
Universidade de Braśılia
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Integrating Deep Reinforcement
Learning to GAMA Platform with a
Multi-agent Model of Common-pool

Resource Appropriation

Guilherme Mendel de Almeida Nascimento

Artigo apresentado como requisito parcial para
conclusão do Bacharelado em Ciência da Computação

Orientadora
Prof. Dra. Célia Ghedini Ralha

Braśılia
2023

Universidade de Braśılia
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Integrating Deep Reinforcement
Learning to GAMA Platform with a
Multi-agent Model of Common-pool

Resource Appropriation

Guilherme Mendel de Almeida Nascimento

Artigo apresentado como requisito parcial para
conclusão do Bacharelado em Ciência da Computação

Prof. Dra. Célia Ghedini Ralha (Orientadora)
CIC/UnB

Prof. Dr. Li Weigang MSc. Aurélio Ribeiro Costa
CIC/UnB STI/STF

Prof. Dr. Marcelo Grandi Mandelli
Coordenador do Bacharelado em Ciência da Computação

Braśılia, 16 de fevereiro de 2023

Integrating Deep Reinforcement Learning to
GAMA Platform with a Multi-agent Model of

Common-pool Resource Appropriation

Guilherme Mendel de Almeida Nascimento

Department of Computer Science, University of Braśılia
Campus Darcy Ribeiro, Braśılia, Federal District, Brazil

guimendeln@gmail.com

Abstract. Exploratory agent-based simulations are a challenging in-
vestigative area for modeling societies. Natural resource systems used by
multiple agents in a society can be classified as common-pool resources.
Despite a broad agreement that multi-agent models of common-pool re-
source appropriation are accurate representations of aspects of human
behavior, models of independent learning agents in complex real-time en-
vironments (e.g., game-like) are underrepresented within the repertoire
of solutions available to agent-based simulation developers. To address
this, we present the integration of deep reinforcement learning (DRL)
algorithms to the well-known GAMA simulation platform, illustrated
with a multi-agent model of common-pool resource appropriation called
The Commons Game. This integration is implemented using an exter-
nal WebSocket server to provide an interface for the execution of DRL
algorithms. Our work aims to contribute to agent-based simulation de-
velopers that use the GAMA platform with models of learning agents.

1 Introduction

Agent-based modeling and simulation (ABMS) is a powerful approach to model
systems comprised of interacting autonomous agents for real-world applications
[3]. Applications examples range from modeling the stock market, supply chains,
and consumer markets, to predicting the spread of epidemics, mitigating the
threat of bio-warfare, and understanding the factors responsible for the fall of
ancient civilizations. Some contend that ABMS “is a third way of doing science”
and could augment traditional deductive and inductive reasoning as discovery
methods [16].

ABMS with real-world applications that involve natural resource systems
used by multiple individuals is classified as common-pool resources [19]. The
common-pool resource appropriation (CPR) problem is well known within multi-
agent social dilemmas, especially considering non-cooperative or self-interested
agents where socially positive equilibria are hard to achieve. Although game
theory research has, for decades, investigated aspects of human behavior that
make multi-agent models possible, when it comes to complex real-time or video

2 Guilherme Mendel de Almeida Nascimento

game-like environments, such models struggle to generate accurate predictions
([24], [12], [25], [10]). This is especially true when considering the spatial and
temporal resource dynamics of CPR models ([4], [7], [6]). Thus, to model the
behavior of groups of independent learning agents in a CPR game, deep re-
inforcement learning (DRL) can highlight the importance of learning through
trial and error ([18], [5]). DRL has significant applications in real-time systems
such as self-driving cars, traffic light control, automated robots, healthcare, dis-
ease prediction, energy consumption reduction, resource management in com-
puter clusters and cloud, online recommendation, and web system configuration
([17], [2], [13]).

There is a wide range of available tools for ABMS. A comparative literature
survey of the state-of-art is presented in [1]. Although the further investigation
into this topic is stimulated, in this work we focus on the GAMA simulation
platform [23].1 GAMA is under a GNU General Public License, meant for build-
ing spatially explicit agent-based simulations. It relies on the notion of agent
species with attributes and actions which interact to form experiments. GAMA
is already an engine for several high-impact projects, such as [8] to simulate the
impacts of social COVID-19 interventions and [9] to model agricultural territo-
ries to assess agricultural activity impacts.

