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RESUMO

1 INTRODUÇÃO

As redes de hoje são estáticas e difícil de modificar, enquanto o tráfego de dados cresce devido a 
mudanças nos padrões de consumo e crescente disponibilidade de tecnologias de acesso móveis. O 
volume de dados vem aumentando; a tolerância a falhas dos usuários vem diminuindo; e as receitas  
não crescem tão rapidamente como tráfego.  Provedores  de serviço sofrem pressão crescente  para 
inovar, reduzindo custos operacionais e diminuindo o tempo de entrega de novos serviços para, então, 
gerar novas fontes de receita. 

Contudo, o provisionamento de serviço ainda é extremamente acoplado à infraestrutura de rede. De 
forma  que,  dispositivos  de  redes  são,  comumente,  configurados  manualmente  e  individualmente 
acarretando em ineficiências operacionais. Hoje, é necessário, basicamente,  re-projetar toda a rede 
cada vez que precisar entregar um novo serviço. Uma solução de rede definida por software pode 
automatizar  o  provisionamento  de  serviço  e  permitir  novos  níveis  de  inovação  possibilitando  a 
ampliação das estratégias de monetização de seus serviços. 

O objetivo desse trabalho é apresentar um modelo provisionamento de serviços baseado em redes 
definidas  por  software  para  automatizar  a  ativação,  desativação  e  reativação  de  serviços;  e  ainda 
permitir  a  entrega  de  serviços  diferenciados  para  cada  usuário,  por  meio  do  controle  ativo  da 
quantidade e velocidade de tráfego permitido na rede para cada usuário.

2.1 INOVAÇÃO EM PROVEDORES DE SERVIÇO

O  modelo  de  negócios  utilizado  por  provedores  de  serviço  vem  mostrando  dificuldades  de 
escalabilidade  conforme o  volume de dados  cresce.  O tráfego oferecido a  provedores  de  serviço  

cresce  de  forma  quase  exponencial  enquanto  a  receita  proveniente  de  serviços  de  rede  tende  à  

estagnação. Dessa forma, “o gap entre receita e investimentos necessários para suprir as expectativas 
de qualidade de serviço dos usuários está crescendo cada vez mais, como ilustrado na Fig. 2.4. Por  
causa disso, o modelo de negócios atual pode se tornar insustentável no futuro. 

A  situação  enfrentada  por  provedores  é  desafiante,  principalmente,  por  causa  dessas  quatro 
características combinadas:

• Decrescente receita média por usuário.

• Competição intensa a partir de serviços de camadas superiores, como Netflix.

• Modelo de negócio baseado em quantidade de assinantes

• Saturação do mercado de conexão com a internet

 É necessário inovar para reduzir custos operacionais ou monetizar as estruturas de rede existentes.

Ao mesmo tempo, o atual paradigma arquitetural  de redes de comunicação vem se demonstrando 
obsoletos frente aos  desafios modernos.  Provedores  de serviço têm capacidade limitada de lançar 
novos serviços ou adaptar a rede para suportar as necessidades de novos serviços. O atual modelo 
arquitetural de redes não foi projetado para ser evoluível ou entregar novos serviços de forma rápida.

Operadores precisam aprimorar os serviços correntes com informação inteligente da rede; e fornecer  
novos serviços de forma rápida utilizando ferramentas simples de gerenciamento de forma a reduzir  
custos e o tempo de implantação dessas operações.



2.2 REDES DEFINIDAS POR SOFTWARE EM PROVEDORES DE SERVIÇO

A popularização do paradigma de redes definidas por software (software defined network - SDN) é  
oportuna frente aos desafios  enfrentados por  provedores de serviço.  SDN basicamente significa a  
extração das funções de controle de rede da estrutura física e centralização da inteligência de rede em 
um ponto de controle único e potencialmente virtualizado como ilustrado na Fig. 2.6. Existem diversas 
abordagens para implementação de SDNs como ilustrado na Fig. 2.5. 

Novas possibilidades de monetização de serviço para provedores pode ser implementada por meio do 
link direto entre aplicações e o controlador de rede, presente na arquitetura SDN. Por exemplo, é  
possível automatizar a alocação de recursos de rede de forma a prover serviços de forma dinâmica e 
otimizada para demandas específicas provenientes dos usuários da rede. O modelo SDN pode diminuir 
custos operacionais, agilizar a ativação de serviços, e portanto, enriquecer serviços existentes.

Uma possibilidade de inovação em provedores de serviço é a criação de um serviço de Bandwitdh on 

demand. Os padrões de tráfego em rede estão mudando rapidamente. Tecnologias como big data estão 
criando  picos  de  tráfego extremamente  altos  e  curtos.  Neste  cenário,  a  contratação  de  uma taxa  
constante de transmissão se torna muito cara, ou não suficiente. Um serviço que permita a contratação 
de  banda  de  transmissão  que  permita  redimensionar  ou  reativar  a  conectividade  de  rede 
dinamicamente é muito mais interessante. Esse tipo de tecnologia iria reduzir custos para esse tipo de  
cliente, pois eles pagariam somente pelo que consumissem.

Uma estratégia de provisionamento de serviços baseada em SDN pode permitir o controle automático 
da rede. Essa estratégia pode também proporcionar uma visão em tempo real da rede. Esses duas 
funcionalidades  combinadas permitem a alocação inteligente  e  automática de recursos  de rede de 
forma a suprir diferentes requisitos de nível de serviço para cada usuário.

3 MODELO ARQUITETURAL

Nesse trabalho, propomos um modelo de rede baseado na arquitetura de redes definidas por software  
que pode agilizar  a  ativação de serviços  e facilitar  a entrega de serviços  customizados,  portanto,  
permitindo a criação e utilização de novos padrões de nível de serviço. Para fazer isso, aplicamos uma  
arquitetura de rede definida por software baseada em OpenFlow, ilustrada na Fig. 3.1, para controlar a  
rede e reforçar as políticas de utilização de rede e limitações de volume de dados.

O  comportamento  da  rede  é  controlado  pelas  aplicações  de  rede  implementadas  no  controlador: 
ativação de serviço;  controle de velocidade e monitoração de volume de dados.  Políticas  de rede 
externas são reforçadas de acordo com uma base dado externa, por meio das aplicações de rede. A 
Figura 3.2 ilustra essa arquitetura.

O sistema funciona da seguinte forma: cada vez que um pacote chega a um switch, esse switch procura 
por uma entrada correspondente a esse pacote em sua tabela de fluxos. Se um pacote não tem entradas 
correspondentes,  então  o  switch  direciona  esse  pacote  ao  controlador  da  rede.  Em  seguida,  o  
controlador identifica o usuário que gerou o pacote baseado no seu endereço IP e sua localização física  
e procura autorização de serviço para aquele usuário. Se confirmado, então o tráfego de rede para 
aquele  usuário  será  permitido  e  limitado  de  acordo  com  as  políticas  de  rede,  utilizando  a 
funcionalidade  meter do  OpenFlow  1.3  para  limitar  a  taxa  de  transmissão  daquele  usuário.  
Simultaneamente, o controlador requisita todos os dispositivos de rede, repetidamente, informações 
sobre estatísticas de “metering” e, em seguida, atualizar as estatísticas de utilização. Posteriormente,  
de  acordo  com  essas  atualizações,  o  controlador  decidirá  sobre  a  desativação,  reativação  ou  
aprimoramento.  Se aquele  usuário não for  permitido na rede de acordo com a base de dados de  
políticas de rede, então esses fluxos serão instruídos a descartar os pacotes como ação correspondente.



