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RESUMO

Neste trabalho propomos criptossistemas de chave pública com segurança CCA2 contra adver-
sários que possuam um número limitado de acessos a um oráculo de decifração. Esses esquemas
apresentados são baseados no esquema de cifração de ElGamal [15]. Nossas construções consid-
eram hipóteses computacionais fracas, e o tamanho do overhead do texto cifrado é ótimo, uma vez
que é igual ao do esquema proposto por ElGamal. A desvantagem em relação a alguns esquemas
conhecidos é a limitação de acessos do adversário ao oráculo de decifração.

ABSTRACT

We propose two constructions of chosen-ciphertext secure cryptosystems against adversaries with
a bounded number of decrytion queries based on the ElGamal encryption scheme [15]. We rely our
work on weak computational assumptions, and the ciphertext overhead of the resulting schemes
will be only one group element which is considered optimal since it is the same as the original
ElGamal. Disadvantages to known schemes are that the upper bound of the number of decryption
queries has to be known before set-up phase.
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Chapter 1

Introduction

Cryptography is a subject that encompasses data security, specially regarded with reliable

communication in the presence of an adversary. It involves the the conception, the definition and

the construction of computational schemes with the purpose of maintaining the security in varied

systems. This aim is achieved by designing systems with the capability of protection against any

kind of abuse. Such constructions must be in order to keep the system’s desired functionalities,

even under malicious attacks attempts intended to deviate from its original function.

To ensure security in a system, in many situations, is a task that demands a precise capacity

of analysis and, therefore, it must be considered the typical state in which the system will operate,

once the adversary who attacks the system always attempt to manipulate the environment in his

favor. Considering the facts, analysis based based exclusively in intuition should be avoided.

In this sense, to develop cryptographic systems, is relevant to consider possible strategies that

the adversary would use to modify the system functionalities. Considering this strategies, it was

developed an ideal model as an equivalence to the function that is desired to achieve [1].

The use of this model make reference to the utilization of an approach known as provable se-

curity. In cryptography, a system has provable security when its security requisits can be demon-

strated under a adversarial model, as opposed to a heuristic model. The adversarial model assume

that the adversary as access to the system, as to computational resources. The security proof con-

sists in the validity of the systems requisits, considering that the assumptions about the adversary’s

access to the system are satisfieds and the suppositions about the hardness of some computational

problems are valid.

1



1.1 Public-key Cryptography

The concept of public-key cryptography was proposed by Diffie and Hellman [2] in 1976. Also

known as asymmetric encryption schemes, the encryption key can be known to any adversary

without compromising the security of the scheme. Evidently, encryption and decryption keys are

different. In addition, to compute the decryption key from the encryption key is infeasible. The

highest level of security known to public key cryptosystems is indistinguishability against adaptive

chosen ciphertext attack (IND-CCA2) [3], and developing a cryptosystem with this kind of feature

can be a complex task. On the other hand, in the past years, several public key encryption

(PKE) schemes have been proposed with either practical or theoretical purposes, where most of

its security proofs relies on number theoretic assumptions or consider the applicability of certain

one-way functions.

Currently there are three known paradigms for the elaboration of IND-CCA2 PKE schemes.

The first paradigm was proposed by Dwork, Dolev and Naor [4], and is an enhancement of an

construction proposed by Naor and Yung [5] (which only achieved the non-adptive IND-CCA).

This scheme was proven IND-CCA2 and is based on computational assumptions of theoretical

value and in non-interactive zero knowledge techniques. Later Sahai [6] and Lindell [7] made other

improvements following the same approach. The second gives rise to IND-CCA2 practical schemes

making use of hash-proof systems, and was presented by Cramer and Shoup [8]. Specifically,

this was the first public key scheme to be proven IND-CCA2 without the use of random oracles.

The last one requires the existance of identity-based encryption (IBE) schemes [9], and was first

introduced by Canetti, Halevi and Katz [10].

In this sense, the final goal on improving IND-CCA2 PKE systems is the possibility of increasing

the efficiency of these schemes and application of weaker computational assumptions. In addition,

its brought to our attention the scarcity of systems based on computational Diffie-Hellman (CDH)

assumption and hashed Diffie-Hellman (HDH) assumption. Considering these facts, we developed

a IND-CCA2 PKE cryptosystem (with some restrictions that will be mentioned latter) based on

the CDH assumption, seldom used in this kind of construction, and weaker than many other

assumptions, including decisional Diffie-Hellman (DDH) assumption.
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1.2 Our Contribution

We present a modification of the construction presented in Cramer et al [11], which its security is

a weaker version of IND-CCA2, q-bounded -CCA2 security, technically termed IND-q-CCA2. This

definition guarantees IND-CCA2 as long the number of the adversary’s queries to the decryption

oracle is bounded on a polynomial q fixed in advance, in the key-generation.

The motivation for using this security notion can be explained in two different aspects. The

first one is the fact that relying PKE schemes on simpler computational assumptions usually

leads to schemes with weaker security1. This kind of construction allow us to build systems with

a strong notion of security, such as IND-q-CCA2, adapting schemes with weaker computational

assumptions, as long there is a bound for the number of adaptive chosen ciphertext queries. At

the moment there are no standard IND-CCA2 schemes that relies on simpler notions related do

discrete logarithm2 with a optimal ciphertext lenght. The second aspect can be explained by the

fact that IND-q-CCA2 systems allow us to achieve more efficient constructions.

We emphasize that our construction has a reduced ciphertext due to certain homomorphic key

properties. Besides, our scheme makes no use of NIZK techniques.

1In public key encryption, security against chosen plaintext attack
2By simpler notions we mean weaker than DDH, such as CDH and HDH.
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Chapter 2

Historical Background

The most classic challenge in cryptography consists on providing secret communication over

insecure media. One method to assure secrecy in communication is the use of encryption schemes.

An encryption scheme consists in a pair of algorithms, one applied by the sender, the encryption,

while the other is applied by the receiver, the decryption.

The security analysis plays an essential role in the study of encryption schemes. In order to

comprehend the meaning of security, we describe two notorious methodologies.

We start discussing about the information-theoretic methodology. Its purpose is to analyze the

information about the plaintext that is present in the ciphertext. The downside of such a high

level of security approach, is that the key must be as long as the message to be encrypted. This

requisite is actually a serious restriction on the applicability of encryption schemes of this nature.

It is an evident obstacle when a huge quantity of information needs to be secretly communicated.

The second methodology is concerned with computational complexity. Its primary aspect is

that it does not matter whether or not the ciphertext contains information about the plaintext,

but rather whether or not this information can be efficiently extracted. It turns out that this

approach provides secure communication even if the key is much shorter than the message to be

encrypted. A possibility with this kind of approach, is to use pseudorandom generators to expand

short keys into longer pseudo-keys, so that the latter are as secure as real keys of comparable length.

public-key cryptography overview
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Computational-complexity approach led to concepts and primitives that would not exist under

information theoretic approach. One of the most important concepts that relies on computationa-

complexity is public-key encryption schemes. This concept was proposed by Diffie and Hellman [2]

in 1976. Also known as asymmetric encryption schemes, the encryption key can be known to any

adversary without compromising the security of the scheme. Evidently, encryption and decryption

keys are different. In addition, to compute the decryption key from the encryption key is infeasible.

