
Universidade de Brasília – UnB
Faculdade UnB Gama – FGA

Engenharia de Software

UnB Games: A collaborative project

Author: Parley Pacheco Martins
Supervisor: Prof. Dr. Edson Alves da Costa Júnior

Co-supervisor: Prof. Matheus de Sousa Faria

Brasília, DF
2017

Parley Pacheco Martins

UnB Games: A collaborative project

Monograph submited to the Software En-
gineering department from Universidade de
Brasília, as a partial requisite to obtain the
title of Software Engineer.

Universidade de Brasília – UnB

Faculdade UnB Gama – FGA

Supervisor: Prof. Dr. Edson Alves da Costa Júnior
Co-supervisor: Prof. Matheus de Sousa Faria

Brasília, DF
2017

Parley Pacheco Martins
UnB Games: A collaborative project/ Parley Pacheco Martins. – Brasília, DF,

2017-
61 p. : il. (algumas color.) ; 30 cm.

Supervisor: Prof. Dr. Edson Alves da Costa Júnior

Trabalho de Conclusão de Curso – Universidade de Brasília – UnB
Faculdade UnB Gama – FGA , 2017.
1. packaging. 2. game. I. Prof. Dr. Edson Alves da Costa Júnior. II. Univer-

sidade de Brasília. III. Faculdade UnB Gama. IV. UnB Games: A collaborative
project

CDU 02:141:005.6

Parley Pacheco Martins

UnB Games: A collaborative project

Monograph submited to the Software En-
gineering department from Universidade de
Brasília, as a partial requisite to obtain the
title of Software Engineer.

Work approved. Brasília, DF, December, 6th 2017:

Prof. Dr. Edson Alves da Costa Júnior
Supervisor

Prof. Dra. Carla Silva Rocha Aguiar
Guest 1

Prof. Bruna Nayara Moreira Lima
Guest 2

Brasília, DF
2017

Acknowledgements

First of all, thank you to my dear family! I couldn’t have reached this far without
you! To my mom, Gláucia Maria Pacheco Terra, and my dad, Paulo Orlando Martins,
who have loved me since and taught me how to be a better person and fight difficulties in
life. To my brother Sam Pacheco Martins and sister Élida Pacheco Martins, whom I love
so much, despite everything. To my extended family, uncles, aunts, cousins, that are so
many to name each, but have seen my potential even when I couldn’t see it. Thank you
so much! Your faith in me makes me go further than I ever thought I could!

I also want to thank with all the warmth of my heart the friends who have been
with me in this journey and helped me through this stressful period of life, either here in
Brazil or my dear Canada. Huge thanks to the great Mateus Medeiros Furquim Mendonça
and his entire family, Elis, Geovane, and Tiago, for helping me keep my sanity with all
the laughs and games, and also for giving me a place to study. I couldn’t have done half
of this work if you hadn’t welcomed and sheltered everytime I needed. To Felipe Pradera
Resende, that is the older brother I never had.

Thanks to all instructors that have helped to arrive here. Special thanks to my
supervisor, Professor Edson Alves da Costa Junior, who saw potential on a 16 years
old boy and never stopped believing in me ever since. To my friend and co-supervisor,
Matheus de Sousa Faria, whom I had the pleasure of start working with so many years
ago when we were freshmen. Thanks for guiding me through this work!

“It is our choices, Harry, that show what we truly are, far more than our abilities.”
(Harry Potter and the Chamber of Secrets)

Resumo
Jogos desenvolvidos nas universidades não têm muito reconhecimento ou suporte, e usuá-
rios geralmente não têm a oportunidade de jogá-los ou dar algum feedback aos desenvolve-
dores. Todo o trabalho desenvolvido numa universidade, especialmente pública, deve ser
acessível a toda a sociedade, desde a concepção até a implementação, mas a maioria das
pessoas nem sabe que jogos são criados nas salas de aula e que esses jogos são públicos
e gratuitos. Este projeto tem como objetivo fazer uma plataforma online que permita às
pessoas baixar e jogar o que for desenvolvido nas turmas de jogos da UnB. Para ajudar os
desenvolvedores, o projeto também visa criar um modelo para facilitar a distribuição dos
jogos, facilitando a geração de instaladores para múltiplas plataformas. Este documento
explica como esta meta foi alcançada, ao se fazer um trabalho colaborativo entre várias
pessoas da Universidade de Brasília. Ele também detalha o funcionamento do modelo e
da plataforma desenvolvidos, apresentando suas funcionalidades e arquivos. Conclusões
são tiradas a partir dos resultados obtidos e o documento termina com algumas ideias
para trabalhos futuros.

Palavras-chaves: jogos. desenvolvimento. plataforma. empacotamento.

Abstract
Games developed in the University don’t have much recognition or support, and, usually,
users are not able to play or give feedback about any version of any of them. Everything
created in the university, especially a public one, should be accessible to the society,
from conception to implementation, but most people don’t even know that games are
created in classes and that these games are free and public. One of the objectives of
this project is to make these games available to people via an online platform where
they can be downloaded and play offline. To help the game developers, the project also
aims to create a template to facilitate game distribution, by making it easier to generate
installers for multiple platforms. This document outlines how this task was accomplished,
by doing a collaborative project between various people of the Universidade de Brasília.
It also explains how the template and the platform works, by detailing their features and
corresponding files. Conclusions are taken from what has been done and the document
finishes by providing some ideas for future work.

Key-words: games. development. platform. packaging.

List of Figures

Figure 1 – Task Division . 23
Figure 2 – Folder tree . 26
Figure 3 – Library division . 27
Figure 4 – Scripts . 27
Figure 5 – Class Diagram of the Platform (UNB, 2017) 29
Figure 6 – src directory . 35
Figure 7 – dist directory . 35
Figure 8 – Include new game . 43
Figure 9 – Game detail . 44
Figure 10 – Space Monkey . 57
Figure 11 – Ankhnowledge . 58
Figure 12 – Traveling Will . 61

List of Tables

Table 1 – Directories on the Hierarchy (ALLBERY et al., 2015) 19
Table 2 – Initial status of the selected games . 24
Table 3 – Game status after contacting developers 25
Table 4 – Files on the root directory . 32
Table 4 – Files on the root directory . 33
Table 5 – Files in the sources directory . 33
Table 5 – Files in the sources directory . 34
Table 6 – Files on the dist directory . 35
Table 6 – Files on the dist directory . 36
Table 6 – Files on the dist directory . 37

Listings

1 gen_deb.sh . 37
2 gen_rpm.sh . 40
3 gen_exe.sh . 41
4 Part of gen_wxs.sh . 45

List of abbreviations and acronyms

SDL Simple DirectMedia Layer version 1

SDL2 Simple DirectMedia Layer version 2

API Application Program Interface

GUI Graphical User Interface

VM Virtual Machine

OS Operating System

dpkg Debian Package Management System

rpm RPM Package Manager

pacman Pacman Package Manager

RUP Rational Unified Process

XP eXtreming Programming

FHS Filesystem Hierarchy Standard

FGA Faculdade UnB Gama

MDS Métodos de Desenvolvimento de Software

GPP Gestão de Portfolios e Projetos

PMBoK Project Management Body of Knowledge

LAN Local Area Network

indie Independent

GPL GNU General Public License

VS Visual Studio

Contents

Listings . 10

Introduction . 14

1 BASIC CONCEPTS . 16
1.1 Games . 16
1.2 SDL . 17
1.3 Repository and Version control . 17
1.4 Linux Filesystem Hierarchy Standard 18
1.5 Windows Registry . 19
1.6 Linux Packages . 20
1.7 Wix Toolset . 20
1.8 Related Work . 20

2 METHODOLOGY . 22
2.1 Project Overview . 22
2.2 Task Division . 22
2.3 Game Gathering . 23
2.4 Packaging . 24
2.5 Platform Development . 28
2.6 Tools . 30

3 RESULTS . 31
3.1 Template . 31
3.1.1 Root directory . 31
3.1.2 Sources Directory (src) . 33
3.1.3 Distribution folder (dist) . 34
3.1.4 Scripts folder (scripts) . 37
3.2 Platform . 42
3.3 Difficulties . 44

4 CONCLUSION . 48

BIBLIOGRAPHY . 50

APPENDIX 53

APPENDIX A – MEMBERS OF GPP/MDS TEAM 54

APPENDIX B – SELECTED GAMES 55
B.1 Jack the Janitor . 55
B.2 Emperor vs Aliens . 55
B.3 Ninja Siege . 56
B.4 Space Monkeys . 56
B.5 War of the Nets . 56
B.6 Post War . 57
B.7 Ankhnowledge . 57
B.8 Last World War . 58
B.9 Kays against the World . 58
B.10 Imagina na Copa . 59
B.11 Dauphine . 59
B.12 Terracota . 59
B.13 7 Keys . 60
B.14 Babel . 60
B.15 Strife of Mithology . 60
B.16 Traveling Will . 61
B.17 Deadly Wish . 61

14

Introduction

Games are known to provide several benefits to the players. It may be enjoying a
good story, developing new abilities and skills, bonding with friends or just relaxing after a
big rushed day (SANDFORD; WILLIAMSON, 2005). Independent game developers find
it harder to make their games any of these goals because it’s so much harder for people
to see their games.

There are some courses taught in the Universidade de Brasília (like Introdução
ao Desenvolvimento de Jogos at the campus Darcy Ribeiro, and Introdução aos Jogos
Eletrônicos at the campus Gama) that have the goal to teach students to develop games.
Students that enroll in these classes have the opportunity to learn how to create a game
from scratch. Several of these students wish to continue working on game development
after their graduation.

The games developed in those courses are complete, with story and gameplay
but they are never seen outside class because developers have little to no experience on
publishing games and there is no public place to show them. This project was created to
give visibility to these games and developers and to show the work that has and will be
done in this University concerning game development.

Goals
The main goals of this project are to create an online platform to host the games

developed in the courses of this University and a template that will allow game developers
to quickly distribute their games. The secondary goals are the following:

∙ allow users to download, run and distribute these games in major operating systems,
like Windows, macOs, Debian and Red Hat;

∙ let the students of these courses easily create the respective installers and make the
packages available to the public;

∙ build packages to some selected games that don’t have one.

Work Structure
This document is divided into chapters. Chapter 1 explains some basic concepts

for the reader. Chapter 2 gives an overview of how the goals were achieved. Chapter 3

Introduction 15

shows the results of the project and the difficulties to achieve those results. Chapter 4
concludes the project and gives directions for future work.

16

1 Basic Concepts

This chapter gives an overview of some basic concepts needed by the reader to
understand this work. It speaks briefly of games and their development using the Simple
DirectMedia Layer (SDL) library and repositories to store the code on sections 1.1, 1.2 and
1.3. Sections 1.4 and 1.5 give some explanation on the folder structure of both GNU/Linux
and Windows systems, while sections 1.6 and 1.7 describe how packaging works on both
of these systems. At last, section 1.8 shows what has been done and how these works
inspired this project.