4 ESTUDO DE CASO

Para demonstrar a aplicabilidade da solução proposta, emulamos uma rede simples no Mininet e a 
conectamos ao controlador RYU integrado às aplicações de rede desenvolvidas: ativação de serviços, 
controle  de  velocidades,   monitoramento  de  volume  de  dados.  Para  demonstrar  a  efetividade  da 
solução proposta, resumimos o estudo de caso a 5 cenários:

• START:  teste  de  ativação  de  serviços  automática,  limitada  às  políticas  de  limitação  de 
velocidades.

• STOP: teste de desativação de serviços automática, limitada às políticas de volume de dados.

• RESTART: teste de reativação de serviços automática.

• STOP AGAIN: teste de desativação de serviços

• UPGRADE: teste de reativação de serviços de acordo com novas políticas de rede.

As etapas de teste e seus resultados são detalhados no trabalho completo.

5 CONCLUSÃO

No  estudo  de  caso  desenvolvido  projetamos  e  desenvolvemos  uma  solução  que  implementa 
provisionamento de serviços rápido e automático; e permite controle de utilização da rede de forma  
personalizada.  E  portanto  permite  operadores  de  redes  a  implementar  novas  estratégias  de  
monetização baseadas na entrega automática de níveis de serviço customizados a diferentes usuários.

A característica automática do sistema foi evidenciada por meio dos testes na seção 4 e é baseada na  
utilização  de  uma  base  de  dados  de  controle  de  rede  como  interface  com  sistemas  finais.  Essa 
estratégia permite várias possibilidades para automação como a criação de sistemas de ativação de  
serviço  que  forneçam uma interface  direta  a  clientes  de  provedores  de  serviço.  Nesse  cenário,  o 
sistema pode ser projetado de forma que os sistemas de cobrança também sejam automaticamente 
conectados  ao  modelo  de  provisionamento  de  rede.  E  portanto  permite  aos  provedores  a  
implementação de uma estratégia de Bandwidth on Demand.

Nesse trabalho,  apresentamos uma solução de provisionamento de serviço com tempo de resposta 
menor  que  200  milissegundos  e  tempo  de  reativação  menores  que  1  segundo.  Nós  também 
implementamos controle de taxa de transmissão e monitoração de volume de dados trafegado com 
pequenas imprecisões de 10% e 20%, respectivamente. Pudemos verificar que a funcionalidade de  
metering do OpenFlow 1.3 pode ser aplicada para prover níveis de serviços customizados e pode ser  
usada para controlar a velocidade de tráfego UDP e TCP.

Palavras-chaves: Redes definidas por software, redes de computadores, Openflow.



ABSTRACT

This work proposes a useful network model to automate service provisioning in service providers 
based on software-defined networking. We performed a study case based on the proposed model and 
simulated it over an emulated network in Mininet to verify the proposed features. In the study case, we 
designed and developed a solution to implement fast and automatic service provisioning; and control  
network utilization in a customized approach. Therefore, we provided a solution that allows network 
operators  to  implement  new  monetization  strategies  by  delivering  customized  service  levels 
automatically to different users.

Keywords: Computer Networking, Software-defined networking, Openflow.
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1 INTRODUCTION 

This chapter describes the context and motivations for 

this work. We also introduce the approached problem 

and the proposed solution and, briefly, go through the 

work organization structure. 

1.1 CONTEXT AND MOTIVATIONS 

Today networks are static and hard to modify and evolve, whereas data traffic grows due to changes in 

usage patterns and the growing pervasiveness of mobile data access technologies. The volume of data 

is getting bigger, users’ tolerance to failure is getting lower and revenue is far from increasing as faster 

as traffic. Service providers are suffering increasing pressure to innovate, reduce its operational costs 

and decrease delivery time for new services to generate new sources of revenues.  

The main motivation for this work was to apply innovative networking technologies to real-world 

problems widely faced in the industry, specifically service provisioning in a service provider 

environment. The popularization of the software defined networking paradigm is opportune to solve the 

network operators’ challenges. In this work, we want to propose a solution evidencing that the software 

defined networking paradigm can fasten service delivery and ease network operation.  

1.2 PROBLEM 

Nowadays, service provisioning is extremely tied to the physical network infrastructure. Moreover, 

network devices are often manually and individually configured increasing operational costs. Right now, 

we basically have to re-engineer the whole network each time we want to deliver a new service.  A 

software defined networking solution can automate service provisioning and promote a higher level of 

innovation allowing providers to embrace new monetization strategies, such as pay-for-QoS, or 

bandwidth on demand. 

1.3 OBJECTIVES 

The goals of this work are to present and implement service provisioning based on a software defined 

networking architecture to automate service activation, reactivation and deactivation, and permit service 

customization on a per-user basis, by automatically controlling the network speed and volume of data 

permitted in the network.  

1.4 WORK PRESENTATION 

This work is divided in the following way. Chapter 2 presents some of the challenges faced by service 

providers, discusses the necessary innovations in the industry, gives an overview of software defined 

networking architectures and finally describes some innovation opportunities for software defined 

networking in service providers. 

Chapter 3 presents the architectural model of our study case and how our propose aims to automate, 

ease and fasten service provisioning. Chapter 4 describes our simulation outcomes and analyze those 

outcomes according expected results. Chapter 5 presents our conclusions and suggests related works to 

amplify the effect of the service provisioning architecture proposed.  
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2 THEORETICAL BACKGROUND 

This chapter defines the main concepts necessary to the 

understanding of the presented study case. We briefly 

describe some challenges faced by service providers 

and how software-defined networking architectures 

can be applied to solve these problems. 

2.1 SERVICE PROVIDER NETWORKS 

An extraordinary technologic development has been experienced in the last decades. Some people assign 

this development to two principal components: first, the growing pervasiveness of computation and 

second, the increasing access availability to information [5]. Part of these technologic advances are due 

to the development in the communication networks field, such as the construction and popularization of 

the Internet. Internet access availability is increasing, and, in parallel, access to information is becoming 

easier and cheaper. This situation wrongly, gives the mistaken impression that internet connectivity 

provisioning is a trivial operation. This operation suffers a lot from scalability problems, and it is 

becoming a great challenge as both increase: the number of users connected to the internet and the 

average, per user, data volume [5]. 

By definition, the internet is an interconnection between networks provided by the TCP-IP network layer 

model. Internet access is normally obtained by purchase of an internet connectivity service from an 

Internet Service Provider (ISP). A Communication Service Provider (CSP) delivers connectivity 

between, residential or mobile end-users, enterprises, other providers and the internet. The ISP is an 

example of service provider which provides internet connectivity using its network. Figure 2.1 illustrates 

the internet from an end-user’s point of view: the user buys a connectivity from an ISP that forwards its 
traffic to the rest of the internet through its private network. [1] 

 

Figure 2. 1: An end-user’s view of the internet [1]. 

