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Resumo

O resumo é um texto inaugural para quem quer conhecer o trabalho, deve conter uma
breve descrição de todo o trabalho (apenas um parágrafo). Portanto, só deve ser escrito
após o texto estar pronto. Não é uma coletânea de frases recortadas do trabalho, mas uma
apresentação concisa dos pontos relevantes, de modo que o leitor tenha uma ideia completa
do que lhe espera. Uma sugestão é que seja composto por quatro pontos: 1) o que está
sendo proposto, 2) qual o mérito da proposta, 3) como a proposta foi avaliada/validada,
4) quais as possibilidades para trabalhos futuros. É seguido de (geralmente) três palavras-
chave que devem indicar claramente a que se refere o seu trabalho. Por exemplo: Este
trabalho apresenta informações úteis a produção de trabalhos científicos para descrever e
exemplificar como utilizar a classe LATEX do Departamento de Ciência da Computação da
Universidade de Brasília para gerar documentos. A classe UnB-CIC define um padrão de
formato para textos do CIC, facilitando a geração de textos e permitindo que os autores
foquem apenas no conteúdo. O formato foi aprovado pelos professores do Departamento
e utilizado para gerar este documento. Melhorias futuras incluem manutenção contínua
da classe e aprimoramento do texto explicativo.

Palavras-chave: LaTeX, metodologia científica, trabalho de conclusão de curso
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Abstract

O abstract é o resumo feito na língua Inglesa. Embora o conteúdo apresentado deva ser
o mesmo, este texto não deve ser a tradução literal de cada palavra ou frase do resumo,
muito menos feito em um tradutor automático. É uma língua diferente e o texto deveria
ser escrito de acordo com suas nuances (aproveite para ler http://dx.doi.org/10.6061%
2Fclinics%2F2014(03)01). Por exemplo: This work presents useful information on how
to create a scientific text to describe and provide examples of how to use the Computer
Science Department’s LATEX class. The UnB-CIC class defines a standard format for texts,
simplifying the process of generating CIC documents and enabling authors to focus only
on content. The standard was approved by the Department’s professors and used to create
this document. Future work includes continued support for the class and improvements
on the explanatory text.

Keywords: LaTeX, scientific method, thesis
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Abstract— Point cloud compression has been the object of
wide study recently, and has seen big leaps in development,
such as MPEG’s standartization in the form of TMC13 G-PCC.
Concurrently, segmentation has also been steadly improving and
showing big promise to real-world applications. Segmentation of
compressed point clouds, however, have received little attention as
a research object. In this paper, we propose two different metrics
to tackle this open problem, with the objective of measuring
distortion both in terms of geometric errors and in terms of
segmentation. In order to test the metrics proposed, we first
made lossy compressions to our dataset, using TMC13 and then
segmented them with RandLA-Net. To the best of our knowledge,
this is the first paper proposing content quality as a distortion
metric. The performance of our metrics are tested and validated
against an accepted distortion metric, quantity of points and
bitrate.

I. INTRODUCTION

Light Detection and Ranging (LiDAR) is a sensor that works
by scanning its surrounding space into a list of points, indicat-
ing spatial coordinates and other aspects, such as reflectance
and color.

LiDAR is a flexible technology, and as such, has been used
in several areas [1]–[3] showing great potential in automobile
automation [4]. However, the proposals and developments
made in this regard have not yet been adapted into the market.
This fact is seen in companies such as Tesla, which currently
use image processing as the base for their products [5].

Even though LiDAR studies for autonomous cars are newer
than image processing studies in the same context [6], there is
an effort in building and researching new technologies based
on LiDAR [7]. One of the fields of interest is segmentation,
which is the process of classifying objects in the input data.
This means that for autonomous cars using LiDAR, each
sensor scan requires segmentation of the data being collected,
and only after that, the automobile can make decisions [7].

The developments regarding segmentation can be seen in
competitions such as SemanticKITTI’s [8], which offers an
open dataset for segmentation tasks, and offers a list displaying
the best performing networks, with regards to the intersection
over union (mIOU). After two years of developments the
mIOU has risen from 55.9% to 72.9% and time performance
has fallen by an order of magnitude [9], [10].

Although developments in segmentation have been made,
there are some concerns regarding the usage of these tech-
nologies in a real-world application, such as the processing

times of the point clouds. For example, if we consider the
Moving Pictures Experts Group’s (MPEG) Ford 01 q 1mm,
scans were performed at 100 ms intervals, so that there is
less than 100ms available for point cloud processing. When
only considering segmentation times from networks such as
RandLA-NET, which was marketed as time-efficient, they take
40ms in average for point clouds with 105 points with a
NVIDIA 2080TI [9]. However, such performance may not be
sufficient, as autonomous cars have other tasks, redundancy
built into them, and a bigger focus on accuracy as a safety-
critical application [11].

