
STUDY AND PERFORMANCE ANALYSIS OF CONSTRUCTION AND
DECODING ALGORITHMS FOR POLAR CODES IN ADDITIVE

WHITE GAUSSIAN NOISE (AWGN) COMMUNICATION CHANNELS

RODRIGO ANDRES RODRIGUES FISCHER

MONOGRAFIA DE TRABALHO DE CONCLUSÃO DE CURSO EM
ENGENHARIA ELÉTRICA

DEPARTAMENTO DE ENGENHARIA ELÉTRICA

FACULDADE DE TECNOLOGIA

UNIVERSIDADE DE BRASÍLIA

UNIVERSIDADE DE BRASÍLIA
FACULDADE DE TECNOLOGIA

DEPARTAMENTO DE ENGENHARIA ELÉTRICA

STUDY AND PERFORMANCE ANALYSIS OF CONSTRUCTION AND
DECODING ALGORITHMS FOR POLAR CODES IN ADDITIVE

WHITE GAUSSIAN NOISE (AWGN) COMMUNICATION CHANNELS

ESTUDO E ANÁLISE DE DESEMPENHO DE ALGORITMOS DE
CONSTRUÇÃO E DECODIFICAÇÃO DE CÓDIGOS POLARES EM

CANAIS DE COMUNICAÇÃO COM RUÍDO DO TIPO BRANCO
GAUSSIANO (AWGN)

RODRIGO ANDRES RODRIGUES FISCHER

ORIENTADOR: PROF. DR. JOÃO PAULO LEITE

MONOGRAFIA DE TRABALHO DE CONCLUSÃO
DE CURSO EM ENGENHARIA ELÉTRICA

BRASÍLIA/DF: DEZEMBRO - 2020

UNIVERSIDADE DE BRASÍLIA
FACULDADE DE TECNOLOGIA

DEPARTAMENTO DE ENGENHARIA ELÉTRICA

STUDY AND PERFORMANCE ANALYSIS OF CONSTRUCTION AND
DECODING ALGORITHMS FOR POLAR CODES IN ADDITIVE

WHITE GAUSSIAN NOISE (AWGN) COMMUNICATION CHANNELS

RODRIGO ANDRES RODRIGUES FISCHER

MONOGRAFIA DE TRABALHO DE CONCLUSÃO DE CURSO SUBMETIDA AO DEPARTAMENTO
DE ENGENHARIA ELÉTRICA DA FACULDADE DE TECNOLOGIA DA UNIVERSIDADE DE
BRASÍLIA COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE
ENGENHEIRO ELETRICISTA.

APROVADA POR:

————————————————————————–
Prof. Dr. João Paulo Leite – ENE/Universidade de Brasília
Orientador

————————————————————————–
Prof. Dr. Leonardo Aguayo – ENE/Universidade de Brasília
Membro Interno

————————————————————————–
Prof. Dr. Anderson Clayton Alves Nascimento – University of Washington, Tacoma, Institute of
Technology
Membro Externo

BRASÍLIA, 11 DE DEZEMBRO DE 2020.

ii

FICHA CATALOGRÁFICA

RODRIGUES FISCHER, RODRIGO ANDRES
Study and Performance Analysis of Construction and Decoding Algorithms for Polar Codes
in Additive White Gaussian Noise (AWGN) Communication Channels [Distrito Federal]
2020.
xix, 117p., 210 x 297 mm (ENE/FT/UnB, Engenheiro Eletricista, Engenharia Elétrica,
2020).
Monografia de Trabalho de Conclusão de Curso – Universidade de Brasília, Faculdade de
Tecnologia.
Departamento de Engenharia Elétrica
1. Códigos Polares 2. AWGN
3. Algoritmos de Construção 4. Algoritmos de Decodificação
I. ENE/FT/UnB II. Título (série)

REFERÊNCIA BIBLIOGRÁFICA
FISCHER, R. (2020). Study and Performance Analysis of Construction and Decoding Algo-
rithms for Polar Codes in Additive White Gaussian Noise (AWGN) Communication Chan-
nels . Monografia de Trabalho de Conclusão de Curso em Engenharia Elétrica, Departamento
de Engenharia Elétrica, Universidade de Brasília, Brasília, DF, 117p.

