

TRABALHO DE GRADUAÇÃO

A PROPOSAL TO AUTOMATE SERVICE
PROVISIONING IN SERVICE PROVIDERS

BASED ON SOFTWARE DEFINED
NETWORKING

Flávio Augusto de Castro Júnior

Brasília, Julho de 2014

UNIVERSIDADE DE BRASILIA

FACULDADE DE TECNOLOGIA

 ii

UNIVERSIDADE DE BRASILIA

Faculdade de Tecnologia

TRABALHO DE GRADUAÇÃO

A PROPOSAL TO AUTOMATE SERVICE
PROVISIONING IN SERVICE PROVIDERS

BASED ON SOFTWARE DEFINED
NETWORKING

Flávio Augusto de Castro Júnior

Relatório submetido ao Departamento de Engenharia Elétrica como requisito parcial para obtenção do

grau de Engenheiro de Redes de Comunicação

Banca Examinadora

Prof. William Ferrreira Giozza - ENE/UnB

Prof. Georges Daniel Amvame-Nze – ENE/UnB

Prof. Valério Aymoré Martins – ENE/UnB

Me. Fernando López Rodriguez – ENE/UnB

RESUMO

1 INTRODUÇÃO

As redes de hoje são estáticas e difícil de modificar, enquanto o tráfego de dados cresce devido a
mudanças nos padrões de consumo e crescente disponibilidade de tecnologias de acesso móveis. O
volume de dados vem aumentando; a tolerância a falhas dos usuários vem diminuindo; e as receitas
não crescem tão rapidamente como tráfego. Provedores de serviço sofrem pressão crescente para
inovar, reduzindo custos operacionais e diminuindo o tempo de entrega de novos serviços para, então,
gerar novas fontes de receita.

Contudo, o provisionamento de serviço ainda é extremamente acoplado à infraestrutura de rede. De
forma que, dispositivos de redes são, comumente, configurados manualmente e individualmente
acarretando em ineficiências operacionais. Hoje, é necessário, basicamente, re-projetar toda a rede
cada vez que precisar entregar um novo serviço. Uma solução de rede definida por software pode
automatizar o provisionamento de serviço e permitir novos níveis de inovação possibilitando a
ampliação das estratégias de monetização de seus serviços.

O objetivo desse trabalho é apresentar um modelo provisionamento de serviços baseado em redes
definidas por software para automatizar a ativação, desativação e reativação de serviços; e ainda
permitir a entrega de serviços diferenciados para cada usuário, por meio do controle ativo da
quantidade e velocidade de tráfego permitido na rede para cada usuário.

2.1 INOVAÇÃO EM PROVEDORES DE SERVIÇO

O modelo de negócios utilizado por provedores de serviço vem mostrando dificuldades de
escalabilidade conforme o volume de dados cresce. O tráfego oferecido a provedores de serviço

cresce de forma quase exponencial enquanto a receita proveniente de serviços de rede tende à

estagnação. Dessa forma, “o gap entre receita e investimentos necessários para suprir as expectativas
de qualidade de serviço dos usuários está crescendo cada vez mais, como ilustrado na Fig. 2.4. Por
causa disso, o modelo de negócios atual pode se tornar insustentável no futuro.

A situação enfrentada por provedores é desafiante, principalmente, por causa dessas quatro
características combinadas:

• Decrescente receita média por usuário.

• Competição intensa a partir de serviços de camadas superiores, como Netflix.

• Modelo de negócio baseado em quantidade de assinantes

• Saturação do mercado de conexão com a internet

 É necessário inovar para reduzir custos operacionais ou monetizar as estruturas de rede existentes.

Ao mesmo tempo, o atual paradigma arquitetural de redes de comunicação vem se demonstrando
obsoletos frente aos desafios modernos. Provedores de serviço têm capacidade limitada de lançar
novos serviços ou adaptar a rede para suportar as necessidades de novos serviços. O atual modelo
arquitetural de redes não foi projetado para ser evoluível ou entregar novos serviços de forma rápida.

Operadores precisam aprimorar os serviços correntes com informação inteligente da rede; e fornecer
novos serviços de forma rápida utilizando ferramentas simples de gerenciamento de forma a reduzir
custos e o tempo de implantação dessas operações.

2.2 REDES DEFINIDAS POR SOFTWARE EM PROVEDORES DE SERVIÇO

A popularização do paradigma de redes definidas por software (software defined network - SDN) é
oportuna frente aos desafios enfrentados por provedores de serviço. SDN basicamente significa a
extração das funções de controle de rede da estrutura física e centralização da inteligência de rede em
um ponto de controle único e potencialmente virtualizado como ilustrado na Fig. 2.6. Existem diversas
abordagens para implementação de SDNs como ilustrado na Fig. 2.5.

Novas possibilidades de monetização de serviço para provedores pode ser implementada por meio do
link direto entre aplicações e o controlador de rede, presente na arquitetura SDN. Por exemplo, é
possível automatizar a alocação de recursos de rede de forma a prover serviços de forma dinâmica e
otimizada para demandas específicas provenientes dos usuários da rede. O modelo SDN pode diminuir
custos operacionais, agilizar a ativação de serviços, e portanto, enriquecer serviços existentes.

Uma possibilidade de inovação em provedores de serviço é a criação de um serviço de Bandwitdh on

demand. Os padrões de tráfego em rede estão mudando rapidamente. Tecnologias como big data estão
criando picos de tráfego extremamente altos e curtos. Neste cenário, a contratação de uma taxa
constante de transmissão se torna muito cara, ou não suficiente. Um serviço que permita a contratação
de banda de transmissão que permita redimensionar ou reativar a conectividade de rede
dinamicamente é muito mais interessante. Esse tipo de tecnologia iria reduzir custos para esse tipo de
cliente, pois eles pagariam somente pelo que consumissem.

Uma estratégia de provisionamento de serviços baseada em SDN pode permitir o controle automático
da rede. Essa estratégia pode também proporcionar uma visão em tempo real da rede. Esses duas
funcionalidades combinadas permitem a alocação inteligente e automática de recursos de rede de
forma a suprir diferentes requisitos de nível de serviço para cada usuário.

3 MODELO ARQUITETURAL

Nesse trabalho, propomos um modelo de rede baseado na arquitetura de redes definidas por software
que pode agilizar a ativação de serviços e facilitar a entrega de serviços customizados, portanto,
permitindo a criação e utilização de novos padrões de nível de serviço. Para fazer isso, aplicamos uma
arquitetura de rede definida por software baseada em OpenFlow, ilustrada na Fig. 3.1, para controlar a
rede e reforçar as políticas de utilização de rede e limitações de volume de dados.

O comportamento da rede é controlado pelas aplicações de rede implementadas no controlador:
ativação de serviço; controle de velocidade e monitoração de volume de dados. Políticas de rede
externas são reforçadas de acordo com uma base dado externa, por meio das aplicações de rede. A
Figura 3.2 ilustra essa arquitetura.

O sistema funciona da seguinte forma: cada vez que um pacote chega a um switch, esse switch procura
por uma entrada correspondente a esse pacote em sua tabela de fluxos. Se um pacote não tem entradas
correspondentes, então o switch direciona esse pacote ao controlador da rede. Em seguida, o
controlador identifica o usuário que gerou o pacote baseado no seu endereço IP e sua localização física
e procura autorização de serviço para aquele usuário. Se confirmado, então o tráfego de rede para
aquele usuário será permitido e limitado de acordo com as políticas de rede, utilizando a
funcionalidade meter do OpenFlow 1.3 para limitar a taxa de transmissão daquele usuário.
Simultaneamente, o controlador requisita todos os dispositivos de rede, repetidamente, informações
sobre estatísticas de “metering” e, em seguida, atualizar as estatísticas de utilização. Posteriormente,
de acordo com essas atualizações, o controlador decidirá sobre a desativação, reativação ou
aprimoramento. Se aquele usuário não for permitido na rede de acordo com a base de dados de
políticas de rede, então esses fluxos serão instruídos a descartar os pacotes como ação correspondente.

4 ESTUDO DE CASO

Para demonstrar a aplicabilidade da solução proposta, emulamos uma rede simples no Mininet e a
conectamos ao controlador RYU integrado às aplicações de rede desenvolvidas: ativação de serviços,
controle de velocidades, monitoramento de volume de dados. Para demonstrar a efetividade da
solução proposta, resumimos o estudo de caso a 5 cenários:

• START: teste de ativação de serviços automática, limitada às políticas de limitação de
velocidades.