In order to formalize security related to computational complexity, specially in public-key cryp-

tography, researchers started to list necessary requisites for these schemes. Therefore the security

proof of a protocol consisted on demonstrating that it met all the necessary features. Considering

the context, it was developed an ideal model to serve as a prototype to the purpose to be achieved

[1]. This model refers to an approach of provable security, which is the use of and adversarial

algorithm to demonstrate the securities requisites.

public-key cryptography security models

The first demostration of provably secure public-key encryption scheme was made by Rabin [12].

The Rabin cryptosystem is a PKE scheme, whose security is related to the difficulty of factorization.

The great advantage of the Rabin cryptosystem is that the entire recovery of a random plaintext

from the ciphertext is possible only if the adversary is capable of efficiently factor the public key.

For current security standards, is a very weak level of security. This cryptosystem is provably secure

against chosen plaintext attacks, however, its extensions achieve stronger notions of security.

Subsequently, Goldwasser and Micali proposed the first probabilistic public-key encryption

scheme [13] which is provably secure under standard cryptographic assumptions. Still, this con-

struction does not conduct to an efficient cryptosystem, as it produces a considerable ciphertext

overhead. Because encryption is performed using a probabilistic algorithm, a given message pro-

duces different ciphertexts each time it is encrypted. This has significant advantages, as it prevents

an adversary from recognizing intercepted messages by comparing them to a dictionary of known

ciphertexts. For the security proof of properties of the cryptosystem, Goldwasser and Micali pro-

posed the definition of semantic security.

For a PKE scheme achieve semantic security, it must be infeasible for a computationally-

bounded adversary to derive significant information about a message when given only its ciphertext
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and the corresponding public encryption key. Semantic security considers only the case of a

"passive" attacker, i.e., one who generates and observes ciphertexts using the public key and

plaintexts of her choice. Howerver, semantic security is now considered an insufficient condition

for securing a general-purpose encryption scheme.

In early 1990s it began to be established reliable and easy to use formal models of the security

of an encryption scheme and also began a concernment about constructing practical and efficient

provably secure public-key encryption schemes. Naor and Yung [5] presented the first scheme

provably secure against chosen ciphertext attacks (CCA). This construction uses probabilistic

encryption schemes and non-interactive zero-knowledge proof systems, leading to a public key

system secure against chosen ciphertext attacks. In CCA model, the adversary has access to an

decryption oracle, and it chooses the ciphertext or ciphertexts to decrypt in advance, and does not

use the resulting plaintexts to inform their choice for more ciphertexts.

The concept of security against an adaptive chosen ciphertext attack was expound by Rackoff

and Simon [3]. The basic idea comes from the possibility that an adversary can inject messages

into a network messages that may be encryptions. With this behavior, the adversary may be able

to extract partial information about the wanted message through its interactions with the parties

in the network. Rackoff and Simon’s definition models this type of attack by simply allowing an

adversary to obtain decryptions of its choice, i.e., the adversary is allowed access to a decryption

oracle. Now, given an encryption of a message, it is desirable that the adversary cannot obtain any

partial information about the message. To achieve this, the adversary’s behavior is restricted in

some way, otherwise the adversary could simply submit the target ciphertext itself to the decryp-

tion oracle. The restriction proposed by Rackoff and Simon is the weakest possible, the adversary

is not allowed to submit the target ciphertext itself to the oracle. However, it may submit any

other ciphertext, including ciphertexts that are related to the target ciphertext.

random oracle methodology

The random oracle methodology consists on modeling hash functions as an oracle that responds

to every query with a random response chosen uniformly from its output domain, except that for

any specific query, it responds the same way every time it receives that query. The possibility of

this modeling is due to the fact that secure hash functions share many properties with random
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functions.

Random oracles are a mathematical abstraction used in cryptographic proofs. They are typi-

cally used when no known implementable function provides the mathematical properties required

by the proof. A system that is proven secure using such a proof is described as being secure in the

random oracle model, as opposed to secure in the standard model. Such a proof generally shows

that a system or a protocol is secure by showing that an attacker must require impossible behavior

from the oracle, or solve some mathematical problem believed hard, in order to break the protocol.

Schemes proven secure using the random oracle methodology are not necessarily secure when

the hash function is instantiated with a given fixed hash function. There is always the possibil-

ity that the particular hash function will interact badly with the mathematics of the encryption

scheme, and that the resulting system will be insecure. However, it was hoped that the universe

of hash functions that would interact in an undesirable way would be small, so it would be true

that a scheme proven secure using the random oracle methodology would be secure when the

random oracle was replaced with almost any hash function. But, Canetti, Goldreich and Halevi

[14] proposed construction of an encryption scheme that was provably secure using the random

oracle methodology, which turned out to be insecure when the random oracle was instantiated

with any hash function. They make an observation that in the standard model the attacker has

an extra piece of information not available to the attacker in the random oracle model, which is

the description of the hash function. Although the encryption scheme of Canetti, Goldreich and

Halevi is completely artificial, it does act as a proof of concept, i.e., it is possible to construct a

scheme that is secure in the random oracle model, but insecure in the standard model. A lot of

effort has been expended by cryptographers attempting to find a non-artiÞcial scheme which is se-

cure in the random oracle model, but insecure in practice, but so far no such scheme has been found.

ind-cca2 pke construction paradigms

We now turn our attention to schemes that can be proven in the standard model. Currently

are known three paradigms for the construction of IND-CCA2 public-key encryption schemes in

the standard model.

The first was proposed by Dolev, Dwork, and Naor [4], is a derivation of Naor-Yung construction

[5], and uses its technique to construct a tag-based encryption scheme and then apply a CHK
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transform [5]. The downside of this scheme is its highly inefficiency. The use of Naor-Yung

"double- and-add" technique means that every message bit has to be encrypted multiple times,

and use an arbitrary NIZK proof system. Furthermore, the use of the CHK transform implies the

need for an inexpensive signing operation. Hence, this scheme can only be considered to be of

theoretical interest.

The second paradigm was proposed by Cramer and Shoup [8], and it gives rise to practical

public-key encryption construction that was proven secure in the standard model. This scheme is

an extension of ElGamal encryption scheme [15], and was proven secure under the assumption that

the DDH problem is hard and the existence of a target collision resistant hash function is true.

The third construction paradigm was proposed by Canetti, Halevi and Katz [10], and makes

use of identity-based cryptography [9]. The conversion from IBE scheme to IND-CCA2 is provably

secure in the standard model. The resulting construction is very simple and reasonably efficient,

and does not make use of any non-interactive proofs.

Considering the historical background, it’s easy to observe that the ultimate goal in public-key

cryptography is the creation of simpler and more efficient encryption schemes, in addition, it should

be provable-secure in a strong security model. It is also desirable that the new constructions are

based on weak computational assumptions.
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Chapter 3

Preliminaries

In this chapter we present some definitions which were used in the construction of our scheme.

We refer the reader to [8, 11, 16, 17, 18, 19] for more detailed explanations of these definitions.

3.1 Notation

Throughout this paper it will be used the subsequent notations. We denote by x $←− X the

experiment of choosing an element of X according to the uniform distribution over X . If A is an

algorithm, x← A denotes that the output of A is x. In the case where y is not an finite set nor an

algorithm, x ← y is an assignment operation. We establish |l| as the bit length if l is an element

or an finite set. We write w ← AO(x, y, ...) for representing an algorithm A having access to an

oracle O. We denote by Pr [E] the probability that the event E occurs.