CESSÃO DE DIREITOS
AUTOR: Rodrigo Andres Rodrigues Fischer
TÍTULO: Study and Performance Analysis of Construction and Decoding Algorithms for
Polar Codes in Additive White Gaussian Noise (AWGN) Communication Channels .
GRAU: Engenheiro Eletricista ANO: 2020

É concedida à Universidade de Brasília permissão para reproduzir cópias desta monografia
de trabalho de conclusão de curso e para emprestar ou vender tais cópias somente para
propósitos acadêmicos e científicos. O autor reserva outros direitos de publicação e nen-
huma parte dessa monografia de trabalho de conclusão de curso pode ser reproduzida sem
autorização por escrito do autor.

Rodrigo Andres Rodrigues Fischer

Departamento de Engenharia Elétrica (ENE) - FT
Universidade de Brasília (UnB)
Campus Darcy Ribeiro
CEP 70919-970 - Brasília - DF - Brasil

iii

Dedico este trabalho a meu pai

Christian e a minha mãe Héden

AGRADECIMENTOS

Eu gostaria primeiramente de agradecer aos meus pais Christian Fischer e Hé-

den Cardoso por todo o carinho, amor e cuidado que sempre recebi, e agradecer

também por ter recebido as condições que tornaram possível que eu desenvolvesse

meus estudos. Em seguida, agradeço ao meu irmão Davi Fischer por sempre estar

ao meu lado e ter sido um grande companheiro de inúmeras aventuras. Agradeço

também às incríveis pessoas que pude chamar de avós: Marta Maria, Guaracy,

Diana e Rodolfo. Honro esse trabalho ao meu avô Guaracy, que tinha o sonho

de ver-me tornar engenheiro, e ao meu avô Rodolfo, que me inspirou a seguir sua

profissão.

Gostaria de agradecer também à minha namorada e melhor amiga Hiandra Tomasi

por ter compartilhado comigo 5 incríveis, porém trabalhosos, anos de graduação

em Engenharia Elétrica. Agradeço também por ter sempre estado ao meu lado

nos altos e baixos da vida, sempre me apoiando e me ajudando a passar pelos

momentos mais difíceis.

Gostaria de agradecer ao Prof. João Paulo Leite do Dep. de Engenharia Elétrica

da UnB por ter me introduzido ao mundo acadêmico e por ter me ajudado a domi-

nar suas ferramentas e particularidades. Agradeço imensamente a sua disposição,

paciência e ao suporte que recebi em nossos trabalhos conjuntos. Agradeço tam-

bém aos Profs. João Luiz, Eduardo Peixoto, Paulo Portela, Geovany Borges, Daniel

Café, Francis Arody, Kleber Melo, Lúcio Martins e Leonardo RAX pelo incrível tra-

balho feito na Universidade de Brasília e pela oportunidade de ter sido seu aluno.

Agradeço também aos funcionários do SG11 pela cordialidade e pelo excelente

trabalho realizado em manter o prédio no qual passei incontáveis horas durante os

últimos anos.

Agradeço imensamente ao Prof. Celius Magalhães do Dep. de Matemática da UnB

por todo o apoio, incentivo e oportunidades que recebi, frutos da sua carinhosa e

voluntária tutoria. Você me deu valiosas ferramentas que guardo no meu cinto de

utilidades, e você me inspira a um dia ensinar com a maestria que você possui.

ii

Agradeço o meu incrível companheiro de inúmeras matérias, trabalhos e moni-

torias, Diego Neves, por ter me inspirado com sua curiosidade inata e por ter

me convidado a participar de inúmeras experiências engrandecedoras durante a

graduação.

Agradeço também ao meu amigo de longa data André Seiki por sempre comparti-

lhar comigo conquistas, idéias e curiosidades. Com poucas palavras você diversas

vezes abriu minha mente para conceitos e pensamentos poderosos.

