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RESUMO

Este trabalho fornece um estudo detalhado sobre a performance de protocolos para Classificação
Privada em Aprendizado de Máquina, relacionados a Classificação por Hiperplano. Detalhamos
como o desempenho dos protocolos sofre degradação devido tanto ao aumento de classes quanto
em relação ao tamanho de cada classe. Por fim, realizamos um estudo usando o banco de dados
MNIST, de tamanho significativo. A conclusão a que chegamos é de que para um processamento
de um banco de dados completo o custo computacional é considerável, contudo para aplicações
envolvendo amostras individuais os protocolos são perfeitamente viáveis.

Palavras-chave: Criptografia, Aprendizado de Máquina, Processamento Seguro de Dados,
Classificação Privada.

ABSTRACT

This work provides a detailed study about the performance of Private Machine Learning Clas-
sification protocols, related to Hyperplane Classification. We detail how the performance of
protocols deteriorates due to the increase in the number of classes and the size of each class.
Afterwards, we made a study using the MNIST database, of reasonable size. The conclusion
we reached was that to process a full database the computational costs are severe, however for
applications with individual samples the protocols are perfectly viable.

Keywords: Cryptography, Machine Learning, Secure Data Processing, Private Classifica-
tion.
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Chapter 1

Introduction

1.1 Motivation

In recent years, privacy concerns over personal data have been growing at a
great pace. Data has become a commodity, and a growing number of users
of Internet services have become wary of distributing their personal data.
Along with the Snowden leaks, numerous discussions have sprouted at com-
pany and government level worldwide on how much privacy an user should
have. On the other hand, we have machine learning classification, an ever
growing field in computer science, with innumerable applications appearing
every year. Of course, private data is the realm of interesting applications,
like face recognition, financial data analysis, and medical diagnosis. We can
name both Apple’s Touch ID and Health App as applications where the per-
sonal data of millions of users will be processed, and while those services are
in theory dismissible, most users will forfeit their privacy without a second
thought.

Of course, one can think of many more applications that would benefit
from secure access to data. The classic example is an airport performing
face recognition on the passengers: to check whether a passenger is on a
terrorist blacklist, the airport must access a federal database with the faces
of suspects. However, the government can’t (or shouldn’t) give access to
classified information. At the same time, the airport shouldn’t submit the
faces of every traveller to the database, as without a warrant the police is
forbidden to investigate the life of the citizens.

The notion that personal data will be given up easily has compelled re-
searchers to develop methods for processing data in a private and secure
way. A 2014 MIT paper [1], ”Machine Learning Classification Over En-
crypted Data” presents three classic machine learning classification proto-
cols redesigned with privacy in mind, preserving the secrecy of the data of
both the server (who has trained a private model) and the client (who has
private data to be classified). However, [1] doesn’t provide a detailed study
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of the performance of it’s protocols, which we intend to present here.

1.2 Results

In this work, we implemented in C++ the Private Hyperplane Protocol as
describe in [1]. To evaluate the performance of our implementation, we per-
formed tests on random data, with variation in the size and shape of the
samples. This way we could analyse how each subroutine weighted on the
overall performance of the Protocol. We concluded that the Inner Prod-
uct Protocol essentially defines the running time of the Private Hyperplane
Protocol, with very little variation caused by the Argmax protocol.

Afterwards, for a proof of concept, we implemented classification using
the MNIST dataset. It is a well studied machine learning problem, and
we trained the model using the python library scikit-learn. This validates
the model and the overall concept: although running times are much slower
than in a plaintext setting, they remain altogether manageable.

1.3 Roadmap

Before implementing and benchmarking the Private Hyperplane Protocol,
some study was needed. The next chapter covers the basic aspects of number
theory, cryptography, and computational complexity; it is based on essen-
tially 3 books: [6],[8],[9]. The first one is a general introduction to cryptog-
raphy, and the other two explain the concepts of two-party computation.
The next chapters explain the DGK and Paillier cryptosystems, the build-
ing blocks of our implementation, and are essentially rewrites of the original
articles [2],[3] and [4], with conciseness and clarity in mind.

After this, we explain the Private Integer Comparison Protocol, as de-
scribed in [5], and the Private Inner Product and Private Argmax, as de-
scribed in [1]. Chapter 4 presents the Private Hyperplane Protocol, also
described in [1]. Finally, chapter 5 presents our results, and chapter 6 the
conclusions.
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Chapter 2

Preliminaries

2.1 Introduction to Modern Cryptography

Cryptography can be defined as the science of hiding information, and keep-
ing messages exchanged private. In our case, however, our interest is in
controlling how much of our private data should be hidden, and how much
of it can be revealed without compromising our privacy. After all, our data
is only useful if it can be used.

While it may seem at first interesting to design an scheme against all
kinds of attacks that a system could suffer, we face two severe problems.
The first is that this kind of attack depends on the specific implementation,
which we cannot know beforehand. The second is that an adversary will
only try to attack us in ways we are not familiar with, and so we could not
possibly design such protection beforehand. Therefore, we are concerned
mainly with protecting schemes against computational attacks.

Historically, cryptographical schemes were implemented in a trial and
error method, where the scheme was considered secure until someone would
publicly prove it’s vulnerabilities. Today, a cryptographic scheme is shown
to be secure by proving it is as hard as another problem. This other problem
in general is a simple mathematical question, but whose answer is believed to
be hard. This way, except for errors in the implementation of the protocol,
as long as the other problem remains hard, we can trust the security of the
scheme.

2.1.1 Algebra and Number Theory

In this section we mean simply to give a brief surmise of the notation and
symbols used in the text, specially in the chapters explaining the Paillier
and the DGK encryption schemes. We will only enunciate the properties,
as the proofs are easily found in most algebra and cryptographic textbooks,
as is the case of our source for this section, [6].
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The set of integers is represented by the symbol Z. We say that for
a, b ∈ Z, a divides b, represented by a|b, if there is an unique integer q > 0
so that b = q · a. If a doesn’t divide b, there is an unique number r, with
0 ≤ r < a, called the remainder of the division of b by a, where b = q ·a+ r.
We also use the notation b mod a, to indicate the remainder of the division
of b by a. If we say that both b and r have congruency modulo a, denoted
by b ≡ r mod a, we mean that the remainder of division of b and r by a is
the same.

The greatest common denominator of two numbers a and b, represented
by gcd(a, b), is the greatest number d that fulfills d|a and d|b. Two numbers
a and b are said to be coprimes if gcd(a, b) = 1. An integer p is said to be
prime if its only dividers are 1 and p. This also implies that gcd(a, p) = 1,
for 0 < a < p.

We denote by Zn the set of positive integers smaller than n, or Zn =
{0, 1, 2, 3 . . . n− 2, n− 1}. The set of positive integers that are smaller than
n, and coprime with n is denoted by Z∗n. Notice that 0 is not an element of
Z∗n.

Now, Z∗n forms a closed group with the operation exponentiation modulo
n. This means that if we pick two elements a and b in this group, ab mod n
is also a member of this group. Euler’s totient function, denoted by φ(n),
gives the number of elements in the set Z∗n. In the case where n = p · q, with
p and q prime, φ(n) = (p− 1) · (q − 1). For every element a in a group Z∗n,
we have:

aφ(n) = 1 mod n (2.1)

Carmichael’s function, λ(n), is the smallest numberm that, for every a ∈ Z∗n:

am = 1 mod n (2.2)

This obviously means that λ(n)|φ(n). Also, for n = p ·q, with p and q prime,
λ(n) = lcm(p−1, q−1). The order of an element a, Orda(n), is the smallest
number m where:

am = 1 mod n (2.3)

Notice that Orda(n)|λ(n). If Orda(n) = λ(n), then a is a generator for
the group, the group is cyclic, and set {a1, a2, a3, . . . , aOrda(n)} is equivalent
to the set Z∗n.

2.1.2 Computational Complexity and Indistinguishability

To understand our definitions of security we need some basic definitions in
the field of computational complexity. We will not be concerned with the
full formality of computational complexity in our text, however we will use
some basic concepts, retrieved from two main sources, [8] and [9].
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Definition 1. A program is said to run in Polynomial Time in n, O(p(n)), if
it always halts after a maximum of p(n) steps, where p(·) is some polynomial.
If we say it runs in Probabilistic Polynomial Time, PPT, we mean that the
program will also makes some random choices during its computation.

Definition 2. A function µ(·) is said to be negligible in n if for every positive
polynomial p(n), and sufficiently large n, we have µ(n) < 1/p(n)

Definition 3. Let X0 and X1 with be two random variables with range D.
We call

δ(X0, X1) =
1

2

∑
d∈D
|Pr[X0 = d]− Pr[X1 = d]| (2.4)

the statistical distance between X0 and X1.