• STOP: teste de desativação de serviços automática, limitada às políticas de volume de dados.

• RESTART: teste de reativação de serviços automática.

• STOP AGAIN: teste de desativação de serviços

• UPGRADE: teste de reativação de serviços de acordo com novas políticas de rede.

As etapas de teste e seus resultados são detalhados no trabalho completo.

5 CONCLUSÃO

No estudo de caso desenvolvido projetamos e desenvolvemos uma solução que implementa
provisionamento de serviços rápido e automático; e permite controle de utilização da rede de forma
personalizada. E portanto permite operadores de redes a implementar novas estratégias de
monetização baseadas na entrega automática de níveis de serviço customizados a diferentes usuários.

A característica automática do sistema foi evidenciada por meio dos testes na seção 4 e é baseada na
utilização de uma base de dados de controle de rede como interface com sistemas finais. Essa
estratégia permite várias possibilidades para automação como a criação de sistemas de ativação de
serviço que forneçam uma interface direta a clientes de provedores de serviço. Nesse cenário, o
sistema pode ser projetado de forma que os sistemas de cobrança também sejam automaticamente
conectados ao modelo de provisionamento de rede. E portanto permite aos provedores a
implementação de uma estratégia de Bandwidth on Demand.

Nesse trabalho, apresentamos uma solução de provisionamento de serviço com tempo de resposta
menor que 200 milissegundos e tempo de reativação menores que 1 segundo. Nós também
implementamos controle de taxa de transmissão e monitoração de volume de dados trafegado com
pequenas imprecisões de 10% e 20%, respectivamente. Pudemos verificar que a funcionalidade de
metering do OpenFlow 1.3 pode ser aplicada para prover níveis de serviços customizados e pode ser
usada para controlar a velocidade de tráfego UDP e TCP.

Palavras-chaves: Redes definidas por software, redes de computadores, Openflow.

ABSTRACT

This work proposes a useful network model to automate service provisioning in service providers
based on software-defined networking. We performed a study case based on the proposed model and
simulated it over an emulated network in Mininet to verify the proposed features. In the study case, we
designed and developed a solution to implement fast and automatic service provisioning; and control
network utilization in a customized approach. Therefore, we provided a solution that allows network
operators to implement new monetization strategies by delivering customized service levels
automatically to different users.

Keywords: Computer Networking, Software-defined networking, Openflow.

 iv

TABLE OF CONTENTS

1 INTRODUCTION .. i

1.1 CONTEXT AND MOTIVATIONS .. 1

1.2 PROBLEM .. 1

1.3 OBJECTIVES .. 1

1.4 WORK PRESENTATION .. 1

2 THEORETICAL BACKGROUND ... 2

2.1 SERVICE PROVIDER NETWORKS ... 2

2.1.1 SERVICE LEVEL AGREEMENT (SLA) .. 3

2.2 NETWORK INNOVATION FOR SERVICE PROVIDERS .. 4

2.3 SOFTWARE DEFINED NETWORKING .. 6

2.3.1 OPEN NETWORKING FOUNDATION SDN ARCHITECTURE ... 6

2.3.2 SDN – NETWORK PROGRAMMABILITY ... 8

2.3.3 HYBRID SOFTWARE DEFINED NETWORKING ARCHITECTURE..................................... 8

2.3.4 SDN CONSIDERATIONS .. 9

2.4 SERVICE PROVIDER INNOVATION WITH SDN ... 9

2.4.1 BANDWIDTH ON DEMAND .. 10

2.4.2 PAY FOR QOS ... 11

3 ARCHITECTURAL MODEL .. 12

3.1 OVERVIEW ... 12

3.2 OPENFLOW SDN ARCHITECTURE ... 13

3.2.1 OPENFLOW ENABLED SWITCH .. 13

3.2.3 OPENFLOW CONTROLLER ... 15

3.2.4 METER ... 15

3.3 NETWORK APPLICATIONS ... 15

3.3.1 SERVICE ACTIVATION MODULE ... 16

3.2.2 SPEED CONTROL MODULE .. 17

3.2.3 DATA VOLUME MONITORING MODULE ... 18

3.3 OTHER COMPONENTS RELATED .. 18

3.3.1 RYU CONTROLLER ... 18

3.3.2 OPENFLOW 1.3 SOFTWARE SWITCH .. 18

3.3.3 MININET .. 18

3.4 NETWORK PERFOMANCE MEASUREMENT TOOLS ... 19

3.4.1 SMOKEPING ... 19

3.4.2 IPERF .. 19

4 STUDY CASE .. 20

4.1 OVERVIEW ... 20

4.1.1 INITIAL SETUP .. 20

4.1.2 START PHASE ... 20

4.1.3 STOP PHASE ... 21

4.1.4 RESTART PHASE ... 21

4.1.5 STOP AGAIN PHASE .. 21

 v

4.1.6 UPGRADE PHASE .. 21

4.2 OUTCOMES ... 21

4.2.1 SUMMARY .. 21

4.2.2 START PHASE OUTCOMES .. 23

4.2.3 STOP PHASE OUTCOMES.. 24

4.2.4 RESTART PHASE OUTCOMES .. 26

4.2.5 STOP AGAIN OUTCOMES .. 27

4.2.6 UPGRADE PHASE OUTCOMES ... 27

5 CONCLUSION ... 29

REFERENCES ... 30

 vi

LIST OF FIGURES

Figure 2. 1: An end-user’s view of the internet [1]. ... 2

Figure 2. 2: A Simple multi-provider Internet [1]. ... 3

Figure 2. 3: Illustration of Layer 3 VPN connectivity service. Customers A and B each obtain

a virtually private IP service. [1] ... 3

Figure 2. 4: Traffic Volume and Revenue Decoupling [5] .. 5

Figure 2. 5: Different approaches for Network Programmability 6

Figure 2. 6: Traditional Network Architecture vs Software Defined Architecture 7

Figure 2. 7: SDN framework adapted from the Open Networking Foundation [6] 7

Figure 2. 8: Bandwidth on Demand Architecture [13] ..10

Figure 2. 9: Differentiated and Monetizable services [13] ..11

Figure 3. 1: Illustration of an OpenFlow-based SDN architecture for Service Providers ..12

Figure 3. 2: Illustration of system architecture ...13

Figure 3. 3: Flowchart detailing packet flow through an OpenFlow switch [8].14

Figure 3. 4: Example of Flow table and instruction set [6]. ..14

Figure 3. 5: Network Control Database ..15

Figure 3. 6: Service Activation illustration ..16

Figure 3. 7: Service Denial illustration ...16

Figure 3. 8: Service Reactivation illustration ..17

Figure 3. 9: Speed Controlling Module operation...17

Figure 3. 10: Linear topology with 4 hosts on Mininet ...18

Figure 3. 11: Mininet hosts’ terminals and its network interfaces.19

Figure 4. 1: Labels for the graphs described in section 4 ...22

Figure 4. 2: Network connectivity throughout the sequence of experiments22

Figure 4. 3: Host 4 Latency report detailed ..23

Figure 4. 4: Host 2 Latency report detailed ..23

Figure 4. 5: Response Time distribution – 106 ms mean, variance 29,7 ms24

Figure 4. 6: Response time measurement screenshot ..24

Figure 4. 7: Network measurements for UDP traffic frm host 2. Figure a) represents the

iperf client, and Fig. b) represents the iperf server ..25

Figure 4. 8: Network measurements for UDP traffic from host 1. Figure a) represents the

iperf client and Fig. b) represents the iperf server ...25

 vii

LIST OF TABLES

Table 4.1: Initial state of subscriptions database ..20

Table 4.2- Network measurements for 5Mbps of UDP Traffic generated at host 1 for 16

seconds ...26

Table 4.3 - Network measurements for 5Mbps of UDP Traffic generated at host 2 for 3.5

seconds ...26

Table 4.4 – Response time for reactivation ..27

Table 4.5: Network measurements for TCP Traffic generated at host 1for 32 seconds ...27

Table 4.6: Final state of subscriptions database ..27

Table 4.7: Network measurements for TCP Traffic generated at host 1 for 17 seconds ..28

 viii

SYMBOLS AND ABREVIATIONS

QoS Quality of Service

ISP Internet Service Provider

TCP Transmission Control Protocol

IP Internet Protocol

VPN Virtual Private Network

SLA Service Level Agreement

QoE Quality of Experience

SDN Software defined networking

ONF Open Networking foundation

WAN Wide area network

VoIP Voice over IP

API Application programing interface

UDP User Datagram protocol

RTT Round-trip time

Bps Bits per second

1

1 INTRODUCTION

This chapter describes the context and motivations for

this work. We also introduce the approached problem

and the proposed solution and, briefly, go through the

work organization structure.

