
Universidade de Brasília - UnB

Faculdade UnB Gama - FGA

Software Engineering

A study of replacing CUDA by OpenCL in
KGPU

Author: Rodrigo Siqueira de Melo

Advisor: Dr. Edson Alves da Costa Júnior

Brasília, DF

2015

Rodrigo Siqueira de Melo

A study of replacing CUDA by OpenCL in KGPU

Monograph submitted to the undergraduate
course of Software Engineering in the Univer-
sidade de Brasília, as a partial requirement
for obtaining the title of Bachelor of Software
Engineering.

Universidade de Brasília - UnB

Faculdade UnB Gama - FGA

Supervisor: Dr. Edson Alves da Costa Júnior

Brasília, DF

2015

Rodrigo Siqueira de Melo
A study of replacing CUDA by OpenCL in KGPU/ Rodrigo Siqueira de Melo.

– Brasília, DF, 2015-
68 p. : il. (algumas color.) ; 30 cm.

Supervisor: Dr. Edson Alves da Costa Júnior

Completion of Course Work – Universidade de Brasília - UnB
Faculdade UnB Gama - FGA , 2015.

1. GPU. 2. embedded System. I. Dr. Edson Alves da Costa Júnior. II.
Universidade de Brasília. III. Faculdade UnB Gama. IV. A study of replacing
CUDA by OpenCL in KGPU

CDU 02:141:005.6

Rodrigo Siqueira de Melo

A study of replacing CUDA by OpenCL in KGPU

Monograph submitted to the undergraduate
course of Software Engineering in the Univer-
sidade de Brasília, as a partial requirement
for obtaining the title of Bachelor of Software
Engineering.

Approved work. Brasília, DF, July 10, 2015:

Dr. Edson Alves da Costa Júnior

Advisor

Dr. Evandro Leonardo Silva Teixeira

Guest 1

Dr. Renato Coral Sampaio

Guest 2

Brasília, DF

2015

I dedicate this work for all the Brazilians that still believe,

in our country, and still fighting to build a better nation.

Acknowledgements

Prior of anything, I need to acknowledge two special women that have taught me

the value of working hard, honesty, study, ethics, and dreaming. They are my lovely mother

and grandmother, whom I have given all my respect, admiration, and love. Furthermore, I

have to thank to my little adorable sister that renew my energy and makes me remember

to keep dreaming.

Moreover, I need to acknowledge three special professors that have crossed with

me in my journey and have changed my life. Firstly, I want to say thank to my teacher

Fernando, he always trusted on my capacity and gave me many precious advices when I

was in the high school. Secondly, I need to say thank for my teacher Rogerio (as known

as, Basilio) that had introduced me the beauty of mathematics. Finally, I have to say

thanks to Professor Edson. He has influenced me with his knowledge, way of thinking,

working, and humbleness. I have to especially thank him, for always believe in me and in

my project, even when I started to not believe.

Throughout my journey, I have met great people. I have made awesome friends

that always helped and provided me a good time together. I’m talking about: Ronei that

studied many hours with me in the library on Sundays, Ramy that always received me

really well and have many enjoyable conversations, Kamilla whose many times shared

nice ideas, Rafael that always drink coffee with me in the Library and indroduced me

many different points of view, Matheus, Rubens that always provided good ideas, Bruno

that always discuss politics with me, Aniderson Fraga who I have shared few cups of

the most joyful and inspiring words, moments and sake. Additionally I need to say a

special thank to my friend Charles, that always gave me great advices and inspired with

his knowledge. Finally, I have to say an extra thanks to Charles due to all the valuable

corrections provided by him for this work.

Finally, I need to say a huge thank to Sunmin Song. She is a very special woman

that always inspired me a lot with her hard work and her way to see the world. Thanks

for have been patient with me and take care of me many times in Korea. I will remember

you forever.

"What is really good is to fight with determination,

embrace life and live it with passion. Lose your

battles with class and dare to win because the

world belongs to those who dare to live."

(Charlie Chaplin)

Abstract

GPU is a very high parallel device which became popular. Nowadays, many processors

already coming with a minimal GPU in the same die, this characteristic creates a new

and unexplored application area for this device. CUDA and OpenCL are two non-graphics

libraries commonly used for take advantages of GPU. CUDA was created by NVidia, and

it was designed to run on NVidia’s GPUs. On the other hand, OpenCL was created to

run on many different devices. Those libraries, interacts with the operating system by

using device drivers, and usually this is the unique connection between them. A group of

researchers from Utah proposed the use of GPU as a coprocessor, they developed a device

driver based on CUDA for achieving this goal (they called it as KGPU). In this work we

improved KGPU’s code, added support to OpenCL, and we analyzed the possibility of

use this project as a mature solution.

Key-words: GPU. OpenCL. Coprocessor. Embedded System. Device Driver. KGPU.

Lista de ilustrações

Figure 1 – VGA architecture . 23

Figure 2 – NVIDIA pipeline . 24

Figure 3 – GPU architecture overview . 25

Figure 4 – CPU . 25

Figure 5 – Processor Array . 26

Figure 6 – GeForce 8800 Architecture reference(PATTERSON, 2014) 27

Figure 7 – Detailed SM (PATTERSON, 2014) . 28

Figure 8 – Detailed GPU (PATTERSON, 2014) 29

Figure 9 – DirectX pipeline . 32

Figure 10 – Assembler decomposes instruction to GPU 32

Figure 11 – CUDA cycle . 35

Figure 12 – CUDA memory model . 36

Figure 13 – CUDA thread organization . 36

Figure 14 – OpenCL Specification . 37

Figure 15 – OpenCL memory abstraction . 38

Figure 16 – Kernel execution flow . 39

Figure 17 – Bottleneck: CPU and GPU communication 41

Figure 18 – KGPU architecture . 42

Figure 19 – Timegraph architecture (KATO et al., 2011) 43

Figure 20 – PRT . 43

Figure 21 – HT . 43

Figure 22 – Cooperative, Preemptive and Spatial 45

Figure 23 – GeForce 9500 GT . 50

Figure 24 – Last commit KGPU . 51

Figure 25 – Forks . 52

Figure 26 – Code organization . 53

Figure 27 – KGPU launching process . 53

Figure 28 – New KGPU organization . 55

Figure 29 – First output . 64

Lista de tabelas

Table 1 – Classification of Researches (Based on (SILVA; MENEZES, 2005)) . . . 48

List of abbreviations and acronyms

SGI Silicon Graphic Inc.

OS Operating System.

SIMD Single Instruction Multiple Data.

VGA Video Graphic Array.

PGA Professional Graphics Controller.

AGP Accelerated Graphics Port.

GPU Graphic Process Unit.

DMA Direct Memory Access.

APU Accelerated Process Unit.

SM Streaming Multiprocessor.

ALU Arithmetic Logic Unit.

SP Streaming Processors.

RF Register File.

SFU Special Function Unit.

DRAM Dynamic Random Access Memory.

DDR Double-Data Rate.

MMU Memory Management Unit.

DRI Direct Rendering infrastructure.

PCI Peripheral Component Interconnect.

NSK Non Stop Kernel.

PRT Predictable-Response-Time.

HT High-Throughput.

AE Apriori Enforcement.

PE Posterior Enforcement.

DMIPS Dhrystone MIPS.

IT Information Technology.

SoC System-on-a-Chip.

Sumário

Introduction . 21

1 THEORETICAL RATIONALE . 23

1.1 A brief history of GPU . 23

1.2 Processor Array . 25

1.3 GPU Architecture . 27

1.3.1 Streaming Multiprocessor (SM) . 28

1.3.2 Special Function Unit (SFU) . 28

1.3.3 GPU Memory Architecture . 29

1.3.3.1 Dynamic Random Access Memory (DRAM) . 30

1.3.3.2 Cache and MMU . 30

1.3.3.3 Global Memory . 31

1.3.3.4 Shared Memory . 31

1.3.3.5 Local and Constant Memory . 31

1.4 GPU Pipeline . 32

1.4.1 Input Assembler Stage . 32

1.4.2 GPU stages . 32

1.5 GPU computing and GPGPU . 33

1.6 CPU and GPU . 33

2 CUDA AND OPENCL . 35

2.1 Overview CUDA and OpenCL framework 35

2.1.1 Basic CUDA organization . 35

2.1.2 Basic OpenCL organization . 37

3 DELIMITATION OF THE SUBJECT 41

3.1 Purpose . 41

3.1.1 Related work . 41

3.1.1.1 Augmenting Operating System with the GPU . 41

3.1.1.2 Timegraph, GPU scheduling . 42

3.1.1.3 GPGPU spatial time . 44

3.1.2 Purpose . 45

4 METHODOLOGY PROCEDURES AND TECHNICAL 47

4.1 Methodology design . 47

4.2 Questions and objectives . 47

4.3 Hypothesis . 49

4.4 Hypothesis test . 49

4.5 Devices . 49

4.6 Environment Configuration . 50

5 ACHIEVED RESULT . 51

5.1 Results . 51

5.1.1 State-of-art of KGPU . 51

5.1.2 Refactoring . 54

5.1.3 Add OpenCL API . 55

5.1.3.1 Overview of GPU code in KGPU . 55

5.1.3.2 Changing data structures . 57

5.1.3.3 Changing functions . 58

5.1.4 Final output . 64

6 CONCLUSIONS . 65

6.1 Questions and answers . 65

6.1.1 Is it possible to use OpenCL instead of CUDA in KGPU? 65

6.1.2 Is it possible to keep CUDA and OpenCL in KGPU? 65

6.1.3 Can we adopt KGPU architecture? . 65

6.2 Future work . 65

References . 67

21

Introduction

In 1965 Gordon E. Moore noticed that the number of transistors by chip doubles

every two years, all of this growth made the electronics devices evolve very fast and made

