

Universidade de Brasília – UnB Faculdade UnB Gama – FGA Engenharia de Energia

Controle da pressão de operação da Bancada de Testes para Turbinas Hidráulicas

Autor: Maria Eugênia Carvalho Matos dos Santos Orientador: Prof. Dr. Rudi Henri van Els

> Brasília, DF 2015

Controle da pressão de operação da Bancada de Testes para Turbinas Hidráulicas

Monografia submetida ao curso de graduação em Engenharia de Energia da Universidade de Brasília, como requisito parcial para obtenção do Título de Bacharel em Engenharia de Energia.

Universidade de Brasília – UnB Faculdade UnB Gama – FGA

Orientador: Prof. Dr. Rudi Henri van Els

Brasília, DF 2015

Maria Eugênia Carvalho Matos dos Santos

Controle da pressão de operação da Bancada de Testes para Turbinas Hidráulicas/ Maria Eugênia Carvalho Matos dos Santos. – Brasília, DF, 2015 – 66 p. : il. (algumas color.) ; 30 cm.

Orientador: Prof. Dr. Rudi Henri van Els

Trabalho de Conclusão de Curso – Universidade de Brasília – UnB Faculdade UnB Gama – FGA, 2015.

1. Controle PID. 2. Inversor de frequência. 3. Ensaio de turbinas hidráulicas. I. Prof. Dr. Rudi Henri van Els. II. Universidade de Brasília. III. Faculdade UnB Gama. IV. Controle da pressão de operação da Bancada de Testes para Turbinas Hidráulicas

Controle da pressão de operação da Bancada de Testes para Turbinas Hidráulicas

Monografia submetida ao curso de graduação em Engenharia de Energia da Universidade de Brasília, como requisito parcial para obtenção do Título de Bacharel em Engenharia de Energia.

Trabalho aprovado. Brasília, DF, 7 de dezembro de 2015:

Prof. Dr. Rudi Henri van Els Orientador

Prof. Dr. Luis Filomeno de Jesus Fernandes Convidado 1

Prof. Dr. Daniel Mauricio Muñoz Arboleda Convidado 2

> Brasília, DF 2015

Dedico este trabalho a meu irmão, Egídio Carvalho Matos Silva, como inspiração para retomar seu caminho na jornada do conhecimento.

Agradecimentos

Primeiramente a Deus, pelo dom da vida. Aos meus pais, por todo o amor, por seu exemplo e pelo papel fundamental que exerceram em minha formação. Ao meu irmão e sua família, por todos os momentos em que se fizeram presentes, mesmo distantes. À minha grande família, pelo exemplo de luta e união. Ao meu namorado e aos meus amigos, por me apoiarem e me incentivarem.

Ao professor Rudi Henri van Els, por sua orientação, paciência e por todos os desafios que me motivaram a seguir em frente. Aos professores Daniel Mauricio Muñoz Arboleda e Luis Filomeno de Jesus Fernandes, pelas contribuições e avaliação do presente trabalho. Aos que contribuíram para a realização deste trabalho: Danilo dos Santos Oliveira, Luiz Eduardo Nunes de Albuquerque, Nigel Sloot, Olga Lucia Sanchez Santander, Ramsay MacDonald, Rodrigo de Oliveira Calixto, Thiago de Oliveira Campos dos Reis. À Universidade de Brasília e aos demais professores que contribuíram para a minha formação.

Agradeço a todos pelo papel que desempenharam em minha vida, me ajudando a chegar até aqui.

"A persistência é o caminho do êxito." (Charles Chaplin)

Resumo

A turbina Indalma é utilizada na geração descentralizada de energia para eletrificação de comunidades isoladas da região Amazônica. A caracterização dessa turbina foi realizada no Laboratório de TermoFluidos da Faculdade UnB Gama. Nesse processo, foram desenvolvidos trabalhos de implementação da estrutura mecânica e da instrumentação da bancada de testes para turbinas hidráulicas, bem como de avaliação experimental da turbina Indalma. Com a finalidade de fornecer maior agilidade aos ensaios experimentais realizados na bancada, esse trabalho propõe o controle da pressão de operação do sistema, empregando o controlador PID incorporado ao inversor de frequência que compõe a instalação atual. Utilizando o sinal proveniente dos transdutores de pressão, foi desenvolvido um controlador que ajustará a velocidade de rotação do motor, de forma a atingir a pressão necessária em diferentes etapas de operação da bancada.

Palavras-chaves: Inversor de frequência, controlador PID, ensaio de turbinas hidráulicas.

Abstract

The Indalma turbine is used for decentralized power generation in isolated communities in the Amazon region. The experimental evaluation of this turbine was held at TermoFluidos Laboratory of UnB Gama. In this process, studies on the implementation of the mechanical structure and instrumentation of a testbench for hydraulic turbines were developed, as well as the experimental evaluation of Indalma turbine. In order to provide more flexibility to the experimental tests conducted on the bench, this work proposes to control system operating pressure by using a PID controller built into the frequency inverter currently installed. Using the the pressure transducers signal, a controller that adjusts the engine rotation speed in order to maintain the required pressure will be developed.

Key-words: Frequency Inverter. PID controller. Hydraulic Turbines test.

Lista de ilustrações

Figura 1 –	Instalação para ensaio de turbinas hidráulicas na FGA (OLIVEIRA, 2014, p. 29)	18
Figura 2 –	Laboratório de máquinas hidráulicas proposto pela Voith para a PUC-	
0	RJ (MACINTYRE, 1983, p. 494)	23
Figura 3 –	Instalação para ensaio de turbinas hidráulicas (OLIVEIRA, 2014, p. 29)	25
Figura 4 –	Vertedouro triangular (OLIVEIRA, 2014, p. 31) [Adaptado]	27
Figura 5 –	Medidor de vazão eletromagnético (OLIVEIRA, 2014, p. 30)	28
Figura 6 –	Medição de rotação por sensor indutivo (CALIXTO, 2015, p. 40) \ldots .	28
Figura 7 –	Freio de Prony (DONALD; SLOOT, 2014, p. 28)	29
Figura 8 –	Bomba centrífuga com corpo de voluta (MACINTYRE, 1980, p. 41) .	31
Figura 9 –	Bomba KSB Etanorm (KSB, 2013, p. 19)	32
Figura 10 –	Motor de indução trifásico (WEG, 2014, p. 13) $\ldots \ldots \ldots \ldots \ldots$	33
Figura 11 –	Tipos de ligação do motor (WEG, 2014)	35
Figura 12 –	Estágios de um Inversor de Frequência (WEG, 2014, p. 60)	36
Figura 13 –	Diagrama de Blocos do Inversor de Frequência CFW09 (WEG, 2012,	
	p. 6)	37
Figura 14 –	Diagrama de Blocos do Controlador PID Acadêmico (WEG, 2011, p.	
	217)	38
Figura 15 –	Curva de reação e parâmetros requeridos para o método de sintonia em	
	malha aberta de Ziegler-Nichols (DORF; BISHOP, 2013, p. 374) $. \ .$	42
Figura 16 –	Diagrama de funcionamento da Bancada de Ensaios de Turbinas Hi-	
	dráulicas (CALIXTO, 2015, p. 63)	45
Figura 17 –	Diagrama de blocos da rede de comunicação (CALIXTO, 2015, p. 64) .	45
Figura 18 –	Diagrama P&ID da Bancada de Ensaios para Turbinas Hidráulicas $\ . \ .$	46
Figura 19 –	Diagrama de blocos do controlador de pressão	47
Figura 20 –	Diagrama de conexão do transdutor de pressão (WIKA, 2014, p. 5) $$	47
Figura 21 –	Chave S1 para seleção do sinal de entrada (WEG, 2011, p. 62) \ldots .	48
Figura 22 –	Diagrama de conexões no inversor de frequência	48
Figura 23 –	Configuração do Data Source para o inversor	51
Figura 24 –	Configuração de Data Points para o inversor	52
Figura 25 –	Curva de reação do sistema em Malha Aberta $\ .\ .\ .\ .\ .$	53
Figura 26 –	Comportamento do sistema em Malha Aberta e em Malha Fechada	
	$(\text{transição aos } 290 \ s) \ \ldots \ $	56
Figura 27 –	Retirada de carga em Malha Aberta (à esquerda) e em Malha Fechada	
	(à direita)	56

Figura 28 – C	comportamento do sistema em Malha Aberta e em Malha Fechada	
(t	transição aos 245 s)	57
Figura $29 - R$	tetirada de carga em Malha Aberta (à esquerda) e em Malha Fechada	
(à	à direita) \ldots \ldots	58
Figura $30 - C$	comportamento do sistema em Malha Aberta e em Malha Fechada	
(t	transição aos 144 s) \ldots \ldots \ldots \ldots \ldots \ldots \ldots	59
Figura $31 - R$	tetirada de carga em Malha Aberta (à esquerda) e em Malha Fechada	
(à	\hat{a} direita)	59
Figura $32 - C$	Comparação do desempenho dos controladores	60
Figura A.1-In	nterligação elétrica do sistema de acionamento da bomba	66

Lista de tabelas

Tabela 1 –	Sugestões para ajustes dos ganhos do regulador PID (WEG, 2011, p.	
	218) [Adaptado]	39
Tabela 2 –	Efeito do aumento dos ganhos PID $K_P, K_I \in K_D$ na resposta ao degrau	
	(DORF; BISHOP, 2013, p. 368)	42
Tabela 3 –	Sintonia de ganhos de controlador PID por Ziegler-Nichols usando Ga-	
	nho Crítico e Período de Oscilação (DORF; BISHOP, 2013, p. 372)	
	[Adaptado]	42
Tabela 4 –	Sintonia de ganhos de controlador PID por Ziegler-Nichols usando	
	Curva de Reação (DORF; BISHOP, 2013, p. 374) [Adaptado] $\hfill \ldots$.	42
Tabela 5 –	Chave S1 para seleção do sinal de entrada (WEG, 2011, p. 62) $\hfill \ldots$.	48
Tabela 6 –	Parâmetros para realimentação na entrada AI2 (WEG, 2011, p. 216) $$	
	[Adaptado]	49
Tabela 7 –	Configuração dos parâmetros do inversor (WEG, 2011, p. 13) [Adap-	
	$tado] \dots $	50
Tabela 8 –	Sintonia de ganhos de controlador PID por Ziegler-Nichols usando	
	Curva de Reação (DORF; BISHOP, 2013, p. 374) [Adaptado] $\hfill \ldots$.	53
Tabela 9 –	Parâmetros do inversor relacionados ao regulador PID (WEG, 2011, p.	
	218) [Adaptado]	54
Tabela 10 –	Comparação pela integral do erro absoluto	61

Lista de abreviaturas e siglas

CA	Corrente Alternada
$\mathbf{C}\mathbf{C}$	Corrente Contínua
FGA	Faculdade do Gama – UnB
IAE	Integral of the Absolute Magnitude of the Error (Integral do Módulo do Erro)
IHM	Interface Homem-Máquina
Inovatrans	Inovação de micro centrais hidrelétricas: capacitação laboratorial e trans- ferência de tecnologia
Р	Proporcional
P & ID	<i>Piping and Instrumentation Diagram</i> (Diagrama de Tubulação e Instrumentação)
PI	Proporcional e Integral
PID	Proporcional, Integral e Derivativo
PWM	Pulse Width Modulation (Modulação por Largura de Pulso)
SCADA	Supervisory Control and Data Aquisition (Controle Supervisório e Aquisição de Dados)
TCC	Trabalho de Conclusão de Curso
UnB	Universidade de Brasília