However, Figure 2.1 represents an oversimplification of the real world. The service providers capable 

of providing a global access to every other ISP and, hence, the internet are considered Tier-1 ISPs. Tier-

1 ISPs have global reachability to the internet; that means that these handful of ISPs have routes to all 

reachable Internet prefixes. The remaining providers are classified as Tier 2 or 3. Tier-3 ISPs are small 

providers that have a small number of end-customers, normally geographically centralized. Tier-2 ISPs 

normally have a regional scope or larger geographical reach but still cannot deliver global connectivity. 
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Tier 2 and 3 ISPs have limited access to the internet and have to purchase transit services from Tier 1 

ISPs, in this case, they are referred to as Consumer ISPs. This scenario is exemplified in Fig. 2.2. 

[1][2][16] 

-  

Figure 2. 2: A Simple multi-provider Internet [1]. 

 

Figure 2. 3: Illustration of Layer 3 VPN connectivity service. Customers A and B each 

obtain a virtually private IP service. [1] 

Several types of services are delivered by service providers, such as, data or voice connectivity between 

distant branches of a company. In Figure 2.3 a VPN connectivity service is exemplified. [1] 

2.1.1 SERVICE LEVEL AGREEMENT (SLA) 

In order to define a formal agreement between service providers and their customers, the services 

delivered are defined by means of a Service Level Agreement (SLA) between provider and customer. 

The SLA will describe the provided services in detail and it will be a common point between customer 

expectations of service delivery and the actual service delivery by the provider, in fact, we want them 

to be the same thing. When a provider is capable of delivering services according to its SLA definitions, 

it is said that it can guarantee Quality of Service (QoS). Some providers publish their SLAs publicly on 
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the internet. For instance, Verizon, a large network provider in the USA, has several of its Service Level 

Agreements published on the internet. [3] 

The creation of new types of SLAs is not prohibited, since it is basically a business agreement. In fact, 

the creation of new types of SLA creates room for innovation in the industry. Additionally, The SLA 

defines how service level is measured, and possible penalties due to failure to comply with the SLAs. 

There are several types of common SLAs, such as internet connectivity SLAs, VoIP traffic SLAs, VPN 

connectivity SLAs, WAN connectivity SLAs and etc. The metrics for definition of SLAs include but 

are not limited to [3]: 

 End-to-End Delay 

 End-to-End Jitter 

 Network packet delivery rate 

 Network availability 

 Average connection speed 

 Mean Time to Repair 

 Mean-Opinion-Score for VoIP traffic. 

2.2  NETWORK INNOVATION FOR SERVICE PROVIDERS 

The technological development faced in the last decades has enabled us to reach a progress speed that 

is surprising even to the most optimistic persons. The high availability of information is much correlated 

with innovation speed. Business competition and the need to evolve current business models increase 

as the innovation pace increases too. This is also a challenge for service providers and 

telecommunication operators. [5] 

The pervasiveness of internet access; the increasing proliferation of mobile devices; combined with the 

progressive expansion of mobile applications consuming data services are providing a substantial 

emergent increase in the traffic offered to providers. This data traffic is growing at an almost exponential 

pace, whereas the revenue prevenient from network services is leaning towards stagnation. Figure 2.4 

illustrates the rising gap between revenues and necessary investments to supply users’ quality of 
experience (QoE) expectations. [5]  

Due to the provider’s rising gap between costs and revenue, the actual business model of network 

operators of building infrastructure then selling services will probably come to be unsustainable in the 

future, occasioning on higher prices or reduced supply of services. The situation faced by network 

operators is challenging, mainly, because of these 4 characteristics combined: [5] 

 A decreasing average revenue per user; 

 Intense competition for over the top services, such as Netflix; 

 A business model based on the volume of subscribers; 

 The saturation of the internet connectivity market.  

The operators’ ability to produce income from existing infrastructure can define the success or failure 

of the industry as it is today. This condition creates a lot of pressure over operators towards new 

monetization strategies. The service providers are being forced to develop new business models, capable 

of adding differentiated value to customers by means of new user’s experiences, taking advantage of 

new service levels. Certainly, service providers need to evolve.  
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Figure 2. 4: Traffic Volume and Revenue Decoupling [5] 

However, the actual architectural network paradigms are proving themselves obsolete towards the 

challenges faced by network operators. Now, the services offered by the network are extremely tied to 

the physical network infrastructure. Operators often need to configure devices individually and manually 

causing operational inefficiency. The improvement process in the network is slow and very expensive 

to providers and operators, mainly, because the traditional network paradigms are inflexible, static and, 

thus, closed to innovation. The current network architecture was not made to be evolvable or to deliver 

new services easily. [5][13] 

We believe that today networks do not offer enough tools and information to allow us to provide, for 

example, a pay-as-you-go billing strategy to service providers. It is hard both: to account and to control 

the network. A degraded user experience and inefficient utilization of network resources are the 

consequences of both: the lack of real-time visibility of the network state; and the lack of controlling 

capabilities between applications and the network. [5][13] 

Service Providers urgently need to find ways to drive value out of their network by making their services 

more relevant to application developers, and their users and peers. They want to be able to, quickly and 

easily, create and launch new services. While the network infrastructure remains rigid and hard to be 

modified, digital services developers are taking full benefit out of highly flexible technologies to 

innovate rapidly. Operators must obtain more value out of the network infrastructure investment and 

match the pace innovation in networks to innovation speed of digital services. Therefore, they must 

improve current classes of service (SLAs) to create new sources of revenue. For example, one possible 

way to do that is to offer a faster implementation and easier management than what is being practiced 

in the industry now. [5][13] 

This modern, and dynamic, scenario is presenting new requisites of scalability, performance and user 

experience to providers. The network providers’ ability to respond efficiently to these requests is 

inadequate, due to the inflexibility of current network design patterns. 

Two main problems: the lack of traffic demand visibility and the lack of feedback between applications 

and network are pushing operators to either, over-provision the network or resign to a best-effort service 

delivery. These specificities affect both: the operators’ ability to add differentiated value to the network 

and the ability to obtain revenue prevenient from advanced and customized SLA-based services. [5][13] 

On the other side, providers are expected to improve their services with intelligent information from the 

network and be able to provide new services in a fast manner using simple management tools in order 

to reduce the costs and time of these operations. Finally, the main issues can be summed to increasing 

the capacity of creating and extracting value out of the network, as well as reducing operational costs. 

[13] 
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2.3 SOFTWARE DEFINED NETWORKING  

As stated before, the speed of innovation in Communication Networks does not match the speed of 

innovation in digital services and intelligent systems [5]. The software-defined networking paradigm is 

a possible solution to solve these issues by centralizing the network intelligence and abstracting the 

network controlling functions to a central management point, as defended by the Open Networking 

Foundation. 

There are, essentially, four approaches to software defined networking: a traditional SDN architecture, 

proposed by the Open Networking Foundation; a hybrid architecture i.e. not fully software-defined 

architecture; a programmability-based architecture; and an overlay based architecture. Virtual overlays 

will not be described in this work, because it is mainly applied to network virtualization scenarios and, 

hence, is not correlated to the scope of this work. For information on the subject refer to [17]. Fig 2.5 

illustrates the different architectures. In this section, we give further details on three different approaches 

to SDN. 