Now, suppose we have two random variables, X0 and X1. We want to
measure the ability of an algorithm A of distinguishing between these two
variables. We first sample a bit b ← {0, 1}, and than sample x ← Xb.
We give this x to an adversary A, and it outputs a guess bit c = A(Xb),
representing wheter it thinks x belongs to X0 or X1. The algorithm A is
right whenever c = b. Expanding this we have:

Pr[c = b] =
1

2
(Pr[c = b|b = 0]) +

1

2
(Pr[c = b|b = 1]) (2.5)

=
1

2
(Pr[c = b|b = 0] + Pr[c = b|b = 1]) (2.6)

=
1

2
(Pr[A(X0) = 0] + Pr[A(X1) = 1]) (2.7)

=
1

2
(Pr[A(X0) = 0] + (1− Pr[A(X1) = 0])) (2.8)

=
1

2
+

1

2
(Pr[A(X0) = 0]− Pr[A(X1) = 0])) (2.9)

With this in mind comes the definition of advantage:

Definition 4. The advantage of an algorithm A in distinguishing two dis-
tributions X0 and X1 is defined as:

AdvA(X0, X1) = 2

∣∣∣∣Pr[c = b]− 1

2

∣∣∣∣ = Pr[A(X0) = 0]− Pr[A(X1) = 0]

(2.10)

The advantage is essentially a measure of how much an algorithm per-
form betters than random guessing. We also have the following two proper-
ties:

AdvA(X0, X1) = δ(A(X0), A(X1))

δ(X0, X1) = maxAAdvA(X0, X1)
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A family of random variables X = {X(n)}n∈N is a function X from non-
negative integers into random variables. In our case, n will be considered
the security parameter of some cryptographic scheme.

Definition 5. We say that X0 = X0(n) and X1 = X1(n) are statistically
indistinguishable, written X0 ≡s X1, if δ(X0(n), X1(n)) is negligible in n.
If X0 and X1 are not statistically indistinguishable, we write X0 6≡sX1. We

say that X0 and X1 are perfectly indistinguishable, written X0
perf
≡ X1, if

δ(X0(n), X1(n)) = 0 for all n. If X0 and X1 are not perfectly indistinguish-

able, we write X0

perf

6≡ X1.

Definition 6. We say that X0(n) and X1(n) are indistinguishable by a class
of algorithms A if A(X0(n)) ≡s A(X1(n)) for all A ∈ A. If A is the class
of all probabilistic polynomial time algorithms, we say that X0 and X1 are
computationally indistinguishable, and write:

X0
c≡ X1 (2.11)

Establishing the concept of computationallly indistinguishability is the
main goal of this section. It is a weaker definition than statistically indis-
tinguishability, so we have:

X0 ≡s X1 ⇒ X0
c≡ X1 (2.12)

However, we will only need computational indistinguishability for our defi-
nitions of security, as in the following section.

2.1.3 Definitions of Security

With the concept of computational indistinguishability, we can define if our
cryptosystems are secure or not. Essentially, we are interested in proving
the semantic security of a cryptosystem, defined by Goldwasser and Micali
in [10] . This means that knowledge of the ciphertext of a message, and the
message length, does not provide any additional information about a mes-
sage than the knowledge of only the message length. However, prooving a
cryptosystem is secure in this definition is very hard. Luckily, this definition
was proven equivalent to the definition of Indistinguishability under Chosen
Plaintext Attack (IND-CPA), which is much easier to prove. In the public
key setting, IND-CPA works like a game played between a challenger (who
has a pair of public and private keys), and an adversary who wants to break
the encryption scheme denoted by π. First, the adversary has access to a
polynomial amount of encryptions of any message he chooses (given that the
key is public, time is the only limitation on how many encryptions the adver-
sary has). The adversary then picks two messages m0 and m1, and submits
them to the challenger. After this, the challenger samples a random bit b
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uniformly, and computes the encryption of either m0 or m1, according to
the bit b, and returns the ciphertext EncPKπ (mb) to the adversary. Finally,
the adversary outputs his guest, a bit c. We give the following definition:

Definition 7. A encryption scheme is said to have Indistinguishability un-
der Chosen Plaintext Attack if, given two messages m0 and m1 from its
plaintext space, their encryptions are computationally indintinguishable, that
is:

EncPKπ (m0)
c≡ EncPKπ (m1) (2.13)

2.1.4 Two Party Computation

A two party protocol is a random process that maps pairs of inputs to pairs
of outputs. We call this a functionality, denoted by: f : 0, 1∗ × 0, 1∗ →
0, 1∗ × 0, 1∗, where f = (f1, f2). That is, for a pair of inputs (x, y) ∈ 0, 1n,
we want to calculate the random variable f = (f1(x, y), f2(x, y)). The first
party, who has x, wants the result of f1(x, y), and the second party, who has
y, wants the result of f2(x, y). In an ideal world, we could simply submit
the inputs to a trusted third party, who would do all the computations of
f , and return the outputs to each party. As this secure third party doesn’t
exist, we need to develop protocols as secure as calling a third party.

The security of the protocols we will be using are based in the static
semi-honest adversaries models. This means that one of the parties is cor-
rupted, and wants to get as much as possible data from the other party.
Traditionally, we define security so that no information is leaked to the ad-
versaries, but this isn’t a possibility here, as the adversary has access to its
inputs and outputs.

Therefore, a protocol is defined as secure if a party can’t learn anything
more from executing the protocol than what it would learn from its own
inputs and outputs. We prove this by creating a simulation of the protocol,
and showing that the interaction with this simulator is computationally
indistinguishable from the actual execution of the protocol with another
party. This in turn implies that the parties learn nothing from the execution
of the protocol itself. In the following definition, viewπ1 (·) indicates what the
first party sees during an execution of the protocol, x and y are the inputs
of the protocol, and n is the security parameter, essentially the length of the
private key. The following definition is taken from [9]

Definition 8 (Security with respect to Semi-Honest Behaviour). Let f =
(f1, f2) be a functionality. We say that protocol π securely computes f
in the presence of static semi-honest adversaries if there exist probabilistic
polynomial-time algorithms S1 and S2 such that:

{(S1(1n, x, f1(x, n)), f(x, n))}x,y,n
c≡ {(viewπ1 (x, y, n), outputπ(x, y, n))}x,y,n

{(S2(1n, x, f2(x, n)), f(x, n))}x,y,n
c≡ {(viewπ2 (x, y, n), outputπ(x, y, n))}x,y,n

7



In our case, as the functionality f is deterministic, we need only to prove
that:

{S1(1n, x, f1(x, n)))}x,y,n
c≡ {viewπ1 (x, y, n)}x,y,n

{S2(1n, x, f2(x, n))}x,y,n
c≡ {viewπ2 (x, y, n)}x,y,n

After proving a protocol π securely computes a functionality f , we can
use that functionality while designing other protocols without concerns. For
example, suppose we need to compute a functionality fA. We decide to
create a protocol πA to compute it, but we will need to use an ideal func-
tionality fB as a subroutine. If we prove that an execution of protocol πB
securely computes fB, we can prove the security of πA using fB, and then
in a real implementation use protocol πB as a subroutine of πA. This is the
basis for the Modular Composition Theorem, as stated and proven in [8]:

Theorem 1 (Modular Composition Theorem). Let f1, f2, . . . fm be two-
party probabilistic polynomial time functionalities and ρ1, ρ2, . . . ρm are two-
party protocols that respectively compute f1, f2, . . . fm in the presence of
semi-honest adversaries.

Let g be a two-party probabilistic polynomial time functionality, and Π a
protocol that securely computes g in the (f1, f2, . . . fm)-hybrid model in the
presence of semi-honest adversaries. Then Πρ1,ρ2,...ρm securely computes g
in the presence of semi-honest adversaries.

2.2 The DGK Cryptosystem

The DGK cryptosystem was proposed by D̊amgard, Geisler and Krøigaard in
[2], and was later corrected in [3]. Contrary to the Paillier Cryptosystem, the
DGK does not aim to be a generic homomorphic scheme, suitable for many
applications. It is actually fine tuned for performing an specific protocol,
and to be very fast while performing this protocol.

As the DGK Comparison Protocol was proposed along with the encryp-
tion scheme, an unusual thing happens: a full decryption of the ciphertext
is not mandatory while running the protocol. What is required is only a ver-
ification of whether or not one of the encrypted numbers decrypts to zero,
which can be computed much faster. Full decryption, while faster, requires
a greater computational burden at the begining of the protocol, and the
choice of performing depends on the implementation.