The platform features its own modeling language—GAML (GAmaModeling
Language) is an agent-oriented language that extends object-oriented program-
ming approach with powerful concepts like skills, declarative definitions, and
agent migration, allowing for quick model expressivity. But GAML lacks sup-
port for the development of sophisticated learning agents that require machine
learning. Although this may not be a problem for most ABMS developers, it
imposes a limit on the experimental requirements of the platform considering
autonomous agents. Thus, in this work, we define the research question: How
would one design learning agents in GAMA?

With this question in consideration, our work aims to contribute to ABMS
developers presenting the design and implementation of the integration of DRL
to the GAMA platform by using an external WebSocket server as an interface to
the GAMA application. We called the WebSocket server the brain server. The
message protocol is presented, and the server’s life cycle is depicted through
diagrams. The integrated solution is illustrated with the game-like multi-agent
model of CPR The Commons Game [20]. Though the model is designed for
DRL, one could easily adapt it to other machine-learning algorithms.

The rest of the manuscript presents a short background overview in Section 2,
the integrated DRL to GAMA platform presentation in Section 3, the experi-
mental results in Section 4, and the conclusion and future work in Section 5.

1 For a subset of the scientific papers that have been written either about GAMA or us-
ing the platform as an experimental/modeling support see https://gama-platform.
org/wiki/References

Title Suppressed Due to Excessive Length 3

2 Background

In this section, we give an overview of reinforcement learning (RL), DRL, and
multi-agent reinforcement learning (Section 2.1), GAMA platform modeling func-
tionalities (Section 2.2), and The Commons Game (Section 2.3). Please note the
notation adopted in this paper is the same as in [22].

2.1 DRL overview

Machine learning comprises three fields: supervised, unsupervised, and semi-
supervised learning. According to [22], RL is another category of machine learn-
ing, defined not by characterizing learning methods, but by characterizing a
learning problem.

Whereas supervised learning requires data collections to generalize labels
and find hidden patterns, RL needs no data and is concerned with learning from
an agent’s experience. It essentially maps situations to behavior with the aid
of its knowledge of the environment’s dynamics, which it acquires through the
agent’s exploration. This process can be formalized as a Markov Decision Process
(MDP), in which an agent interacts with an environment in discrete time steps,
giving rise to a new environment states and rewards.

In [22], a finite MDP is defined by a time step t ∈ N, and the environment is
modeled through a state St ∈ S. Based on this state, the agent issues an action
At ∈ A(s), which then results in a new state for time step t + 1, as well as a
reward Rt+1 ∈ R ⊂ R. The probabilities of state St and reward Rt occurring
at time step t are given by the model as the stochastic functions p(s′|s, a) and
r(s, a) of time step t−1’s state and action: St−1 and At−1, respectively. Figure 1
illustrates the agent-environment interaction cycle of traditional RL, where we
replaced St by the state observation Ot of the agent as used in this work.

Agent

Environment

action reward state observation

Fig. 1. Agent-environment interaction cycle of RL algorithm (adapted from [22]).

The mechanism responsible for mapping the observed state to an agent’s
action is called a policy π(a|s) — the probability distribution of A for each state
in S. One may calculate the expected return G that represents the expected total
reward accrued by starting at some state s and subsequently following a given
policy π, with the value function vπ(s). In RL, the agent’s objective is to find a

4 Guilherme Mendel de Almeida Nascimento

policy that best approximates the optimal policy π∗, which, for any given state
s, elects a that maximizes the resultant G.

As the state space grows arbitrarily, tabularly computing values for each
state becomes unfeasible, which calls for the adoption of approximation methods.
One common way to achieve this is the combination of RL and Deep Learning
(DL). DL is the most widely used computational approach in machine learning
— it achieves outstanding results on complex cognitive tasks and even beats
human performance when given access to massive amounts of data. DL employs
transformations and graph technologies to build multi-layer learning models, and
its most utilized network type is convolutional neural networks (CNNs) [2].