Lista de símbolos

f	Frequência (Hz)
F_1, F_2	Força (N)
G_C	Função de transferência do controlador
h	Altura da lâmina de água no verte douro $\left(m\right)$
Н	Altura de queda líquida (m)
H_1, H_2	Altura de elevação (m)
K_C	Ganho crítico
K_D	Ganho derivativo
K_I	Ganho integral
K_P	Ganho proporcional
n, n_1, n_2	Velocidade de rotação (rpm)
n_s	Velocidade síncrona (rpm)
p	Pares de polos
P_{1}, P_{2}	Potência (W)
P_e	Potência de eixo (W)
P_h	Potência hidráulica (W)
Q, Q_1, Q_2	Vazão volumétrica $(m^3 \cdot s^{-1})$
R	Taxa de reação
r	Raio (m)
S	Escorregamento
T_C	Período crítico
T_d	Retardo no tempo
T_D	Tempo do derivativo

T_I	Tempo do integrador
α	Medida angular (°)
γ	Peso específico $(N \cdot m^{-3})$
η	Rendimento
θ	Medida angular (°)
τ	Torque $(N \cdot m)$
ω	Velocidade angular $(rad\cdot s^{-1})$

Sumário

1	INTRODUÇÃO
1.1	Contextualização
1.1.1	Bancada Didática
1.2	Problema
1.3	Objetivos
1.3.1	Objetivo Geral
1.3.2	Objetivos Específicos
1.4	Metodologia
1.5	Organização do Documento
2	REFERENCIAL TEÓRICO 23
2.1	Ensaio de turbinas hidráulicas
2.1.1	Bancadas de ensaio de turbinas
2.1.1.1	Medições
2.1.1.2	Bancada de Ensaios para Turbinas Hidráulicas na FGA
2.2	Instrumentação da Bancada
2.2.1	Sensores, transdutores e transmissores
2.2.2	Pressão
2.2.3	Vazão
2.2.3.1	Método do Vertedouro Triangular
2.2.3.2	Medidor Eletromagnético
2.2.4	Rotação
2.2.5	Torque
2.3	Conjunto moto-bomba-inversor
2.3.1	Bomba hidráulica
2.3.1.1	Bombas centrífugas radiais
2.3.1.1.1	Bomba KSB Etanorm
2.3.1.2	Acionamento de turbobombas
2.3.2	Motor elétrico
2.3.2.1	Motor de indução trifásico
2.3.2.1.1	Motor de indução trifásico WEG
2.3.2.2	Variação de velocidade em motores de indução
2.3.3	Inversor de frequência
2.3.3.1	Inversor de frequência WEG CFW09
2.4	Sistemas de Controle

2.4.1	Controlador PID	40
2.4.1.1	Ajuste do controlador	41
2.4.1.2	Indicadores de Desempenho	43
2.5	Sistema de aquisição de dados	43
2.5.1	Sistemas SCADA	43
2.5.1.1	ScadaBR	43
2.5.1.1.1	Sistema Supervisório da Bancada de Ensaios para Turbinas Hidráulicos	44
3	IMPLEMENTAÇÃO	46
3.1	Proposta do controlador de pressão	46
3.2	Realimentação do transdutor de pressão	47
3.3	Aquisição de dados	49
3.3.1	Comunicação com o Inversor de Frequência	49
3.3.1.1	Configurações do Inversor de Frequência	49
3.3.1.2	Configurações de <i>Data Source</i>	50
3.3.1.3	Configurações de <i>Data Point</i>	51
3.4	Estimação dos Parâmetros	52
3.5	Configuração do controlador PID	53
4	RESULTADOS E DISCUSSÃO	55
4.1	Desempenho dos controladores	55
4.1.1	Controlador P com parâmetros de Ziegler-Nichols	55
4.1.2	Controlador PI com parâmetros de Ziegler-Nichols	57
4.1.3	Controlador PID com parâmetros de Ziegler-Nichols	58
4.2	Comparação entre os controladores	60
5	CONCLUSÃO	62
5.1	Perspectivas para Trabalhos Futuros	62
	REFERÊNCIAS	63
		65
	APENDICES	03

1 Introdução

1.1 Contextualização

A expansão da rede elétrica para o abastecimento de comunidades isoladas na Região Amazônica encontra empecilhos que tendem a inviabilizar técnica e economicamente sua implantação, como a ausência de infra-estrutura rodoviária, extensa área geográfica e dispersão populacional (ELS, 2008) e (ELS *et al.*, 2010).

Nesse contexto, uma alternativa foi a eletrificação dessas comunidades através da geração descentralizada. Como a aplicação de motores geradores a óleo diesel apresenta elevado custo de aquisição e abastecimento, promoveu-se a geração de energia com a utilização de fontes renováveis localmente disponíveis. (ELS, 2008).

Conforme exposto em Els (2008) e Els *et al.* (2010), uma das iniciativas que se inseriu nessa abordagem foi a implantação de pico e microcentrais hidrelétricas. A primeira picocentral hidrelétrica, fabricada pela empresa Indalma, foi instalada no município de Santarém e levou à instalação de 44 pico, 12 micro e 6 minicentrais hidrelétricas na Região Amazônica.

Por meio do projeto Inovatrans, um modelo da turbina Indalma utilizada nesses empreendimentos foi trazido para o laboratório de TermoFluidos, localizado no *campus* Gama da Universidade de Brasília. Para possibilitar a caracterização e modelagem da turbina, foi construída uma bancada com a finalidade de reproduzir as condições reais de operação de uma pico central hidrelétrica (SANTANDER, 2014).

Conforme exposto em Santander (2014), a turbina Indalma é fabricada pela empresa Indalma Indústria & Comércio e foi desenvolvida empiricamente a partir de uma turbina Francis, podendo ser classificada como uma turbina de reação centrípeta-axial. Essa turbina possui caixa espiral com seção triangular e não dispõe de pás diretrizes, podendo ser construída com diâmetro de entrada e saída de fluxo de 4 até 25 polegadas.

O trabalho de montagem e instrumentação da bancada para receber a turbina Indalma no laboratório de TermoFluidos foi desenvolvido por Santander (2014). Donald e Sloot (2014), além de auxiliar no processo de montagem e instrumentação da bancada, desenvolveram um trabalho de avaliação experimental e numérica da turbina Indalma. Oliveira (2014) deu continuidade ao trabalho de avaliação experimental da turbina, levantando sua curva característica, assim como Calixto (2015) deu continuidade ao trabalho de instrumentação da bancada, implementando seu sistema supervisório.

1.1.1 Bancada Didática

A Bancada de Ensaios para Turbinas Hidráulicas se insere como ferramenta de ensino do curso de Engenharia de Energia, trabalhando conceitos de dinâmica dos fluidos, instrumentação, controle e estabilidade de sistemas. Além disso, a bancada proporciona aos estudantes um contato com aplicações práticas da geração de energia e equipamentos aplicados na indústria (SILVA *et al.*, 2013) e (SANTANDER, 2014).

Figura 1: Instalação para ensaio de turbinas hidráulicas na FGA (OLIVEIRA, 2014, p. 29)

A instalação da bancada no Laboratório de Termofluidos da Faculdade do Gama – UnB (Figura 1) foi baseada em tubulações de 8", 6"e 4", apresentando queda de até 7 metros, e conta com um reservatório com capacidade de 1000 litros (5) e um canal de saída com vertedouro triangular. (8). O conjunto motor-bomba-inversor (2-3-1) é responsável pela elevação da água, enquanto válvulas auxiliares (11) são utilizadas no controle da altura de coluna de água. O inversor de frequência (1) atua no controle da vazão da bomba, permitindo um controle mais preciso da pressão de coluna de água. A instrumentação utilizada na medição das grandezas físicas é composta por instrumentos analógicos e digitais, que possibilitam o monitoramento de variáveis como altura de coluna de água, vazão, torque, rotação e pressão (SILVA *et al.*, 2013).

Em Silva *et al.* (2013), foram propostas metodologias com quatro diferentes níveis de complexidade para aplicação em diferentes disciplinas que compõem o currículo do curso de Engenharia de Energia. Uma visão geral dessas propostas será apresentada a seguir.

O primeiro nível tem como objeto de estudo os conceitos de Fontes de Energia e Fenômenos de Transporte. A operação da bancada é realizada de forma manual e é empregada instrumentação analógica, sendo realizados experimentos de medição de pressão hidráulica, cálculo da vazão pelo método do vertedouro triangular e cálculo da perda de carga na tubulação.

O segundo nível, por sua vez, consiste na avaliação do comportamento hidrodinâmico da turbina ou do circuito de bombeamento. São empregados conceitos de Fenômenos de Transporte, Dinâmica dos Fluidos e Máquinas de Fluxo em experimentos de obtenção do torque utilizando o freio de Prony, cálculo da potência da turbina e medição de vazão utilizando uma placa de orifício e sensores de pressão.

O terceiro nível envolve conceitos de Circuitos Elétricos, Eletricidade Aplicada e Conversão Eletromecânica de Energia e está relacionado com a geração de energia elétrica e sua interligação com a rede de distribuição. Também podem ser trabalhados conceitos como correção de fator de potência.

Já o quarto nível trabalha conceitos de Instrumentação e Controle de Sistemas Dinâmicos, podendo ser realizados experimentos de controle de processo e instrumentação, bem como de modelagem matemática do circuito hidráulico e do sistema elétrico.

Dentre essas metodologias propostas por Silva *et al.* (2013), o primeiro e o segundo níveis já se encontram implementados e são empregados em atividades laboratoriais das disciplinas correlatas. Uma proposta de implementação do terceiro nível encontra-se em fase de estudo por alunos da disciplina de Sistemas Hidroelétricos. Já o quarto nível será objeto de estudo deste trabalho.

1.2 Problema

Para a realização de um ensaio na instalação atual, o operador da bancada precisa configurar manualmente o inversor de frequência para fornecer uma velocidade de rotação alta o suficiente para que haja a abertura da válvula e, consequentemente, o fluxo de água pelos dutos da instalação. O usuário deve monitorar o escoamento e ajustar a vazão através do inversor, de forma a evitar a entrada de ar na tomada de água.

Após a estabilização do sistema, o operador deve ajustar novamente a velocidade de rotação da bomba, com a finalidade de adequar a pressão na entrada da turbina ou a altura de coluna de água aos valores desejados para o ensaio. Como a altura de coluna de água deve ser mantida constante durante todo o ensaio, esse ajuste deve ser realizado quantas vezes for necessário, pois a tendência é que esse valor seja influenciado pelo aumento de carga na turbina.

A realização desses ajustes de forma manual confere ao ensaio um certo grau de imprecisão, principalmente pelo fato de que o operador utiliza instrumentação analógica para monitorar essas variáveis. Uma forma de fornecer robustez e confiabilidade ao sistema é a automatização desse processo, deixando o operador livre para monitorar outras variáveis relevantes para o ensaio.

Nesse contexto, pretende-se determinar o tipo de controlador (P, PI ou PID) que melhor se aplica para o controle da pressão de operação da bancada, sabendo que WEG (2011) sugere a parametrização de um controlador PI ao se utilizar o inversor de frequência no controle de grandezas hidráulicas.

1.3 Objetivos

1.3.1 Objetivo Geral

O presente trabalho se insere nas propostas metodológicas da área de Instrumentação e Controle de Sistemas Dinâmicos e tem por objetivo geral escolher e implementar um controlador que atuará de forma a manter a pressão na entrada da turbina no valor de referência desejado.

1.3.2 Objetivos Específicos

Os objetivos específicos podem ser subdivididos em:

- 1. Levantar os parâmetros dos controladores P, PI e PID para o sistema;
- 2. Comparar a atuação dos diferentes controladores no sistema;
- 3. Escolher e implementar o melhor dos controladores para ajustar a pressão no sistema.

1.4 Metodologia

No desenvolvimento deste trabalho, foi aplicada uma abordagem metodológica mista, visando caracterizar a instalação da Bancada de Testes para Turbinas Hidráulicas e analisar dados experimentais obtidos de forma qualitativa e quantitativa.