Gostaria de agradeçer aos meus colegas do Laboratório de Estruturas de Micro-

ondas e Ondas Milimétricas (LEMOM) Gustavo Viana, Josh Peña, Lucas Baião,

Bruno Chaves e Natália Viana. Agradeço a vocês pelos inúmeros almoços, jantas

no RU e cafezinhos. Nossas teorias discutidas no almoço ainda vão render um

Nobel.

Gostaria de agradeçer aos meus amigos Thiago Dantas, Pedro Ferreira, Letícia

Almeida, Arthur Dias, Pedro Caio, Marcelo Guedes, Gabriel Lins, Allan Souza,

Rodrigo Borba e Felipe Gomes por tornarem minha graduação divertida e por

terem me acolhido em seu grupo de amigos. Sem vocês a graduação teria sido

monótona.

RESUMO

Título: Estudo e Análise de Desempenho de Algoritmos de Construção e Decodificação de
Códigos Polares em Canais de Comunicação com Ruído do Tipo Branco Gaussiano (AWGN)
Autor: Rodrigo Andres Rodrigues Fischer
Orientador: Prof. Dr. João Paulo Leite
Curso de Graduação em Engenharia Elétrica
Brasília, 11 de dezembro de 2020

Propostos em 2009 por Arikan, os códigos polares compõem a primeira família de códi-
gos corretores de erros a provadamente atingir a capacidade de canais de comunicação. Além
disso, os códigos polares apresentam esquemas de codificação e decodificação de baixa com-
plexidade. Contudo, a capacidade é atingida apenas quando o tamanho do bloco tende ao
infinito, e, além disso, esses códigos apresentam grande latência na decodificação. Na última
década, foram feitos esforços para tornar os códigos polares competitivos com a tecnologia
estado-da-arte, os códigos LDPC e códigos Turbo, tanto em termos de desempenho quanto
em termos de complexidade de implementação.

O presente trabalho apresenta os aspectos básicos da teoria de códigos polares, bem
como algumas das técnicas consideradas estado-da-arte de construção de códigos e decodi-
ficação que os tornam competitivos com as tecnologias já consolidadas. No campo teórico,
é mostrado que a decodificação em ordem natural dos códigos polares são consequência da
estrutura de recursão considerada, não da matriz de codificação em si. O trabalho aborda
os decodificadores Successive Cancelation (SC) e Successive Cancelation List (SCL). Ver-
tentes de menor latência de ambos os decodificadores são tratadas, como o Simplified SC
e Fast-SC, Simplified SCL e SSCL-SPC (Single Parity Check). Além disso, o desempenho
desses decodificadores é avaliado com diferentes técnicas de construção, entre elas a cons-
trução Bhattacharyya, BEE (Bit Error Evolution), DEGA (Density Evolution with Gaussian
Approximation) e, por fim, Modified DEGA. Diversos parâmetros de projeto, como o tama-
nho da lista, razão sinal ruído de otimização e taxa de código serão também explorados nas
simulações de desempenho dos códigos.

Palavras-chave: Códigos Polares, AWGN, Algoritmos de Construção, Algoritmos de De-
codificação.

ABSTRACT

Title: Study and Performance Analysis of Construction and Decoding Algorithms for Polar
Codes in Additive White Gaussian Noise (AWGN) Communication Channels
Author: Rodrigo Andres Rodrigues Fischer
Supervisor: Prof. Dr. João Paulo Leite
Undergraduate Program in Electrical Engineering
Brasília, December 11th, 2020

Proposed by Arikan in 2009, polar codes were the first family of error correcting codes
to provably achieve the communications channel capacity. Also, polar codes present low
complexity encoding and decoding schemes. However, channel capacity is only achieved as
the block size tends to infinity, and these codes are shown to have large decoding latency. In
the last decade, efforts were made in order to make polar codes competitive with state-of-
the-art codes, namely LDPC and Turbo codes, both in performance and complexity.