the users want to get the most out of their devices. This constant greed has inspired engi-

neers to create the Graphics Processor Unit (GPU) to provide graphic powered device for

common users. The unit became incredibly fast, nowadays it can exceed 1000 GFLOPS
1 (ADRIAENS et al., 2011). It is equivalent to 10 times the capacity of the traditional

microprocessors. All of this power attracts people to use GPU for other purposes, thus,

thousands GPU-ready applications have emerged during the last years. As an example,

researchers used GPU for network packet processing (HAN; JANG; MOON, 2010), cryp-

tography (HARRISON; WALDRON, 2008), or fundamental algorithm

(OWENS; LUEBKE; GOVINDARAJU, 2007), etc.

Green computing is a new and curious area in which the GPU became objects

of study. This subject is related to computation concerning the environment. Some re-

searchers estimated that 2% of global carbon dioxide emission can be attributed to IT

systems. Based on that, many researches defend the use of GPU for reducing the execution

time of some tasks and reduce the energy consumption (SCANNIELLO et al., 2013).

All of GPU application area, raises a reasonable question: how to take some ad-

vantage of the GPU? The answer is: using some specialized libraries. When this device

was made, OpenGL and DirectX were created just to make use of it. Both of those li-

braries concern about graphic generation, and they aim to provide an easy way to create

it. However, the main use of libraries was not intended to use GPU in a general purpose

area. NVidia noticed that limitation and created the Compute Unified Device Architec-

ture (CUDA) 2. This new library makes GPU usage easier, it has a huge problem though:

CUDA is well supported just for NVidia devices. A few years ago this limitation was not

being considered, nevertheless today there are many different manufacturers producing

different GPU architectures incompatible with CUDA.

Many companies noted GPU potential and created their own chips. Whereas

CUDA was well supported for NVidia devices, the other companies did not have the same

background. Therefore, many groups have started to support a project called OpenCL,

which is a library maintained by Khronos Group. There are big companies associated with

the project, such as Samsung, Apple, ARM, Nokia, Sony, NVidia and others (GROUP,

2014b). The main feature of OpenCL is the portability, it means that a code written for

GPU created by Samsung can run in a chip made by NVidia.

1 FLOPS: FLoating-point Operations Per Second
2 http://www.nvidia.com/object/cuda_home_new.html

22 Introduction

Many companies tried to produce better or cheaper GPUs, and suddenly this kind

of device began to be put on the same die of the microprocessor. For instance, ARM added

the Mali GPU in some of their chips. This kind of GPU focused on energy efficiency and

provided a good performance in a smaller silicon area (GROUP, 2014a). This new kind

of SoC (System-on-Chip) aligned with OpenCL opened a new opportunity for research in

embedded systems.

With all of the ideas stated before, this work will discuss about the integration of

GPU into the Operating System with the intention of using OpenCL instead of CUDA.

This work brought many questions that we will answer, however, two inquiry represent

the main focus of this work:

1. Is it possible to use OpenCL instead of CUDA and get similar results?

2. Is it possible to use GPU more close to kernel context?

To achieve the expected results, will use a device driver to make GPU work as

a coprocessor. That driver uses OpenCL 1.23 3, because this library can be used in an

embedded systems.

3 Until now, this is the more recent version that is supported on embedded systems.

23

1 Theoretical rationale

1.1 A brief history of GPU

In the beginning of 1980’s the computer market experienced an enormous technical

evolution and sales growths. In this period IBM released the Professional Graphics Con-

troller (PGA). This device made use of Intel 8088 to handle some video tasks, and reduce

the overhead in the CPU. PGA had two problems: high cost (around $5500) and the lack

of compatibility with many programs (MCCLANAHAN, 2014). The hugest contribution

from that device was the introduction of the new idea of splitting graphics manipulation

from CPU. At this decade IBM coined the term Video Graphic Array (VGA) for the

device responsible control and display images (PATTERSON, 2014).

During the years some companies added and improved the idea of VGA. Silicon

Graphic Inc. (SGI) improved the 2D/3D manipulation and added the pioneer concept of

graphic pipeline. In 1989 some graphics API like OpenGL emerged and contributed for

making the graphic devices evaluation faster.

In the 90s, companies as NVidia and ATI began to be recognized by their graphics

devices. In this period the VGAs were connected to PCI bus, each one offering millions of

transistors, around 4 Mb of 64-bit DRAM, and 50 MHz. Nevertheless the CPU still had to

perform vertex transformations and another calculations, limiting the overall performance.

Figure 1 presents the referred architecture:

Figure 1 – VGA architecture

The VGA was treated as a normal peripheral, connected in the North Bridge and

accessed by PCI (PATTERSON, 2014).

24 Capítulo 1. Theoretical rationale

In 1999 NVidia released the GeForce 256 with 23 million transistors, 32 MB with

128-bit DRAM, 120 MHz of clock. It was connected to the Accelerated Graphics Port

(AGP) and offered new features (e.g.: multi-texturing, bump maps, light maps, and hard-

ware geometry transform and lighting (MCCLANAHAN, 2014)). All of these characteris-

tics made this devices to receive a different name, and for the first time the term Graphic

Processor Unit (GPU) was used by NVidia. The GPU made use of a sophisticated pipeline,

but non-programmable, just configurable. See Figure 2:

Figure 2 – NVIDIA pipeline

The first step of this pipeline is the Host Interface that is responsible for recei-

ving data from the CPU. The common approach for handling this situation is the use

of Direct Memory Access (DMA). The second stage is the vertex control, translating the

triangle data 1 (received from Host Interface) into a form that the hardware understands

and placing the prepared data into the vertex cache. The third step is the vertex shading,

transforming, and lighting (summarize as VS/T&L). This stage is responsible for trans-

forming vertex and assigning a color for each vertex. The fourth stage, Triangle Setup, is

responsible for creating edges equations that are used to interpolate color. The fifth stage

determines which pixel is contained in each triangle. The sixth stage handling the final

color. The seventh stage is the raster operation (ROP), which define the visible object for

transparency and anti-aliasing, and a given viewpoint, discards the occluded pixel, and

blend the color. The last stage is the Frame Buffer Interface (FBI) that manages memory

read from and written to the display frame buffer memory (KIRK, 2014).

The model above mentioned worked well for some years, however generation af-

ter generation engineers have introduced more and more features. Then, the developers
1 Usually, the surface of an object can be divided into a collection of triangles.

1.2. Processor Array 25

started to use ostensibly those features and they asked for more functions inside GPU.

This situation made the GPU evolve into a new step: it began to offer a programma-

ble pipeline. In 2002 NVIDIA released GeForce FX and ATI the Radeon 9700 the first

fully programmable graphics cards (MCCLANAHAN, 2014). This new kind of GPU star-

ted a new trend toward to unifying the functionality of different stages as seen by the

application programmer.

The GPU technology developed really fast, and in 2004 GeForce 6 and Radeon

X800 were the first GPU using PCI-express bus. See Figure 3:

Figure 3 – GPU architecture overview

Compare the GPU architecture with VGA and notice that the graphical devices

evolved a lot in the sense of CPU and GPU communication. The fully programmable

unified process called a Streaming Multiprocessor (SM) that handle vertex, pixel, and

geometry commutation.

Nowadays the new trend is the mix between CPU and GPU on the same chip.

This kind of device is known as Accelerated Process Unit (APU).

1.2 Processor Array

At a high abstraction level, the basic CPU is composed by: control unit, ALU,

some function units, and memory (Figure 4):

Figure 4 – CPU

26 Capítulo 1. Theoretical rationale

Nowadays, engineers want to build a processor massively parallel. In order to

achieve this aim they are trying to create many different architectures. One of the ideas is

related to using one control unit connected with many ALUs, trying to create a parallelism

by data division. See Figure 5.

Figure 5 – Processor Array

The processor vector has some unique characteristics that make it special, mainly

because it can process many data in parallel. Some of the characteristics are (PACHECO,

2014):

• Vector register : Registers are capable of storing vector of operands and operate

simultaneously on their contents.

• Vectorized and pipelined function unit: The same operation is applied to each ele-

ment in the vector.

• Vector instruction: Instructions that operate on vector rather than scalar.