O objeto de estudo ao qual o presente trabalho se aplica é o controlador empregado no controle da pressão na entrada da turbina, que foi implementado como ferramenta para manter a pressão constante durante a realização de ensaios na bancada. Os ganhos do controlador PID foram parametrizados de acordo com o método de sintonia em malha aberta de Ziegler-Nichols (DORF; BISHOP, 2013).

A coleta de dados foi realizada utilizando um transdutor de pressão com faixa de medição de 0 a 2,5 bar, um inversor de frequência e um supervisório ScadaBR configurado na plataforma OpenSuse. Os dados coletados foram analisados por meio de gráficos e relatórios do ScadaBR e do *software* Matlab. Para que o objetivo proposto fosse atingido, foram realizadas as seguintes etapas de projeto:

- Revisão da literatura sobre ensaios de turbinas hidráulicas, instrumentação eletrônica, conjunto motor-bomba-inversor, controlador PID e sistemas SCADA;
- Realimentação do transdutor de pressão em uma entrada analógica do inversor de frequência e implementação das configurações necessárias para que a variável de processo seja monitorada pelo inversor;
- Reconfiguração da interface entre o ScadaBR e o inversor de frequência de acordo com WEG (2011) e Calixto (2015) para possibilitar a aquisição de dados do sistema;
- Parametrização dos ganhos PID de acordo com o método de sintonia desse controlador em malha aberta de Ziegler-Nichols;
- Implementação dos parâmetros dos controladores no inversor de frequência;
- Ensaio comparativo da atuação de cada controlador, avaliando seu tempo de resposta;
- Escolha do controlador e implementação do controlador para controle da pressão.

1.5 Organização do Documento

O Capítulo 1 apresenta uma introdução ao trabalho desenvolvido, passando pelos cenários de eletrificação de comunidades isoladas a partir de centrais hidrelétricas e de utilização de uma instalação semelhante como recurso didático. São apresentados a problemática que motivou a realização deste trabalho, bem como seus respectivos objetivos geral e específicos e os passos metodológicos que orientaram o desenvolvimento do Trabalho de Conclusão de Curso.

O Capítulo 2 aborda uma revisão da literatura sobre os assuntos abordados no trabalho. Inicialmente, é apresentada a teoria acerca de ensaios de turbinas hidráulicas, caracterizando um laboratório de ensaios de turbinas e apresentando a instalação da Bancada de Ensaios para Turbinas Hidráulicas do laboratório de TermoFluidos da Faculdade do Gama – UnB.

Dando continuidade ao Capítulo 2, são abordados os instrumentos de medição de pressão, vazão, rotação e torque e os métodos utilizados para monitoramento dessas variáveis na Bancada de Ensaios para Turbinas Hidráulicas. Posteriormente, são apresentados os componentes de um conjunto motor-bomba-inversor. Aborda-se o princípio de funcionamento de cada um deles, as especificações e as funções empregadas na Bancada de Ensaios para Turbinas Hidráulicas instalada no laboratório de TermoFluidos da Faculdade UnB Gama.

Em seguida, ainda no Capítulo 2, discorre-se sobre controle PID, passando pelo princípio de funcionamento dos controladores P, PI, PD e PID, bem como os métodos de ajuste a serem empregados em sua utilização. É realizada ainda uma revisão de sistemas SCADA, abordando sua aplicação no monitoramento e controle de processos em geral e apresentando a estrutura SCADA da Bancada de Ensaios para Turbinas Hidráulicas.

No Capítulo 3, descreve-se a proposta e o processo de implementação do controlador de pressão, passando pelas etapas de conexões físicas e elétricas, comunicação com o sistema de aquisição de dados, sintonia de ganhos do controlador e parametrização do controlador.

No Capítulo 4, são apresentados os resultados obtidos para os diferentes controladores parametrizados e, com base na atuação dos controladores, é escolhido o controlador a ser implementado no controle da pressão na Bancada de Ensaios para Turbinas Hidráulicas.

Por fim, no Capítulo 5, são apresentadas as conclusões do trabalho e sugestões para trabalhos futuros.

2 Referencial Teórico

2.1 Ensaio de turbinas hidráulicas

2.1.1 Bancadas de ensaio de turbinas

Para Macintyre (1983), o ensaio de uma turbina hidráulica consiste na medição e cálculo de certas grandezas durante sua operação, de forma a permitir a avaliação de suas condições de funcionamento e comportamento.

Os ensaios podem ser efetuados de forma direta para turbinas de pequena capacidade, desde que suas características sejam compatíveis com os recursos disponíveis em laboratório. Caso as dimensões e capacidade da turbina não permitam seu ensaio em laboratório, são realizados ensaios com um modelo reduzido (MACINTYRE, 1983).

Conforme representado pela Figura 2, as turbinas devem ser abastecidas por meio de um circuito fechado, alimentado por uma turbo-bomba compatível com a turbina a ser ensaiada, de forma que haja um aproveitamento integral da água. Além disso, o laboratório deve contar com equipamentos para medição de potência, pressão, temperatura, rotação e descarga, bem como reservatórios de nível constante e de pressurização (MACINTYRE, 1983).

Figura 2: Laboratório de máquinas hidráulicas proposto pela Voith para a PUC-RJ (MA-CINTYRE, 1983, p. 494)

2.1.1.1 Medições

Segundo Macintyre (1983), as grandezas características são determinadas por meio das seguintes medições:

- Medição de nível É necessária para a determinação da queda disponível e deve ser realizada em local de escoamento tranquilo sem perturbações.
- Medição de pressão É efetuada com instrumentos adequados ligados ao dispositivo por meio de tomadas de pressão.
- Medição de descarga A vazão pode ser medida direta ou indiretamente e por meio da medição de massa ou de volume.
- Medição do número de rotações É necessária para o cálculo da potência útil da turbina.
- Medição da potência útil da turbina Trata-se da medição da potência fornecida em seu eixo para o acionamento do gerador.

As curvas características da turbina podem ser obtidas a partir dos valores de potência e rendimento dados pelas Equações 2.1 a 2.3, que resultam das grandezas características medidas (MACINTYRE, 1983).

$$P_e = \omega \cdot \tau \tag{2.1}$$

A potência de eixo P_e (em W) é dada pelo produto entre a velocidade angular ω da turbina (em $rad \cdot s^{-1}$) e o torque τ fornecido pelo eixo da turbina (em $N \cdot m$).

$$P_h = \gamma \cdot Q \cdot H \tag{2.2}$$

A potência hidráulica P_h (em W) é dada pelo produto entre o peso específico γ (em $N \cdot m^{-3}$), a vazão volumétrica Q (em $m^3 \cdot s^{-1}$) e a altura de queda líquida H (em m).

$$\eta = \frac{P_e}{P_h} = \frac{\omega \cdot \tau}{\gamma \cdot Q \cdot H} \tag{2.3}$$

O rendimento η da turbina é dado pela razão entre a potência fornecida pelo eixo da turbina P_e e a potência hidráulica disponível P_h .

2.1.1.2 Bancada de Ensaios para Turbinas Hidráulicas na FGA

A bancada instalada no Laboratório de TermoFluídos da Faculdade do Gama – UnB se assemelha à instalação apresentada anteriormente e é representada pela Figura 3. Os seguintes equipamentos compõem a instalação:

- 1. Inversor de frequência WEG CFW09;
- 2. Motor WEG, trifásico, 1750rpm, 25cv, 60Hz;

Figura 3: Instalação para ensaio de turbinas hidráulicas (OLIVEIRA, 2014, p. 29)

- 3. Bomba KSB $ETAN100-250,\,Q=184,4m^3/h,\,H=21,3mca;$
- 4. Turbina Indalma com diâmetro de entrada e de saída de 4";
- 5. Reservatório de água com capacidade de 1000*l*;
- 6. Medidores de pressão;
- 7. Medidor de vazão volumétrica CONTECH modelo CTHHD 4";
- 8. Vertedor triangular;
- 9. Células de carga da marca MK modelo CSA/ZL-20;
- 10. Sensor indutivo JNG modelo LM8 3002NA;
- 11. Válvulas manuais para o sistema de controle de pressão auxiliar.

2.2 Instrumentação da Bancada

2.2.1 Sensores, transdutores e transmissores

Segundo Thomazini e Albuquerque (2012), sensores são dispositivos sensíveis a alguma forma de energia que relacionam informações sobre a grandeza a ser medida. O sinal de saída de um sensor normalmente é manipulado antes de sua leitura pelo controlador. Existem os sensores analógicos, que podem assumir qualquer valor em seu sinal de saída ao longo do tempo, e os sensores digitais, que podem assumir apenas dois (0 ou 1).

Transdutores, por sua vez, são dispositivos completos que transformam uma grandeza física em um sinal de tensão ou corrente facilmente interpretado por um sistema de controle. Já os transmissores preparam o sinal de saída de um transdutor para utilização a distância. O termo transmissor também é empregado para dispositivos que integram um sensor, transdutor e transmissor (THOMAZINI; ALBUQUERQUE, 2012).

2.2.2 Pressão

Conforme exposto em White (2011), os instrumentos para medição de pressão podem ser divididos em:

Baseados na gravidade Barômetro, manômetro, pistão de peso morto.

- **Deformação elástica** Tubo de Bourdon, diafragma, foles, extensômetro, deslocamento de feixe óptico.
- **Comportamento de gases** Compressão de gás, condutância térmica, impacto molecular, ionização, condutividade térmica, pistão a ar.
- Saída elétrica Resistência, extensômetro difuso, capacitivo, piezoelétrico, potenciométrico, indutância magnética, relutância magnética, transformador diferencial variável linear, frequência de ressonância.

Revestimentos luminescentes para superfícies de pressão.

Para a medição de pressão, a bancada conta com manômetros digitais da marca WIKA, manômetros analógicos (tipo Bourdon) da marca IMB e manômetro de coluna de água. Os manômetros digitais encontram-se instalados na entrada e na saída da turbina. Os manômetros analógicos são utilizados na tomada de pressão da altura de queda disponível pela bomba e na entrada da turbina. Já o manômetro de coluna é empregado para medição de pressão na saída da turbina (OLIVEIRA, 2014).

2.2.3 Vazão

Para medição de vazão, podem ser utilizados instrumentos mecânicos, que medem a vazão real do fluido, retendo e mensurando uma certa quantidade, e os dispositivos de perda de carga, que obstruem o escoamento e causam uma queda de pressão (WHITE, 2011).

Segundo Macintyre (1983) e White (2011), a vazão pode ser medida direta ou indiretamente e por meio da medição de massa ou de volume. Dentre os métodos diretos, podem ser citados os tanques de pesagem (medição de massa) e os tanques de volume aferido (medição de volume). Dentre os métodos indiretos, existem os medidores de superfície livre (vertedores e calhas), os medidores diferenciais (placas de orifício, bocais, tubos de Venturi e diafragmas) e os métodos baseados em medidas de velocidade (molinetes e tubos de Pitot).

Na bancada, a medição de vazão é realizada por meio de de um medidor eletromagnético e um vertedouro triangular. (OLIVEIRA, 2014)

2.2.3.1 Método do Vertedouro Triangular

O método do verte douro triangular (Figura 4) é considerado um método indireto de medição de vazão e a equação de des carga para verte douros triangulares com ângulo α igual a 90° é dada pela equação 2.4 (MACINTYRE, 1983).

$$Q = 1, 4 \cdot h^{\frac{3}{2}} \tag{2.4}$$

A vazão volumétrica $Q \ (m^2 \cdot s^{-1})$ é obtida a partir da altura da lâmina de água h(m).