In the remainder of this section we make a brief review of notions used in our constructions such

as public-key encryption, number theoretic assumptions, one-way functions, hard-core predicate,

target collision resistant hash functions, strong pseudo-random permutation, cover-free families,

Yao’s XOR lemma and key encapsulation mechanism.

3.2 Public Key Encryption

A Public Key Encryption Scheme (PKE) is defined as follows:

Definition 3.2.1 A public-key encryption scheme is a triplet of algorithms (Gen, Enc, Dec) such
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that:

- Gen is a probabilistic polynomial-time (p.p.t) key generation algorithm which takes

as input a security parameter 1k and outputs a public key pk and a secret key sk. The

public key specifies the message spaceM and the ciphertext space C.

- Enc is a (possibly) p.p.t. encryption algorithm which receives as input a public key

pk and a message M ∈ M, and outputs a ciphertext C ∈ C.

- Dec is a deterministic polynomial-time decryption algorithm which takes as input a

secret key sk and a ciphertext C, and outputs either a message M ∈ M or an error

symbol ⊥.

- (Soundness) For any pair of public and private keys generated by Gen and any mes-

sage M ∈ M it holds that Dec(sk,Enc(pk,M))=M with overwhelming probability over

the randomness used by Gen and Enc.

Definition 3.2.2 (Chosen Plaintext Attack) To a two-stage adversary A = (A1,A2) against PKE

we associate the following experiment ExpcpaA,PKE(k):

(pk,sk) $←− Gen(1k)

(M0,M1, state)← A1(pk) s.t. |M0| = |M1|

β
$←− {0, 1}

C∗ ← Enc(pk,Mβ)

β′ ← A2(C∗, state)

If β = β′ return 1 else return 0

We define the advantage of A in the experiment as

AdvcpaA,PKE(k) = |Pr[ExpcpaA,PKE(k) = 1]− 1
2
|

We say that PKE is indistinguishable against chosen-plaintext attack (IND-CPA) if for all p.p.t.

adversaries A = (A1,A2) the advantage of A in the experiment is a negligible function of k.
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Definition 3.2.3 (Adaptive Chosen Ciphertext Attacks) To a two-stage adversary A = (A1,A2)

against PKE we associate the following experiment Expcca2
A,PKE,(k):

(pk,sk) $←− Gen(1k)

(M0,M1, state)← ADec(sk,.)
1 (pk) s.t. |M0| = |M1|

β
$←− {0, 1}

C∗ ← Enc(pk,Mβ)

β′ ← ADec(sk,.)
2 (C∗, state)

If β = β′ return 1 else return 0

The adversary A2 is not allowed to query Dec(sk,.) with C∗. We define the advantage of A in

the experiment as

Advcca2
A,PKE(k) = |Pr[Expcca2

A,PKE(k) = 1]− 1
2
|

We say that PKE is indistinguishable against adaptive chosen-ciphertext attack (IND-CCA2)

if for all p.p.t. adversaries A = (A1,A2) that makes a polynomial number of oracle queries the

advantage of A in the experiment is a negligible function of k.

Definition 3.2.4 (q-Bounded Chosen Ciphertext Attacks) For a function q(k) : N → N and a two

stage adversary A = (A1, A2), against PKE we associate the following experiment Expind−q−cca2
A,PKE (k):

(pk,sk) $←− Gen(1k)

(M0,M1, state)← ADec(sk,.)
1 (pk) s.t. |M0| = |M1|

β
$←− {0, 1}

C∗ ← Enc(pk,Mβ)

β′ ← ADec(sk,.)
2 (C∗, state)

If β = β′ return 1 else return 0

The adversary A is allowed to ask at most q(k) queries to the decryption oracle Dec in each run of

the experiment. As in the IND-CCA2 game, none of the queries of A2 may contain C∗. We define
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the advantage of A in the experiment as

Advind−q−cca2
A,PKE (k) = |Pr[Expind−q−cca2

A,PKE (k) = 1]− 1
2
|

We say that PKE is indistinguishable against q-bounded adaptive chosen-ciphertext attack (IND-

q-CCA2) if for all p.p.t. adversaries A=(A1,A2) that makes a polynomial number of oracle queries

the advantage of A in the experiment is a negligible function of k.

3.3 Number Theoretic Assumptions

In this section we state three of the Diffie-Hellman intractability assumptions: Computational

Diffie-Helman, Decisional Diffie-Hellman and Hashed Diffie-Hellman.

Definition 3.3.1 (CDH assumption) Let G be a group of order p and generator g. For all proba-

bilistic polynomial time adversaries A, we define the CDH advantage of A against G at a security

paramerer k as

AdvcdhA,G(k) = Pr[c = gxy : x, y $←− Zp; c← A(1k, gx, gy)]

The CDH assumption states that for every polynomial-time adversary A the function AdvcdhA,G

is negligible in k.

Definition 3.3.2 (DDH assumption) Let G be a group of order p and generator g. We define the

sets Dk and Tk for a security parameter k as follows:

Dk := {gx, gy, gxy: x,y ∈ Zp, x 6= 0 };

Tk := {gx, gy, gz: x,y,z ∈ Zp, x 6= 0, z 6= xy }.

The set Dk is the set of Diffie-Hellman triples and Tk is the set of triples ∈ G3 different from

DH triples. For ρ ∈ G3 and A a 0/1-valued p.p.t. adversarial algorithm, let ζ be A’s guess about

the triple ρ. For ζ=1, A guesses that ρ ∈ Dk, else A guesses that ρ ∈ Tk. We define the DDH
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advantage of A against G at a security paramerer k as

AdvddhA,G(k) = |Pr[ζ = 1 : ρ $←− Dk; ζ ← A(1k, ρ)]− Pr[ζ = 1 : ρ $←− Tk; ζ ← A(1k, ρ)]|

The DDH assumption states that for every polynomial-time adversary A the function AdvddhA,G

is negligible in k.

Definition 3.3.3 (Hashed-DH Assumption) Let G be a group of order p and generator g. Let H:

{0, 1}k × G → {0, 1}n be a family of one-way hash functions. We define the sets Dk and Tk for a

security parameter k as follows:

Dk := {gx, gy, H(gxy): x,y ∈ Zp, x 6= 0 };

Tk := {gx, gy, r ∈ {0, 1}n: x,y ∈ Zp, x 6= 0, r 6= H(gxy) }.

In this weakness of DDH assumption, the set Dk is the set with respect of values of Diffie-

Hellman triples. Correspondingly to DDH game definition, Tk is a set with a random element.

For ρ ∈ G3 and A a 0/1-valued p.p.t. adversarial algorithm, let ζ be A’s guess about the triple ρ.

For ζ=1, A guesses that ρ ∈ Dk, else A guesses that ρ ∈ Tk. We define the HDH advantage of A

against G at a security paramerer k as

AdvhdhA,G(k) = |Pr[ζ = 1 : ρ $←− Dk; ζ ← A(1k, ρ)]− Pr[ζ = 1 : ρ $←− Tk; ζ ← A(1k, ρ)]|

The HDH assumption states that for every polynomial-time adversary A the function AdvhdhA,G

is negligible in k.

Throughout this paper we will denote εcdh =AdvcdhA,G(k), εddh =AdvddhA,G(k), εhdh=AdvhdhA,G(k).

3.4 One-Way Functions

A collection of efficiently computable functions is defined as a pair of p.p.t. algorithms F = (F,

G). The algorithm G on input 1k outputs a description s ∈ {0, 1}k of a function fs: {0, 1}k {0, 1}k.