1.1 CONTEXT AND MOTIVATIONS

Today networks are static and hard to modify and evolve, whereas data traffic grows due to changes in

usage patterns and the growing pervasiveness of mobile data access technologies. The volume of data

is getting bigger, users’ tolerance to failure is getting lower and revenue is far from increasing as faster

as traffic. Service providers are suffering increasing pressure to innovate, reduce its operational costs

and decrease delivery time for new services to generate new sources of revenues.

The main motivation for this work was to apply innovative networking technologies to real-world

problems widely faced in the industry, specifically service provisioning in a service provider

environment. The popularization of the software defined networking paradigm is opportune to solve the

network operators’ challenges. In this work, we want to propose a solution evidencing that the software

defined networking paradigm can fasten service delivery and ease network operation.

1.2 PROBLEM

Nowadays, service provisioning is extremely tied to the physical network infrastructure. Moreover,

network devices are often manually and individually configured increasing operational costs. Right now,

we basically have to re-engineer the whole network each time we want to deliver a new service. A

software defined networking solution can automate service provisioning and promote a higher level of

innovation allowing providers to embrace new monetization strategies, such as pay-for-QoS, or

bandwidth on demand.

1.3 OBJECTIVES

The goals of this work are to present and implement service provisioning based on a software defined

networking architecture to automate service activation, reactivation and deactivation, and permit service

customization on a per-user basis, by automatically controlling the network speed and volume of data

permitted in the network.

1.4 WORK PRESENTATION

This work is divided in the following way. Chapter 2 presents some of the challenges faced by service

providers, discusses the necessary innovations in the industry, gives an overview of software defined

networking architectures and finally describes some innovation opportunities for software defined

networking in service providers.

Chapter 3 presents the architectural model of our study case and how our propose aims to automate,

ease and fasten service provisioning. Chapter 4 describes our simulation outcomes and analyze those

outcomes according expected results. Chapter 5 presents our conclusions and suggests related works to

amplify the effect of the service provisioning architecture proposed.

2

2 THEORETICAL BACKGROUND

This chapter defines the main concepts necessary to the

understanding of the presented study case. We briefly

describe some challenges faced by service providers

and how software-defined networking architectures

can be applied to solve these problems.

2.1 SERVICE PROVIDER NETWORKS

An extraordinary technologic development has been experienced in the last decades. Some people assign

this development to two principal components: first, the growing pervasiveness of computation and

second, the increasing access availability to information [5]. Part of these technologic advances are due

to the development in the communication networks field, such as the construction and popularization of

the Internet. Internet access availability is increasing, and, in parallel, access to information is becoming

easier and cheaper. This situation wrongly, gives the mistaken impression that internet connectivity

provisioning is a trivial operation. This operation suffers a lot from scalability problems, and it is

becoming a great challenge as both increase: the number of users connected to the internet and the

average, per user, data volume [5].

By definition, the internet is an interconnection between networks provided by the TCP-IP network layer

model. Internet access is normally obtained by purchase of an internet connectivity service from an

Internet Service Provider (ISP). A Communication Service Provider (CSP) delivers connectivity

between, residential or mobile end-users, enterprises, other providers and the internet. The ISP is an

example of service provider which provides internet connectivity using its network. Figure 2.1 illustrates

the internet from an end-user’s point of view: the user buys a connectivity from an ISP that forwards its
traffic to the rest of the internet through its private network. [1]

Figure 2. 1: An end-user’s view of the internet [1].

However, Figure 2.1 represents an oversimplification of the real world. The service providers capable

of providing a global access to every other ISP and, hence, the internet are considered Tier-1 ISPs. Tier-

1 ISPs have global reachability to the internet; that means that these handful of ISPs have routes to all

reachable Internet prefixes. The remaining providers are classified as Tier 2 or 3. Tier-3 ISPs are small

providers that have a small number of end-customers, normally geographically centralized. Tier-2 ISPs

normally have a regional scope or larger geographical reach but still cannot deliver global connectivity.

3

Tier 2 and 3 ISPs have limited access to the internet and have to purchase transit services from Tier 1

ISPs, in this case, they are referred to as Consumer ISPs. This scenario is exemplified in Fig. 2.2.

[1][2][16]

-

Figure 2. 2: A Simple multi-provider Internet [1].

Figure 2. 3: Illustration of Layer 3 VPN connectivity service. Customers A and B each

obtain a virtually private IP service. [1]

Several types of services are delivered by service providers, such as, data or voice connectivity between

distant branches of a company. In Figure 2.3 a VPN connectivity service is exemplified. [1]

2.1.1 SERVICE LEVEL AGREEMENT (SLA)

In order to define a formal agreement between service providers and their customers, the services

delivered are defined by means of a Service Level Agreement (SLA) between provider and customer.

The SLA will describe the provided services in detail and it will be a common point between customer

expectations of service delivery and the actual service delivery by the provider, in fact, we want them

to be the same thing. When a provider is capable of delivering services according to its SLA definitions,

it is said that it can guarantee Quality of Service (QoS). Some providers publish their SLAs publicly on

4

the internet. For instance, Verizon, a large network provider in the USA, has several of its Service Level

Agreements published on the internet. [3]

The creation of new types of SLAs is not prohibited, since it is basically a business agreement. In fact,

the creation of new types of SLA creates room for innovation in the industry. Additionally, The SLA

defines how service level is measured, and possible penalties due to failure to comply with the SLAs.

There are several types of common SLAs, such as internet connectivity SLAs, VoIP traffic SLAs, VPN

connectivity SLAs, WAN connectivity SLAs and etc. The metrics for definition of SLAs include but

are not limited to [3]:

 End-to-End Delay

 End-to-End Jitter

 Network packet delivery rate

 Network availability

 Average connection speed

 Mean Time to Repair

 Mean-Opinion-Score for VoIP traffic.

2.2 NETWORK INNOVATION FOR SERVICE PROVIDERS

The technological development faced in the last decades has enabled us to reach a progress speed that

is surprising even to the most optimistic persons. The high availability of information is much correlated

with innovation speed. Business competition and the need to evolve current business models increase

as the innovation pace increases too. This is also a challenge for service providers and

telecommunication operators. [5]

The pervasiveness of internet access; the increasing proliferation of mobile devices; combined with the

progressive expansion of mobile applications consuming data services are providing a substantial

emergent increase in the traffic offered to providers. This data traffic is growing at an almost exponential

pace, whereas the revenue prevenient from network services is leaning towards stagnation. Figure 2.4

illustrates the rising gap between revenues and necessary investments to supply users’ quality of
experience (QoE) expectations. [5]

Due to the provider’s rising gap between costs and revenue, the actual business model of network

operators of building infrastructure then selling services will probably come to be unsustainable in the

future, occasioning on higher prices or reduced supply of services. The situation faced by network

operators is challenging, mainly, because of these 4 characteristics combined: [5]

 A decreasing average revenue per user;

 Intense competition for over the top services, such as Netflix;

 A business model based on the volume of subscribers;

 The saturation of the internet connectivity market.

The operators’ ability to produce income from existing infrastructure can define the success or failure

of the industry as it is today. This condition creates a lot of pressure over operators towards new

monetization strategies. The service providers are being forced to develop new business models, capable

of adding differentiated value to customers by means of new user’s experiences, taking advantage of

new service levels. Certainly, service providers need to evolve.