One solution to this time complexity problem is to lossy
compress our data, as to quantize our input point cloud with
some information loss. This has already been used in research
to decrease processing hurdles, and may be obligatory in
high-traffic scenarios [12]. Although this encompasses the
time problem, after compressing other data, such as images
and videos, artifacts emerge, directly affecting segmentation
quality [13], [14]. In images and videos there is a fixed
ammount of pixels available, and each one has a set position.
With this constraint, the artifacts are due to the fact that
attribute information has been lost [15]. However, in point
clouds the complexity of this analysis is higher, as contrary
to images, spatial coordinates are not fixed, and as such,
there may be not only attribute artifacts but also differences
in spatial information. This fact can be analyzed by looking
at point cloud sizes, such as in Table I, in which after
compression in codecs such as MPEG’s TMC13 Geometry
Point Cloud Compression (G-PCC), numerous points are lost
after decompression.

This means that for compressed images, segmentation errors
are bound pixel-wise, and analysis is made by comparing the
original’s pixel to the compressed one in the same position
in the image. In compressed point clouds, this assessment
can’t be done by simply analyzing points at the same spatial
coordinates, as after decompression there is no guarantee each
point remains at the same place.

In this context, there is at least one study on the quality of
segmentation of compressed point clouds [16], but none, of our
knowledge, that tries to give new tools to analyze segmentation
quality as a distortion metric.

The remainder of this paper is structured as follows. In
Section II, a typical pointcloud pipelined process is presented,

mailto:alexsanderco@outlook.com


Original r01 r02 r03 r04 r05 r06
Average Point Cloud Size 82,627.105 14,389.334 29,533.026 69,685.673 78,033.783 80,739.55 81027.786

TABLE I: Table displaying average point cloud size in all 1500 frames in the dataset Ford 01 q 1mm. r01-r06 are quantization
levels provided by TMC13 GPCC, and they go from most quantized to least.

up until the moment in which it is ready for use. Section III is
used to show and explain each metric’s equations, as well
as briefly state some differences between the two metrics.
Section IV contains the data and analysis of each metric’s
performance. And finally in Section V we conclude our paper
and briefly discuss possible future works.

II. POINT CLOUD PROCESSING PIPELINE

The point cloud processing pipeline will be illustrated
with MPEG’s Ford 01 q 1mm dataset. For time performance
sake’s, all the tests where made in a computer with the
following specifications: Intel(R) Core(TM) i7-8700 CPU @
3.20GHz processor, 24 GB of RAM memory, GeForce GTX
1080 8 GB Graphics card. The compression method was
TMC13’s octree-RAHT, that is, the codec uses the octree data
structure and RAHT transform [17].

Fig. 1: Median time spent compressing, in terms of bits per
point. Bpip and bpop are bits/input point and bits/output point
respectively. What this means is, the first uses the ammount
of points of the original point cloud and the latter uses the
ammount of points of the decompressed point cloud.

A. Data Acquisition
Every frame in the operation of the autonomous car is

defined by a complete scan of the surrounding area by a
LiDAR sensor. As is indicated in the Table I, initially, the point
clouds captured, in any instant, has aproximately 82 thousand
points. Each point has a 25-byte representation, with twelve
bytes for (x, y, z) coordinates, one for reflectance and the other
12 are for the normal coordinates (nx,ny,nz). In other words,
every scan produces a file size 2.05 megabytes!

This quantity of information is worry inducing, as we can
see in Figures 1 and 2, the difference in processing times

Fig. 2: Median time spent decompressing, in terms of bits per
point.

of each quantization value is big and indicates a necessity
for the compression of the point clouds, otherwise, processing
the point cloud will take up much more than 2 frames only
considering the enconding step. Add to this the fact that this
dataset presents lower density point clouds, if compared to
other widely used ones [8], [18], and compression appears
even more attractive.

B. Compressing the point cloud

As said earlier in Section II, the codec chosen was the
TMC13 G-PCC, which is MPEG’s test model. Even though
its time performance needs improvement, as other methods
have made developments in that area [12], we can still use the
data regarding processing times, due to time constraints in the
automobile environment [11].

For the compression task all we need is the input point
cloud, received from the LiDAR sensor. With it in hands we
compress it with G-PCC in any of the six quantization levels
offered by the test model. As we can see in Figures 1 and 2,
the levels with least quantization take too much time to make
processing these point clouds in real time possible.

C. Transmiting the compressed point cloud

As the compressed point cloud is made available, there are
several applications in which it is useful as is. For example,
in the context of level 4 and 5 automation [19], one of the
procedures made is the communication between vehicles [19].
Preferentially with the compressed file, as the state-of-the-art
of data transmission vehicle-to-vehicle (V2V) is too limited in
a city traffic environment [12].