 

Figure 2. 5: Different approaches for Network Programmability 

2.3.1 OPEN NETWORKING FOUNDATION SDN ARCHITECTURE 

The Open Networking Foundation (ONF) defines SDN in the following way:  

“In the SDN architecture, the control and data planes are decoupled, network intelligence and state are 

logically centralized, and the underlying network infrastructure is abstracted from the applications. As 

a result, enterprises and carriers gain unprecedented programmability, automation, and network control, 

enabling them to build highly scalable, flexible networks that readily adapt to changing business 

needs.”[6] 

The ONF defends the total centralization of network intelligence in a control management layer, 

decoupled of the network, with a centralized view of the network. Figure 2.6 contrasts the differences 

between a traditional network architecture and a SDN architecture with a centralized control layer 

extracted from the network. Additionally, to the ONF, SDN means the total separation between the data 

forwarding plane and the routing control plane as illustrated on Fig. 2.6.  
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Figure 2. 6: Traditional Network Architecture vs Software Defined Architecture 

A Southbound interface is defined as the interface that permits the control layer to control and 

communicate with the network. The ONF supports OpenFlow as the main southbound interface to a 

software-defined network. They also define an application layer that provides different network function 

which will be, later, a great tool for innovation in the networking industry. In addition, a northbound 

interface is defined as the interface that allows controlling and communication between the control layer 

and the application layer. [6]  

Figure 2.7 illustrates the open networking foundation’s propose of SDN architecture by means of the 
OpenFlow protocol as southbound interface, custom APIs as northbound interfaces to business 

applications that can control and manage the network. 

 

Figure 2. 7: SDN framework adapted from the Open Networking Foundation [6] 
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An OpenFlow-based SDN architecture is defined by the use of a logically centralized point of control, 

an OpenFlow network controller, to enable control of network behavior by means of OpenFlow enabled 

network devices. This behavior is dictated by the network services implemented in the controller. The 

OpenFlow main characteristics will be briefly described in the next section. [6][13] 

The major point of this strategy relies on the extraction of network device complexity and centralization 

of this complexity in a, potentially virtualized, single control point. Note that decreasing the network 

device complexity implies in decreasing the costs of network devices, as well as it increases the 

flexibility of the network controlling and management capabilities. In this way, a network operator could 

change the function of a device from border router to a firewall with a simple installation or 

configuration of an application in the network controller. [6][13] 

The weakness of this strategy is its revolutionary characteristic. This strategy would require heavy 

investments in change of equipment. It is necessary to take in consideration the fact that changing the 

architecture in a drastic way would affect, not only, the network operations as well as billing and 

monetization systems. It is reasonable to believe that network operators will avoid: overnight 

investments, the replacement of network infrastructure, the redesign of network architecture and 

possibly avoid the perturbation of operational standards. Taking this into consideration, the necessary 

transition effort from the traditional network model to the ideal SDN model proposed by ONF stills very 

costly. Therefore, the first software defined networks will probably abstract the network as an overlay 

or set of APIs above the existing network in a partial way, in other words, the network will not be totally 

transformed from day to night. [5] 

2.3.2 SDN – NETWORK PROGRAMMABILITY 

Some network vendors defend a different SDN approach. They defend a SDN approach based on direct 

network programmability by means of an API. An API-based implementation and controller-based SDN 

implementation follow the same principles. Both consist in providing a northbound open API for a 

superior application layer that has the possibility of controlling and extracting information out of the 

network. [17] 

The main difference between them is that a controller-based architecture usually presents one extra level 

of abstraction, and thus, higher layer applications can be developed independently of the southbound 

interfaces implemented by the controller and the network. APIs that interfere in the network directly can 

have different innovation possibilities whereas a controller-based SDN solution presents higher 

flexibility of innovation possibilities. The controller can communicate and control the network in several 

different ways, therefore abstracting network complexity, and providing standardized APIs to the 

application layer. [5] 

Software-defined networking basically means the extraction of network functions from its physical 

infrastructure. It is important to highlight that this point of view is slightly different from the ONF 

definition. Changing the physical network, today, is hard, slow and it often requires manual intervention 

in a fragmented way, whereas in a software-defined network this would be flexible and almost 

imperceptible. Software-defined networking will permit the management of the network as a single 

entity, orchestrating provisioning and providing a real-time visualization of the network performance 

and availability. [5] 

This point of view, compared to the original one, proposed by the Open Networking Foundation, is 

much more flexible and much more realistic regarding the solutions proposed and implemented in the 

networking industry, including several types of possible approaches to the deployment of Software 

Defined Networks happening in the real market. 

2.3.3  HYBRID SOFTWARE DEFINED NETWORKING ARCHITECTURE  

Another SDN approach defended by some vendors is a hybrid software-defined architecture where 

devices still can detain certain part of network intelligence. In other words, it is defended that the total 

decoupling of control plane and data plane is not strictly necessary.  
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The main motivation for that way of thinking is the proposed extraction of well-defined and consolidated 

network functions, consequently, necessity of a certain amount of work to redesign the implementation 

of those functions in a new design, pure SDN architecture.  

The best transition strategy to a SDN environment is the incremental implementation of justified new 

network functions using SDN solutions, for example: network optimization for video delivery, or 

customized routing optimization. Operators will gradually deploy programmability interfaces in their 

networks and, hence, the capacity to deliver faster innovation to their customers. 

As a new network management layer arises and becomes the single network touch point, it will be easier 

and faster to implement and provide new services, as well as the reconfiguration of new environments 

will become easier. The SDN management layer will also provide a real time representation of the 

network. [5] 

2.3.4 SDN CONSIDERATIONS 

According to the ONF, SDN can permit the fast implementation and development of new and intelligent 

network services by means of [6]: 

 An abstracted view of network functions and network capacities 

 Standardized programmability interfaces to enable innovation 

 Network statistics to create new services or enhance existing applications 

 A single contact point with the network, optimizing network management and accelerating the 

implementation of networked applications. 

Caroline Chappell brings a SDN concept aligned with the original SDN concept proposed by the ONF, 

and synchronized with the market perspective [5]. This author defends software defined networking as 

an evolution of networks rather than a revolution. Moreover, the author states that all approaches are 

complementary, and operators can use one or all of them, depending on their level of investment, their 

business priorities, and their operational priorities. Again, the author also defends that SDN need to be 

implemented gradually, incrementally, to support new services.   

2.4 SERVICE PROVIDER INNOVATION WITH SDN 

According to the ONF, The abstraction of network functions out of the physical infrastructure and 

network intelligence centralization provided by SDN can transform the architectural network paradigm 

of wide area networks, permitting the development of flexible WAN solutions ready to adapt to the 

changing business environment. [13] 

The challenging situation faced by providers now is very favorable to the emergence of SDN solutions. 

To extract value of their key active, the network, operators need to drive a transformation in the market 

trends. Moving from a commoditized communication services model to a model of service 

differentiation and customized plans to each subscriber. The network intelligence can be used to deliver 

innovation, creating new types of service in an agile manner and creating innovative business models. 