• Interleaved memory: The memory system is composed of multiple “banks” of me-

mory, which can be accessed independently.

• Strided Memory Access and hardware scatter/gatter : In strided memory access, the

program accesses elements of a vector located at fixed intervals.

The characteristics above mentioned are aligned to the idea of logical graphics

pipeline, because physically it is a recirculating path that visits the processor more than

once with many of the fixed-function revisited. The characteristics of the vector processor

allow the dynamic partitioning of the array to vertex shading, geometry processing, and

pixel processing (KIRK, 2014).

1.3. GPU Architecture 27

In 2006 NVIDIA released the GeForce 8800 that applied the idea of unified pro-

cessor. After that the engineers accepted the challenge of creating an unified processor.

Figure 6 presents 8800 architecture.

Figure 6 – GeForce 8800 Architecture reference(PATTERSON, 2014)

The architecture will be better explained in the following section.

1.3 GPU Architecture

GPU follows the vector processor architecture. It means that GPU is composed by

many multiprocessors. The total amount of multiprocessor inside of the GPU may vary

based on the purpose of use. For example, a GPU dedicated for games can have dozens

of processor whilst a GPU in a Smartphone can have fewer than ten.

There are many reasons for building a highly multithreaded processor, and it has

been tried to achieve several goals with that processor. Patterson and Hennessy highlight

five of them (PATTERSON, 2014):

1. Cover the latency of memory load and texture fetches from DRAM.

28 Capítulo 1. Theoretical rationale

2. Support fine-grained parallel graphics shader programming models.

3. Support fine-grained parallel computing programming model.

4. Virtualize the physical processor as thread and thread block to provide transparent

scalability.

5. Simplify parallel programming model to write a serial program for one thread.

The subsequent subsections will introduce more deeply the GeForce 8800 archi-

tecture. See Figure 7 carefully, because all of the explanations in this section will refer to

it.

Figure 7 – Detailed SM (PATTERSON, 2014)

1.3.1 Streaming Multiprocessor (SM)

The streaming processor (SP) is the first element in the multithread processor.

Figure 8 shows that the multiprocessor has many SPs. It is responsible for creating and

managing many threads (for example, GForce 8800 spawns up to 64 threads in some

GPU) (PATTERSON, 2014).

Each SP has its own Register File (RF) associated with it (see Figure 8). The

advantage of using this resource is the increase in speed. This RF can have hundreds of

registers in some GPU’s (in opposite of CPU’s).

1.3.2 Special Function Unit (SFU)

This unit, as the name indicates, makes some special calculations such as float-

point approximation to reciprocal, reciprocal square root, sine, cosine, logarithm, and

some special cases of multiplication. The SFU has a special type of multiplication for

handling floating point number. It can be executed concurrently with the SPs. This si-

tuation can increase the peak of computation rate up to 50% for threads with suitable

instruction mixture (PATTERSON, 2014).

1.3. GPU Architecture 29

Figure 8 – Detailed GPU (PATTERSON, 2014)

1.3.3 GPU Memory Architecture

So far, it was discussed unit process and how much data it generates. Thus, a new

question is raised: how to load and store the data effectively? This situation becomes clear

when think about write and read pixels, the GPU can calculate thousands of pixels that

will be accessed hundreds of times. If the operation in those pixels occur slowly, the GPU

will lose performance (something similar to Von Neumann Bottleneck2).

The GPU memory system must consider five important characteristics (PATTERSON,

2014):

1. The memory must be wide, meaning there are a large number of pins to convey

data between the GPU and its memory devices.

2. The memory must be as fast as possible.

3. GPU must use every available cycle to transfer data to or from the memory array.

4. Use of compression techniques.

5. Reduce the total amount of off-chip traffic needed (for it usually uses cache).

The memory system in a GPU is complex and must be considered in each part

separately. This following subsection will discuss the most common elements one by one.

2 The separation of memory and CPU (PACHECO, 2014)

30 Capítulo 1. Theoretical rationale

1.3.3.1 Dynamic Random Access Memory (DRAM)

It is possible to find many different kinds of memories, nevertheless many concepts

are the same between all of them. All memory types needs a way to receive and send data,

in this sense five operations can be abstracted for of them (TOCCI; WIDMER; MOSS,

2007):

1. References a memory address by an operation for read or write.

2. Select one operation of read or write to be executed.

3. Provides the data to be stored in memory during a write operation.

4. Keep the output data in the read operation.

5. Enable or disable the memory, for making possible the read and write operation.

Random Access Memory (RAM) is one kind of memory that makes easy the access

to any part of the memory. The content into the memory can be written or read based on

the execution program needs. One special type of RAM is the Dynamic RAM (DRAM).

The main feature of this kind of memory is the data storage density, and the low power

consumption aligned with moderate speed operations (TOCCI; WIDMER; MOSS, 2007).

Usually DRAM is organized in many blocks, because of this, multiple timing re-

quirements are imposed to make it possible. Based on that the Double-Data Rate (DDR)

was introduced as a technique that transfers data on both rising and falling edges of the

interface clock, this feature makes the access to DRAM more effective. This last behavior

is very import for GPU, due to the huge amount of memory access which this device

needs (PATTERSON, 2014).

As commented previously, the GPU has many elements that generate thousands

of accesses to the memory. GPU pipeline is one of those tasks responsible for the huge

memory access. Notice that each stage of the pipeline can generate more and more access

to the memory. This situation causes an enormous number of uncorrelated requests. In

order to minimizing this problem, GPU’s memory controller keeps separated heaps of

traffic bound for different DRAM banks. Next, it waits until enough traffic for a particular

DRAM row is pending before activating that row and transferring all the traffic at once.

Finally it is necessary to take care with this approach either, because it can generate

starvation.

1.3.3.2 Cache and MMU

In order to reduce the off-chip traffic, GPU designers introduced caches. Cache has

two main ideas associated with it (PATTERSON, 2014).

1.3. GPU Architecture 31

• Temporal Locality: Data recently used can be used again soon.

• Spatial Locality: If some data is referenced, a data near to it has a higher probability

to be referenced also.

Those principles in a regular the CPU correspond to 99,99% of cache hit 3, which

represents a very expressive amount of hits. On CPU, when there is a cache miss 4, one

approach is just to wait for the data to be retrieved.

When the cache is inserted in the context of the GPU some experiments (PATTERSON,

2014) have shown that the total amount of cache hit can be reduced to 90%. It is a pro-

blem, because the GPU cannot wait so much. In the opposite to the CPU that can wait,

the GPU must to proceed even with the cache miss. This technique is known as streaming

cache architecture.

Finally, some modern GPU provide a memory management unit (MMU). It per-

forms the translation to virtual from physical address.

1.3.3.3 Global Memory

The global memory is an external memory from SM with the main objective of

offering a way for communicating different SM. For accessing this kind of memory the

programmer must take care with synchronization.

1.3.3.4 Shared Memory

The shared memory is located inside of SM and it is visible to the local threads.

This kind of memory provides a huge advantage for reducing the memory traffic and

it is practical to build very high-bandwidth memory structures on-chip to support the

read/write demands of each SM.

1.3.3.5 Local and Constant Memory

This kind of memory is visible only by a thread and it is bigger than register

file, sometimes, the thread needs to support allocation for big data, because of this local

memory is located on external DRAM. Constant Memory is a read-only memory located

at DRAM. The constants are designed to broadcast scalar values.

3 Find data inside of the cache
4 Data is not in cache, and must be sought on main memory

32 Capítulo 1. Theoretical rationale

1.4 GPU Pipeline

One of the most important characteristics related to GPU is known as a pipeline.

In the section 1.1, it was introduced an old style of pipeline. In this section the pipeline

issue will be addressed in more detail.

It is important to highlight that each API can handle the pipeline in a different

manner. Figure 9 shows DirectX pipeline, basically, OpenCL is similar.

Figure 9 – DirectX pipeline

1.4.1 Input Assembler Stage

Figure 10 – Assembler decomposes instruction to GPU

The first step is responsible for receiving the data from the CPU. Usually the

communication is carried out by the DMA (Direct Memory Access) (KIRK, 2014). This

stage receives a sequence of vertices grouped in a primitive like points, line, triangles, and

polygons (PATTERSON, 2014). Afterwards this stage translates the data for another

type of data that the GPU can understand.

1.4.2 GPU stages

On the Vertex Shader Stage, the color transformation and light will be calculated

vertex by vertex. This stage is a programmable one and it makes use of parallel behavior

in the GPU. On the Geometry Shader stage it is possible to add and drop primitives.

The Setup & Rasterization stage generates a pixel fragment that is covered by a

geometric primitive. Pixel Shader, performs for each fragment parameter, texturing, and

coloring.

1.5. GPU computing and GPGPU 33

1.5 GPU computing and GPGPU

DirectX and OpenGL were the first graphical libraries of common use, that sup-

ports the use of GPUs. In the beginning, those libraries and GPU were designed for

handling graphics. Nevertheless year after year, GPUs became more and more powerful.