1.1 Games
Games have been a part of human development since their early childhood and

have been part of history in its most basic ways (BETHKE, 2003). Providing a fun time,
bonding with friends and learning new skills are some common goals of games. They
consist of interacting with other people (or computer) or just with the game structure
itself, following the rules to achieve a goal.

They can take several formats, like board and card games, for example. Each form
has unique strategies to win. To illustrate that, take the two cited cases: board games
usually divide the user space into sectors, and everything is related to which sectors you
are in and how you control them; card games, however, rely on the symbols and possible
combinations of them (CRAWFORD, 1984). To win the former type, a player has to
understand the cost to acquire/leave sectors and plan accordingly, while on the latter,
one needs to watch their symbols and try to get the best combination out of them.

Since computers were invented, they completely changed the gaming world. New
kinds of games, like first person shooter, and tower defense, were created and made acces-
sible, while it became possible to play virtually the ones that required a physical board
or a lot of people. With the Internet, it grew even more comfortable to own and play
different games. It’s also possible to play any game with anyone in the world.

Because computer games are software with audio, art, and gameplay, they should
follow a software development method, anyone chosen by the team. It is something that
most game developers avoid because they see their work as pure art (BETHKE, 2003).
Although that is probably true, a game has everything a “normal software” has and more,
therefore requiring a known development process or method. Using software engineering
techniques (adapted to their needs, naturally) will result in a better game and better
interaction with the final user (PRESSMAN, 2010).

Chapter 1. Basic Concepts 17

1.2 SDL
Digital games have many things happening at once. There is sound playing; inputs

are coming from the player, often from multiple sources; there is the rendering of scenarios
and scenes; statistics are displayed. To simplify that, developers use several libraries in
their source codes, one of the most popular being SDL.

SDL is a library that helps developers by creating cross-platform APIs to make
easier handling video, input, audio, threads. It’s used in several games available in big
platforms like Steam and Humble Bundle (SDL, 2017). To be fully integrated with the
developer’s code, it requires a few files during compilation: the headers, that contains
definitions of functions and structures; and the library itself, that contains the binaries
that will run with the main code and may be static or shared (MITCHELL, 2013).

A shared library is one that can be used in multiple programs. It provides common
code that is reusable and can be linked to the developer’s code at the running time. On
GNU/Linux systems they have the .so file extension, while on Windows they have .dll
(CAMPBELL, 2009). In this case, the library code is not merged to the main code,
resulting in a smaller binary for the developer. It’s required to have the library installed
on both the developer’s and the player’s system, though.

The static library is compiled against the main source code, and it’s merged with
it. Instead of being a dependency on the user’s system, it’s now a part of the distributed
version of the software, resulting in a more prominent binary. The new license on SDL2,
zlib1, allows users to use SDL as a static library; however, they are not encouraged to,
because that wouldn’t provide several things the user might need. For example, security
updates that come on the new patches, wouldn’t be available to a game that has SDL
built into it (GORDON, 2017).

1.3 Repository and Version control
Game development, as has been said, demands special care with the source code.

Like any software, when a bug is accidentally inserted, there should be an easy way to
return to a previous state, where that didn’t happen. The solution to this problem is using
a repository with versioning for the source code.

According to the Merriam-Webster Dictionary (2017), a repository is “a place,
room or container where something is deposited.” A software repository is a computer,
directory or server that stores all the source code for that software project. This is usually
available on the Internet, but it can also be local to the developers.
1 The text of this license can be found at <https://www.zlib.net/zlib_license.html>

https://www.zlib.net/zlib_license.html

Chapter 1. Basic Concepts 18

Repositories are also related to the version control of the source code being pro-
duced. The definition of version control is “a system that records changes to a file or
set of files over time so that you can recall specific versions later” (LOELIGER; MC-
CULLOUGH, 2012). This allows the user to compare versions, to check updates, see who
introduced (or removed) an issue and to rollback to previous versions of the system (CHA-
CON; STRAUB, 2014). The goal is to make it easy to return to states that were working,
even after changes are made after a long time.

Modern version control systems allow developers to work on a distributed basis
and to parallelize their tasks, with the ability of branching the repository. Those branches
are separated lines of development, that won’t mess with the main one until they are
merged (WESTBY, 2015). This feature lets developers create and test new changes before
submitting them to the project’s stable line of work, without affecting the final product.

1.4 Linux Filesystem Hierarchy Standard
When installing a game, it must go somewhere in the filesystem of the user. For

games developed to run in the GNU/Linux environments, they should follow the patterns
found in FHS. The Filesystem Hierarchy Standard (FHS) was proposed on February 14,
1994, as an effort to rebuild the file and directory structure of Linux and, later, all Unix-
like systems. It helps developers and users to predict the location of existing and new files
on the system, by proposing minimum files, directories and guiding principles (BANDEL;
NAPIER, 2001).

The Hierarchy starts defining types of files that can exist in a system. Whenever
records differ in this classification, they should be located in different parts of the system:
shareable files are the ones that can be accessed from a remote host, while unshareable are
files that have to be on the same machine to be obtained. Static files are the ones that
aren’t supposed to be changed without administrator privileges, whereas variable ones
can be altered by regular users (BANDEL; NAPIER, 2001)

The root filesystem is defined then: this should be as small as possible, and it
should contain all the required files to boot, reset or repair the system. It must have the
directories specified in Table 1 and installed software should never create new directories
on this filesystem (ALLBERY et al., 2015).

From the directories in Table 1, “/usr, /opt and /var are designed such that
they may be located on other partitions or filesystems.” (ALLBERY et al., 2015). The
/usr hierarchy should include shareable data, that means that every information host-
specific should be placed in other directories. About the /var hierarchy, FHS specifies
that “everything that once went into /usr that is written to during system operation (as
opposed to installation and software maintenance) must be in /var.” (ALLBERY et al.,

Chapter 1. Basic Concepts 19

Table 1 – Directories on the Hierarchy (ALLBERY et al., 2015)

Directory Description
bin Essential command binaries
boot Static files of the boot loader
dev Device files
etc Host-specific system configuration
lib Essential shared libraries and kernel modules
media Mount point for removable media
mnt Mount point for mounting a filesystem temporarily
opt Add-on application software packages
run Data relevant to running processes
sbin Essential system binaries
srv Data for services provided by this system
tmp Temporary files
usr Secondary hierarchy
var Variable data

2015).

The Hierarchy has some optionally defined places to put the binaries of the in-
stalled games, like /usr/games, or /usr/local/games. The difference between the two is
that the former is where the package manager installs, while the other is where packages
compiled locally are usually installed (TEAM, 2017). Variable data, as usual, should be
inserted into the the /var filesystem, under /var/games.

1.5 Windows Registry
According to Wikipedia (2017a), “without a file system, information placed in a

storage medium would be one large body of data with no way to tell where one piece of
information stops and the next begins”. Just like every Operating System, Windows has
a Filesystem that handles how the archives are stored in this platform and also gives a
naming convention for those files. On top of that, there is the Windows Registry, that
is a system-defined database (MICROSOFT, 2017b) that provides configuration data for
applications, user preferences, system configurations, among other data (FISHER, 2017).

The Registry was created on early versions of Microsoft Windows to replace most
of the ini files that contained system information and editing entries that don’t relate to
the developer’s application may lead to a malfunctioning system (MICROSOFT, 2017d).
It has a tree structure, with nodes called keys. Each subnode is a subkey, and the data
entries are called values, and one key (or subkey) can have as many values as it needs
(MICROSOFT, 2017c). Using the Registry is not mandatory for Windows apps because
they might use XML files or be totally portable (FISHER, 2017).

Chapter 1. Basic Concepts 20

1.6 Linux Packages
In computer science, a package can mean multiple things, depending on the context

being used. A GNU/Linux package means a bundle of files containing the required data to
run an application, such as binaries and information about the package. Game packages
behave precisely the same as any other software.

To facilitate installing software, GNU/Linux has package managers, and most
distributions have their own. Each expects and handle different types of files, but all of
them have the common goal of making the installation easier. They download the package,
resolve dependencies, copy the needed binaries and execute any post- or pre-configuration
required by the system to install a package (LINODE, 2017). For example, Debian has
dpkg, Red Hat has rpm and Arch Linux has pacman as default package managers.

Another method to install software is compiling from scratch. That may be very
handy if the user has more experience with Linux packages, or the package is not in the
package manager’s repository. However, in this case, the user will have to manually handle
dependencies, download, compile and do everything else the manager does.

1.7 Wix Toolset
The Wix Toolset was developed by Microsoft to build installation packages for

Windows. Developers may integrate the tools to their build process, in Visual Studio,
SharpDevelop, or Makefiles (FIREGIANT, 2017). It works by reading a .wix XML file,
that contains all the data of the installer, like target folder, images, sounds, shortcuts,
and links (WIKIPEDIA, 2017d).

One of the Wix tools, candle, reads and parses the wxs file to create an object
file. Light, another Wix tool, will read the wxsobj, that was generated on the previous
step, and bundle everything described in the XML into an .msi installer. When the
user runs the installer, it will copy all files to their respective locations and create the
necessary shortcuts and folders, while registers everything in the Windows Registry, that
will manage the installation and removal of the package.

1.8 Related Work
There are several platforms to share and distribute games online. Amongst the

most popular ones, there are Steam2, GOG3, and Humble Bundle4. They have thousands
of games, including indie, with the vast support of the gaming community. There is
2 https://steam.com
3 https://gog.com
4 https://humblebundle.com

https://steam.com
https://gog.com
https://humblebundle.com

Chapter 1. Basic Concepts 21

another platform that focuses on indie titles called Splitplay5. Some of these platforms
are described here as an inspiration for this work.

Steam was announced in 2002 and released in 2003. Valve saw the need that many
games required to run on up to date environment and decided to create a system that
would target that issue (WIKIPEDIA, 2017c). The website has the purpose to be the store
for the platform, while the system is installed on the player’s machine and needed to play
the games made available by them. Today, they have a vast community, cross-platform
(Linux, Mac, mobile devices, and consoles) system with many games and extra content
for them (STEAM, 2017).

GOG started out with the name Good Old Games trying to provide DRM free
games to people. It was released in 2008 and has been active ever since (with a brief down
period in September 2010). Since March 2012, it was rebranded, and independent games
were added to their library (WIKIPEDIA, 2017b). They also have a system, like Steam,
but this one is not required to run the games. It was built though to provide easy sharing
and buying of games, among other things (GOG, 2017).