[13] 

New possibilities for service monetization can be implemented by the direct link between the application 

layer and the network controller. For example, it is now possible to automate the resource allocation 

optimally and dynamically from specific application demands. This capability is necessary to allow 

service delivery with measurable and differentiated Quality of Services. The SDN framework can 

decrease operational costs and fasten service activation and, hence, enrich existing services. [13] 

Four possible strategies to new service creation and therefore new network monetization strategies are 

exemplified by the open networking foundation: [13] 

• Bandwidth on demand 

• Bandwidth Exchange  

• Pay for QoS 
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• Network features for pay 

In the next sections, we explain the strategies of Bandwidth on Demand, e pay for QoS. The strategies 

of bandwidth exchange and network features for pay are slightly more complex than the others and are 

not included in the scope of this work. Nevertheless, they are very interesting possibilities for innovation 

in service providers. 

2.4.1 BANDWIDTH ON DEMAND  

 

Figure 2. 8: Bandwidth on Demand Architecture [13] 

The networking traffic patterns are changing very fast. The creation of new technologies such as big 

data and cloud networking are creating extremely high and short demand peaks. In this scenario, the 

purchase of a committed information rate is either very expensive or not effective enough. A service 

Bandwidth on Demand, with the capability to resize or reactivate network connectivity dynamically is 

far more interesting to the companies. This solution would reduce costs to these costumers because they 

could pay only for what they consumed, in terms of network bandwidth and traffic. [13] 

Some providers already offer bandwidth on demand services. According to the ONF, the main 

difficulties faced by these providers are: [13] 

 The lack of service provisioning automation capabilities 

 The lack of a standardized control interface for operators. These capabilities are implemented 

by means of vendor-specific solutions. 

A SDN-based service provisioning strategy can permit automatic network control. A SDN-based service 

provisioning strategy can also provide a real-time network view. These two features together can permit 

the intelligent and automatic network resource allocation to satisfy different SLA requisites on a per-

user or per-flow basis. 
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2.4.2 PAY FOR QOS 

The network traffic offered to network providers is rising. The change in data traffic patterns driven by 

events, such as the intensification of video content consumption and the proliferation of mobile devices 

creates a challenge of higher traffic unpredictability. [13] 

In this situation of massive traffic growth, operators have two options: they either make extra 

investments on over provisioning the network infrastructure to bare the worst-case scenario or resign to 

a best-effort connectivity service and, thus, user-experience degradation. If the investments are not 

sustainable or profitable, then network providers will chose towards service degradation. [13] 

Now, considering a service degradation scenario, it is reasonable to think that some costumers or content 

providers who expect higher Quality of Experience (QoE) standards will be willing to pay more for 

extra value from the network. 

 

Figure 2. 9: Differentiated and Monetizable services [13] 

SDN permits the transform of the network from a bit transportation commodity to a valuable resource 

based on network intelligence. This differentiation, basically, consists of flow prioritization, and can 

easily be implemented with the deployment of OpenFlow switches on the network borders. In this way, 

“premium” or special flows could be sent through optimized paths, and standard or unknown flows 
could be forwarded through a best-effort path. [13] 

In the long run, this strategy permits operators to extract value and generate the necessary revenue to 

support incremental infrastructure improvement, and thus traffic growth, in a more profitable and 

sustainable manner. 
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3 ARCHITECTURAL MODEL 

This chapter describes the architectural model used to 

study the experimentation of a software-defined 

network solution to offer service provisioning 

automation in service providers. We briefly detail the 

main components and auxiliary components as well.  

3.1 OVERVIEW 

In this work, we present a study case to evidence the applicability of software-defined networking 

solutions to solve real challenges of service providers, specifically, service provisioning automation. We 

propose a useful network model based on SDN that can fasten service activation and ease the delivery 

of customized services, therefore, allowing the creation and utilization of new SLA standards. To do 

that we apply an OpenFlow-based SDN architecture, as described in Fig. 3.1, to control the network and 

reinforce network policies of bandwidth utilization and data volume constraints.  

 

Figure 3. 1: Illustration of an OpenFlow-based SDN architecture for Service Providers 

The network behavior is controlled by the implemented network applications in the controller: service 

activation, speed control and data volume monitoring. External network policies are reinforced 

according to an external database by means of the network applications. Figure 3.2 illustrates the 

architecture. 

Additionally, the proposed architecture is only applied to border switches, decreasing deployment costs 

and permitting an incremental execution of its strategies. This approach can still reach the purposes of 

automatic service provisioning, and network policies reinforcement. 

The system works basically as follow: every time a packet arrives in a switch, the switch checks for a 

corresponding entry in its flow-table. If that packet has no match, thus “unknown”, then the switch 
forwards that packet towards the controller. The controller identifies the user based on its IP address and 

its physical location then confirms service authorization for that user. If confirmed, then network traffic 

for that user will be selectively permitted and limited according to the network policies, using the meter 

OpenFlow 1.3 functionality to limit the rate for that user. At the same time, the controller repeatedly 

requests all the network devices for metering statistics and then updates its usage statistics. Next, 

according to these updates, the controller will decide about service deactivation, reactivation or service 
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upgrading. If that user is not allowed in the network according to the network policies database, then its 

flows will be instructed to drop packets as the correspondent action.  

 

Figure 3. 2: Illustration of system architecture 

3.2 OPENFLOW SDN ARCHITECTURE 

OpenFlow is a communication protocol that allows a controller to coordinate and customize the 

forwarding plane of network devices. It does that by allowing the modification of the flow tables in an 

OpenFlow enabled switch. OpenFlow is the standard Southbound Interface according to the Open 

Networking Foundation, as illustrated in Fig. 2.6.   

The OpenFlow Specification version 1.3.3 was released on December, 18th, 2013 by the Open 

Networking Foundation, while its 1.3.4 version is on ratification at the time of this work [8]. Several 

vendors are already selling OpenFlow 1.3 enabled switches, including HP, Centec, Edge-core and Pica8 

[9] [10] [11] [12]. This incredibly fast acceptance by the market of the protocol shows its popularity as 

a tool for innovation in the network area. The companies supporting it, are doing it mainly because the 

proposed “revolution” in the network industry might be strongly beneficial to them. 

3.2.1 OPENFLOW ENABLED SWITCH 

An OpenFlow switch behaves as described in Fig 3.3. For every flow, if a matching entry is already 

defined in any of its flow-tables, then the switch applies the corresponding actions. If a flow has no 

matching entry in any of the switch’s tables, then, the switch will search for an action on the table-miss 

entry. If no is action defined for that entry, then the packet is dropped. [8] 

Commonly, the table-miss entry is used to redirect new packets to the controller. The controller, then, 

resolve the forwarding action of the switch, from a holistic view of the network. 
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Figure 3. 3: Flowchart detailing packet flow through an OpenFlow switch [8]. 

A flow is described by its match fields, which includes, at least, 12 matching fields according to the 

OpenFlow 1.3 specification. The match fields are exemplified in Fig. 3.4 and include, but are not limited 

to, IP addresses, TCP and UDP ports, Ethernet addresses and type. Further information can be found in 

the OpenFlow specification itself. [8] 

 

Figure 3. 4: Example of Flow table and instruction set [6]. 