This section explains how the keys are generated, how encryption and
decryption work, and the general security; and is followed in a later chapter
by a section about the DGK comparison protocol. We use as sources [2]
and [3], as well as [5], in an attempt to explain the basic concepts of the
cryptosystem, and its Semantic Security.
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2.2.1 Key Generation

Key generation for the DGK protcol starts with a RSA modulus n = p · q,
possibly with |n| = 1024 bits. We then find two small primes of size t bits
([3] suggests t = 160), called vp and vq, where vp|(p − 1), and vq|(q − 1).
Another parameter, u, is defined as an small l bits prime, with suggested
value of l = 16. We then pick some number g at random from Z∗n, and try
until the multiplicative order of g is uvpvq. This means that:

gu·vp·vq = 1 mod n (2.14)

The same thing goes for a number h, sampled at random from Z∗n, however
we keep trying different numbers until we find one with multiplicative order
of vpvq. The public key is the tuple pk = (n, g, h, u), while the secret key is
the tuple sk = (p, q, vp, vq).

2.2.2 Encryption and Decryption

The plaintext space are the numbers m ∈ Zu. To encrypt a number m ∈ Zu,
we pick a 2.5 · t bits long random integer, called r, and perform the following
operation:

Enc(m) = gm · hr mod n (2.15)

To perform decryption, we simply raise the ciphertext to vpvq:

Dec(Enc(m)) = (Enc(m))vp·vq mod n

= gm·vp·vq · hr·vp·vq mod n

= gm·vp·vq mod n

The last identity comes from the fact that the order of h is vpvq. Now, we
have two possibilities. We could do a full decryption by building a table for
all possible values of gm mod n, which is viable because u is a small prime.
In our protocol, however, we only want to know whether the ciphertext is an
encryption of 0 or not. This can be done by simply checking if the decryption
gives 1 as answer, or if:

gm·vp·vq = 1 mod n (2.16)

This obviously means that m ≡ 0 mod u. As m < u, we have m = 0. Now,
suppose that p is smaller than q. For the party who generated the keys, we
can be even more efficient by running decryption as:

Dec(Enc(m)) = Enc(m)vp mod p (2.17)
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2.2.3 Semantic Security of the DGK Cryptosystem

The security of the system lies in a few assumptions. First, that n is hard to
factor, otherwise the system could easily be broken. The second assumption
is that knowledge of g and h do not make n easier to factor. Now, let G be
the group generated by g, and H the group generated by h.

Conjecture 1. For any constant l and for appropriate choice of t as a func-
tion of the security parameter k, the tuple (n, g, h, u, x) is computationally
indistinguishable from the tuple (n, g, h, u, y), where n, g, h, u are generated
by the key generation algorithm, x is uniform in G and y is uniform in H.

Proposition 1. Under the above conjecture, the cryptosystem is semanti-
cally secure.

Proof. We are interested in the definition of semantic security that, for a
given message m, the encryption of m is computationally indistinguishable

from random encryptions, i.e. gm · hr mod n
c≡ gr1 · hr2 mod n. First, for

r � vp · vq, we have:
hr ≡s y (2.18)

Based on the conjecture above, we have:

hr ≡s y
c≡ x (2.19)

hr
c≡ x = gr1 (2.20)

As x is a random element of G, and gm a constant, we have:

gm · hr mod n
c≡ x · gm = gr1 · gm = gr2 mod n (2.21)

gm · hr · hr3 mod n
c≡ gr2 · hr3 mod n (2.22)

Enc(m)
c≡ Enc(r2) (2.23)

2.3 Paillier’s Cryptosystem

Paillier’s Cryptosystem was proposed by Pascal Paillier in a 1999 article [4],
which is the base for all theorems, conjectures and demonstrations of this
section. The security of the scheme is based on two assumptions, the De-
cisional Computational Assumption , DCRA, and the Computational Com-
posite Residuosity Assumption, CCRA.

The next section explains what those assumptions are, which are in turn
used to prove the security of the proposed cryptosystem. Then, we take
a look at the homomorphic properties of the Paillier Cryptosystem, the de
facto reason for using Paillier’s cryptosystem.
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2.3.1 Security Assumptions

We begin by explaining the security assumptions for the Paillier Cryptosys-
tem, used while proving its security. While we do not provide the full details
present in the original paper, we present enough material to justify their se-
curity and to understand what they mean. To understand the Decisional
Computational Assumption , first we need the concept of n-th residue:

Definition 9. A number z is said to be a n-th residue modulo n2 if there
exists a number y ∈ Z∗n2 such that:

z ≡ ynmod n2 (2.24)

Determining whether a number is or is not a n-th residue modulo n2 is
believed to be a hard problem. Let’s denote the problem of distinguishing
n-th residues from non-residues by CR[n].

Conjecture 2 (DCRA). The Decisional Computational Assumption states
that there exists no polynomial time distinguisher for n-th residues from
non-residues, that is, CR[n] is intractable.

For the Computational Composite Residuosity Assumption, we need to
introduce some other concepts:

Definition 10. Carmichael’s function λ(n) is defined as the smallest num-
ber m such that:

am ≡ 1 mod n (2.25)

Where a is any number that fulfills gcd(n, a) = 1. For our case in particular,
in which n = p · q, we have:

λ(n) = lcm(p− 1, q − 1). (2.26)

For the sake of clarity, we will refer to λ(n) as λ for the rest of the text.

Definition 11. For a given g ∈ Z∗n2, we say that g belongs to B if the order
of g is a non-zero multiple of n, or for some α ∈ N:

gαn = 1 mod n2 (2.27)

We should note that g = n+ 1 is always an option, given that:

(1 + n)n ≡
(
n

0

)
1 +

(
n

1

)
n2 + . . . ≡ 1 mod n2 (2.28)

This definition of g gives one useful property, that of representing any
g ∈ B as an unique number of the form (1 + n)a mod n. Also, during the
setup of our system, we could randomly pick a number g and determine if
g ∈ B by checking if the following equation holds:

11



gcd

(
n,
gλ − 1

n
mod n2

)
= 1 (2.29)

We call the Composite Residuosity Class Problem, Class[n, g, w], as the
problem of, given w ∈ Z∗n2 , y ∈ Z∗n, and g ∈ B, the problem of finding the
smallest m that solves the following equation:

w = gm · yn mod n2 (2.30)

The original paper proves that this problem is random self-reducible over w
and g, that is, it is equally hard for any w or g, and can therefore be simply
called Class[n]. We can now define the CCRA as:

Conjecture 3 (CCRA). The Computational Composite Residuosity Assumption
states that for a given w ∈ Z∗n2, y ∈ Z∗n, and g ∈ B, the problem of finding
the smallest m that solves the following equation:

w = gm · yn mod n2 (2.31)

is believed to be hard. In other words, this problem, called Class[n], is com-
putationally intractable.

Finally, we should remark that the decision problems associated with
DCRA and CCRA, namely CR[n] and Class[n], are polynomially reduced
to the problem of factoring n. The proof for this is very extensive, and is
covered thoroughly in Paillier’s paper.

2.3.2 Encryption and Decryption

With the concepts of the previous section, we can define the basic operations
for our system. For a plaintext m < n, g ∈ B, and r < n picked at random,
we define the encryption of m as:

Enc(m) = gm · rn mod n2 (2.32)

On the other hand, for a ciphertext c < n2, we define decryption as:

Dec(c) =
L(cλ mod n2)

L(gλ mod n)
(2.33)

Where

L(u) =
u− 1

n
mod n (2.34)

We need to prove now that decryption of c = Enc(m) yelds m, and that
the encryption is safe.

Theorem 2 (Correctness). For every c ∈ Z∗n2 that is the result of the en-
crypting of m ∈ Z∗n, c = Enc(m), decryption using equation (2) yields the
correct c.

12



Proof. We know that g ∈ B, therefore we can, for some a ∈ Zn, express g
as:

g = (1 + n)a mod n (2.35)

Based on that, we can precompute the bottom half:

L(gλ) = L((1 + n)aλ) (2.36)

=
(1 + n)aλ − 1 mod n2

n
(2.37)

=
1 + n · a · λ− 1 mod n2

n
= λ · a (2.38)

The top half is calculated in a case by case basis:

L(cλ) = L(gm·λ · rn·λ mod n2) (2.39)

From Carmichael’s Theorem, any number w ∈ Z∗n2 has the following prop-
erty:

wn·λ(n) = 1 mod n2 (2.40)

Writing g = (1 + n)a mod n, we have:

L(cλ) = L((1 + n)a·λ·m · 1 mod n2) (2.41)

=
(1 + n · a · λ ·m mod n2 − 1)

n
mod n (2.42)

= a · λ ·m (2.43)

Finally, we can divide both bottom and top equations:

Dec(c) =
L(cλ mod n2)

L(gλ mod n)
=
λ · a ·m
λ · a

= m. (2.44)

This result proves the correctness of the scheme, but we still need to
prove the security of the scheme. Clearly, the knowledge of the factors of
n must be kept secret, otherwise λ could be easily computed, and anyone
could decrypt the messages. The scheme is also believed to be one-way, as
per this theorem:

Theorem 3 (One-Wayness). The Paillier Scheme is one-way if, and only
if, the Computational Composite Residuosity Assumption holds.