Humble Bundle is a platform that provides a bundle of games (books, software
and other things) to the public at meager prices. Part of their profit proceeds to charity
(the buyer can also choose where their money goes), and they have already raised more
than 98 million dollars for that purpose (BUNDLE, 2017). They also provide a store with
games at regular and, sometimes, discounted prices.

Splitplay is a Brazilian platform specialized in indie games. They realized that sev-
eral indie developers couldn’t bring forth their games and decided to create a place where
those would be published them in their platform. Splitplay allows developers to send their
games complete or incomplete (as a project), they can be free or paid. The site creators
personally overview the submissions and don’t charge developers (SPLITPLAY, 2017).
The main difference between Splitplay and this project is the games each focuses. While
Splitplay aims to publish indie games in general, this project targets games developed
only in Universidade de Brasília.

5 http://www.splitplay.com.br

http://www.splitplay.com.br

22

2 Methodology

This chapter explains how things were done within the duration of the whole
project. Section 2.1 gives an overview of the whole project and its goals. Section 2.2
explains how the work was divided between all parties involved in the development of this
project. Section 2.3 shows how and which games were selected for both parts of this work.
Section 2.4 clarifies how the packaging template was created and its main parts. Section
2.5 illustrates how the platform was developed. Section 2.6 references the tools that were
used to create and test everything the project has aimed to create.

2.1 Project Overview
The first primary goal of the project is to create a platform for all the games

developed in this University. The second one is to make a project template to make it
easier to distribute these games in Windows, Debian, Red Hat and macOS systems.

To achieve this goal, the games developed in this campus of the University were
cataloged and cloned into a main GitHub organization1(whenever possible), and a tem-
plate system was created to package the files for each one of the contemplated operating
systems. The platform itself was developed while all the other activities took place, during
the first semester of 2017. The template was designed in the first semester but changed
in the second. Some games were chosen to test it, but its real use will be during the new
development cycle inside the game courses.

2.2 Task Division
This project was collaborative depending and relying on different classes and

courses. Because of that, during the first half of it, the work was divided among stu-
dents and teachers, as illustrated in Figure 1.

Professor Edson and Mr. Faria were responsible for first cataloging the existing
games. They remained as helpers in the packaging system and as primary stakeholders
for the team that developed the website.

The team Plataforma de Jogos UnB from the courses Métodos de Desenvolvimento
de Software (Software Development Methods) and Gestão de Portfólios e Projetos (Man-
agement of Portfolios and Projects) was in charge of creating the first version of the actual
website with some of the features. The names of all the members are in the Appendix A.
1 https://github.com/unbgames/

https://github.com/unbgames

Chapter 2. Methodology 23

Figure 1 – Task Division

Before the second half of the project, professor Edson developed the packaging
template. During this term, my responsibility was to test this template in a few selected
games and to evolve and maintain it, as well as to add some features to the platform
developed in the previous semester. Professor Edson and Mr. Faria were code reviewers
and helpers in the system.

2.3 Game Gathering
Introdução aos Jogos Eletrônicos (Introduction to Electronic Games) is one of the

courses that teach game development in the University. It was created in the first semester
of 2012, with Professor Ricardo Jacobi as the instructor. Professor Edson taught the class
in the subsequent semesters until 2016, and at the beginning of this year (2017) Mr.
Matheus Faria assumed it. The games selected to test the template were developed in this
course. They were chosen mostly because they compiled and ran on Linux distributions.
Another reason for this choice is the proximity with the students who created those games.

Professor Edson and Mr. Faria first contacted the students and asked them to post
their codes to GitHub. They cloned them into the fgagamedev2 GitHub organization.
After that, I was responsible for checking the status of the games, gathering information
such as which of them compiled, which SDL version they used, which ones had licenses.
Table 2 shows these initial results.

Out of 20 games created in Introdução aos Jogos Eletrônicos while Professor Edson
taught it, four didn’t have a known repository and eight didn’t have a license that allowed
2 https://github.com/fgagamedev/

https://github.com/fgagamedev

Chapter 2. Methodology 24

Table 2 – Initial status of the selected games

Name Source? License? SDL Compiles? Year
Deadly Wish y n 2 n 2016
Strife of Mythology y n 2 y 2016
Travelling Will y n 2 y 2016
7 Keys y MIT 2 n 2015
Babel y GPL 2 2 y 2015
Terracota y MIT 2 n 2015
Dauphine y n 2 n 2014
Imagina na Copa y n 2 y 2014
Kays Against the World y n 2 y 2014
Ankhnowledge y GPL 2 1 y 2013
The Last World War n - - - 2013
Post War y n 1 y 2013
War of the nets y GPL 2 2 y 2013
Jack the Janitor y GPL 3 1 y 2013
Drawing Attack n - - - 2012
Earth Attacks n - - - 2012
Emperor vs Aliens y n 1 y 2012
Ninja Siege y GPL 2 1 y 2012
Space monkeys y GPL 2 1 n 2012
Tacape n - - - 2012

modificate them at that time. Next task was finding games that didn’t have a known
repository and getting the missing licenses. As result of this task, The Last World War
was added and five other had licenses acquired as shown in Table 3.

In the second semester, to test the new packaging template, four games were
selected. two of these previously chosen, developed with SDL, and two new ones developed
in the first semester of 2017, made with SDL2: Ankhnowledge, Ninja-Siege, Wenova, and
Mindscape, respectively. These games were chosen because they already worked correctly
without any need to change their source code.

Another decision was to separate the games in a different GitHub organization,
to hold all the ones developed at the University, instead of just those from FGA. Mr.
Faria created the unbgames3 organization for this purpose and fgagamedev remained as
an FGA specific organization, where the packaging template is maintained, for example.

2.4 Packaging
The template for packaging was created by professor Edson. It is based on two

fundamental directives, modularisation and platform independence. The first one is related
3 https://github.com/unbgames

Chapter 2. Methodology 25

Table 3 – Game status after contacting developers

License SDL Compiles
Deadly Wish GPL 3 2 n
Strife of Mythology GPL 2 2 y
Travelling Will MIT 2 y
7 Keys MIT 2 n
Babel GPL 2 2 y
Terracota MIT 2 n
Dauphine MIT 2 n
Imagina na Copa MIT 2 y
Kays Against the World n 2 y
Ankhnowledge GPL 2 1 y
The Last World War n 1 y
Post War MIT 1 y
War of the nets GPL 2 2 y
Jack the Janitor GPL 3 1 y
Emperor vs Aliens n 1 y
Ninja Siege GPL 2 1 y
Space monkeys GPL 2 1 n

to dividing the directories by topic, meaning that each folder will be responsible for one
thing and all the files inside of them should be specifically related to that. The second
directive, platform independence, is to make the development of multiple platforms easy.
Each directory will have a division for each of the platforms.

To achieve the template modularisation, professor Edson decided to use a folder
structure that would be easy to understand to anyone familiar with GNU/Linux FHS,
with a few additions. Apart from the original directories in the repository, he added the
folders bin, dist, lib and scripts. This structure is represented in Figure 2

∙ bin has all needed libraries and the game executable.

∙ lib All the third-party libraries should live here. The scripts to build the code are
already set to look for libs inside this directory, being each subdirectory a depen-
dency;

∙ dist This contains the files needed to generate the packages for each platform;

∙ scripts this is where the scripts to build, package and distribute the binaries for
all the platforms will live. It also has a subdirectory called utils that holds some
specific platform scripts, like generating each installer, or gather information about
the host OS;

Chapter 2. Methodology 26

Figure 2 – Folder tree

The second directive was met by dividing some of the directories into platform-
limited directories, making the code that lives there accessible only when running on that
individual platform. Any file outside the platform directory is considered generic and can
be used for any Operating System. For example, when running on Windows, the compiler
would only access generic files and Windows specific ones, like dlls. The same thing
happens for macOS and GNU/Linux systems. This division is represented inside the lib
directory in Figure 3.

As also seen in Figure 3, inside each platform folder (only for libraries) there is
yet another division to make sure the template can generate different versions of the
program for debug and release. The binaries that live on release are stripped of all
debug symbols, resulting in smaller versions of those dependencies. Library headers go
inside include and a compressed file with the source goes inside src.

The scripts stored in the scripts directory are the backbone of the template.
Through them, it’s possible to compile (creating a new executable with all the depen-
dencies locally available), run and package a game. As long as the other files are placed
correctly, the scripts work correctly. There are four main and seven auxiliary scripts to
accomplish these tasks that are listed in Figure 4 and described below.

∙ build.sh builds the executable, being possible to choose which is the desired ver-
sion, debug and release. Calls the appropriate Makefile, depending on the version
and platform;

∙ cleanup.sh clears the repository, removing files generated during build and pack-

Chapter 2. Methodology 27

Figure 3 – Library division

Figure 4 – Scripts

aging, like object files and installers;

∙ pack.sh builds the release version of the program (by calling build.sh) and gen-
erates the installer for the specific platform it’s running on. It’s important to notice
that it’s not possible to generate a package for a different platform from the same
host system. This means that, for example, to generate Windows packages, this
script must be called from within Windows and not from a Linux machine;

∙ run.sh runs the generated executable, setting the correct environment variables and

Chapter 2. Methodology 28

pointing to where the local libs are. Attempting to run the program without this
script may lead to errors;

∙ util/get_platform.sh checks and returns the current platform;

∙ util/set_permissions.sh sets files to 6444 permission and folders to 7555inside a
given directory;

∙ util/gen_deb.sh generates a .deb file to be installed in Debian-based systems;

∙ util/gen_rpm.sh generates an .rpm file to be installed in Red Hat based systems;

∙ util/gen_exe.sh generates the .exe and .msi to be installed on Windows systems;

∙ util/gen_wxs.sh This is called from gen_exe to create a .wxs file, that will be
used to create the Windows intaller.

∙ util/gen_dng.sh creates the .dmg file for macOS.

All the scripts described in this section must be executed from the root folder of
the repository. All paths inside the scripts are relative to that directory and running them
anyplace else may cause unwanted errors.

The template doesn’t relate (or connects) directly to the platform. It is instead
something that will allow the platform to be entirely used. The template proposes to create
the installers the user needs, while the platform will be used to hhare these executables
so people can download and play them.

2.5 Platform Development
The first version of the platform was developed using mixed development methods.

During the first half of the semester, the Rational Unified Process and the PMBOK were
used. For the next part, Scrum and XP were chosen. This choice of development framework
is because of how the courses are divided and because of their sillabi.

Throughout the RUP part of the development, the team created several documents
to aid the development cycle, such as vision, architecture document, class diagram, use
case diagram, use case specification, test case specification. These documents helped the
team to understand the system requirements and how they should be implemented as
seen in Figure 5. The most experienced members also helped the others to learn the
technologies to develop the website.
4 644 - File owner has read and write permissions, while group and all users have only read access.
5 755 - File owner has read (r), write(w) and execute (x) permissions, while group and all users have

only two permissions, rx.