The last entry of the table in Fig. 3.4 typifies the table-miss entry. 
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3.2.3 OPENFLOW CONTROLLER 

An OpenFlow Controller can interact with the OpenFlow switches on several forms. The controller can 

add, modify or delete flows according to the received packets. The controller can also add modify or 

delete meters for a switch. It is capable of sending custom packets through its OpenFlow channel to the 

network. An OpenFlow switch will not stop working when the OpenFlow connection between controller 

and switch is disabled. This feature is important because it increases the resilience of the network. [6] 

3.2.4 METER 

According to the OpenFlow 1.3 specification published by the Open Networking Foundation, a meter is 

a switch element that can reassure and control the rate of packets. The meter triggers a meter band if the 

byte rate (or packet rate) passing through the meter exceeds a predefined threshold. The meter bad can 

eventually drop a packet, in that case, it is denominated a Rate Limiter. [8] 

The meter table existent in OpenFlow 1.3 devices permits a per-flow granularity and, thus, allow the 

implementation of several QoS operation from rate-limiting to DiffServ schemes. Any flow entry can 

specify a meter in its instruction set. The meter measures and controls the rate of the aggregation of all 

flow entries to which it is attached. [8] 

3.3 NETWORK APPLICATIONS 

The three network applications implemented in the controller provide an interface to external conditions 

through the Network Control Database, as illustrated in Fig. 3.2. This database basically defines the 

permitted users, their respective bandwidth limits, and their data volume constraints. Additionally, the 

controller, maintains a real-time representation of the network state in its “memory”. The behavior of 

the three modules are based on the data structures described in Fig. 3.5. 

 

Figure 3. 5: Network Control Database 
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3.3.1 SERVICE ACTIVATION MODULE 

The service activation module is connected to the subscriptions database. The module works in two 

ways: in a responsive manner and in a proactive mode. Responsively, when an unfamiliar packet arrives 

in the network it is sent to the controller to request for instructions. The service activation module 

identifies the user according to its IP address and network location and then validates either: if that user 

should be provided with network access or not. If positive, then it computes the forwarding action 

corresponding to that specific network device and sends an “add flow” message through its OpenFlow 

Interface.  

 

Figure 3. 6: Service Activation illustration 

In negative case, instead of adding a forwarding action, the controller sends an instruction to drop the 

packets for that flow.  

 

Figure 3. 7: Service Denial illustration 
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Proactively, the application persistently checks if the state of each subscription in the subscription 

database has changed in order to identify the necessity to reactivate services for users with deactivated 

service. 

 

Figure 3. 8: Service Reactivation illustration 

3.2.2 SPEED CONTROL MODULE 

The speed control module is also dependent on the subscription table and relies on the rate limiting 

capability provided by the OpenFlow 1.3 Protocol. OpenFlow 1.3 allows a per-flow based metering 

strategy. It is capable of dropping packets based on the rate that the packets are arriving to that meter. 

 

Figure 3. 9: Speed Controlling Module operation 

The main challenge of this task is to coordinate the creation of multiple meters according to the network 

control database. The presence of multiple subscription entries for a specific user also have to be 

managed by the module.  
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3.2.3 DATA VOLUME MONITORING MODULE 

The data volume monitoring module keeps track of data usage on a per-user basis. According to the 

network state table, the controller query all switches for the meter statistics related to each of its active 

users. After receiving that information, the controller updates its statistics table. Later, if a user has a 

negative balance the service provisioning module will deactivate the service for that user. 

3.3 OTHER COMPONENTS RELATED 

In this section, the supplementary components necessary to the deployment of the test bed for the study 

case will be described. The SDN controller used in the work was a RYU controllers. The OpenFlow 

switches is the Openflow 1.3 software switch provided by CPqD. [15] And the network was emulated 

on Mininet, version 2.1. We also had to use a few performance testing tools to verify the right behavior 

of the network. 

 

Figure 3. 10: Linear topology with 4 hosts on Mininet 

3.3.1 RYU CONTROLLER 

The RYU controller was chosen because it is a very lightweight controller written in python. It is 

relatively well documented and its learning curve is very comfortable, since python is a very 

straightforward and easy programming language. The RYU Controller fully supports OpenFlow 1.3. 

Further information on the RYU Controller can be found at [14]. 

3.3.2 OPENFLOW 1.3 SOFTWARE SWITCH  

The CPqD reference switch has been used by the ONF as the standard software implementation of the 

OpenFlow 1.3 switch and it is a virtual switch. In our case the software was chosen because it was the 

only virtual switch implementing OF 1.3 metering capabilities at the time of the development of this 

work. It can be easily integrated to Mininet. Further information on the OpenFlow Switch can be found 

at [15].  

3.3.3 MININET 

Mininet is a relatively recent and increasingly popular tool for network emulation. It is very lightweight 

and mostly written in python, what provides a very fast learning curve. It is very easy to use and 

customize according to your needs. 

Mininet emulates hosts using Linux containers with isolated namespaces and network interfaces, it 

emulates switches using isolated Linux containers running the virtual switches software, and it emulates 
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links by using network interfaces. Mininet automatically configures the Openflow Communication path 

to each of the virtual switches. 

By means of isolated namespaces, Mininet can easily permit the isolated execution of software on 

different emulated hosts as can be seen in Fig. 3.11 below. This feature was used to ease performance 

evaluation of the network. 

 

Figure 3. 11: Mininet hosts’ terminals and its network interfaces. 

3.4 NETWORK PERFOMANCE MEASUREMENT TOOLS 

3.4.1 SMOKEPING 

Smokeping is an Open Source Linux software to measure, monitor and analyze connectivity 

performance of a server. It has great visualization tools. 

3.4.2 IPERF 

IPerf is another Open Source Linux tool to measure, network performance. It is a very complete tool, it 

can measure TCP throughput, TCP RTT, UDP loss rate, UDP throughput, UDP delay, UDP Jitter. It is 

possible to create an arbitrary number of simultaneous flows at a configurable rate. It does not have 

great visualization tools. 
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4 STUDY CASE 

In this chapter we describe the executed procedures 

and testing experiments to evidence the proposed 

concept of automatic service provisioning using a 

software-defined network.  

4.1 OVERVIEW 

To demonstrate the applicability of the proposed solution, we emulate a simple network on Mininet and 

connected it to a RYU controller with the developed network applications of service activation, speed 

control, and data volume monitoring. To demonstrate the effectiveness of the proposed solution, we 

summed the study case to 5 scenarios: 

 START: Automatic service activation, constrained to rate limiting policies. 

 STOP: Automatic service deactivation, constrained to data volume limits. 

 RESTART: Automatic service reactivation. 

 STOP AGAIN: Service deactivation 

 UPGRADE: Automatic service reactivation, according to new policies. 

4.1.1 INITIAL SETUP 

For our study case we run RYU and Mininet on two virtualized servers in a private data-center to 

eliminate possible bottlenecks of using a limited personal computer.  

The initial state of the subscriptions database is described in Table 4.1. 