The algorithm F on input (s, x) ∈ {0, 1}k × {0, 1}k outputs fs(x). Let F−1={x ∈ {0, 1}k|y =

F(s, x)}, and A be an adversarial algorithm. Then, consider the following experiment:

ExpowfA,π (k) : [x $←− {0, 1}k; s $←− G(1k); y ← A(1k, s,F(s, x)); return 1 if y = F−1(s, x), else return 0].
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We define

εowf = Pr[ExpowfA,π (k) = 1].

Definition 3.4.1 (One-Way Function) A collection of efficient computable functions F is said to

be one-way if for every p.p.t. A it holds that εowf is negligible.

3.5 Hard-Core Predicate

Let F = (F, G) be a collection of efficiently computable functions. A polynomial-time algorithm

h: {0, 1}∗ × {0, 1}∗ → {0, 1} is a hard-core predicate. Let A be an adversarial algorithm. Then,

consider the following experiment:

ExphcbA,π(k) : [x $←− {0, 1}k; s $←− G(1k); y ← A(1k, s,F(s, x)); return 1 if y = h(s, x), else return 0].

We define

εhcb = |Pr[ExphcbA,π(k) = 1]− 1
2
|.

Definition 3.5.1 (Hard-core Predicate) A polynomial-time algorithm h: {0, 1}∗ × {0, 1}∗ → {0, 1}

is said to be a hard-core predicate if for every p.p.t. A it holds that εhcb is negligible.

3.6 Target Collision Resistant Hash Functions

Target collision resistant hash function is a special case of universal one-way hash function.

Let G be a group, and H: {0, 1}k × G → {0, 1}n be a family of functions,where k is the security

parameter. Let TCR: {0, 1}k × G→ {0, 1}n be an instance of H, which is indexed by k ∈ {0, 1}k,

and A be an adversary. Then, consider the following experiment:

ExptcrA,π(k) : [k $←− {0, 1}k;x $←− {0, 1}l;x′ ← A(k, x); return 1 if TCR(x′) = TCR(x), else return 0].

We define

εtcr = Pr[ExptcrA,π(k) = 1].

Definition 3.6.1 (Target Collision Resistant Hash Function) A polynomial-time algorithm TCR:{0, 1}k

× G → {0, 1}n is said to be a target collision resistant hash function if for every p.p.t. A it holds
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that εtcr is negligible.

3.7 Strong Pseudo-Random Permutation

Let π: {0, 1}k × {0, 1}l → {0, 1}l be a family of permutations, and πk: {0, 1}l → {0, 1}l be

an instance of π, which is indexed by k ∈ {0, 1}k. Let P be the set of all permutations for l-bit

strings, and A be an adversary. Then, consider the following experiments:

ExpsprpA,π (k) : [k $←− {0, 1}k;β ← AπK ,π
−1
k ; return β],

ExprealA,π (k) : [perm $←− P;β ← Aperm,perm−1
; return β],

where permutations πK , π−1
k , perm, perm−1 are given to A as black boxes, and A can observe only

their outputs which correspond to A’s inputs. We define

εsprp =
1
2
|Pr [ ExpsprpA,π (k) = 1]− Pr[ ExprealA,π (k) = 1]|

Definition 3.7.1 (Strong Pseudorandom Permutation - SPRP) A polynomial-time algorithm πk:

{0, 1}l → {0, 1}l is said to be a strong pseudorandom permutation if for every p.p.t. A it holds

that εsprp is negligible.

3.8 Cover Free Families

If S, T are sets, we say that S does not cover T if S + T . Let d, q, s be positive integers, and

let F = (Fi)1≤i≤s be a family of subsets of {1, . . . , d}. We say that family F is q-cover-free over

{1, . . . , d}, if for each subset Fi ∈ F and each S that is the union of at most q sets in (F1 , . . . ,

Fi−1 , Fi+1 , . . . , Fs ), it is the case that S does not cover Fi . Furthermore, we say that F is

l-uniform if all subsets in the family have size l. We use the following fact: there is a deterministic

polynomial time algorithm that on input integers s, q returns l, d, F where F = (Fi)1≤i≤s is a

l-uniform q-cover-free family over {1, . . . , d}, for l = d
4q and d≤ 16q2log(s). In the following we let

SUB denote the resulting deterministic polynomial-time algorithm that on input s, q, it returns

Fi . We call Fi = SUB(s(k), q(k), i) the subset associated to index i ∈ {1, . . . , s(k)}. For our
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construction we will need a cover-free family with the parameters

s(k) = 2k, d(k) = 16kq2(k), l(k) = 4kq(k).

3.9 Yao’s XOR Lemma

An important Lemma of Yao [20] states that computational hardness of inverting one-way

functions gets amplified if the results of several independent instances are XOR together. By hard

to invert we mean that any efficient algorithm will fail to predict the predicate with probability

beyond a stated bound, where the probability is taken over all possible inputs.

Let f : {0, 1}n → {0, 1}n be a one-way function and let h: {0, 1}n → {0, 1} be a hard-core

predicate of f .

In particular, Yao’s XOR Lemma asserts that if the predicate h is weakly-unpredictable then

h(x1, . . . , xt) :=
⊕t

i=1 h(xi) for sufficiently large t is almost unpredictable within a related com-

plexity bound. This results can be expanded for the case where there is a hard-core bit among

h(xi). The Lemma guarantees that the unpredictability of the hard-core bit is transfered to the

result of the XOR operation
⊕t

i=1 h(xi).

Lemma 3.9.1 (Yao’s XOR Lemma): Suppose A2 is a probabilistic adversary satisfying

Pr[A2(x1, x2) = h(x1, x2)|x1, x2 ← {0, 1}n] >
1
2

+ ε2

Then there is a probabilistic adversary A whose running time is polynomial in A2’s running time

and satisfies:

Pr[A(g(x2)) = h(x2)|x2 ← {0, 1}n] >
1
2

+ ε

3.10 Hybrid Encryption

Our models make use of a method of hybrid encryption [21]. Such schemes uses public-key

encryption techniques to encrypt a random key K. The encrypted key K is then used to encrypt a

actual message using a symmetric encryption scheme.

The structure of key encapsulation mechanism is used to generate the symmetric key used in
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the message encryption. This mechanism is homologous to public key encryption scheme, but

instead of encrypting a message, the encryption algorithm generates the encryption K of a random

key K.

3.10.1 Key Encapsulation Mechanism

A Key Encapsulation Mechanism (KEM) is defined as follows:

Definition 3.10.1 A key encapsulation mechanism is a triplet of algorithms (KGen, KEnc, KDec)

such that:

- KGen is a probabilistic polynomial-time (p.p.t) key generation algorithm which takes

as input a security parameter 1k and outputs a public key pk and a secret key sk. The

public key specifies the key space K and the symmetric key space K.

- KEnc is a (possibly) p.p.t. encryption algorithm which receives as input a public key

pk, and outputs (K ,K), where K ∈ K is a key, and K ∈ K is a encapsulated symmetric

key.

- KDec is a deterministic polynomial-time decryption algorithm which takes as input

a secret key sk and a key K, and outputs a encapsulated symmetric key K ∈ K or an

error symbol ⊥.

- (Soundness) For any pair of public and private keys generated by KGen and any pair

(K ,K) generated by KEnc it holds that KDec(sk,K)=K with overwhelming probability

over the randomness used by KGen and KEnc.