DL can be applied to RL by taking an episode’s state observation and its
action values as the input data and target output, respectively. DRL strives
to approximate generated values to the ones encountered throughout the sim-
ulation, one such example being the classic Deep Q-learning (DQL) algorithm.
In [20], authors formalize DQL using O(s, i) as the observation of state s for an
agent i, and Qi(s, a) the action-value function of this state and action a. The
policy is defined as πi(a|O(s, i)) = (1− ϵ)1a=argamaxQi(s,a) +

ϵ
|Ai| .

Applying an algorithm designed for single-agent environments, such as DQL,
to multi-agent environments is known to break the MDP assumption [14]. But
the work of [20] achieves good results with this application nevertheless, setting
a reasonable precedent for this paper’s choice of using DQL as well.

2.2 GAMA Platform

Agent-based simulation models in the GAMA platform are specified in the
GAML language.2 One must first define the species that will interact in the
simulation by giving them attributes, actions, and reflexes. Attributes are the
data each agent owns, such as name or size. Actions are essentially procedures
(or functions) that can be called, and reflexes are procedures that execute each
cycle with a given probability (by default 100%).

After specifying its species, one has to indicate which species comprise each
experiment, set up parameters, such as species count, and specify how to display
the experiment to be ready to run it. Species can also optionally be assigned
skills, built-in models that group related variables and actions. One of particular
interest to this paper’s proposal is the network skill, which provides agents
the ability to send and receive messages through various protocols, including
WebSocket.

The global species is special: it defines the attributes and actions that describe
the simulation’s environment and automatically inherits from several built-in
variables and actions. All other species are first instantiated by its init procedure,
and also have direct access to its attributes and actions.

2
There is a tutorial designed to learn GAML available in https://gama-platform.org/wiki/
LearnGAMLStepByStep.

Title Suppressed Due to Excessive Length 5

2.3 The Commons Game

Although it is a well-studied issue, humanity still faces the problem of CPR. Its
simulation attempts have so far been limited by the complexity of the environ-
ments, which renders its analysis far too complex to fathom. In [20], the authors
propose a model which places agent learning in the center. Agents learn through
trial and error how to respond to the environment in a process that, collectively,
produces a population ever so better suited to avoid resource depletion. They
illustrate this with The Commons Game, wherein a group of agents competes in
a 2-dimensional grid world to collect apples, which will only respawn as long as
there are other apples in the vicinity.

In this work, we reproduced The Commons Game using their CPR model to
provide a hands-on example of functional integration of DRL algorithms to the
GAMA platform. The game arises in a 2-dimensional grid world with a partially
observable, stochastic, episodic, dynamic, discrete, and multi-agent environment.
It has a single type of agent referred to as the scavenger.

Scavengers can move through the grid, change their orientation, and emit
a tag beam, which will temporarily time-out any other scavengers caught in
its path. They get rewards for the collection of apples, and albeit they can
tag other agents, tagging yields no particular reward. A scavenger ’s orientation
defines which of the four cardinal directions it is currently facing and determines
what portion of the current scenario will be visible to it and which direction to
shoot the tag beam to. Note that an agent’s observation is an RGB slice of the
scenario, and is rotated so that the scavenger is, in this observation window,
always facing north.

2.4 Social Outcome Metrics

In [20], the authors propose four social outcome metrics to summarize group
behavior, calculated for each episode of the game’s simulation. We briefly sum-
marized them, as we use them for illustrative rather than evaluative purposes.

For N independent agents and an episode of duration T , the i-th agent’s
reward sequence may be defined as {rit|t = 1, ..., T}, the observation sequence as

{oit|t = 1, ..., T}, and the return as R =
∑T

t=1 r
i
t.

The Utilitarian Metric (U) is the sum of all agents’ rewards scaled by the
episode length (i.e., efficiency). The Gini coefficient [11] is used for the Equality
Metric (E). The Sustainability Metric (S) measures how late in the episode
rewards were collected, on average. The Peace Metric (P) is the average number
of untagged agent steps. Note that for a given i-th episode, expectations are
taken over every i-th episode of all training suites to minimize noise.