Figura 4: Vertedouro triangular (OLIVEIRA, 2014, p. 31) [Adaptado]

2.2.3.2 Medidor Eletromagnético

Segundo Oliveira (2014), a medição eletrônica de vazão é realizada através de um transdutor eletromagnético baseado na lei de Faraday de indução eletromagnética. O equipamento pode ser observado na Figura 5.

Figura 5: Medidor de vazão eletromagnético (OLIVEIRA, 2014, p. 30)

2.2.4 Rotação

O número de rotações normalmente é medido com um conta-giros mecânico aplicado à extremidade do eixo da turbina, sendo necessária a utilização de um cronômetro automático ou cronógrafo. Também podem ser utilizados medidores de frequência elétrica acoplados ao gerador, tacômetros elétricos de alta precisão ou geradores elétricos de impulsos com contador elétrico de impulsos e uma base de tempo (MACINTYRE, 1983).

Na Bancada de Ensaios para Turbinas Hidráulicas foi instalado um sensor indutivo de presença, utilizado na detecção de peças metálicas. A medição de rotação é realizada a partir da contagem de pulsos a cada dente da engrenagem e do tempo entre eles, conforme representado na Figura 6 (CALIXTO, 2015).

Figura 6: Medição de rotação por sensor indutivo (CALIXTO, 2015, p. 40)

2.2.5 Torque

Segundo Macintyre (1983), a medição do torque fornecido pelo eixo turbina pode ser realizada com a utilização de freios mecânicos como o freio Prony, freios hidrodinâmicos como o freio de Froude, freios elétricos e dinamômetros de torção. Conforme exposto em Calixto (2015), o freio de Prony implementado na bancada consiste em uma cinta de material resistente com uma balança fixada em cada uma de suas extremidades. Uma representação gráfica do freio de Prony pode ser visualizado na Figura 7.

Figura 7: Freio de Prony (DONALD; SLOOT, 2014, p. 28)

A medição eletrônica do torque foi realizada através da utilização de células de carga em série com cada balança. Células de carga são projetadas para gerar um sinal de saída compatível com o esforço aplicado quando submetidas a deformação (CALIXTO, 2015) e (THOMAZINI; ALBUQUERQUE, 2012).

O torque é definido pelo produto vetorial entre o raio r com a força F, seu módulo é dado por $|\tau| = r \cdot |F| \sin(\theta)$. Como a cinta é tangente à polia utilizada, tem-se que $\theta = 90^{\circ}$ e o módulo do torque é dado pela equação 2.5 (OLIVEIRA, 2014).

$$\tau = r \left(F_1 - F_2 \right) \tag{2.5}$$

Onde τ representa o torque, r o raio da cinta e F_1 e F_2 representam as leituras das balanças ou das células de carga (OLIVEIRA, 2014).

2.3 Conjunto moto-bomba-inversor

2.3.1 Bomba hidráulica

Conforme exposto por Macintyre (1980), as máquinas hidráulicas podem ser classificadas como máquinas motrizes, geratrizes ou mistas. As bombas hidráulicas pertencem à categoria de máquinas geratrizes, que são aquelas que recebem trabalho mecânico e o transformam em energia hidráulica sob as formas de energia potencial de pressão e cinética.

Segundo a forma de transformação da energia hidráulica, as bombas podem ser classificadas em: bombas de deslocamento positivo, turbobombas e bombas especiais. As bombas de deslocamento positivo provocam o escoamento do fluido através da movimentação de um órgão propulsor (êmbolo, diafragma, pistão rotativo, etc) no interior de sua câmara, enquanto as turbobombas fornecem energia ao fluido por meio do rotor, sob a forma de velocidade (MACINTYRE, 1980) e (TSUTIYA, 2006).

Vale ressaltar que as turbobombas necessitam de um difusor, onde ocorre a transformação da energia cinética com que o líquido sai do rotor em energia de pressão (MA-CINTYRE, 1980).

Macintyre (1980) classifica, ainda, as turbobombas segundo a trajetória do líquido no rotor, segundo o número de rotores empregados, segundo o número de entradas para a aspiração e segundo o modo de conversão da energia cinética em energia de pressão. Assim as classificações são descritas (MACINTYRE, 1980):

Classificação segundo a trajetória do líquido no rotor

- Bomba centrífuga radial
- Bomba de fluxo misto
 - * Bomba hélico-centrífuga
 - * Bomba helicoidal
- Bomba axial

Classificação segundo o número de rotores empregados

- Bomba de simples estágio
- Bomba de múltiplos estágios

Classificação segundo o número de entradas para a aspiração

- Bomba de aspiração simples
- Bomba de aspiração dupla

Classificação segundo o modo pelo qual a energia cinética é transformada em energia de pressão

- Bomba de difusor com pás diretrizes entre o rotor e o coletor
- Bomba com coletor em caracol ou voluta
- Bomba com difusor axial troncônico

2.3.1.1 Bombas centrífugas radiais

Nas bombas centrífugas, o giro do rotor acelera a massa líquida através da força centrífuga, cedendo energia cinética ao fluido. Na saída do rotor, a energia cinética é transformada em energia de pressão através da voluta. Nas bombas de fluxo radial, o escoamento se dá no sentido centrífugo radial (TSUTIYA, 2006).

Na Figura 8 está representada uma bomba centrífuga com caixa em caracol.

Figura 8: Bomba centrífuga com corpo de voluta (MACINTYRE, 1980, p. 41)

2.3.1.1.1 Bomba KSB Etanorm

A Bancada de Ensaios para Turbinas Hidráulicas foi equipada com uma bomba KSB ETAN 100-250, com vazão de $184, 4m^3/h$ e elevação de 21, 3mca. Trata-se de uma bomba hidráulica normalizada com vedação de eixo, projetada para o transporte de líquidos puros ou agressivos que não ataquem os materiais da bomba. A bomba KSB Etanorm é uma bomba centrífuga com corpo de voluta, impulsor radial fechado com pás curvadas, entrada de fluido axial e saída radial (KSB, 2013).

Conforme ilustrado em KSB (2013), o sistema hidráulico é conduzido numa caixa de rolamentos própria e está ligado ao motor através de um acoplamento de eixos. Na Figura 9, representa-se o desenho da bomba KSB Etanorm e seus componentes.

Figura 9: Bomba KSB Etanorm (KSB, 2013, p. 19)

O fluido entra na bomba axialmente, através do bocal de aspiração (6) e é acelerado pelo impulsor rotativo (7). Na passagem de fluxo pelo corpo da bomba, a energia cinética do fluido é transformada em energia de pressão e este é conduzido para o bocal de descarga (2), através do qual sai da bomba. O retorno do fluido para o bocal de aspiração é impedido através de uma tolerância (1). O sistema hidráulico está limitado, do lado de trás do impulsor, por uma tampa (3), através da qual o eixo (4) passa. A passagem do eixo pela tampa é vedada ao ambiente por um selo mecânico (8). O eixo está alojado em rolamentos de roletes (9 e 10), que, por sua vez, estão alojados numa caixa de rolamentos (5), ligada ao corpo da bomba e/ou à tampa do mesmo (KSB, 2013).

2.3.1.2 Acionamento de turbobombas

Conforme exposto em Macintyre (1980), a maioria das turbobombas é diretamente acionada por motores elétricos, geralmente de corrente alternada. Quando se trata de bombas para instalações sujeitas a variações de descarga ou da altura de elevação, podese fazer com que a bomba acompanhe as ditas variações, modificando-se sua rotação.

Segundo Rodrigues (2007), as curvas de funcionamento da bomba são alteradas com a variação da rotação. Para uma bomba, com um mesmo rotor, girando a velocidades diferentes são válidas as leis de semelhança dadas pelas Equações 2.6 a 2.8 (TSUTIYA, 2006).

$$\frac{Q_2}{Q_1} = \frac{n_2}{n_1} \tag{2.6}$$

$$\frac{H_2}{H_1} = \left(\frac{n_2}{n_1}\right)^2 \tag{2.7}$$

$$\frac{P_2}{P_1} = \left(\frac{n_2}{n_1}\right)^3 \tag{2.8}$$

2.3.2 Motor elétrico

Os motores elétricos são responsáveis por transformar a energia elétrica em energia mecânica, podendo ser de corrente contínua ou alternada. O uso de motores de corrente contínua é limitado por seu custo elevado, de forma que os motores de corrente alternada são os mais utilizados (WEG, 2014).

Dentre os motores de corrente alternada, existem os motores síncronos e os de indução. Os motores síncronos funcionam sem interferência do escorregamento, enquanto a velocidade dos motores de indução varia de acordo com a carga aplicada ao eixo (WEG, 2014).

2.3.2.1 Motor de indução trifásico

O motor mais utilizado em instalações de bombeamento é o motor de indução, cujo uso com controle de rotação através de um inversor de frequência tem se tornado comum (TSUTIYA, 2006).

O motor de indução trifásico, representado pela Figura 10, é composto fundamentalmente por um estator e um rotor (WEG, 2014).

Figura 10: Motor de indução trifásico (WEG, 2014, p. 13)

Os componentes que constituem o motor apresentado na Figura 10 seguem descritos a seguir:

Estator

(1) Carcaça: estrutura suporte do conjunto de construção robusta em ferro fundido, aço ou alumínio injetado, resistente à corrosão e normalmente com aletas.

- (2) Núcleo de chapas: chapas de aço magnético.
- (8) Enrolamento trifásico: três conjuntos iguais de bobinas, formando um sistema trifásico equilibrado ligado à rede trifásica de alimentação.

Rotor

- (7) Eixo: transmite a potência mecânica desenvolvida pelo motor.
- (3) Núcleo de chapas: mesmas características das chapas do estator.
- (12) Barras e anéis de curto-circuito: alumínio injetado sob pressão numa única peça.

Outras partes

- (4) Tampa
- (5) Ventilador
- (6) Tampa defletora
- (9) Caixa de ligação
- (10) Terminais
- (11) Rolamentos

A principal característica do motor de indução é que somente o estator é ligado à rede de alimentação, de forma que as correntes que circulam no rotor são induzidas eletromagneticamente pelo estator. Quando as bobinas do estator são percorridas por uma corrente elétrica, é criado um campo magnético girante que induz tensões nas barras do rotor, gerando correntes, e, consequentemente, um campo magnético de polaridade oposta no rotor. Dessa forma, o rotor tende a acompanhar a rotação do campo magnético girante do estator, desenvolvendo um conjugado motor que faz com que o rotor gire, acionando a carga (WEG, 2014).

A velocidade síncrona do motor é definida pela velocidade de rotação do campo girante, que é dada pela equação 2.9. Se o motor gira a uma velocidade diferente da velocidade síncrona, a diferença entre a velocidade do motor e a velocidade síncrona chama-se escorregamento e é expressa conforme a equação 2.10. Dessa forma, a velocidade do motor é dada pela equação 2.11 (WEG, 2014).

$$n_s = \frac{60 \cdot f}{p} \quad (\text{rpm}) \tag{2.9}$$

$$S \text{ (rpm)} = n_s - n; \quad S = \frac{n_s - n}{n_s}; \quad S (\%) = \frac{n_s - n}{n_s} \cdot 100$$
 (2.10)

$$n = n_s \cdot \left(1 - \frac{s(\%)}{100}\right)$$
(2.11)

2.3.2.1.1 Motor de indução trifásico WEG

O motor empregado para acionamento da bomba na instalação da bancada é um motor de indução trifásico WEG de 25 cv, com rotação de 1750 rpm, fornecido com ligação em estrela (Y) ou triângulo (Δ), conforme Figura 11.