Definition 3.10.2 (Key Encapsulation Mechanism Adaptive Chosen Ciphertext Security) To an

attack algorithm A and against KEM we associate the following experiment ExpkemA,PKE(k):

(pk, sk) $←− KGen(1k)

(K∗,K∗) ← KEnc(pk)

β
$←− {0, 1}

If β = 0, K� ← K∗, else K� is random

β′ ← AKDec(sk,·)(K∗,K�)

If β′ = β return 1 else return 0

17



The adversary A is not allowed to query KDec(sk,.) with K�. We define the advantage of A in the

experiment as

AdvkemA,PKE(k) = |Pr[ExpkemA,PKE(k) = 1]− 1
2
|

We say a KEM used in a PKE is indistinguishable against adaptive chosen-ciphertext attack (IND-

CCA2) if for all p.p.t. adversaries A the advantage of A in the experiment is a negligible function

of k. Throughout this paper, we will denote AdvkemA,PKE(k) as εkem.
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Chapter 4

Our Model

4.1 IND-q-CCA2 Encryption

Our constructions will be addressed in this chapter. It will be presented the main ideas of our

work and, subsequently, the description the schemes.

4.1.1 IND-q-CCA2 Encryption From CDH

Our construction yields a IND-q-CCA PKE scheme based on CDH assumption with optimal

ciphertext length. To achieve a scheme with such features, we make use of hybrid encryption

techniques. The property of key homomorphism also plays an important role in our construction,

since it makes possible component ciphertexts be compressed to be one. The symmetric-key

encryption scheme is constructed based on strong pseudorandom permutations, as in [19], to obtain

redundancy-free property and security against chosen-ciphertext attacks.

Furthermore, we use the randomness established in the encryption phase and a TCR to define

the value t that will designate the q-cover-free family (q-CFF) subset of the session. The session’s

q-CFF subset and a hardcore function will be used to construct the symmetric key.

It can be assured, due to the property of cover-free families and the unduplicatable set selection,

that at least one element of the decryption key set will remain secret, since it won’t be required

for responding decryption queries, if the adversary submits at most q queries.
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Construction

We assume the existence of a cyclic group G of prime-order p where the CDH assumption is

believed to hold, i.e., given (g, ga, gb) there is no efficient way to calculate gab, for random g ∈ G,

and random a, b ∈ Zp. Let H: {0, 1}k × G → {1, . . . , s} be a function family where the index

space is {0, 1}k, π:{0, 1}k×{0, 1}→{0, 1} be a permutation family where the index space is {0, 1}k,

and h : {0, 1}k×G → {0, 1} be a hardcore function family where the index space is {0, 1}k. Our

scheme from CDH assumption Π′ consists of the following algorithms:

Gen (1k): Define s(k) = 2k, d(k) = 16kq2(k), l(k)=4kq(k). Run KGen. For i = 1, . . . , d(k), KGen

computes Xi=gxi for xi
$←− Zp, and outputs pk=(X1, . . . , Xd(k)) and sk=(x1, . . . , xd(k)). The

public key is pk, and the secret key is sk.

Enc (pk, M): Run KEnc. KEnc computes r = gy for y $←− Zp, j = TCR(r) where Fj = {j1, . . . , jl}

is the q-CFF subset associated to the value j (which will define the set of the session’s

publlic/private keys), sets K = r and calculates K = (h(Xj1
y)⊕ . . .⊕ h(Xjl

y)). To encrypt

message M, run symmetric-key encryption to obtain the ciphertext ψ ← πK(M). Output

C=(r, ψ).

Dec (sk, C): Run KDec. KDec computes j = TCR(r) to obtain the subset Fj , and calculates the

session’s symmetric key K = (h(rxj1 )⊕ . . .⊕ h(rxjl )). Decrypt ψ to M ← π−1
K

(ψ).

An IND-q-CCA2 PKE scheme based on CDH.

Theorem 1 The above scheme is IND-q-CCA2 if the CDH assumption holds, TCR is a target

collision resistant hash function, h is a hardcore predicate, and π is strongly pseudorandom.

Proof: To prove the above theorem we follow the same approach of [19]. The proof of the above

theorem is made in two parts: In the first part we prove that Π′ is secure if K is totally unknown

to A and π is a SPRP. In the second part of the proof, using the CDH assumption, we prove that

the adversary cannot distinguish the session key from a random bit.

By showing A’s inability of extracting partial knowledge of K, we demonstrate the security of

the session key.

Lemma 1 The public key scheme Π′ is IND-q-CCA2 if π is a strong pseudo random permutation.
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Proof: It’s constructed a simulator B with the capability to distinguish a real session key

from a random key, or to distinguish an instance πK∗ of the permutation family π from a random

permutation perm. In the construction of B it’s used a subroutine A, which breaks the security of

the scheme Π′.

Preliminary to the simulation, B flips a coin COIN ∈ {0, 1}. If COIN=0, B tries to break the

security of the session key. Otherwise, B tries to distinguish π from a random permutation perm.

If COIN=0 the simulation occurs as follows. The simulator B, interacting with A, will try to

break the security of the session’s key in a KEM CCA2 game. As B receives the public key pk

of Π′, he passes it to A. As the game proceeds, B receives a challenge (C∗, K∗). Subroutine A is

allowed to decryption queries, as long it respect the bound q of queries. For a decryption request

C = (r ( 6= r∗), ψ) from A , B answers the queries asking the symmetric key K related to the value

r to his own oracle. B sends M ← π
K−1(ψ) to A. In addition, for A’s decryption query C=(r∗, ψ),

B returns M ← π−1

K∗
(ψ).

In the challenge phase, A submits M0 and M1 to B. B chooses β randomly from {0, 1} and

encrypts Mβ as ψ∗ ← πK∗(Mβ). B sends the challenge (r∗, ψ∗) to A. A is allowed for more

decryption queries (taking into consideration the bounded number of decryption queries).

In the final stage, A outputs its guess β′. If β′ = β, B outputs 1 in his own challenge. Else, B

outputs 0.

If COIN = 1, simulator B will try to distinguish πK∗ from a random permutation perm. B is

allowed to access an oracle that answers with a instance that can be either πK∗ or perm.

The simulation proceeds as follows. B generates key pair (pk, sk) of Π′, passing pk to A. B

randomly chooses a value r∗ from G. For a decryption request C = (r ( 6= r∗), ψ) from A , B

answers the queries by decrypting ψ with sk. Also, for a decryption request C = (r∗, ψ) from A ,

B answers the queries sending ψ to his own oracle, which is π−1

K∗
or perm−1. B returns the oracle’s

answer to A. When A submits M0 and M1 to B, B chooses β randomly from {0, 1}, and sends Mβ

to his own oracle, which is πK∗ or perm. B takes the oracle’s answer ψ∗, and sends C∗=(r∗, ψ∗) as

the challenge to A.

In the final stage, A outputs its guess β′. If β′ = β, B outputs 1 in his own challenge. Else, B

outputs 0.