The present work approaches the basic aspects of polar coding theory, as well as some of
the state-of-the-art code construction and decoding techniques, which make them competi-
tive to already consolidated technologies. We show that the natural order decoding of polar
codes are a consequence of the recursive structure considered to represent the codes, not the
encoding matrix itself. This work addresses the Successive Cancellation (SC) and Succes-
sive Cancellation List (SCL) decoders. Lower latency versions of both decoding techniques
are presented, namely Simplified Successive Cancellation (SSC) and Fast-SC, Siplified SCL
and SSCL-SPC. Also, the error performance of these decoders is assessed using different
construction methods such as the Bhattacharyya construction, DEGA (Density Evolution
with Gaussian Approximation), Modified DEGA and BEE (Bit Error Evolution). Several
design settings, such as the list size, design signal-to-noise ratio and code rate will also be
explored in the simulations presented.

Keywords: Polar Codes, AWGN, Construction Algorithms, Decoding Algorithms.

SUMMARY

1 INTRODUCTION . 1
1.1 OBJECTIVES . 2
1.2 WORK OVERVIEW . 2

2 COMMUNICATION THEORY . 4
2.1 INTRODUCTION . 4
2.2 COMMUNICATIONS LINK . 4
2.3 MATHEMATICAL MODELLING OF THE CHANNEL . 5

2.3.1 DISCRETE MEMORYLESS CHANNELS . 6
2.3.2 AWGN CHANNEL . 9
2.3.3 DECISION RULES . 12
2.3.4 CHANNEL CAPACITY AND THE BHATTACHARYYA PARAMETER 15

2.4 INTRODUCTION TO ERROR CORRECTING CODES . 16
2.4.1 A BRIEF HISTORY . 18
2.4.2 LINEAR CODES . 19
2.4.3 DECODING AND DISTANCES . 20

2.5 CONCLUSION . 23

3 THEORETICAL ASPECTS AND CONSTRUCTION OF POLAR CODES 24
3.1 INTRODUCTION . 24
3.2 VIRTUAL CHANNELS . 24

3.2.1 PARALLEL USE CHANNELS . 25
3.2.2 COMBINED CHANNELS . 25
3.2.3 SPLIT CHANNELS . 27

3.3 THEORETICAL PRELIMINARIES ON POLAR CODING . 29
3.4 SUCCESSIVE CANCELLATION DECODING . 34
3.5 RECURSIVE RELATIONS . 39
3.6 CODE CONSTRUCTION . 43

3.6.1 BHATTACHARYYA METHOD . 43
3.6.2 DENSITY EVOLUTION - GAUSSIAN APPROXIMATION (DEGA). 45
3.6.3 MODIFIED DEGA (M-DEGA) . 46
3.6.4 BIT ERROR EVOLUTION (BEE) . 48

3.7 SIMULATION RESULTS . 50
3.7.1 CODE CONSTRUCTION . 50
3.7.2 CODE RATE AND BLOCK SIZE . 60
3.7.3 COMPARISON WITH TURBO CODES . 60

viii

SUMMARY ix

3.8 PRACTICAL ASPECTS OF THE ENCODER IMPLEMENTATION 61
3.8.1 SYSTEMATIC ENCODING . 61

3.9 CONCLUSION . 64

4 DECODING ALGORITHMS FOR POLAR CODES . 66
4.1 INTRODUCTION . 66
4.2 HARDWARE FRIENDLY DECODING . 66
4.3 DECODING TREE . 67

4.3.1 LINEAR NODE INDEXING . 71
4.4 SIMPLIFIED SUCCESSIVE CANCELLATION DECODING . 72

4.4.1 RATE-0 NODES . 72
4.4.2 RATE-1 NODES . 73

4.5 FAST SIMPLIFIED SUCCESSIVE CANCELLATION . 74
4.5.1 REP NODES . 74
4.5.2 SPC NODES . 75

4.6 SUCCESSIVE CANCELLATION LIST DECODING . 76
4.6.1 COMPARISON WITH TURBO CODES . 79

4.7 CRC CONCATENATED POLAR CODES . 80
4.8 SIMPLIFIED SUCCESSIVE CANCELLATION LIST DECODING 81

4.8.1 RATE-0 NODES . 82
4.8.2 REP NODES . 82
4.8.3 RATE-1 NODES . 83
4.8.4 SPC NODES . 83
4.8.5 GENERAL CASE . 84

4.9 SIMULATION RESULTS . 85
4.9.1 LIST SIZE EFFECT . 85
4.9.2 SSCL-SPC PERFORMANCE LOSS . 86
4.9.3 COMPARISON WITH TURBO CODES . 86
4.9.4 CODE CONSTRUCTION . 88
4.9.5 SYSTEMATIC ENCODING AND QPSK TRANSMISSION 92