>	് ^{W2}	ု ^{U2}	v2	>	_ <u>₩2</u>	U2	V2
220	U1		↓W1	380	ϕ^{U1}	ϕ^{V1}	ϕ^{W1}
Δ	L1	L2	L3	Y	L1	L2	L3

Figura 11: Tipos de ligação do motor (WEG, 2014)

Segundo Macintyre (1980), a complexidade da instalação elétrica do motor da bomba varia de acordo com a potência do motor e os controles e medições que devem ser atendidos. Vale ressaltar que os terminais do motor foram conectados em estrela, conforme Figura 11.

O diagrama de interligação elétrica do sistema de acionamento da bomba encontrase representado no Apêndice A–Figura A.1.

2.3.2.2 Variação de velocidade em motores de indução

A partir da relação entre velocidade, frequência, número de polos e escorregamento expressa pela equação 2.11, verifica-se que a regulagem da velocidade de um motor assíncrono pode ser realizada por meio de três parâmetros (WEG, 2014):

- Variação do número de polos: ode ser realizada com a utilização de enrolamentos separados no estator, com a utilização de um enrolamento com comutação de polos ou com uma combinação desses dois métodos. A regulagem de velocidade se dá de forma discreta, porém é necessária uma carcaça maior.
- Variação do escorregamento: pode ser realizada através da variação da resistência rotórica, da variação da tensão do estator e da variação de ambas simultaneamente. A regulagem de velocidade se dá a partir do aumento das perdas rotóricas.
- Utilização de inversores de frequência: método mais eficiente para o controle de velocidade dos motores de indução, pois possibilita a redução de custos, o controle à distância, a versatilidade, o aumento de qualidade, de produtividade e a melhor utilização da energia.

2.3.3 Inversor de frequência

Inversores de frequência são equipamentos que transformam a tensão da rede, de amplitude e frequência constantes, em uma tensão de amplitude e frequência variáveis. A variação da frequência de alimentação resulta na variação da velocidade do campo magnético girante e, consequentemente, da velocidade do motor. Dessa forma, o inversor atua como uma fonte de frequência variável para o motor, possibilitando o controle de vazão, no caso de bombas centrífugas (WEG, 2014) e (TSUTIYA, 2006).

Ressalta-se que, além da frequência, é necessário variar a amplitude da tensão de alimentação, de maneira proporcional à variação de frequência. Os valores de tensão e frequência desejados são obtidos com as três etapas representadas na Figura 12: retificação (CA-CC) da tensão da rede de alimentação, alisamento da tensão retificada (*link* CC) e inversão (CC-CA) da tensão do link CC por técnicas de modulação de largura de pulso (PWM) (WEG, 2014).

Figura 12: Estágios de um Inversor de Frequência (WEG, 2014, p. 60)

Conforme exposto em WEG (2014), esse controle pode ser realizado de duas formas em inversores eletrônicos:

- **Controle escalar** Impõe no motor uma determinada relação tensão/frequência, visando manter o fluxo magnético do motor aproximadamente constante. Aplicável quando não há necessidade de respostas rápidas a comandos de torque e velocidade ou quando há conexão de múltiplos motores a um único inversor. É o mais utilizado devido à sua simplicidade.
- **Controle vetorial** Possibilita atingir um elevado grau de precisão no controle do torque e velocidade do motor. O controle decompõe a corrente do motor em dois vetores: um que produz o fluxo magnetizante e outro que produz torque, regulando separadamente o torque e o fluxo.

2.3.3.1 Inversor de frequência WEG CFW09

Na Bancada de Ensaios para Turbinas Hidráulicas, um inversor de frequência WEG CFW09 é responsável pelo controle de velocidade e torque do motor. O diagrama de blocos da Figura 13 proporciona uma visão geral do equipamento (WEG, 2011).

Figura 13: Diagrama de Blocos do Inversor de Frequência CFW09 (WEG, 2012, p. 6)

O inversor de frequência CFW09 possibilita a programação das funções de Controle Escalar (V/F), VVW ou Controle Vetorial no mesmo produto. O Controle Escalar é recomendado para acionamento de vários motores com o mesmo inversor ou para aplicações que não exijam resposta dinâmica rápida, precisão na regulação de velocidade ou alto torque de partida. O Modo de Controle VVW (*Voltage Vector* WEG) segue o mesmo princípio do Controle Escalar V/F, permitindo uma melhora da regulação de velocidade e da capacidade de torque em baixas rotações. Já o Controle Vetorial é recomendado para a maioria das aplicações, permitindo alto torque de partida, resposta dinâmica rápida e precisão no controle da velocidade, mesmo em velocidades muito baixas (WEG, 2011).

Esse modelo de inversor dispõe, ainda, de diversas funções para o controle da velocidade do motor. Uma dessas funções é o regulador PID, que faz o papel de regulador proporcional, integral e derivativo e pode ser aplicada no controle de um processo em malha fechada (WEG, 2011).

A ativação do regulador PID se dá por meio do parâmetro P203 na IHM do inversor. O regulador atua variando a velocidade de rotação do motor, de forma a manter a variável controlada no valor de referência ajustado. Para tanto, essa variável deve ser realimentada na entrada analógica AI2 ou AI3 (de acordo com o parâmetro P524) e a referência ajustada em P525.

No presente trabalho, a entrada analógica AI2 recebeu a realimentação do transdutor de pressão localizado na entrada da turbina. A referência, por sua vez, foi introduzida pela própria IHM do inversor de frequência, podendo ser alterada também pela porta serial. O diagrama de blocos que representa o funcionamento desse controlador é mostrado na Figura 14 (WEG, 2011).

Figura 14: Diagrama de Blocos do Controlador PID Acadêmico (WEG, 2011, p. 217)

A função de transferência no domínio da frequência do controlador PID Acadêmico é apresentada a seguir.

$$y(s) = K_P \cdot e(s) \cdot \left[1 + \frac{1}{sT_I} + sT_D\right]$$
(2.12)

Onde K_P representa o ganho proporcional, e(s) representa o erro e T_I e T_D representam, respectivamente, o tempo do integrador e o tempo do derivativo.

No manual do fabricante, são sugeridos alguns ajustes para os ganhos do regulador PID. Na Tabela 1, são apresentados os valores sugeridos para controle de grandezas hidráulicas (WEG, 2011).

Tabela 1: Sugestões para ajustes dos ganhos do regulador PID (WEG, 2011, p. 218) [Adaptado]

	Ganhos			Tempo	Tipo de
Grandeza	Proporcional	Integral	Derivativo	Rampa PID	Áção
	P520	P521	P522	$\mathbf{P523}$	$\mathbf{P527}$
Pressão em sistema	1	0.043	0.000	3.0	0 = Direta
hidráulico Vazão em sistema	1	0.037	0.000	3.0	0 = Direta
hidráulico					

2.4 Sistemas de Controle

Para Dorf e Bishop (2013), um sistema de controle é composto pela interconexão de componentes que apresentam uma relação de causa e efeito entre si, de forma que sua configuração produza a resposta desejada no sistema. Nesse contexto, Ogata (2003) esclarece que a variável que se deseja controlar é denominada variável controlada e a variável que será modificada pelo controlador para obter a saída desejada é chamada variável manipulada.

Um sistema de controle em malha aberta (sem realimentação) usa um controlador e um atuador para obter a resposta desejada do sistema. Já um sistema de controle em malha fechada utiliza uma medida adicional da saída real para compará-la com a desejada (DORF; BISHOP, 2013).

2.4.1 Controlador PID

O controlador PID é um controlador de três modos amplamente utilizado em controle de processos industriais e recebe esse nome porque possui um termo proporcional (K_P) , um termo integral (K_I) e um termo derivativo (K_D) (DORF; BISHOP, 2013).

Esse método de controle foi desenvolvido experimentalmente, tendo como ponto de partida o controle proporcional realimentado, ao qual foram adicionados a ação de controle integral e um termo de antecipação baseado na derivada para eliminar o erro em regime permanente e melhorar a resposta dinâmica do sistema (FRANKLIN, 2013).

O controle proporcional (P), cuja função de transferência é dada pela equação 2.13, permite controlar um sistema Tipo 0. Com um K_P suficientemente grande, pode-se obter um erro em regime permanente pequeno, mas o coeficiente de amortecimento pode ser muito pequeno para uma resposta transitória satisfatória (FRANKLIN, 2013).

$$G_C(s) = K_P \tag{2.13}$$

O controle proporcional e integral (PI) é obtido por meio da adição de um termo integral (equação 2.14), o que aumenta o tipo do sistema e possibilita a rejeição de perturbações constantes (FRANKLIN, 2013).

$$G_C(s) = K_P + \frac{K_I}{s} \tag{2.14}$$

O controle proporcional e derivativo (PD) é obtido por meio da adição de um termo derivativo (equação 2.15) e sua introdução suaviza a resposta devido a sinais instantâneos (FRANKLIN, 2013).

$$G_C(s) = K_P + K_D s \tag{2.15}$$

Já o controlador PID é obtido pela combinação dos três termos e sua função de transferência é dada pela equação 2.16 (DORF; BISHOP, 2013).

$$G_C(s) = K_P + \frac{K_I}{s} + K_D s \tag{2.16}$$

2.4.1.1 Ajuste do controlador

Para a implementação do controlador PID, devem ser determinados os ganhos proporcional (K_P) , integral (K_I) e derivativo (K_D) . Esse processo de determinação dos ganhos PID é chamado de sintonia de PID e pode ser realizado de acordo com vários métodos (DORF; BISHOP, 2013).

Ajuste manual de PID: Segundo os autores, consiste na obtenção dos ganhos PID por tentativa e erro, com mínima análise analítica, usando respostas ao degrau obtidas via simulação ou em testes reais no sistema e decidindo os ganhos baseando-se em observações e experiência.

Uma abordagem é o aumento gradual do ganho K_P , com $K_I = 0$ e $K_D = 0$, até que o sistema oscile no limiar da estabilidade. Após encontrar o valor de K_P que induz esse comportamento no sistema, o ganho K_P é reduzido para atingir o decaimento de um quarto da amplitude. Em seguida, K_I e K_D são incrementados manualmente para obter a resposta desejada. Na Tabela 2 observa-se o efeito do aumento dos ganhos PID (DORF; BISHOP, 2013).

Ajuste pelo método de Ziegler-Nichols: Conforme exposto por Dorf e Bishop (2013), trata-se de um método mais analítico para obtenção dos ganhos PID. Esse método apresenta variações, podendo ser baseado em respostas em malha aberta ou em malha fechada a uma entrada em degrau.

A abordagem baseada em malha fechada requer a obtenção do ganho crítico (K_C) e do período crítico (T_C) , que consistem no ganho proporcional que leva o sistema ao limiar da instabilidade e no período das oscilações no limiar da instabilidade, respectivamente. Na Tabela 3 são mostrados os Ganhos PID a partir de K_C e T_C (DORF; BISHOP, 2013).

Já a abordagem baseada em malha aberta requer a obtenção de parâmetros da curva de reação. Com o controlador desligado, o sistema é submetido a uma entrada em degrau, gerando como saída a curva de reação, que é caracterizada pelo retardo no tempo T_d e pela taxa de reação R, conforme ilustrado na Figura 15. Os Ganhos PID são obtidos de acordo om a Tabela 4 (DORF; BISHOP, 2013).

