

PROJETO DE GRADUAÇÃO

BANCADA DE TESTES DE ARMAS DE FOGO POR ACIONAMENTO REMOTO

Por,

Marcos Barkev Arakelian

Brasília, 30 de Novembro de 2016

UNIVERSIDADE DE BRASÍLIA

FACULDADE DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA UNIVERSIDADE DE BRASÍLIA

Faculdade de Tecnologia

Departamento de Engenharia Mecânica

PROJETO DE GRADUAÇÃO

BANCADA DE TESTES DE ARMAS DE FOGO POR ACIONAMENTO REMOTO

POR,

Marcos Barkev Arakelian

Relatório submetido como requisito parcial para obtenção

do grau de Engenheiro Mecânico.

Banca Examinadora

Prof. Antonio Manoel Dias Henriques, UnB/ ENM

Prof. Lucival Malcher, UnB/ ENM

Prof. Palloma Vieira Muterlle, UnB/ ENM

Per. Crim. Charles Albert Andrade, PCDF

Brasília, 30 de Novembro de 2016

Agradecimentos

Gostaria de agradecer primeiramente aos meus orientadores Antonio Manoel e Charles Albert pela enorme dedicação em me assistir. Agradeço em especial a Fundação de Peritos em Criminalística Ilaraine Acácio Arce, que mediante convênio com a FAPDF (processo 193.000.001/2014), apoiou financeiramente ao meu Projeto de Graduação. E, por último, mas não menos especial, à minha família e amigos que me ajudaram de diversas formas.

Marcos Barkev Arakelian

RESUMO

No momento presente, todos os testes de armas de fogo realizados na Seção da Balística Forense da Polícia Civil do Distrito Federal são realizados manual e presencialmente. Considerando que, nem todas as armas de fogo e munições apreendidas possuem confiabilidade em sua integridade, o perito corre sérios riscos ao realizar o teste. Com isso, este trabalho teve o objetivo de projetar uma bancada de testes para armas de fogo em que seu acionamento seja feito de forma remota e segura. O projeto foi dividido em três etapas. Sendo a primeira etapa a de análise de alternativas e tomada de decisões, seguida pela etapa de dimensionamento do projeto, e, por fim, a proposta de fabricação e montagem da bancada de testes. Logo, ao fim do trabalho, são apresentados os desenhos de fabricação do dispositivo.

ABSTRACT

At the present moment, all firearms tests in Forensic Ballistics Laboratory at the Civil Police of the Federal District are performed manually and in person. Whereas that, not all firearms and ammunition seized have reliability in its integrity, the expert runs serious risks when performing the test. Therefore, this study aimed to design a test bench for firearms in which the shooting is done remotely and securely. The project was divided into three stages. As the first stage the alternatives analysis and decision-making, followed by the project design stage, and finally, the proposal for the manufacture and assembly of the test bench. Ergo, at the end of the study, the manufacturing drawings of the device are presented.

SUMÁRIO

1	INT	RODUÇÃO1
	1.1	MOTIVAÇÃO1
	1.2	OBJETIVOS
	1.3	ESTRUTURA DO TRABALHO2
2	REV	/ISÃO BIBLIOGRÁFICA
	2.1	CONTEXTUALIZAÇÃO
	2.2	METODOLOGIA DE CÁLCULO
	2.2.1	Energia de recuo livre
	2.2.2	Pator de segurança
	2.2.3	Condição de carregamento de impacto10
	2.2.4	Projeto de vigas10
	2.2.5	Projeto de catraca e lingueta14
	2.2.6	Dimensionamento da garganta de solda15
	2.2.7	Dimensionamento de parafusos15
3	PRC	JETO PRELIMINAR16
	3.1	CONCEPÇÃO INICIAL
4	PRC	JETO INTERMEDIÁRIO23
	4.1	DIMENSIONAMENTO DA ESTRUTURA
	4.1.1	Cálculo da força de reação23
	4.1.2	2 Fator de segurança
	4.1.2	24 Aplicação da força
	4.1.3	Determinação da seção transversal do tubo quadrado
	4.1.4	Definição de geometria da estrutura
	4.1.4	Dimensionamento da estrutura
	4.2	DIMENSIONAMENTO DO TRILHO
	4.3	DIMENSIONAMENTO DO SISTEMA DE FIXAÇÃO DA ARMA

	4.5	DIMENSIONAMENTO DO APOIO FINAL	37
	4.6	DIMENSIONAMENTO DO SISTEMA DE DISPARO REMOTO	38
	4.7	DIMENSIONAMENTO DA BASE MÓVEL	39
	4.8	CENTRO DE MASSA, ATRITO E EQUILÍBRIO	43
5	PRC	JETO DE DETALHAMENTO	. 45
	5.1	FABRICAÇÃO	45
	5.1.1	Materiais	45
	5.1.2	2 Soldagem	45
	5.2	MONTAGEM	47
	5.2.1	Fixação	47
	5.3	ANÁLISE DE CUSTOS	47
6	CON	ICLUSÃO	. 49
	6.1	CONSIDERAÇÕES FINAIS	49
7	REF	ERÊNCIAS BIBLIOGRÁFICAS	. 50
A	NEXO 1	1	. 52
A	NEXO 2	2	. 59
Α	NEXO 3	3	. 60

LISTA DE FIGURAS

Figura 1. Ilustração do perito realizando o teste.	1
Figura 2. Gatilho, martelo e percutor (modificada, RABELLO, 1995, p.68).	4
Figura 3. Esquema de um cartucho com <i>rimfire</i> (BUSSARD traduzida, 2012, p.13).	4
Figura 4. Esquema de um cartucho com <i>centerfire</i> (BUSSARD traduzida, 2012, p.13).	4
Figura 5. Comparação de propelente progressivo vs. degressivo (BUSSARD modificada e traduzi 2012, p.42).	ida, 6
Figura 6. Regime de pressão (CHINN traduzida, 1955, p. 4)	7
Figura 7. Ilustração do regime de pressão dentro da alma do cano (CHINN modificada e traduzida, 19 p. 4)	955, 7
Figura 8. Esquema de um projétil dentro de um cano (CHINN traduzida e modificada, 1955, p. 15).	. 8
Figura 9. Viga engastada e momento na extremidade (COLLINS modificada, 2015 p.147).	11
Figura 10. Viga bi apoiada e carga concentrada no centro (COLLINS, 2015 p.147).	12
Figura 11. Viga engastada com carga concentrada na extremidade livre (COLLINS, 2015 p.147).	12
Figura 12. Viga biengastada com carga concentrada no centro (COLLINS, 2015 p.144).	13
Figura 13. Exemplos de geometria da lingueta em relação a catraca (WALSH, 2001).	14
Figura 14. Geometria de construção da catraca e lingueta (WALSH, 2001).	14
Figura 15. Sala de testes de armas de fogo da PCDF.	16
Figura 16. Ilustração do dispositivo alocado na sala de testes.	16
Figura 17. Ilustração em 3D das dimensões da sala de testes.	17
Figura 18. Dimensões em 2D da sala de testes.	17
Figura 19. Barrett M107A1 (Manual de operação Barret M107A1, 2016)	18
Figura 20. Esboço das alternativas de geometria.	18
Figura 21. Visualização dos parâmetros arbitrários com as dimensões da sala.	19
Figura 22. Posição da parte inferior em relação a superior.	19
Figura 23. Ilustração em corte do sistema telescópico feito com tubos quadrados.	20
Figura 24. Solução combinada de mobilidade.	20
Figura 25. Exemplos de atuadores (Sier, 2016).	21

Figura 26. Suporte para armas de fogo (Sportsman's Guide, 2016).	21
Figura 27. Distribuição geral dos indivíduos de acordo com grupos etários e força de preensão pal	mar
ao longo do desenvolvimento humano (MOURA, 2008, p.39).	21
Figura 28. Exemplo de catraca	22
Figura 29. Ilustração da dobradiça.	22
Figura 30. Ponto de aplicação da força na arma (Smith & Wesson modificada, 2016).	24
Figura 31. Distâncias adquiridas para o ponto de aplicação da força.	25
Figura 32. Esquema da arma engastada em uma dobradiça.	25
Figura 33. Representação da arma de fogo engastada nas extremidades da estrutura retangular.	25
Figura 34. Exemplo do sistema de pivoteamento da mesa.	26
Figura 35. Tubo quadrado em compressão.	26
Figura 36.Ilustração do primeiro caso.	26
Figura 37. Exemplo do tubo quadrado sob tração.	27
Figura 38. Ilustração da condição de tração.	27
Figura 39. Ilustração do momento atuante no terceiro caso.	28
Figura 40. Exemplo de chassi tipo escada.	29
Figura 41. Esboço da estrutura simples tipo mesa.	29
Figura 42. Vista explodida da estrutura.	30
Figura 43. Dispositivo de regulagem de inclinação.	30
Figura 44. Ilustração da aplicação da força para a condição de viga engastada e carregamento extremidade.) na 31
Figura 45. Desenho de montagem da estrutura completa.	32
Figura 46. Trilho instalado na mesa.	33
Figura 47. Ilustração do suporte da arma.	33
Figura 48. Detalhe da dobradiça.	34
Figura 49. Representação da força atuante na barra da dobradiça e seus engastes.	34
Figura 50. Geometria para o corte dos dentes.	36
Figura 51. Geometria para fabricação da lingueta.	36
Figura 52. Desenho do conjunto montado no suporte da arma.	37

Figura 53. Desenho do apoio final.	37
Figura 54. Solenoide SL 10 Sier (Sier, 2016).	38
Figura 55. Desenho técnico SL 10 (Sier, 2016).	38
Figura 56. Ilustração do sistema elétrico da placa RF com solenoide.	39
Figura 57. Ilustração da botoeira para ativar/desativar o sistema de disparo remoto.	39
Figura 58. Seleção dos rodízios (Catálogo Schioppa, 2016).	40
Figura 59. Rodízio giratório (Schioppa, 2016).	40
Figura 60. Dobradiça 500 com Anéis 3,5x3 (Catálogo técnico La Fonte – Assa Abloy, 2016).	40
Figura 61. Determinação da altura do mecanismo em relação ao solo.	41
Figura 62. Geometria da principal peça do mecanismo.	41
Figura 63. Mecanismo montado completo.	42
Figura 64. Produto final.	42
Figura 65. Centro de gravidade da estrutura.	44
Figura 66. Tamanho mínimo para cordões de solda (NORTON, 2013).	45
Figura 67. Ilustração do cordão de solda na junção da transversina com a longarina.	46
Figura 68. Tabela de condições de soldagem para aços de baixo carbono com transferência por ac	erossol
(ESAB, 2005).	47
Figura 69. Orçamento 1 – Açotec Estruturas Metálicas.	48
Figura 70. Orçamento 2 – Loyola Metais.	48
Figura 71. Orçamento 3 – Superaço Estruturas Metálicas.	48
Figura 72. Bancadas de testes.	49

LISTA DE TABELAS

Tabela 1. Força de reação da arma.	23
Tabela 2. Atribuição dos valores de NP.	24
Tabela 3. Resultados da tensão normal de tração/compressão para vários tamanhos de tubos c de 750 mm de comprimento	juadrados 27
Tabela 4. Resultados da deflexão e tensão para vários tamanhos de tubos quadrados de 75 comprimento.	0 mm de
Tabela 5. Resultados para deflexão do tubo de 38,1 mm de diâmetro de aço ASTM A-36	31
Tabela 6. Resultados para deflexão das pernas das torres inferior e superior	31
Tabela 7. Resultado para a barra sob duas condições de carregamento	35
Tabela 8. Rsultado para o tamanho da perna da solda	46
Tabela 9. Tensão de cisalhamento para vários parafusos submetidos a carga excêntrica de imp	acto47

LISTA DE SÍMBOLOS

Símbolos Latinos

А	Área da seção transversal em que o carregamento está sendo aplicado	[m ²]
A_i	Área do i-ésimo parafuso	[m ²]
A'	Área da seção transversal	[m ²]
b	Largura	[m]
D	Diâmetro	[m]
e	Espessura	[m]
Е	Módulo de elasticidade	[Pa]
F	Força de recuo livre	[N]
Ι	Momento de inércia	[m ⁴]
1	Comprimento da arma	[m]
L	Comprimento da viga	[m]
L_{w}	Comprimento efetivo da solda	[m]
l_f	Largura de face	[m]
mg	Massa da arma	[kg]
m _b	Massa do projétil	[kg]
m_p	Massa da pólvora	[kg]
М	Momento fletor	[N.m]
$M_{\text{máx}}$	Momento fletor máximo	[N.m]
n _d	Fator de segurança	
Ν	Número de dentes	
NP	Número de penalização	
Р	Carregamento	[N]

\mathbf{P}_{crit}	Carga crítica	[N]
R	Raio maior	[m]
r	Raio menor	[m]
$\mathbf{S}_{\mathbf{y}}$	Limite de escoamento	[Pa]
S	Perna da solda	[m]
t	Somatório dos números de penalização	
Т	Torque no eixo	[N.m]
V	Cortante	[N]
Vg	Velocidade da arma	[m/s]
Vb	Velocidade do projétil	[m/s]
$\mathbf{v}_{\mathbf{p}}$	Velocidade dos gases de combustão da pólvora	[m/s]
\mathbf{V}_{p}	Velocidade do projétil	[fps]
\mathbf{x}_{y1}	Abscissa do centroide da área da seção transversal	[m]
у	Distância perpendicular do eixo neutro a fibra em análise	[m]
Ymáx	Deflexão máxima	[m]
$\overline{y'}$	Ordenada do centroide da área da seção transversal	[m]
W	Trabalho	[J]
\mathbf{W}_{g}	Massa da arma	[lb]
\mathbf{W}_1	Massa do projétil	[lb]
W_2	Massa de pólvora	[lb]
Símbo	olos gregos	
α	Coeficiente determinado de acordo com o número de dentes	
σ	Tensão normal	[Pa]
σ_{adm}	Tensão normal admissível	[Pa]
$\sigma_{m\acute{a}x}$	Tensão normal máxima	[Pa]
τ	Tensão cisalhante	[Pa]
$ au_{adm}$	Tensão cisalhante admissível	[Pa]
$ au_{ m w}$	Tensão cisalhante média na garganta da solda	[Pa]

 .		
$ au_b$	Tensão cisalhante no parafuso	[Pa]
$\tau_{w(adm)}$	Tensão cisalhante admissível na garganta da solda	[Pa]

Siglas

- ASTM American Society for Testing Materials
- AWS American Welding Society
- PCDF Polícia Civil do Distrito Federal

1 INTRODUÇÃO

1.1 MOTIVAÇÃO

A Balística Forense tem como objetivo investigar as armas de fogo, munições e os efeitos causados por elas no âmbito da criminalística. A balística é uma das ramificações estudadas na mecânica aplicada, cujo estudo pode se dividir em três partes: interior, exterior e de efeitos. A primeira parte situase nos eventos que ocorrem enquanto o movimento do projétil se desenvolve no interior do cano. A segunda parte estuda a trajetória do projétil no espaço (entre a saída da boca do cano da arma e o impacto no alvo) e, por fim, a terceira dedica-se às ações e consequências do impacto do projétil no alvo (TOCHETTO, 1999).

Hoje, no Instituto de Criminalística da Polícia Civil do Distrito Federal, os peritos da Balística Forense testam armas de fogo e munições que são apreendidas. São realizados disparos em uma piscina de água e em um tonel com areia e estopa com a intenção de obter informações relevantes para cada caso, como a eficiência da arma de fogo e munições apreendidas, e a recuperação de projétil para posterior comparação. Os testes são realizados manualmente pelos peritos, como ilustra a Figura 1, tanto com a arma de fogo apreendida carregada com munição própria, quanto com sua própria arma de fogo carregada com a munição apreendida.

Figura 1. Ilustração do perito realizando o teste.

Quando a integridade da arma de fogo ou munição é duvidosa, é mais seguro que os testes não sejam realizados presencialmente. Isso pode acontecer quando a quantidade de pólvora foi adulterada dentro do cartucho de munição, ou, quando a arma de fogo tem algum defeito de fabricação ou de manutenção, podendo até os dois terem sido fabricados artesanalmente.

1.2 OBJETIVOS

O objetivo deste projeto é obter uma bancada de testes para armas de fogo, que permita acionamento remoto do gatilho e que possibilite aferir a inclinação da arma após o tiro. A bancada de testes deverá ser universal, para comportar qualquer arma de fogo e ser utilizada em qualquer sala de este. Assim, foi preciso estudar a energia de recuo da arma e determinar a força máxima que a estrutura deveria suportar. Com isso, foram propostas algumas estruturas possíveis para o dispositivo e foram feitas análises de esforços e rigidez. Além da estrutura, também foi projetado um sistema para que o disparo seja feito remotamente. Por fim, foram propostos os métodos de fabricação e elaborados os desenhos de fabricação.

1.3 ESTRUTURA DO TRABALHO

Este trabalho foi dividido em 6 capítulos. O primeiro capítulo trata da motivação, objetivos e estrutura do trabalho. O segundo capítulo apresenta uma revisão bibliográfica contextualizando as armas de fogo e o processo que envolve o tiro, concluindo, então, com uma justificativa para o projeto. Ainda no segundo capítulo, foi apresentada a metodologia de cálculo do projeto. O capítulo de número três apresenta a primeira etapa do projeto, o projeto preliminar, que contém a análise de alternativas e decisões. O quarto capítulo constitui o projeto intermediário, que trata das seleções e dimensionamentos dos componentes do projeto. Na sequência, o quinto capítulo apresenta o projeto de detalhamento, em que é definida a fabricação, montagem e custos. Por fim, a conclusão do trabalho no último capítulo.