6 Guilherme Mendel de Almeida Nascimento

U = E

[∑N
i=1 R

i

T

]
, E = E

[
1−

∑N
i=1

∑N
j=1 |R

i −Rj |
2N

∑N
i=1 R

i

]
,

S = E

[
1

N

N∑
i=1

ti
]
, where ti = E[t|rit > 0],

P =
E
[
NT −

∑N
i=1

∑T
t=1 I(o

i
t)
]

T
, where I(o) =

{
1 if o = time-out observation.

0 otherwise.

3 The Integration Approach

The high-level cycle of RL (Figure 1) was used as inspiration to build a similar
interaction cycle between the GAMA platform and the brain server (respective
counterparts of environment and agent). Figure 2 illustrates this correspondence.
Note that the brain server processes a state observation Ot and reward Rt mes-
sage from a scavenger agent in GAMA and returns an action label At.

Message (Observation , Reward)

GAMA Platform

Forward propagate

Store and
values from received

message

Extract batch from
memory and train

neural network

Input
Layer

Conv2D
(5x5)

16

MaxPool2D
(5x5)

3

Conv2D
(3x3)

32

MaxPool2D
(4x4)

2

8 action values

Output
Layer

Take
(index of highest

action value)

Store

Action label

Translate to
a label

WebSocket Server

Python Function

Stored
Cycle Data

Data
Storage

Legend

B happens after A

A B

A depends on B

A B

data flow

A B

Flatten
Fully

Connected
32

ReLU

MaxPool2D
(kernel size)
stride length

Conv2D
(kernel size)

output channels

deep neural
network

…

Fig. 2. DRL (brain server) and GAMA platform integration with WebSocket.

Thus, the integration consists of two parts: the GAMA platform, which stores
the environment data and models its dynamics, and the brain server that is
responsible for implementing the RL algorithm, storing the index of the highest
action value of scavengers, as well as providing an interface for mapping rewards
and state observations to actions. Communication between those parts is possible
through the WebSocket protocol, and the text messages are in JavaScript Object
Notation (JSON) format [15].

Title Suppressed Due to Excessive Length 7

The GAMA platform is responsible for starting the communication session.
It must first inform the current simulation context, and each agent informs their
id (identification token). Such a message triggers the brain server to load the
neural network parameters previously stored for this context for each connected
agent. This marks the only need for context identification: to allow the scoping
of different simulation contexts such that agents never share learned parameters
through different contexts.

After all identification messages are sent the main RL loop takes place for
each agent. The GAMA platform sends a state observation with a reward for
the previous cycle, and the brain server responds with action. The reward sent
in the first cycle is discarded by the brain server. Once the simulation is over,
the GAMA platform shuts down the WebSocket connection, at which point the
brain server collects its instantiated agents and stores the new neural network
parameters. Figure 3 illustrates these interactions with a UML sequence dia-
gram. Please note that the scavengers inside the GAMA platform received their
observations from the environment, and should be interpreted as forwarding
these observations in the diagram, instead of generating them.

:GAMA Platform :Brain Server

Restore stored parameters for each agent's
neural network given the context and it's id

Run observation through neural network
and execute a single epoch of training

Global species informs context

Each agent informs it's id

Start simulation

Each agent provides a state observation
and a reward for last cycle

Return action obtained from neural network
Execute all actions
and get next state

Loop

Fig. 3. UML sequence diagram describing the event sequence that defines the GAMA
platform and brain server interactions.

3.1 Message Syntax

Brain server messages are simple strings that label the scavenger agent’s next
action using JSON format. The GAMA platform messages are of three types:
context identification, agent identification, and action request. The context iden-
tification message syntax (line 1) is sent by the global species when the GAMA
simulation starts. The agent identification message is the first message every
agent sends (lines 2 and 3), an object with two keys: id, pointing to its unique
identifier token string, and connect, which should always hold true.