In our case, we only use the compression as a step to make
educated guesses to which point to delete or reallocate with
minimal information loss.

D. Decompressing the point cloud

After compressing, and potentially transmitting the data, we
can decompress our point cloud. In our case, this operation is
done using TMC13 as well.

With the decompressed point cloud in hands, some changed
aspects can be seen, such as its size, which has shrunk, and
attribute information point-wise, which may have been lost.
This implies that the geometry of objects in the scanned area
possibly had their geometries changed. One additional caveat
of G-PCC’s compression is that the normal coordinates are
scrapped, making each point only occupy 13 bytes versus the
original 25.

E. Point cloud segmentation

Finally, to fully process the point cloud, we just need to
segment it. RandLANet, in its creation, showed great time
performance and accuracy [9]. For these reasons, it was chosen
for our tests.

Here, we are only using a semantic segmentation on the
point cloud, and so make no distinction among objects of the
same class.

When segmenting the point cloud, we receive the data
in the form of labels for everything and each point gets
classified under 19 different classes, ranging from cars, roads
to pedestrians and buildings [9].

With the decompressed point cloud and label data in hands,
all information is available and no further procedures are
needed.

III. CONTENT QUALITY AS A DISTORTION METRIC

As briefly stated in Section I, point clouds present more
singularities in the context of objective quality assessments
of segmented decompressed data than videos and images,
because there is reallocation and deletion of points, contrary
to the fixed ammount of pixels in images. This fact makes it
so that there are two major concerns which we want to tackle
in this paper:

• Compressed point clouds change the geometry of objects.
• Each point may be incorrectly segmented. For example,

a point which was originally a part of a car was labelled
as something else, such as a tree, after compression and
segmentation.

This being the case, we propose two distinct metrics, with
each addressing a different problem.

For both metrics, we define P = {p1, p2...pN} as a LiDAR
point cloud, in which pi = (xi, yi, zi), with 0 < i <= N and
(x, y, z) representing some point in 3D volumetric space.

After segmentation, each point p ∈ P is related to some
class k, where K indicates the total ammount of available
classes and 0 < k <= K. Therefore, Pk = {p | p ∈ P ∧ p ∈
k}.

The process of lossy compression receives P as an input as
has as an output Q = {q1, q2...ql}, where l can be of any value,
lower, higher or equal to N. qj = (xj , yj , zj) and 0 < j <= l.
It is to be noted that for any qj it may or may not be equal
to any pi.

For the comparison to be made between Q and P, we
need some form of quantization of P and sorting, as
to compare the two point clouds as closely as possible.
For this, lets define some function Nearest(P,Q) =
l⋃

i=1

{u | u ∈ P ∧ ∀t ∈ Pdist(u, qi) <= dist(t, qi)}, where

dist is euclidean distance.

A. Class-MSE

For the geometry distortion task, we propose the usage of
D1(MSE sym), but imbued in a segmentation context. And
finally, our metric, which is defined as:

Class-
MSE(F,G, k) = 1

size(F )

∑size(F )
c=1 MSEsym((Fc)k, (Gc)k),

where F is a collection of point clouds, and G is a collection
of all point clouds of F but lossy compressed, Fc and Gc are
point clouds, 0 < c <= size(F ).

This metric has the objective of analyzing intraclass distor-
tion for compressed point clouds. We achieve this by compar-
ing the original segmented point cloud to a decompressed and
segmented version of itself.

It is to be noted that different classes tend to operate under
different magnitudes of values. This means that we can’t
guarantee trivially that comparisons between Class-MSE of
two different classes are fair, as shown in Section IV.

B. Point Cloud Cross Entropy

For the problem of segmentation mistakes in compressed
point clouds, we propose the usage of Cross Entropy to com-
pare the point clouds. It is defined as CrossEntropy(S,H) =∑size(S)

e=1 Se ∗ log(He). The two inputs for Cross Entropy are
matrixes composed of vectors of probabilities. In our case,
each vector has the following property: sum(vector) = 1.

This data was obtained during segmentation, that is, instead
of getting a single label for each point, here, we acquire the
chance of the point of belonging to any class.

Considering this, our metric is defined as:

PCCE(F,G) =
1

size(F )

∑size(F )
c=1 CrossEntropy(Nearest(Fc, Gc)s, (Gc)s),

where s denotes that we are getting the matrix of softmax
probabilities from some point cloud.