Tabela 2: Efeito do aumento dos ganhos PID K_P , $K_I \in K_D$ na resposta ao degrau (DORF; BISHOP, 2013, p. 368)

Ganho do PID	Máxima Ultrapassagem Percentual	Tempo de Acomodação	Erro em Regime Permanente	
Aumentando K_P	Aumenta	Impacto mínimo	Diminui	
Aumentando K_I	Aumenta	Aumenta	Erro em regime permanente nulo	
Aumentando K_D	Diminui	Diminui	Nenhum impacto	

Tabela 3: Sintonia de ganhos de controlador PID por Ziegler-Nichols usando Ganho Crítico e Período de Oscilação (DORF; BISHOP, 2013, p. 372) [Adaptado]

Tipo de Controlador	K_P	K_I	K_D
Proporcional (P)	$0, 5K_C$	_	_
Proporcional e integral (PI)	$0, 45K_{C}$	$\frac{0.54K_C}{T_C}$	—
Proporcional, integral e derivativo (PID)	$0, 6K_C$	$\frac{1,2K_C}{T_C}$	$\frac{0.6K_CT_C}{8}$

- Figura 15: Curva de reação e parâmetros requeridos para o método de sintonia em malha aberta de Ziegler-Nichols (DORF; BISHOP, 2013, p. 374)
- Tabela 4: Sintonia de ganhos de controlador PID por Ziegler-Nichols usando Curva de Reação (DORF; BISHOP, 2013, p. 374) [Adaptado]

Tipo de Controlador	K_P	K_I	K_D
Proporcional (P)	$\frac{1}{RT_{d}}$	_	_
Proporcional e integral (PI)	$\frac{0,9}{RT_d}$	$\frac{0,27}{RT_{1}^{2}}$	—
Proporcional, integral e derivativo (PID)	$\frac{1,2}{RT_d}$	$\frac{0,6^d}{RT_d^2}$	$\frac{0,6}{R}$

2.4.1.2 Indicadores de Desempenho

Dorf e Bishop (2013) definem indicadores de desempenho como uma medida quantitativa do desempenho de um sistema, de forma que seu cálculo ou medição possibilite a avaliação do desempenho do sistema. Os autores definem que o melhor sistema é o sistema que minimiza esse índice.

Um dos critérios de desempenho que pode ser aplicado é a integral do módulo do erro (IAE - *integral of the absolute magnitude of the error*), definido pela equação 2.17.

$$IAE = \int_{0}^{T} |e(t)| \, dt \tag{2.17}$$

2.5 Sistema de aquisição de dados

2.5.1 Sistemas SCADA

Sistemas SCADA (*Supervisory Control and Data Aquisition* ou Controle Supervisório e Aquisição de Dados) podem ser definidos como sistemas digitais de monitoramento e operação de uma planta, responsáveis pelo gerenciamento de variáveis do processo que são atualizadas continuamente (MORAES; CASTRUCCI, 2007 apud MESQUITA *et al.*, 2012).

Sistemas SCADA permitem a construção de aplicativos simples de sensoreamento e automação, bem como os famosos "Painéis de Controle"em empresas de geração e distribuição de energia elétrica, centrais de controle de tráfego e assim por diante (FUNDAÇÃO CERTI *et al.*, 2010).

Segundo Fundação CERTI *et al.* (2010), um SCADA oferece drivers de comunicação com equipamentos, um sistema para registro contínuo de dados (*datalogger*) e uma interface gráfica para o usuário(IHM ou Interface Homem-Máquina). A IHM apresenta elementos gráficos como botões, ícones e *displays*, que representam o processo monitorado ou controlado.

As funções mais utilizadas em sistemas SCADA são: geração de gráficos e relatórios com o histórico do processo, detecção de alarmes e registro de eventos em sistemas automatizados controle de processos, acionamento e comando de equipamentos, e uso de linguagens de *script* para desenvolvimento de lógicas de automação (FUNDAÇÃO CERTI *et al.*, 2010).

2.5.1.1 ScadaBR

Para o sistema supervisório da Bancada de Ensaios para Turbinas Hidráulicas, foi adotado o *software* ScadaBR, de código livre e multiplataforma, que é executado a partir de um servidor de aplicações e acessado a partir de um navegador de Internet.

Segundo Fundação CERTI et al. (2010), a operação do ScadaBR baseia-se em:

- **Tipos de dados** São suportados valores binários, valores de estados múltiplos, valores numéricos, valores alfanuméricos e valores em imagens.
- **Data sources** Um data source é um "lugar"de onde os dados são recebidos. Virtualmente, qualquer coisa pode ser um data source, desde que o protocolo de comunicação seja suportado pela aplicação. Valores de dados recebidos ou coletados por um data source são armazenados em data points.
- **Data point** Um data point é uma coleção de valores históricos associados.
- Monitoramento O monitoramento de pontos dentro do sistema pode ser feito por meio de uma watch list (lista dinâmica de pontos com seus valores) ou de representações gráficas.
- **Controle** O controle de sistemas externos pode ser obtido para pontos que podem ser "setados".
- **Eventos** Um evento é a ocorrência de uma condição definida no sistema. Existem tanto eventos definidos pelo sistema como definidos pelo usuário.
- 2.5.1.1.1 Sistema Supervisório da Bancada de Ensaios para Turbinas Hidráulicos

No laboratório, a primeira versão do sistema foi desenvolvida na plataforma Linux Ubuntu, conectando-se através do servidor de aplicações Apache Tomcat (FUNDAÇÃO CERTI *et al.*, 2010) e (CALIXTO, 2015). Posteriormente, para as aplicações deste trabalho, o sistema foi transferido para a plataforma Linux OpenSuse.

Conforme exposto em Calixto (2015), as Figuras 16 e 17 representam as conexões físicas e lógicas dos dispositivos da rede e a estrutura da rede de comunicação, respectivamente.

Figura 16: Diagrama de funcionamento da Bancada de Ensaios de Turbinas Hidráulicas (CALIXTO, 2015, p. 63)

Figura 17: Diagrama de blocos da rede de comunicação (CALIXTO, 2015, p. 64)

3 Implementação

3.1 Proposta do controlador de pressão

O presente trabalho consiste na implementação de um controlador de pressão na Bancada de Ensaios para Turbinas Hidráulicas, com a finalidade de ajustar a pressão na entrada da turbina em um valor de referência.

O controlador é implementado por meio da parametrização de um regulador PID programável incorporado ao inversor de frequência e o sinal do transdutor de pressão localizado na entrada da turbina foi realimentado em uma das entradas analógicas do inversor.

O diagrama P&ID da Figura 18 representa as tubulações, equipamentos e instrumentação da Bancada de Ensaios para Turbinas Hidráulicas, já estando representada a realimentação do transdutor de pressão no inversor de frequência.

Figura 18: Diagrama P&ID da Bancada de Ensaios para Turbinas Hidráulicas

Na Figura 18 estão representados o inversor de frequência (FC), os indicadores de pressão (PI), o transdutor de pressão (PT), o indicador e transdutor de vazão (FIT), os elementos de medição de força (WE), velocidade (SE) e vazão (FE).

O diagrama de blocos que representa o processo a ser controlado pode ser observado na Figura 19. O inversor de frequência assume o papel de controlador e atuador, manipulando a velocidade de rotação do conjunto moto-bomba de forma a manter a pressão no valor de referência desejado. A variável controlada é, portanto, a pressão e a variável manipulada é a velocidade de rotação. O sinal de realimentação, por sua vez, é dado pelo transdutor de pressão, responsável pelo monitoramento do sinal de pressão na entrada da turbina.

Figura 19: Diagrama de blocos do controlador de pressão

3.2 Realimentação do transdutor de pressão

O sinal de realimentação do sistema de controle a ser implementado vem de um transdutor de pressão que pode ser utilizado com sinal de saída de tensão (a 3 fios) ou de corrente (a 2 fios). A conexão do transdutor de pressão se dá de acordo com a Figura 20, onde U_B , $0V \in S+$ representam, respectivamente, os terminais positivo e negativo de alimentação e a saída analógica. Como será empregado o sinal de saída de corrente, na faixa de 4 a 20 mA, a configuração utilizada será a de 2 fios (WIKA, 2014).

Conector angular DIN 175301-803 A				
		2-fios	3-fios	
	UB	1	1	
[3 🍥	0V	2	2	
2	S+	-	3	

Figura 20: Diagrama de conexão do transdutor de pressão (WIKA, 2014, p. 5)

Por padrão, as entradas analógicas do inversor de frequência são selecionadas na faixa de 0 a 10 V (WEG, 2011). Dessa forma, é necessário mudar a configuração correspondente à entrada analógica AI2, que receberá o sinal do transdutor de pressão, na chave S1 (S1.1), conforme indicado na Figura 21 e na Tabela 5. Após os ajustes, a chave S1.1 deve estar na posição ON.

Figura 21: Chave S1 para seleção do sinal de entrada (WEG, 2011, p. 62)

Tabela 5: Chave S1 para seleção do sinal de entrada (WEG, 2011, p. 62)

Sinal	Função Padrão de Fábrica	Elemento de Ajuste	Seleção
AI1	Referência de Velocidade	S1.2	OFF (0 a 10) V (Padrão fábrica) ON (4 a 20) mA / (0 a 20) mA
AI2	Sem Função	S1.1	OFF (0 a 10) V (Padrão fábrica) ON (4 a 20) mA / (0 a 20) mA

Os parâmetros do inversor de frequência também precisam ser configurados para receber a realimentação do transdutor de pressão na entrada analógica AI2. Inicialmente, deve ser ativada a função especial do regulador PID no parâmetro P203. Quando essa função é ativada, a entrada analógica AI2 é automaticamente programada para a função variável de processo do PID e a entrada digital DI3 para a função Manual/Automático (WEG, 2011). Outros parâmetros relacionados com a realimentação na entrada AI2 seguem relacionados na Tabela 6.

Para comutação entre controle manual e automático, foi utilizada uma chave na entrada DI3. Já o transdutor de pressão foi conectado à entrada AI2. As conexões elétricas foram efetuadas conforme ilustrado na Figura 22.

Figura 22: Diagrama de conexões no inversor de frequência

Parâmetro	Função	Ajuste Realizado
P000	Senha de Acesso	(Ver Manual do Fabricante)
P203	Funções Especiais	1 = Regulador PID
P237	Função da Entrada AI2	3 = Variável de Processo PID
P238	Ganho da Entrada AI2	1.000
P239	Sinal da Entrada AI2	1 = 4 a 20 mA (Chave S1.1 ON)
P240	Offset da Entrada AI2	0.0
P265	Função da Entrada DI3	15 = Manual/Automático
P524	Realimentação do PID	0 = AI2
		$P528 = \frac{FSVProcesso \times (10)^{P529}}{GanhoAI}$
		Transdutor de Pressão 0 a 2.5 bar
P528	Fator de Escala da	Indicação: 0 a 2.5 bar
1 526	Variável de Processo	$P528 = \frac{2.5 \times (10)^3}{1,000} = 2500$
		Transdutor de Pressão 0 a 2.5 bar
		Indicação: 0 a 25.00 mca
		$P528 = \frac{25.00 \times (10)^2}{1.000} = 2500$
P520	Ponto Decimal da Indicação	$0 \rightarrow 3 (\text{oscolhor})$
1 020	da Variável de Processo	0 a 9 (esconici)
$P5\overline{30}$		"b"(98) ou "m"(109)
P531	Unidade de Engenharia	"a"(97) ou "c"(99)
P532	da Variavel de Processo	"r"(114) ou "a"(97)

Tabela 6: Parâmetros para realimentação na entrada AI2 (WEG, 2011, p. 216) [Adaptado]

3.3 Aquisição de dados

3.3.1 Comunicação com o Inversor de Frequência

O inversor de frequência CFW09 permite a comunicação utilizando o protocolo *Modbus-RTU*, que é do tipo Mestre-Escravo. Desta forma, o supervisório se comportaria como mestre, enviando mensagens com solicitações ao escravo (inversor), que responde através de uma nova mensagem. Cada mensagem é constituído por: endereço do escravo, tipo de função solicitada ao escravo, dados a serem transmitidos e verificação de erros de transmissão.