8 Guilherme Mendel de Almeida Nascimento

{

1. "context": <string>

}

{

2. "id": <string>,

3. "connect": true

}

The action request message must provide a request key, an object with two
keys: state, holding a description of this agent’s current observation, and reward,
holding the numeric reward of the previous cycle.

{

"id": <string>,

"request": {

"state": <any>,

"reward": <number>

}

}

3.2 The Commons Game Implementation

In The Commons Game [20], the authors propose six scenarios. In this work, we
focus on the second scenario, which features an open area map with resources
scattered arbitrarily. The GAMA contexts in the implementation are the game
scenarios, which define the starting state of the environment. The scavenger
spawn points are focused on the lower right section of the map, as illustrated
in Figure 4. Notice how the scavengers start all facing north. In this scenario,
it would be impossible for an agent to single-handled exhaust the resource pool,
but when all agents harvest simultaneously, depletion becomes much more likely.

Empty

Resource

Wall

Scavenger

Fig. 4. Starting state of this paper’s unique scenario.

In GAML, there are no classes but species for which all properties are public.
However, one can make an analogy between a species and a class in object-
oriented programming (OOP). Figure 5 presents the UML class diagram of the
GAMA implementation with seven species: scavenger, resource, laser tag, wall,
gridcell, json, and global.

The scavenger orientation is indicated visually by an adjacent darkened cell
to the same direction it is facing, and it moves and tags relative to it. There
are four types of actions: moving in cardinal directions, where it can move one

Title Suppressed Due to Excessive Length 9

GAMA Species

Scavenger

name: string

initial_cell: GridCell

cell: GridCell

time_out: int

facing_direction: int

resource_collected: bool

resources_collected: int

init

cycle_action: reflex

request_action(): string

execute_action(string): void

move(direction: int): void

occupy(GridCell): void

get_tagged(): void

tag(): void

collect_resource(): void

get_view_matrix(): matrix<int>

GridCell

width: int

height: int

neighbors: int

Wall

cell: GridCell

spawn(): void

Resource

cell: GridCell

collected: bool

respawn_ready: bool

respawn_chance: reflex

respawn(): void

get_collected(): void

get_respawn_chance(): float
Laser

top_left: GridCell

width: int

height: int

triggered: bool

parent: Scavenger

trigger: reflex

Global

scenario: string

map_size: pair<float>

map_content: matrix<int>

id_provider: int

json_encoder: Json

cell_size: float

init

stop_on_resource_depletion: reflex

get_id(): int

get_available_resources_count (): int

read_map_size (): pair<float>

stringify(unknown): string

crop_matrix(ma: matrix, start: pair<int>,
 end: pair<int>, filler: int): matrix

rotate_matrix(ma: matrix,
 clockwise: bool): matrix

rotate_point(p: pair<float>,
 angle: float): pair<float>

cell_available(GridCell): bool

Json

stringify(unknown): string

stringify_map(map): string

stringify_list(list): string

stringify_string(string): string

Fig. 5. UML-like description of the GAMA model.

cell ahead, behind, or sideways (left and right); changing its orientation by 90o,
where it can turn to one of its sides; tagging, where it emits a time-out beam
ahead; and idle, where it does nothing.

The scavenger has a reflex for messaging the brain server with its state
observation window and reward for the previous cycle and receiving the action
to execute at that cycle. Tagged scavengers are removed from the scenario for
25 cycles and reinserted at their initial positions. Each member of the resource
species sits idle until it is collected, at which point it’s removed from the scenario.
They have a chance to reappear every cycle. This probability is as defined in
[20], and is proportional to the number of other resources within 2 cells: one or
two apples give 1%, three to four apples give 5%, and over four apples 10%.

The wall species has no behavior but serves as an impassable cell to scav-
engers. The tag species is instantiated by scavengers: it gets destroyed on its
second cycle of life lasting a single iteration. In this iteration, it finds all other
scavengers inside its perimeter and times them out.

The json species is never instantiated but provides methods to convert data
into the JSON format and is used by other species that need to send messages.
The gridcell species provides other species access to cells. A cell is a simple tuple
of integers representing the discrete coordinates of the grid world.