5

Figure 2. 4: Traffic Volume and Revenue Decoupling [5]

However, the actual architectural network paradigms are proving themselves obsolete towards the

challenges faced by network operators. Now, the services offered by the network are extremely tied to

the physical network infrastructure. Operators often need to configure devices individually and manually

causing operational inefficiency. The improvement process in the network is slow and very expensive

to providers and operators, mainly, because the traditional network paradigms are inflexible, static and,

thus, closed to innovation. The current network architecture was not made to be evolvable or to deliver

new services easily. [5][13]

We believe that today networks do not offer enough tools and information to allow us to provide, for

example, a pay-as-you-go billing strategy to service providers. It is hard both: to account and to control

the network. A degraded user experience and inefficient utilization of network resources are the

consequences of both: the lack of real-time visibility of the network state; and the lack of controlling

capabilities between applications and the network. [5][13]

Service Providers urgently need to find ways to drive value out of their network by making their services

more relevant to application developers, and their users and peers. They want to be able to, quickly and

easily, create and launch new services. While the network infrastructure remains rigid and hard to be

modified, digital services developers are taking full benefit out of highly flexible technologies to

innovate rapidly. Operators must obtain more value out of the network infrastructure investment and

match the pace innovation in networks to innovation speed of digital services. Therefore, they must

improve current classes of service (SLAs) to create new sources of revenue. For example, one possible

way to do that is to offer a faster implementation and easier management than what is being practiced

in the industry now. [5][13]

This modern, and dynamic, scenario is presenting new requisites of scalability, performance and user

experience to providers. The network providers’ ability to respond efficiently to these requests is

inadequate, due to the inflexibility of current network design patterns.

Two main problems: the lack of traffic demand visibility and the lack of feedback between applications

and network are pushing operators to either, over-provision the network or resign to a best-effort service

delivery. These specificities affect both: the operators’ ability to add differentiated value to the network

and the ability to obtain revenue prevenient from advanced and customized SLA-based services. [5][13]

On the other side, providers are expected to improve their services with intelligent information from the

network and be able to provide new services in a fast manner using simple management tools in order

to reduce the costs and time of these operations. Finally, the main issues can be summed to increasing

the capacity of creating and extracting value out of the network, as well as reducing operational costs.

[13]

6

2.3 SOFTWARE DEFINED NETWORKING

As stated before, the speed of innovation in Communication Networks does not match the speed of

innovation in digital services and intelligent systems [5]. The software-defined networking paradigm is

a possible solution to solve these issues by centralizing the network intelligence and abstracting the

network controlling functions to a central management point, as defended by the Open Networking

Foundation.

There are, essentially, four approaches to software defined networking: a traditional SDN architecture,

proposed by the Open Networking Foundation; a hybrid architecture i.e. not fully software-defined

architecture; a programmability-based architecture; and an overlay based architecture. Virtual overlays

will not be described in this work, because it is mainly applied to network virtualization scenarios and,

hence, is not correlated to the scope of this work. For information on the subject refer to [17]. Fig 2.5

illustrates the different architectures. In this section, we give further details on three different approaches

to SDN.

Figure 2. 5: Different approaches for Network Programmability

2.3.1 OPEN NETWORKING FOUNDATION SDN ARCHITECTURE

The Open Networking Foundation (ONF) defines SDN in the following way:

“In the SDN architecture, the control and data planes are decoupled, network intelligence and state are

logically centralized, and the underlying network infrastructure is abstracted from the applications. As

a result, enterprises and carriers gain unprecedented programmability, automation, and network control,

enabling them to build highly scalable, flexible networks that readily adapt to changing business

needs.”[6]

The ONF defends the total centralization of network intelligence in a control management layer,

decoupled of the network, with a centralized view of the network. Figure 2.6 contrasts the differences

between a traditional network architecture and a SDN architecture with a centralized control layer

extracted from the network. Additionally, to the ONF, SDN means the total separation between the data

forwarding plane and the routing control plane as illustrated on Fig. 2.6.

7

Figure 2. 6: Traditional Network Architecture vs Software Defined Architecture

A Southbound interface is defined as the interface that permits the control layer to control and

communicate with the network. The ONF supports OpenFlow as the main southbound interface to a

software-defined network. They also define an application layer that provides different network function

which will be, later, a great tool for innovation in the networking industry. In addition, a northbound

interface is defined as the interface that allows controlling and communication between the control layer

and the application layer. [6]

Figure 2.7 illustrates the open networking foundation’s propose of SDN architecture by means of the
OpenFlow protocol as southbound interface, custom APIs as northbound interfaces to business

applications that can control and manage the network.

Figure 2. 7: SDN framework adapted from the Open Networking Foundation [6]

8

An OpenFlow-based SDN architecture is defined by the use of a logically centralized point of control,

an OpenFlow network controller, to enable control of network behavior by means of OpenFlow enabled

network devices. This behavior is dictated by the network services implemented in the controller. The

OpenFlow main characteristics will be briefly described in the next section. [6][13]

The major point of this strategy relies on the extraction of network device complexity and centralization

of this complexity in a, potentially virtualized, single control point. Note that decreasing the network

device complexity implies in decreasing the costs of network devices, as well as it increases the

flexibility of the network controlling and management capabilities. In this way, a network operator could

change the function of a device from border router to a firewall with a simple installation or

configuration of an application in the network controller. [6][13]

The weakness of this strategy is its revolutionary characteristic. This strategy would require heavy

investments in change of equipment. It is necessary to take in consideration the fact that changing the

architecture in a drastic way would affect, not only, the network operations as well as billing and

monetization systems. It is reasonable to believe that network operators will avoid: overnight

investments, the replacement of network infrastructure, the redesign of network architecture and

possibly avoid the perturbation of operational standards. Taking this into consideration, the necessary

transition effort from the traditional network model to the ideal SDN model proposed by ONF stills very

costly. Therefore, the first software defined networks will probably abstract the network as an overlay

or set of APIs above the existing network in a partial way, in other words, the network will not be totally

transformed from day to night. [5]

2.3.2 SDN – NETWORK PROGRAMMABILITY

Some network vendors defend a different SDN approach. They defend a SDN approach based on direct

network programmability by means of an API. An API-based implementation and controller-based SDN

implementation follow the same principles. Both consist in providing a northbound open API for a

superior application layer that has the possibility of controlling and extracting information out of the

network. [17]

The main difference between them is that a controller-based architecture usually presents one extra level

of abstraction, and thus, higher layer applications can be developed independently of the southbound

interfaces implemented by the controller and the network. APIs that interfere in the network directly can

have different innovation possibilities whereas a controller-based SDN solution presents higher

flexibility of innovation possibilities. The controller can communicate and control the network in several

different ways, therefore abstracting network complexity, and providing standardized APIs to the

application layer. [5]

Software-defined networking basically means the extraction of network functions from its physical

infrastructure. It is important to highlight that this point of view is slightly different from the ONF

definition. Changing the physical network, today, is hard, slow and it often requires manual intervention

in a fragmented way, whereas in a software-defined network this would be flexible and almost

imperceptible. Software-defined networking will permit the management of the network as a single

entity, orchestrating provisioning and providing a real-time visualization of the network performance

and availability. [5]

This point of view, compared to the original one, proposed by the Open Networking Foundation, is

much more flexible and much more realistic regarding the solutions proposed and implemented in the

networking industry, including several types of possible approaches to the deployment of Software

Defined Networks happening in the real market.

2.3.3 HYBRID SOFTWARE DEFINED NETWORKING ARCHITECTURE

Another SDN approach defended by some vendors is a hybrid software-defined architecture where

devices still can detain certain part of network intelligence. In other words, it is defended that the total

decoupling of control plane and data plane is not strictly necessary.

9

The main motivation for that way of thinking is the proposed extraction of well-defined and consolidated

network functions, consequently, necessity of a certain amount of work to redesign the implementation

of those functions in a new design, pure SDN architecture.

The best transition strategy to a SDN environment is the incremental implementation of justified new

network functions using SDN solutions, for example: network optimization for video delivery, or

customized routing optimization. Operators will gradually deploy programmability interfaces in their

networks and, hence, the capacity to deliver faster innovation to their customers.

As a new network management layer arises and becomes the single network touch point, it will be easier

and faster to implement and provide new services, as well as the reconfiguration of new environments

will become easier. The SDN management layer will also provide a real time representation of the

network. [5]

2.3.4 SDN CONSIDERATIONS

According to the ONF, SDN can permit the fast implementation and development of new and intelligent

network services by means of [6]:

 An abstracted view of network functions and network capacities

 Standardized programmability interfaces to enable innovation

 Network statistics to create new services or enhance existing applications

 A single contact point with the network, optimizing network management and accelerating the

implementation of networked applications.