It is evolving faster than Moore’s law predictions (KIRK, 2014). Hence many scientists

tried to use all the GPU power for doing some special computations, such as simulation

or particles.

When someone wants to use the GPU for another purpose different of graphics,

they need to use graphics API, as OpenGL. For example, to run many instances of a

program or function in the GPU it is necessary to write it like a Pixel Shader 5. All the

necessary input used by the application, must be filled with a texture image. Additio-

nally it is necessary to cast the output. Finally it is possible to conclude, that the GPU

computing was not prepared for handling this kind of application (KIRK, 2014).

The new trend of using the GPU for computing, made NVIDIA focus in this new

area. The company tried to find a way to make the use of GPU easier without the need to

use graphics libraries. NVidia initiated a new movement called GPGPU (General-Purpose

Computation on GPU), the main idea is to use a a GPU for general-purpose computation

via traditional graphics API and graphics pipeline without any need of using any graphical

library (PATTERSON, 2014). As a result of many efforts, NVIDIA developed the CUDA

C/C++ compiler libraries, and runtime software to allow programmers to access the

resources of GPUs easily.

1.6 CPU and GPU

So far, it was described many features related to the GPU and its architecture,

and how powerful it is. Someone that compares the GPU architecture with a computer

architecture can notice the similarity between them. The GPU is a very complex system

with many features, and it can overcome easily a normal CPU in a processing of float

point (around 10 times faster (KATO et al., 2011)).

On the other hand, CPU offers many other characteristics that GPU cannot pro-

vide like: virtual memory, interruption, preemption, the controllable context of switching,

and the ability to interact directly with I/O devices (KATO et al., 2011). Those characte-

ristics are essential for developing an operating system or an embedded system. Another

difference is the way that data is handled by the GPU and CPU. In the case of GPU the

focus is data independence.

Based on the differences and in the advantages of each device some companies

5 compute color and other attributes of each fragment

34 Capítulo 1. Theoretical rationale

tried to mix GPU and CPU in the same die. Some CPUs nowadays come with GPU on

the same chip. This is called Accelerated Processing Unit (APU 6).

6 APU a computer’s main processing unit that includes additional processing capability designed to
accelerate one or more types of computation outside of CPU (SMITH, 2011)

35

2 CUDA and OpenCL

2.1 Overview CUDA and OpenCL framework

CUDA and OpenCL are the most popular GPGPU framework, both APIs are

SIMD, thus they have similar structures. Despite the similarities, each one has their

own advantages and disadvantages. This section introduces each API, and a comparison

between them.

2.1.1 Basic CUDA organization

Compute Unified Device Architecture (CUDA) was created by NVIDIA to provide

an easy way to use GPU features in a non-graphical problems. This framework is based on

the idea of "Single Instruction, Multiple Data"(SIMD), in other words, the same piece of

code can executes into many threads. Basically, the user writes a code in a C-like language

which will run on the GPU (ARROYO, 2011), this piece of code running on the GPU is

named kernel.

All programmers who wish to take advantage of parallel computing with in GPU

using CUDA, have to keep in mind two different concepts: host and device. Host is related

with code that runs on the CPU and has little data parallelism. For example a code with

intensive control behaviour (searching, sorting, and so on). The second one, is a device

with many of massive parallel processors and with intensive data (for example, image

processing). Conceptually, CUDA provides one phase with low data parallelism (CPU)

and another phase with heavy data parallelism (device) (KIRK, 2014). Figure 11 shows

an example of CUDA cycle, notice the top of the figure shows a serial code running on

CPU, and next launching a kernel running in GPU. It is important to recognize that all

threads generated by the kernel are organized in a grid.

Figure 11 – CUDA cycle

36 Capítulo 2. CUDA and OpenCL

When a CUDA kernel is executed on the GPU, it generates a thousands of threads.

In opposite to thread in CPU, threads in GPU are much more lightweight. The reason

for this characteristic is the hardware support for thread implemented inside the GPU.

As explained in the last Section 1.3.3, GPUs have their own memory. The device

and host memory are separated as a result, the programmer has to allocate space on GPU

and copy data from host to device. To facilitate working with device memory, CUDA

creates an abstraction for representing data memory. Figure 12 shows the memory used

by CUDA, and the basic flow to use it. Notice that global memory is connected between

host and device. For make the allocation of memory in GPU and copy data from host to

GPU, it is used cudaMalloc and cudaMemcpy. Those functions are two simple examples

to illustrate how the CUDA API works.

Figure 12 – CUDA memory model

Figure 13 shows how CUDA organize their threads. Each kernel, has their own

grid, each one subdivided into block, and finally it is possible to access the thread part.

Figure 13 – CUDA thread organization

2.1. Overview CUDA and OpenCL framework 37

2.1.2 Basic OpenCL organization

CUDA is a framework that works only on NVidea devices. This is an important

restriction that makes this API limited from the portability view point. In this sense,

some years ago Apple tried to explore GPU-acceleration independently of the device. In

order to achieve this goal they started the OpenCL project. Nowadays, Khronos Group

maintains the specification of this API (ARROYO, 2011).

OpenCL defines a variant of C99. This means that it is not needed to use a specific

compiler, however, it is required to link it with the correct OpenCL library. The most

powerful characteristics of this API are the multi-platform, as a result, OpenCL can run

on many different devices.

Figure 14 illustrates the basic execution flow of OpenCL code. Firstly, it is the

"setup", this step responsible to configure the platform, device and the context whose host

will use interact with the device (BENEDICT et al., 2013). This is an important difference

between CUDA and OpenCL, because this kind of configuration is driven by the device

driver and happens transparently for CUDA. These configurations allow OpenCL to know

which device will be used at runtime, and then execute specific code for the current device

vendor. This low-level approach gives more flexibility in the sense of running the same code

into many different platforms, on the other hand it makes the API much more verbose

(ARROYO, 2011). The second part of setup creates an abstraction to communicate host

with device, this is named "context". The third part, defines the memory model hierarchy

whose kernel will use. The last chunk defines how to map the concurrent model of the

hardware.

Figure 14 – OpenCL Specification

Similar to CUDA, OpenCL defines the idea of kernel that will execute on device.

The smaller granularity of parallelism in OpenCL is called work-item (equivalent to thread

in CUDA) and it is responsible for executing a snippet of code that should be executed

in parallel.

Context has the main objective of coordinating the mechanism between host and

device, manage memory objects and keep track of registered programs (BENEDICT et al.,

38 Capítulo 2. CUDA and OpenCL

2013)). OpenCL has an abstraction named command queue, which is responsible for the

mechanism of communicating host action with device.

To manage memory, OpenCL API implements two kinds of memory: buffer and

image. The first one is a simple memory in the device, located at the Global memory. Image

is another kind of memory optimized for fast access. The drawback of this type of memory

is related to the that of some devices cannot support this feature. As a comparison, buffer

memory has a similar behavior of cudaMalloc and the image is similar to pinned memory.

OpenCL has a special abstraction of memory. This abstraction was designed to

embrace the differences between all vendors memories. Figure 15 illustrates the overview of

OpenCL memory model, notice the similarity with CUDA memory model. Global memory

is responsible for handling data transfer between host and device, and only has a small

piece inside of it to handle constants. All work-items are organized into the work-group,

which has local memory visible for all threads. Finally, all work-items have their own

private memory. This granularity, provides great flexibility to OpenCL API and allows it

to run into a different kind of devices from different vendors.

Figure 15 – OpenCL memory abstraction

One of the most interesting characteristic of OpenCL is the creation and build

process. First of all, kernel code is loaded as a string with a function called clCreate-

ProgramWithSource. If code is correct, OpenCL creates an object file. Afterwards, the

program is "compiled"at runtime by clBuildProgram, and finally it is ready to execute.

Figure 16 shows the basic flow to run the kernel. The first is to create a ker-

nel reference, cl_kernel is the data structure used to handle it. Secondly, if the kernel

has a parameter the programmer has to explicitly set them one by one with the func-

tion clSetKernelArg. Finally, for launching the kernel it is necessary to initialize it with

clEqueueNDRangeKernel.

2.1. Overview CUDA and OpenCL framework 39

Figure 16 – Kernel execution flow

41

3 Delimitation of the subject

3.1 Purpose

Firstly, this section aims to introduce the related works that inspired this project

and later it overall idea. Secondly, it is possible to verify an analysis of the proposal

feasibility. Finally, it is possible to find the scope delimitation that the author wants to

achieve.

3.1.1 Related work

3.1.1.1 Augmenting Operating System with the GPU

Weibin Sun and Robert Ricci wrote a paper titled Augmenting Operating System

with the GPU (SUN, 2011). Basically they argued that GPU can be used to speed up some

kernel functions. For this reason, they had a great idea of using GPU as a coprocessor

from an OS kernel. They proved their thoughts by implementing a device driver for make

GPU behave as a coprocessor (better known as KGPU).