10 Guilherme Mendel de Almeida Nascimento

The global species has two functions: initializing the world from a map de-
scription file and storing the map, a matrix the size of the scenario’s grid. Each
cell stores 0 if it’s empty, 1 for a resource, 2 for a scavenger, and 3 for a wall. With
the aid of this map, scavengers know when a move would be illegal (e.g., walking
into a wall), know when they walk into a resource and trigger a collection, and
derive their observation windows.

The brain server is implemented with the PyTorch framework. There are two
classes, one for a neural network, which implements DL, and one for a scavenger,
which implements RL and uses the other class. For each connected scavenger,
the server instantiates the scavenger class, loads the neural network parameters
for the scavenger ’s id and current scenario, and interfaces all of its subsequent
requests to it, returning the resulting action. Before sending back the action,
the neural network randomly samples 32 entries with which to execute a single
epoch of training.

When a scavenger sends its state observation Ot and last cycle’s reward Rt,
the neural network obtains the resulting action At and stores these three pieces
of data, constructing a memory of initial observation, action, resulting reward,
and resulting observation. Notice how one row’s resulting observation is the next
row’s initial observation, as in the form:

. . .
Ot−1, At−1, Rt, Ot

Ot, At, Rt+1, Ot+1

. . .

The work presented intends to cooperate with open science as it is available
in the GitHub repository. We invite the curious reader to fork our repositories
and try out different configurations of the Python server.3

4 Experimental Results

We simulated each episode with 1000 time-steps to demonstrate the integration
of DRL with the GAMA platform. GAMA simulations were run in the default
GUI mode from which the screenshots were taken, and the batch mode to yield
faster executions. The majority of the simulation time was spent on neural net-
work training calls, instead of WebSocket message exchanges. Table 1 presents
the experimental setup parameters.

The right image of Figure 6 presents a screenshot taken at cycle 105 of the
simulation. The left image illustrates the observation window of the leftmost
scavenger of the screenshot. A scavenger i perceives the world through a slice
of the grid-world O(i) ∈ R3×21×20 (i.e., RGB matrix). Each world object is
expressed through a color, where black means an empty cell, green is a resource
(i.e., apple), red another scavenger, gray a wall, and blue the observing scavenger.
Out-of-bounds cells are black, and a scavenger does not see emitted tags.

The screenshot of Figura 6 presents the moment of the first resource collection
in the first episode. The scavenger in blue performed the collection and its next

3
GitHub for the GAMA platform https://github.com/guiMendel/scavengers-simulation and the
brain server implementation: https://github.com/guiMendel/scavengers-backend.

Title Suppressed Due to Excessive Length 11

Table 1. Parameters used in the experiments. The justification is empty when ex-
tracted as-is from [20]. The Scavenger Vision Range is equal to the vision rectangle
Width minus one.

Parameter Value Justification

Scavenger Vision Rectangle Width 21 Extracted from observation space type dimensions

Scavenger Vision Range 20 -

Resource Collection Reward 1 -

Tag Width 5 -

Tag Range 20 -

Time-out Duration 25 -

Max Cycles per Episode 1000 -

Activation Function ReLU -

Conv2D Padding Same Conserves more of the little initial resolution

Loss Function Cross Entropy Default for multi-class classification

Optimizer Adam Performed best

Agent Policy ϵ− greedy -

Maximum and Minimum ϵ 1.0 and 0.1 -

Discount Rate γ 0.99 -

action was moving ahead. One might take notice of the big yellow rectangle on
the left side of the scenario. It is a tag being emitted by the scavenger on its
right, the same one whose observation window is displayed on the left side of
the image, at the exact time of the screenshot, though it entirely missed any
other scavengers. It’s also evident that there are only four scavengers, less than
the initial 12, due to the other eight being in time-out for having been tagged
in previous cycles.

Resource

Wall

Reference/Observing
Scavenger

Empty

Scavenger

Tag

Fig. 6. Screenshot of the scenario at the first resource collection in the first episode.
The observing scavenger ’s figure is on the left, and the reference scavenger’s figure is
on the right.