For our simulator B, the views for the events [K∗ is random ∧ COIN = 0] and [given permu-

21



tation is πK∗ ∧ COIN = 1] are identical. Let

Pr[ExpkemB,Π′(k) = 1|K∗ is random∧COIN = 0] = Pr[ExpsprpB,Π′(k) = 1|COIN = 1] =
1
2

+λ (4.1)

The probability that B breaks the KEM experiment is given by:

Pr[ExpkemB,Π′(k) = 1] = Pr[COIN = 1].P r[ExpkemB,Π′(k) = 1|COIN = 1]+

Pr[COIN = 0].P r[ExpkemB,Π′(k) = 1|COIN = 0]

=
1
2
.P r[ExpkemB,Π′(k) = 1|COIN = 0] +

1
2
.
1
2

=
1
2
.P r[ExpkemB,Π′(k) = 1|COIN = 0] +

1
4

(4.2)

Let’s denote the advantage of adversary A by εcca. For the probabilities:

Pr[ExpkemB,Π′(k) = 1|COIN = 0] =

1
2
.P r[ExpkemB,Π′(k) = 1|K∗ = K(c∗) ∧ COIN = 0]

+
1
2
.P r[ExpkemB,Π′(k) = 1|K∗ is random ∧ COIN = 0]

From (4.2):

Pr[ExpkemB,Π′(k) = 1|COIN = 0] ≤ 1
2
.(

1
2

+ εcca) +
1
2
.(

1
2
− λ) (4.3)

Therefore,

Pr[ExpkemB,Π′(k) = 1] ≤ 1
2

+
1
4

(εcca − λ) (4.4)

The probability that B distinguishes the permutation is given similarly to the event above:

Pr[ExpsprpB,Π′(k) = 1] = Pr[COIN = 0].P r[ExpsprpB,Π′(k) = 1|COIN = 0]+

Pr[COIN = 1].P r[ExpsprpB,Π′(k) = 1|COIN = 1]
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=
1
2
.P r[ExpsprpB,Π′(k) = 1|COIN = 1] +

1
2
.
1
2

=
1
2
.P r[ExpsprpB,Π′(k) = 1|COIN = 1] +

1
4

(4.5)

And just like above, from (4.2):

Pr[ExpsprpB,Π′(k) = 1] =
1
2
.(

1
2

+ λ) +
1
4

=
1
2

+
1
2
.λ (4.6)

The advantage of the adversary B distinguishing a SPRP from a random permutation, εsprp,B,

can be defined as:

εsprp,B =
1
2
.|Pr[ExpsprpB,Π′(k) = 1]− [PrExprndB,Π′(k) = 1]|

Since [PrExprndB,Π′(k) = 1] = 1
2 , and from (4.1):

εsprp,B =
1
2
|1
2

+
1
2
.λ− 1

2
| = 1

4
|λ|

From the assumptions, we have:

εkem ≤
1
4

(εcca − λ)

εsprp ≤
1
4
|λ|

Hence:

εcca ≤ 4εkem + λ ≤ 4εkem + 4εsprp.

�

Lemma 2 The adversary cannot distinguish the session key from a random bit if the CDH as-

sumption holds.

Proof: Now we will show that if the CDH assumption holds, the adversary cannot distinguish

a real session key from a random bit. To prove the indistinguishability of the key, we construct a

adversary B that breaks the CDH assumption.
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To achieve this goal, the adversary B makes use of an adversary A that distinguishes h(rxj1 )⊕

h(rxj2 )⊕ . . .⊕ h(rxjl−1 )⊕ h(rxjl ) from a random bit.

We know from a property of cover free families, that at least one of the secret keys remains

unknown to the adversary. Considering this, applying a hardcore function to each Xji
y = rxji

(where ji are the elements of the session’s cover-free family subset) results in at least one hardcore

bit. In addition, if we consider the existence of an element h(rxji ), 1 ≤ i ≤ l, which is a hardcore

bit, from Yao’s XOR Lemma, it states that h(rxj1 ) ⊕ . . . ⊕ h(rxjl ) is also a hardcore bit. The

adversary B first receives a challenge (g, ga, gb, z), where he has to decide if z is the hardcore

predicate of gab or a random bit. To simulate the adaptive chosen ciphertext interaction between

B and A, first B sets r∗ ← gb. From w = TCR(r∗), B defines a q-CFF subset Fw, picks a random

element α ∈ Fw, and sets xα = ga. B generates pairs of public/private keys for each position in

the q-CFF {1, . . . , d}\{α}.

B gives A the set of all public keys. For A’s decryption query (r, ψ), B calculates j = TCR(r),

for {j1, . . . , jl} ∈ Fj , and responds as follows:

(a) If j = w, B responds with ⊥.

(b) If α ∈ Fj , where j 6= w, B aborts the simulation and outputs a random bit to the challenger.

(c) Else, B computes the symmetric key K = (h(rxj1 )⊕h(rxj2 )⊕ . . .⊕h(rxjl−1 )⊕h(rxjl ) ). Then,

sends to A the pair (K, M).

For the challenge, A sends M0,M1 to B. B chooses β ∈ {0,1} randomly and encrypts Mβ with

the symmetric key

K = (h(r∗xj1 )⊕ . . .⊕ h(r∗xjα−1 )⊕ z ⊕ h(r∗xjα+1 )⊕ . . .⊕ h(r∗xjl ))

B sends (r∗, ψ∗) to A, and A sends back its guess β’. If β’ = β, B outputs 1 (the bit is the

hardcore of gab), else B outputs 0.

Throughout the proof, we will estimate probabilities based on the following events:

• real: Real session key is given to A;

• random: Random bit is given to A;
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• fake: A fake key is given to A;

• succeed: B does not abort the simulation and α ∈ Fw;

• collision: A submits a decryption query r( 6= r∗) such that TCR(r) = TCR(r∗);

• a.abort: B outputs a random bit in the artificial abort phase.

Artificial Abort The artificial abort technique plays an important role in the security proof.

The reason we use this technique is primarily due to the fact that we cannot calculate Pr[β′ =

β|succeed ∧ ideal] but Pr[β′ = β|succeed ∧ a.abort ∧ ideal]. Let rn (1 ≤ n ≤ q) be A’s decryption

queries, and jn be TCR(rn). Then B calculates the following value t:

t = |Fj∗\
⋃

s∈{1,...,q}

Fjs |

Given that the experiment occurred without B having to abort, the probability that B outputs β’

is Pr[a.abort] = 1
t , and B will output a random bit with a probability Pr[a.abort] = t−1

t .

We specify εcdh,B = 1
2 |Pr[Exp

cdh
B,G(k) = 1]−Pr[ExprndB,G(k) = 1]|. This way, we can estimate the

probabilities:

Pr[ExpcdhB,G(k) = 1] ≥ Pr[ExpcdhB,G(k) = 1|collision]Pr[collision]

≥ Pr[β′ = 1|succeed ∧ a.abort ∧ real ∧ collision]·

Pr[succeed ∧ a.abort|real ∧ collision]Pr[collision]

+
1
2
Pr[succeed ∨ a.abort|real ∧ collision]Pr[collision]. (4.7)

We will represent the randomness of adversary A by a coin, where R is the set of all possible

values of coin. Considering the simulation of a CCA interaction is perfect when succeed ∧ a.abort

is true, we have for all R ∈ R

Pr[β′ = 1|succeed ∧ a.abort ∧ real ∧ collision ∧ coin = R] = (4.8)

Pr[ExpkemA,Π′(k) = 1|real ∧ collision ∧ coin = R]. (4.9)

And also

Pr[succeed ∧ a.abort|real ∧ collision ∧ coin = R] =
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Pr[a.abort|succeed ∧ real ∧ collision ∧ coin = R]·

Pr[succeed|real ∧ collision ∧ coin = R]