As a result, there are new subtle issues that demand extra attention. Indeed,

problems related with the time elapsed to transfer data from memory to GPU and vice-

versa becomes a problem to KGPU. To put it in another way, it is fundamental to realize

that this action needs a bus access. Actually, for handling this situation it is used DMA
1 and it is a huge bottleneck. See Figure 17

Figure 17 – Bottleneck: CPU and GPU communication

For handling the problem of data transfer between CPU and GPU, the authors

addressed the issue using pinned memory which is a CUDA feature for faster memory

access. This kind of memory is faster because it is a mmap 2 resource, however it has the

disadvantage of locks the specific physical page.

By the same token other problems by using GPU as a coprocessor arises, but at

this time relates to the Launch Overhead. Any kind of device needs to be set-up before

1 Direct Memory Access, for more information going back to theoretical rationale.
2 http://man7.org/linux/man-pages/man2/mmap.2.html

42 Capítulo 3. Delimitation of the subject

using, and GPU follows the same idea. It based on that, it is easy to see that GPU takes

some time to be ready for use. This waiting time, creates an overhead that degraded a

lot the performance and it must be handled.

Based on launch overhead, the paper suggested the creation of new GPU Kernel

execution model which the authors called Non Stop Kernel (NSK). The main idea behind

the design of NSK is keeping it small and launch it only once without terminating it. See

the Figure 18 that illustrates the NSK:

Figure 18 – KGPU architecture

The paper described on the current section has given the main motivation for the

start of this work.

3.1.1.2 Timegraph, GPU scheduling

The GPU was originally designed to be used by electronic games. However new

applications have began to make use of this device, e.g., many GUI and multimedia ap-

plications are processed on GPU. Additionally, many engineers and scientists had become

more interested in the parallelism provided by it. In this sense, the idea of sharing GPU

with many softwares begins to make sense and took the attention to the problem of im-

proving the scheduler for this device. Inspired by this issue, a group of research tried

to solve this problem by creating a new GPU scheduler called Timegraph (KATO et al.,

2011).

The idea of Timegraph can be summarized in the creation of a new GPU scheduler.

For real-time environment that adds prioritization to the processes running on it, and

provides a better separation between applications. Nevertheless, for implementing this

3.1. Purpose 43

idea, a device driver was created that handles the communication to GPU and one module

connected to it that has the Timegraph algorithm. See Figure 19.

Figure 19 – Timegraph architecture (KATO et al., 2011)

At the top of the Figure 19 it is possible to see many applications that generate

GPU commands. Afterward those instructions are grouped and delivered to the Device

Driver. It passes through Pushbuf interface, which is connected to GPU command sche-

duling within Timegraph. In this module is handled the policy of scheduling and reserving

GPU. Timegraph provides two types of scheduler algorithms, one specialized to increase

the predictable response time and another one for high-throughput. See the Figure 20

and 21 below that illustrates both schedulers:

Figure 20 – PRT

Figure 21 – HT

44 Capítulo 3. Delimitation of the subject

Figure 20 illustrates the Predictable-Response-Time (PRT) policies. It receives

tasks with different priorities to be scheduled; all the processes arrived are queued, and

based on their priorities the queue is rearranged. Notice that only one task is sent to

GPU at time. Whenever high priority task arrives it is put on top of the queue, however

this operation has a price: the time caught for decision making. This schedule has a good

performance and it is very predictable, but it suffers with system degradation caused by

the decision making.

The Figure 21 shows the High-Throughput (HT) policy: it focuses on providing

high-throughput. PRT and HT policy are similar, but HT allows GPU command group

to be submitted to GPU immediately. It increases the throughput, on the other hand, it

degrades the predicting response because some high priority task needs to wait.

Another characteristic that Timegraph provides is the reservation mechanism. It

provides two strategies: Posterior Enforcement (PE) and Apriori Enforcement (AE). PE

enforces GPU resource usage after GPU command groups are completed without sacri-

ficing throughput. AE enforces GPU resource usage before GPU command groups are

submitted using prediction of GPU execution cost at the expense of additional overhead.

3.1.1.3 GPGPU spatial time

The case for GPGPU spatial multitasking (ADRIAENS et al., 2011) is a paper

that discusses the current techniques for GPU scheduling, and it proposes a different

approach to the scheduler GPU. Usually when one application runs on GPU it has 100%

of GPU dedicated only to it, and it just releases the device if it explicitly yield the GPU.

Bearing it in mind, some malicious applications may take the control of GPU and never

free it. Windows Vista and Windows 7 addressed this issue by imposing time limits to

GPU computation: if the application fails to yield the Operating System eliminates GPU

computation.

Usually GPU scheduler is based on time and preemption policy, and it is possible

to notice that this approach has some overhead associated with context switches (saving

and restoring). Additionally, this approach is not good for this kind of device because

of their nature. As introduced in the second section, GPU is highly parallel with many

processor working together. In order to take some advantage of this device, it is necessary

to use a different way to schedule the processes passed to it.

To address the issue of temporal multi task on GPU, it was proposed the Spatial

Multitasking. Basically this technique allows many GPU kernels3 executing at the same

time using in a subset of the GPU resource. Figure 22 represents three different methods.

The first and the second image doesn’t share the resource and represents the traditional

3 The kernel term is used in the CUDA context here.

3.1. Purpose 45

Figure 22 – Cooperative, Preemptive and Spatial

way of GPU scheduling. In opposite way, the last image shows one approach that shares

the resource based on spatial.

3.1.2 Purpose

The ideas described in the previous section mixed with many other acquired in a

long time of study have guided this work. This project has two main objectives:

1. Make KGPU work with CUDA and OpenCL.

2. Organize KGPU code, and verify the architecture.

KGPU provides the main idea for the current project. The concept of GPU as a

coprocessor is the core idea of this project, nonetheless two things were changed: the use

of CUDA and the software engineering techniques. Firstly, instead of use CUDA it is used

OpenCL because of the portability. Secondly, this project tried to apply many software

engineering techniques to make KGPU more readable and to create the bases to build

other projects. Finally, this work expects to verify practicability in the use of the KGPU

architecture.

47

4 Methodology Procedures and Technical

4.1 Methodology design

With the intention of classifying the current research based on the used methods,

this section describes the methodology. Before analysing the methodology, it is necessary

to define methods and research. Lakatos and Marconi (MARCONI; LAKATOS, 2003)

argued that research methods, is a set of systematic activities and arguments that guided

to the generation of legitimate knowledge. Finally Silva and Menezes (SILVA; MENEZES,

2005) said that research means finding an answer to proposed questions.

Based on Table 1, this work can be classified as applied, quantitative, exploratory,

bibliographies, and experimental.

4.2 Questions and objectives

The aim of this research, is the attempt to answer some or all the following ques-

tions:

1. Is it possible to use OpenCL instead of CUDA in KGPU?

2. Is it possible to keep CUDA and OpenCL in KGPU?

3. KGPU architecture is good enough to be adopted as an alternative to use GPU as

a coprocessor?

For help to answer those questions, some objectives were defined:

1. Study and understand GPU architecture.

2. Reduce KGPU services to simple example.

3. Refectory KGPU code.

4. Translate CUDA code to OpenCL code.

48 Capítulo 4. Methodology Procedures and Technical

Classification Type of research Description

Nature
Basic Research that aims to generate new kno-

wledge and useful advance in science without
concerned with practical applications.

Applied Aims to generate knowledge for practical ap-
plications guided by specific solution for pro-
blems.

Approach
Quantitative Research with a focus on statistical studies

target to the quantification of the study ob-
ject.

Qualitative In this kind of research, the process of inter-
pretation of the phenomenon and the passing
of meaning are basic in the research process.
The data are analysed in intuitively.

Objectives
Exploratory Aims to provide a deeply into the studied

subject, it tries to make explicit the issue or
build hypothesis.

Descriptive Aims to describe the characteristics of some
specific population or phenomenon, or the re-
lationship between variables.

Explanatory Aims to identify or determine the contribu-
tion for the phenomenon occur. Dive into the
knowledge because it explain the "why"of the
things.

Technical Procedures

Bibliographic When it is created based on the materials
already published, mainly by books, articles,
and materials provided on the Internet.

Document When it is created based on materials, that
have not received the analytic treatment.

Experimental When it is determined an object of study.
Firstly it is selected a variable capable of in-
fluence, secondly defines the way of control-
ling it, and finally take a look at the effects
made by the variable.

Collection When the research is focused on asking for
people, whose the objective is know their
behaviour.

Case study Deeply study of one or a few objects, that
allows a wide knowledge details about the
object.

Action research The researchers and the members of the ex-
periment are involved in a cooperative way.

Partner Research When the research is developed based on the
interaction between the researchers and the
members of the investigated situation.

Table 1 – Classification of Researches (Based on (SILVA; MENEZES, 2005))

4.3. Hypothesis 49

4.3 Hypothesis

This work aims to study the feasibility of replace CUDA to OpenCL in KGPU

and verify the possible adoption of KGPU as a coprocessor. For it, two hypotheses were

defined:

1. OpenCL can replace CUDA with similar performance. OpenCL has similar

characteristics with CUDA, however it has much more advantages because of the

portability.