Caroline Chappell brings a SDN concept aligned with the original SDN concept proposed by the ONF,

and synchronized with the market perspective [5]. This author defends software defined networking as

an evolution of networks rather than a revolution. Moreover, the author states that all approaches are

complementary, and operators can use one or all of them, depending on their level of investment, their

business priorities, and their operational priorities. Again, the author also defends that SDN need to be

implemented gradually, incrementally, to support new services.

2.4 SERVICE PROVIDER INNOVATION WITH SDN

According to the ONF, The abstraction of network functions out of the physical infrastructure and

network intelligence centralization provided by SDN can transform the architectural network paradigm

of wide area networks, permitting the development of flexible WAN solutions ready to adapt to the

changing business environment. [13]

The challenging situation faced by providers now is very favorable to the emergence of SDN solutions.

To extract value of their key active, the network, operators need to drive a transformation in the market

trends. Moving from a commoditized communication services model to a model of service

differentiation and customized plans to each subscriber. The network intelligence can be used to deliver

innovation, creating new types of service in an agile manner and creating innovative business models.

[13]

New possibilities for service monetization can be implemented by the direct link between the application

layer and the network controller. For example, it is now possible to automate the resource allocation

optimally and dynamically from specific application demands. This capability is necessary to allow

service delivery with measurable and differentiated Quality of Services. The SDN framework can

decrease operational costs and fasten service activation and, hence, enrich existing services. [13]

Four possible strategies to new service creation and therefore new network monetization strategies are

exemplified by the open networking foundation: [13]

• Bandwidth on demand

• Bandwidth Exchange

• Pay for QoS

10

• Network features for pay

In the next sections, we explain the strategies of Bandwidth on Demand, e pay for QoS. The strategies

of bandwidth exchange and network features for pay are slightly more complex than the others and are

not included in the scope of this work. Nevertheless, they are very interesting possibilities for innovation

in service providers.

2.4.1 BANDWIDTH ON DEMAND

Figure 2. 8: Bandwidth on Demand Architecture [13]

The networking traffic patterns are changing very fast. The creation of new technologies such as big

data and cloud networking are creating extremely high and short demand peaks. In this scenario, the

purchase of a committed information rate is either very expensive or not effective enough. A service

Bandwidth on Demand, with the capability to resize or reactivate network connectivity dynamically is

far more interesting to the companies. This solution would reduce costs to these costumers because they

could pay only for what they consumed, in terms of network bandwidth and traffic. [13]

Some providers already offer bandwidth on demand services. According to the ONF, the main

difficulties faced by these providers are: [13]

 The lack of service provisioning automation capabilities

 The lack of a standardized control interface for operators. These capabilities are implemented

by means of vendor-specific solutions.

A SDN-based service provisioning strategy can permit automatic network control. A SDN-based service

provisioning strategy can also provide a real-time network view. These two features together can permit

the intelligent and automatic network resource allocation to satisfy different SLA requisites on a per-

user or per-flow basis.

11

2.4.2 PAY FOR QOS

The network traffic offered to network providers is rising. The change in data traffic patterns driven by

events, such as the intensification of video content consumption and the proliferation of mobile devices

creates a challenge of higher traffic unpredictability. [13]

In this situation of massive traffic growth, operators have two options: they either make extra

investments on over provisioning the network infrastructure to bare the worst-case scenario or resign to

a best-effort connectivity service and, thus, user-experience degradation. If the investments are not

sustainable or profitable, then network providers will chose towards service degradation. [13]

Now, considering a service degradation scenario, it is reasonable to think that some costumers or content

providers who expect higher Quality of Experience (QoE) standards will be willing to pay more for

extra value from the network.

Figure 2. 9: Differentiated and Monetizable services [13]

SDN permits the transform of the network from a bit transportation commodity to a valuable resource

based on network intelligence. This differentiation, basically, consists of flow prioritization, and can

easily be implemented with the deployment of OpenFlow switches on the network borders. In this way,

“premium” or special flows could be sent through optimized paths, and standard or unknown flows
could be forwarded through a best-effort path. [13]

In the long run, this strategy permits operators to extract value and generate the necessary revenue to

support incremental infrastructure improvement, and thus traffic growth, in a more profitable and

sustainable manner.

12

3 ARCHITECTURAL MODEL

This chapter describes the architectural model used to

study the experimentation of a software-defined

network solution to offer service provisioning

automation in service providers. We briefly detail the

main components and auxiliary components as well.

3.1 OVERVIEW

In this work, we present a study case to evidence the applicability of software-defined networking

solutions to solve real challenges of service providers, specifically, service provisioning automation. We

propose a useful network model based on SDN that can fasten service activation and ease the delivery

of customized services, therefore, allowing the creation and utilization of new SLA standards. To do

that we apply an OpenFlow-based SDN architecture, as described in Fig. 3.1, to control the network and

reinforce network policies of bandwidth utilization and data volume constraints.

Figure 3. 1: Illustration of an OpenFlow-based SDN architecture for Service Providers

The network behavior is controlled by the implemented network applications in the controller: service

activation, speed control and data volume monitoring. External network policies are reinforced

according to an external database by means of the network applications. Figure 3.2 illustrates the

architecture.

Additionally, the proposed architecture is only applied to border switches, decreasing deployment costs

and permitting an incremental execution of its strategies. This approach can still reach the purposes of

automatic service provisioning, and network policies reinforcement.

The system works basically as follow: every time a packet arrives in a switch, the switch checks for a

corresponding entry in its flow-table. If that packet has no match, thus “unknown”, then the switch
forwards that packet towards the controller. The controller identifies the user based on its IP address and

its physical location then confirms service authorization for that user. If confirmed, then network traffic

for that user will be selectively permitted and limited according to the network policies, using the meter

OpenFlow 1.3 functionality to limit the rate for that user. At the same time, the controller repeatedly

requests all the network devices for metering statistics and then updates its usage statistics. Next,

according to these updates, the controller will decide about service deactivation, reactivation or service

13

upgrading. If that user is not allowed in the network according to the network policies database, then its

flows will be instructed to drop packets as the correspondent action.

Figure 3. 2: Illustration of system architecture

3.2 OPENFLOW SDN ARCHITECTURE

OpenFlow is a communication protocol that allows a controller to coordinate and customize the

forwarding plane of network devices. It does that by allowing the modification of the flow tables in an

OpenFlow enabled switch. OpenFlow is the standard Southbound Interface according to the Open

Networking Foundation, as illustrated in Fig. 2.6.

The OpenFlow Specification version 1.3.3 was released on December, 18th, 2013 by the Open

Networking Foundation, while its 1.3.4 version is on ratification at the time of this work [8]. Several

vendors are already selling OpenFlow 1.3 enabled switches, including HP, Centec, Edge-core and Pica8

[9] [10] [11] [12]. This incredibly fast acceptance by the market of the protocol shows its popularity as

a tool for innovation in the network area. The companies supporting it, are doing it mainly because the

proposed “revolution” in the network industry might be strongly beneficial to them.

3.2.1 OPENFLOW ENABLED SWITCH

An OpenFlow switch behaves as described in Fig 3.3. For every flow, if a matching entry is already

defined in any of its flow-tables, then the switch applies the corresponding actions. If a flow has no

matching entry in any of the switch’s tables, then, the switch will search for an action on the table-miss

entry. If no is action defined for that entry, then the packet is dropped. [8]

Commonly, the table-miss entry is used to redirect new packets to the controller. The controller, then,

resolve the forwarding action of the switch, from a holistic view of the network.

14

Figure 3. 3: Flowchart detailing packet flow through an OpenFlow switch [8].

A flow is described by its match fields, which includes, at least, 12 matching fields according to the

OpenFlow 1.3 specification. The match fields are exemplified in Fig. 3.4 and include, but are not limited

to, IP addresses, TCP and UDP ports, Ethernet addresses and type. Further information can be found in

the OpenFlow specification itself. [8]

Figure 3. 4: Example of Flow table and instruction set [6].

The last entry of the table in Fig. 3.4 typifies the table-miss entry.