Chapter 2. Methodology 29

Figure 5 – Class Diagram of the Platform (UNB, 2017)

As the second part of the development started, they had to work on a different
mindset, with new roles and documents. Instead of having managers, the team had now
Scrum Master, Product Owner, and the Developing team (COHEN; LINDVALL; COSTA,
2003). A Scrum Master is the responsible for protecting the crew, making sure knowledge
is shared, and Scrum is followed (ALLIANCE, 2017). It’s important to notice that this is
not equivalent to a traditional manager, that usually only bosses around the team, not
caring about the people.

Product Owner is the one who will say the product value, sets the priorities and
decides what need be done (AGILE42, 2017). They must assure the work meets their
expectations without controlling the development team (SCHWABER; BEEDLE, 2002).
The Development Team are the people who will do the work; they don’t have a manager,
they cooperate and decide how they will achieve what has to be done (GREER; HAMON,
2011).

Chapter 2. Methodology 30

2.6 Tools
GNU Make and bash were chosen as building and packaging software. Make is

supposed to help developers managing their applications and they can run on several
platforms, like Linux, Mac, and Windows. Bash is a popular script tool to manipulate
files and folders from the terminal. They are distributed under GNU General Public
License version 3 and the minimum required version is 4.0 (for both of them).

The chosen compilers were gcc, for Linux, distributed under GPL3, with at least
version 5.0; Visual Studio Compiler, for Windows, shared with a Microsoft community
License, version 2017; and clang, for macOS, distributed under BSD License.

For the website development, Django was selected because of the previous knowl-
edge the group had with it. To make the front end of the application, Facebook’s React
was chosen for the flexibility it gives to the user interface. They are both very scalable,
have significant support in the community and are released under the BSD 3-clause li-
cense. The versions being used are the last ones at the beginning of the project, namely,
1.11.1, for Django, and 15.5.4, for React.

To develop and test the template, virtual machines running Debian Jessie and
CentOS 7 were used. The VMs were powered by VirtualBox 5.2, released under GPL2,
which allows flexible environment virtualization. It also enables a developer to test in
several operating systems, which is required for the nature of this project. The computer
hosting the virtual machines and used to has an Intel Core i5-6200U 2.3 GHz processor,
8 GB of RAM and an NVIDIA GeForce 940M graphic processor.

To package on Debian based systems, lintian version 2.5. For Red-Hat systems,
rpmlintian version 1.9 was chosen. Both of them are distributed under GPL 2. For
Windows, both Wix toolset, version 3.11, distributed under Microsoft Reciprocal License;
and Gygwin shell, 2.9.0 and GPL, were used.

31

3 Results

This chapter explains the results obtained with the project development. Section
3.1 gives an explanation of how the game project template works, how it is divided and
what files it contains. The chapter also explains what each file is responsible for and if
the user should edit it or not. Section 3.2 describes what is ready from the platform and
what should have been done. Section 3.3 shows some of the problems that came through
the development/maintenance of the template and how they were overcome.

3.1 Template
One of the goals of this work was to generate a game project template that al-

lowed the game developers from the courses of this University to develop their games and
quickly create packages to install in major operating systems, namely, Windows, macOS,
Debian-based and Red Hat based distributions of GNU/Linux. Professor Edson wrote
this template, and I had the responsibility of testing it in a few games, evolving and
maintaining it throughout all the platforms.

The template consists of a series of Bash scripts, Makefiles, libraries and a directory
structure that is supposed to be followed by anyone who wants to use it. It is intended to
be used as a template for new games developed in the courses taught at this University,
and it contains the most common libraries in game development, like SDL, SDL_image,
and SDL_mixer.

3.1.1 Root directory

Currently, there are seven required files on the root directory, specifically, LICENSE,
Makefile.common, Makefile.macos, Makefile.windows, Makefile.linux, Vagranfile,
changelog, and metadata.ini. These files assure compilation is possible in any platform
and also give some information about the project. An explanation of what each of them
does and what information each may or may not have is given on Table 4. Some extra
optional files are also explained.

Chapter 3. Results 32

Table 4 – Files on the root directory

File Mode Description

LICENSE Editable This should be the text of the license or a refer-
ence to a file that has the full text. Debian pack-
ages warn if this file is the actual license text for
common licenses, therefore it may be a better op-
tion to only refer to a file inside the system (usually
/usr/share/common-licenses/<LICENSE>).

Makefile.macos
Makefile.windows
Makefile.linux

Uneditable Each of these files sets variables with specific for each
system, like CC and DEBUG_FLAGS. If a variable isn’t
needed it will remain blank and won’t change the ef-
fect of the compilation. The template is supposed to
work with values as they are and users shouldn’t change
them unless they actually want a different behavior.

Makefile.common Partially
editable

Sets some other variables, common to all OSs, like
LDFLAGS, based on each platform Makefile. The tem-
plate has set default SDL libs (SDL, SDL_image,
SDL_mixer, SDL_ttf), but other external libs may be
wanted. When this happens, the user should add the libs
wanted to the variable EXTERNAL_LIBS without quotes
and separated by simple space. Each of these libs must
be a directory inside the lib folder. The rest of the file
should not be changed since it may lead to major errors
when using the template unless the user is sure of how
it works.

Vagranfile Optional This file creates two Virtual Machines running Debian
and CentOS. If the user wishes to give support for them
both (generating both .deb and .rpm packages), they
could either use the VMs or run the template natively
on each system. The virtualization provides an easier
way to do that, but it is up to the user deciding this
detail of the development cycle.

changelog Editable When creating the Debian package, it needs a changelog,
that registers what was changed from the previous ver-
sions, much like a commit message. There are ways of
generating this file automatically because its syntax is
very particular, but the template doesn’t contemplate it
yet.

Chapter 3. Results 33

Table 4 – Files on the root directory

File Mode Description

metadata.ini Editable As the extension suggests, ini stands for initialization.
It is a configuration file that follows the ini syntax. It
defines some project properties that will be used in sev-
eral steps, like building and packaging, making it a crit-
ical file to use the template correctly. The user should
change this file with the appropriate information as soon
as cloning the repository and throughout the develop-
ment.

3.1.2 Sources Directory (src)

The directory that holds all source code, including headers, is called src and is
divided in two subfolders, engine and game, as shown in Figure 6. The reason for this
division is to keep separate engine-specific elements (like movements, rendering windows,
capturing input from the player) from the actual game. Separating these elements is a
good practice because engines can be reused in several projects, providing a basic API to
create new games. Both of these directories have the same structure, that is explained in
Table 5, along with the files outside them.

Table 5 – Files in the sources directory

File Mode Description

main.cpp Partially
Editable

It is where the function main should live. This file must
not be renamed or moved to inside any of the subdirec-
tories. Users should add their logic to it, with all the
relative includes. Because of compatibility issues with
Windows, there is a function called WinMain, that only
calls the main function and should not be touched.

Makefile Uneditable This makefile is called during the build process, from
inside Makefile.common. It builds the final executable,
linking main with the game library, engine library, and
the libraries inside lib.

Chapter 3. Results 34

Table 5 – Files in the sources directory

File Mode Description

{game,engine}/
include/*

Editable These are the header files for the engine and the game.
The template already has one header in the engine, that
should not be removed, but may be renamed if the cor-
rect references are made after that. This header defines
the function resources_dir_path, that is very impor-
tant to keep the template ability to run on multiple plat-
forms.

{game,engine}/
src

Editable The implementation of all header functions should go
inside this directory. Under this three other directories
are supposed to hold platform-specific implementation,
namely, linux, windows, and macos. Any code outside
them is considered to be generic and can be used in any
of these platforms. Every piece of code specific to one
of these systems should be placed in the corresponding
folder. The template already has the specific implemen-
tation to find the resources folder that may be renamed
or reimplemented. It is not advised to change the macos
implementation though, except for the directory name.

{game,engine}/
Makefile

Uneditable Called from the Makefile in the src directory. Respon-
sible for building each of these two libraries. If the folder
structure was followed correctly, there is no need to
change the contents of this file.

3.1.3 Distribution folder (dist)

Each platform has particularities concerning package generation. Debian, for ex-
ample, requires a changelog inside the package, while Windows needs to have the package
registered (with all of its contents). The dist folder contains some specific files that are
needed for each package. Figure 7 shows the files needed for each system, while Table 6
explains what is of them is supposed to do.

Chapter 3. Results 35

Figure 6 – src directory

Figure 7 – dist directory

Table 6 – Files on the dist directory

File Mode Description

windows/templateTest.wxs Uneditable This file is required to gener-
ate the installer for windows. It
is an XML that lists all direc-
tories, files and libraries inside
the installer. Each one of them
has a unique UUID, because this

Chapter 3. Results 36

Table 6 – Files on the dist directory

File Mode Description

is how Windows controls what is
installed or removed. This file is
generated when pack.sh is first
called in Windows. If the user has
updated the resources and other
files, they should delete this and
rerun pack.sh, but never edit it
themselves, because it is a very
particular large file.

macos/Info.plist Uneditable Because macOS packages are self-
contained, this file is pretty sim-
ple. It is an XML that contains
keys and values related to the
package installed, like its name,
version, and developer. This file
has its information updated when
pack.sh is called on a macOS sys-
tem.

linux/redhat/template-test.spec Uneditable Every rpm package must have
a file containing the isntructions
of what to and how to install
that package. This file is re-
placed with the specifics of each
game, mostly the information in
metadata.ini, when pack.sh is
called on a Red Hat machine.

linux/debian/control Uneditable Inside a debian package there is
a control section that contains
some metadata for the package
being installed. It is a required
file on every .deb package. This
file has this data, aquired from
metadata.ini.

Chapter 3. Results 37

Table 6 – Files on the dist directory

File Mode Description

linux/debian/template-test.6 Uneditable Even though this file is inside
debian, it is used for both linux
distributions. It is a man file, that
contains the package usage de-
scription.

3.1.4 Scripts folder (scripts)

The core of the template is the ability to build, run and package the game. This
ability happens because several scripts allow users to quickly do this process, by running
them from the root directory of the repository. None of these files should be modified by
the user.

The scripts inside this folder are not complex or complicated since the hard work
is mostly done inside the util directory. The build script is fairly simple, requiring one
argument that is the mode the script will run, debug or release. If none is provided, it
will use debug as default. It simply checks the platform and run the command make with
the appropriate Makefile and mode; run.sh sets some variables and change the directory
to where all the libs are to then call the executable; cleanup.sh remove objects, libraries
and other files generated during compilation; and pack.sh calls one of the scripts inside
util to generate the corresponding package.