IV. EXPERIMENTAL RESULTS

In this section, for each metric proposed, we’ll analyze the
data collected from experimentation on the dataset as well
as briefly highlighting some of the problems of using only
geometric distortions as basis for analysing the segmentation
of compressed point clouds.



r01 r02 r03 r04 r05 r06
Class 1 Total Points 640,228 1,946,443 5,402,181 5,733,759 6,431,068 6,605,259

MSE average 157.150 31.354 12.115 11.444 8.472 8.026
Class 2 Total Points 1,411 2,991 92,200 79,027 96,072 105,589

MSE average 7,789.692 5,843.317 1,720.703 2,061.760 1,773.026 1,512.234
Class 3 Total Points 4,618,773 10,887,819 14,750,715 11,038,163 17,105,011 19,027,484

MSE average 16.176 6.692 5.375 13.507 1.189 0.983
Class 4 Total Points 752 17,196 2,117,199 3,509,807 1,924,200 1,980,027

MSE average 6,603.984 2,066.569 56.805 46.359 24.146 21.932
Class 5 Total Points 1,202,837 3,475,175 24,907,418 21,121,630 23,269,768 23,877,142

MSE average 64.931 15.588 3.126 3.497 1.095 0.984
Class 6 Total Points 2,977,751 9,408,839 20,944,490 24,006,780 29,656,976 30,063,799

MSE average 179.560 14.051 2.612 1.722 0.941 0.960
Class 7 Total Points 5,295,498 9,285,328 21,534,977 23,971,995 21,058,082 20,981,513

MSE average 19.165 9.038 3.585 2.271 1.502 1.403
Class 8 Total Points 215,788 539,112 1,327,169 1,999,067 1,981,445 1,850,659

MSE average 606.049 100.774 30.703 21.976 18.598 18.359
Class 9 Total Points 5,489,682 7,266,452 10,714,221 22,642,967 16,328,397 13,694,607

MSE average 14.518 10.734 6.706 6.377 1.988 1.891
Class 10 Total Points 1,013,253 1,231,528 2,044,873 2,058,782 2,149,828 2,197,277

MSE average 29.621 18.839 8.483 8.275 7.376 7.347
Class 11 Total Points 128,028 238,656 693,067 888,698 1,108,478 1,158,323

MSE average 1,166.910 624.207 159.210 136.808 120.542 97.934

TABLE II: Comparison between all points in the dataset in each class and each quantization level, and the average MSE of
each class and each quantization level

Fig. 3: Relation between average Cross entropy and average
MSE(D1) of all 1500 frames of the dataset Ford 01 q 1mm
in all GPCC quantization levels (r01-r06).

A. Class-MSE data

For this metric, the data was collected by segmenting all
Ford 01 q 1mm frames, compressing and segmenting the
same frames in all quantization levels from G-PCC. After this,
we separate each class in each point cloud to its own file. This
way we can trivially apply our Class-MSE metric. Figure 4
shows how the dataset was processed for the data’s acquisition.

As per the results, we can see in Figure 5 that there is a
trend that Class-MSE follows that of more points in a given
point cloud tends to lower MSE values. This, however, isn’t
guaranteed as various points may be incorrectly segmented,
leading to comparisons between true elements of a class and

false elements of the same class. Which in turn means that we
aren’t necessarily comparing spatially close points, leading to
higher error values.

Note that Table II has the data for every class, whereas 5
only contains information for the four first classes.

The convexity of this metric appears in most of the classes
but with different intensities, as observed in Figure 6. Although
the function is not monotonic in all cases, it appears to be
stemming from the segmentation mistakes rather than from
geometric distortions, as said earlier in this section.

B. Point Cloud Cross Entropy data
Differently from Class-MSE, for this metric we dont use

one label for each point, but rather the softmax vector of
probabilities, therefore there is no need to separate classes, and
we only need to compare the segmentation of each compressed
point cloud to the original.

This metric’s average results in terms of bits/point can
be seen in Figure 7. The graphic shows a monotic curve
that is convex and descending. The observation to be made
is that there is a relation between segmentation quality and
quantization level.

In addition, comparing Cross Entropy trends to the MSE
point-to-point (D1) averages from Figure 3 we see that,
although both metrics are related to bits/point, and both are
monotic, convex, and decreasing, the curves are different. This
means that geometric distortions are related to segmentation
quality, but we can’t guarantee with certainty by how much.

V. CONCLUSION

In this paper, we proposed two metrics, both of which are
inserted in distinct contexts within the distortion analysis of
the segmentation of compressed point clouds. We showed that
both approaches work, but one is used for geometric distor-
tions, using MSE as our base, and the other for segmentation



Fig. 4: Diagram showing each step to getting the Class-MSE for all classes of an input point cloud, for any quantization level.

Fig. 5: MSE(D1) average in terms of total points in a given
class in all dataset’s frames combined.

mistakes, using Cross entropy. Therefore, both should be used
to arrive at more precise conclusions. Our tests demonstrated
that the metrics are correlated to bitrate, with convexity being
observed primarely in our Point Cloud Cross Entropy.

Further tests include the use of others codecs, segmentation
tecnologies and LiDAR datasets.
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