15

3.2.3 OPENFLOW CONTROLLER

An OpenFlow Controller can interact with the OpenFlow switches on several forms. The controller can

add, modify or delete flows according to the received packets. The controller can also add modify or

delete meters for a switch. It is capable of sending custom packets through its OpenFlow channel to the

network. An OpenFlow switch will not stop working when the OpenFlow connection between controller

and switch is disabled. This feature is important because it increases the resilience of the network. [6]

3.2.4 METER

According to the OpenFlow 1.3 specification published by the Open Networking Foundation, a meter is

a switch element that can reassure and control the rate of packets. The meter triggers a meter band if the

byte rate (or packet rate) passing through the meter exceeds a predefined threshold. The meter bad can

eventually drop a packet, in that case, it is denominated a Rate Limiter. [8]

The meter table existent in OpenFlow 1.3 devices permits a per-flow granularity and, thus, allow the

implementation of several QoS operation from rate-limiting to DiffServ schemes. Any flow entry can

specify a meter in its instruction set. The meter measures and controls the rate of the aggregation of all

flow entries to which it is attached. [8]

3.3 NETWORK APPLICATIONS

The three network applications implemented in the controller provide an interface to external conditions

through the Network Control Database, as illustrated in Fig. 3.2. This database basically defines the

permitted users, their respective bandwidth limits, and their data volume constraints. Additionally, the

controller, maintains a real-time representation of the network state in its “memory”. The behavior of

the three modules are based on the data structures described in Fig. 3.5.

Figure 3. 5: Network Control Database

16

3.3.1 SERVICE ACTIVATION MODULE

The service activation module is connected to the subscriptions database. The module works in two

ways: in a responsive manner and in a proactive mode. Responsively, when an unfamiliar packet arrives

in the network it is sent to the controller to request for instructions. The service activation module

identifies the user according to its IP address and network location and then validates either: if that user

should be provided with network access or not. If positive, then it computes the forwarding action

corresponding to that specific network device and sends an “add flow” message through its OpenFlow

Interface.

Figure 3. 6: Service Activation illustration

In negative case, instead of adding a forwarding action, the controller sends an instruction to drop the

packets for that flow.

Figure 3. 7: Service Denial illustration

17

Proactively, the application persistently checks if the state of each subscription in the subscription

database has changed in order to identify the necessity to reactivate services for users with deactivated

service.

Figure 3. 8: Service Reactivation illustration

3.2.2 SPEED CONTROL MODULE

The speed control module is also dependent on the subscription table and relies on the rate limiting

capability provided by the OpenFlow 1.3 Protocol. OpenFlow 1.3 allows a per-flow based metering

strategy. It is capable of dropping packets based on the rate that the packets are arriving to that meter.

Figure 3. 9: Speed Controlling Module operation

The main challenge of this task is to coordinate the creation of multiple meters according to the network

control database. The presence of multiple subscription entries for a specific user also have to be

managed by the module.

18

3.2.3 DATA VOLUME MONITORING MODULE

The data volume monitoring module keeps track of data usage on a per-user basis. According to the

network state table, the controller query all switches for the meter statistics related to each of its active

users. After receiving that information, the controller updates its statistics table. Later, if a user has a

negative balance the service provisioning module will deactivate the service for that user.

3.3 OTHER COMPONENTS RELATED

In this section, the supplementary components necessary to the deployment of the test bed for the study

case will be described. The SDN controller used in the work was a RYU controllers. The OpenFlow

switches is the Openflow 1.3 software switch provided by CPqD. [15] And the network was emulated

on Mininet, version 2.1. We also had to use a few performance testing tools to verify the right behavior

of the network.

Figure 3. 10: Linear topology with 4 hosts on Mininet

3.3.1 RYU CONTROLLER

The RYU controller was chosen because it is a very lightweight controller written in python. It is

relatively well documented and its learning curve is very comfortable, since python is a very

straightforward and easy programming language. The RYU Controller fully supports OpenFlow 1.3.

Further information on the RYU Controller can be found at [14].

3.3.2 OPENFLOW 1.3 SOFTWARE SWITCH

The CPqD reference switch has been used by the ONF as the standard software implementation of the

OpenFlow 1.3 switch and it is a virtual switch. In our case the software was chosen because it was the

only virtual switch implementing OF 1.3 metering capabilities at the time of the development of this

work. It can be easily integrated to Mininet. Further information on the OpenFlow Switch can be found

at [15].

3.3.3 MININET

Mininet is a relatively recent and increasingly popular tool for network emulation. It is very lightweight

and mostly written in python, what provides a very fast learning curve. It is very easy to use and

customize according to your needs.

Mininet emulates hosts using Linux containers with isolated namespaces and network interfaces, it

emulates switches using isolated Linux containers running the virtual switches software, and it emulates

19

links by using network interfaces. Mininet automatically configures the Openflow Communication path

to each of the virtual switches.

By means of isolated namespaces, Mininet can easily permit the isolated execution of software on

different emulated hosts as can be seen in Fig. 3.11 below. This feature was used to ease performance

evaluation of the network.

Figure 3. 11: Mininet hosts’ terminals and its network interfaces.

3.4 NETWORK PERFOMANCE MEASUREMENT TOOLS

3.4.1 SMOKEPING

Smokeping is an Open Source Linux software to measure, monitor and analyze connectivity

performance of a server. It has great visualization tools.

3.4.2 IPERF

IPerf is another Open Source Linux tool to measure, network performance. It is a very complete tool, it

can measure TCP throughput, TCP RTT, UDP loss rate, UDP throughput, UDP delay, UDP Jitter. It is

possible to create an arbitrary number of simultaneous flows at a configurable rate. It does not have

great visualization tools.

20

4 STUDY CASE

In this chapter we describe the executed procedures

and testing experiments to evidence the proposed

concept of automatic service provisioning using a

software-defined network.

4.1 OVERVIEW

To demonstrate the applicability of the proposed solution, we emulate a simple network on Mininet and

connected it to a RYU controller with the developed network applications of service activation, speed

control, and data volume monitoring. To demonstrate the effectiveness of the proposed solution, we

summed the study case to 5 scenarios:

 START: Automatic service activation, constrained to rate limiting policies.

 STOP: Automatic service deactivation, constrained to data volume limits.

 RESTART: Automatic service reactivation.

 STOP AGAIN: Service deactivation

 UPGRADE: Automatic service reactivation, according to new policies.

4.1.1 INITIAL SETUP

For our study case we run RYU and Mininet on two virtualized servers in a private data-center to

eliminate possible bottlenecks of using a limited personal computer.

The initial state of the subscriptions database is described in Table 4.1.

Table 4.1: Initial state of subscriptions database

Subscription id User IP address Data volume limit (KB) Rate limit (Kbps)

1 10.0.0.1 10000 2000

2 10.0.0.2 1000 3000

3 10.0.0.3 1000 4000

4 10.0.0.4 10000 4000

The simulated topology was a linear topology with 4 switches in chain and 1 host attached to each switch

as shown in Fig. 14. Detailed procedures for this operations are detailed in this reference.

We setup and start Smokeping in host 1. Smokeping send 5 ping every 5 seconds to all hosts from host

1. It records its latency time and displays then in a few graphs with basic statistics as it will be seen in

Fig. 4.1.

4.1.2 START PHASE

Before the start phase all network devices have empty flow tables and, hence, cannot forward traffic

successfully. After initiating the controller, it will insert a table-miss entry on every switch’s table.

During, the start phase we ping all hosts, and record its first five ping responses including latency time.

We expect that the controller will permit traffic of the permitted users according to the network

subscriptions database. In this phase, it is important to register the response time of the network, which

is the latency of the first ping. Later, we use this information to verify the operation of the service

21

4.1.3 STOP PHASE

After basic connectivity tests, it is necessary to verify the operation of the speed control module and the

data volume monitoring volume. For that we generate network traffic from one host to another and

monitor its network performance using the iperf tool: UDP traffic is generated at the rate of 5Mbps; its

throughput, loss rate, and jitter are monitored on the server side using the iperf tool. This procedure is

repeated a total of 10 times to guarantee some reliability to the measurement.

It is very important to measure the throughput to validate the correct operation of the speed control

module and also measure its accuracy. It is also necessary to measure the volume of data transmitted in

the network to examine the accuracy of the data volume monitoring module, and also verify its correct

operation.

The expected behavior of the system is to interrupt service when the data volume transmitted goes

beyond the permitted value stored in the database.

4.1.4 RESTART PHASE

It is necessary to evaluate the reactivation of the system after verifying the service deactivation feature

of the network. For that, a valid subscription is reinserted in the subscription database. Then, to account

the response time of the reactivation module, the timestamps of the deactivation system and the

timestamp of the reactivation button are compared to each other. This experiment was also repeated 10

times, 5 times for host 1 and 5 times for host 2.