Table 4.1: Initial state of subscriptions database 

Subscription id User IP address Data volume limit (KB) Rate limit (Kbps) 

1 10.0.0.1 10000 2000 

2 10.0.0.2 1000 3000 

3 10.0.0.3 1000 4000 

4 10.0.0.4 10000 4000 

 

The simulated topology was a linear topology with 4 switches in chain and 1 host attached to each switch 

as shown in Fig. 14. Detailed procedures for this operations are detailed in this reference.  

We setup and start Smokeping in host 1. Smokeping send 5 ping every 5 seconds to all hosts from host 

1. It records its latency time and displays then in a few graphs with basic statistics as it will be seen in 

Fig. 4.1. 

4.1.2 START PHASE 

Before the start phase all network devices have empty flow tables and, hence, cannot forward traffic 

successfully. After initiating the controller, it will insert a table-miss entry on every switch’s table. 

During, the start phase we ping all hosts, and record its first five ping responses including latency time. 

We expect that the controller will permit traffic of the permitted users according to the network 

subscriptions database. In this phase, it is important to register the response time of the network, which 

is the latency of the first ping. Later, we use this information to verify the operation of the service  
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4.1.3 STOP PHASE 

After basic connectivity tests, it is necessary to verify the operation of the speed control module and the 

data volume monitoring volume. For that we generate network traffic from one host to another and 

monitor its network performance using the iperf tool: UDP traffic is generated at the rate of 5Mbps; its 

throughput, loss rate, and jitter are monitored on the server side using the iperf tool. This procedure is 

repeated a total of 10 times to guarantee some reliability to the measurement. 

It is very important to measure the throughput to validate the correct operation of the speed control 

module and also measure its accuracy. It is also necessary to measure the volume of data transmitted in 

the network to examine the accuracy of the data volume monitoring module, and also verify its correct 

operation. 

The expected behavior of the system is to interrupt service when the data volume transmitted goes 

beyond the permitted value stored in the database. 

4.1.4 RESTART PHASE 

It is necessary to evaluate the reactivation of the system after verifying the service deactivation feature 

of the network. For that, a valid subscription is reinserted in the subscription database. Then, to account 

the response time of the reactivation module, the timestamps of the deactivation system and the 

timestamp of the reactivation button are compared to each other. This experiment was also repeated 10 

times, 5 times for host 1 and 5 times for host 2. 

4.1.5 STOP AGAIN PHASE 

Next, TCP traffic is generated in the system to measure the TCP throughput of the network. It is also 

important to measure the volume of data transmitted in the network to examine the accuracy of the data 

volume monitoring module. Again, the expected behavior of the system is to interrupt service when data 

volume transmitted goes beyond the permitted value. This experiment was repeated 5 times for host 1.  

4.1.6 UPGRADE PHASE 

Now, in order to evidence that the software defined network can be easily adapted to dynamic requisites, 

a new entry is inserted in the database with different rate limits. Again, TCP traffic is generated to 

analyze the throughput of the network. It is important to notice that the system behaves as dictated by 

the network control database and, therefore, we permit the network to be dynamically controlled by 

allowing the database to be controlled by external systems. 

4.2 OUTCOMES 

Here we present the data obtained from the experiments described in the section 4.1. 

4.2.1 SUMMARY 

In this subsection, we summarize the behavior of the system with the graph generated by Smokeping 

throughout the whole sequence of experiments. Figure 4.1 describes the labels for graphs described next 

in this section. 
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Figure 4. 1: Labels for the graphs described in section 4 

Figure 4.1 displays the sequence of experiments and the behavior of the whole network. The blue lines 

represent connectivity times from host 1 to each of the hosts. In the Figures 4.2.a); 4.2.b); 4.2.c); 4.2.d), 

the connectivity time for hosts 1, 2, 3 and 4 are, respectively, represented. The blue rectangles shadowing 

the curve represent the variance of the round-trip time. The T0 arrow in green indicates service activation 

for all hosts. Notice that, after that time, the graph displays a blue line for all hosts, thus, all hosts are 

reachable.  

 

Figure 4. 2: Network connectivity throughout the sequence of experiments 

The T1 arrows, in orange, indicate service deactivation times for host 2. The T2 arrows, in red, indicate 

service deactivation times for host 1. Observe that service is deactivated at different times for hosts 1 

and 2; after that, the connectivity line (blue line) disappears.  

The T3 arrow, in blue, indicates service reactivation. Notice that network connectivity is restored 

simultaneously for all hosts at time T3. The T4 arrows, in purple, indicate the upgrading time.  

Observe the overall behavior of the system: Service activation at T0, deactivation at different times T1 
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and T2, then reactivation at T3, another deactivation and finally reactivation due to service upgrading. 

Figures 4.3 and 4.3 illustrates the network connectivity for host 4 and 2, respectively, in further detail. 

 

 

Figure 4. 3: Host 4 Latency report detailed 

Observe that the variance of the delay for T4 is very higher that the standard ones in the graph. Variance 

is high during activation and deactivation times, as expected. Again, T3 indicates service activation, red 

arrows indicate deactivation; and the purple ones indicate the final reactivation and service upgrading. 

 

Figure 4. 4: Host 2 Latency report detailed 

Notice that the graphs are alike. In this case, T3 represent reactivation, and T4 represent service upgrade, 

but now, T1 represents deactivation. Looking closely, it is possible to notice that the time difference 

between the last deactivation and reactivation are the different. Host 2 can be accessible for less time 

than host 4. This behavior is right as expected and it is a consequence of the data limits set in the initial 

database described in table 4.1 

4.2.2 START PHASE OUTCOMES 

In the start phase every host ping each other host to verify the response time for that link, then the system 

is restarted to repeat the procedure. Figure 4.6 shows one iteration of the procedure. 
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Note in Fig. 4.6 that the time for the first ping request is always much higher than the time for the 

subsequent ones. The initial delay happens because the switch does not have any entry on its table (for 

that flow) to decide which action to take. The so-far unknown user have to be verified by the controller. 

The network response time is the time of the first ping. As stated before, the experiment is repeated 

several times. The acquired data is displayed in Fig. 4.5. 

 

Figure 4. 5: Response Time distribution – 106 ms mean, variance 30 ms 

Note that the maximum response time in 100 experiments was smaller than 0.2 seconds. This result is 

very satisfactory and exemplifies that a software defined networking solution can deliver, in real-time, 

service delivery dynamically.  

 

Figure 4. 6: Response time measurement screenshot 

4.2.3 STOP PHASE OUTCOMES 

During the stop phase, the data volume monitoring module and the speed control module are tested. For 

that, 5 flows of 1Mbps of traffic are generated in hosts 1 and 2 towards host 4 and 3 respectively. A total 

incoming traffic of 5 Mbps per host. This experiment was repeated a few times for each host. Figures 

4.6 and 4.7 show the result of one experiment repetition for host 2 and 4, respectively. 
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Figure 4. 7: Network measurements for UDP traffic from host 2. Figure a) represents the 

iperf client, and Fig. b) represents the iperf server 

 

Figure 4. 8: Network measurements for UDP traffic from host 1. Figure a) represents the 

iperf client and Fig. b) represents the iperf server 

Notice that the total volume of data transmitted by host 1 (4.28 Mbytes), presented in Fig 4.8, is 

slightly bigger than the predefined value (4 Mbytes). Also note that different loss rates are presented: a 

35% loss rate to host 2 and a 55% loss rate to host 1 according to Fig 4.7 and Fig. 4.8 respectively. 