2 REVISÃO BIBLIOGRÁFICA

2.1 CONTEXTUALIZAÇÃO

Para melhor entender o estudo da balística é necessário entender a arma de fogo como um todo e em função de suas partes. Do artigo 3º do anexo do Decreto nº 3.665, de 20 de novembro de 2000 (BRASIL, 2000), arma de fogo tem por definição:

"XIII - arma de fogo: arma que arremessa projéteis empregando a força expansiva dos gases gerados pela combustão de um propelente confinado em uma câmara que, normalmente, está solidária a um cano que tem a função de propiciar continuidade à combustão do propelente, além de direção e estabilidade ao projétil".

A arma de fogo pode ser classificada por alguns parâmetros: quanto à alma do cano (lisa ou raiada), ao sistema de carregamento (antecarga ou retrocarga), ao sistema de inflamação, ao funcionamento (tiro unitário, repetição mecânica, semiautomática ou automática) e à mobilidade (de porte, portátil ou fixa). Hoje em dia, tem-se comumente armas de fogo com cano de alma raiada; de retrocarga; por percussão intrínseca; de repetição; de porte. Todos esses parâmetros são descritos a seguir com base em RABELLO (1995).

As ranhuras foram introduzidas no interior do cano da arma para fazer o projétil girar e, com isso, aumentar a precisão do tiro. Armas de retrocarga são aquelas em que a munição é adicionada ao cano pela sua parte de trás (pela culatra), ou seja, na parte mais próxima do atirador. A ignição do propelente é dada pela percussão de um percutor (martelo ou cão), que desloca um obturador-percutor que deforma o fulminante (espoleta), iniciando a queima do propelente (usualmente, pólvora).

O funcionamento da arma pode ser não automático (repetição mecânica), semiautomático e automático. As armas de funcionamento por repetição manual exigem do operador uma ação por seus próprios meios para alimentar novamente a câmara, com uma munição que pode estar disponível em carregadores, tambores ou tubos/receptáculos. Na prática, o atirador deve alimentar a arma, ejetar o estojo vazio e colocar uma munição nova na câmara, manualmente, e só então poderá pressionar o gatilho novamente para disparar. Nas armas semiautomáticas, a alimentação da câmara é feita utilizando a energia do disparo anterior e os disparos ocorrem a cada pressão da tecla do gatilho. O atirador deve pressionar o gatilho, enquanto o sistema de funcionamento da arma, por meios próprios, retira o estojo usado e reposiciona uma munição nova na câmara. Nas armas com sistema de funcionamento automático, tanto a alimentação da câmara quanto os disparos propriamente ditos são feitos pela própria arma, enquanto o operador mantiver a tecla do gatilho pressionada. As armas mais comuns são de porte: longas ou curtas.

A maioria das armas de fogo encontradas hoje são constituídas de alguns elementos básicos como o gatilho e o conjunto martelo-percutor, ou somente da agulha de percussão e sua mola, como se pode observar pela Figura 2, em que 1 é o gatilho; 2 é o martelo, ou cão; e 3 o percutor de um revólver.

Figura 2. Gatilho, martelo e percutor (modificada, RABELLO, 1995, p.68).

Ao tratar de armas curtas, que é o mais comumente encontrado, têm-se dois modos de ação para obtenção dos disparos: ação simples e ação dupla. Na ação simples, o operador deve puxar o cão manualmente e apertar o gatilho que promoverá a liberação do cão. Na ação dupla, basta puxar o gatilho que um sistema de mecanismos deslocará o martelo por todo seu curso que, no ponto de máxima extensão, o liberará para incidir sobre a espoleta.

O sistema que carrega o projétil e o propelente se chama cartucho. É constituído pelo fulminante, ou espoleta; pólvora ou propelente; estojo; e projétil (popularmente chamado por bala). O fulminante pode estar disposto de duas maneiras: na borda ou no centro. Em inglês denomina-se *rimfire* (Figura 3) e *centerfire* (Figura 4).

Figura 3. Esquema de um cartucho com rimfire (BUSSARD traduzida, 2012, p.13).

Figura 4. Esquema de um cartucho com centerfire (BUSSARD traduzida, 2012, p.13).

Uma arma de fogo pode ser definida como uma máquina térmica e diretamente comparada a um motor de combustão interna (RABELLO, 1995). No motor à combustão interna e na arma de fogo há, em um momento exato, uma centelha que provoca a ignição do combustível. Nos dois casos, o trabalho mecânico de impulsão é produzido por uma explosão em espaço confinado e pressurizado. Apenas uma pequena parcela da energia liberada no processo é aproveitada para produzir trabalho útil e a outra parcela é perdida em dissipações. Em ambos os casos, o resultado da expansão dos gases gera um movimento retilíneo, tanto do pistão dentro do cilindro, quanto do projétil no cano da arma. A diferença é que no motor o movimento retilíneo do pistão se transforma em circular no virabrequim, ao invés de ser expelido do sistema como o projétil na arma de fogo. Há sempre a necessidade de agentes externos aplicando forças para dar início ao funcionamento e nos dois processos comparados existe a possibilidade de uma repetição automática. O processo sempre se encerra quando acabam o combustível ou munição ou quando convém ao operador.

Ao observar a balística interna, nota-se que é essencial o entendimento da dinâmica envolvida no tiro. O tiro pode ser descrito em uma sequência de nove passos (BUSSARD, 2012). O primeiro passo é o que pode ser chamado de disparo. É a fase de energização do percutor, ou *firing pin* em inglês. Sua energização é feita pela transferência de energia cinética do martelo ou cão, sendo martelo quando a peça é interna na arma e cão quando externa, após se acionar o gatilho, ou pode também ser feita pela liberação da mola comprimida em que está inserida a agulha percutora de uma pistola.

Em seguida, esse percutor deforma o fulminante. O fulminante, ao se deformar, explode, expelindo gases e partículas quentes para a pólvora. Esses gases aumentam a pressão e temperatura dentro do estojo e isso faz com que o propelente comece a queimar.

A fase seguinte é dada pela queima da pólvora. A combustão gera um grande volume de gases quentes em expansão, o que rapidamente eleva a temperatura e pressão no estojo. Assim, o diâmetro do estojo aumenta e se prende firmemente nas paredes do cano da arma. Quando a pressão no cartucho se eleva a aproximadamente 76 MPa, o projétil supera a tensão exercida pelo pescoço do estojo e é empurrado pelos gases através do cano. Após se deslocar alguns centímetros, o projétil encontra as ranhuras do cano e começará a girar. Esse é o momento em que ocorre a maior parte das perdas por atrito entre os gases e a parede do cano, cerca de 5% da energia total. Com o aumento do volume, já que o projétil começou a varrer o cano, a pressão diminui. Alguns tipos de pólvoras são queimados progressivamente enquanto o projétil percorre o cano, equalizando essa perda de pressão. Logo que o projétil sai do cano, os gases em alta pressão saem formando um jato com velocidade até uma vez e meia maior que a velocidade do projétil. Isso gera cerca de 30% do recuo da arma. Finalmente, a pressão do cano se iguala ao do ambiente e o estojo se contrai, desapegando das paredes do cano e podendo ser retirado. Apesar de acontecerem nove fases nesse processo, este ocorre em média em 0,003 segundos.

Conforme descrito supra por Michael Bussard, o tiro depende essencialmente da pólvora e sua queima. Há pólvoras que queimam degressivamente e pólvoras que queimam progressivamente gerando

uma queima rápida ou lenta respectivamente. Exemplos de pólvoras de queima rápida são as pólvoras negra e marrom. Ambas são feitas de nitrato de potássio, carbono e enxofre. O que as diferenciam é a quantidade em porcentagem de massa e suas características. A pólvora de queima lenta é a pólvora sem fumaça, ou *smokeless powder*, em inglês. É obtida pela trinitração da celulose, o que lhe dá mais energia química armazenada em si e consequentemente mais energia na hora da queima. Esse tipo de pólvora recebe vários tipos de aditivos para melhorar alguma característica específica. A melhor vantagem dessa pólvora é que ela queima tanto dentro do cartucho quanto à medida que o projétil percorre o cano da arma.

Pode-se dizer que o cartucho ideal é aquele que se dimensiona para que o consumo de propelente praticamente seja extinto no mesmo instante em que o projétil sair pela boca cano. Para um cano longo, têm-se as seguintes situações, as quais são mostradas graficamente na Figura 5:

- Queima muito rápida: fará com que a total combustão da pólvora se encerre quando o projétil ainda não abandonou totalmente o cano. Isso fará com que nos milissegundos finais deste estágio, a pressão interna comece a cair (a pólvora já se consumiu totalmente) e o projétil ainda terá que vencer o atrito restante para que consiga finalmente atingir o ambiente externo;
- Queima muito lenta: fará com que a combustão da pólvora não termine antes do projétil sair pela boca do cano, ou seja, continuará em combustão mesmo depois do projétil ter saído do cano, com a pressão atmosférica interna do cano se igualando à externa; isso produz grande projeção de chama e de grãos ainda não queimados, expulsos do cano logo após a saída do projétil.

Figura 5. Comparação de propelente progressivo vs. degressivo (BUSSARD modificada e traduzida, 2012, p.42).

Assim, é possível concluir que canos curtos exigem pólvoras de queima mais rápida e canos longos, pólvoras de queima mais lenta.

Como em toda combustão confinada, o regime de pressão é de grande importância para a análise de riscos. A Figura 6 (CHINN, 1955) mostra um gráfico da pressão dentro da alma do cano pelo decorrer do tempo de uma arma calibre 20 mm, considerando a velocidade do projétil de 2750 fps (838,2 m/s), massa do projétil de 0,29 lb (0,131 kg), massa de pólvora de 0,07 lb (0,031 kg) e comprimento do cano de 4,3 ft (1,31 m), e, assim, pode-se visualizar o regime de pressão durante um tiro. O calibre 20 mm é utilizado em canhões antiaéreos e antitanque, e, por isso, geram valores substancialmente altos, mas a física da questão é igual para armas de porte.

Figura 6. Regime de pressão (CHINN traduzida, 1955, p. 4)

A pressão máxima alcançada de 310 MPa (45000 psi) é aplicada a uma área de 0,00065 m² (0,5 in²) produzindo uma força de 201500 N. A Figura 7 mostra esquematicamente a pressão dos gases de combustão agindo sobre a parede do cartucho que age sobre a parede do cano da arma.

Figura 7. Ilustração do regime de pressão dentro da alma do cano (CHINN modificada e traduzida, 1955, p. 4)

Assim, é possível perceber que qualquer alteração na estrutura da arma de fogo, como trincas e oxidações, e na composição do cartucho, como excesso de pólvora, aumentam consideravelmente riscos de acidentes graves. Esse é o risco hoje de qualquer perito em Balística Forense no Brasil, em particular, na Polícia Civil do Distrito Federal.

O perito tem a função de testar as armas de fogo apreendidas, tanto teste para comparação de projéteis, atirando em um tanque de água, quanto para teste de eficiência, atirando em um tonel de areia. Como não se sabe a procedência das armas de fogo e munições, nos quesitos adulteração, manutenção e conservação, o perito corre um grande risco de que o sistema exploda em sua mão, podendo se ferir gravemente.

Logo, é fundamental que haja um dispositivo que suporte a arma de fogo e que realize o disparo remotamente para garantir a integridade do perito.

2.2 METODOLOGIA DE CÁLCULO

2.2.1 Energia de recuo livre

Para saber os esforços que a estrutura terá que suportar, deve-se primeiro determinar a força de reação do tiro. Para isso, a literatura fornece a energia de recuo livre, como mostra a equação retirada de GRIFFIN (2002):

Energia de Recuo Livre =
$$\frac{(W_1 V_p + 4700 W_2)^2}{64,348 W_g}$$
(1)

Em que:

- W₁ é a massa do projétil;
- V_p é a velocidade do projétil ao final do cano;
- W₂ é a massa de pólvora;
- W_g é a massa da arma.

A constante 4700 é a velocidade média dos gases de combustão da pólvora sem fumaça e 64,348 é a constante gravitacional multiplicada por dois (FADALA, 2006). A equação está na unidade inglesa, ou seja, a energia de recuo livre é expressa em ft-lbs, com a massa em lb e a velocidade em fps.

Para melhor entendimento da equação e a física do problema, ela será demonstrada para este trabalho com conceitos básicos de física mecânica para o sistema internacional de unidades. Usar-se-á dois conceitos básicos que são: conservação do momento linear e que o trabalho é a variação da energia cinética. Assim sendo, adotar-se-á um projétil dentro de um cano arbitrário de comprimento "l", como mostra a Figura 8.

Figura 8. Esquema de um projétil dentro de um cano (CHINN traduzida e modificada, 1955, p. 15).

Aplicando-se a conservação do momento linear, tem-se que:

$$m_g v_g = m_b v_b + m_p v_p \tag{2}$$

$$v_g = \frac{m_b v_b + m_p v_p}{m_g}$$

Em que:

- mg é a massa da arma;
- v_g é a velocidade da arma;
- m_b é massa do projétil;
- v_b é a velocidade do projétil;
- m_p é a massa de pólvora;
- v_p é a velocidade da pólvora (dos gases produzidos pela queima dela).

O trabalho realizado é definido como a variação da energia cinética e está descrito pela equação (4) considerando a arma partindo do repouso.

$$W = \frac{m_g v_g^2}{2} \tag{4}$$

Substituindo (3) em (4), obtém-se a energia de recuo livre como queria-se demonstrar:

Energia de recuo livre =
$$\frac{(m_b v_b + m_p v_p)^2}{2 m_g}$$
(5)

Como o trabalho é igual a força vezes o deslocamento, consegue-se achar a força de reação na arma dado o comprimento do cano da arma.

$$W = F l \tag{6}$$

Substituindo (5) em (6), tem-se:

$$F = \frac{(m_b v_b + m_p v_p)^2}{2 \, l \, m_g} \tag{7}$$

2.2.2 Fator de segurança

Para este projeto, foi implementado um fator de segurança n_d baseado em fatores de penalização que é descrito por COLLINS (2015). O autor considera oito fatores de penalização:

- 1. Conhecimento preciso do carregamento;
- 2. Cálculo preciso das tensões;
- 3. Conhecimento preciso da resistência;
- 4. Necessidade de conservação;
- 5. Gravidade das consequências de falha;
- 6. Qualidade da fabricação;
- 7. Condições de operação
- 8. Qualidade da inspeção/manutenção.

É feita uma análise semiquantitativa destes fatores de penalização atribuindo arbitrariamente valores NP (número de penalização) entre -4 e + 4. NP = 1 significa uma mudança levemente necessária do n_d , NP = 2 uma mudança moderamente necessária, NP = 3 uma mudança fortemente necessária, NP = 4 uma mudança extremamente necessária de n_d . Os sinais positivos são atribuídos quando quer se elevar o fator de segurança e negativo quando se quer reduzir. Os NPs são somados como mostra a equação (8), e substituídos conforme o resultado na equação (9) ou (10).

$$t = \sum_{i=1}^{8} NP_i \tag{8}$$

(3)

$$n_d = 1 + \frac{(10+t)^2}{100}, se \ t \ge -6$$
 (9)

$$n_d = 1,15, se \ t \ < \ -6 \tag{10}$$

2.2.3 Condição de carregamento de impacto

Se forças ou deslocamentos são aplicados rapidamente a uma estrutura ou componente de máquina, os níveis de tensão e de deformação serão muito maiores do que se tivessem sido aplicados gradualmente, e isso pode ser considerado choque ou carregamento de impacto (COLLINS, 2015). Segundo COLLINS uma estimativa da tensão e da deflexão sob condição de impacto pode ser feita por meio do método de energia e podem ser estimadas pelas seguintes equações:

$$(\sigma_{m\acute{a}x})_{subtamente\ aplicada} = 2(\sigma_{m\acute{a}x})_{est\acute{a}tica}$$
(11)

$$(y_{m\acute{a}x})_{subtamente\ aplicada} = 2(y_{m\acute{a}x})_{est\acute{a}tica}$$
(12)

Em que:

- $\sigma_{máx}$ é a tensão máxima;
- y_{máx} é a deflexão máxima

2.2.4 Projeto de vigas

As vigas ou colunas devem suportar carregamentos perpendiculares ou paralelas ao seu eixo. Se forem projetadas com base na resistência, reverão resistir às tensões de cisalhamento e flexão admissíveis (HIBBLER, 2010). Em que a tensão normal admissível é o limite de escoamento do material dividido pelo fator de segurança do projeto e a tensão de cisalhamento admissível é metade da tensão normal admissível.

Para isso, alguns casos foram separados para determinar as tensões normais e de cisalhamento devidos a carregamentos e suas condições de contorno. Todas as equações a seguir foram retiradas de COLLINS (2015).

Os dois primeiros casos a serem analisados são o de tração ou compressão pura. A tensão normal gerada na tração pura, ou compressão pura, pode ser definida pela equação a seguir:

$$\sigma = \frac{P}{A} \tag{13}$$

Em que:

- σ é a tensão normal;
- P é o carregamento;
- A é a área da seção transversal em que o carregamento está sendo aplicado.

O terceiro caso pode ser definido como uma combinação do primeiro ou segundo caso com um momento fletor sendo aplicado na extremidade livre de uma viga engastada, como mostra a Figura 9.

Figura 9. Viga engastada e momento na extremidade (COLLINS modificada, 2015 p.147).

$$\sigma = \frac{M}{I}y + \frac{P}{A} \tag{14}$$

$$y_{m\acute{a}x} = \frac{M_{m\acute{a}x}L^2}{2EI} \tag{15}$$

Em que:

- σ é a tensão normal;
- M é o momento fletor aplicado;
- I é o momento de inércia;
- y é a distância perpendicular do eixo neutro a fibra em análise;
- P é o carregamento;
- A é a área de seção transversal em que o carregamento está sendo aplicado;
- y_{máx} é a deflexão máxima;
- M_{máx} é o momento fletor máximo;
- L é o comprimento da viga;
- E é o módulo de elasticidade do material.

O quinto caso seria um carregamento sendo aplicado no meio de uma viga que está apoiada em suas duas extremidades, como mostra a Figura 10.