2. The use of KGPU as an API to make use of the GPU as a coprocessor .

If KGPU has a good architecture, it can be extend for future works.

4.4 Hypothesis test

KGPU was written using CUDA, and already has a few services implemented.

Thus, to verify if the translation of CUDA to OpenCL is right, it is possible to compare

the output generated by the original service with CUDA and compare it with the KGPU

output with OpenCL. This test aims to verify, the correctness of the output without

taking care of performance issues. KGPU has many complex services, because of this it

was selected a set of simple tests whose the objective is to verify the correct behaviour of

the KGPU functions.

The same hypothesis can be applied to the case of applying software engineering

techniques to the KGPU code. However, to verify this hypothesis the use of CUDA or

OpenCL does not affect the comparison.

4.5 Devices

This project was developed in a computer, with following the configuration:

• 4Gb of RAM memory;

• Intel Core i7 2.93GHz;

• Hard dist sata, 1.4TB.

NVidia 9500 GT was adopted for using in the project. Figure 23 illustrates this

device. Follow the main characteristics of 9500GT:

• 32 processor core;

50 Capítulo 4. Methodology Procedures and Technical

• 550 MHz of Graphics clock;

• 1400 MHz of processor clock;

• Memory clock of 800MHz (GDDR3) and 500MHz (DDR2);

• 256/512 MB (GDDR3) and 512 MB (DDR2) of standard memory.

• 128 bits Memory Interface Width

Figure 23 – GeForce 9500 GT

4.6 Environment Configuration

All the project was developed in GNU/Linux, following the software the specifica-

tion of system:

• Operating System Kubuntu 14.04, 64 bits;

• Kernel 3.13.0-48;

• NVIDIA driver 331.113;

• nvcc version 5.5;

• gcc version 4.8.2;

• Make 3.81;

• C99;

Finally, it is possible to see all changes made in KGPU code in the URL:

<https://www.github.com/rodrigosiqueira/kgpu_fga>

This repository was forked from the original KGPU code, and used as a base to develop

this work.

https://www.github.com/rodrigosiqueira/kgpu_fga

51

5 Achieved Result

5.1 Results

This section presents the result of the research in details. Firstly, it is introduced

the KGPU code structure and the current state of the original project. Afterward, it

explains the software engineering techniques applied to it. Finally, it is described the

essential points of the insertion of OpenCL.

5.1.1 State-of-art of KGPU

KGPU was a part of the Ph.D project developed by Weibin in the Utah University,

and it had many of the updates in the period of his studies. Nowadays, the project is

stopped mostly because Webin was the only programmer on the project. To be more

accurate, it has more than two years that the repository does not have any update. Just

for illustration, Figure 24 shows the last commits on the master.

Figure 24 – Last commit KGPU

Look at the top of Figure 24, it is possible to notice that 162 people "stared"the

repository, and Figure 25 shows the total forks of the project, which indicates that many

people are interested in KGPU. Notwithstanding, after verifying all the user’s forks, it is

possible to notice that nobody made many change in the code. This raises the question:

why so much people are interested in the project, but no one did a change? We believe

that part of this, is related to the project structure.

52 Capítulo 5. Achieved Result

Figure 25 – Forks

After a deeply study at the code to try to identify the all the major problems, it

was possible to realize that KGPU are not organized. As a simple example of the bad

organization, all the code was put together in the same folder (Figure 26). The code does

not have any logical separation and it is very hard to read and understand. See below,

the top 5 list of code problems found in KGPU.

1. Dreadful variable and functions names;

2. No documentation of any kind;

3. Many structures spread around many files;

4. Thousands of macros;

5. Many code dependencies to CUDA.

Other weak point of the project is the procedure of launching KGPU. Figure 27

describes all the required steps for making KGPU run and waiting for execute services.

One thing that make all this process painful and dangerous, it is the need of execute all of

those steps as a super user. The first step for run KGPU, is inserting the kgpu.ko module

5.1. Results 53

Figure 26 – Code organization

by the command:

1 insmod ./ kgpu.ko

Figure 27 – KGPU launching process

Next, it is required to initialize the helper service (user mode). To do it, the com-

mand below have to be executed:

1 ./ helper -l ‘pwd ‘

The last step it is insert the service on the memory, this step can vary based on

the name of the service. The command below, show one simple example:

1 insmod ./ callgpu .ko

Finally, the last critical problem with KGPU is related to its compilation. KGPU

is a very old project without updates, and when it was designed, the kernel 2.7 was the

main version. Nowadays kernel 3.x (and upper) became more popular, and latest versions

does not have many support anymore. In this sense, it was really important to port the

project for the new versions.

54 Capítulo 5. Achieved Result

5.1.2 Refactoring

The process of refactoring KGPU brought a challenge, mostly because of depen-

dencies between files and compilation problems to run the project in kernel 3.x. The first

step of refactoring, consisted to make KGPU compile and run on new versions of the

GNU/Linux kernel, to achieve this goal it was needed to update some pieces of code.

Code 5.1 shows a piece of code written by Weibin which run on kernel 2.6, but not in

the new version. Code 5.2 shows the needed changes to make KGPU run on newer kernel

versions.

Code 5.1 Those flags not exists on new versions of kernel

1 vma ->vm_flags |= VM_RESERVED;

Code 5.2 Changed flag to run in new kernel version

1 vma ->vm_flags |= (VM_IO | VM_LOCKED | (VM_DONTEXPAND | ←֓

VM_DONTDUMP));

Make KGPU capable to run on newer Kernel version created the basic requirement

to change the code, once it is possible to test the changes in the code and verify if the

output still correct. The second step, was renamed variables and functions with meaningful

names and correct the indentations to make easier to understand the code.

The third step consisted to organize all files in a logical way, because KGPU

did not have any kind of logical separation between files and folder. To make simple to

understand the code, it was created one folder for each part of the architecture described

on Section 3.1.1.1. KGPU has three main parts: Kernel GPU, user space, and operating

system service (SUN, 2011). Despite of this conceptual division, the code does not reflect

it as Figure 26 can illustrates. In order to improve the implementation, it was separated

all the header files and changed all the folder organization for making it more consistent

with the theory. Figure 28 illustrates the new folder arrangement of KGPU, notice the

clear division of the code based on the KGPU architecture. Additionally, it was created,

new files to make the division of the code better.

Finally, it was added some simple features (but powerful) to create the bases for

the code grows in the future. The first one, is the addition of continuous integration with

Travis CI 1, this is an important feature for keeping the project always working right.

Secondly, it was registered the project in waffle 2 website for help to manage the project.
1 <https://travis-ci.org/rodrigosiqueira/kgpu_fga>
2 <https://waffle.io/rodrigosiqueira/kgpu_fga>

https://travis-ci.org/rodrigosiqueira/kgpu_fga
https://waffle.io/rodrigosiqueira/kgpu_fga

5.1. Results 55

Figure 28 – New KGPU organization

Lastly, it was added Doxygen to the project and made the current code API description

online via gh-pages in github 3.

5.1.3 Add OpenCL API

5.1.3.1 Overview of GPU code in KGPU

KGPU was designed to use CUDA framework, and originally the author did not

have any intention to use OpenCL. Hence, the code was not prepared to receive others

APIs, and this characteristic made the task to add new a library complicated.

Code 5.3 is the header file which keeps function’s signature used by KGPU, the

implementation of those functions can be found in "cudaOperations.cu"with CUDA im-

plementation of each of those signatures. All the main function of GPU space was imple-

mented inside this file, follows a brief description of each one:

3 Gh-pages is a simple way to make the code API available in Internet

56 Capítulo 5. Achieved Result

Code 5.3 All KGPU CUDA operations

1 extern "C" void gpu_init ();

2 extern "C" void gpu_finit();

3

4 extern "C" void * gpu_alloc_pinned_mem (unsigned long size);

5 extern "C" void gpu_free_pinned_mem (void * p);

6

7 extern "C" void gpu_pin_mem (void * p, size_t sz);

8 extern "C" void gpu_unpin_mem (void * p);

9

10 extern "C" int gpu_alloc_device_mem (struct kgpu_service_request←֓

* sreq);

11 extern "C" void gpu_free_device_mem (struct kgpu_service_request←֓

* sreq);

12 extern "C" int gpu_alloc_stream (struct kgpu_service_request * ←֓

sreq);

13 extern "C" void gpu_free_stream (struct kgpu_service_request * ←֓

sreq);

14

15 extern "C" int gpu_execution_finished (struct ←֓

kgpu_service_request * sreq);

16 extern "C" int gpu_post_finished (struct kgpu_service_request * ←֓

sreq);

17

18 extern "C" unsigned long gpu_get_stream (int sid);

1. gpu_init: Initialize KGPU elements. Called to start KGPU.

2. gpu_finit: It is called to free memory after the service finish.

3. gpu_alloc_pinned_mem: Allocated a pinned memory based on size required. Usu-

ally, this size is defined at KGPU_BUF_SIZE located at "kgpuConfigurations.h".