Generating a .deb package consists in a few steps as shown in Listing 1. It first
sets some variables and loads info from metadata.ini, in lines 7-11. When the function
gen_deb() is called, it creates a temporary directory and its structure, in lines 15 through
24. From line 26 through 43, the executable, the required libs, and the resources are
copied to their respective location inside this structure. The control file is copied from
dist folder and the information is replaced with what is in metadata.ini in lines 46-
59. Lines 62-75 create some other directories, copy license, changelog and man pages
to a documentation folder, and compress some of the files. Lines 77-88 set the correct
permissions, strip the executable, builds and checks the package for errors.

Listing 1 – gen_deb.sh
1 #!/ bin/bash
2 #
3 # Generates .deb package for Linux
4 #
5

6 # Include project metadata

Chapter 3. Results 38

7 . metadata .ini
8

9 PACKAGE_NAME = $EXECUTABLE_NAME
10 PACKAGE_VERSION = $VERSION_MAJOR . $VERSION_MINOR - $VERSION_RELEASE
11 OUTPUT_FILE = $PACKAGE_NAME \ _$PACKAGE_VERSION .deb
12

13 function gen_deb ()
14 {
15 # Build dir
16 tmp_dir =/ tmp/ $PACKAGE_NAME \ _$PACKAGE_VERSION
17 rm -rf $tmp_dir
18 mkdir -p $tmp_dir
19

20 # Data dir: resources , scripts and executable
21 var_dir = $tmp_dir /var
22 data_dir = $var_dir /games
23 install_dir = $data_dir / $PACKAGE_NAME
24 mkdir -p $install_dir
25

26 cp src/ $EXECUTABLE_NAME \ _release $install_dir / $EXECUTABLE_NAME
27

28 lib_dir = $install_dir /lib
29 mkdir -p $lib_dir
30

31 for extlib in ‘ls lib ‘;
32 do
33 cp -P lib/ $extlib /linux/ release /* $lib_dir ;
34 done
35

36 # Removing embedded libraries
37 rm $lib_dir / libjpeg *
38 rm $lib_dir / libpng *
39

40 resources_dir = $install_dir / resources
41 mkdir -p $resources_dir
42

43 cp -r resources /* $resources_dir /
44

45 # Launcher script dir
46 usr_dir = $tmp_dir /usr
47 exec_dir = $usr_dir /games
48 mkdir -p $exec_dir
49

50 printf "#!/ bin/bash\ nexport LD_LIBRARY_PATH =/ var/games/ $PACKAGE_NAME
/lib && cd /var/games/ $PACKAGE_NAME / && ./ $EXECUTABLE_NAME " >
$exec_dir / $EXECUTABLE_NAME

51

Chapter 3. Results 39

52 # Debian package info dir
53 mkdir -p $tmp_dir / DEBIAN
54 cp dist/linux/ debian / control $tmp_dir / DEBIAN /
55 sed -i -- ’s/%% PACKAGE_NAME %%/ ’" $PACKAGE_NAME " ’/’ $tmp_dir / DEBIAN /

control
56 sed -i -- ’s/%% PACKAGE_VERSION %%/’" $PACKAGE_VERSION " ’/’ $tmp_dir /

DEBIAN / control
57 sed -i -- ’s/%% MAINTAINER_NAME %%/’" $MAINTAINER_NAME " ’/’ $tmp_dir /

DEBIAN / control
58 sed -i -- ’s/%% MAINTAINER_CONTACT %%/’" $MAINTAINER_CONTACT " ’/’

$tmp_dir / DEBIAN / control
59 sed -i -- ’s/%% GAME_DESCRIPTION %%/’" $GAME_DESCRIPTION " ’/’ $tmp_dir /

DEBIAN / control
60

61 # Documentation
62 share_dir = $tmp_dir /usr/share
63 doc_dir = $tmp_dir /usr/share/doc/ $PACKAGE_NAME
64 mkdir -p $doc_dir
65

66 cp changelog $doc_dir / changelog . Debian
67 cp LICENSE $doc_dir / copyright
68 gzip -n9 $doc_dir / changelog . Debian
69

70 man_dir = $share_dir /man
71 section_dir = $man_dir /man6
72 mkdir -p $section_dir
73

74 cp dist/linux/ debian /template -test .6 $section_dir / $PACKAGE_NAME .6
75 gzip -n9 $section_dir / $PACKAGE_NAME .6
76

77 # Set the permissions
78 scripts /util/ set_permissions .sh $tmp_dir
79 chmod 755 $exec_dir / $EXECUTABLE_NAME
80 chmod 755 $install_dir / $EXECUTABLE_NAME
81

82 # Strip executable debug symbols
83 strip $install_dir / $EXECUTABLE_NAME
84

85 # Build and check the package
86 fakeroot dpkg -deb --build $tmp_dir
87 mv /tmp/ $OUTPUT_FILE .
88 lintian $OUTPUT_FILE
89 }
90

91 echo " Generating " $OUTPUT_FILE "..."
92 gen_deb
93 echo "Done"

Chapter 3. Results 40

Making an .rpm package is somewhat simpler than generating a Debian package.
As seen in Listing 2, gen_rpm.sh starts on lines 7-11 also loading metadata.ini and
defining some variables. When gen_rpm() is called, it first calls the rpm tool that creates
a folder structure for the package, on line 18. After that, on lines 21 - 29, it copies the spec
file to its place on that structure and replaces the information read from metadata.ini.
Line 32 puts the text script that will be executed in the folder structure. Lines 35-39
remove any traces of previous executions of this script and create a tar package based
on the structure the rpm builder created. Lines 42-44 build the rpm package and calls the
lint to check it. Unlike Debian, everything the builder needs to know is inside the spec
file; the script only copies things to where they are supposed to be.

Listing 2 – gen_rpm.sh
1 #!/ bin/bash
2 #
3 # Generates .deb package for Linux
4 #
5

6 # Include project metadata
7 . metadata .ini
8

9 PACKAGE_NAME = $EXECUTABLE_NAME
10 PACKAGE_VERSION = $VERSION_MAJOR . $VERSION_MINOR - $VERSION_RELEASE
11 OUTPUT_FILE = $PACKAGE_NAME \ _$PACKAGE_VERSION .rpm
12

13 function gen_rpm ()
14 {
15 work_dir =‘pwd ‘
16

17 # RPM build dir setup
18 rpmdev - setuptree
19

20 # Preparing the spec file
21 spec_file = $PACKAGE_NAME .spec
22 cp dist/linux/ redhat /template -test.spec ~/ rpmbuild /SPECS/ $spec_file
23 cp dist/linux/ debian /template -test .6 dist/linux/ debian / $PACKAGE_NAME

.6
24

25 sed -i -- ’s/%% PACKAGE_NAME %%/ ’ $PACKAGE_NAME ’/g’ ~/ rpmbuild /SPECS/
$spec_file

26 sed -i -- ’s/%% VERSION_MAJOR %%/’ $VERSION_MAJOR ’/g’ ~/ rpmbuild /SPECS/
$spec_file

27 sed -i -- ’s/%% VERSION_MINOR %%/’ $VERSION_MINOR ’/g’ ~/ rpmbuild /SPECS/
$spec_file

28 sed -i -- ’s/%% VERSION_RELEASE %%/’ $VERSION_RELEASE ’/g’ ~/ rpmbuild /
SPECS/ $spec_file

29 sed -i -- ’s/%% GAME_DESCRIPTION %%/’" $GAME_DESCRIPTION " ’/g’ ~/

Chapter 3. Results 41

rpmbuild /SPECS/ $spec_file
30

31 # Launcher script dir
32 printf "#!/ bin/bash\ nexport LD_LIBRARY_PATH =/ var/games/ $PACKAGE_NAME

/lib && cd /var/games/ $PACKAGE_NAME / && ./ $EXECUTABLE_NAME \n" > dist/
linux/ redhat / $EXECUTABLE_NAME

33

34 # Preparing the source package
35 rm -rf /tmp/ $PACKAGE_NAME - $VERSION_MAJOR . $VERSION_MINOR
36 mkdir -p /tmp/ $PACKAGE_NAME - $VERSION_MAJOR . $VERSION_MINOR
37 cp -r * /tmp/ $PACKAGE_NAME - $VERSION_MAJOR . $VERSION_MINOR /
38 cd /tmp && tar -czpf ${ PACKAGE_NAME }. tar.gz $PACKAGE_NAME -

$VERSION_MAJOR . $VERSION_MINOR /
39 cp /tmp/${ PACKAGE_NAME }. tar.gz ~/ rpmbuild / SOURCES /
40

41 # Build and check the package
42 cd ~/ rpmbuild /SPECS && rpmbuild -ba $spec_file
43 cp ~/ rpmbuild /RPMS/ x86_64 /* $work_dir
44 cd $work_dir && rpmlint $PACKAGE_NAME - $VERSION_MAJOR .*
45 }
46

47 echo " Generating " $OUTPUT_FILE "..."
48 gen_rpm
49 echo "Done"

To generate the Windows installer, the script gen_exe.sh as shown in Listing 3
is called. It starts, in lines 7-11, loading and setting variables just like the other scripts.
When gen_exe() is called, it makes the folder where all the libs and resources will live,
in lines 14-15. Lines 17-20 copy the release libs to the folder created in the previous step.
Lines 22-25 create a new wxs file, only if one doesn’t exist. This decision was made because
generating this file is a very time-consuming task. If the user wants to recreate it, they just
have to delete it from the dist folder. Lines 27-36, copy all the libs, resources, executable
and wxs to a temporary directory. Lines 38-41 do the actual package building, calling
candle.exe and light.exe that are Wix tools that compile the .wxs file into .wxsobj
and create the .msi, respectively.

Listing 3 – gen_exe.sh
1 #!/ bin/bash
2 #
3 # Generates .exe installer for Windows
4 #
5

6 # Include project metadata
7 . metadata .ini
8

Chapter 3. Results 42

9 WXS_PATH ="dist/ windows / $PACKAGE_NAME .wxs"
10 OUTPUT_FILE = $EXECUTABLE_NAME .exe
11 PACKAGE_VERSION = $VERSION_MAJOR . $VERSION_MINOR . $VERSION_RELEASE
12

13 function gen_exe () {
14 rm -rf bin/ windows
15 mkdir -p bin/ windows
16

17 for DIR in $(ls -D lib);
18 do
19 cp -P lib/$DIR/ windows / release /* bin/ windows
20 done;
21

22 if ! [-e $WXS_PATH];
23 then
24 scripts /util/ gen_wxs .sh
25 fi
26

27 mkdir -p .tmp
28 cp -u src/ $EXECUTABLE_NAME \ _release .tmp/ $OUTPUT_FILE
29

30 cp -u bin/ windows /* .tmp/
31 cp -f $WXS_PATH .tmp/ $PACKAGE_NAME .wxs
32

33 # cp -u dist/ windows / Manual .pdf .tmp/
34 cp -ur resources .tmp/
35

36 cd .tmp
37

38 candle .exe $PACKAGE_NAME .wxs
39 light.exe -sice:ICE60 -ext WixUIExtension $PACKAGE_NAME . wixobj
40 cp $PACKAGE_NAME .msi ..
41 cd ..
42 }
43

44 echo " Generating " $OUTPUT_FILE "..."
45 gen_exe
46 echo "Done"

3.2 Platform
The platform developed in the first half of the project was made with Django

and React, both very well established on their own. Putting them together, however, is
another matter, where the team had a real hard time to make everything work right.
They used React as the primary user interface and the Django Admin package to create

Chapter 3. Results 43

the administrator part of the site.