Proof. The proof is rather straight forward, as breaking the scheme is by def-
inition the Composite Residuosity Class Problem, or the problem of finding
the smallest m that solves:

w = gm · yn mod n2 (2.45)

And the CCRA specifically states that this problem is hard.
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On the other hand, Semantical Security is guaranteed by this theorem:

Theorem 4 (Semantic Security). The Paillier Scheme is semantically se-
cure if, and only if, the Decisional Composite Residuosity Assumption holds.

Proof. Assume there are two plaintexts, m0 and m1, and an Adversary
is given the ciphertext c for one of them. Either c · g−m0 mod n2 is a n-th
residue, or c ·g−m1 mod n2 is. Therefore, if the DCRA is false, an Adversary
can easily distinguish between these two messages.

2.3.3 Homomorphic Properties and Self-Blinding

The homomorphic properties of the Paillier Cryptosystem allow plaintext
data to be processed while in an encrypted form. This way, our data can
be processed by a third party, while keeping its privacy. The next two
theorems explain addition and multiplication of plaintexts while encrypted.
The additive property is the basis for our Secure Comparison Protocol, while
the multiplicative property is the core of the Secure Inner Product Protocol.

Theorem 5. The decryption of the product of two ciphertexts yields the
sum of the corresponding plaintexts. Mathematically, let m0 and m1 ∈ Z∗n
be two plaintext messages, and c0 and c1 their respectives encryptions. We
have:

Dec(c0 · c1) = m0 +m1 mod n; (2.46)

Proof. We have c0 = gm0 · rn0 mod n2, and c1 = gm1 · rn1 mod n2. Their
product is:

c0 · c1 = [gm0 · rn0 ] · [gm1 · rn1 ] mod n2 (2.47)

= gm0+m1 · (r0 · r1)n mod n2 (2.48)

= gm0+m1 · rn mod n2 (2.49)

We know that Dec(gm ·rn mod n) = m, for every (m, r) in Zn×Z∗n, therefore

Dec(c0 · c1) = m0 +m1 mod n (2.50)

Theorem 6. The decryption of a ciphertext c0 = Enc(m0) elevated to a
message m1 yields the product of m0 and m1. Mathematically,

Dec(c0
m1) = m0 ·m1 mod n. (2.51)

Proof.

c0 = Enc(m0) = gm0 · rn0 mod n2 (2.52)

cm1
0 = (gm0)m1 · (rn0 )m1 mod n2 (2.53)

= gm0·m1 · rm1
0

n mod n2 (2.54)

= gm0·m1 · rn mod n2 (2.55)

∴ Dec(cm1
0 ) = m0 ·m1 mod n2 (2.56)
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Another property we are interested in is Self-Blinding. This allows us to
change one ciphertext into another while preserving the plaintext. This will
be usefull during our Argmax protocol, where we may want to compare the
same number multiple times, while keeping the server from knowing it is in
fact the same number.

Theorem 7. Any ciphertext can be publicly changed into another without
altering the corresponding plaintext.

Proof. Let c0 be the encryption of a plantext m0.

c0 = Enc(m0) = gm0 · rn0 mod n2 (2.57)

We can multiply this c0 by rn, where r is picked at random, and get:

c0 · rn = gm0 · (r0 · r)n mod n2 (2.58)

c0 · rn = c1 (2.59)

Decrypting c1 and c0 we have:

Dec(c1) = Dec(c0) = m0. (2.60)
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Chapter 3

Private Protocols

This chapter presents the four basic protocols we will be using to construct
the Private Hyperplane Protocol, along with their proofs of security and
correctness. Here, correctness is essentially a finer detailing of what the
protocol is doing, why is it doing that, and what is happening in each step
of the protocol. For security, we will use the concept explained in the first
chapter, that if we can create a simulation of the protocol that is compu-
tationally indistinguishable from the actual protocol, the protocol will be
defined as secure, as defined by the equation:

{S1(1n, x, f1(x, n)))}x,y,n
c≡ {viewπ1 (x, y, n)}x,y,n

{S2(1n, x, f2(x, n))}x,y,n
c≡ {viewπ2 (x, y, n)}x,y,n

It is convenient to recall here that the concept of statistical indistinguishabil-
ity ( ≡s) is stronger than the concept of computational indistinguishability

(
c≡).

3.1 The Private Inner Product Protocol

The Private Inner Product Protocol is a very simple protocol described in
[1] for calculating the inner product (or dot product) of two vectors, while
keeping the values of the vectors private. Suppose two parties, A and B want
to calculate the inner product of their vectors, x and y respectively,each with
size d, with x = {x1, . . . , xd}, and y = {y1, . . . , yd}. We want to calculate
the following relation:

v = x1 · y1 + . . .+ xd · yd =
d∑

x=1

xi · yi (3.1)

The protocol is simply an implementation of this equation using Paillier
homomorphic properties. We know that:

Enc(m1 ·m2 mod n) = Enc(m1)
m2 mod n2, (3.2)
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and
Enc(m1 +m2 mod n) = Enc(m1) · Enc(m2) mod n2. (3.3)

We can easily combine these two equations and get:

Enc

(∑
i

xi · yi mod n

)
=
∏
i

Enc(xi)
yi mod n2 (3.4)

3.1.1 Description of the Protocol

In this protocol, party B has the private key and a vector y, while party A
has a vector x.

Protocol 1. Private Inner Product

1. B encrypts y1, y2, . . . , yd, and sends the encryptions [yi] to A.

2. A computes [v] =
∏
i[yi]

xi mod n2.

3. A re-randomizes and outputs [v].

3.1.2 Correctness and Security

Correctness

Correctness of the protocol is trivial: it holds as long as the inner product
of both vectors remain smaller than n.

Security

B doesn’t receive any message during the protocol, so the proof of security
is straightforward. B’s view is VB = (y, PKP , SKP ; coins), where y is B’s
input vector, PKP and SKP are the public and secret keys of the Paillier
scheme and coins is a random tape used for the encryptions. The simulator
SB simply generates random coins c̃oins, which in turn come from the same
distribution of the protocol. We have:

SB(y, PKP , SKP ) = (y, PKP , SKP ; c̃oins)
c≡ (y, PKP , SKP ; coins) = VB.

A’s view is VA = (x, PKP ; coins; [y1], [y2], . . . , [yd], [v]). We build the simu-
lator SA as follows:

1. Generate d encryptions of 0, [c1], [c2], . . . , [cd] using the Paillier keys.

2. Calculate [̃v] =
∏
i[ci]

xi .

3. Refresh [̃v], and store the random values used in the refresh operation

in c̃oins.
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4. Outputs SB(x, PKP ) = (x, PKP ; c̃oins; [c1], [c2], . . . , [cd]; [̃v]).

Both coins and c̃oins are drawn from the same disribution, therefore they
are interchangeable. Using the semantic security of the Paillier scheme, we
have:

SB(x, PKP ) = (x, PKP ; coins; [c1], [c2], . . . , [cd]; [̃v])
c≡ (x, PKP ; coins; [y1], [y2], . . . , [yd]; [v]) = VA(x, PKP )

3.2 The Private Comparison Protocol

In this section we want to detail our private integer comparison protocol,
as described in [5] and [1] . We need first to explain the DGK comparison
protocol, more specifically the second version of the protocol described in the
original paper [2]. After its explanation, and subsequent proof of security,
we explain the Private Comparison protocol, which uses the DGK protocol
as a subroutine. The reason for choosing the DGK protocol is a weighting
between simplicity and performance, as compared to, for instance, LSIC
[11].

The question that may arise is, if we already have the DGK protocol for
performing secure comparison of integers, why do we need a second protocol?
The answer is that the Private Comparison protocol has encrypted inputs,
which are themselves the result of other operation. More important, only
one of the parties holds the inputs to be compared, while the other holds
the private keys.

3.2.1 The DGK Comparison Protocol

Suppose two parties A and B have two l bits numbers, x and y they want
to compare privately, that is, they want to know the result of the question
”Is x ≤ y ?”, represented by a bit b = [x ≤ y]. Also, they want the result to
be shared among then, so that A and B each have a bit δA and δB, where
δA ⊕ δB = b. Lets denote by xi the i-th bit of the binary representation of
x, where i goes from 0 to l − 1.