Figura 10. Viga bi apoiada e carga concentrada no centro (COLLINS, 2015 p.147).

$$y_{max} = \frac{PL^3}{48EI} \tag{16}$$

Em que:

- y_{máx} é a deflexão máxima;
- P é o carregamento;
- L é o comprimento da viga;
- E é o módulo de elasticidade;
- I é o momento de inércia.

O sexto caso seria um carregamento aplicado em uma extremidade livre de uma viga engastada, como mostra a Figura 11.

Figura 11. Viga engastada com carga concentrada na extremidade livre (COLLINS, 2015 p.147).

$$V = P \tag{17}$$

$$M_{m\acute{a}x} = PL \tag{18}$$

$$y_{max} = \frac{PL^3}{3El} \tag{19}$$

$$\sigma = \frac{M}{1}y$$
(20)
$$\tau = \frac{V}{lx_{y1}}\bar{y}'A'$$
(21)

Em que:

- V é o cortante;
- P é o carregamento;
- M_{máx} é o momento fletor máximo;
- y é a distância perpendicular do eixo neutro a fibra em análise;
- y_{máx} é a deflexão máxima;

- L é o comprimento da viga;
- σ é a tensão normal;
- τ é a tensão cisalhante;
- x_{y1} é a abscissa de \overline{y}' ;
- A'é a área da seção transversal.

I é o momento de inérca;

E é o módulo de elasticidade;

O sétimo caso seria um carregamento sendo aplicada no meio de uma viga engastada em suas extremidades, como ilustra a

Figura 12. Viga biengastada com carga concentrada no centro (COLLINS, 2015 p.144).

$$y_{max} = \frac{PL^3}{192EI} \tag{22}$$

Em que:

- y_{máx} é a deflexão máxima;
- P é o carregamento;
- L é o comprimento da viga;
- E é o módulo de elasticidade;
- I é o momento de inércia.

2.2.5 Projeto de catraca e lingueta

Catracas são engrenagens em que os dentes são cortados para operar em apenas uma direção (WALSH, 2001). Sua construção pode ser feita de duas formas como ilustrado na Figura 13. E seus parâmetros de geometria são exemplificados na Figura 14

Figura 13. Exemplos de geometria da lingueta em relação a catraca (WALSH, 2001).

Figura 14. Geometria de construção da catraca e lingueta (WALSH, 2001).

Walsh relaciona o raio da catraca com o raio da lingueta e sua proporção é baseado no coeficiente de atrito dos materiais, que no caso é aço de baixo a médio carbono (eq. 23). Assim como em engrenagens, o passo circular P é uma relação do diâmetro D pelo número de dentes N (eq. 24). A largura de face l_f relaciona um coeficiente α que vale 20 para um número de dentes maior que 20, o torque no eixo T e o limite de escoamento do material Sy (eq. 25).

$$r = 0,25R \tag{23}$$

$$P = \frac{D}{N}$$
(24)

$$l_f = \frac{\alpha T}{N S_y P^2} \tag{25}$$

Em que:

- r é o raio da lingueta;
- R é o raio da catraca;
- P é o passo diametral;
- D é o diâmetro;
- N é o número de dentes;
- l_f é a largura de face;
- S_y é o limite de escoamento;
- T é o torque no eixo;
- α é um coeficiente determinado de acordo com o número de dentes.

2.2.6 Dimensionamento da garganta de solda

Para soldas submetidas a um cisalhamento transversal ou longitudinal, a tensão cisalhante média na garganta de solda pode ser calculada como (COLLINS, 2015):

$$\tau_w = \frac{P}{0.707sL_w} \tag{26}$$

Em que:

- τ_w é a tensão cisalhante média na garganta da solda;
- s é a perna da solda.
- L_w é o comprimento efetivo da solda.

2.2.7 Dimensionamento de parafusos

Para calcular o diâmetro do parafuso que foi usado para fixar o suporte da arma no trilho, usouse a equação a seguir (COLLINS, 2015):

$$\tau_b = \frac{P}{\sum_{i=1}^{n_b} A_i} \tag{27}$$

Em que:

- τ_b é a tensão cisalhante no parafuso;
- P é o carregamento;
- A_i é a área do i-ésimo parafuso;

3 PROJETO PRELIMINAR

3.1 CONCEPÇÃO INICIAL

O dispositivo de disparo remoto será instalado na sala de testes de armas de fogo do Instituto de Criminalística da Polícia Civil do Distrito Federal (PCDF). A Figura 15 mostra, em (a), o tanque de água em sua vista de trás para frente, em (b) e (c), o local onde o perito se posiciona para realizar os disparos frente ao tanque de água, e, em (d), o local onde se realiza os disparos frente ao tonel com areia.

Figura 15. Sala de testes de armas de fogo da PCDF.

O dispositivo será posicionado dentro da sala de testes de frente a um tanque de água para testes de comparação de projéteis e de frente a um tonel de areia para testes de eficiência de munição, como ilustra a Figura 16. Logo, a estrutura que suporta a bancada deverá ser móvel, podendo, desta forma, ser deslocada tanto para o tanque de água quanto para o tonel de areia.

Figura 16. Ilustração do dispositivo alocado na sala de testes.

Em função da arquitetura da sala, a estrutura que suportará o dispositivo poderá, no máximo, estar contida dentro de um cubo de dimensões 2 m de altura por 1,22 m de largura e 1,22 m de profundidade. A Figura 17 e a Figura 18 ilustram as dimensões da sala de teste. Para realizar o tiro no tonel de areia não há restrições físicas como no tanque de água, mas a estrutura deverá alcançar no mínimo 1,22 m de altura para posicionar a arma dentro do tonel.

Figura 17. Ilustração em 3D das dimensões da sala de testes.

Figura 18. Dimensões em 2D da sala de testes.

Ambos os testes são realizados com a arma de fogo inclinada a aproximadamente 45°, já que para um ângulo muito menor que este o projetil poderá refletir na água e muito maior que este danificará a base da piscina. Com base em uma das armas mais poderosas que poderá ser testada, o rifle Barrett M107A1 mostrado na Figura 19, o comprimento horizontal do suporte para a arma deverá ter no mínimo 1450 mm.

Figura 19. Barrett M107A1 (Manual de operação Barret M107A1, 2016)

Levando em consideração a sala de testes de armas de fogo da Seção da Balística Forense da PCDF e a restrição angular para o tiro, foram pensadas duas alternativas para a geometria da estrutura, como mostra a Figura 20. A primeira alternativa seria uma estrutura com um ângulo fixo de 45°, e a segunda com uma rótula para alterar a angulação da parte superior da bancada. Por razões ergonômicas, escolheu-se a segunda alternativa, já que é mais fácil preparar a bancada para o teste na posição horizontal e depois posicionar na angulação desejada.

Figura 20. Esboço das alternativas de geometria.

Para definir as dimensões da estrutura, foram fixados alguns parâmetros arbitrários: a estrutura passará 20 mm de distância da borda do tanque e ficará 20 mm acima do nível da água; o suporte da arma terá 1500 mm, como esboçado na Figura 21.

Figura 21. Visualização dos parâmetros arbitrários com as dimensões da sala.

A posição da parte inferior da estrutura em relação a parte superior foi arbitrariamente escolhida para que haja uma folga entre a parede do tanque de água e a estrutura de 100 mm, como ilustra a Figura 22.

Figura 22. Posição da parte inferior em relação a superior.

A estrutura será de aço e poderia ser feita de três maneiras, com tubos circulares, tubos quadrados ou cantoneiras em L. A estrutura deverá ter possibilidade para ajuste de altura e deverá ter um centro de massa muito próximo ao chão, já que a força será aplicada na parte superior do sistema.

Optou-se por utilizar tubos quadrados por sua boa rigidez, facilidade na hora de soldar e uma boa alternativa para se montar um sistema telescópico, apenas com tubos de tamanhos diferentes e elementos de fixação, como ilustra a Figura 23.

Figura 23. Ilustração em corte do sistema telescópico feito com tubos quadrados.

A mobilidade do dispositivo poderia ser feita de três maneiras: fixa, com rodízios e freio ou a combinação dos 2.

A solução mista, ilustrada na Figura 24, foi a adotada neste projeto, pois, apesar de mais complexa, se mostrou mais adequada, já que a opção fixa iria demandar muita força física para se transladar a estrutura, já a opção com rodízios, correr-se-ia o risco do sistema se movimentar mesmo com os freios acionados, já que o freio se aplica apenas na roda e não em seu eixo de rotação.

Figura 24. Solução combinada de mobilidade.

O sistema de acionamento remoto foi feito por botoeira e rádio frequência, que aciona um dispositivo eletrônico que também poderia ser feito de três maneiras diferentes: por solenoide (a), atuador pneumático (b) ou eletromecânico (c), como mostrado na Figura 25.

Figura 25. Exemplos de atuadores (Sier, 2016).

A força de aplicação em um gatilho de uma pistola marca Taurus, modelo PT 24/7 POLICE, calibre .40 S&W, de acordo com testes realizados na Seção de Balística Forense do Distrito Federal, é, em média, 3,7 kgf, como mostram os resultados do laudo pericial n°1239/16 disponível no anexo 2. Por simplicidade de construção, manutenção e custo, usou-se um solenoide para o acionamento do gatilho.

A fixação da arma poderia ter quatro métodos distintos: por molas e alavanca, por parafuso de potência ou por sistema pneumático ou hidráulico. Todos esses sistemas são muito pesados e, portanto, foi projetado um sistema com parafuso de aperto semelhante ao da Figura 26.

Figura 26. Suporte para armas de fogo (Sportsman's Guide, 2016).

O dispositivo de fixação da arma foi pensado no sentido de se aproximar ao máximo da biomecânica da mão dominante de um adulto do sexo masculino. De acordo com a Figura 27 a média de pressão palmar medida em kgf da faixa etária de um adulto do sexo masculino é de $40,36 \pm 11,21$ kgf. Portanto, foi considerado 51,57 kgf de pressão palmar multiplicado por um fator de segurança de 2, totalizando 1010 N aproximadamente.

GRUPOS	MÉDIA DE IDADE	PREENSÃO PALMAR (KG/F)		
(N=600)		Mão Direita	Mão Esquerda	
Pré-Escolar	4,5±0,50	6,93±1,95	6,75±2,01	
Escolar	8,74±2,00	14,18±6,05	13,38±5,64	
Adolescente	15,46±1,69	34,37±11,61	32,31±11,68	
Adulto	31,35±7,36	40,36±11,21	37,93±11,05	
Meia-Idade	54,40±5,94	33,38±11,77	31,63±11,52	
Idoso	75,36±6,72	28,11±10,07	25,73±9,19	

n=número de indivíduos.

Figura 27. Distribuição geral dos indivíduos de acordo com grupos etários e força de preensão palmar ao longo do desenvolvimento humano (MOURA, 2008, p.39).

Para medir a angulação da arma de fogo após o tiro, pensou-se em duas alternativas: um dispositivo eletrônico, usando célula de carga, e um sistema mecânico, utilizando uma catraca. Para este projeto, foi usado um sistema simples de dobradiça (ilustrado na Figura 29) e uma catraca (exemplificado na Figura 28). A catraca estará posicionada no eixo da dobradiça o que fará a arma rotacionar e parar na angulação alcançada durante o tiro. A medição será feita pelo operador por meio de um transferidor instalado na estrutura.

Figura 28. Exemplo de catraca

Figura 29. Ilustração da dobradiça.

4 PROJETO INTERMEDIÁRIO

4.1 DIMENSIONAMENTO DA ESTRUTURA

4.1.1 Cálculo da força de reação

Para efeito de comparação, a força de reação foi calculada para dois tipos de armas com base nas equações (1) a (7). Para um rifle Barrett M107A1 cujo o comprimento do cano é de 737 mm, utiliza munição .50 BMG e possui massa de 13 kg, e para um revólver Smith&Wesson S&W500 cujo comprimento do cano é de 102 mm, utiliza munição .500 S&W Magnum® e possui massa de 1,59 kg. A escolha dessas armas se deu por serem os representantes de maior poder de fogo de suas categorias.

A análise feita com diferentes combinações de massa do projétil e massa de pólvora está no anexo 1. Os dados da Tabela 1 foram retirados do site http://www.reloadammo.com/50bmg.htm e http://www.reloadammo.com/500sw.htm, e a análise foi feita para o sistema inglês de unidades. Considerando os valores máximos obtidos de energia livre de recuo obtidos para esta análise e aplicando para a equação (7), obtém-se os resultados da Tabela 1 já convertidos para o sistema internacional de unidades.

	F [N]	m _b [kg]	v _b [m/s]	m _p [kg]	v _p [m/s]	m _g [kg]	l [m]
S&W500	1284,952	0,045359	394,4112	0,001763	1432,56	1,59	0,102
M107A1	239,1145	0,055079	827,8368	0,015422	1432,56	13	0,737

Tabela 1. Força de reação da arma.

Observa-se pela Tabela 1 que a arma de fogo com a alma do cano menor (S&W500) aplica uma força de recuo maior, e, então, foi a arma de referência para este projeto.

4.1.2 Fator de segurança

Contando que o carregamento é conhecido, mas as determinações tanto das tensões quanto de resistências às falhas podem não ser tão precisas devido as considerações feitas durante a análise, atribuiu-se valores de 0, +1 e +1 para os fatores 1, 2 e 3 respectivamente. O item 4 não se aplica a este projeto. Como o dispositivo será usado para testes não presenciais, o item 5 não precisaria ser considerado, mas, como ele aborda danos à propriedade, foi atribuído um valor de +3. Como a fabricação será feita majoritariamente por processos de solda manual, foi atribuído +1 para o item 6. A bancada será usada apenas quando a procedência da arma de fogo ou munição for duvidosa e, então, atribuiu-se um valor de -4 para o item 7. O item 8 não se aplica ao projeto.
	Fator de	Número de
	Penalização	Penalização
Conhecimento preciso do carregamento	1	0
Cálculo preciso das tensões	2	+1
Conhecimento preciso da resistência	3	+1
Necessidade de conservação	4	+2
Gravidade das consequências de falha	5	+3
Qualidade de fabricação	6	+1
Condições de operação	7	-4
Qualidade da inspeção/manutenção	8	0

Tabela 2. Atribuição dos valores de NP.

Utilizando as equações (8), (9) e (10), tem-se que t = 4 e $n_d \approx 3$.

4.1.2 Aplicação da força

Como visto anteriormente, o revólver Smith&Wesson S&W500 apresentou a maior força de recuo livre e, portanto, foi o utilizado como referência para este projeto, assinalando-se que não foi considerada a ação de compensador de recuo no cano da arma, como o que existe na Figura 30. O diagrama de corpo livre da arma após o tiro, assumindo que a arma está engastada pela base é mostrado na Figura 30. A Figura 31 apresenta algumas dimensões do revolver obtidas por extrapolação em papel milimetrado com base na dimensão do cano fornecido pelo fabricante. A partir da dimensão do cano, observa-se uma escala de 1:1,5.

Figura 30. Ponto de aplicação da força na arma (Smith & Wesson modificada, 2016).

Figura 31. Distâncias adquiridas para o ponto de aplicação da força.

O momento fará com que a arma rotacione a dobradiça e apenas a força de recuo será transmitida para a estrutura, como mostra o esquema da Figura 32.

Figura 32. Esquema da arma engastada em uma dobradiça.

4.1.3 Determinação da seção transversal do tubo quadrado

A estrutura que suportará a arma de fogo terá uma geometria retangular, como apresentado na Figura 33, e, assim, a reação da força de aplicação em cada tubo será metade da força de recuo livre.

Figura 33. Representação da arma de fogo engastada nas extremidades da estrutura retangular.

Logo, pode-se considerar três casos estáticos para se estimar a dimensão mínima do tubo quadrado que será utilizado neste projeto. A parte superior, onde será fixado o suporte da arma, será

pivotada na metade do seu comprimento por um conjunto de tubo e um parafuso que regulará a inclinação, como exemplificado na Figura 34.

Figura 34. Exemplo do sistema de pivoteamento da mesa.

A primeira condição estática considerada será a compressão simples, como mostram a Figura 35 e a Figura 36, que é a condição em que a arma está posicionada na extremidade da estrutura gerando uma força compressiva.

Figura 35. Tubo quadrado em compressão.

Figura 36.Ilustração do primeiro caso.

O segundo caso é quando a arma está posicionada na outra extremidade da estrutura, gerando uma força trativa, como exemplificam a Figura 37 e a Figura 38.

Figura 37. Exemplo do tubo quadrado sob tração.

Figura 38. Ilustração da condição de tração.

Levando em conta o fator de segurança do projeto e a condição de carregamento de impacto, tem-se uma tensão normal e pode ser comparada com sua tensão normal admissível, como mostra a Tabela 3. Conforme a *American Society for Testing Materials* (ASTM), o valor do limite de resistência ao escoamento para o aço estrutural ASTM A36 é S_y = 250 MPa.

Tabela 3. Resultados da tensão normal de tração/compressão para vários tamanhos de tubos quadrados de 750 mm de comprimento.

A [m ²]	0,0011	0,00105	0,001	0,0009	0,0007	0,0006	0,0004	0,0003	0,0002
S _y [Pa]	2,5E+08								
σ_{adm} [Pa]	83E+06								
σ [Pa]	1,1E+06	1,2E+06	1,3E+06	1,5E+06	1,9E+06	2,2E+06	3,5E+06	4,7E+06	6,3E+06
b [m]	0,065	0,060	0,055	0,050	0,040	0,035	0,030	0,025	0,020
e [m]	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,003

Logo, não há restrição de tamanho, já que a tensão normal admissível é de 83 MPa e a maior tensão calculada é de 6,3 MPa.

O terceiro caso seria se a arma estivesse engastada pela base em uma das extremidades do tubo e considerando o momento após o tiro. Da Figura 31, sabe-se a distância do ponto de aplicação da força até a base da arma, provocando um momento de 180 N.m.