The admin page is shown in Figure 8. It allows an administrator to upload a game
and manually add all its information like supported platform, related media, installers,
etc. On the home page, the user can see a slide with some images of highlighted and most
downloaded games. After choosing one, it’s possible to see its data and download one of
the installers available. The platform also lets the user interact with the system by leaving
a Facebook comment on the game and an evaluation in the format of liking or disliking
as seen in Figure 9. The user can also categorize the games, apply some filters to them,
and search for a specific game by its name or description.

Figure 8 – Include new game

The team reported they had some problems in their organization during the first
semester, while they developed the system. They were 13 people that had to learn and use
different software development methods and also create the platform. Above all that, they
informed that they were too naive to choose React and Django for the development of the
platform. This integration is not something very trivial for experienced programmers in
both frameworks; it was even harder for developers that didn’t have any experience with
any of them. They said it was hard to manage everything that had to be done, learn the
new technologies and still merge them.

During this second semester, the plan was to maintain and evolve the platform
while evolving the template. The template took a very prolonged amount of time, espe-
cially on Windows, leaving the platform on hold. When there was some time to finally

Chapter 3. Results 44

change something there, the lack of documentation and the complexity of the system
made very hard to do anything on the platform in such a short time.

It’s important to notice that there is extensive Software Engineering documenta-
tion, like Vision Document and Use Cases description. These documents are useful during
inception and early development stages, but not so helpful to maintain and evolve a com-
plete system. The documentation that would have helped in this case is what can be
called “Open Source documentation”. Some of them are: comments in the code, clear
instruction of how to run the application, a list of the dependencies, and other things for
anyone who wants to contribute to it.

Figure 9 – Game detail

3.3 Difficulties
Creating the installer for Windows has proved to be the hardest part of the tem-

plate because Windows has an entirely different folder structure from GNU/Linux sys-
tems, and they also don’t have the same tools available (like Bash). Compiling for Win-
dows has also turned out to be more challenging than Professor Edson first anticipated,
because the template wouldn’t run correctly, even after installing all required dependen-
cies.

The template for Windows was supposed to use Visual Studio compiler, which is
a tool made specifically for that platform, however when calling the compiler, it would
not find any of the .cpp files. To try to revert that situation the parameters passed to the

Chapter 3. Results 45

compiler inside Makefiles were checked and the compiling commands were run individ-
ually inside each folder that had the source code. Even after that thorough examination,
the compiler would refuse to find the files. All tools were uninstalled and reinstalled, and
the problem remained. It was decided to change the compiler to gcc to solve this issue,
just like the GNU/Linux systems.

Changing the compiler was partially easy because it was needed only to replicate
the Linux Makefile on Windows (with a few commands replaced). It required the instal-
lation of one more dependency to the project though. The new compiler caused another
complication, because, for some reason, during the final part of the compilation, it didn’t
recognize the main function. It became apparent that the compiler needed a different
entry point instead of the default main. According to Visual Studio documentation, when
creating a GUI application, it requires a function called WinMain (MICROSOFT, 2017a)
and even with mingw it complained about not having it. This function was added, and it
simply called main.

After compiling, the issue was to generate the installer. Initially, the script didn’t
provide any means to create the required wxs with the data from the repository, de-
manding the user to create that file manually. It wasn’t an easy task, since this is a very
particular large file, with specific tags, keywords, and syntax. For example, every indepen-
dent set of data must be wrapped around a component, and each of the resources inside
the package must be listed.

To aid in that process, the script gen_wxs was created and the wxs generation was
divided into three parts (header, directory, and feature), just to make it easier to generate
the whole file. The main problem in this part of the template development was finding
and listing the resources because there could be any number of subdirectories. Recursion
was the first idea to solve this issue, as seen lines 189-207 of Listing 4, but it proved to
be hard to use in Bash because it defines variables only once. The recursive variable had
to be updated, to solve that issue, before returning to the previous call. The command in
line 206 of Listing 4 removes everything in the name of the file until the last /, assuring
that $FILE_PATH has the correct value on the next recursive call. By doing that, it was
possible to list all resources and their folders in the wxs file.

Listing 4 – Part of gen_wxs.sh
189 function check_directory_for_file () {
190 BASE_DIR =$1
191

192 for FILE in $(ls $BASE_DIR);
193 do
194 FILE_PATH =" $BASE_DIR /$FILE"
195 if [-d $FILE_PATH];
196 then

Chapter 3. Results 46

197 append_directory_tag $FILE_PATH
198 check_directory_for_file $FILE_PATH
199 close_tag " Directory "
200 else
201 append_component_tag $FILE_PATH
202 append_file_tag $FILE_PATH
203 close_tag " Component "
204 fi
205 done
206 BASE_DIR =${ BASE_DIR %/*}
207 }

Another challenge in testing the template was the migration to SDL2. Even though
it was intended to be used with SDL2 since the beginning, Professor Edson chose to start
with SDL and then add support to the newer version. The games initially selected for
this part were Traveling Will and Deadly Wish, from the beginning of 2015. Even though
they work fine when the libs are installed, there was a problem using them to test the
template, because they needed the external engine created for the course a few years
ago. This engine was built to be used as a shared library, which is fine and encouraged,
but it expected a different folder structure then the template offered. Even after a few
minor changes in it, the game still didn’t adequately run when packaged. These errors
might be happening from the version of the engine being used because the games didn’t
specify which they needed. Since the goal of this work was to test the template and not
to fix/maintain the engine or the games, Traveling and Deadly were dropped. The new
games selected were Wenova and Mindscape, both developed on the first semester of 2017.

Changing the template to support SDL2 was a little tricky. Different than the
previous SDL version, the libraries didn’t work on both Linux distros out of the box,
requiring specific binaries for Debian based systems and Red-Hat based systems. Still on
Linux, playing .mp3 files proved to be slightly more complicated in SDL2. To read that
extension SDL_mixer needs to be compiled with the smpeg library, that will be loaded as
a shared lib with the program. Even with the library installed, SDL_mixer would refuse
to open .mp3 songs, showing the error: Unrecognized format. The solution came after
carefully observing the output of the configure script, that checks which dependencies
and third party libs are installed in the computer building SDL. It was disclosed that
SDL2_mixer required version 2 of smpeg, but that wasn’t discriminated anywhere in
their documentation. SDL_mixer 1, used version 0.4.5 of smpeg, the one that comes in
the distro repositories, and worked fine because of that.

On Windows, the problem was loading the images of Wenova. Since mingw is being
used as compiler for Windows, the mingw binaries were downloaded. It turns out that, for
some reason, SDL_image would not load .png files, due to libpng having some reference

Chapter 3. Results 47

to some function that wasn’t defined in any part of it or its dependencies. The error on the
console wasn’t of any help, and the internet searches would only result in adding zlib1 to
the dependencies, which was already done. In an attempt to correct the error, just to try
something, I unzipped the Visual Studio binaries, which in theory wouldn’t run on mingw
and tried recompiling the game. For some unknown reason, probably all the dependencies
were correctly put inside this version of libpng, the game ran successfully this time.

Mindscape was probably the hardest game to compile in both platforms, because
of a foolish mistake the developers made, that was masked in the source code. For some
reason, they had defined two headers called game.hpp, one in the engine, the other in the
game. To prevent users from importing the same header accidentally and, consequently,
redefining it, it is a good practice to guard it against multiple imports using a #ifndef
macro (DISCH, 2009). The team that made Mindscape naturally used this strategy, but
they hard referenced all of their imports, therefore always importing the engine game.hpp,
which had all the definitions they needed. The template works differently, passing the
path of the headers to the compiler. The hardcoded address in the source code made it
impossible to find the right import. Because of that, when removing the full path in the
.cpp files, the compiler would find the first defined game.hpp, which was in the game
folder. This file had no definitions other than the constructor and the destructor, causing
a lot of Undefined reference errors during compilation. After a long time investigating
the logs, the existence of these two files was discovered, one empty and the other with
all the functions correctly defined. Once this was solved, the game compiled and ran
successfully.

48

4 Conclusion

Creating games is something supposed to be challenging and fun. But just like
other types of software, it requires a lot of effort to distribute them to the player, mainly
if a developer targets multiple platforms and operating systems. Each machine has a
different configuration, different libraries, and architecture and most of the development
inside the University doesn’t take that into account, which may cause the final software
to have unexpected errors.

This work has shown just how difficult it is to support multiple OSs, seeking to
create a unique solution to easier this task. Even with the care of separating the specifics
for each operating system and package the binaries within each, this project hasn’t worked
the way it was expected to. It wasn’t possible to test the macOS distribution, due to
lack of time, and Windows just gave a lot of other problems, like issues with the local
environment, executables that worked partially, runtime errors (that didn’t happen on
Linux, for example).

With all these problems, the project served best as a learning experience, from
which everyone involved should take a few lessons. The first lesson is that creating the
template the way it was made wasn’t the correct approach because all of the parties tried
to replicate the macOS “way of packaging” on all the platforms, instead of focusing on
how to follow each platform “rules.” Using a self-contained package might have seemed a
good idea, but that’s not how Windows or Linux work.

Another lesson is that we should take advantage of the natural environment in
each platform, by creating files to work with Visual Studio and XCode instead of ‘forcing’
the way around with Bash and Make. On Windows, even with the initial idea of using
Visual Studio compiler, we still had Bash scripts, and when VS didn’t work, we used
another Linux solution, which may be the cause of all the errors and issues that happened
on that OS.

This previous experience has to be taken to just some extent of the project. The
template tried to avoid replication by creating scripts that would adapt to each environ-
ment. Just creating three separate templates would’ve been a bad idea, multiplying the
problems by three. The project’s got that idea right, except for the amount of it. There
must be a standard part of the template, but it just wasn’t all we proposed.

The third lesson is concerning the libraries used in the project. To make all the
libs available for the player it was decided to use binaries and not the source files in the
template (even though the source is in it too, but just to use in extreme cases). Every
binary carries some information of how it was built, and that may cause problems if the

Chapter 4. Conclusion 49

computer running them doesn’t have all the dependencies that were there at compiling
time. In the future, the source probably will be used.