The intuition of the protocol is that, for comparison of two binary num-
bers, we are interested only on the most significant bit that differs. For
instance, in the numbers x = 11010 and y = 11111, we only care that
x2 = 0 and y2 = 1. The following equation in plaintext reflects this idea:

ci = 1 + xi − yi + 3
l−1∑
j=i+1

(xj ⊕ yj) (3.5)
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If the summation on the right is not 0, that means there are differences in
the more significant bits, and the result of this particular comparison does
not matter. Now, if the summation is zero, we have 3 possibilities for ci, 0, 1
and 2. ci = 1 indicates that xi = yi, and therefore we are also not interested
in this bit. ci = 2 indicates that xi = 1 and yi = 0, and therefore x > y.
ci = 0 means the opposite, that xi = 0, yi = 1 and that x < y.

The DGK protocol is essentially a way of calculating all those ci’s in
a secure manner, via homomorphic properties, without leaking information
about the numbers, and adding an additional security parameter so that
each party has a share of the answer. We denote by [xi] the encryption of
the i-th bit under the DGK scheme. The DGK Protocol is as follows:

Protocol 2. The DGK Comparison Protocol

1. B encrypts each of the l yi bits he has, and sends them in that order
to A.

2. A computes the encrypted exclusive or of xi and yi by the following
method:

[xi ⊕ yi] =

{
[yi] if xi = 0,

[1] · [yi]−1 mod n if xi = 1.
(3.6)

3. A chooses an uniformly random bit δA, and calculates s = 1− 2 · δA.

4. For each i, 0 ≤ i < l, A computes [ci] using the following equation:

[ci] = [s] · [xi] · [yi]−1 ·

 l−1∏
j=i+1

[xj ⊕ yj ]

3

mod n. (3.7)

Note that this essentially equation 3.5 above, but calculated in cipher-
text space via homomorphic operations, and with the addition of the
parameter s.

5. A refreshes each [ci] with a random number ri of length 2t bits. This
is the self blinding property of the DGK system:

[ci]← [ci]
ri mod n (3.8)

After this, A sends the [ci]s in random order to B.

6. B checks to see if any ci decrypts to 0. If so, B defines δB = 1. Else,
δB = 0.
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3.2.2 Correctness and Security of the DGK Protocol

Correctness

Recall that s = 1−2 · δA, and that each ci is calculated as follows, only with
homomorphic operations:

ci = s+ xi − yi + 3
l−1∑
j=i+1

(xj ⊕ yj) (3.9)

We have two options, party A chooses δA either as 1 or 0:

1. If A chooses δA = 0 we have s = 1, and therefore if one of the ci’s
decrypts to zero, we have xi = 0 and yi = 1, and y > x. In this case,
δB = 0, and δA ⊕ δB = 0, as y > x.

2. If A chooses δA = 1 we have s = −1, and therefore if one of the ci’s
decrypts to zero, we have xi = 0 and yi = 1, and x > y. In this case,
δB = 0, and δA ⊕ δB = 1, as y ≤ x.

Security

A’s view is

VA = (x, PKDGK , l; coins, {ri}li=1; {[yi]}
l
i=1, {[yi ⊕ xi]}

l
i=1, δA, {[ci]}

l
i=1).

Now given inputs (x, PKDGK , l) we build the following simulator:

1. Generate l encrypted random bits {[̃yi]}
l

i=1.

2. Compute { ˜[yi ⊕ xi]}
l

i=1 as in the protocol.

3. Pick δA, and calculate {[̃c′i]}
l

i=1.

4. Pick l random values r̃i, each of length 2 · t.

5. Output

SA = (x, PKDGK , l; c̃oins, {r̃i}li=1; {[̃yi]}
l

i=1, { ˜[yi ⊕ xi]}
l

i=1, δA, {[̃ci]}
l

i=1)

, where c̃oins are the random values used for the DGK encryptions.

As coins and c̃oins, as well as {ri}li=1 {r̃i}
l
i=1 come from the same distribu-

tion, we have:

VA = (x, PKDGK , l; coins, {ri}li=1; {[yi]}
l
i=1, {[yi ⊕ xi]}

l
i=1, δA, {[ci]}

l
i=1)

≡s (x, PKDGK , l; c̃oins, {r̃i}li=1; {[yi]}
l
i=1, {[yi ⊕ xi]}

l
i=1, δA, {[ci]}

l
i=1)

20



Based on the Semantic Security of the DGK cryptosystem, we have:

VA ≡s (x, PKDGK , l; c̃oins, {r̃i}li=1; {[yi]}
l
i=1, {[yi ⊕ xi]}

l
i=1, δA, {[ci]}

l
i=1)

c≡ (x, PKDGK , l; c̃oins, {r̃i}li=1; {[̃yi]}
l

i=1, { ˜[yi ⊕ xi]}
l

i=1, δA, {[̃ci]}
l

i=1)

= SA

The protocol is therefore secure for party A. For party B we have VB =
(y, SKDGK , l; coins; {[ci]}li=1, δB). The simulator SB, on input (y, SKDGK , l)
does as follows:

1. Pick l random bit encryptions {[̃ci]}
l

i=1.

2. Calculates δB.

3. Outputs SB = (y, SKDGK , l; c̃oins; {[̃ci]}
l

i=1, δB), where c̃oins are the
random values used for the DGK encryptions.

As their drawn from the same distribution we have coins ≡s c̃oins, and
from the semantic security of the DGK we have:

VB = (y, SKDGK , l; coins; {[ci]}li=1, δB) (3.10)

≡s (y, SKDGK , l; c̃oins; {[ci]}li=1, δB) (3.11)
c≡ (y, SKDGK , {[̃ci]}

l

i=1, δB) = SB (3.12)

3.2.3 Private Comparison Protocol with Paillier

The idea behind the Private Comparison Protocol is to compare the most
significant bit of the two l-bit numbers a and b. Consider the number x =
2l + b − a. If b > a, the l + 1 bit of x, xl+1, be will equal to 1. If b ≤ a,
xl+1 = 0. We now describe the protocol, and give more insights in the proof
of correctness. In this case, B has the secret key of the Paillier Cryptosystem.

Protocol 3. The Private Integer Comparison Protocol

1. A calculates [x] = [2l] · [r] · [b] · [a]−1 mod n2

2. A picks a random number r of l + σ + 1 bits, where l is the numbers
size and σ is the statistical security parameter, chosen as 100.

3. A calculates [z] = [x] · [r] mod n2, and sends [z] to B.

4. B decrypts [z], and calculates d = z mod 2l.

5. A calculates c = r mod 2l.

6. A and B run the DGK comparison protocol with inputs c and d, and
obtain outputs δA and δB, where δA ⊕ δB = [c ≤ d].
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7. B sends [z ÷ 2l] and [δB] to A.

8. A calculates the encrypted result [c ≤ d]−1 = [d < c] as follows:

[d < c] =

{
[δB] if δA = 1,

[1] · [δB]−1 mod n if δA = 0.
(3.13)

9. A calculates the encrypted result [a ≤ b] = [z÷2l] · [r ÷ 2l]
−1 · [d < c]−1

10. A sends [a ≤ b] to B, who decrypts and outputs a ≤ b in the clear.

3.2.4 Correctness and Security

Correctness

As a and b are l bits integers, x = 2l + b − a is an l + 1 bit integer, with
xl+1 = 1 if b > a, and 0 otherwise. The Private Comparison Protocol
is a way of calculating this bit securely. We can dismiss the concerns of
proving correctness in the Paillier scheme ciphertext space, and deal only
with plaintext, as long as we don’t have carry overs modulo N . We need to
make sure the range of r = l+ λ+ 1, remains smaller than log2(N) ≈ 1024.

Since x is l + 1 bits long, x ÷ 2l is the most significant bit of x, where
÷ denotes integer division, and we can represent x as x = 2l · (x ÷ 2l) +
(x mod 2l). We have z = x+ r,

z = 2l(z ÷ 2l) + (z mod 2l) (3.14)

z = 2l((x÷ 2l) + (r ÷ 2l)) + ((x mod 2l) + (r mod 2l)) (3.15)

We now define a bit t′, where t′ = 1⇔ ((x mod 2l) + (r mod 2l)) > 2l. This
way, z ÷ 2l = x÷ 2l + r ÷ 2l + t′. We should also notice that t′ = 0 implies
that z mod 2l = (x mod 2l) + (r mod 2l) and t′ = 1 implies z mod 2l =
(x mod 2l) + (r mod 2l)− 2l. Consequently,

t′ = 0⇔ z mod 2l = (x mod 2l) + (r mod 2l) (3.16)

⇔ z mod 2l ≥ (r mod 2l) (3.17)

Therefore, the bit t′ is the answer of the question “Is r mod 2l bigger than
z mod 2l?”. Finally, we come back to the equation above and get:

z ÷ 2l = x÷ 2l + r ÷ 2l + t′ (3.18)

∴ x÷ 2l = (z ÷ 2l)− (r ÷ 2l)− t′ mod 2 (3.19)
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Security

We begin now our proof of security of the Private Comparison Protocol.
While in [1] the authors use a single encrypted bit [t′] as a call to a secure
function evaluation of [d < c], here we modify the proof by explicitly using
the bits δA and δB as the two outputs of the DGK encryption protocol. We
believe this proof to be more suited, as the authors of [1] do remark on using
the DGK protocol instead of LSIC.