Podem-se considerar duas equações para os cálculos a seguir, as equações (14) e (15) que são de tensão de flexão e deflexão para uma viga engastada em que sofre um momento em sua extremidade,

retiradas da Figura 9 e como ilustrado na Figura 39. Considerando o módulo de elasticidade do aço igual a E = 205 GPa, valor este retirado de COLLINS (2015), construiu-se a Tabela 4.

Figura 39. Ilustração do momento atuante no terceiro caso.

-							
I [m ⁴]	4,8E-07	3,7E-07	2,8E-07	2,1E-07	1,0E-07	0,66E-07	0,40E-07
A [m ²]	7,4E-04	6,8 E-04	6,2 E-04	5,6 E-04	4,4 E-04	3,8 E-04	3,2 E-04
E [Pa]	2,05E+11						
S _y [Pa]	2,5E+08						
y _{máx} [m]	0,0010	0,0013	0,0017	0,0024	0,0048	0,0075	0,0124
$\sigma_{(adm)}$ [Pa]	8,3E+07						
σ [Pa]	2,6E+07	3,1 E+07	3,7 E+07	4,5 E+07	7,3 E+07	9,9 E+07	13,9 E+07
	•						
b [m]	0,065	0,060	0,055	0,050	0,040	0,035	0,030
e [m]	0,003	0,003	0,003	0,003	0,003	0,003	0,003

Tabela 4. Resultados da deflexão e tensão para vários tamanhos de tubos quadrados de 750 mm de comprimento.

Pelo carregamento combinado da força de compressão e do momento fletor, tem-se que os tubos de 40 mm de lado ou maiores estão seguros segundo a tensão normal admissível.

De acordo com os resultados obtidos, optou-se por utilizar os tubos quadrados de 50 mm de lado e 3 mm de espessura, e tubos de 60 mm de lado e 3 mm de espessura, já que, mesmo concentrando toda força e momento em apenas um tubo, estão abaixo do limite de tensão admissível e garantem uma boa rigidez, já que tem uma deflexão de 2,4 mm no caso do tubo de 50 mm de lado.

4.1.4 Definição de geometria da estrutura

Bases e quadros de máquinas exercem a função de suporte estrutural para montar os diversos componentes operacionais. Estruturas treliçadas são amplamente utilizadas para esta função, já que combinam boa rigidez e resistência com um baixo peso e uso eficiente do material. Porém, se as forças

e momentos operacionais forem pequenos, ou quando as deflexões estruturais não forem críticas, podese usar uma mesa simples, com uma placa suportada por pernas robustas (COLLINS, 2015).

Adotando-se estes conceitos, a estrutura da parte superior, que suportará a arma de fogo, será composta por longarinas e transversinas de tubos quadrados de 50 mm de lado, o que é comumente chamado de chassi tipo escada, como exemplificado na Figura 40. Assim, mesmo que o tubo de 50 mm de lado tenha apresentado uma flecha pequena, a estrutura ganhará mais rigidez com essa configuração.

Figura 40. Exemplo de chassi tipo escada.

A base que suportará o dispositivo de teste também será fabricada com tubos de seção quadrada, como ilustrado na Figura 41.

Figura 41. Esboço da estrutura simples tipo mesa.

4.1.4 Dimensionamento da estrutura

Para montar a estrutura serão usados tubos quadrados estruturais de aço ASTM A36. O catálogo usado neste projeto foi o da Gerdau. Na fabricação, serão usados tubos quadrados de 50 mm de lado e 3 mm de espessura, assim como tubos quadrados de 60 mm de lado e 3 mm de espessura.

A estrutura será dividida em 3 partes: torre inferior, torre superior e mesa (Figura 42). A mesa e a torre superior serão soldadas e formarão uma peça única com movimento relativo de rotação entre a mesa e a torre, podendo inclinar de 0° a 45°. Esse conjunto encaixará na torre inferior e o conjunto final será preso por pressão de parafuso.

Figura 42. Vista explodida da estrutura.

A mesa é constituída por duas longarinas de tubo quadrado de 50 mm de lado e 1500 mm de comprimento e entre as longarinas, adicionou-se transversinas também de 50 mm de lado e 300 mm de comprimento para aumentar a rigidez do conjunto.

A torre superior foi dimensionada como uma mesa simples com tubos quadrados de 50 mm de lado. Além disso, um tubo foi inserido entre a torre e a mesa para que ela gire livremente, e uma placa com um rasgo radial para que se fixe a mesa e, assim, ajuste a inclinação, como ilustra a Figura 43.

Figura 43. Dispositivo de regulagem de inclinação.

O posicionamento do rasgo da chapa metálica foi feito para passar um parafuso M10, em que o começo e o final do curso seja aproximadamente a 0° e 45° respectivamente. Para a seleção do tubo que fará essa articulação, calculou-se a deflexão de viga bi apoiada na condição de carregamento central, em que a equação (16) representa a deflexão máxima, retirada da Figura 10 do capítulo 2.

Calculando-se para a força de recuo livre do revólver Smith&Wesson S&W500 em condição de carregamento de impacto, tem-se os resultados da Tabela 5.

I [m ⁴]	1,04E-08	1,24E-08	1,62E-08	2,48E-08	3,04E-08	3,2E-08
A [m ²]	5,91E-05	7,07E-05	9,32E-05	0,000146	0,000182	0,00019
E [Pa]	2,05E+11	2,05E+11	2,05E+11	2,05E+11	2,05E+11	2,05E+11
y máx	0,00009	0,00008	0,00006	0,00004	0,00003	0,00003
D _e [m]	0,0381	0,0381	0,0381	0,0381	0,0381	0,0381
e [m]	0,001	0,0012	0,00159	0,00252	0,00317	0,00338

Tabela 5. Resultados para deflexão do tubo de 38,1 mm de diâmetro de aço ASTM A-36.

A torre inferior também foi concebida como uma mesa simples de tubos quadrados, mas com tubos de 60 mm de lado. Na parte inferior desta estrutura, praticamente junto aos seus pés, ao invés de se usar tubos quadrados, usou-se barras maciças de aço estrutural ASTM A36 para abaixar o centro de massa do conjunto.

Foi verificada a rigidez do conjunto devido a força de recuo livre aplicada na torre superior, como mostra a Figura 44, segundo a equação (19) retirada da Figura 11 do capítulo 2.

Figura 44. Ilustração da aplicação da força para a condição de viga engastada e carregamento na extremidade.

Com isso, obteve-se os resultados que estão na Tabela 6

Tabela 6. Resultados para deflexão das pernas das torres inferior e superior.

L [m]	1,5
I [m ⁴]	3E-07
A [m ²]	0,0009
E [Pa]	2,05E+11
P [N]	321,25
y _{máx} [m]	0,0075
b [m]	0,050
e [m]	0,003

A flecha de 7,5 mm é pequena para a estrutura, já que a rigidez dela é maior quando considerados os tubos horizontais que ligam as 4 pernas dessa estrutura.

Ao se juntar todas as partes, tem-se a estrutura completa, que está ilustrada na Figura 45.

Figura 45. Desenho de montagem da estrutura completa.

4.2 DIMENSIONAMENTO DO TRILHO

Para que o dispositivo possa comportar diversos tipos de armas de fogo, de vários comprimentos diferentes, seria necessário o uso de um trilho. Sendo assim, foi montado um trilho simples composto de cantoneiras de 40 mm de lado e 3 mm de espessura de aço estrutural ASTM A36. Entre as cantoneiras, passará um parafuso soldado em uma chapa metálica, e, assim, ao se aplicar um torque de aperto na porca do parafuso, o parafuso não girará em falso, como ilustra a Figura 46.

Figura 46. Trilho instalado na mesa.

4.3 DIMENSIONAMENTO DO SISTEMA DE FIXAÇÃO DA ARMA

O suporte da arma terá duas funções, a de fixar a arma e a de medir a inclinação após o tiro. Para isso, foi pensado em um suporte montado em uma dobradiça. Assim, a arma estará fixa e ao mesmo tempo rotacionará para se medir a angulação, como mostra a Figura 47. Na figura há também ilustrado o atuador que puxará o gatilho, que é tratado na seção 4.6 deste projeto.

Figura 47. Ilustração do suporte da arma.

A dobradiça é composta por tubos, de aço estrutural ASTM A36, e uma barra, também de aço estrutural ASTM A36, como ilustrado na Figura 48. Os tubos foram soldados nas placas inferior e superior e a barra soldada apenas nos tubos da placa inferior.

Figura 48. Detalhe da dobradiça.

Os tubos e barras foram selecionados de acordo com o catálogo do fabricante Gerdau para que fossem menor que as duas chapas, de 10 mm cada, consideradas em conjunto. Verificaram-se as tensões geradas na barra que passa pelos tubos (Figura 49). Na ponta, ocorre o caso descrito na Figura 11 do capítulo 2, e, no centro, um caso de viga biengastada. Para este segundo caso, usou-se a equação (22) da Figura 12 do capítulo 2.

Figura 49. Representação da força atuante na barra da dobradiça e seus engastes.

Considerando o primeiro caso em que a força é aplicada na metade da barra que está simplesmente engastada e o segundo caso em que a força é aplicada no centro da condição de biengastada, têm-se os resultados das tensões na Tabela 7. Ambos os casos as tensões admissíveis foram calculadas para carregamento de impacto.

L [m]	0,035	0,08
I [m ⁴]	3E-09	3E-09
A [m ²]	2E-04	2E-04
E [Pa]	2,05E+11	2,05E+11
S _y [Pa]	2,5E+08	2,5E+08
M [N.m]	14,99	2,142
V [N]	428,3	214,2
y _{máx} [m]	0,016	2E-06
σ [Pa]	7,6 E+07	1,1E+07
σ_{adm} [Pa]	8,3E+07	8,3E+07
τ [Pa]	5,8E+06	1,4E+06
τ _{adm} [Pa]	4,2E+07	4,2E+07
D [m]	0,016	0,016

Tabela 7. Resultado para a barra sob duas condições de carregamento.

Para ambos os casos, a tensão normal e de cisalhamento são menores que a admissível e, portanto, a dobradiça irá resistir ao carregamento.

Após o tiro, a arma irá rotacionar um sistema de catraca e lingueta, e, portanto, atingirá sua angulação máxima e ficará travada na posição para posterior aferição do ângulo de inclinação pelo operador.

Considerando as equações (23), (24) e (25), e, assumindo um raio para a catraca de 60 mm e 36 dentes, tem-se que P = 0,00278 N e I = 0,036 m. As geometrias de construção da catraca e da lingueta são mostradas na Figura 50 e na Figura 51, e o desenho do conjunto na Figura 52.

Figura 50. Geometria para o corte dos dentes.

Figura 51. Geometria para fabricação da lingueta.

Figura 52. Desenho do conjunto montado no suporte da arma.

4.5 DIMENSIONAMENTO DO APOIO FINAL

O apoio final, como o próprio nome diz, tem a função apenas de apoiar a porção final do cano para fazer a montagem da arma na bancada. É constituído por duas barras e uma chapa metálica que podem correr dentro de dois furos na estrutura e variar sua altura, como ilustrado na Figura 53.

Figura 53. Desenho do apoio final.

4.6 DIMENSIONAMENTO DO SISTEMA DE DISPARO REMOTO

O solenoide que fará o acionamento do gatilho será da marca Sier modelo SL 10 (Figura 54 e Figura 55). Sua voltagem é de 12 V e corrente continua de 4,2 A. O curso da haste é de 22 mm e aplica uma força de tração de 10 kgf.

Figura 54. Solenoide SL 10 Sier (Sier, 2016).

Figura 55. Desenho técnico SL 10 (Sier, 2016).

O acionamento remoto será feito por uma placa de rádio frequência simples como as usadas em portão de garagem, em que o botão tem a função de abrir ou fechar a corrente, como ilustrado na Figura 56.

Figura 56. Ilustração do sistema elétrico da placa RF com solenoide.

Para que a montagem da arma de fogo seja segura, supondo que o sistema de rádio frequência possa sofrer interferência, antes da conexão com a fonte foi instalado um interruptor simples, como mostra a Figura 57.

Figura 57. Ilustração da botoeira para ativar/desativar o sistema de disparo remoto.

4.7 DIMENSIONAMENTO DA BASE MÓVEL

O sistema será composto por um mecanismo de alavanca que irá comutar entre as posições fixa e móvel. Na posição fixa, o conjunto de rodas estará suspenso ou apenas apoiado no solo, e todo o sistema estará livre de esforços. Na posição móvel, o atuador implicará uma restrição física para que as rodas levantem e sustentem a estrutura.

Primeiramente, foram selecionados os rodízios. Usou-se o modelo L14-S14 BP-PVC da marca Schioppa, como ilustrado na Figura 58. Para melhorar a mobilidade, foram empregados quatro rodízios giratórios (Figura 59).

Rodizio Giratório	Rodizio Fixo	Rodizio Giratório	Rodizio Fixo	Roda		Ŧ	0	Tipo de Eixo	KG) m)	F	I
Referência	Referência	Referência	Referência	Referência	(mm)	(mm)	(pol)	(maical)	.10	GL/FL	GS/PS	s/ freio (mm)	c/ freio G (mm)
GL 414 BPN	FL 414 BPN	GS 414 BPN	FS 414 BPN	R 414 BPN	100	38		Bucha de Nylon	20	195	140	89	
GL 414 BPE	FL 414 BPE	65 414 BPE	FS 414 BPE	R 414 BPE	100	32		Rolamento de Esferas	65	133	140	00	120
GL 514 BPN	FL 514 BPN	GS 514 BPN	FS 514 BPN	R 514 BPN	105	38	7.0.0	Bucha de Nylon	116	16/	1/1	102	120
GL 514 BPE	FL 514 BPE	GS 514 BPE	FS 514 BPE	R 514 BPE	125	32	1/16	Rolamento de Esferas	112	901	161	103	
GL 614 BPN	FL 614 BPN	65 614 BPN	FS 614 BPN	R 614 BPN	160	38		Bucha de Nylon	147	170	100	110	120
GL 614 BPE	FL 614 BPE	GS 614 BPE	FS 614 BPE	R 614 BPE	UCI	32		Rolamento de Esferas	1/5	1/8	183	118	130

Figura 58. Seleção dos rodízios (Catálogo Schioppa, 2016).

Figura 59. Rodízio giratório (Schioppa, 2016).

A estrutura da base móvel será composta por duas placas que serão unidas por dobradiças simples. O acionamento do sistema será dado por um mecanismo manual de alavanca.

As dobradiças serão da marca La Fonte - Assa Abloy e suas dimensões estão na Figura 60.

Figura 60. Dobradiça 500 com Anéis 3,5x3 (Catálogo técnico La Fonte - Assa Abloy, 2016).

Com isso, pode-se calcular o ponto de contato do sistema dobrado, dadas as alturas dos rodízios e de onde será posicionado, como ilustram a Figura 61 e a Figura 62.

Figura 61. Determinação da altura do mecanismo em relação ao solo.

Com isso, tem-se condições de dimensionar todo o mecanismo. Serão usadas chapas grossas de 30 mm de espessura e barras circulares de aço ASTM A36 da Gerdau. O conjunto montado está ilustrado na Figura 63.

Figura 62. Geometria da principal peça do mecanismo.

Figura 63. Mecanismo montado completo.

A Figura 64 ilustra o produto final.

Figura 64. Produto final.

4.8 CENTRO DE MASSA, ATRITO E EQUILÍBRIO

Após obter toda a estrutura dimensionada no programa *Solidworks*, analisou-se as propriedades de massa da estrutura completa no próprio programa. Sua massa é de 235 kg e a Figura 65 mostra seu centro de massa. Nesta figura, o eixo Ix, Iy e Iz, que representa o centro de massa, está desenhado na cor rosa, e o eixos x, y e z estão desenhados nas cores vermelha, verde e azul respectivamente.

Para os casos em que a arma de fogo está posicionada em uma das extremidades do dispositivo, foi calculado se a força de recuo livre superaria o atrito entre a estrutura e o chão, que, no caso, é uma interação metal borracha, e, se o conjunto tombaria após o tiro.

Considerando o coeficiente de atrito estático entre o aço e a borracha de 0,60, valor este retirado de CTB (2016), a carga de 1285 N não supera o valor do peso da estrutura (considerando a aceleração da gravidade igual a 9,81 m/s²) multiplicado pelo coeficiente de atrito (força de atrito estático igual a 1383,2 N). Portanto, a estrutura não arrastará após o tiro.

No primeiro caso da Figura 65, a força de recuo após o tiro irá produzir um momento de 776,9 N.m, e a força normal um momento de 1083,51 N.m. No segundo caso, o momento produzido após o tiro é de 813,2 N.m, e o momento da força normal é de 1452,4 N.m. Os casos 3 e 4 produzem um momento igual de 536,1 N.m após o tiro, e o momento da força normal é de 1452,4 N.m e 995,9 N.m respectivamente para os casos 3 e 4. Logo, em nenhum dos casos a bancada de testes tombará.

Figura 65. Centro de gravidade da estrutura.

5 PROJETO DE DETALHAMENTO

5.1 FABRICAÇÃO

5.1.1 Materiais

Para facilitar a compra de materiais foi selecionado alguns perfis e materiais de apenas um catálogo: Catálogo de Produtos Comercial Gerdau. As páginas do catálogo necessárias se encontram no anexo 3 deste projeto. O material disponível no catálogo é o aço estrutural ASTM A36, um dos aços mais utilizados para a confecção de estruturas metálicas.

5.1.2 Soldagem

A maior parte dos componentes deste projeto serão soldados, já que não serão necessários serem montados e desmontados.

A Figura 66 mostra a recomendação da *American Welding Society* (AWS) para várias espessuras de chapa.

Espessura do metal-base (T)	Tamanho mínimo da solda				
dimensões (em polegadas				
T ≤ 1/4	1/8				
$1/4 < T \le 1/2$	3/16				
$1/2 < T \le 3/4$	1/4 5/16				
3/4 < T					
<u>dimensõ</u>	<u>es em mm</u>				
T ≤ 6	3				
6 < T ≤ 12	5				
12 < T ≤ 20	6				
20 < T	8				

Figura 66. Tamanho mínimo para cordões de solda (NORTON, 2013).