On top of that, there is also the development and maintaining of the UnB Games
website. Maintaining a free software project demands time and volunteers that want to
work with that software, but it also needs a well-written documentation, to aid people that
will contribute to it, and guidelines to prevent the mess of everyone coding the way they
want to. The website is still at a very early stage on that matter, with poor documentation
and without guidelines for someone who wants to help, but this will change soon.

The full project has shown that game developing in this University is much better
than previous years, but it still has a long way to go. The template must be improved to
facilitate the distribution of these games to society, and the platform has to mature to
receive contributions from other people.

Future Work

A few decisions were made about the template and the platform, to improve
the game development environment in the University, The template will be rewritten
in Python, that is native to Unix platforms and easier to install in Windows. The new
goal is to generate the files needed to support the development cycle on each platform.
Instead of creating the binaries with just some scripts, the idea is to create the files that
XCodes or Visual Studio can read so they can do the heavy lifting of compiling and linking
binaries of the project.

The platform will also change. From experience, during this semester it was decided
that the best option is to create a simpler version of the website, more comfortable to
maintain and support, especially for new people in the project. It will probably still be
developed in Django, but without React, that only adds another complexity layer to
its evolution. The relationship between classes and objects will also be simplified, with
fewer classes representing the same thing. On top of that documentation, called here
“Open Source documentation” will be focused on, so anyone (in the University or not)
can quickly contribute to the growth of the platform.

50

Bibliography

AGILE42. Scrum Roles. 2017. Disponível em: <http://www.agile42.com/en/
agile-info-center/scrum-roles/>. Cited on page 29.

ALLBERY, B. S. et al. Filesystem hierarchy standard. 2015. Cited 3 times on pages 9,
18, and 19.

ALLIANCE, S. Scrum Roles Desmystified. 2017. Disponível em: <https://www.
scrumalliance.org/agile-resources/scrum-roles-demystified>. Cited on page 29.

BANDEL, D.; NAPIER, R. Special Edition Using Linux. Que, 2001. (Special Edition
Using Series). ISBN 9780789725431. Disponível em: <https://books.google.com.br/
books?id=_HEhAQAAIAAJ>. Cited on page 18.

BETHKE, E. Game Development and Production. Wordware Pub., 2003. (Wordware
game developer’s library). ISBN 9781556229510. Disponível em: <https://books.google.
com.br/books?id=m5exIODbtqkC>. Cited on page 16.

BUNDLE, H. What is Featured Charity. 2017. Disponível em: <https://support.
humblebundle.com/hc/en-us/articles/115009679508-What-is-Featured-Charity->.
Cited on page 21.

CAMPBELL, J. G. Algorithms and data structures for games programming. 2009.
Cited on page 17.

CHACON, S.; STRAUB, B. Pro git. [S.l.]: Apress, 2014. Cited on page 18.

COHEN, D.; LINDVALL, M.; COSTA, P. Agile software development. DACS SOAR
Report, v. 11, 2003. Cited on page 29.

CRAWFORD, C. The Art of Computer Game Design. Berkeley, CA, USA:
Osborne/McGraw-Hill, 1984. ISBN 0881341177. Cited on page 16.

DISCH. Headers and Includes: Why and How. 2009. Disponível em: <http:
//www.cplusplus.com/forum/articles/10627/>. Cited on page 47.

FIREGIANT. WiX Toolset Tutorial. 2017. Disponível em: <https://www.firegiant.com/
wix/tutorial/>. Cited on page 20.

FISHER, T. What is the Windows Registry and What’s it Used For? 2017. Disponível
em: <https://www.lifewire.com/windows-registry-2625992>. Cited on page 19.

GOG. GOG Galaxy. 2017. Disponível em: <https://www.gog.com/galaxy>. Cited on
page 21.

GORDON, R. 2017. Disponível em: <https://plus.google.com/+RyanGordon/posts/
TB8UfnDYu4U>. Cited on page 17.

GREER, D.; HAMON, Y. Agile software development. Software: Practice and
Experience, Wiley Online Library, v. 41, n. 9, p. 943–944, 2011. Cited on page 29.

http://www.agile42.com/en/agile-info-center/scrum-roles/
http://www.agile42.com/en/agile-info-center/scrum-roles/
https://www.scrumalliance.org/agile-resources/scrum-roles-demystified
https://www.scrumalliance.org/agile-resources/scrum-roles-demystified
https://books.google.com.br/books?id=_HEhAQAAIAAJ
https://books.google.com.br/books?id=_HEhAQAAIAAJ
https://books.google.com.br/books?id=m5exIODbtqkC
https://books.google.com.br/books?id=m5exIODbtqkC
https://support.humblebundle.com/hc/en-us/articles/115009679508-What-is-Featured-Charity-
https://support.humblebundle.com/hc/en-us/articles/115009679508-What-is-Featured-Charity-
http://www.cplusplus.com/forum/articles/10627/
http://www.cplusplus.com/forum/articles/10627/
https://www.firegiant.com/wix/tutorial/
https://www.firegiant.com/wix/tutorial/
https://www.lifewire.com/windows-registry-2625992
https://www.gog.com/galaxy
https://plus.google.com/+RyanGordon/posts/TB8UfnDYu4U
https://plus.google.com/+RyanGordon/posts/TB8UfnDYu4U

Bibliography 51

LINODE. Linux Package Management. 2017. Disponível em: <https://www.linode.com/
docs/tools-reference/linux-package-management>. Cited on page 20.

LOELIGER, J.; MCCULLOUGH, M. Version Control with Git: Powerful Tools and
Techniques for Collaborative Software Development. O’Reilly Media, Incorporated,
2012. (Oreilly and Associate Series). ISBN 9781449316389. Disponível em: <https:
//books.google.com.br/books?id=ZkXELyQWf4UC>. Cited on page 18.

MICROSOFT. /ENTRY (Entry-Point Symbol). 2017. Disponível em: <https:
//docs.microsoft.com/en-us/cpp/build/reference/entry-entry-point-symbol>. Cited on
page 45.

MICROSOFT. Registry. 2017. Disponível em: <https://msdn.microsoft.com/en-us/
library/windows/desktop/ms724871(v=vs.85).aspx>. Cited on page 19.

MICROSOFT. Structure of the Registry. 2017. Disponível em: <https://msdn.microsoft.
com/en-us/library/windows/desktop/ms724946(v=vs.85).aspx>. Cited on page 19.

MICROSOFT. Windows registry information for advanced users. 2017.
Disponível em: <https://support.microsoft.com/en-us/help/256986/
windows-registry-information-for-advanced-users>. Cited on page 19.

MITCHELL, S. SDL Game Development. Packt Publishing, 2013. (Community
experience distilled). ISBN 9781849696838. Disponível em: <https://books.google.com.
br/books?id=SbmfrHIlhK4C>. Cited on page 17.

PRESSMAN, R. Software Engineering: A Practitioner’s Approach. 7. ed. New York, NY,
USA: McGraw-Hill, Inc., 2010. ISBN 0073375977, 9780073375977. Cited on page 16.

SANDFORD, R.; WILLIAMSON, B. Games and learning. A handbook. Bristol, UK:
FutureLab, 2005. Cited on page 14.

SCHWABER, K.; BEEDLE, M. Agile software development with Scrum. [S.l.]: Prentice
Hall Upper Saddle River, 2002. v. 1. Cited on page 29.

SDL. Introduction to SDL 2.0. 2017. Disponível em: <https://wiki.libsdl.org/
Introduction>. Cited on page 17.

SPLITPLAY. O que estamos construindo? 2017. Disponível em: <http://splitplay.
strikingly.com/>. Cited on page 21.

STEAM. Welcom to Steam. 2017. Disponível em: <http://store.steampowered.com/
about/>. Cited on page 21.

TEAM, B. D. The /usr Versus /usr/local Debate. 2017. Disponível em: <http:
//www.linuxfromscratch.org/blfs/view/svn/introduction/position.html>. Cited on
page 19.

UNB, P. de J. Documento de Arquitetura. 2017. Disponível em: <https://github.com/
fga-gpp-mds/2017.1-PlataformaJogosUnB/wiki/Documento-de-Arquitetura>. Cited 2
times on pages 8 and 29.

WEBSTER, M. Definition of repository. 2017. Disponível em: <https://www.
merriam-webster.com/dictionary/repository>. Cited on page 17.

https://www.linode.com/docs/tools-reference/linux-package-management
https://www.linode.com/docs/tools-reference/linux-package-management
https://books.google.com.br/books?id=ZkXELyQWf4UC
https://books.google.com.br/books?id=ZkXELyQWf4UC
https://docs.microsoft.com/en-us/cpp/build/reference/entry-entry-point-symbol
https://docs.microsoft.com/en-us/cpp/build/reference/entry-entry-point-symbol
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724871(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724871(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724946(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724946(v=vs.85).aspx
https://support.microsoft.com/en-us/help/256986/windows-registry-information-for-advanced-users
https://support.microsoft.com/en-us/help/256986/windows-registry-information-for-advanced-users
https://books.google.com.br/books?id=SbmfrHIlhK4C
https://books.google.com.br/books?id=SbmfrHIlhK4C
https://wiki.libsdl.org/Introduction
https://wiki.libsdl.org/Introduction
http://splitplay.strikingly.com/
http://splitplay.strikingly.com/
http://store.steampowered.com/about/
http://store.steampowered.com/about/
http://www.linuxfromscratch.org/blfs/view/svn/introduction/position.html
http://www.linuxfromscratch.org/blfs/view/svn/introduction/position.html
https://github.com/fga-gpp-mds/2017.1-PlataformaJogosUnB/wiki/Documento-de-Arquitetura
https://github.com/fga-gpp-mds/2017.1-PlataformaJogosUnB/wiki/Documento-de-Arquitetura
https://www.merriam-webster.com/dictionary/repository
https://www.merriam-webster.com/dictionary/repository

Bibliography 52

WESTBY, E. Git for Teams: A User-Centered Approach to Creating Efficient
Workflows in Git. O’Reilly Media, 2015. ISBN 9781491911211. Disponível em:
<https://books.google.com.br/books?id=73FrCgAAQBAJ>. Cited on page 18.

WIKIPEDIA. File System. 2017. Disponível em: <https://en.wikipedia.org/wiki/File_
system>. Cited on page 19.

WIKIPEDIA. GOG.com. 2017. Disponível em: <https://en.wikipedia.org/wiki/GOG.
com>. Cited on page 21.

WIKIPEDIA. Steam. 2017. Disponível em: <https://en.wikipedia.org/wiki/Steam_
(software)>. Cited on page 21.

