04	-47.62	306.42
	14	280	-3.91E-03	0.0459	-1.79E-04	2.02E-06	-6.70E+04	230.64	34.64	265.28
	15	300	-0.0118	0.0187	-2.21E-04	7.41E-06	-6.70E+04	95.23	41.96	137.19

	i	z _i (m)	M _i (kg)	$A_i (m^2)$	Ai/Ao	Ψi
	1	20	1143387.66	1647.53	0.1273	1.14339
	2	40	1065852.84	1535.81	0.1186	1.06585
	3	60	988053.36	1423.71	0.1100	0.98805
	4	80	910253.89	1311.61	0.1013	0.91025
	5	100	832454.41	1199.50	0.0927	0.83245
	6	120	754654.93	1087.40	0.0840	0.75465
Características	7	140	676855.45	975.30	0.0753	0.67686
geométricas e físicas do modelo C1	8	160	632299,98	863.19	0.0667	0.63230
	9	180	521256.50	751.09	0.0580	0.52126
	10	200	443457.02	638.99	0.0494	0.44346
	11	220	365657.54	526.88	0.0407	0.36566
	12	240	287858.07	414.78	0.0320	0.28786
	13	260	210058.59	302.68	0.0234	0.21006
	14	280	132259.11	190.58	0.0147	0.13226
	15	300	52903.65	76.23	0.0059	0.05290
		Σ	8984019.00	12945.28		