By definition, Pr[a.abort|succeed ∧ real ∧ collision] = 1
t(R) , where the value t defined above

depends on the value of coin. If collision is true, there always exists a non-empty subset D of {

1, . . . , d} such that D ⊆ Fj∗ and |D ∩ ∪s∈{1,...,q}Fjs | = 0 due to the propertiy of the CFF. This

implies that succeed occurs if a ∈ D, and therefore, Pr[succeed|real ∧ collision] = t(R)
d . We have

that

Pr[succeed ∧ a.abort|real ∧ collision] =
1

t(R)
· t(R)
d

=
1
d

(4.10)

From (4.8), (4.9) and (4.10)

Pr[β′ = 1|succeed ∧ a.abort ∧ real ∧ collision]·

Pr[succeed ∧ a.abort|real ∧ collision] · Pr[collision] =

∑
R∈R

(Pr[succeed ∧ a.abort|real ∧ collision ∧ coin = R])

·Pr[succeed ∧ a.abort|real ∧ collision ∧ coin = R]

·Pr[coin = R|real ∧ collision]Pr[collision] =

∑
R∈R

Pr[ExpkemB,Π′(k) = 1|real ∧ collision ∧ coin = R] · 1
d

·Pr[coin = R|real ∧ collision]Pr[collision] =

1
d
· Pr[ExpkemA,Π′(k) = 1|real ∧ collision] · Pr[collision] (4.11)

From (4.11) we have that

Pr[succeed ∧ a.abort|real ∧ collision] =
1
d

(4.12)
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From (4.7)

Pr[ExpcdhB,G(k) = 1] ≥ 1
d
· Pr[ExpkemA,Π′(k) = 1|real ∧ collision] · Pr[collision]

+
1
2
· d− 1

d
· Pr[collision]

≥ 1
d
· (Pr[ExpkemA,Π′(k) = 1|real]− εtcr) +

1
2
· d− 1

d
· (1− εtcr)

=
1
d
· Pr[ExpkemA,Π′(k) = 1|real] +

d− 1
2d
− d+ 1

2d
· εtcr (4.13)

By a analogous analysis,

Pr[ExprndB,G(k) = 0] ≥ 1
d
· Pr[ExpkemA,Π′(k) = 0|fake] +

d− 1
2d
− d+ 1

2d
· εtcr (4.14)

Suppose we can construct an adversarial algorithm that distinguishes random bits from hard-

core bits using adversary A. Since this statement can not be true, we have

1
2
|Pr[ExpkemA,Π′(k) = 0|random]− Pr[ExpkemA,Π′(k) = 0|fake]| ≤ εhcb

This way we can estimate the probabilities for adversary B:

1
2
|Pr[ExpcdhB,G(k) = 1]− Pr[ExprndB,G(k) = 1]|

≥ 1
2
|1
d
· Pr[ExpkemA,Π′(k) = 1|real] +

d− 1
2d
− d+ 1

2d
· εtcr

−(1− 1
d
· Pr[ExpkemA,Π′(k) = 0|fake] +

d− 1
2d
− d+ 1

2d
· εtcr)|

≥ 1
d
εkem −

1
d
εhcb −

d+ 1
2d

εtcr

Therefore,

εkem ≤ d · εcdh + εhcb +
d+ 1

2
εtcr

�
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4.1.2 IND-q-CCA2 Encryption From HDH

This construction is a variation of the one presented above. It yields in a IND-q-CCA PKE

scheme based on HDH assumption also with optimal ciphertext length. In this construction, we

equally make use of key encapsulation method to construct a key to be used in a symmetric encryp-

tion. Although the HDH assumption is stronger than CDH, this scheme enables a more efficient

construction, due to the length of the symmetric key.

Construction

Let H: {0, 1}k × G → {1, . . . , s} be a function family where the index space is {0, 1}k,

π:{0, 1}k×{0, 1}→{0, 1} be a permutation family where the index space is {0, 1}k and H: {0, 1}k

× G→ {0, 1}n be a function family where the index space is {0, 1}k. We assume the existence of a

cyclic group G of prime-order p where the HDH assumption is believed to hold, i.e, given (g, ga, gb)

there is no efficient way to distinguish H(gab) ∈ {0, 1}n from a random string of bits of size n, for

random g ∈ G, and random a, b ∈ Zp.

Gen (1k): Define s(k) = 2k, d(k) = 16kq2(k), l(k)=4kq(k). Run KGen. For i = 1, . . . , d(k), KGen

computes Xi=gxi for xi
$←− Zp, and outputs pk=(X1, . . . , Xd(k)) and sk=(x1, . . . , xd(k)). The

public key is pk, and the secret key is sk.

Enc (pk, M): Run KEnc. KEnc computes r = gy for y $←− Zp, j = TCR(r) where Fj = {j1, . . . , jl}

is the q-CFF subset associated to the value j (which will define the set of the session’s

publlic/private keys), sets K = r and calculates K = H((
∏
ji∈Fj Xji)

y). To encrypt message

M, run symmetric-key encryption to obtain the ciphertext ψ ← πK(M). Output C=(r, ψ).

Dec (sk, C): Run KDec. KDec computes j = TCR(r) to obtain the subset Fj , and calculates the

session’s symmetric key K = H( r
P
ji∈Fj

xji ). Decrypt ψ to M ← π−1
K

(ψ).

An IND-q-CCA2 PKE scheme based on HDH.

Theorem 2 The above scheme is IND-q-CCA2 if the HDH assumption holds, TCR is a target

collision resistant hash function, H is a one-way hash function, and π is strongly pseudorandom.

Proof: Just as in Theorem 1, the proof is made of two parts: In the first part we prove that Π′
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is secure if K is totally unknown to A and π is a SPRP. In the second part of the proof, using the

HDH assumption, we prove that the adversary cannot distinguish the session key from a random

string.

Lemma 3 Π′ is IND-q-CCA2 if K is totally unknown to A and π is a SPRP.

Proof: This proof is identical to the proof in Lemma 1.

Lemma 4 The adversary cannot distinguish the session key from a random bit if the HDH as-

sumption holds.

Proof: We prove this lemma by considering the existence of an adversary B that breaks the

HDH assumption with nonnegligible probability. We assume that this adversary B interacts with

an adversary A that distinguishes H(
∏
i∈Fj X

y
ji
) (i.e., the session key) from a random string.

Now we give details of the simulator. The adversary B first receives a challenge (g, ga, gb, z),

where he has to decide if z is the hash of gab or a random string. To simulate the adaptive chosen

ciphertext interaction between B and A, first B sets r∗ ← gb. From w = TCR(r∗), B defines a

q-CFF subset Fw, and picks a random element α ∈ Fw. B generates pairs of public/private keys

for each position in the q-CFF {1, . . . , d}\{α} and sets Xα = ga · (
∏
i∈Fw\α g

xi)−1.

B gives A the set of all public keys. For A’s decryption query (r, ψ), B calculates j = TCR(r),

for {t1, . . . , tl} ∈ Fj , and responds as follows:

(a) If j = w, B responds with ⊥.

(b) If α ∈ Fj , where j 6= w, B aborts the simulation and outputs a random bit to the challenger.

(c) Else, B computes the symmetric key K = H( rxj1 · rxj2 · . . . · rxjl−1 · rxjl ). Then, sends to A

the pair (K, M).