A’s view is VA = ([a], [b], l, PKP ; r, coins; δA, [δB], [d < c], [b ≤ a]), where
PKP is the public key for the Paillier cryptosystem A gets from B, coins
is the random tape used in the Paillier encryptions by A, and δA ⊕ δB =
(d < c) are the results of the DGK protocol. Also, [b ≤ a] is the result
of the comparison protocol. At first, we think of δA as an output of the
DGK protocol, however it is obviously picked by A in the clear during the
DGK protocol, and therefore it is much more fit to be viewed as an input.
Therefore we have VA = ([a], [b], δA, l, PKP ; r, coins; [δB], [d < c], [b ≤ a]).
Now, given ([a], [b], δA, l, PKP ) as inputs, we build the simulator SA:

1. Pick a random number r̃ ← (0, 2l+σ+1) ∩ Z.

2. Generate ˜[d < c], [̃δB] and ˜[a ≤ b], three Paillier encryptions of random
bits.

3. Let c̃oins be random coins for three Paillier encryptions.

4. Output ([a], [b], δA, l, PKP ; r̃, c̃oins; [̃δB], ˜[d < c], ˜[b ≤ a]).

For both A’s view and the simulator SA, r and r̃ are taken from the same
uniform distribution over (0, 2l+σ+1) ∩ Z, and coins and c̃oins are random
tapes of same length, so

SA([a], [b], δA, l, PKP ) ≡s ([a], [b], δA, l, PKP ; r, coins; [̃δB], ˜[d < c], ˜[b ≤ a].

By semantic security of the Paillier cryptosystem, we conclude with com-
putational indistinguishability of ciphertexts:

SA([a], [b], δA, l, PKP ) =

= ([a], [b], δA, l, PKP ; r, coins; [̃δB], ˜[d < c], ˜[b < a])
c≡ ([a], [b], δA, l, PKP ; r, coins; [δB], [d < c], [b < a])

= VA([a], [b], δA, l, PKP ). (3.20)

3.3 The Private Argmax Protocol

The Private Argmax Protocol is a protocol that calculates in a secure manner
which is the number with the maximum value in a given list. Because
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this protocol is a small part in a larger protocol, party A has a vector of
unknown values encrypted with party B’s keys, thus needing the other party
to calculate the Argmax. Also, we don’t want any party to learn anything
else other than the Argmax, and particularly neither A nor B should learn
the ordering of the values.

Suppose party A has a vector a = a1, a2, . . . , ak. We want to find i0 =
argmaxi(ai), that is, ai0 = maxi(a), and party A to output i0.

As in the case of finding the maximum term of a list, at each iteration
the current candidate and the next term of the vector are compared, but in
our case we will use the Private Integer Comparison Protocol. To prevent
B from learning the ordering, A simply has to apply a random permutation
π to the original vector. Preventing A from learning the ordering is more
complicated: at the beginning of each iteration, A adds random noise to
the current candidate, max, and to the current term on the list, aπ(i), and
submits them to B. According to the result of the comparison, B adds it’s
own noise either to max or aπ(i), and sends it to A, who in turn removes it’s
original noise, not knowing which number it received, or the result of the
current comparison.

3.3.1 The Protocol

In the protocol below, party B has the Private Key of the Paillier scheme,
and party A has the vector with the encrypted values. The output will be
the maximum value of A’s vector.

Protocol 4. Private Argmax Protocol

1. A chooses a random permutation π over {1, 2, . . . , k}

2. A: [max]← [aπ(1)]

3. B: m← 1

4. for i = 2 to k do :

5. Using the Private Integer Comparison Protocol, B gets the bit
bi = (max ≤ aπ(i)).

6. A picks two random integers ri, si ← (0, 2λ+1) ∩ Z.

7. A: [m′i]← [max] · [ri]. Bm′i = max+ ri

8. A: [a′i]← [aπ(i)] · [si]. Ba′i = aπ(i) + si

9. A sends [m′i] and [a′i] to B

10. if bi is true then

24



11. B: m← i

12. B: [vi]← Refresh[ai].

13. else

14. B: [vi]← Refresh[m′i].

15. end if

16. B sends to A [vi].

17. B sends to A the couple ([xi], [yi]) = ([b̄i], [bi]).

18. A: [max]← [vi] · [xi]−ri · [yi]−si . Bmax = vi − xi · ri − yi · si

19. end for

20. B sends m to A.

21. A outputs π−1(m).

3.3.2 Correctness and Security

Correctness

To prove correctness, we have to show the following invariant holds: at
the end of the loop for iteration i,m is the maximum of {aπ(j)}1≤j≤i and

aπ(i0) = m. If this holds, at the end of the loop iterations aπ(i0) is the max-
imum of {aπ(j)}1≤j≤k = aj1≤j≤k, hence i0 = argmaxj(aπ(j)) and π−1(i0) =

argmaxj(aj). At initialization, the invariant trivially holds as the family
{aπ(j)}1≤j≤i contains only one element. Suppose the property is true for

iteration i− 1. Let us distinguish two cases:

1. If bi is true (i.e., m ≤ aπ(i)), max{aπ(j)}1≤j≤i−1 ≤ aπ(i), as the invari-

ant holds forthe previous iteration, and then max{aπ(j)}1≤j≤i = aπ(i).

Then i0 is set to i,vi = a′i and (xi, yi) = (0, 1). As a consequence, m is
set by A to:

vi − xi · ri − yi · si = a′i − si = aπ(i) (3.21)

We have clearly that aπ(i0) = aπ(i) = m and m = max{aπ(j)}1≤j≤i,
the invariant holds at the end of the i-th iteration in this case.

2. If bi is false (m > aπ(i)),max{aπ(j)}1≤j≤i−1 > aπ(i) and

max{aπ(j)}1≤j≤i = max{aπ(j)}1≤j≤i−1 = m

. Then i0 is not changed, vi is set to m′i and (xi, yi) = (1, 0). As a
consequence,

vi − xi · ri − yi · si = m′i − ri = m (3.22)
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m is unchanged. As bothm and i0 stayed the same andmax{aπ(j)}1≤j≤i =

max{aπ(j)}1≤j≤i−1, the invariant holds at the end of the i−th iteration

in this case.

Security

As this is a rather complex proof, we follow [1] very closely. We know that
A’s view is:

VA = ( {[ai]}ki=1, l, PKP ;π, {ri}ki=2, {si}
k
i=2, coins;

{[vi]}ki=2, {([xi], [yi])}
k
i=2, π(argmaxi(ai)) )

where coins are the random tapes used for encryption. To simulate A’s view,
the simulator SA does the following on input ([a1], . . . , [ak], l, PKP , argmaxi(ai)) :

1. Picks a random permutation π̃ of {1, . . . , k}.

2. Picks k − 1 random integers r̃2, . . . , r̃k in (0, 2)l+λ ∩ Z.

3. Picks k − 1 random integers s̃2, . . . , s̃k in (0, 2)l+λ ∩ Z.

4. Generate k − 1 random Paillier encryptions [ṽ2], . . . , [ṽk].

5. Generates k − 1 random bits b̃i and Paillier encryptions ([xi], [yi]) =

([b̃i], [
¯̃
bi]).

6. Generate a random tape for 2(k − 1) Paillier encryptions c̃oins.

7. Outputs ({[ai]}ki=1, l, PKP ; π̃, {r̃i}ki=2, {s̃i}
k
i=2, c̃oins; {[ṽi]}

k
i=2, {([x̃i], [ỹi])}

k
i=2, π̃(argmaxi(ai))).