4.10CONCLUSION . 94

5 CONCLUSION . 95
5.1 FUTURE WORK . 96

REFERENCES . 96

A RECURSIVE RELATION . 100

B AWGN BHATTACHARYYA PARAMETER . 103

SUMMARY x

C RESUMO ESTENDIDO EM LÍNGUA PORTUGUESA 104

LIST OF FIGURES

2.1 An illustration of a generic communications link....................................... 5
2.2 Simplified communications link assuming the symbols generated are trans-

mitted directly through the channel. ... 6
2.3 Binary symmetric channel W with crossover probability p. 8
2.4 Binary erasure channel W with erasure probability ε.................................. 9
2.5 A representation of the Additive White Gaussian Noise (AWGN) channel. 10
2.6 Binary Phase-Shift Keying (BPSK) and Quadrature Phase-Shift Keying (QPSK)

constellations. ... 11
2.7 An example of a symbol mapping operation... 12
2.8 Diagram representing the block encoding/decoding operations. 17
2.9 3-bit binary cube. ... 18

3.1 Combined Binary Symmetric Channel (BSC) channel with repetition encoding. 25
3.2 Representation of a parallel use channel with W as the base channel. 26
3.3 Generic representation of a combined channel. ... 26
3.4 Polar encoding kernel and combined channel W2. 27
3.5 Representation of a split channel. .. 29
3.6 The channel W4 using polar encoding. .. 31
3.7 The recursive construction of the combined channel WN using two WN/2

channels. .. 32
3.8 Polar decoding basic nodes... 36
3.9 Successive cancellation decoding steps for N = 4. a) Likelihood flow, from

right to left. b) Estimated bits flow, from left to right.................................. 37
3.10 An equivalent representation of the combined channel using two FN/2 en-

coders. ... 38
3.11 Equivalent successive cancellation decoding steps for N = 4....................... 39
3.12 Another equivalent representation of the combined channel using recursive

construction. ... 40
3.13 An example of the split channel recursive evolution for N = 8..................... 42
3.14 Plot of the Bhattacharyya parametersZ(W (i)

N) obtained with the Bhattacharyya
construction method for N = 1024 and Es/N0 = −1.5 dB. The information
and frozen indexes are chosen for K = 512. .. 44

3.15 Plot of the likelihood meansmi
N obtained with the DEGA construction method

for N = 1024 and Es/N0 = −1.5 dB. The information and frozen indexes
are chosen for K = 512. .. 47

xi

LIST OF FIGURES xii

3.16 Plot of the likelihood means mi
N obtained with the M-DEGA construction

method for N = 1024 and Es/N0 = −1.5 dB. Values below the plot range
were clipped to 10−4. The information and frozen indexes are chosen for
K = 512. ... 48

3.17 A comparison between the simulated and BEE bit channel error rate for
Es/N0 = −2 dB and N = 16. .. 49

3.18 Plot of the bit channel error probability p(i)
N obtained with the BEE construc-

tion method for N = 1024 and Es/N0 = −1.5 dB. The information and
frozen indexes are chosen for K = 512. .. 50

3.19 Simulation results for N = 4096 and K = 1365 (R ≈ 1/3). 51
3.20 Simulation results for N = 4096 and K = 2048 (R = 1/2). 51
3.21 Simulation results for N = 4096 and K = 3072 (R = 3/4). 51
3.22 Simulation results for N = 1024 and K = 341 (R ≈ 1/3). 52
3.23 Simulation results for N = 1024 and K = 512 (R = 1/2). 52
3.24 Simulation results for N = 1024 and K = 768 (R = 3/4). 52
3.25 Simulation results for N = 256 and K = 85 (R ≈ 1/3).............................. 53
3.26 Simulation results for N = 256 and K = 128 (R = 1/2). 53
3.27 Simulation results for N = 256 and K = 192 (R = 3/4). 53
3.28 Information and frozen bit differences comparing the shown methods to the