Table 2 presents the social metrics for this episode where the minimum value
is zero for all metrics. The low Utilitarian Metric (U) indicates a poor resource
collection rate, while Equality Metric (E) indicates most collections were done
by a small group of scavengers. Few collections resulted in a high Sustainability
Metric (S) result, while a low Peace Metric (P) indicates a reason for such low
equality outcome, as scavengers tagged each other too much, leaving only a few
to harvest.

5 Conclusion

In this work, we investigated how one would design learning agents in GAMA. As
a result, the design and implementation of DRL integration to the GAMA plat-

12 Guilherme Mendel de Almeida Nascimento

Table 2. Social metric values observed in the first episode.

Social Metric Maximum Value Observed Value

Utilitarian (U) 12.0 0.012
Equality (E) 1.0 0.111
Sustainability (S) 1000.0 905.1
Peace (P) 12.0 4.812

form were presented. Such integration was illustrated with a CPR model called
The Commons Game presented by [20]. The main contribution is to present a
hands-on example of the functional integration of machine learning algorithms
to the GAMA platform, of special interest to ABMS developers. We hope this
work might serve as inspiration for other projects in GAMA involving RL, DRL,
neural networks, and other machine learning techniques.

In future work, there are opportunities to replicate The Commons Game
with different RL algorithms such as Proximal Policy Optimization [21]. Also,
the development of a plugin to fit the particular needs of DRL integrated into
GAMA would be interesting.

References

1. Sameera Abar, Georgios K. Theodoropoulos, Pierre Lemarinier, and Gregory M.P.
O’Hare. Agent based modelling and simulation tools: A review of the state-of-art
software. Computer Science Review, 24:13–33, 2017.

2. Laith Alzubaidi, Jinglan Zhang, Amjad J. Humaidi, Ayad Al-Dujaili, Ye Duan,
Omran Al-Shamma, J. Santamaŕıa, Mohammed A. Fadhel, Muthana Al-Amidie,
and Laith Farhan. Review of deep learning: concepts, cnn architectures, challenges,
applications, future directions. Journal of Big Data, 8(1):53, 2021.

3. E. Bonabeau. Agent-based modeling: methods and techniques for simulating hu-
man systems. volume 99 of No. Suppl. 3, pages 7280–7287. The National Academy
of Sciences, 2002.

4. F. Bousquet, O. Barreteau, P. d’Aquino, M. Etienne, S. Boissau, S. Aubert,
C. Le Page, D. Babin, and J.C. Castella. Multi-agent systems and role games: col-
lective learning processes for ecosystem management. In Complexity and ecosystem
management. The theory and practice of multi-agent systems. Edward Elgar, 2002.

5. Lorenzo Canese, Gian Carlo Cardarilli, Luca Di Nunzio, Rocco Fazzolari, Daniele
Giardino, Marco Re, and Sergio Spanò. Multi-agent reinforcement learning: A
review of challenges and applications. Applied Sciences, 11(11), 2021.

6. Cássio Giorgio Couto Coelho and Célia Ghedini Ralha. MASE-EGTI: an
agent-based simulator for environmental land change. Environ. Model. Softw.,
147:105252, 2022.

7. Aisha D. Farooqui and Muaz A. Niazi. Game theory models for communication
between agents: a review. Complex Adaptive Systems Modeling, 4(1):13, 2016.

8. Benoit Gaudou, Nghi Quang Huynh, Damien Philippon, Arthur Brugière, Kevin
Chapuis, Patrick Taillandier, Pierre Larmande, and Alexis Drogoul. Comokit:
A modeling kit to understand, analyze, and compare the impacts of mitigation
policies against the covid-19 epidemic at the scale of a city. Frontiers in Public
Health, 8, 2020.

Title Suppressed Due to Excessive Length 13

9. Benoit Gaudou, Christophe Sibertin-Blanc, Olivier Therond, Frédéric Amblard,
Yves Auda, Jean-Paul Arcangeli, Maud Balestrat, Marie-Hélène Charron, Eti-
enne Gondet, Yi Hong, Romain Lardy, Thomas Louail, Eunate Mayor, David
Panzoli, Sabine Sauvage, José Sánchez Pérez, Patrick Taillandier, Van Nguyen,
Maroussia Vavasseur, and Pierre Mazzega. The maelia multi-agent platform for
integrated analysis of interactions between agricultural land-use and low-water
management strategies. In 14th International Workshop on Multi-Agent-Based
Simulation (MABS’13), 2013.