4.1.5 STOP AGAIN PHASE

Next, TCP traffic is generated in the system to measure the TCP throughput of the network. It is also

important to measure the volume of data transmitted in the network to examine the accuracy of the data

volume monitoring module. Again, the expected behavior of the system is to interrupt service when data

volume transmitted goes beyond the permitted value. This experiment was repeated 5 times for host 1.

4.1.6 UPGRADE PHASE

Now, in order to evidence that the software defined network can be easily adapted to dynamic requisites,

a new entry is inserted in the database with different rate limits. Again, TCP traffic is generated to

analyze the throughput of the network. It is important to notice that the system behaves as dictated by

the network control database and, therefore, we permit the network to be dynamically controlled by

allowing the database to be controlled by external systems.

4.2 OUTCOMES

Here we present the data obtained from the experiments described in the section 4.1.

4.2.1 SUMMARY

In this subsection, we summarize the behavior of the system with the graph generated by Smokeping

throughout the whole sequence of experiments. Figure 4.1 describes the labels for graphs described next

in this section.

22

Figure 4. 1: Labels for the graphs described in section 4

Figure 4.1 displays the sequence of experiments and the behavior of the whole network. The blue lines

represent connectivity times from host 1 to each of the hosts. In the Figures 4.2.a); 4.2.b); 4.2.c); 4.2.d),

the connectivity time for hosts 1, 2, 3 and 4 are, respectively, represented. The blue rectangles shadowing

the curve represent the variance of the round-trip time. The T0 arrow in green indicates service activation

for all hosts. Notice that, after that time, the graph displays a blue line for all hosts, thus, all hosts are

reachable.

Figure 4. 2: Network connectivity throughout the sequence of experiments

The T1 arrows, in orange, indicate service deactivation times for host 2. The T2 arrows, in red, indicate

service deactivation times for host 1. Observe that service is deactivated at different times for hosts 1

and 2; after that, the connectivity line (blue line) disappears.

The T3 arrow, in blue, indicates service reactivation. Notice that network connectivity is restored

simultaneously for all hosts at time T3. The T4 arrows, in purple, indicate the upgrading time.

Observe the overall behavior of the system: Service activation at T0, deactivation at different times T1

23

and T2, then reactivation at T3, another deactivation and finally reactivation due to service upgrading.

Figures 4.3 and 4.3 illustrates the network connectivity for host 4 and 2, respectively, in further detail.

Figure 4. 3: Host 4 Latency report detailed

Observe that the variance of the delay for T4 is very higher that the standard ones in the graph. Variance

is high during activation and deactivation times, as expected. Again, T3 indicates service activation, red

arrows indicate deactivation; and the purple ones indicate the final reactivation and service upgrading.

Figure 4. 4: Host 2 Latency report detailed

Notice that the graphs are alike. In this case, T3 represent reactivation, and T4 represent service upgrade,

but now, T1 represents deactivation. Looking closely, it is possible to notice that the time difference

between the last deactivation and reactivation are the different. Host 2 can be accessible for less time

than host 4. This behavior is right as expected and it is a consequence of the data limits set in the initial

database described in table 4.1

4.2.2 START PHASE OUTCOMES

In the start phase every host ping each other host to verify the response time for that link, then the system

is restarted to repeat the procedure. Figure 4.6 shows one iteration of the procedure.

24

Note in Fig. 4.6 that the time for the first ping request is always much higher than the time for the

subsequent ones. The initial delay happens because the switch does not have any entry on its table (for

that flow) to decide which action to take. The so-far unknown user have to be verified by the controller.

The network response time is the time of the first ping. As stated before, the experiment is repeated

several times. The acquired data is displayed in Fig. 4.5.

Figure 4. 5: Response Time distribution – 106 ms mean, variance 30 ms

Note that the maximum response time in 100 experiments was smaller than 0.2 seconds. This result is

very satisfactory and exemplifies that a software defined networking solution can deliver, in real-time,

service delivery dynamically.

Figure 4. 6: Response time measurement screenshot

4.2.3 STOP PHASE OUTCOMES

During the stop phase, the data volume monitoring module and the speed control module are tested. For

that, 5 flows of 1Mbps of traffic are generated in hosts 1 and 2 towards host 4 and 3 respectively. A total

incoming traffic of 5 Mbps per host. This experiment was repeated a few times for each host. Figures

4.6 and 4.7 show the result of one experiment repetition for host 2 and 4, respectively.

25

Figure 4. 7: Network measurements for UDP traffic from host 2. Figure a) represents the

iperf client, and Fig. b) represents the iperf server

Figure 4. 8: Network measurements for UDP traffic from host 1. Figure a) represents the

iperf client and Fig. b) represents the iperf server

Notice that the total volume of data transmitted by host 1 (4.28 Mbytes), presented in Fig 4.8, is

slightly bigger than the predefined value (4 Mbytes). Also note that different loss rates are presented: a

35% loss rate to host 2 and a 55% loss rate to host 1 according to Fig 4.7 and Fig. 4.8 respectively.

Different throughputs are presented: a 2.24 Mbps throughput for host 1 and a 3.44 Mbps throughput

for host 2, according to Fig. 4.7 and Fig 4.8 respectively. Therefore, the loss rate and throughput

depend on the limiting rate as expected.

The measured throughput is also slightly higher than the predefined limiting rate. To measure this

imprecision we repeated the experiment a few times for each host, the measured values are presented

in Tab. 4.2.

26

Table 4.2- Network measurements for 5Mbps of UDP Traffic generated at host 1 for 16

seconds

Throughput (Mbps) Jitter (ms) Loss Rate (%) Total transmitted data (Mbyte)

2.19 31 55 4.57

2.18 30 54 4.3

2.2 1.5 55 4.68

2.18 30 55 4.3

2.2 0.5 55.8 4.2

2.24 0.31 55,4 4.28

2.15 31 55.8 4.24

Table 4.3 - Network measurements for 5Mbps of UDP Traffic generated at host 2 for 3.5

seconds

Throughput (Mbps) Jitter (ms) Loss Rate (%) Total transmitted data (Mbyte)

3.81 0.24 21 1.16

3.46 0.24 29 1.08

3.44 0.24 34 1.06

3.75 0.4 25 1.12

3.56 0.5 28.6 1.07

3.58 0.29 28.6 1.07

According to the measurements presented in Table 4.2, the host 1 presented: a mean throughput of

2.19 Mbps, an average Total of transmitted data of 4.37 Mbytes. Therefore, the proposed solution

presented an average imprecision of 9.5% on the speed controlling module and average imprecision of

9.25% on the data volume monitoring module for host 1. On the other hand, according to the

measurements presented in Table 4.3, the host 2 presented a mean throughput of 3.6 Mbps; and an

average total of transmitted data of 1.09 Mbytes. Thus, host 2 presented an average imprecision of

20% on the speed controlling module, and average imprecision of 9% on the data monitoring module.

Finally, the modules work as expected and control the speed and total volume of data transmitted in

the network with some imprecision. This result exemplifies how a software defined networking

solution can be used to provide customized SLA levels on a per-user basis in a service provider like

scenario.

4.2.4 RESTART PHASE OUTCOMES

After verifying that basic features of the system are working fine: service activation, speed controlling,

data volume monitoring. We want to test if the system can be usable by testing the reactivation response

time.

After service deactivation, the system automatically deletes the subscription entry for the user who went

through his data limit.

27

We test the reactivation time, by reinserting an entry in the subscriptions database and then measuring

the time from the insertion to service activation.

Table 4.4 – Response time for reactivation

Repetition Measured reactivation time

1 392 ms

2 604 ms

3 136 ms

4 860 ms

5 204 ms

According to our measurements, our solution presents a maximum response time smaller than 1 s. This

result is very satisfactory and shows that a software defined networking solution can deliver real-time

service activation and reactivation to customers.

4.2.5 STOP AGAIN OUTCOMES

Now, TCP traffic is generated to investigate the accuracy of the proposed solutions under different

constraints.