3.3.1.1 Configurações do Inversor de Frequência

Para a utilização do protocolo de comunicação *Modbus-RTU* no inversor de frequência é necessário realizar algumas configurações. Na Tabela 7 estão dispostos alguns parâmetros e configurações do inversor de frequência relacionados à comunicação serial. Os parâmetros P308 e P312 devem ser alterados para que o inversor se comunique em Modbus-RTU. Os demais concedem permissões para que certos comandos sejam dados ao inversor através da comunicação serial e devem ser alterados conforme a necessidade do usuário.

Parâmetro	Função	Ajuste Realizado
P000	Senha de Acesso	(Ver Manual do Fabricante)
P312	Tipo de Protocolo Serial	1 = Modbus-RTU, 9600 bps, no parity ^a
P308	Endereço Serial	
P220	Seleção Local/Remoto	$2 = HMI^{c,d}$
P221	Seleção da Referência Local	$0 = HMI^{c}$
P222	Seleção da Referência Remota	$9 = \text{Serial} \ ^d$
P223	Seleção do Sentido de Giro Local	$2 = \text{HMI (H)}^{c}$
P224	Seleção do Gira/Pára Local	$0 = \text{Teclas} [I] \in [O]^{c}$
P225	Seleção do JOG Local	$1 = HMI^{c}$
P226	Seleção do Sentido de Giro Remoto	$5 = $ Serial (H) d
P227	Seleção do Gira/Pára Remoto	2 = Serial d
P228	Seleção do JOG Remoto	$3 = \text{Serial}^{d}$

Tabela 7: Configuração dos parâmetros do inversor (WEG, 2011, p. 13) [Adaptado]

 a As configurações devem ser iguais às da rede a ser implementada

 b O endereço do escravo deve ser único na rede

 c Permissões de Modo Local que devem ser alteradas de acordo com a necessidade do usuário

^d Permissões de Modo Remoto que devem ser alteradas de acordo com a necessidade do usuário

3.3.1.2 Configurações de Data Source

A configuração do ScadaBR para se comunicar com o inversor se dá a partir da criação de um *Data Source* do tipo Modbus Serial e pode ser observada na Figura 23. A configuração da porta a ser utilizada somente pode ser realizada com o Data Source desativado.

间 Propriedades do modbus	serial 😟	<i></i>	
	Nome	CFW09	
E	xport ID (XID)	DS_798712	
Período de atualização		250 milissegundo(ms) 💌	
	Quantificação		
1	(imeout (ms)	500	
	Tentativas	2	
Apenas quantidad	es contínuas		
Criar pontos de monito	or de escravo		
Máxima contagem de lo	eitura de bits	2000	
Máxima contagem de leitura de r	egistradores	10	
Máxima contagem de escrita de registradores		10	
Porta		/dev/ttyS0 💌	
Baud rate		9600 💌	
Controle de flux	co de entrada	Nenhum 💌	
Controle de fluxo de saída		Nenhum 💌	
Data bits		8 -	
	Stop bits	1 -	
	Parity	Nenhuma 💌	
	Codificação	RTU 💌	
Echo		Desligado 💌	
Simultaneidade		Função 💌	
Níveis de alarme de eventos			
Exceção de data source Informação		• <i>•</i>	
Exceção de leitura de data point	Nenhum alarme	•	
Exceção de escrita em data point	Informação	- 9	

Figura 23: Configuração do Data Source para o inversor

3.3.1.3 Configurações de Data Point

Após configurar o *Data Source* do inversor, é necessário especificar quais dados serão monitorados e/ou controlados pelo ScadaBR. Isso se dá a partir da criação de Data Points para os dados que se deseja monitorar. Na Figura 24 é possível observar as configurações de algumas variáveis sugeridas para monitoramento e controle.

Data points						1
Nome	Tipo de dado	Status	Escravo	Faixa	Offset (baseado em 0)	
Ajuste do Setpoint	Binário	i	1	Registrador holding	536/0	
Controle	Binário	٢	1	Registrador holding	12/5	٨
Fator de Escala da Referência	Numérico	i	1	Registrador holding	208	٨
Filtro da Variável de Processo	Numérico	<i>i</i>	1	Registrador holding	526	٨
Filtro Entrada Al2	Numérico	i	1	Registrador holding	248	٨
Ganho D	Numérico	٢	1	Registrador holding	522	۵
Ganho Entrada Al2	Numérico	i	1	Registrador holding	238	٨
Ganho I	Numérico	٢	1	Registrador holding	521	۵
Ganho P	Numérico	i	1	Registrador holding	520	٨
Gira/Para	Binário	٢	1	Status do coil	100	٨
Habilita Geral	Binário	i	1	Status do coil	101	٨
JOG	Binário	٢	1	Status do coil	103	٨
Local/Remoto	Binário	i	1	Status do coil	104	٨
Offset Entrada Al2	Numérico	i	1	Registrador holding	240	٨
Setpoint PID	Numérico	i	1	Registrador holding	525	
Status	Numérico	٢	1	Registrador holding	6	٨
Tempo Rampa PID	Numérico	i	1	Registrador holding	523	
Variável de Processo (PID)	Numérico	٢	1	Registrador holding	40	٨
Velocidade de Referência	Numérico	6	1	Registrador holding	1	
Velocidade de Referência (VB)	Numérico	٢	1	Registrador holding	5004	٨
Velocidade do Motor	Numérico	i	1	Registrador holding	2	
Zona Morta	Binário	<i>i</i>	1	Registrador holding	233/0	٨
Zona Morta para Indicação de Velocidade	Numérico	i	1	Registrador holding	259	8

Figura 24: Configuração de Data Points para o inversor

3.4 Estimação dos Parâmetros

Conforme exposto por Dorf e Bishop (2013), a resposta do sistema a uma entrada em degrau¹ resulta na curva de reação da Figura 25, da qual podem ser extraídos o atraso no tempo ($T_d = 6$) e a taxa de reação ($R = \frac{M}{\tau} = \frac{2,07}{6} = 0,345$). A partir desses parâmetros, é possível calcular os ganhos do controlador PID de acordo com as relações na Tabela 8.

¹ O motor de indução da bancada é acionado pelo inversor de frequência a partir de uma rampa. Como o próprio sistema não permite que seu acionamento seja realizado por um degrau, os parâmetros da curva de reação foram obtidos a partir da resposta do sistema para uma entrada em rampa.

Figura 25: Curva de reação do sistema em Malha Aberta

Tabela 8: Sintonia de ganhos de controlador PID por Ziegler-Nichols usando Curva de Reação (DORF; BISHOP, 2013, p. 374) [Adaptado]

Tipo de Controlador	K_P	K_I	K_D
Р	$\frac{1}{RT_d} = 0,483$	_	_
PI	$\frac{0.9}{RT_d} = 0,435$	$\frac{0.27}{RT_d^2} = 0,022$	_
PID	$\frac{1,2}{RT_d} = 0,580$	$\frac{0.6}{RT_d^2} = 0,048$	$\frac{0.6}{R} = 1,739$

3.5 Configuração do controlador PID

Uma vez obtidos os parâmetros do regulador PID, se faz necessário implementá-los nos parâmetros P520, P521 e P522 do inversor de frequência. Na Tabela 9 são apresentados os demais parâmetros relacionados com a função de regulador PID.

Parâmetro	Função	Ajuste Realizado
P203	Seleção de Funções Especiais	1 = Regulador PID
P520	Ganho Proporcional	1.000
P521	Ganho Integral	0.043
P522	Ganho Diferencial	0.000
P523	Tempo Rampa PID	3.0
P524	Realimentação PID	0 = AI2
P525	Setpoint PID	8.0%
P526	Filtro da Variável de Processo	0.1 s
P527	Tipo de Ação PID	0 = Direto
P528	Fator de Escada da Variável de Processo	2500
P529	Ponto Decimal da Variável de Processo	2
P530	Und. de Engenharia da Variável de Processo	109 = "m"
P531	Und. de Engenharia da Variável de Processo	99 = "c"
P532	Und. de Engenharia da Variável de Processo	97 = "a"
P533	Valor da Variável de Processo X	20.0%
P534	Valor da Variável de Processo Y	6.0%
P535	Saída $N = 0$ PID	0%
P536	Ajuste Automático de P525	1 = Inativo
P537	Histerese para Setpoint = VPr	1%
P538	Histerese para VPx/VPy	0.1%

Tabela 9: Parâmetros do inversor relacionados ao regulador PID (WEG, 2011, p. 218) [Adaptado]

4 Resultados e Discussão

4.1 Desempenho dos controladores

Os parâmetros referentes aos ganhos do regulador PID do inversor de frequência foram modificados para implementar os ganhos dos controladores obtidos pelo ajuste de Ziegler-Nichols. Para o controlador P foi implementado o ganho proporcional $K_P = 0.483$. O controlador PI foi implementado com os ganhos proporcional $K_P = 0.435$ e integral $K_I = 0.022$. Já para o controlador PID foram implementados os ganhos proporcional $K_P = 0.580$, integral $K_I = 0.048$ e derivativo $K_D = 1.739$.

O desempenho de cada um dos controladores foi avaliado por meio de ensaios que consistiam de duas etapas principais: ensaio em malha aberta e ensaio em malha fechada. O ensaio em malha aberta iniciou-se no momento em que o inversor foi acionado e a transição para o ensaio em malha fechada foi marcada pelo acionamento do regulador PID na chave instalada na entrada digital DI3 do inversor.

Primeiramente, o inversor foi acionado manualmente, de forma a gerar uma pressão de aproximadamente 2 mca (pressão de referência) no local monitorado. Em seguida, o eixo da turbina foi submetido a uma carga mecânica, medida com o auxílio de um tacômetro e do freio de Prony. Passado um intervalo de tempo suficiente para observar a variação de pressão gerada pela adição de carga na turbina, a carga foi retirada e observouse uma nova variação de pressão. Após o acionamento do regulador PID, foram repetidos os procedimentos de adição, medição e retirada de carga mecânica do eixo da turbina. Ao final de cada ensaio, o inversor e o regulador PID foram desligados.

Nos primeiros ensaios realizados em malha fechada, observou-se que a curva de pressão apenas apresentou mudança significativa de comportamento no momento da retirada de carga. Uma hipótese para esse fenômeno é a de que o controlador responda mais rápido que a frenagem mecânica no eixo da turbina no momento da adição de carga. Por esse motivo, foi escolhido como ponto de avaliação do desempenho do controlador o momento da retirada de carga do eixo da turbina.

4.1.1 Controlador P com parâmetros de Ziegler-Nichols

A Figura 26 representa o comportamento do sistema durante toda a duração do ensaio. No intervalo entre 123 e 213 segundos, o eixo da turbina foi submetido a uma carga mecânica, de forma que a potência de eixo medida foi de 284 W. A adição de carga gerou uma perturbação no sistema, causando o aumento da pressão na entrada da turbina. Uma redução de pressão foi observada no instante da retirada de carga.

Figura 26: Comportamento do sistema em Malha Aberta e em Malha Fechada (transição aos 290s)

Aos 290 segundos, o controlador P com os parâmetros de Ziegler-Nichols foi ligado. No intervalo entre 360 e 443 segundos, o sistema foi submetido a uma perturbação ao ser adicionada uma carga mecânica ao eixo da turbina, que apresentou uma potência de eixo de 115 W. O controlador permitiu que a perturbação fosse rejeitada, uma vez que a velocidade de rotação da bomba foi variada para que a pressão se mantivesse no valor desejado.

Figura 27: Retirada de carga em Malha Aberta (à esquerda) e em Malha Fechada (à direita)

A Figura 27 possibilita uma visão mais detalhada dos instantes em que o sistema estava sujeito a perturbações. Em malha aberta, a perturbação no sistema gerou uma variação de pressão da ordem de 0,7 mca, enquanto a velocidade de rotação da bomba foi mantida constante.

Já em malha fechada, foram necessários apenas 5 segundos para que o sistema conseguisse rejeitar a perturbação gerada pela retirada de carga e manter a pressão estável, por meio da variação da velocidade de rotação da bomba.