10. Philipp Geiger and Christoph-Nikolas Straehle. Learning game-theoretic models of
multiagent trajectories using implicit layers. In 35th AAAI Conference on Artificial
Intelligence, AAAI 2021, 35rd Conference on Innovative Applications of Artificial
Intelligence, IAAI 2021, The 11th Symposium on Educational Advances in Artifi-
cial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021, pages 4950–4958.
AAAI Press, 2021.

11. C. Gini. Variabilità e mutabilità: contributo allo studio delle distribuzioni e delle
relazioni statistiche. [Fasc. I.]. Studi economico-giuridici pubblicati per cura della
facoltà di Giurisprudenza della R. Università di Cagliari. Tipogr. di P. Cuppini.

12. Robert P. Goldman, David J. Musliner, Mark S. Boddy, Edmund H. Durfee, and
Jianhui Wu. ”unrolling” complex task models into mdps. In Game Theoretic
and Decision Theoretic Agents, Papers from the 2007 AAAI Spring Symposium,
Technical Report SS-07-02, Stanford, California, USA, March 26-28, 2007, pages
23–30. AAAI, 2007.

13. Tanmoy Hazra and Kushal Anjaria. Applications of game theory in deep learning:
a survey. Multimedia Tools and Applications, 81(6):8963–8994, 2022.

14. Guillaume J. Laurent, Laëtitia Matignon, and N. Le Fort-Piat. The world of
independent learners is not markovian. 15(1):55–64, jan 2011.

15. Teng Lv, Ping Yan, and Weimin He. Survey on json data modelling. Journal of
Physics: Conference Series, 1069(1):012101, aug 2018.

16. Charles M. Macal and Michael J. North. Agent-based modeling and simulation.
In Winter Simulation Conference, WSC ’09, page 86–98. Winter Simulation Con-
ference, 2009.

17. Amirhosein Mosavi, Yaser Faghan, Pedram Ghamisi, Puhong Duan, Sina Faizol-
lahzadeh Ardabili, Ely Salwana, and Shahab S. Band. Comprehensive review of
deep reinforcement learning methods and applications in economics. Mathematics,
8(10), 2020.

18. Thanh Thi Nguyen, Ngoc Duy Nguyen, and Saeid Nahavandi. Deep reinforcement
learning for multiagent systems: A review of challenges, solutions, and applications.
IEEE Transactions on Cybernetics, 50(9):3826–3839, 2020.

19. Elinor Ostrom. Reformulating the commons. Ambiente & Sociedade, (Ambient.
soc., 2002 (10)), Jan 2002.

20. Julien Pérolat, Joel Z Leibo, Vinicius Zambaldi, Charles Beattie, Karl Tuyls, and
Thore Graepel. A multi-agent reinforcement learning model of common-pool re-
source appropriation. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017.

21. John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. 2017.

22. Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
The MIT Press, 2nd edition, 2018.

14 Guilherme Mendel de Almeida Nascimento

23. Patrick Taillandier, Benoit Gaudou, Arnaud Grignard, Quang-Nghi Huynh, Nico-
las Marilleau, Philippe Caillou, Damien Philippon, and Alexis Drogoul. Building,
composing and experimenting complex spatial models with the gama platform.
GeoInformatica, 23(2):299–322, 2019.

24. José M. Vidal and Edmund H. Durfee. Predicting the expected behavior of agents
that learn about agents: The clri framework. Autonomous Agents and Multi-Agent
Systems, 6:77–107, 2000.

25. James R. Wright and Kevin Leyton-Brown. Level-0 meta-models for predicting
human behavior in games. In Proceedings of the Fifteenth ACM Conference on
Economics and Computation, EC ’14, page 857–874, New York, NY, USA, 2014.
Association for Computing Machinery.