Table 4.5: Network measurements for TCP Traffic generated at host 1for 32 seconds

Throughput (Mbps) Total transmitted data (Mbyte)

2.14 8.25

2.13 8.00

2.16 8.25

2.15 8.25

2.14 8.25

Again, the system worked as expected, with some imprecisions. According to Table 4.5, the mean

throughput for TCP is 2.14Mbps and the total transmitted data was 8.20 Mbytes. Thus, the speed

controlling module presented an average imprecision of about 7%, and the data volume monitoring

module was, now, inversely biased, and showed an average imprecision of 18%. Again, this study case

exemplifies how a software defined networking solution can be used to provide customized SLA levels.

4.2.6 UPGRADE PHASE OUTCOMES

After inserting different entries in the subscriptions database we re-evaluate the network performance

generating TCP traffic. The subscription database state is described in the Table 4.6.

Table 4.6: Final state of subscriptions database

Subscription id User IP address Data volume limit (MB) Rate limit (Kbps)

5 10.0.0.1 100 4000

6 10.0.0.2 10 4000

7 10.0.0.3 10 4000

8 10.0.0.4 100 4000

28

Table 4.7: Network measurements for TCP Traffic generated at host 1 for 17 seconds

Throughput (Mbps) Total transmitted data (Mbyte)

4.18 9.25

4.15 8.75

4.41 9.25

4.34 9.00

4.74 9.62

4.66 9.62

4.69 9.75

According to the measurements in the Table 4.7, the network presented an average throughput of

4.45Mbps. Therefore, an average imprecision of 11.25%.

Nevertheless, the system behaved as expected and it increased the average throughput with a simple

update in the subscription database. This exemplifies how a software defined networking solution can

provide customized services on a per-user basis in an automatic manner.

29

5 CONCLUSION

In this section we conclude this work and briefly go

through the main achieved results. Possibilities for

future works are also discussed briefly.

We successfully developed a software defined networking solution and demonstrated by simulation how

the architecture can be used to fasten and ease service provisioning. Additionally, we designed and

provided a solution that allows operators to apply new network monetization strategies by delivering

customized service levels automatically to different users.

The automatic behavior of the system was exemplified in the tests of section 4 and it is based on the

usage of a network database to interface with end systems. This strategy permits innumerous

possibilities for automation such as the creation of activation systems providing a direct interface to ISP

customers. In that scenario, the system can be design in such way that the billing systems can also be

automatically connected to the network provisioning model. Moreover, it permits the implementation

of Bandwidth on Demand strategies to providers

In this work, we presented a service provisioning solution with activation response times smaller than

200 milliseconds and reactivation times smaller than 1 second. We also implemented speed controlling

and data volume monitoring in a software defined network with small imprecisions under than 10% and

20%, respectively. We could verify that the metering feature of the OpenFlow 1.3 can be applied to

provide custom service levels to customer and can be used to control speed for both UDP and TCP

traffic.

Additionally we simulated a software defined networking architecture on the widely used network

emulator Mininet, and applied some features of OpenFlow 1.3 protocol using the CPqD reference switch

and the RYU network controller.

The solution and technologies are very new and insipient, and there is still plenty of room for innovation.

The results of this work are very constrained by the data structures and specificities of the written code.

The precision of the controlling modules can be improved with better coding strategies, additionally,

the response time can also be decreased with better data structures and system architectures. For

example, the response time for activation (200 milliseconds) can be surely reduced with better database

look-up strategies. The speed controlling module can also be made more precisely with further analysis

of the specificities of the OpenFlow 1.3 metering capability.

Future works can design different new strategies for service provisioning automation to deliver new

types of features to service providers that can be better suited for real world implementation. For

instance, the Pay for QoS feature could be implemented by increasing the granularity of the flow

definitions.

30

REFERENCES

[1] L.L. Peterson and B. S. Davie, Computer Networks: A System Approach, Fifth edition, 2012.

Morgan Kaufman Publishers,

[2] William B. Norton, “Internet Service Providers and Peering”. 2000. Paper available at

<http://web.univ-pau.fr/~cpham/ENSEIGNEMENT/COMMUN/norton-peering.pdf > accessed on

June, 10th, 2014.

[3] Verizon Enterprise. “Service Level Agreement Internet Dedicated Services”. 2014. Website

available at <http://www.verizonenterprise.com/terms/us/products/internet/sla/> accessed on June,

10th, 2014.

[4] Verizon Enterprise, “Verizon Voice over IP (“VoIP”) SLA”. 2014. Website available at

<http://www.verizonenterprise.com/terms/us/products/advantage/> accessed on June, 10th, 2014.

[5] Caroline Chappell, “Unlocking Network Value: Service Innovation in the Era of SDN”, in Heavy
Reading, 2013. White paper available at

<http://www.cisco.com/web/solutions/trends/open_network_environment/docs/hr_service_innovation.

pdf> accessed on June, 10th, 2014.

[6] Open Networking Foundation, “Software-Defined Networking: The New Norm for Networks”
2012. White paper available at <https://www.opennetworking.org/images/stories/downloads/sdn-

resources/white-papers/wp-sdn-newnorm.pdf> accessed on June, 10th, 2014.

[7] Cisco Systems, “Cisco Open Network Environment: Adaptable Framework for the Internet of
Everything”. 2013. White paper available at <http://www.cisco.com/c/en/us/products/collateral/ios-nx-

os-software/white_paper_c11-727538.pdf> accessed on June, 10th, 2014.

[8] Open Networking Foundation, “OpenFlow 1.3.3 Switch Specification”, 2013. White paper

available at <https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-

specifications/openflow/openflow-spec-v1.3.3.pdf> accessed on June, 15th, 2014.

[9] Hewlett-Packard Development Company, L.P. “Quick Specs HP 2920 Switch Series”. Datasheet

available at <http://h18000.www1.hp.com/products/quickspecs/14499_div/14499_div.pdf> accessed

on June, 15th, 2014

[10] Centec Networks Co. “V330 OpenFlow Switch Reference System”. 2014. Datasheet available at

<http://www.centecnetworks.com/en/DownList.asp?ID=9&s0=114&s1=115&s2=121&sr=> accessed

on June, 15th, 2014.

[11] Edge-Core Networks. “AS4600-54T White-Box Switch Datasheet”. Datasheet available at

<http://www.edge-core.com/temp/ec_download/1105/AS4600-54T%20DCSS_DS.pdf> accessed on

June, 15th, 2014

[12] Pica8 Inc. “P3290 Switch Datasheet”. 2014. Datasheet available at

<http://www.pica8.com/documents/pica8-datasheet-48x1gbe-p3290-p3295.pdf> accessed on June,

15th, 2014

[13] Open Networking Foundation, “Operator Network Monetization Through Openflow-Enabled

SDN”, 2013. White paper available at <https://www.opennetworking.org/solution-brief-operator-

network-monetization-through-openflow-enabled-sdn> accessed on June, 19th, 2014.

[14] Nippon Telegraph and Telephone Corporation, “Ryu 3.10 documentation”, 2014. Website available
at < http://ryu.readthedocs.org/en/latest/ > accessed on June, 19th, 2014.

[15] Fernandes, E. L., Rothenberg, C. E. R., “Openflow 1.3 Software Switch”, Simpósio Brasileiro de
Redes de Computadores e Sistemas distribuídos, SBRC 2014. Paper available at <

http://sbrc2014.ufsc.br/anais/files/salao/SF-ST3-1.pdf> accessed on June 19th, 2014

[16] Balakrishnan, H., Feamster, N. “Interdomain Internet Routing”, 2005. Paper available at <

http://pages.cs.wisc.edu/~akella/CS740/F08/740-Papers/hari-bgp-notes.pdf > accessed on July 7th ,

2014

https://www.opennetworking.org/solution-brief-operator-network-monetization-through-openflow-enabled-sdn
https://www.opennetworking.org/solution-brief-operator-network-monetization-through-openflow-enabled-sdn
http://ryu.readthedocs.org/en/latest/

31

[17] Cisco Systems, “Cisco Open Network Environment: Network Programmability and Virtual

Network Overlays”, 2012. White paper available at
<http://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/white_paper_c11-707978.pdf>

accessed on July 6th, 2014

	RESUMO
	1 INTRODUÇÃO
	2.1 INOVAÇÃO EM PROVEDORES DE SERVIÇO
	2.2 REDES DEFINIDAS POR SOFTWARE EM PROVEDORES DE SERVIÇO
	3 MODELO ARQUITETURAL
	4 ESTUDO DE CASO
	5 CONCLUSÃO
	ABSTRACT