Com base na equação (26), a Tabela 8 mostra o resultado da perna da solda de filete para a junção das transversinas nas longarinas da mesa (Figura 67), dado que o eletrodo E70 possui um limite de escoamento $S_y = 393$ MPa e que o carregamento em cada solda é de 642,5 N.

Figura 67. Ilustração do cordão de solda na junção da transversina com a longarina.

P [N]	1285
τ _{w(adm)} [Pa]	1,3E+08

0,05

0,00028

 $L_w[m]$

s [m]

Tabela 8. Rsultado para o tamanho da perna da solda.

Como o resultado foi inferior ao mínimo recomendado pela AWS para a espessura da chapa, foi usado o valor mínimo de 3 mm. O mesmo valor foi usado para soldar as cantoneiras. Para as chapas de 10 mm e para as barras circulares do mecanismo, usou-se o valor de 5 mm.

Para este projeto, foi usada a solda por arco elétrico MAG (*metal active gas*), que é o mais usado na indústria para soldar materiais ferrosos. Da apostila de soldagem da ESAB (2005), para chapas de 10 mm de aço, será necessário utilizar arame de 1,6 mm. Os tubos quadrados de aço poderão ser soldados com arame de 0,9 mm. Os valores recomendados seguem na Figura 68 abaixo para arame ER70S-3 com mistura Ar/ 5% O₂.

											the second se				
		1	3/16	(4.8)			1/16	(1.6)	185-195	78-82	26-27	310-320	8-13	3-5	1
×	19 (P	2	3/32	(2.4)	54.5		1/16	(1.6)	170-180	72-76	25-26	290-300	12-17	5-7	2
.250	6.4	2	3/32	(2.4)	11	2	.045	(1.1)	400-425	169-180	29-31	320-330	17-22	7-9	2
		4					1/16	(1.6)	235-245	99-104	27-28	360-370	15-20	6-8	1
		4					.045	(1.1)	425-450	180-190	30-32	330-340	14-19	6-8	1
		2	3/32	(2.4)	R.	1	1/16	(1.6)	215-225	91-95	26-27	340-350	11-16	5-7	2
		3	1/16	(1.6)	3/32	(2.4)	.045	(1.1)	365-385	154-163	29-30	300-310	11-16	5-7	2
.375	9.5	3	1/16	(1.6)	3/32	(2.4)	1/16	(1.6)	170-180	72-76	25-26	290-300	10-15	4-6	2
ù	1 A	4	8	10000	6	19 ⁴ 0 - 00	1/16	(1.6)	205-215	87-91	26-27	300-340	10-15	4-6	2
		2			18		1/16	(1.6)	195-210	82-89	26-27	320-330	17-22	7-9	4
.500	12.7	3	1/16	(1.6)	3/32	(2.4)	1/16	(1.6)	185-195	78-82	26-27	310-320	17-22	7-9	4
8 3		4	28 00		50	1000 200	1/16	(1.6)	235-245	99-104	27-28	360-370	15-20	6-8	3
.625	15.9	3	1/16	(1.6)	3/32	(2.4)	1/16	(1.6)	195-210	82-89	26-27	320-330	13-18	5-8	4
		4					1/16	(1.6)	215-225	91-95	27-28	340-350	13-18	5-8	4
.750	19.1	3	1/16	(1.6)	3/32	(2.4)	1/16	(1.6)	195-210	82-89	26-27	320-330	11-16	5-7	4
	8 30		St - 33		27	6	1/16	11 6)	225 245	00.104	27.29	360.270	10.15	4.6	6

Figura 68. Tabela de condições de soldagem para aços de baixo carbono com transferência por aerossol (ESAB, 2005).

5.2 MONTAGEM

5.2.1 Fixação

Com a equação (27) para 2 parafusos de baixo a médio carbono, cujo $S_y = 250$ MPa, tem-se a Tabela 9 para vários diâmetros métricos de parafuso. Para o projeto, selecionou-se os parafusos M10.

Tabela 9. Tensão de cisalhamento para vários parafusos submetidos a carga excêntrica de impacto.

	M3	M4	M5	M6	M8	M10	M12	M14	M16
D [m]	0,003	0,004	0,005	0,006	0,008	0,01	0,01	0,014	0,016
τ _b [Pa]	1,8E+08	1E+08	7E+07	5E+07	3E+07	2E+07	1E+06	8E+06	6E+06
τ _{b(adm)} [Pa]	8,3E+07								

5.3 ANÁLISE DE CUSTOS

Os desenhos de fabricação foram levados para serem orçados em três empresas, com sede no Distrito Federal, especializadas em estruturas metálicas. A Figura 69, a Figura 70 e a Figura 71 mostram os orçamentos adquiridos para este projeto.

		ACCOTEC estruturas metalleas				
		PLANILHA ORÇAMENTÁRIA	PROP	OSTA N	°. 028/10/	2016-9
OBR	A	ESTRUTURA METÁLICA				
LOC	AL	BRASILIA - DF				
REFE	RENC	IA FORNECIMENTO DE MATERIAL E MÃO-DE-OBR	A PARA FAB	RICAÇÃO	E MONTAG	EM
ITEM		DISCRIMINAÇÕES	QUANTIDADE	UNIDADE	PREÇO	TOTAL
01		BANCADA DE TESTES PARA ARMA DE FOGO	01	CJ	3.850,0	3.850,00
	2.	OSIÇÃO: FORNECIMENTO DE MATERIAL E MÃO DE OBRA PARA EXECUÇÃO DOS SERVIÇOS DE FABRICAÇÃO DAS ESTRUTURAS METÁLICAS. ACESSÓRIOS E DEMAIS ELEMENTOS NECESSÁRIOS PARA O PERFEITO FUNCIONAMENTO DO CONJUNTO; TUDO FABRICADO DE ACORDO COM PROJETOS EXECUTIVOS DE ESTRUTURA METÁLICA E NORMAS DA ABNT.				
		ΤΟΤΑΙ		3.8	50.00	

Figura 69. Orçamento 1 – Açotec Estruturas Metálicas.

ITEM	DESCRIÇÃO	UNID	QUANT	V.UNID	V.TOTAL
1	Estrutura metálica para mesa regulável com tampo angular, fabricada em perfil tubular, laminado e usinado, conforme projeto fornecido	pç	1		R\$ 4.360,0
				D¢	4 260 00
	TOTAL			R\$	4.360,00

Figura 70. Orçamento 2 – Loyola Metais.

Quant.	Descrição	Valor Total
01	Confecção de 01 suporte pra armas com altura de 1.000 mm com regulagem 720 mm em metalon 50*50 chapa 14 chapa dobradas formate em U 30*60*30 junta um enfrente com outro vai ficar 60*60 chapa 3/16, suporte para travamentos das armas comprimento1.500 mm feito em metalon 50*50 chapa 14 com cantoneiras de 40*40 chapa 1/8 com sistema de trava A parte inferior com sistema para levantar o conjunto todo feito com chapas eixos parafusos	R\$; 7.200.00

Figura 71. Orçamento 3 – Superaço Estruturas Metálicas.

6 CONCLUSÃO

6.1 CONSIDERAÇÕES FINAIS

Ao final deste trabalho, foi possível ter uma visão do quão arriscado é o teste presencial de armas de fogo feito pelos peritos em balística forense, quando armas e munições artesanais ou de integridade duvidosa são levadas em consideração. Portanto, os cálculos e as escolhas tomados neste trabalho foram feitos de forma conservadora, visando a segurança das pessoas e a integridade do espaço físico, já que se trata de armas com potencial letal. A bancada de testes foi dimensionada para comportar armas de fogo de diferentes tamanhos e calibres. Tentou-se ao máximo deixar o projeto puramente mecânico, e a única parte eletrônica será o acionamento remoto, que, no intuito de prevenir falhas e/ou interferências enquanto se manipulam as armas de fogo na bancada, inseriu-se uma botoeira entre a rede elétrica e o dispositivo. Por fim, foram feitos os desenhos de fabricação e gerados orçamentos do produto (Figura 72) em empesas especializadas com sede no Distrito Federal. Com os objetivos alcançados ao fim do trabalho, espera-se que um protótipo seja construído e testado para que possa, assim, atender integralmente a Polícia Civil do Distrito Federal, e, futuramente, todas as instituições policiais brasileiras que se interessarem na proposta.

Figura 72. Bancadas de testes.

7 REFERÊNCIAS BIBLIOGRÁFICAS

[1] ASSAABLOY.CatálogodeProdutos.Disponívelem:http://www.yalelafonte.com.br/Local/assaabloyCOMBR/Downloads/2/Cat%C3%A1logo%20-%20T%C3%A9cnico%20LaFonte.pdf.Acesso em: 20 nov. 2016.

[2]BARRET.M107A1Operator'sManual.Disponívelem:https://barrett.net/pdf/products/M107A1/M107A1-Manual.pdf.Acesso em: 20 nov. 2016.

[3] BRASIL. Decreto nº 3.665, de 20 de novembro de 2000. Dá nova redação ao Regulamento para a Fiscalização de Produtos Controlados (R-105). **Diário Oficial**, Brasília, DF, 20 de nov. 2000.

[4] BUSSARD, Michael et al. Ammo encyclopedia. 4. ed. Minneapolis: Blue Book Publications, 2012.

[5] CHINN, George M. **The machine gun - volume IV**. 1. ed. Bureau of Ordnance, Department of Navy, 1955.

[6] COLLINS, Jack A. **Projeto mecânico de elementos de máquinas: uma perspectiva de prevenção de falha**. 1. ed. Rio de Janeiro: LTC, 2015.

[7] COMERCIAL GERDAU, Catálogo de Produtos. [S. l. : s. n.], 2016.

[8] CTB. **Propriedades Tribológicas**. Disponível em: http://ctborracha.com/?page_id=1467. Acesso em: 20 nov. 2016.

[9] ESAB. Apostila de soldagem MIG/MAG. [S. l. : s. n.], 2005.

[10] FADALA, Sam. The complete blackpowder handbook. 5. ed. Iola: Krause publications, 2006.

[11] GRIFFIN, Thomas J. Reloading handbook. 48. ed. Middleton: Lyman Products Corp, 2002.

[12] HIBBLER, Russell Charles. Resistência dos materiais. 7. ed. São Paulo: Pearson Prentice Hall,2010.

[13] MOURA, Patrícia M. de Lima e Silva. Estudo da Força de Pressão Palmar em Diferentes
Faixas Etárias do Desenvolvimento Humano. 93p. Dissertação – Universidade de Brasília – Programa
de Pós-Graduação em Ciências da Saúde. UnB, Brasília, 2008.

[14] NORTON, Robert L. Projeto de máquinas: uma abordagem integrada. 4. ed. Porto Alegre: Bookman, 2013.

[15] RABELLO, Eraldo. Balística forense. 4. ed. Porto Alegre: Sagra-DC Luzzatto, 1995.

[16]SCHIOPPA.L14-S14.Disponívelem:https://www.schioppa.com.br/produtos/PORTUGUES/L14S14.pdf.Acesso em: 20 nov. 2016.

[17] SIER. **Produtos: solenoide**. Disponível em: http://www.sier.ind.br/pro_solenoide.htm. Acesso em: 20 nov. 2016.

[18] SMITH, M. D. **Reloading The .50 BMG**. Disponível em: http://www.reloadammo.com/50bmg.htm. Acesso: 20 nov. 2016.

[19] SIMTH, M. D. **Reloading The 500 S&W Magnum**. Disponível em: http://www.reloadammo.com/500sw.htm. Acesso em: 20 nov. 2016.

[20] SPORTSMANS GUIDE. Sighting and Cleaning Rest. Disponível em: http://www.sportsmansguide.com/product/index/sighting-and-cleaning-rest?a=213583. Acesso em: 20 nov. 2016.

[21] TOCHETTO, D. **Tratado de Perícias Criminalísticas – Balística Forense**. 1. ed. Porto Alegre: Sagra Luzzatto, 1999.

[22] VIDRIO, Octavio Cibrián. Balística técnica y forense. 1. ed. Buenos Aires: La Rocca, 2007.

[23] WALSH, Ronald A. **Handbook of machining and metalworking calculations**. 1. ed. McGraw-Hill, 2001.

ANEXO 1

• Análise para .500S&W

PROJÉTIL [gr]	PÓLVORA [gr]	VELOCIDADE [fps]	FREE RECOIL ENERGY [ft-lbs]	[N.m]
275	11	1170	12,63763332	17,13432946
275	20	1594	25,68001892	34,81742932
275	36	1493	30,45929111	41,29725211
275	40	1802	42,33907814	57,40408001
275	40,5	1965	48,38477818	65,60094834
275	42	1880	46,24701582	62,70253187
275	40	1891	45,4253213	61,58846373
275	17,5	1464	21,30176662	28,88131649
275	32,4	1644	33,09946629	44,87684888
275	35,1	1860	41,46655013	56,22109092
275	20	1707	28,76557431	39,00088055
275	24,5	1824	34,46824242	46,73266006
275	44	2137	57,19542531	77,54658144
275	42	1818	44,06587853	59,74530689
275	45	2082	55,70425122	75,52482091
275	44	2047	53,68735486	72,79027672
275	19,5	1608	25,82493973	35,01391555
275	36	1818	40,57399647	55,01095069
275	39	2050	50,57083944	68,56484933
275	40,1	1665	37,85555429	51,32523811
300	41,8	1615	42,01883686	56,96989115
300	40	1775	47,04016027	63,77789132
300	29	1250	23,68930982	32,1183903
300	31	1330	26,88534247	36,45162857
325	38,3	1654	46,6570488	63,25846192
325	42,5	1838	57,57400494	78,05986647
325	41,3	1688	49,98496188	67,77050605

325	33,4	1962	57,21774485	77,57684266
325	325 36,9 1841 53,9709		53,97090819	73,1747234
325	325 48,6 1822 61,01436458		82,72436765	
325	42	1889	59,64726563	80,87083042
325	18,1	1398	26,36664743	35,74837254
325	20,1	1503	30,79328247	41,75008357
325	12	949	12,06063029	16,35201844
325	15	1044	15,21754976	20,63222636
325	38,7	1710	49,30486123	66,84841341
325	44	1350	37,7624874	51,19905637
325	35	1200	27,86146339	37,77507078
325	33,4	1682	44,86312463	60,82622742
325	36	1782	50,7469971	68,80368705
325	40	1862	57,004807	77,28813771
325	40,6	1822	55,5508958	75,31689889
325	38,6	1612	45,07889067	61,11876689
325	43	1862	59,04959589	80,0604991
325	51	1650	54,55923816	73,97239171
325	40	1450	39,38230211	53,39523014
325	37	1858	54,81265793	74,31598277
325	44,5	2002	66,98779831	90,82325603
325	41,9	1886	59,43498684	80,58301904
325	42,8	1802	56,09711988	76,05747927
330	9	843	9,307430216	12,61918049
330	10	900	10,72303461	14,53848226
330	11	952	12,12915881	16,44493063
330	12	1006	13,6683011	18,53172729
330	31	1431	34,60026167	46,91165412
335	40	1767	55,12248387	74,73605032
335	37,5	1500	41,74654204	56,60070895

335	16,3	1143	19,13375496	25,94188747
350	36	1557	46,21465375	62,65865479
350	23	1446	34,18380849	46,34701944
350	27	1564	41,20094164	55,86097417
350	38	1565	47,80713349	64,81776733
350	42	1642	54,01917254	73,24016107
350	36,7	1661	51,49430235	69,81689688
350	40,8	1783	60,30854786	81,76740872
350	34	1377	37,31922164	50,59806871
350	35	1382	38,07315579	51,62026613
350	39	1712	55,48422381	75,22650381
350	43	1877	66,87098292	90,66487563
350	35	1697	52,1260401	70,67341823
350	42	1912	68,05157669	92,26554581
350	38	1675	53,00945809	71,87117215
350	42,5	1863	65,74702316	89,14099087
350	11	1032	15,44865193	20,94555881
350	18,5	1461	32,43686163	43,97847761
350	34	1394	38,0144417	51,54066051
350	31	1290	32,31769817	43,81691367
350	33	1306	33,96154764	46,0456742
350	35	1404	38,98307418	52,85394977
350	42,3	1527	48,72106931	66,05689788
350	30,8	1544	42,53875978	57,67481195
350	34,1	1619	47,88219581	64,91953817
350	36,1	1652	50,68191861	68,71545245
350	11	1032	15,44865193	20,94555881
350	18,5	1461	32,43686163	43,97847761
350	42	1912	68,05157669	92,26554581
350	42,5	1853	65,20783129	88,40994488
350	43	1877	66,87098292	90,66487563

370	370 8 746 8,91		8,912680195	12,08397135
370	370 12 926		14,42746904	19,56102078
370	10	889	12,80603817	17,36265578
370	10	851	11,86604479	16,08819593
370	10,1	886	12,76247214	17,30358818
370	12,5	1060	18,42712598	24,98382725
370	17	1334	29,80144865	40,40533752
370	16	1326	29,01064677	39,33315419
370	18,5	1431	34,43136694	46,68266362
370	30	1541	45,82977009	62,13682265
370	33	1652	53,21619412	72,15146856
370	32	1452	42,84726305	58,09308621
370	35,3	1614	52,76577815	71,54078652
370	370 30 1515 44,5982769		44,59827698	60,46714224
370	32,5	1625	51,51616366	69,84653683
370	42,5	1566	55,0129923	74,58759969
375	32,4	1491	45,8600632	62,17789459
375	36	1657	56,63527008	76,78711295
375	40,6	1604	56,88556289	77,12646441
375	31,5	1538	47,60331441	64,54142578
375	33,8	1589	51,61664863	69,98277616
375	32	1455	43,89858285	59,51848442
375	35,3	1593	52,79274912	71,57735425
375	30,2	1561	47,93424722	64,9901104
375	33,1	1625	53,02262724	71,88902712
375	29,6	1492	44,22652849	59,96311898
375	32,8	1659	54,60635792	74,03627753
385	38	1487	51,11996694	69,30936623
385	39	1528	53,94643452	73,14154156
385	39	1648	60,60016303	82,16278579
385	42,5	1794	71,8472491	97,41178639
385	15	1208	25,99258808	35,24121619