4. gpu_free_pinned_mem: Release previously memory allocated by gpu_alloc_pinned_mem.

5. gpu_pin_mem: Attach address to memory.

6. gpu_unpin_mem: Detach pinned memory.

7. gpu_alloc_device_mem: Allocate device memory.

8. gpu_free_device_mem: Release device memory previously allocated.

5.1. Results 57

9. gpu_alloc_stream: Take the index of the last stream allocated.

10. gpu_free_stream: Release the stream.

11. gpu_execution_finished: Remove stream from GPU.

12. gpu_post_finished: Verify if the processing in GPU finished.

13. gpu_get_stream: Get the last stream used.

To add OpenCL in KGPU without change all the original code, it is necessary to

find a way to reimplement the functions above with a little impact on the other parts of

the code. The next sections describes with details some functions and how the translation

was made.

5.1.3.2 Changing data structures

One important step to correctly convert CUDA code to OpenCL is changing the

data structure used by CUDA. The configure kernel dimension is the easier one to be

replaced, CUDA use dim3 as a data structure that can be replaced by size_t[3] in the

case of OpenCL (ARROYO, 2011). Secondly, KGPU uses cudaStream_t data structure to

keep track of each stream is in use. The equivalent of it on OpenCL is cl_command_queue,

see Code 5.4 with CUDA implementation and 5.5 with new OpenCL code.

Code 5.4 CUDA data structure on KGPU

1 #define MAX_STREAM_NR 8

2 static cudaStream_t streams [MAX_STREAM_NR];

3 static int streamuses[MAX_STREAM_NR];

4

5 static const dim3 default_block_size (32 , 1);

6 static const dim3 default_grid_size (512 , 1);

Code 5.5 OpenCL data structure on KGPU

1 #define MAX_STREAM_NR 8

2

3 openCLRuntimeData * openCLData = NULL;

4

5 float tmp_memory_test[KGPU_BUF_SIZE * 2];

6

58 Capítulo 5. Achieved Result

7 cl_command_queue streams [MAX_STREAM_NR];

8 static int streamuses[MAX_STREAM_NR];

9

10 static const size_t default_block_size[3]; // 32, 1

11 static const size_t default_grid_size[3]; // 512 , 1

Another important step for OpenCL code is the platform configuration, device,

and context (See 2.1.2). Unfortunately, KGPU does not have any configuration step for

handling GPU setup, because CUDA drivers already take care of all low level details

in a transparent way. Hence, it was created a new data structure for handling OpenCL

information. Code 5.6 shows the new data structure, basically it keeps the current context

and device to be used in the implementation.

Code 5.6 OpenCL data structure

1 # define PAGE_SIZE 4096

2 # endif

3

4 typedef struct _openCLRuntimeData

5 {

6 cl_context context ;

7 cl_device_id * devices ;

8 } openCLRuntimeData;

9

10 typedef struct

11 {

12 cl_mem userVirtualAddress;

5.1.3.3 Changing functions

After map the data structure and change it for use OpenCL, it was necessary

to replace CUDA code inside functions. However, as explained in Section 2, OpenCL

needs a special initialization before trying to use the device. In order to configure the

environment, it was created a static function whose the main objective was prepared

OpenCL to execute. Code 5.7, show the implementation of the start point of OpenCL.

This function should be called just once and have to be invoked before any other KGPU

operation.

Code 5.7 Initialize OpenCL

5.1. Results 59

1 static int initializeOpenCL()

2 {

3 cl_int status = 0;

4

5 if (openCLData)

6 {

7 free(openCLData);

8 }

9

10 openCLData = (openCLRuntimeData *) malloc(sizeof(←֓

openCLRuntimeData));

11 if (! openCLData)

12 {

13 printErrorMessage(NO_SPACE_ON_HOST);

14 return NO_SPACE_ON_HOST;

15 }

16

17 cl_platform_id * platforms = NULL;

18

19 status = initializePlatform(& platforms);

20 if(status != CL_SUCCESS)

21 {

22 goto firstLevelOfClean;

23 }

24

25 cl_uint numDevices = 0;

26 status = initializeDevice(platforms , openCLData , & numDevices);

27 if (status != CL_SUCCESS)

28 {

29 goto secondLevelOfClean;

30 }

31

32 status = initializeContext(openCLData , numDevices);

33 if (status != CL_SUCCESS)

34 {

35 goto thirdLevelOfClean;

36 }

37

38 return status;

39

40 thirdLevelOfClean:

41 free(openCLData ->devices);

60 Capítulo 5. Achieved Result

42

43 secondLevelOfClean:

44 free(platforms);

45

46 firstLevelOfClean:

47 free(openCLData);

48

49 printErrorMessage(status);

50 return status;

51 }

The gpu_init was one of the first functions to be translated. Figure 5.8 show

the original implementation, and Code 5.9 presents the OpenCL code for this function.

This function creates the necessary streams and memory to be used in GPU. Figure 5.8

shows function alloc_dev_mem, whose the main task is allocating memory inside GPU by

calling cudaMalloc. A similar function in OpenCL to reserve space is called clCreateBuffer,

and as can be verified in Figure 5.9 it was replaced in KGPU code.

Code 5.8 Initialize CUDA OpenCL

1 void gpu_init ()

2 {

3 int i;

4

5 devbuf.uva = alloc_dev_mem(KGPU_BUF_SIZE);

6 devbuf4vma.uva = alloc_dev_mem(KGPU_BUF_SIZE);

7

8 // TODO: Improve it.

9 fprintf (stdout , " >>>>> gpuops .cu: GPU INIT.\n");

10

11 for (i = 0; i < MAX_STREAM_NR; i++)

12 {

13 csc(cudaStreamCreate(& streams [i]));

14 streamuses[i] = 0;

15 }

16 }

Code 5.9 Initialize KGPU OpenCL

5.1. Results 61

1 void gpu_init ()

2 {

3 int i = 0;

4 cl_int status = 0;

5

6 if (! initialized)

7 {

8 status = initializeOpenCL ();

9 if (status != CL_SUCCESS)

10 {

11 return;

12 }

13 initialized = 1;

14 }

15

16 deviceBuffer. userVirtualAddress = clCreateBuffer(openCLData ->←֓

context , CL_MEM_READ_WRITE , KGPU_BUF_SIZE , NULL , &status);

17

18 if (status != CL_SUCCESS)

19 {

20 printErrorMessage(status);

21 return;

22 }

23

24 deviceBufferForVMA. userVirtualAddress = clCreateBuffer(←֓

openCLData ->context , CL_MEM_READ_WRITE , KGPU_BUF_SIZE , NULL←֓

, & status);

25

26 if (status != CL_SUCCESS)

27 {

28 printErrorMessage(status);

29 return;

30 }

31

32 for (i = 0; i < MAX_STREAM_NR; i++)

33 {

34 streams [i] = clCreateCommandQueue (openCLData ->context , ←֓

openCLData ->devices [0] , ←֓

CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE , NULL);

35 streamuses[i] = 0;

36 }

37

62 Capítulo 5. Achieved Result

38 return;

39 }

40

41 void gpu_finit()

42 {

43 int i = 0;

44 cl_int status = 0;

45

46 // CL_INVALID_MEM_OBJECT

47 status = clReleaseMemObject(deviceBuffer. userVirtualAddress);

48 if (status != CL_SUCCESS)

After finishing the working with KGPU, it is extremely recommended releases

the memory and GPU. To do it, gpu_finit is called and release all memory previously

allocated. The translation of this function was straightforward, because cudaFree and

clReleaseBuffer doing exactly the same thing.

One important point about KGPU, is the pinned memory. Code 5.10 shows how

to allocate pinned memory in a CUDA style, and one important thing to realize about

this step is the returned pointer. Usually, CUDA uses an float * to reference memory and

return this kind of pointer. However, OpenCL works with a special data structure named

cl_mem. Due to the difference between those styles, it is required to work with cl_mem

in some way that function signature keeps the same. The solution for this problem, was

the creation of a new buffer with the flag CL_MEM_USE_HOST_PTR and afterward

the use clGetMemObjectInfo function for retrieving the address pointer to the function.

Figure 5.11 shows the OpenCL implementation of the same function.

Code 5.10 Initialize CUDA OpenCL

1 void * gpu_alloc_pinned_mem(unsigned long size)

2 {

3 void * h;

4

5 // TODO: IMPROVE IT

6 fprintf (stdout , " >>>>> gpuops .cu: GPU ALLOC PINNED MEMORY \n");

7 csc(cudaHostAlloc(&h, size , 0));// cudaHostAllocWriteCombined)←֓

);

8 return h;

9 }

5.1. Results 63

Code 5.11 Initialize KGPU OpenCL

1 if (! openCLData)

2 {

3 if (! initialized)

4 {

5 status = initializeOpenCL ();

6 if (status != CL_SUCCESS)

7 {

8 return ;

9 }

10 initialized = 1;

11 }

12 }

13

14 host = clCreateBuffer(openCLData ->context , CL_MEM_READ_WRITE |←֓

CL_MEM_USE_HOST_PTR , sizeof(memory), memory , & status);

15

16 if (status != CL_SUCCESS)

17 {

18 printErrorMessage(status);

19 return host;

20 }

21

22 status = clGetMemObjectInfo(host , CL_MEM_HOST_PTR , sizeof(←֓

hostPointer), & hostPointer , NULL);

23 if (status != CL_SUCCESS)

24 {

25 printErrorMessage(status);

26 return NULL;

27 }

28

29 return hostPointer;

30 }

31

32 // TODO: It is wrong the parameter. Fix IT!