Bhattacharyya approximation, with N = 256, K = 192 and Eb/N0 = 5 dB.... 55
3.29 Information and frozen bit differences comparing the shown methods to the

Bhattacharyya approximation, with N = 4096, K = 2048 and Eb/N0 = 2.5

dB. ... 55
3.30 Similarity of the information and frozen bit distributions using the Bhat-

tacharyya approximation as reference, with N = 256 and K = 192. 56
3.31 Similarity of the information and frozen bit distributions using the Bhat-

tacharyya approximation as reference, with N = 4096 and K = 2048. 56
3.32 Polar code performance for fixed channel Eb/N0 = 2 dB while varying the

design Eb/N0, for N = 1024, K = 512 and using the DEGA construction
method. ... 57

3.33 Polar code performance for fixed channel Eb/N0 = 3.5 dB while varying the
design Eb/N0, for N = 1024, K = 512 and using the DEGA construction
method. ... 57

3.34 Polar code performance for fixed channel Eb/N0 = 3 dB while varying the
design Eb/N0, for N = 4096, K = 2048 and using the DEGA construction
method. ... 57

3.35 Simulated bit channel error rate for N = 256 for the channels 13, 129 and 130. 58
3.36 Simulation results for N = 4096 using the DEGA construction method. 59
3.37 Simulation results for N = 1024 using the DEGA construction method. 59

LIST OF FIGURES xiii

3.38 Simulation results for N = 256 using the DEGA construction method. 59
3.39 Simulation results for R = 1/2 using the DEGA construction method. 60
3.40 Simulation results forR = 1/2 comparing the DVB-RCS2 Turbo codes with

the DEGA constructed polar codes for N = 1024...................................... 61
3.41 a) An encoder implementation for F8. Each edge carries a bit value, 0 or 1,

and each node adds modulo-2 the values carried by the edges at the left and
transmits the results to all edges on the right. b) Equivalent implementation
that uses the fact that F−1

N = FN 62
3.42 Polar code performance for systematic and non-systematic encoding under

Successive Cancellation (SC) decoding, with N = 4096, K = 2048 and
constructed using DEGA, transmitted using BPSK over AWGN channel. 64

4.1 An equivalent representation of the combined channel using two FN/2 en-
coders. ... 68

4.2 Representation of the recursive polar decoding process............................... 69
4.3 Polar decoding binary tree node notation. .. 70
4.4 Example of the proposed node notation for a tree with depth 3. 70
4.5 Linearly indexed binary tree index construction. 71
4.6 Example of linear node indexing for a binary tree with depth 3. 72
4.7 Binary decoding tree for N = 8, where Rate-0 nodes are represented with

black circles, Rate-1 nodes are represented with white circles and mixed
nodes are represented with grey circles. .. 72

4.8 Pruned decoding tree, considering that Rate-0 nodes do not have to be visited
and that Rate-1 nodes are decoded directly... 73

4.9 Example of decoding tree for Simplified Successive Cancellation (SSC) de-
coding with N = 1024, K = 512 and constructed using the Density Evo-
lution - Gaussian Approximation (DEGA) method with design Es/N0 = 0

dB. ... 74
4.10 Pruned decoding tree, considering REPetition (REP) and Single Parity Check

(SPC) nodes. ... 75
4.11 Example of decoding tree for Fast Simplified Successive Cancellation (Fast-

SSC) decoding with N = 1024, K = 512 and constructed using the DEGA
method with design Es/N0 = 0 dB. ... 76

4.12 a) Tree depicting the decoding paths lj as the bits ûi are decoded. b) Example
of pruned path tree with list size L = 2, where pruned paths appear in red. 77