385	18,5	1396	35,32974655	47,90070278
400	33,5	1465	50,08461666	67,90561978
400	37,2	1633	62,13030075	84,23737388
400	36	1391	47,70845699	64,68397996
400	39,5	1648	64,67851488	87,69228823
400	15	1208	27,78112762	37,66615011
400	17,5	1335	34,41237818	46,65691832
400	31,5	1535	52,62204932	71,3459164
400	37	1725	67,62819099	91,69151189
400	16,2	1361	34,89316669	47,30877999
400	17,9	1272	31,8572051	43,19256892
400	31	1545	52,85017183	71,65520899
400	34,3	1688	63,39270089	85,94895859
400	34	1514	53,0857232	71,97457375
400	40	1721	69,59941035	94,36412638
440	7	643	9,038161158	12,25410068
440	10	799	14,39422354	19,51594593
440	35	1250	46,25996382	62,72008699
440	40	1450	61,82454333	83,82282251
440	30	950	28,31551326	38,39067973
440	30	1217	41,46777611	56,22275312
440	28	1105	34,58570481	46,89191766
440	34	1175	41,50701697	56,27595658
440	25,5	1255	40,92644229	55,48880304
440	28,2	1381	49,64499996	67,30957959
440	30,6	1488	57,78221333	78,34215914
440	14,5	1191	31,77773663	43,08482414
440	14,5	1195	31,9669054	43,34130255
440	13	1114	27,53681989	37,33491332
440	15,2	1231	34,0592531	46,17814502
440	15,7	1213	33,44318911	45,34287443
440	16,5	1278	37,10088936	50,3020499

440	0 7 643 9,038161158		12,25410068	
440	440 10 799 14,3		14,39422354	19,51594593
440	440 18,5 1300 39,34646744		53,34664486	
440	20,7	1393	45,70612347	61,96918034
440	30	1485	57,1846271	77,53194103
440	34	1554	64,48115065	87,42469827
440	35	1653	72,07011877	97,71395708
440	34	1509	61,48967844	83,3688067
440	38	1654	74,43930059	100,9261362
440	34	1345	51,18873124	69,4025981
440	34	1496	60,63870285	82,21503876
440	37	1609	70,46932483	95,54357201
440	10	936	19,07758357	25,86572929
440	10	957	19,85367886	26,91797318
440	10,1	1256	32,63341696	44,24497085
440	15	1122	28,84271877	39,1054744
440	29	1326	46,94097452	63,6434135
440	29,7	1386	50,89357639	69,00242187
440	30	1352	49,06986033	66,52979499
440	33	1540	62,83157579	85,18817514
440	32	1411	53,89890155	73,07709551
500	30	1360	61,07832756	82,8110898
500	32,2	1436	68,48258545	92,8499152
500	24	1020	35,14779059	47,65400363
500	31	1400	64,80872591	87,86883067
500	32,5	1302	58,53866236	79,36776627
500	33	1482	72,76353287	98,65410034
500	27	1356	58,70629563	79,59504646
500	30	1463	68,98135068	93,52615001
500	16	1115	36,27408709	49,18105659
500	18,5	1222	44,14173972	59,84816085
500	13	1020	29,55460387	40,07066096
500	15	1111	35,50990324	48,14496244
500	31,5	1275	55,91759553	75,81407695
500	35	1475	73,72484999	99,95747129

500	28,5	1359	59,96012775	81,29501449
545	30	1322	67,25139598	91,18064647
600	30,3	1389	86,2842148	116,9856829
700	27,2	1294	96,81428385	131,262539
700	27,5	1200	85,12800228	115,4180693
700	27	1126	75,88185397	102,8819759
700	24,5	1200	82,66924713	112,084445
700	25	1036	64,34974205	87,24653213
700	25,4	1067	68,00132864	92,19741859
700	22,2	982	56,80230978	77,01358836

• Análise para .50 BMG

PROJÉTIL [gr]	PÓLVORA [gr]	VELOCIDADE [fps]	FREE RECOIL ENERGY [ft-lbs]	[N.m]
850	190,5	2349	92,42374186	125,3097636
850	208,3	2573	110,7707897	150,1850195
850	214,7	2447	105,4469528	142,9668661
850	238	2716	129,7973627	175,9815878

RESULTADOS DOS TESTES DE FORÇA DE TRAÇÃO DE GATILHO (Pistola marca Taurus, modelo PT 24/7 POLICE, calibre .40 S&W). Laudo de Perícia Criminal nº 1239/16 – IC.

Com cada pistola vazia, aplicou-se uma força para recuar o gatilho, no modo de ação dupla, paralelamente ao cano, tendo sido usado um dinamômetro (fundo de escala de 5,7 Kgf e resolução de 0,01 Kgf) para aplicar a carga até o disparo.

	á	antes do	os testes	;	d	epois d	os teste	es
Arma	Corrida 1	Corrida 2	Corrida 3	média	Corrida 1	Corrida 2	Corrida 3	média
1	3,87	3,9	3,83	3,87	3,78	3,86	4,01	3,88
2	3,76	3,58	3,85	3,73	3,96	3,81	3,73	3,83
3	3,14	3,78	3,51	3,48	3,34	3,62	3,23	3,40
4	3,83	3,63	3,8	3,75	3,65	3,75	3,66	3,69
5	3,46	3,61	3,78	3,62	3,81	3,66	3,6	3,69
6	3,89	3,61	3,87	3,79	3,78	3,82	3,9	3,83
7	3,73	3,85	3,85	3,81	3,83	3,94	3,75	3,84
8	3,63	3,67	3,49	3,60	3,51	3,59	3,47	3,52
9	3,44	3,39	3,68	3,50	3,85	3,54	3,75	3,71
10	3,32	3,37	3,43	3,37	3,53	3,59	3,91	3,68
11	4,21	3,66	4,2	4,02	3,72	3,5	3,89	3,70
12	3,37	3,49	3,43	3,43	3,82	3,61	3,89	3,77
13	3,8	4,1	3,82	3,91	3,67	3,74	3,88	3,76
14	3,55	3,49	3,21	3,42	3,53	3,54	3,75	3,61
15	3,8	3,57	3,8	3,72	3,78	3,59	3,66	3,68
16	3,33	3,53	3,54	3,47	3,87	3,92	3,63	3,81
17	3,27	3,47	3,48	3,41	3,76	3,64	3,72	3,71
18	3,79	3,61	3,86	3,75	3,87	3,84	3,62	3,78
19	3,62	3,79	3,6	3,67	3,66	3,82	3,64	3,71
20	3,45	3,34	3,26	3,35	3,92	3,76	3,7	3,79
21	3,44	3,93	3,63	3,67	3,89	3,76	3,99	3,88
22	3,56	3,59	3,64	3,60	3,73	3,69	3,61	3,68
23	3,45	3,69	3,65	3,60	3,56	3,6	4	3,72
24	3,99	3,98	3,97	3,98	3,98	4,1	4,12	4,07
25	3,17	3,38	3,4	3,32	3,89	3,65	3,75	3,76

Os valores médios para as forças de tração de gatilho são compatíveis com os valores deste modelo de arma. O fato não ter havido variação significativa nos valores de força de tração de gatilho, para nenhuma das armas examinadas, indica que mesmo após a realização dos testes o mecanismo percussão não sofreu alteração.
Páginas retiradas do catálogo de produtos da Gerdau.

Barra Chata

Tamanho	nominal	Peso aprox.
pol.	mm	kg/m
1" x 3/8"	25,40 x 9,53	1,90
1.1/4" x	31,75 x	2.38
1.1/2" x	38,10 x	2,85
2" x	50,80 x	3,80
2.1/2" x	63,50 x	4,75
3* x	76,20 x	5,70
4* x	101,60 x	7,60
4.3/4" x	114,30 x	9,03
6" x	152,40 x	11,40
7/8" x 1/2"	22,23 x 12,70	2,22
1" x	25,40 x	2,53
1.1/4" x	31,75 x	3,17
1.1/2° x	38,10 x	3,80
2" x	50,80 x	5,06
2.1/2" x	63,50 x	6,33
3″ x	76,20 x	7,60
4" x	101,60 x	10,13
4.1/2" x	114,30 x	11,40
6" x	152,40 x 15,88	15,19
1.1/2" x 5/8"	38,10 x	4,75
1.3/4" x	44,45 x	5,54
2" x	50,80 x	6,33
2.1/2" x	63,50 x	7,92
3" x	76,20 x	9,50
3.1/2" x	88,90 x	11,08
4'	101,60 x	12,67
6" x	152,40 x 17,46	19,00
3.1/2" x 11/16"	88,90 x 19,05	12,18
2" x 3/4"	50,80 x	7,60
2.1/2" x	63,50 x	9,50
3" x	76,20 x	11,40
3.1/2" x	88,90 x	13,29
4* x	101,60 x	15,19
6" x	152,40 x 25,40	22,79
2" x 1"	50,80 x	10,13
3″ x	76,20 x	15,19
3.1/2" x	88,90 x	17,73
4* x	101,60 x	20,26
6" x	152,40 x 31,75	30,39
4" x 1.1/4"	101,60 x 38,10	25,32
4" x 1.1/2"	101,60 x	30,39
4.1/4" x	107,95 x	32,29
3" x 2"	76,20 x 50,80	30,39

- Barras de órn.

 Normalmente fornecida de acordo com a Norma ASTM A 36 NBR 7007 MR250.
Sab consulto, pode também ser fornecida segundo as Normas ASTM A 572, ASTM A 588 (resistente à conosão atmosférica), SAE 5160 (aço para mola), SAE 1045 ou SAE 1020.

Barra Redonda

Bit	olas (d)	Peso Linear
pol.	mm	Kg/m
1/4*	6.35	0.25
5/16*	7,94	0,39
3/8"	9,53	0,56
1/2"	12,70	0,99
9/16*	14,29	1,26
5/8"	15,88	1,56
11/16"	17,46	1,88
3/4*	19,05	2,24
13/16*	20,64	2,63
7/8"	22,23	3,05
15/16*	23,81	3,49
h.	25,40	3,98
1.1/16"	26,99	4,49
1.1/8"	28,58	5,04
1.3/16	30,16	5,60
1.1/4"	31,75	6,221
1.5/16"	33,34	6,85
1.3/8"	34,93	7,52
1.7/16"	36,51	8,22
1.1/2*	38,10	8,95
1.9/16"	39,69	9,71
1.5/8"	41,28	10,50
1.11/16*	42,86	11,32
1.3/4*	44,45	12,18
1.13/16"	46,40	13,06
1.//8	4/,63	13,98
T	50,80	15,91
2.1/16	52,39	10,92
2.1/8	23,70	17,70
L1/4	2/,12	20,14
L.3/ 10	20,74	21,27
2.3/0	60,33	22,93
21/9*	63.50	23,03
2.1/2	65,50	24,00
2.7/10	44.48	20,11
2.3/0	60,00	30.08
2 13/16"	71 44	31.45
27/8"	73.03	32.87
3"	76.20	3579
31/8"	79.38	38.84
3.1/4"	82.55	42.01
3.1/2"	88.90	48.73
3.3/4"	95.35	55.94
4	101,60	63,64
4.1/16*	103,19	65,65

-Barras de óm.

Bairas de Om.
Normalmente fomecida de acordo com a Norma ASTM A 36 J 403/ NBR 7007 MR2.
Sob consulta, também poderá ser fomecida de acordo com as Normas ASTM A 572, ASTM A 588 (resistente a corrasão atmosférica), SAE 1020 ou SAE 1045.

Barra Quadrada

Bito	las	Peso linear aproximado
polegado	mm	kg/m
1/4"	6,35	0,31
5/16"	7,94	0,50
3/8*	9,53	0,71
1/2"	12,70	1,27
5/8*	15,88	1,98
3/4"	19,05	2,85
7/8 ^r	22,23	3,88
1*	25,40	5,06
1.1/8*	28,58	6,41
1.1/4*	31,75	7,91
1.1/2*	38,10	11,15
1.3/4"	44,45	15,19
2*	50,80	20,26

Barras de ám.
Fornecida de acordo com a Norma ASTM A 36 NBR 7007 MR2. Sob consulta, também pode ser fornecida nas qualidades SAE 1020 ou SAE 1045.

Cantoneira (mm)