4.1.2 Controlador PI com parâmetros de Ziegler-Nichols

A Figura 28 representa o comportamento do sistema durante toda a duração do ensaio. No intervalo entre 62 e 180 segundos, o eixo da turbina foi submetido a uma carga mecânica, de forma que a potência de eixo medida foi de 292 W. Observa-se que a adição de carga gerou uma perturbação no sistema que se refletiu no aumento da pressão na entrada da turbina. A pressão voltou a sofrer alteração no momento da retirada de carga.

Figura 28: Comportamento do sistema em Malha Aberta e em Malha Fechada (transição aos 245 s)

Aos 245 segundos, o controlador PI com os parâmetros de Ziegler-Nichols foi ligado. No intervalo entre 302 e 361 segundos, o sistema foi submetido a uma perturbação ao ser adicionada uma carga mecânica ao eixo da turbina, que apresentou uma potência de eixo de 164 W. Com o controlador atuando, observa-se que o sistema foi capaz de rejeitar as perturbações geradas pela adição e retirada de carga. Isso se deve ao fato de que a velocidade de rotação da bomba foi alterada de modo a manter a pressão no valor de referência desejado. A Figura 29 possibilita uma visão mais detalhada dos instantes em que o sistema estava sujeito a perturbações. Observa-se que, em malha aberta, a perturbação no sistema gerou uma variação de pressão da ordem de 0,5 a 0,8 mca, enquanto a velocidade de rotação da bomba foi mantida constante.

Já em malha fechada, observa-se que foram necessários apenas 4 segundos para que o sistema conseguisse rejeitar a perturbação gerada pela retirada de carga e manter a pressão estável, por meio da variação da velocidade de rotação da bomba.

Figura 29: Retirada de carga em Malha Aberta (à esquerda) e em Malha Fechada (à direita)

4.1.3 Controlador PID com parâmetros de Ziegler-Nichols

A Figura 30 representa o comportamento do sistema durante toda a duração do ensaio. No intervalo entre 30 e 92 segundos, o eixo da turbina foi submetido a uma carga mecânica, de forma que a potência de eixo medida foi de 385 W. A perturbação gerada pela adição de carga mecânica resultou no aumento da pressão na entrada da turbina. Com a retirada de carga, houve nova variação de pressão.

Aos 144 segundos, o controlador PID com os parâmetros de Ziegler-Nichols foi ligado. No intervalo entre 210 e 275 segundos, o sistema foi submetido a uma perturbação ao ser adicionada uma carga mecânica ao eixo da turbina, que apresentou uma potência de eixo de 284 W. O controlador rejeitou as perturbações geradas pela adição e retirada de carga, mantendo a pressão no valor de referência desejado por meio da variação da velocidade de rotação da bomba.

Figura 30: Comportamento do sistema em Malha Aberta e em Malha Fechada (transição aos 144s)

Figura 31: Retirada de carga em Malha Aberta (à esquerda) e em Malha Fechada (à direita)

A Figura 31 possibilita uma visão mais detalhada dos instantes em que o sistema estava sujeito a perturbações. Em malha aberta, a perturbação no sistema gerou uma variação de pressão da ordem de 0, 6 mca, enquanto a velocidade de rotação da bomba foi mantida constante.

Já em malha fechada, observa-se que foram necessários apenas 3 segundos para que o sistema conseguisse rejeitar a perturbação gerada pela retirada de carga e manter a pressão estável, por meio da variação da velocidade de rotação da bomba.

4.2 Comparação entre os controladores

O comportamento dos diferentes controladores foi comparado num intervalo de tempo de 50 segundos desde o instante em que o controle automático foi ativado. O resultado dessa comparação encontra-se representado na Figura 32.

Como o tempo de rampa PID está configurado em 3 segundos, no momento em que o controlador automático é acionado o sistema tenta seguir uma rampa de aceleração até o valor de referência, o que justifica o comportamento diferenciado do sistema nos instantes iniciais.

Figura 32: Comparação do desempenho dos controladores

Na figura, observa-se que os três controladores apresentam um comportamento satisfatório, mas é possível verificar que o controlador PI tem um comportamento mais suave.

Tal afirmação é sustentada pela obtenção da integral do erro absoluto mostrada na Tabela 10. Observa-se que o controlador PI apresentou o menor indicador entre os três controladores.

	Р	PI	PID
IAE	7.275	6.735	7.215

Tabela 10: Comparação pela integral do erro absoluto

Como a ação derivativa costuma ser usada em processos que necessitam de um tempo de resposta menor, o controlador proporcional com ação integral se apresenta como uma solução adequada no controle da pressão de operação da Bancada de Ensaios para Turbinas Hidráulicas. Dessa forma, a função de transferência do controlador a ser implementado na bancada é dada pela equação a seguir.

$$G_C(s) = 0,435 + \frac{0,022}{s} \tag{4.1}$$

5 Conclusão

O presente trabalho se propôs a parametrizar e avaliar a atuação de controladores P, PI e PID no controle da pressão de operação da Bancada de Ensaios para Turbinas Hidráulicas, com a finalidade de escolher o controlador a ser implementado para manter a pressão na entrada da turbina no valor de referência desejado.

Para implementação do controlador, foi utilizada a função de regulador PID programável incorporada ao inversor de frequência WEG CFW09. O sinal de realimentação foi obtido por meio do monitoramento do transdutor de pressão instalado na entrada da turbina em uma entrada analógica do inversor.

A aquisição de dados se deu por meio do sistema supervisório ScadaBR, configurado para se comunicar com o inversor de frequência utilizando o protocolo de comunicação Modbus RTU. Os dados obtidos pelo ScadaBR foram analisados graficamente com auxílio do software Matlab.

Foram comparadas três diferentes parametrizações de controladores obtidas pela metodologia de ajuste de PID em malha aberta por Ziegler-Nichols.

Todos os controladores avaliados apresentaram um desempenho satisfatório para a aplicação desejada, mas, como o sistema não exige um tempo de resposta muito rápido, optou-se por implementar o controlador PI, que apresentou uma resposta um pouco mais suave e cumpriu com os requisitos de minimizar o erro em regime permanente e conferir ao sistema uma resposta transitória adequada.

Dessa forma, pode-se afirmar que o presente trabalho teve êxito ao apresentar uma proposta de controle para a pressão de operação da Bancada de Ensaios para Turbinas Hidráulicas após comparar a atuação de diferentes controladores no sistema em questão.

5.1 Perspectivas para Trabalhos Futuros

Os seguintes temas são recomendados para desenvolvimento de trabalhos em nível de graduação ou mestrado:

- Modelagem matemática da dinâmica do sistema de bombeamento da Bancada de Ensaios para Turbinas Hidráulicas;
- Modelagem matemática da dinâmica do circuito hidráulico da Bancada de Ensaios para Turbinas Hidráulicas;

Referências

CALIXTO, R. d. O. Sistema Supervisório para Bancada de Ensaio de Picoturbina Hidráulica Indalma. Monografia de Graduação em Engenharia Eletrônica — Universidade de Brasília, Brasília, 2015.

DONALD, R. M.; SLOOT, N. Experimental Assessment and Numerical Analysis of an Indalma Hydraulic Turbine. Bachelor of science in Mechanical Engineering Thesis — Anton de Kom University of Suriname, Paramaribo, 2014.

DORF, R. C.; BISHOP, R. H. Sistemas de Controle Modernos. 12. ed. Rio de Janeiro: LTC, 2013.

ELS, R. H. v. Sustentabilidade de projetos de implementação de aproveitamentos hidroenergéticos em comunidades tradicionais na Amazônia: Casos no Suriname e Amapá. Tese de Doutorado em Desenvolvimento Sustentável — Universidade de Brasília, Brasília, 2008.

ELS, R. H. v.; DINIZ, J. D. d. A. S.; SOUZA, J. d. S. A. d.; BRASIL JUNIOR, A. C. P.; SOUSA, A. N. A. d.; KROETZ, J. G. Eletrificação rural em Santarém: Contribuição das microcentrais hidrelétricas. In: *Revista Brasileira de Energia.* [S.l.: s.n.], 2010. v. 16, n. 2, p. 35–46.

FRANKLIN, G. F. Sistemas de Controle para Engenharia. 6. ed. Porto Alegre: Bookman, 2013.

FUNDAÇÃO CENTROS DE REFERÊNCIA EM TECNOLOGIAS INOVADORAS; FINANCIADORA DE ESTUDOS E PROJETOS; SERVIÇO DE APOIO ÀS MICRO E PEQUENAS EMPRESAS; CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO. *ScadaBR*: Manual do software. Rio de Janeiro, 2010. 70 p.

KSB. Instruções de serviço/montagem Etanorm. Frankenthal, 2013.

MACINTYRE, A. J. Bombas e Instalações de Bombeamento. Rio de Janeiro: Guanabara Dois, 1980.

MACINTYRE, A. J. *Máquinas Motrizes Hidráulicas*. Rio de Janeiro: Guanabara Dois, 1983.

MESQUITA, B. D. R. d.; SILVA, J. A. L. e; ANDRADE, R. V. C. S.; PINTO, J. A. C. Desenvolvimento de um sistema supervisório para uma planta didática de nível. In: *IV Seminário de Iniciação Científica e Inovação das Instituições de Ensino Federal de Educação, Ciência e Tecnologia do Pará.* Marabá: [s.n.], 2012. p. 565–574.

MORAES, C. C. d.; CASTRUCCI, P. d. L. *Engenharia de Automação Industrial*. Rio de Janeiro: LTC, 2007.

OGATA, K. Engenharia de Controle Moderno. 4. ed. São Paulo: Prentice Hall, 2003.

OLIVEIRA, D. d. S. Avaliação experimental em modelo reduzido da turbina hidráulica Indalma. Monografia (Bacharelado em Engenharia de Energia) — Universidade de Brasília, Brasília, 2014.

RODRIGUES, W. Critérios para o Uso Eficiente de Inversores de Frequência em Sistemas de Bombeamento de Água. Tese de Doutorado em Engenharia Civil — Universidade Estadual de Campinas, Campinas, 2007.

SANTANDER, O. L. S. *Montagem e Instrumentação de uma bancada para Turbina Hidráulica*. Dissertação de Mestrado em Sistemas Mecatrônicos — Universidade de Brasília, Brasília, 2014.

SILVA, J. M. d.; ARAÚJO, B. B. M.; SANTANDER, O. L. S.; ELS, R. H. v. Laboratório real de geração hidrelétrica — proposta metodológica de utilização de bancada de ensaio de turbina hidráulica no curso de Engenharia de Energia. In: *XLI Congresso Brasileiro de Educação em Engenharia*. Gramado: [s.n.], 2013.

THOMAZINI, D.; ALBUQUERQUE, P. U. B. d. Sensores Industriais: Fundamentos e Aplicações. São Paulo: Érica, 2012.

TSUTIYA, M. T. *Abastecimento de água*. 3. ed. São Paulo: Escola Politécnica da Universidade de São Paulo, 2006.

WEG. Manual do Inversor de Frequência: Série: CFW-09. Software: versão 4.4x. Jaraguá do Sul, 2011. Idioma: Português. Documento: 0899.5298/13.

WEG. *CFW09*: Inversores de frequência. Jaraguá do Sul, 2012. Código: 10413064. Revisão: 41.

WEG. Guia de especificação de motores elétricos. Jaraguá do Sul, 2014.

WHITE, F. M. Mecânica dos Fluidos. 6. ed. Porto Alegre: AMGH, 2011.

WIKA. Transmissor de pressão para aplicações industriais gerais - Modelo A-10. Iperó, 2014.

Apêndices

Figura A.1: Interligação elétrica do sistema de acionamento da bomba