WIKIPEDIA. WiX — Wikipedia, The Free Encyclopedia. 2017. [Online; accessed
16-November-2017]. Disponível em: <https://en.wikipedia.org/w/index.php?title=
WiX&oldid=794153865>. Cited on page 20.

https://books.google.com.br/books?id=73FrCgAAQBAJ
https://en.wikipedia.org/wiki/File_system
https://en.wikipedia.org/wiki/File_system
https://en.wikipedia.org/wiki/GOG.com
https://en.wikipedia.org/wiki/GOG.com
https://en.wikipedia.org/wiki/Steam_(software)
https://en.wikipedia.org/wiki/Steam_(software)
https://en.wikipedia.org/w/index.php?title=WiX&oldid=794153865
https://en.wikipedia.org/w/index.php?title=WiX&oldid=794153865

Appendix

54

APPENDIX A – Members of GPP/MDS
team

The following students were the direct responsible for developing the first version
of the platform. They are students of the courses Métodos de Desenvolvimento de Software
and Gestão de Portfolios e Projetos ministered by Professor Carla Silva Rocha Aguiar.

∙ Arthur Temporim

∙ Artur Bersan

∙ Eduardo Nunes

∙ Ícaro Pires de Souza Aragão

∙ João Robson

∙ Letícia de Souza

∙ Marcelo Ferreira

∙ Matheus Miranda

∙ Rafael Bragança

∙ Thiago Ribeiro Pereira

∙ Varley Santana Silva

∙ Victor Leite

∙ Vinicius Ferreira Bernardo de Lima

55

APPENDIX B – Selected games

This appendix shows the authors, year of publication, quantity of players, genre
and description, whenever possible, of each selected game for this first part of the project.

B.1 Jack the Janitor
Authors: Athos Ribeiro, Alexandre Barbosa, Mateus Furquim, Átilla Gallio

Year: 1/2013

Genre: Puzzle, platform

Players: Single player

Repository: <https://github.com/fgagamedev/Jack-the-Janitor>

Description1: Jack, The Janitor is a puzzle game where the player controls Jack,
a school’s janitor who must organize the school’s warehouse. Jack can push boxes
to the left or to the right and jump boxes.

When Jack fills an entire row with boxes, they disappear from the screen and go to
a small window on the right side of he screen called the closet.

The closet shows how Jack organized the rows of boxes. When similar boxes are
combined in the closet, Jack gets extra points and some power ups (to be imple-
mented).

The game ends if a falling box hits Jack or if the closet gets full.

B.2 Emperor vs Aliens
Authors: Leonn Ferreira, Luis Gustavo

Year: 2/2012

Genre: Tower defense

Players: Single player

Repository: <https://github.com/fgagamedev/Emperor-vs-Aliens>
1 Available on the repository README.md

https://github.com/fgagamedev/Jack-the-Janitor
https://github.com/fgagamedev/Emperor-vs-Aliens

APPENDIX B. Selected games 56

B.3 Ninja Siege
Authors: Tiago Gomes Pereira, Matheus Fonseca, Charles Oliveira, Pedro Zanini

Year: 2/2012

Genre: Tower defense

Players: Single player

Repository: <https://github.com/fgagamedev/Ninja-Siege>

Description: The ninja academy is being raided and you have to defend it.

B.4 Space Monkeys
Authors: Victor Cotrim

Year: 2/2012

Genre: Tower defense

Players: Single player

Repository: <https://github.com/fgagamedev/Space-Monkeys>

Description: Monkeys are attacking your home planet. They come in waves and
you have to get rid of them all.

Remarks: It’s interest to notice that, by this time, the students of Introdução aos
Jogos Eletrônicos didn’t have designers with them in the team. Figure 10 shows
that, given the complexity of developing a game, sometimes the artwork was not a
priority. This is also one of the games that didn’t run properly after the compilation.

B.5 War of the Nets
Authors: Matheus Faira, Lucas Kanashiro, Luciano Prestes, Lucas Moura

Year: 2/2013

Genre: Turn Based Strategy

Players: Multiplayer on LAN

Repository: <https://github.com/fgagamedev/War-of-the-Nets>

https://github.com/fgagamedev/Ninja-Siege
https://github.com/fgagamedev/Space-Monkeys
https://github.com/fgagamedev/War-of-the-Nets

APPENDIX B. Selected games 57

Figure 10 – Space Monkey

Description: It is a turn based strategy (TBS), where the objective is to construct
a network from the base to a right point, faster than your enemy. You also can
destroy his network with bombs, or infiltrate it with spies.

B.6 Post War
Authors: Bruno de Andrade, Jonathan Rufino, Yago Regis

Year: 2/2013

Genre: Turn Based Strategy

Players: Multiplayer on LAN

Repository: <https://github.com/fgagamedev/Post-War>

B.7 Ankhnowledge
Authors: Arthur del Esposte, Alex Campelo, Atilla Gallio

Year: 2/2013

Genre: Turn Based Strategy

Players: Multiplayer on LAN

Repository: <https://github.com/fgagamedev/Ankhnowledge>

https://github.com/fgagamedev/Post-War
https://github.com/fgagamedev/Ankhnowledge

APPENDIX B. Selected games 58

Figure 11 – Ankhnowledge

Remarks: From the games developed before the time the course was taught in
conjunction with the students from Darcy Ribeiro, this is one of the prettiest and
most pleasant games to play. Because one of the students is a software developer
and designer, the user interface was very well drawn as seen in Figure 11.

B.8 Last World War
Authors: Gabriela Navarro

Year: 2/2013

Genre: Turn Based Strategy

Players: Multiplayer on LAN

Repository: <https://github.com/fgagamedev/LastWorlWar>

B.9 Kays against the World
Authors: Carlos Coelho, Bruno de Amorim Campos, Bruno Carbonell, Guilherme
Fenterseifer, Fernando Tollendal, Lucas Sanginez, Victor Bednarczuk

Year: 1/2014

Genre: Platform

Players:

Repository: <https://github.com/fgagamedev/Kays-Against-the-World>

https://github.com/fgagamedev/LastWorlWar
https://github.com/fgagamedev/Kays-Against-the-World

APPENDIX B. Selected games 59

B.10 Imagina na Copa
Authors: Iago Mendes Leite, Jonathan Henrique Maia de Moraes, Luciano Hen-
rique Nunes de Almeida, Inara Régia Cardoso, Renata Rinaldi, Lucian Lorens
Ramos

Year: 1/2014

Genre: Platform

Players: Single player

Repository: <https://github.com/fgagamedev/Imagina-na-Copa>

B.11 Dauphine
Authors: Caio Nardelli, Simiao Carvalho

Year: 1/2014

Genre: Platform

Players: Single player

Description: A platforming/stealth game in a medieval fantasy setting, developed
with SDL2.

Repository: <https://github.com/fgagamedev/Dauphine>

B.12 Terracota
Authors: Álvaro Fernando, Macartur Sousa, Carlos Oliveira, André Coelho, Pedro
Braga, Wendy Abreu, José de Abreu

Year: 1/2015

Genre: Adventure

Players: Single player

Repository: <https://github.com/fgagamedev/Terracota>

https://github.com/fgagamedev/Imagina-na-Copa
https://github.com/fgagamedev/Dauphine
https://github.com/fgagamedev/Terracota

APPENDIX B. Selected games 60

B.13 7 Keys
Authors: Paulo Markes, Bruno Contessotto Bragança Pinheiro, Lucas Rufino, Luis
André Leal de Holanda Cavalcanti, Maria Cristina Monteiro de Oliveira, Guilherme
Henrique Nunes Lopes

Year: 1/2015

Genre: Adventure

Players: Single player

Repository: <https://github.com/fgagamedev/7-Keys>

B.14 Babel
Authors: Álex Silva Mesquita, Jefferson Nunes de Sousa Xavier, Rodrigo Gonçalves,
Vinícius Corrêa de Almeida, Heitor Campos, Max Von Behr, Aleph Telles de An-
drade Casara, Washington Rayk

Year: 1/2015

Genre: Adventure

Players: Single player

Repository: <https://github.com/fgagamedev/Babel>

Description: The mankind wanders the universe looking for a new habitable planet.
They found an unknown planet with a big and strange tower.

The challenge is explore the tower and the planet and expand your resources, but
be careful with the mysteries of this new planet.

B.15 Strife of Mithology
Authors: Jônnatas Lennon Lima Costa, Marcelo Martins de Oliveira, Victor Hen-
rique Magalhães Fernandes, Dylan Jefferson M. Guimarães Guedes

Year: 1/2016

Genre: Tower Defense

Players: Single player

Repository: <https://github.com/fgagamedev/Strife-of-Mithology>

Description: A 2d-isometric Tower Defense based on mythology.

https://github.com/fgagamedev/7-Keys
https://github.com/fgagamedev/Babel
https://github.com/fgagamedev/Strife-of-Mithology

APPENDIX B. Selected games 61

B.16 Traveling Will
Authors: João Araújo, Vitor Araujo, Igor Ribeiro Duarte, João Paulo Busche da
Cruz

Year: 1/2016

Genre: Platform, Runner

Players: Single player

Repository: <https://github.com/fgagamedev/Traveling-Will>

Description: This game tells the story of Will, personification of the Will, trying
to restore

Remarks: This game has one of the most attractive user interfaces from the games
packaged so far. The team that developed it was able to create a very good game,
technically speaking, with engaging scenarios and soundtrack, because they had
design and music students. A screen of the game running after compiling it with the
building script is shown in Figure 12.

Figure 12 – Traveling Will

B.17 Deadly Wish
Authors: Lucas Mattioli, Victor Arnaud, Vitor Nere, Iago Rodrigues

Year: 1/2016

Genre: Battle Arena

Players: Single player

Repository: <https://github.com/fgagamedev/Deadly-Wish>

https://github.com/fgagamedev/Traveling-Will
https://github.com/fgagamedev/Deadly-Wish

	Title page
	Approval
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of Tables
	Listings
	List of abbreviations and acronyms
	Contents
	Introduction
	Basic Concepts
	Games
	SDL
	Repository and Version control
	Linux Filesystem Hierarchy Standard
	Windows Registry
	Linux Packages
	Wix Toolset
	Related Work

	Methodology
	Project Overview
	Task Division
	Game Gathering
	Packaging
	Platform Development
	Tools

	Results
	Template
	Root directory
	Sources Directory (src)
	Distribution folder (dist)
	Scripts folder (scripts)

	Platform
	Difficulties

	Conclusion
	Bibliography
	Appendix
	Members of GPP/MDS team
	Selected games
	Jack the Janitor
	Emperor vs Aliens
	Ninja Siege
	Space Monkeys
	War of the Nets
	Post War
	Ankhnowledge
	Last World War
	Kays against the World
	Imagina na Copa
	Dauphine
	Terracota
	7 Keys
	Babel
	Strife of Mithology
	Traveling Will
	Deadly Wish