33 void gpu_free_pinned_mem (cl_mem memory)

34 {

35 fprintf (stdout , " >>>>> openCLOperation.c: GPU FREE PINNED ←֓

MEMORY .\n");

36 cl_int status = clReleaseMemObject(memory);

64 Capítulo 5. Achieved Result

The interesting thing about adopting the approach described above is the low

impact in the other functions.

5.1.4 Final output

Originally, KGPU has some interesting services for cryptography and other opti-

mizations characteristics. The problem with those services is the complexity of each one,

some of them has more than 1500 lines of code. In this sense, it was selected a set of simple

service whose the objective is only to call the KGPU function and test the behaviour.

Figure 29 shows the first time whose KGPU with OpenCL executed correctly. This

output, means that kgpu.ko was loaded correctly and is already prepared to execute. The

second line of the output, means that helper was running and waiting for a service. Notice

that two equal address are displayed, this means that memory was allocated in the device

returned correctly. After, it displays the memory address mapped from GPU and CPU.

The last lines, shows the service be loaded by KGPU, executing a simple command and

finish. Finally, KGPU stopped and wait for new services.

Figure 29 – First output

65

6 Conclusions

6.1 Questions and answers

All the questions raised in Section 4.2 will be analysed and discussed in this section.

6.1.1 Is it possible to use OpenCL instead of CUDA in KGPU?

It is possible to completely remove all CUDA code, and replace it by OpenCL in

KGPU. This project replaced all functions related with CUDA, and created the bases

for working use OpenCL inside KGPU. All the translation was possible, because of the

similarity between both APIs, and the previous refectory.

It is interesting to notice, that this work create the possibility of compare KGPU

using CUDA with KGPU using OpenCL. This comparison is better than the one used

by the author, because in the original work KGPU performance was compared with CPU

and this not provide good conclusions about performance of KGPU. The current work

already translate many parts of the CUDA code, however it is required to improve the

translation for take more advantages of OpenCL characteristics.

6.1.2 Is it possible to keep CUDA and OpenCL in KGPU?

Yes, it is. This project, not only translated CUDA function to OpenCL but added

both libraries to KGPU. If someone wants to use CUDA or OpenCL, they just need to

use the correct Makefile.

6.1.3 Can we adopt KGPU architecture?

No, it isn’t. KGPU architecture is really complex to understand and use, it is more

easy to use CUDA or OpenCL directly instead of use this library. For example, if some

user wants to create a new service to make use of KGPU, he will need to code some kind

of device driver.

6.2 Future work

This project is only the first contact with GPU. The idea of KGPU was great in the

sense of use GPU as a coprocessor, however its architecture is really hard to implement

and it is not mature enough to be used. It is necessary to rethink the architecture and

the way to use it. I propose three new steps for this work: change the KGPU architecture

66 Capítulo 6. Conclusions

for make easy for add new service to KGPU, improve the OpenCL code, and embedded

the KGPU.

Next, improve the drive by adding GPU scheduler with prioritization. The schedu-

ler is aimed to give some real time behavior to the drive. The idea that supports Timegraph

will be put side by side with the GPU driver built in the first step. Finally, the idea of

resource reservation will be attached to the drive. In conclusion, this step wants to create

the base for future improvements in the drive by adding real-time scheduler.

The last step will be introduce the scheduling policies based on spatial scheduling

ideas. After all of those ideas be put together in embedded context it is expected to gain a

better performance in some tasks and a reduction of power consumption. For example, this

device can be used to improve normal OS scheduling, making AES more faster, improve

the character matches, and so forth.

67

References

ADRIAENS, J. et al. The case for gpgpu spatial multitasking. p. 12, 2011. Citado 2
vezes nas páginas 21 and 44.

ARROYO, G. E. M. Cu2cl: A cuda-to-opencl translator for multi- and many-core
architectures. 2011. Citado 3 vezes nas páginas 35, 37, and 57.

BENEDICT, R. et al. Heterogeneous Computing with OpenCL. [S.l.: s.n.], 2013. Citado
2 vezes nas páginas 37 and 38.

GROUP, A. ARM Mali. 2014. <http://www.arm.com/products/multimedia/
mali-cost-efficient-graphics/index.php>. Accessed: 2014-11-17. Citado na página 22.

GROUP, K. Khronos OpenCL. 2014. <https://www.khronos.org/>. Accessed:
2014-11-17. Citado na página 21.

HAN, .; JANG, K.; MOON, S. Packetshader: Gpu-accelerated software router. 2010.
Citado na página 21.

HARRISON, O.; WALDRON, J. Practical symmetric key cryptography on modern
graphics hardware. 2008. Citado na página 21.

KATO, P. et al. Timegraph: Gpu scheduling for real-time multi-tasking environments.
p. 17, 2011. Citado 4 vezes nas páginas 13, 33, 42, and 43.

KIRK, D. Programming Massively Parallel Processor - A hands-on approach. [S.l.: s.n.],
2014. 250 p. Citado 5 vezes nas páginas 24, 26, 32, 33, and 35.

MARCONI, M.; LAKATOS, E. Fundamentos de metodologia científica. [S.l.: s.n.], 2003.
Citado na página 47.

MCCLANAHAN, C. History and evolution of gpu architecture. p. 5, 2014. Citado 3
vezes nas páginas 23, 24, and 25.

OWENS, J.; LUEBKE, D.; GOVINDARAJU, N. A survey of gereal purpose computation
on graphics hardware. 2007. Citado na página 21.

PACHECO. An introduction to parallel programming. [S.l.: s.n.], 2014. 370 p. Citado 2
vezes nas páginas 26 and 29.

PATTERSON, D. Computer organization and design. p. 500, 2014. Citado 9 vezes nas
páginas 13, 23, 27, 28, 29, 30, 31, 32, and 33.

SCANNIELLO, G. et al. Greening and existing software system using the gpu. 2013.
Citado na página 21.

SILVA, E.; MENEZES, E. Metodologia da pesquisa e elaboração de dissertação. [S.l.:
s.n.], 2005. Citado 3 vezes nas páginas 15, 47, and 48.

SMITH, M. What Is An APU? Technology Explained. 2011. <http://www.makeuseof.
com/tag/apu-technology-explained/>. Citado na página 34.

http://www.arm.com/products/multimedia/mali-cost-efficient-graphics/index.php
http://www.arm.com/products/multimedia/mali-cost-efficient-graphics/index.php
https://www.khronos.org/
http://www.makeuseof.com/tag/apu-technology-explained/
http://www.makeuseof.com/tag/apu-technology-explained/

68 References

SUN, R. R. W. Augmenting operating system with the gpu. 2011. Citado 2 vezes nas
páginas 41 and 54.

TOCCI, R.; WIDMER, N.; MOSS, G. Sistemas digitais princípios e aplicações. [S.l.:
s.n.], 2007. 660 p. Citado na página 30.

	Title page
	Approval
	Dedication
	Acknowledgements
	Epigraph
	Abstract
	Lista de ilustrações
	Lista de tabelas
	List of abbreviations and acronyms
	Sumário
	Introduction
	Theoretical rationale
	A brief history of GPU
	Processor Array
	GPU Architecture
	Streaming Multiprocessor (SM)
	Special Function Unit (SFU)
	GPU Memory Architecture
	Dynamic Random Access Memory (DRAM)
	Cache and MMU
	Global Memory
	Shared Memory
	Local and Constant Memory

	GPU Pipeline
	Input Assembler Stage
	GPU stages

	GPU computing and GPGPU
	CPU and GPU

	CUDA and OpenCL
	Overview CUDA and OpenCL framework
	Basic CUDA organization
	Basic OpenCL organization

	Delimitation of the subject
	Purpose
	Related work
	Augmenting Operating System with the GPU
	Timegraph, GPU scheduling
	GPGPU spatial time

	Purpose

	Methodology Procedures and Technical
	Methodology design
	Questions and objectives
	Hypothesis
	Hypothesis test
	Devices
	Environment Configuration

	Achieved Result
	Results
	State-of-art of KGPU
	Refactoring
	Add OpenCL API
	Overview of GPU code in KGPU
	Changing data structures
	Changing functions

	Final output

	Conclusions
	Questions and answers
	Is it possible to use OpenCL instead of CUDA in KGPU?
	Is it possible to keep CUDA and OpenCL in KGPU?
	Can we adopt KGPU architecture?

	Future work

	References