Different throughputs are presented: a 2.24 Mbps throughput for host 1 and a 3.44 Mbps throughput 

for host 2, according to Fig. 4.7 and Fig 4.8 respectively. Therefore, the loss rate and throughput 

depend on the limiting rate as expected. 

The measured throughput is also slightly higher than the predefined limiting rate. To measure this 

imprecision we repeated the experiment a few times for each host, the measured values are presented 

in Tab. 4.2. 
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Table 4.2- Network measurements for 5Mbps of UDP Traffic generated at host 1 for 16 

seconds 

Throughput (Mbps) Jitter (ms) Loss Rate (%) Total transmitted data (Mbyte) 

2.19 31 55 4.57 

2.18 30 54 4.3 

2.2 1.5 55 4.68 

2.18 30 55 4.3 

2.2 0.5 55.8 4.2 

2.24 0.31 55,4 4.28 

2.15 31 55.8 4.24 

 

Table 4.3 - Network measurements for 5Mbps of UDP Traffic generated at host 2 for 3.5 

seconds 

Throughput (Mbps) Jitter (ms) Loss Rate (%) Total transmitted data (Mbyte) 

3.81 0.24 21 1.16 

3.46 0.24 29 1.08 

3.44 0.24 34 1.06 

3.75 0.4 25 1.12 

3.56 0.5 28.6 1.07 

3.58 0.29 28.6 1.07 

 

According to the measurements presented in Table 4.2, the host 1 presented: a mean throughput of 

2.19 Mbps, an average Total of transmitted data of 4.37 Mbytes. Therefore, the proposed solution 

presented an average imprecision of 9.5% on the speed controlling module and average imprecision of 

9.25% on the data volume monitoring module for host 1. On the other hand, according to the 

measurements presented in Table 4.3, the host 2 presented a mean throughput of 3.6 Mbps; and an 

average total of transmitted data of 1.09 Mbytes. Thus, host 2 presented an average imprecision of 

20% on the speed controlling module, and average imprecision of 9% on the data monitoring module. 

Finally, the modules work as expected and control the speed and total volume of data transmitted in 

the network with some imprecision. This result exemplifies how a software defined networking 

solution can be used to provide customized SLA levels on a per-user basis in a service provider like 

scenario. 

4.2.4 RESTART PHASE OUTCOMES 

After verifying that basic features of the system are working fine: service activation, speed controlling, 

data volume monitoring. We want to test if the system can be usable by testing the reactivation response 

time. 

After service deactivation, the system automatically deletes the subscription entry for the user who went 

through his data limit. 
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We test the reactivation time, by reinserting an entry in the subscriptions database and then measuring 

the time from the insertion to service activation.  

Table 4.4 – Response time for reactivation  

Repetition Measured reactivation time 

1 392 ms 

2 604 ms 

3 136 ms 

4 860 ms 

5 204 ms 

According to our measurements, our solution presents a maximum response time smaller than 1 s. This 

result is very satisfactory and shows that a software defined networking solution can deliver real-time 

service activation and reactivation to customers. 

4.2.5 STOP AGAIN OUTCOMES 

Now, TCP traffic is generated to investigate the accuracy of the proposed solutions under different 

constraints.  

Table 4.5: Network measurements for TCP Traffic generated at host 1for 32 seconds 

Throughput (Mbps) Total transmitted data (Mbyte) 

2.14 8.25 

2.13 8.00 

2.16 8.25 

2.15 8.25 

2.14 8.25 

Again, the system worked as expected, with some imprecisions. According to Table 4.5, the mean 

throughput for TCP is 2.14Mbps and the total transmitted data was 8.20 Mbytes. Thus, the speed 

controlling module presented an average imprecision of about 7%, and the data volume monitoring 

module was, now, inversely biased, and showed an average imprecision of 18%. Again, this study case 

exemplifies how a software defined networking solution can be used to provide customized SLA levels. 

4.2.6 UPGRADE PHASE OUTCOMES 

After inserting different entries in the subscriptions database we re-evaluate the network performance 

generating TCP traffic. The subscription database state is described in the Table 4.6. 

Table 4.6: Final state of subscriptions database 

Subscription id User IP address Data volume limit (MB) Rate limit (Kbps) 

5 10.0.0.1 100 4000 

6 10.0.0.2 10 4000 

7 10.0.0.3 10 4000 

8 10.0.0.4 100 4000 
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Table 4.7: Network measurements for TCP Traffic generated at host 1 for 17 seconds 

Throughput (Mbps) Total transmitted data (Mbyte) 

4.18 9.25 

4.15 8.75 

4.41 9.25 

4.34 9.00 

4.74 9.62 

4.66 9.62 

4.69 9.75 

According to the measurements in the Table 4.7, the network presented an average throughput of 

4.45Mbps. Therefore, an average imprecision of 11.25%.  

Nevertheless, the system behaved as expected and it increased the average throughput with a simple 

update in the subscription database. This exemplifies how a software defined networking solution can 

provide customized services on a per-user basis in an automatic manner.  
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5 CONCLUSION 

In this section we conclude this work and briefly go 

through the main achieved results. Possibilities for 

future works are also discussed briefly. 

We successfully developed a software defined networking solution and demonstrated by simulation how 

the architecture can be used to fasten and ease service provisioning. Additionally, we designed and 

provided a solution that allows operators to apply new network monetization strategies by delivering 

customized service levels automatically to different users.  

The automatic behavior of the system was exemplified in the tests of section 4 and it is based on the 

usage of a network database to interface with end systems. This strategy permits innumerous 

possibilities for automation such as the creation of activation systems providing a direct interface to ISP 

customers. In that scenario, the system can be design in such way that the billing systems can also be 

automatically connected to the network provisioning model. Moreover, it permits the implementation 

of Bandwidth on Demand strategies to providers 

In this work, we presented a service provisioning solution with activation response times smaller than 

200 milliseconds and reactivation times smaller than 1 second. We also implemented speed controlling 

and data volume monitoring in a software defined network with small imprecisions under than 10% and 

20%, respectively. We could verify that the metering feature of the OpenFlow 1.3 can be applied to 

provide custom service levels to customer and can be used to control speed for both UDP and TCP 

traffic. 

Additionally we simulated a software defined networking architecture on the widely used network 

emulator Mininet, and applied some features of OpenFlow 1.3 protocol using the CPqD reference switch 

and the RYU network controller. 

The solution and technologies are very new and insipient, and there is still plenty of room for innovation. 

The results of this work are very constrained by the data structures and specificities of the written code. 

The precision of the controlling modules can be improved with better coding strategies, additionally, 

the response time can also be decreased with better data structures and system architectures. For 

example, the response time for activation (200 milliseconds) can be surely reduced with better database 

look-up strategies. The speed controlling module can also be made more precisely with further analysis 

of the specificities of the OpenFlow 1.3 metering capability. 

Future works can design different new strategies for service provisioning automation to deliver new 

types of features to service providers that can be better suited for real world implementation. For 

instance, the Pay for QoS feature could be implemented by increasing the granularity of the flow 

definitions.   
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