By the semantic security of the Paillier scheme we have:

VA([a1], . . . , [ak], l, PKP ) = ({[ai]}ki=1, l, PKP ;π, {ri}ki=2, {si}
k
i=2, coins;

{[vi]}ki=2, {([xi], [yi])}
k
i=2, π(argmaxiai))

c≡ ({[ai]}ki=1, l, PKP ;π, {ri}ki=2, {si}
k
i=2, coins;

{[ṽi]}ki=2, {([x̃i], [ỹi])}
k
i=2, π(argmaxiai))

Given that the r̃i, s̃i and c̃oins are generated from the same distribution as
ri, si (uniform over (0, 2)λ+l) and coins (random tape for 2(k − 1) Paillier
encryptions), and that they are completely independent from the ṽi or π,
we have:

VA([a1], . . . , [ak], l, PKP )
c≡ ({[ai]}ki=1, l, PKP ;π, {ri}ki=2, {si}

k
i=2, coins;

{[ṽi]}ki=2, {([x̃i], [ỹi])}
k
i=2, π(argmaxiai))

c≡ ({[ai]}ki=1, l, PKP ;π, {r̃i}ki=2, {s̃i}
k
i=2, c̃oins;

{[ṽi]}ki=2, {([x̃i], [ỹi])}
k
i=2, π(argmaxiai))
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Similarly, the distribution of (π, π(argamaxi(ai))) and π̃, π̃argmaxi(ai) is
the same. As π and π̃ are independent from other parameters we have:

VA([a1], . . . , [ak], l, PKP )
c≡ ({[ai]}ki=1, l, PKP ;π, {ri}ki=2, {si}

k
i=2, coins;

{[ṽi]}ki=2, {([x̃i], [ỹi])}
k
i=2, π(argmaxi(ai)))

c≡ ({[ai]}ki=1, l, PKP ; π̃, {r̃i}ki=2, {s̃i}
k
i=2, c̃oins;

{[ṽi]}ki=2, {([x̃i], [ỹi])}
k
i=2, π̃(argmaxi(ai))

= SA([a1], . . . , [ak], l, PKP ; argmaxi(ai)).

Which concludes the proof for A. B’s view is:

VB = (SKP , l; coins; {bi}ki=2, {[m
′
i]}

k
i=2, {[a

′
i]}

k
i=2) (3.23)

where coins are random coins for (k − 1) Paillier ciphertexts refresh. The
simulator SB(SKP , l) runs as follows:

1. Generate a random permutation π̃ of {1, . . . , k}.

2. Set [ã′i] = [i].

3. Run the protocol with the [ã′i] as the input data, π̃ as the permutation,
and same parameters otherwise. Let

(SKP , l; c̃oins; {bi}i=2, {[m̃′i]}
k

i=2, {[ã
′
i]}

k

i=2)

be B’s view of this run.

4. Output (SKP , l; c̃oins; {bi}i=2, {[m̃′i]}
k

i=2, {[ã
′
i]}

k

i=2).

Let p : ai1≤i≤k → 1, . . . , k be the function that associates ai to its rank
among the ai (in ascending order). Let us fix the permutation π for a while
and define the following hybrids.

1. H1 = VB({[ai]}ki=1, l, SKP , PKP ).

2. H2 = VB({[p(ai)]}ki=1, l, SKP , PKP ).

We will show that these hybrids are statistically equal for every permu-
tation π. As p(·) is a map that does not change the order of the ai, we
have that for all i, j; ai ≤ aj ⇔ p(ai) ≤ p(aj). As a consequence, for a
given permutation π, the bits bi do not change if we replace the ai by p(ai).
Similarly, the way the a′i and m′i are generated for H1 and H2 is the same:
blinding by adding random noise from (0, 2λ+1) ∩ Z. Thus, H1≡sH2. Now,
we want to show that H2≡sSB(SKP , l), we do not fix π anymore. Let π0
be the permutation such that p(ai) = π0(i). We can then rewrite H2 as

H1 = VB([π0(1)], . . . , [π0(k)], l, SKP , PKP ) (3.24)
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As π̃ and π◦π0 are statistically indistinguishable, we haveH2 ≡s SB(SKP , l).
Recall that SB’s output is the view of B when the protocol, is run with the
set {ai = i} as input set and π̃ as the permutation. Hence

VB([a1], . . . , [ak], l, SKP , PKP ) ≡s SB(SKP , l)

We conclude the proof of security using modular sequential composition. We
replace the ideal calls for computing the encrypted bits bi by the provable
secure Private Integer Comparison Protocol, and invoke theorem 1 to prove
security in the semi-honest model.
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Chapter 4

The Private Hyperplane
Classifier

Hyperplane Classification is the name given to the process of classifying
data using linear models, trained by algorithms such as Perceptron, Sup-
port Vector Machines, Least Squares or Fischer’s Linear Discriminant. A
Hyperplane is the name of a vector with one dimension less than the data,
and the name Hyperplane Classification comes from the binary case, where
data needs to be classified in two possible classes. The Hyperplane would
then be the plane that bests divides the data in half. The difference between
the several algorithms is in defining and computing this ideal plane.

In a more general setting, we have a model w that is a set of k vectors
(corresponding to the k possible classes), each with size d (corresponding
to the size d of each data sample). Classification in this case is done by
computing the inner product of the data sample with each class of the model,
and picking the class with the highest value. Mathematically, we have:

k∗ = argmaxi∈[k](〈wi, x〉) (4.1)

Where 〈wi, x〉 denotes the inner product of the data sample x and the coef-
ficients corresponding to the class i of the model w.

4.1 Private Hyperplane Protocol

In this section we introduce the Private Hyperplane Protocol. It is reason-
ably simple, essentially using both the Private Inner Product Protocol on
the data and the trained model, and the Private Argmax Protocol on the
subsequent output. We can explain now the at first weird inputs of party A
during the execution of the Private Argmax Protocol: the apparent paradox
of not knowing the argmax of one’s own data is explained as the data is the
output of the Private Inner Product Protocol.
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In the protocol below, a server S holds a model w = {w1, w2, . . . , wk},
where each wi has length d, and the client C has data (of size d) to be clas-
sified among the k classes. To perform the classification, the client submits
it’s data vector x = {x1, . . . , xd}, and both client and server calculate:

k∗ = argmaxi∈[k]〈x,wi〉 (4.2)

Protocol 5. Private Hyperplane Classification

1. for i = 1 to k do :

2. C and S run the Private Inner Product Protocol with inputs x
and wi.

3. C gets the result [vi].

4. end for

5. C and S run the Private Argmax Protocol, where C has the input ci-
phertexts [v1], [v2], . . . , [vk], and C gets the result i0 ← argmaxi∈[k](vi)
of the protocol.

6. C output i0.

4.2 Security

The client’s view is

VC = (PKP , x; {[vi]}ki=1, i0). (4.3)

The simulator SC , on input (PKP , x, k
∗), where k∗ = argmaxi∈[k]〈x,wi〉

does the following:

1. Generate k random Paillier encryptions [ṽi].

2. Output (PKP , x; {[ṽi]}ki=1, k
∗).

Using the Semantic Security of the Paillier Scheme, we have:

VC = (PKP , x; {[vi]}ki=1, i0)
c≡ (PKP , x; {[ṽi]}ki=1, k

∗) = SC(PKP , x, k
∗).
(4.4)

Proving security for the Server S is a trivial case. It views only its own
input, and the simulator outputs the input itself:

VS = (SKP , {wi}ki=1)
c≡ (SKP , {wi}ki=1) = SS (4.5)
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Chapter 5

Results

In this chapter we present the performance results of our implementation.
In the first section, the protocols are evaluated in separate, using random
numbers for both the models and data samples. In the second section, we
present a classical machine learning problem, the MNIST dataset, describe
our classifier, Linear Support Vector Machines, and analyse the performance
of this classifier in both encrypted and non-encrypted settings.

5.1 Individual Performance

To test the protocols, we performed a large number of operations with ran-
dom data as a way to measure the average performance of the protocols.
In this chapter, sample size refers to the size each of each sample, such as
the number of pixels in an image, and class size to the number of available
classes for classification.

5.1.1 Private Comparison Protocols Benchmark

We started our analysis by testing the DGK Comparison Protocol, the
core subroutine of the overall scheme. To evaluate the performance of our
implementation, we would take two 32 bit random numbers taken from
/dev/urandom/, and perform two comparisons, using δA as 0 and 1. This
was repeated 10,000 times to get a better average. We then repeated the
whole process using 64 and 128 bits numbers.

DGK Comparison

Number Size Average Time [ms] Error Rate (%)

32 17.797 0.005

64 37.230 0.012

128 83.601 0.027
As we can see in the table above, there is a linear relation between the

comparison time and the size of the number we are using. If we look at
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the protocol this becomes clear, as there is a relation between the number
size and and the number of comparisons. Fortunately, although the DGK
comparison is much more expensive than a plaintext comparison, which
takes about 0.08 ms in the same setting, it is still manageable.