mm mm cm ⁴ cm ³ cm cm cm kg/m 4000 3,00 3,58 1,24 1,24 0,79 1,11 1,87 4000 30,80 4,00 4,47 1,55 1,22 0,79 1,15 2,42 37,50 5,00 5,56 1,97 1,22 0,79 1,18 3,00 45,00 3,00 5,16 1,58 1,41 0,89 1,23 2,12 45,00 3,00 7,15 1,96 1,57 0,99 1,35 2,38 38,40 4,00 9,26 2,57 1,55 0,97 1,42 3,77 56,90 6,00 12,80 3,72 1,51 0,97 1,45 3,44 60,00 5,00 19,40 4,45 1,82 1,17 1,44 4,57 64,40 4,00 2,280 5,29 1,82 1,17 1,44 5,71 64,00 5,00 14,	bį	Årea	ŧ	h=2f	W _X =W _Y	Гд=Гү	rz.min.	Х	Peso
23,10 3,00 3,58 1,24 1,24 0,79 1,11 1,87 40,00 4,00 4,47 1,55 1,22 0,79 1,15 2,42 37,50 5,00 5,54 1,97 1,22 0,79 1,18 3,00 45,00 3,40 4,00 6,67 2,07 1,39 0,89 1,22 2,12 45,00 5,00 7,84 2,43 1,35 0,87 1,40 3,38 50,00 5,00 7,84 2,43 1,35 0,87 1,40 3,38 8,40 4,00 9,25 2,57 1,55 0,99 1,40 3,09 48,00 5,00 11,00 3,05 1,54 0,97 1,56 4,47 40,00 5,00 11,00 3,05 1,54 0,97 1,56 3,44 6000 38,20 5,00 19,40 4,45 1,82 1,17 1,64 4,57 65,00	mm	an ²	mm	cm4	cm ³	cm	cm	cm	kg/m
40.00 30,80 4,00 4,47 1,55 1,22 0,79 1,15 2,42 37,50 5,00 5,56 1,97 1,22 0,79 1,18 3,00 45,00 34,40 4,00 6,67 2,07 1,39 0,89 1,28 2,77 45,00 5,00 7,84 2,43 1,35 0,87 1,40 3,38 29,10 3,00 7,15 1,96 1,57 0,99 1,35 2,35 50,00 48,00 5,00 11,00 3,05 1,54 0,97 1,42 3,77 56,90 6,00 12,80 3,72 1,51 0,97 1,42 3,77 56,90 6,00 12,80 3,72 1,51 0,97 1,55 3,64 60,90 92,20 5,00 19,40 4,45 1,82 1,17 1,64 4,57 61,10 6,00 22,80 5,29 1,82 <th1,17< th=""> 1,48 5,51<td></td><td>23,10</td><td>3,00</td><td>3,58</td><td>1,24</td><td>1,24</td><td>0,79</td><td>1,11</td><td>1,87</td></th1,17<>		23,10	3,00	3,58	1,24	1,24	0,79	1,11	1,87
37,50 5,00 5,54 1,97 1,22 0,79 1,18 3,00 45,00 34,40 4,00 6,67 2,07 1,39 0,89 1,23 2,12 45,00 5,00 7,84 2,43 1,35 0,87 1,40 3,38 760 34,40 4,00 9,26 2,57 1,55 0,99 1,35 2,36 5000 38,40 4,00 9,26 2,57 1,55 0,99 1,40 3,09 48,00 5,00 11,00 3,05 1,54 0,97 1,42 3,77 56,90 6,00 12,80 3,72 1,51 0,97 1,42 3,77 56,90 6,00 12,80 3,72 1,88 1,19 1,45 3,44 60,00 38,20 5,00 19,40 4,45 1,82 1,17 1,84 4,57 61,10 6,00 21,90 4,42 2,03 1,28 1,77 4,98	40,00	30,80	4,00	4,47	1,55	1,22	0,79	1,15	2,42
38,10 3,00 \$16 1,58 1,41 0,89 1,23 2,12 45,00 34,40 4,00 6,67 2,07 1,39 0,89 1,28 2,77 43,00 5,00 7,84 2,43 1,25 0,87 1,40 3,38 5000 38,40 4,00 9,26 2,57 1,55 0,99 1,35 2,36 5000 48,00 5,00 11,00 3,05 1,54 0,97 1,42 3,77 56,90 6,00 1280 3,72 1,51 0,97 1,55 3,64 6000 58,20 5,00 1940 4,45 1,82 1,17 1,64 4,57 64,10 4,00 22,80 5,29 1,82 1,17 3,96 65,00 58,20 5,00 24,70 5,20 2,01 1,28 1,77 3,96 65,00 6,00 32,00 6,44 2,01 1,28 1,77 3,96		37,50	5,00	5,56	1,97	1,22	0,79	1,18	3,00
45,00 31,40 4,00 6,67 2,07 1,39 0,89 1,28 2,77 43,00 5,00 7,84 2,43 1,35 0,87 1,40 3,38 50,00 38,40 4,00 9,26 2,57 1,55 0,99 1,35 2,36 48,00 5,00 11,00 3,05 1,54 0,97 1,42 3,77 56,90 6,00 12,80 3,72 1,51 0,97 1,55 4,47 60,00 58,20 5,00 19,40 4,45 1,82 1,17 1,64 4,57 60,10 6,00 22,80 5,29 1,82 1,17 1,84 4,57 60,10 6,00 22,80 5,29 1,82 1,17 1,84 5,51 60,10 5,00 24,70 5,20 2,01 1,28 1,77 4,98 74,40 6,00 30,00 6,44 2,01 1,28 1,71 4,98		26,10	3,00	5,16	1,58	1,41	0,89	1,23	2,12
48,00 5,00 7,84 2,43 1,35 0,87 1,40 3,38 50,00 3,00 7,15 1,96 1,57 0,99 1,35 2,36 38,40 4,00 9,26 2,57 1,55 0,99 1,40 3,09 48,00 5,00 11,00 3,05 1,54 0,97 1,42 3,77 56,90 6,00 12,80 3,72 1,51 0,97 1,56 4,47 60,00 98,20 5,00 19,40 4,45 1,82 1,17 1,64 4,57 64,00 5,00 19,40 4,45 1,82 1,17 1,82 5,42 64,00 5,00 19,40 4,45 1,82 1,17 1,82 5,42 64,00 5,00 22,80 5,29 1,82 1,17 1,82 5,42 65,00 5,00 24,70 5,20 2,01 1,28 1,77 4,98 71,40 6,00	45,00	31,40	4,00	6,67	2,07	1,39	0,89	1,28	2,77
29,10 3,00 7,15 1,96 1,57 0,99 1,35 2,36 38,40 4,00 9,26 2,57 1,55 0,99 1,40 3,09 48,00 5,00 11,00 3,05 1,54 0,97 1,42 3,77 56,90 6,00 12,80 3,72 1,51 0,97 1,36 4,47 46,40 4,00 14,31 3,75 1,88 1,19 1,45 3,44 6000 58,20 5,00 19,40 4,45 1,82 1,17 1,44 4,57 64010 6,00 22,80 5,29 1,82 1,17 1,44 4,57 65,00 64,00 20,90 4,42 2,03 1,28 1,77 3,96 65,00 64,00 20,90 4,42 2,03 1,28 1,77 3,96 65,00 5,00 34,00 7,06 2,31 1,48 2,02 5,71 75,00 30,0 <td></td> <td>43,00</td> <td>5,00</td> <td>7,84</td> <td>2,43</td> <td>1,35</td> <td>0,87</td> <td>1,40</td> <td>3,38</td>		43,00	5,00	7,84	2,43	1,35	0,87	1,40	3,38
38,40 4,00 9,26 2,57 1,55 0,99 1,40 3,09 48,00 5,00 11,00 3,05 1,54 0,97 1,42 3,77 96,90 6,00 12,80 3,72 1,51 0,97 1,42 3,77 60,00 98,20 5,00 19,40 4,45 1,82 1,17 1,64 4,57 60,10 6,00 22,80 5,29 1,82 1,17 1,82 5,42 60,10 6,00 22,80 5,29 1,82 1,17 1,82 5,42 65,00 63,40 5,00 24,70 5,20 2,01 1,28 1,77 4,98 74,40 6,00 30,00 6,44 2,01 1,28 1,84 5,91 75,00 38,70 7,06 2,33 1,48 2,05 6,87 101,00 7,00 52,60 9,73 2,28 1,46 2,09 7,92 80,00 12,00<		29,10	3,00	7,15	1,96	1,9	0,99	1,35	2,36
30µ0 48,00 5,00 11,00 3,05 1,54 0,97 1,42 3,77 56,90 6,00 12,80 3,72 1,51 0,97 1,56 4,47 60,00 58,20 5,00 19,40 4,45 1,82 1,17 1,64 4,57 60,00 58,20 5,00 19,40 4,45 1,82 1,17 1,64 4,57 60,10 6,00 22,80 5,29 1,82 1,17 1,84 4,57 69,10 6,00 20,90 4,42 2,03 1,29 1,77 3,96 65,00 63,40 5,00 24,70 5,20 2,01 1,28 1,84 5,91 74,40 6,00 30,00 6,44 2,01 1,28 1,84 5,91 75,00 38,70 7,06 2,31 1,48 2,06 6,87 101,00 7,00 52,60 9,73 2,28 1,46 2,09 7,92	-	38,40	4,00	9,26	2,57	1,55	0,99	1,40	3,09
56,90 6,00 12,80 3,72 1,51 0,97 1,56 4,47 46,40 4,00 16,31 3,75 1,88 1,19 1,65 3,64 60,00 58,20 5,00 19,40 4,45 1,82 1,17 1,64 4,57 69,10 6,00 22,80 5,29 1,82 1,17 1,82 5,42 50,40 4,00 20,90 4,42 2,08 1,29 1,77 3,96 65,00 63,40 5,00 24,70 5,20 2,00 1,28 1,77 4,98 74,40 6,00 30,00 6,44 2,01 1,28 1,84 5,91 75,00 38,70 7,06 2,31 1,48 2,02 5,71 75,00 5,00 48,60 8,35 2,50 1,58 2,22 7,25 80,00 7,20 5,00 48,60 8,35 2,50 1,58 2,22 7,25 101,00<	soho	48,00	5,00	11,00	3,05	1,51	0,97	1,42	3,77
46,40 4,00 16,31 3,75 1,88 1,19 1,65 3,64 60,00 58,20 5,00 19,40 4,45 1,82 1,17 1,64 4,57 69,10 6,00 22,80 5,29 1,82 1,17 1,82 5,42 65,00 63,40 5,00 24,70 5,20 2,01 1,28 1,77 3,96 65,00 63,40 5,00 24,70 5,20 2,01 1,28 1,77 4,98 74,40 6,00 30,00 6,44 2,01 1,28 1,94 5,91 75,00 5,00 38,70 7,06 2,31 1,48 2,02 5,71 75,00 5,00 45,70 8,40 2,30 1,48 2,05 6,87 101,00 7,00 52,60 9,73 2,28 1,46 2,09 7,92 80,00 70,00 57,30 9,91 2,49 1,58 2,22 7,25		56,90	6,00	12,80	3,72	1,51	0,97	1,56	4,47
60,00 58,20 5,00 19,40 4,45 1,62 1,17 1,64 4,57 69,10 6,00 22,80 5,29 1,82 1,17 1,82 5,42 50,40 4,00 20,90 4,42 2,03 1,29 1,77 3,96 65,00 63,40 5,00 24,70 5,20 2,01 1,28 1,77 4,98 74,40 6,00 30,00 6,44 2,01 1,28 1,84 5,91 75,00 77,70 5,00 38,70 7,06 2,31 1,48 2,02 5,71 75,00 7,20 5,00 48,60 8,35 2,30 1,48 2,05 6,87 70,00 7,00 52,60 9,73 2,28 1,46 2,09 7,92 80,00 7,00 54,60 8,35 2,50 1,58 2,22 7,25 101,00 7,00 64,20 11,10 2,44 1,57 2,21 8		46,40	4,00	16,31	3,75	1,88	1,19	1,65	3,64
66,10 6,00 22,80 5,29 1,82 1,17 1,82 5,42 40,40 4,00 20,90 4,42 2,03 1,29 1,77 3,96 65,00 63,40 5,00 24,70 5,20 2,01 1,28 1,77 4,98 74,40 6,00 30,00 6,44 2,01 1,28 1,84 5,91 75,00 38,70 7,06 2,31 1,48 2,02 5,71 75,00 87,20 6,00 45,70 8,40 2,30 1,48 2,05 6,87 101,00 7,00 52,60 9,73 2,28 1,46 2,09 7,92 77,50 5,00 48,60 8,35 2,50 1,59 2,18 6,08 90,00 7,00 52,60 9,73 2,28 1,46 2,09 7,92 108,00 7,00 48,40 8,35 2,50 1,55 2,26 9,66 90,00 121,	60,00	58,20	5,00	19,40	4,45	1,82	1,17	1,64	4,57
50,40 4,00 20,90 4,42 2,03 1,29 1,77 3,96 65,00 63,40 5,00 24,70 5,20 2,01 1,28 1,77 4,98 74,40 6,00 30,00 6,44 2,01 1,28 1,84 5,91 75,00 5,00 38,70 7,06 2,31 1,48 2,02 5,71 75,00 87,20 6,00 45,70 8,40 2,30 1,48 2,05 6,87 101,00 7,00 52,40 9,73 2,28 1,46 2,09 7,92 80,00 92,40 6,00 57,30 9,91 2,49 1,58 2,22 7,25 108,00 7,00 48,60 8,35 2,50 1,58 2,22 7,25 108,00 7,00 64,20 11,10 2,49 1,57 2,21 8,49 123,00 8,00 72,30 12,60 2,42 1,55 2,26 9,66		69,10	6,00	22,80	5,29	1,82	1,17	1,82	5,42
65,00 63,40 5,00 24,70 5,20 2,01 1,28 1,77 4,98 74,40 6,00 30,00 6,44 2,01 1,28 1,84 5,91 75,00 87,20 5,00 38,70 7,06 2,31 1,48 2,02 5,71 75,00 87,20 6,00 45,70 8,40 2,30 1,48 2,02 5,71 75,00 87,20 6,00 45,70 8,40 2,30 1,48 2,02 5,71 80,00 7,00 52,60 9,73 2,28 1,46 2,09 7,92 77,50 5,00 48,60 8,35 2,50 1,59 2,18 6,08 90,00 7,00 5,30 9,91 2,49 1,58 2,22 7,25 108,00 7,00 64,20 11,10 2,44 1,57 2,21 8,49 123,00 8,00 72,30 12,60 2,42 1,55 2,26 <th< td=""><td></td><td>50,40</td><td>4,00</td><td>20,90</td><td>4,42</td><td>2,03</td><td>1,29</td><td>1,77</td><td>3,96</td></th<>		50,40	4,00	20,90	4,42	2,03	1,29	1,77	3,96
74,40 6,00 30,00 6,44 2,01 1,28 1,84 5,91 75,00 72,70 5,00 38,70 7,06 2,31 1,48 2,02 5,71 75,00 87,20 6,00 45,70 8,40 2,30 1,48 2,05 6,87 101,00 7,00 52,60 9,73 2,28 1,46 2,09 7,92 80,00 92,40 6,00 57,30 9,91 2,49 1,58 2,22 7,25 108,00 7,00 64,20 11,10 2,44 1,57 2,21 8,49 123,00 8,00 72,30 12,60 2,42 1,55 2,26 9,64 106,00 6,00 80,30 12,20 2,75 1,78 2,41 8,30 90,00 121,00 7,00 94,80 14,60 2,80 1,78 2,51 9,50 139,00 8,00 104,00 16,10 2,74 1,76 2,50	65,00	63,40	5,00	24,70	5,20	2,01	1,28	1,77	4,98
72,70 5,00 38,70 7,06 2,31 1,48 2,02 5,71 75,00 87,20 6,00 45,70 8,40 2,30 1,48 2,06 6,87 101,00 7,00 52,60 9,73 2,28 1,46 2,09 7,92 80,00 92,40 6,00 57,30 9,91 2,49 1,59 2,18 6,08 92,40 6,00 57,30 9,91 2,49 1,58 2,22 7,25 108,00 7,06 64,20 11,10 2,44 1,57 2,21 8,49 123,00 8,00 72,30 12,60 2,42 1,55 2,26 9,66 106,00 6,00 80,30 12,20 2,76 1,78 2,41 8,30 90,00 121,00 7,00 94,80 14,60 2,80 1,78 2,51 9,50 139,00 8,00 104,00 16,10 2,74 1,76 2,50 10,90		74,40	6,00	30,00	6,44	2,01	1,28	1,84	5,91
75,00 87,20 6,00 45,70 8,40 2,30 1,48 2,05 6,87 101,00 7,00 52,40 9,73 2,28 1,46 2,09 7,92 80,00 92,40 6,00 57,30 9,91 2,49 1,58 2,22 7,25 108,00 7,00 64,20 11,10 2,44 1,57 2,21 8,49 123,00 8,00 72,30 12,60 2,42 1,55 2,26 9,66 90,00 121,00 7,00 94,80 14,60 2,80 1,78 2,41 8,30 90,00 121,00 7,00 94,80 14,60 2,80 1,78 2,51 9,50 139,00 8,00 104,00 16,10 2,74 1,76 2,50 10,90 106,00 7,00 128,00 17,50 3,13 1,99 2,72 9,14 139,00 8,00 14,40 15,70 3,13 1,97 2,69 </td <td></td> <td>72,70</td> <td>5,00</td> <td>38,70</td> <td>7,06</td> <td>2,31</td> <td>1,48</td> <td>2,02</td> <td>5,71</td>		72,70	5,00	38,70	7,06	2,31	1,48	2,02	5,71
101,00 7,00 52,60 9,73 2,28 1,46 2,09 7,92 80,00 77,50 5,00 48,60 8,35 2,50 1,59 2,18 6,08 92,40 6,00 57,30 9,91 2,49 1,58 2,22 7,25 108,00 7,00 64,20 11,10 2,44 1,57 2,21 8,49 123,00 8,00 72,30 12,60 2,42 1,55 2,26 9,64 106,00 6,00 80,30 12,20 2,75 1,78 2,41 8,30 90,00 121,00 7,00 94,80 14,60 2,80 1,78 2,51 9,50 139,00 8,00 104,00 16,10 2,74 1,76 2,50 10,90 100,00 139,00 7,00 128,00 17,50 3,13 1,99 2,72 9,14 109,00 14,500 19,90 3,06 1,97 2,69 10,70 <t< td=""><td>75,00</td><td>87,20</td><td>6,00</td><td>45,70</td><td>8,40</td><td>2,30</td><td>1,48</td><td>2,05</td><td>6,87</td></t<>	75,00	87,20	6,00	45,70	8,40	2,30	1,48	2,05	6,87
100,00 106,00 5,00 48,60 8,35 2,50 1,59 2,18 6,08 92,40 6,00 57,30 9,91 2,49 1,58 2,22 7,25 108,00 7,00 64,20 11,10 2,44 1,57 2,21 8,49 123,00 8,00 72,30 12,60 2,42 1,55 2,26 9,66 90,00 106,00 6,00 80,30 12,20 2,76 1,78 2,41 8,30 90,00 121,00 7,00 94,80 14,60 2,80 1,78 2,51 9,50 139,00 8,00 104,00 16,10 2,74 1,76 2,50 10,90 139,00 8,00 104,00 16,10 2,74 1,76 2,50 10,90 139,00 8,00 114,40 15,70 3,13 1,99 2,72 9,14 109,00 16,10 17,50 3,06 1,97 2,69 10,70		101,00	7,00	52,60	9,73	2,28	1,46	2,09	7,92
92,40 6,00 57,30 9,91 2,49 1,58 2,22 7,25 108,00 7,00 64,20 11,10 2,44 1,57 2,21 8,49 123,00 8,00 72,30 12,60 2,42 1,55 2,26 9,66 90,00 106,00 6,00 80,30 12,20 2,75 1,78 2,41 8,30 90,00 121,00 7,00 94,80 14,60 2,80 1,78 2,51 9,50 139,00 8,00 104,00 16,10 2,74 1,76 2,50 10,90 106,00 7,00 14,40 15,70 3,13 1,99 2,72 9,14 139,00 8,00 104,00 16,10 2,74 1,76 2,50 10,90 100,00 116,40 6,00 114,40 15,70 3,13 1,99 2,72 9,14 137,00 7,00 128,00 17,50 3,06 1,97 2,69		77,50	5,00	48,60	8,35	2,50	1,59	2,18	6,08
80,00 108,00 7,00 64,20 11,10 2,44 1,57 2,21 8,49 123,00 8,00 72,30 12,60 2,42 1,55 2,26 9,66 106,00 6,00 80,30 12,20 2,76 1,78 2,41 8,30 90,00 121,00 7,00 94,80 14,60 2,80 1,78 2,51 9,50 139,00 8,00 104,00 16,10 2,74 1,76 2,50 10,90 116,40 6,00 114,40 15,70 3,13 1,99 2,72 9,14 137,00 7,00 128,00 17,50 3,06 1,97 2,69 10,70 155,00 8,00 145,00 19,90 3,06 1,96 2,74 12,20 172,00 9,00 164,30 22,90 3,09 1,97 2,83 13,50		92,40	6,00	57,30	9,91	2,49	1,58	2,22	7,25
123,00 8,00 72,30 12,60 2,42 1,55 2,26 9,66 90,00 106,00 6,00 80,30 12,20 2,76 1,78 2,41 8,30 90,00 121,00 7,00 94,80 14,60 2,80 1,78 2,51 9,50 139,00 8,00 104,00 16,10 2,74 1,76 2,50 10,90 116,40 6,00 114,40 15,70 3,13 1,99 2,72 9,14 137,00 7,00 128,00 17,50 3,06 1,97 2,69 10,70 100,00 155,00 8,00 145,00 19,90 3,06 1,94 2,74 12,20 172,00 9,00 16430 22,90 3,09 1,97 2,83 13,50	soho	108,00	7,00	64,20	11,10	2,44	1,57	2,21	8,49
106,00 6,00 80,30 12,20 2,76 1,78 2,41 8,30 90,00 121,00 7,00 94,80 14,60 2,80 1,78 2,51 9,50 139,00 8,00 104,00 16,10 2,74 1,76 2,50 10,90 116,40 6,00 114,40 15,79 3,13 1,99 2,72 9,14 100,00 137,00 7,00 128,00 17,50 3,06 1,97 2,69 10,70 100,00 155,00 8,00 145,00 19,90 3,06 1,97 2,69 10,70 155,00 9,00 164,30 22,90 3,09 1,97 2,83 13,50		123,00	8,00	72,30	12,60	2,42	1,55	2,26	9,66
90,00 121,00 7,00 94,80 14,60 2,80 1,78 2,51 9,50 139,00 8,00 104,00 16,10 2,74 1,76 2,50 10,90 116,40 6,00 114,40 15,70 3,13 1,99 2,72 9,14 137,00 7,00 128,00 17,50 3,06 1,97 2,69 10,70 155,00 8,00 145,00 19,90 3,06 1,96 2,74 12,20 172,00 9,00 16430 22,90 3,09 1,97 2,83 13,50		106,00	6,00	80,30	12,20	2,76	1,78	2,41	8,30
139,00 8,00 104,00 16,10 2,74 1,76 2,50 10,90 116,40 6,00 114,40 15,70 3,13 1,99 2,72 9,14 100,00 137,00 7,00 128,00 17,50 3,06 1,97 2,69 10,70 155,00 8,00 145,00 19,90 3,06 1,96 2,74 12,20 172,00 9,00 164,30 22,90 3,09 1,97 2,83 13,50	90,00	121,00	7,00	94,80	14,60	2,80	1,78	2,51	9,50
116,40 6,00 114,40 15,70 3,13 1,99 2,72 9,14 100,00 137,00 7,00 128,00 17,50 3,06 1,97 2,69 10,70 155,00 8,00 145,00 19,90 3,06 1,96 2,74 12,20 172,00 9,00 164,30 22,90 3,09 1,97 2,83 13,50		139,00	8,00	104,00	16,10	2,74	1,76	2,50	10,90
100,00 137,00 7,00 128,00 17,50 3,06 1,97 2,69 10,70 155,00 8,00 145,00 19,90 3,06 1,96 2,74 12,20 172,00 9,00 164,30 22,90 3,09 1,97 2,83 13,50		116,40	6,00	114,40	15,70	3,13	1,99	2,72	9,14
155,00 8,00 145,00 19,90 3,06 1,96 2,74 12,20 172,00 9,00 164,30 22,90 3,09 1,97 2,83 13,50	100.00	137,00	7,00	128,00	17,50	3,06	1,97	2,69	10,70
172.00 9.00 164.30 22.90 3.09 1.97 2.83 13.50	raaha	155,00	8,00	145,00	19,90	3,06	1,96	2,74	12,20
		172,00	9,00	164,30	22,90	3,09	1,97	2,83	13,50

 Praduzida segundo as normas ASTM A36 e A572/NBR 7007; em polegadas au em milimetros, pade ser fornecida em banas com comprimento de 6,00m ou 1 2,00m.