For the challenge, A sends M0,M1 to B. B chooses β ∈ {0,1}. Since the challenge Mβ is

encrypted with respect to r∗, B should compute the symmetric key as

K = H
(
Xb
α ·
( ∏
ji∈Fj∗\{α}

gxji
)b)

But calculating the product inside de hash above and considering the value of Xα defined
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before, the key will result in

K = H(gab)

B sends (r∗, ψ∗) to A, and A sends back its guess β’. If β’ = β, B outputs 1 (the string is the

hash of gab), else B outputs 0.

To estimate the probabilities of the simulation above, we will use the same approach of section

3.1., and we also define the following events:

• real: Real session key is given to A;

• random: Random string is given to A;

• fake: A fake key is given to A;

• succeed: B does not abort the simulation and α ∈ Fw;

• collision: A submits a decryption query r(6= r∗) such that TCR(r) = TCR(r∗);

• a.abort: B outputs a random bit in the artificial abort phase.

Artificial Abort The artificial abort technique plays an important role in the security proof.

The reason we use this technique is primarily due to the fact that we cannot calculate Pr[β′ =

β|succeed ∧ ideal] but Pr[β′ = β|succeed ∧ a.abort ∧ ideal]. Let rn (1 ≤ n ≤ q) be A’s decryption

queries, and jn be TCR(rn). Then B calculates the following value t:

t = |Fj∗\
⋃

s∈{1,...,q}

Fjs |

Given that the experiment occurred without B having to abort, the probability that B outputs β’

is Pr[a.abort] = 1
t , and B will output a random bit with a probability Pr[a.abort] = t−1

t .

We specify εhdh,B = 1
2 |Pr[Exp

hdh
B,G(k) = 1]− Pr[ExprndB,G(k) = 1]|.

This way, we can estimate the probabilities:

Pr[ExpcdhB,G(k) = 1] ≥ Pr[ExpcdhB,G(k) = 1|collision]Pr[collision]

≥ Pr[β′ = 1|succeed ∧ a.abort ∧ real ∧ collision]·

Pr[succeed ∧ a.abort|real ∧ collision]Pr[collision]
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+
1
2
Pr[succeed ∨ a.abort|real ∧ collision]Pr[collision]. (4.15)

We will represent the randomness of adversary A by a coin, where R is the set of all possible

values of coin. Considering the simulation of a CCA interaction is perfect when succeed ∧ a.abort

is true, we have for all R ∈ R

Pr[β′ = 1|succeed ∧ a.abort ∧ real ∧ collision ∧ coin = R] = (4.16)

Pr[ExpkemA,Π′(k) = 1|real ∧ collision ∧ coin = R]. (4.17)

And also

Pr[succeed ∧ a.abort|real ∧ collision ∧ coin = R] =

Pr[a.abort|succeed ∧ real ∧ collision ∧ coin = R]·

Pr[succeed|real ∧ collision ∧ coin = R]

By definition, Pr[a.abort|succeed ∧ real ∧ collision] = 1
t(R) , where the value t defined above

depends on the value of coin. If collision is true, there always exists a non-empty subset D of {

1, . . . , d} such that D ⊆ Fj∗ and |D ∩ ∪s∈{1,...,q}Fjs | = 0 due to the propertiy of the CFF. This

implies that succeed occurs if a ∈ D, and therefore, Pr[succeed|real ∧ collision] = t(R)
d . We have

that

Pr[succeed ∧ a.abort|real ∧ collision] =
1

t(R)
· t(R)
d

=
1
d

(4.18)

From (4.16), (4.17) and (4.18)

Pr[β′ = 1|succeed ∧ a.abort ∧ real ∧ collision]·

Pr[succeed ∧ a.abort|real ∧ collision] · Pr[collision] =

∑
R∈R

(Pr[succeed ∧ a.abort|real ∧ collision ∧ coin = R])
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·Pr[succeed ∧ a.abort|real ∧ collision ∧ coin = R]

·Pr[coin = R|real ∧ collision]Pr[collision] =

∑
R∈R

Pr[ExpkemB,Π′(k) = 1|real ∧ collision ∧ coin = R] · 1
d

·Pr[coin = R|real ∧ collision]Pr[collision] =

1
d
· Pr[ExpkemA,Π′(k) = 1|real ∧ collision] · Pr[collision] (4.19)

From (4.19) we have that

Pr[succeed ∧ a.abort|real ∧ collision] =
1
d

(4.20)

From (4.15)

Pr[ExpcdhB,G(k) = 1] ≥ 1
d
· Pr[ExpkemA,Π′(k) = 1|real ∧ collision] · Pr[collision]

+
1
2
· d− 1

d
· Pr[collision]

≥ 1
d
· (Pr[ExpkemA,Π′(k) = 1|real]− εtcr) +

1
2
· d− 1

d
· (1− εtcr)

=
1
d
· Pr[ExpkemA,Π′(k) = 1|real] +

d− 1
2d
− d+ 1

2d
· εtcr (4.21)

By a analogous analysis,

Pr[ExprndB,G(k) = 0] ≥ 1
d
· Pr[ExpkemA,Π′(k) = 0|fake] +

d− 1
2d
− d+ 1

2d
· εtcr (4.22)

Suppose we can construct an adversarial algorithm that distinguishes random bits from hard-

core bits using adversary A. Since this statement can not be true, we have

1
2
|Pr[ExpkemA,Π′(k) = 0|random]− Pr[ExpkemA,Π′(k) = 0|fake]| ≤ εhash
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This way we can estimate the probabilities for adversary B:

1
2
|Pr[ExphdhB,G(k) = 1]− Pr[ExprndB,G(k) = 1]|

≥ 1
2
|1
d
· Pr[ExpkemA,Π′(k) = 1|real] +

d− 1
2d
− d+ 1

2d
· εtcr

−(1− 1
d
· Pr[ExpkemA,Π′(k) = 0|fake] +

d− 1
2d
− d+ 1

2d
· εtcr)|

≥ 1
d
εkem −

1
d
εhash −

d+ 1
2d

εtcr

Therefore,

εkem ≤ d · εhdh + εhash +
d+ 1

2
εtcr

�
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Chapter 5

Conclusion

In our work we presented two IND-q-CCA2 PKE constructions, both under weak computacional

assumptions, and with a optimal ciphertext overhead of one group element.

Our first result is of theoretical interest, which is a construction that leads to a IND-q-CCA2

PKE under CDH assumption, which is belived to be weakest among Diffie-Hellman assumptions.

Whereas this scheme is not efficient, it is a great result, once we achieve a IND-CCA2 scheme for a

bounded number of oracle access, under CDH assumption with a ciphertext overhead of one group

element. Nowadays, there is no PKE scheme with similar characteristics.

Our second result is an efficient IND-q-CCA2 scheme under the HDH assumption, and also

with one group element of ciphertext overhead. This scheme is very similar to the one presented in

[19], however, our proof required a construction of the simulator. As in the CDH case, there is also

a lack of schemes proved for a IND-CCA2 model (even with the restriction of bounded number of

acces to the oracle) and under HDH assumption. In addition we achieve a efficient scheme with

optimal ciphertext overhead.

For future works, it would be interesting an enhancement of of our CDH scheme to a efficient

scheme under the same conditions, and also The construction of signature schemes with similar

conditions.

In conclusion,given the importance that public-key schemes have for cryptography, a great

effort should be made to build new protocols towards enhancing the efficiency and weakening the

computational assumptions, and proven for high level security models.
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