Also, we can see there is a direct proportion between the errors rates of
the protocol. Those error rates seem acceptable, however the DGK scheme
is essentially deterministic, without a theoretical error rate as some other
comparison schemes. Therefore, 0.005%, while small, can’t be ignored. Un-
fortunately we don’t yet know the source of these possible errors.

We then evaluated the speed of the Private Integer Comparison Pro-
tocol. In the table below, we see that the speed isn’t much greater than
that of the DGK comparison, because, except for some encryptions and re-
randomizations, the bulk of computation corresponds to the DGK protocol.
As such, the error rate also remains almost the same.

Private Integer Comparison

Number Size Average Time [ms] Error Rate (%)

32 19.018 0.009

64 41.174 0.006

128 87.577 0.012

Finally, we present below a comparison between our results and [1], for
64 bits comparison. We believe the disparity to occur due to the difference in
hardware, and to the mention of running the protocol in 4 different threads,
which we did not implement. However, the results are still in a range of
confidence.

Implementation Comparison
Computational Time [ms]

Our’s MIT’s

DGK Comparison

32 bits 17.797 31.28

64 bits 37.230 65.18

Private Comparison
64 bits 41.174 59.06

5.1.2 Private Hyperplane Classifier Performance

To evaluate the performance of the Private Hyperplane Classifier we per-
formed classification on random data, while varying both the number of
classes, and the amount of components of each class. While those analysis
were performed, two distinct patterns emerged, which we attribute to the
influence of either the Inner Product or the Argmax protocol.

By looking at how the protocols are defined, we can see that the Argmax
has a direct correlation with the number of classes, and the Inner Product
protocol depends on the product of the number of classes, and the number
of parameters on each class. At the next table, we fixed the size of each
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class, but iterated on the number of classes. This way, we could analyse the
effects of the Argmax protocol on the Private Hyperplane Protocol. What
we see is a very linear effect on the overall performance time of the protocol.

Hyperplane Classification: Argmax Analysis
Computing Time [ms]

Number of Classes × 100

Classes 64 bits 128 bits

Complete per Sample Complete per Sample

10 1564.5 156.45 1691 169.1

100 3947.27 39.473 8066.7 80.667

500 21904.4 43.8088 48789.7 97.580

1000 39316.8 39.317 98179 98.179
Next, we kept the number of classes fixed at 10, and then iterated on

the size of each class. This way, we could evaluate the effects of the Inner
Product protocol, as the Argmax protocol would be fixed. Looking at the
data, we can see how little effect this has on the overall performance. 100
times more data points caused only a fourfold increase in computing time.
In fact, the performance per data point actually increased.

Hyperplane Classification: Inner Product Analysis
Computing Time [ms]

10 Classes × Size of Each Class

Class Size 64 bits 128 bits

Complete per Sample Complete per Sample

100 1514.2 15.142 1691 16.91

1000 2087.2 2.0872 2746.6 2.7466

5000 3795.45 0.75909 7640.25 1.52805

10000 6555.3 0.65553 10988.8 1.09888
From these two tables, we can draw the conclusion that the number of

classes has a much bigger effect on the performance of the protocol. This
isn’t much of a problem, because class size tends to remain small. To many
classes probably means the problem is ill defined. All and all, we can also
see that the protocols run quite fast.

5.2 Classification of the MNIST Database

In this section, we present the performance of the protocol against a theoret-
ical problem: handwritten digit classification. Although it has no immediate
application, it servers to illustrate the performance of Private Classification,
using a well established example with a well know classifier.
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5.2.1 The MNIST Database

The MNIST database is a set of images representing handwritten digits,
from 0 to 9. It was created by mixing samples of both U.S. Census Bureau
Officers and U.S. high school students. The database is very popular in the
machine learning field, being the first example presented in many courses. In
[12], there is a list of the performance of several classifiers on the database.

The database consists of 70,000 images, of which 60,000 are part of the
training database, and 10,000 are part of the testing database. Each sample
consists of a 784 (28 x 28) pixel grid, 8-bit gray scale image. Below we
present a few samples from the set:

The goal of the classifier here is, given a sample image, guess a number
from 0 to 9 corresponding to it. While some more refined classifiers are
able to obtain near human performance, simple classifiers without image
pre-processing, as is the case here, tend to perform poorly.

5.2.2 Linear Support Vector Machines

As cited in [1], the Private Hyperplane Classifier actually corresponds to
a class of linear classification algorithms. We can name Perceptron, Least
squares, Fischer linear discriminant and Linear Support Vector Machines
(LinearSVMs) as examples of Hyperplanes Classifiers. In our case, we have
simply picked LinearSVMs, as there were no specific motivations for choosing
one over the other in a validation scenario.

In a two dimensional case, SVM classification consists of finding the di-
viding plane with the maximum distance between the classes of the training
set. This way, data points in the test set have a better chance to be correctly
classified. In a multidimensional problem, the data samples are classified us-
ing a one-versus-all approach, where each class has coefficients attributed to
it and we perform a inner product of the sample and each class model. The
result with the highest value is thus classified.

In our case, we trained the model using python’s scikit-learn library,
designed specifically for machine learning use.

5.2.3 Overall Performance

After training our data, we saved the model in a txt file that was later read
by our cpp program, and then performed the comparison both in a encrypted
and a non-encrypted scenario, as seen below. The model was composed of
floating point with 15 decimal numbers, and therefore we needed to use a
64 bit version of both the DGK and Paillier protocols.
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MNIST Classification Time [ms]
28× 28× 64 bits

Sample Size Plaintext Private

Complete per sample Complete per sample

100 593.811 5.93811 57,125.4 571.254

1000 621.731 0.62173 459,574.4 459.574

10000 876.781 0.08768 4,572,692.1 457.269

The program is obviously slow, taking nearly two hours for the complete
classification of the whole set. But if we look at the individual time for each
image, half a second isn’t so bad for the private classification of a single
image. Also, from the previous section we know that increasing the size of
the image has very little effect on the computing time, so a larger image
wouldn’t be impossible.

Concerning the accuracy of the program, we had an error rate of 13.65%
for the plaintext protocols, and of 13.68% for the encrypted protocols. While
very high, this is more related to the particular problem than to the classifier.
For instance, 33% of all the classification errors correspond to assigning the
numbers 2, 3, 5 and 9 to the number 8. Of course, while there are many
more refined classifiers, this result is very reasonable to a raw problem as
this is.
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Chapter 6

Final Considerations

In this final chapter, we present the conclusions of our work, and the prospects
of expanding it.

6.1 Conclusions

In this work, we evaluated the performances of private protocols for integer
comparison, inner products, argmax and private classifications. We con-
cluded that while the protocols are much more expensive in computational
terms than their plaintext counterparts, they are not prohibitive. Our work
obtained results very similar to those in the original paper [1], corroborating
the original hypothesis of usage viability.

From our data, we could also point out that the Argmax protocol, and
the number of classes, have a much larger influence in the overall perfor-
mance of the Hyperplane Classification than the size of each class and the In-
ner Product protocol. This isn’t much of a problem however, as the number
of classes is usually small, otherwise the problem is badly formulated. For a
proof of concept, we decide to implement Linear Support Vector Machines
Classifier. While Linear Support Vector Machines are not very suitable for
the MNIST database in particular, they were useful given their widespread
use and straightforward implementation, with classification being equivalent
to the Hyperplane Classifier process.

In our implementation, we can see that it took 450ms to classify a rea-
sonably small (28 x 28) image, which can be considered a very large time for
processing an entire database. However, in a practical, case by case basis,
this time can be considered minimal. Gathering suitable fingerprints and
face images are lengthy process, and this further delay would be ignorable.
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6.2 Future Work

There are a few options available to expand this work. Parallelism comes to
mind, both in the cryptographic primitives and the classification protocols
themselves. However, a preliminary survey considering the use of GPUs
indicates that the communication cost would offset the computational ad-
vantage gained by splitting the communication.

The second option would be to implement the other two classifiers de-
scribed in [1], Näıve Bayes and Decision Trees. This would improve the
range of possible classification protocols and extend the range of problems
to be treated. Additionally, with this work in hand, performance analysis
against yet to be developed protocols is an obvious possibility.

Another idea is to export the implementation to a web application, or
a smartphone app. Accessing a theoretical broader audience would be a
better proof of concept, although we fear the focus would most likely shift
to the challenges of the specific implementation instead of the subtleties of
Private Classification.

A more ambitious approach would be to extend protocols with active
security in mind. This would require thorough review of the literature con-
cerning Active Security, including a reevaluation of which cryptosystems to
use, and which protocols would perform faster. The choice of both the DGK
and Paillier protocols would have to be taken into account, and perhaps a
new, more refined cryptosystem would need to be proposed.
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