	6 150	6 150			3 125	3 12		4 100		NY 2 AN	1/2	2 20				.VZ	10	1/2 65			2 50				1/2 40		76 4/1	.1/4 32					1 25	1 25		3/4 20	3/4 20			1/2 15		3/8 10			pd. ant	Nonind						tela dimensi c
	8/23	6.1/2	6.1/4	5	3.9/16	3.1/2		4.1/2			3.3/4	5.1/2	0110					2.7/8	23/4	21/2	2.3/8	25/16	2.1/4	2	a.11-1	17/8	1.2/4			8/51	1.1/2	1.3/8		15/16	1.1/8	N N/B		1	7/8	01/01	3/4		8/2	2/1	pat	E						and e pesu
-	05 831	165.10	158.75	152.40	H1.30	N'451	00.771	114.30	113.20	00.100	2.5k	10.10	00.00	dine a	10.01	76.10	74.00	73.00	69.85	63.50	66.00	58.74	\$7.15	50.80	48.30	47.60	11.15	47.20	42.00	41.77	38,10	34.92	33.70	33.40	27,12	26.90	26.70	25.40	nz	00.11 MT07	19.05	17.20	15.87	02.6L	-	COLING.						is teóricos
																																														Putrio	-	(us)	(POL)			(kg/m)
																																			0 429 0			0.456 0			0.338 0		0.280 0	0 771 0		0.75	CUD C	36.4				- Norma
																																		TA ANT	53 0.			456 0.1			338 0.3		280 0.3	221 0.		075 D.	2/9 0	11	3			ASIM A
																															8.0	07		10.00	48 04			50 516	0.4	2 5	82 0.4	03	815 0.3	NS 0.2		50 53	B III	R 2				1/8, A
																							1.46	1.3	1	1 7	-		La	1.05	26 0.96	85.0 55		A. 1.0	0.0	200	0.0	44 0.63	73 0.55	510 55	03 0.47	52 0.42	32 0.38	22.0 16		0 10	0.1					SIMA I
																							5 1.46	0 130		7 171	111		0 1.07	1 1.05	8 0.96	5 0.88		12 V.M.	12 0 80	15 0.67	10 0.67	6 0.63	3 0.55	20052	0 0.47	2 0.42	0.38	4 0.30	h	6 105	Der 1	2				06, DIN
																							5 1466	1300		1917	112		0 1070	1 1051	8 0.968	2880			0.120	5 0475	0 0.670	6 0.636	3 0553	0520	0.470	2 0.422	7 0.387	0.304		1.05	L IZ	1 19				2440,1
															1.10	nee			2.032	1.844	1.749	1708	1.656	1.468	1394	1 373	1 780		1.20	1.185	1.092	0.998		inc.n	118.0	0.76	0.755	0.716	0.622	0.5%	820	0.474	0.434	0.340			100	1.20	i.			JIN 245
															1110	0000			2032	1844	1/749	1703	1.656	1468	1394	1373	1780		1207	1186	1092	0.998		1000	1181	0761	0.755	0716	0.622	595	0.528	0.474	0.434	0340		120		10	2			8, SCH
										SUITS.	2 1 22	5.2.55	5.1E		1100	2760	2.622	2.645	252	2.294	2175	210	2.059	1.824	173	110		1506	1.498	1.471	1354	1.2%	1191	1.180	1119	0.940	0.922	168.0	BEO	0/2	649.0	0.580	0.52	0.414		1.59		-				10, 501
										2/03	SUL	2155	1163	-	2103	2760	2682	2645	2528	2294	2175	2117	2059	1.824	1731	1705	1 680	1506	1.498	1471	1.354	1.236	1191	1180	1119	0.940	0.932	0.884	0767	0/32	0.649	1850	0.532	0414		19	HCI.	100	1/16			20 e 50
										4,012		4.007	1.98		3.901	3.41	3.36	3.331	3.184	2.886	2736	2.63	2.589	187	2 174	7 MI	1.001		1.879	1.845	1.696	1921	1.490	1.46	130	E.DI	1.162	1.101	0.953	0.909	0.804	0.717				1.90	1.70	ŝ				H 40.
										1.713 4	-	100 1	1.192		2,000 0	1000	100	202 3	3.347 3	3.033 3	2876 2	2799 7	1720 1	2407 2	2.284 2	7749	Long a	.983	.973	.937 1	1781	.624	1954	549	312	228	218	154	998 0	0.952 0	1841 0	0.750 0				200	191	14				
										C. 514		1 001	.772 4		1.000	100 A	3	502 3	317 3	.083 3.	26 3	799 3	720 3	407 2	284 2	2 6K		· · · · ·	.93 2	.937 2	1 187	624 1	54 1	549 1	312 1.	228 1	218 1	.154 1	998	952 1		1750				200 2	2.00 2	a a				
										CC DIC		0.00 4.0	108 41		100 11	100 800	y81 3.5	826 3.8	CE 187	399 33	221 3.2	3	046 30	694 26	555 25	CH 25	200 20	217 22	206 22	165 21	989 15	813 1.8	745 17	12 17	10 10	368 1.3	39 13	285 1.2	109 11	09 10	92 09					25 2	10 E		1			
										10	3		2 2		00	3 3		26	51	66	21	8	45	94	55	14	10	11	06	65	89	13	45	28	2 '	70	57	28	99	5 5	32					X 3	0					
																																				16				12						2.6	1 10					
	10 20	19701	10.20	87.6	NU'S	8.9	8,12	UT1	II.	0.40	6.00	2.42	12	1010	1	1.0		1G	4.39	3.97	3.76	3.64	3.54	314	2.90	290	9.70	25	2.57	15	23	2.10	2.00	200	1 15	15	15	1.4	1.20	121						5 245	in the second					
	6	7	12	10	51	2	0	1	10	12	52	50	4 6		1	5 2	5 25	- 20	12	17	56	5	52	9		1	3 8	5 25	12	24	7	3	8	6,7	3 2	100	12	10	g	9 17	5					2.65	2.0	e E	-109			
																																					1.690									242	181	102	BIL			
	12 730	11.993	11.523	11.053	10.252	10,114	7.1/4	4.17.0	8.153	COT I	10.00	0.00	CIT O	CUTC	2.410	2.00	5.23	5.179	4.945	4.06	4.240	4.124	4.005	3.526	3.30	OLE E	2167	2.900	2.885	2.831	2.97	2.362	121	2249	1.894	1.770	1.753	1.657								3.00	3.00					
	12 730	11.993	11.523	11.053	10.757	10.114	9.1/4	6.1.34	8.133	CUTI	0.825	CCCF	6.ZIS	CITC	2.910	2.408	5.753	5.179	4.945	4.476	4.239	4.124	4.005	3.536	3350	3 300	100	2,900	2.885	2.831	2597	2.362	2.271	1249	1.894	1768	1.753	1231								3.00	211	10	1/8	code:	Fines	
																									3.610		2.000	-					2.440													325	6	142		Chine	SILIN	
	3 678	13.363	12.839	2.314	1451	282	CIZO	9.100	5/015	DCATA	1.392	01011	11/24	PCF 9	41010	01079	5.837	5.754	5.494	4.969	4.705		4.445	3.920	3760	01010	702.2	3.210			2.871		2.530	2,483												3.35	3.50	197				
																																														335	1.55	8	221			
																P					10							39																		375	C.L		140			
																010					100				2																					375 3	COF.					
	152	149	143	121	121	10	115	2701	IEI	210	24	1.3	1.0	1.0	1 C	55	1	64	13	22	52		49	13	8 4	E	3 5	- 35			E I		27	27												75 3.	100	*	0			
	00	22	34	47	17	13	20	2	22	13	52	0	2		2	3 25	97	R	13	26	90 5.44		88	2	8	3	10	1 16			11		70	42												JE 37	20 SI	40 T	2L			
																					6																									3 X	2.17					
										474		84/	2																																	305						
	17 194	16.859	16.19	15.57	14.3	14.09	12.000	W.II	11.4	10.20	19.10	0.00		1.30	NC1	NI N	-	7.20	12.9	6.20	SJR		5.54	4.87	4.60	12.1	1.97	3.97					3.08	3.05												43		4				
									12130			200				1000					81																									425						
	6161	18.784	18.040	17.2%	15.9%	15.808	14.52	12.8.55	12./05	COCT II	10.40	SCO'A		40.0	0.2.0	10.10		7.995	7.6%	6.882	6.507		£13	5.394	5.102	ares.	110	438					3.391	3.356												405	410	9	3/16			
		19200				16200																																								405	480	107				
																																														495	BITC	-				
	651-61	18,784	18.040	17.26	15.976	10.845	14.221	12.833	12.704	Client	10.601	P.D.C		0.014	0.2.0	9 21.0		7.995			6.507																									405	01.0	21	.703			
	2	21	2		-						-							1630																												530	USC .	2-40				
	202	0.890	1970	12.6	9111	1961	706.0	1.61	1.03	1967	177	175.0		917.6	10.0	1 DA		61819			7.189																									6.5	1P.C		216			
																																														0 002	14 0		276			
										100																																				30 6.	1112 0.	8	21 12			
	R	V.K	23.4	24	205	E		TON INT	10.0	H1	-	E		11.5	and and	100	-	10.3																												30 65	5		14 Z			
	70 770	72 265	86 25.4	199 24.4	113 223	16 111	12 201	101 00	2/1 60	CC1 /01	120 143	122 127	Tet te	107 123	F11 001	AD ILL	10 110	43 111			8																									0 6.3	0 00		901 8			B
	3 28	11	82	17	25	10	10	1 10	2	00	6 22	1 2		1	1 5	1		02																												0	1	-	1			MSUN

M0x M		130 x 13	125 x 12	120 x 12		H0x II.	100 x 10	6 X 06	80 x 8	75x7	70x7	63,5 x 63,	60 x 6		55x5	50 x 5			40 x 4	38 x 3	35x3	30 x 3		25x2		20 x 2	16x1	Quadrate						NO DIADON
0 150x	HOx	0 H0x	x 051 \$	0 125 x	125 x	0 120x	0 110	0 100	0 90	80	0 76,2x	5 76,2x	9 70	60	5 60	0 60	55	50	02 00	8 40	5 40	3 35	3	5	(36x 14a	0 (30x16t	an.							a inuo kuau
(130 160x)	c125 150 x	c120 160 x	c120 150x1	c115 140x	c100 150x	(100 130)	1201	x80 110x	x70 100x	1170 901	63,5 80%	50,8	x50 80x	x55 80x	x50 70x	x40 70x	x40 60x	x40 55x	x30 55x	x35 45x	x30 45x	x25 40x	x25 35x	x20 32x	(Inve	(Inve								ioa soad
20	115	8	00 160×90	00 150×90	75	90 140x80	80 125×71	70 120x60	60 110×50	60 100 x 50	60 90 x 50		40 90 x 30	35	40 80 x 30	30	35 70x2	35 60 x 30	25	30 50x2	25 90x20	20	20 40x11	19 35x11				Retax			lubos	ŝ		tos (kg/m
			•	0 160×80		0 150x70	5 130x70	0 130x50	0 120x40	0 110x40	0 100x40						S			2			5	5				njdares						1
						160×60 1	140×60																											
						170x150	150 x 1 50																											
177.80	168.30	165.10	158.75	152.40	141.30	139.70	127.00	114.30	101.60	95.25	88.90	80.25	76.20	73.00	69.85	63.50	60.30	\$7.15	50.80	48.30	44.45	38.10	34.92	31.75	28.60	25.40	20.70	Dián, equiv.	Paditio	8	(86)	(POL)		
																								0.573		0.456	0.369		0.75	0.75				
																								872.0		0.515	0.369		0.75	0.79	72			
																								0.648		0.514	0.416		0.85	0.85				
																						0.825	0755	0.685		0.636	0.439		0.90	0.90	21			
																		1.466	1.300		1.134	0.968	0.885	0.802	0.720	0.636	8150		1.06	1.00	20			
																		1.455	1.300		1.134	0.968	0.885	0.802	0.720	\$59.0	0.513		1.06	1.06				
																		1.465	1.300		1.134	0.968	0.885	0.802	0.720	0.716	EIS 0		105	2112	61			
													2,720		2032	1.844	1.749	1.656	1.468	1394	1,280	1.092	0.998	0.904	11870	0.716	0.577		120	1.20				
													2.720		2.032	1.844	1.749	1.656	1.468	1.394	1.280	1.092	0.998	0.904	118'0	0.884	11510		1.20	1.26	18			
									3.703		3.733		2763		2.528	2.294	2.175	2.059	1.824	1.731	1.589	1.354	1.2%	1119	1.002	0.854	0.710		1.9	1.50				
									3.703		3.723		2,763		2.528	2.84	2.175	2.059	1.824	1.731	1,999	1.354	1.236	6111	1.002	1.101	0.710		1.50	9.1	- 16	1/16	Espe	
									4.672		4077		3481		3184	2885	2/36	2589	2291	2174	1.994	1.696	1547	1.399	1251	1154	0.881		1.90	1.90			SULUS	
									4.913		4.286		3.660		3.347	3.033	2.876	2.720	2,407	2.284	2.094	1,781	1.642	1.467	1.312	1.154	0.992		2.00	1.99	34			
									4.913		4.2%		3.640		3.347	3.033	2.876	2.720	2.407	2.784	2.094	1.781	1.624	1.49	1.312	1154	0.922		2.00	2.00				
									5.513		4.800		4.103		3.751	3.399	3.221	3.046	2.64	2.555	2.342	1.989	1.813	1.637	1.462	1.285	1.024		2.25	2.24	33			
							6592	6217	5513		4.808		4303		3751	3399	3221	3.046	2694	2555	2342	1989	1813	1637	1.462	1285	1024		225	225				
	10.826	10.617	10.202	18L6	190'6	8.957	8.127	7.297	6.467	6.052	5.637	5.071	4.807	4.598	4.392	3.977	3.768	3.562	3.147	2,983	2/32	2.317	2.109	1.902	1.696	1.487	1.180		2.65	2.65				
12.922	12.230	11.993	11.523	11.053	10.222	10.114	9.174	8.734	1.1%	583	6.355	5715	5.4%	5.179	4.946	4.476	4.240	4.006	3.536	3.350	3.057	2.597	1.362	212	1.894	591			3.00	3.00				
12.932	12.230	11.993	11.523	11.053	10.232	10,114	9.174	8.224	7.205	6.825	6.355	51715	5.416	5.179	4.945	4.475	4.239	4.006	3.5%	3.351	3.067	1.97	2.362	2.127	1.894	1.657			30	3.17	10	8/1		
14412	13.628	13363	12839	12314	11.397	11.265	10,215	9166	9.050	7.592	7.070	6353	61079	\$754	5.494	4,969	4705	4.445	3.920	3.760	3396	2,871							335	335				
16.096	15.218	M.992	H.334	13.747	12.721	12.573	11.398	10.220	9.049	8.462	7.875	7.075	6.700	6.404	6.113	5.526	5.290	4.938	4351	4.120	3.764	3.177							3.75	3.75				
18.190	17.19	16.859	16.193	15.528	14.364	14.197	12.845	NSSII -	10.200	8576	8.872	7.966	7.548	7.206	6.876	6.210	5.875	3955	4.879	4.617	4.213								4.25	4.25		Ī		
20.271	19,159	18.784	18.000	17.296	15.996	15.808	14.221	12.833	11.315	10.601	9.858	8.814	92.8	7.995	7.626	6.882	6.507	6.138	5.394	5.102	4.651								4.75	4.75		3/16		
72547	21.305	20.887	20.057	19.227	17776	17.567	15.907	14.247	12587	11757	10.927	99796	9.267	8.849			7.189												530	5.30				
3.545	25.17	24.67	23.686	22.699	20.975	20.726	IN JS3	16,780	M.807	13.820	12.833	11.485	198701	10.363			8.390												6.30	6.35	4	1/4		