4.13 Upon reaching bit i, a path l splits into two paths l′ and l′′, each having a
different value for ûi. .. 77

LIST OF FIGURES xiv

4.14 Successive cancellation list decoding performance for N = 1024, L = 1

(SC) to L = 32, using a fixed DEGA construction method optimized for
Eb/N0 = 2 dB. .. 79

4.15 Comparison between the DVB-RCS2 Turbo codes and polar codes with
successive cancellation list decoding, L = 32 and constructed using fixed
DEGA construction optimized for Eb/N0 = 2 dB, for block length N =

1024 and code rate R = 1/2. .. 80
4.16 A comparison between the Fast-SSC, SCL and SCL-CRC decoding schemes,

with L = 8, for polar codes with block size N = 1024 and K = 512. The
CRC used is CRC-16. ... 81

4.17 Polar coding performance for different list sizes, with N = 1024, K =

512 and CRC-16, decoded using SSCL-SPC and constructed using DEGA
optimized for Eb/N0 = 2 dB. ... 86

4.18 Polar coding performance comparison between SSCL and SSCL-SPC, with
N = 1024, K = 512 and CRC-16, for list sizes L = 4 and L = 8 and
constructed using DEGA optimized for Eb/N0 = 2 dB............................... 87

4.19 Polar coding performance comparison between SSCL and SSCL-SPC, with
N = 1024, K = 768 (R = 3/4) and CRC-16, for list sizes L = 4 and L = 8

and constructed using DEGA optimized for Eb/N0 = 2 dB. 87
4.20 Polar coding performance for R = 1/2 and R = 1/3, with N = 1024 and

CRC-16, for list sizes L = 4 and L = 8, decoded using SSCL-SPC and
constructed using DEGA optimized for Eb/N0 = 2 dB............................... 87

4.21 Performance comparison between the DVB-RCS2 Turbo code and polar
code with SSCL-SPC decoding, L = 32, CRC-16 and constructed using
DEGA dynamic construction, both codes with N = 1024. The polar code
has K = 496 information bits and the Turbo code has K = 512 information
bits.. 88

4.22 A comparison between the different construction methods for polar codes
with N = 1024, K = 512, L = 8, CRC-16, decoded using SSCL and
optimized for Eb/N0 = 2 dB. ... 89

4.23 A comparison between the different construction methods for polar codes
with N = 1024, K = 512, L = 8, CRC-16, decoded using SSCL-SPC and
optimized for Eb/N0 = 2 dB. ... 89

4.24 Information and frozen bit differences comparing the shown methods to the
DEGA approximation, with N = 1024, K = 512 and Eb/N0 = 2 dB. A
496 = 512 − 16 information length was considered to convert Eb/N0 to
Es/N0. .. 90

LIST OF FIGURES xv

4.25 Polar code performance for fixed channel Eb/N0 = 2 dB while varying the
design Eb/N0, for N = 1024, K = 512, L = 8, CRC-16 and decoded using
SSCL and constructed using the DEGA construction method....................... 91

4.26 Information and frozen bit differences comparing the DEGA construction
method at 0 and 2 dB Eb/N0 design, with N = 1024 and K = 512. A
496 = 512 − 16 information length was considered to convert Eb/N0 to
Es/N0. .. 91

4.27 Information and frozen bit differences comparing the DEGA construction
method at 0.5 and 2 dB Eb/N0 design, with N = 1024 and K = 512. A
496 = 512 − 16 information length was considered to convert Eb/N0 to
Es/N0. .. 91

4.28 Performance comparison between fixed design at Eb/N0 = 2 dB and dy-
namic design to match the channel Eb/N0, with N = 1024, K = 512, L = 8

and CRC-16, decoded using SSCL-SPC and constructed using DEGA........... 92
4.29 Performance comparison between fixed design at Eb/N0 = 2 dB and dy-

namic design to match the channel Eb/N0, with N = 1024, K = 512,
L = 32 and CRC-16, decoded using SSCL-SPC and constructed using DEGA. 93

4.30 Comparison between systematic and non-systematic polar encoding forN =

1024,K = 512, L = 8 and CRC-16, decoded by SSCL-SPC and constructed
using DEGA optimized for Eb/N0 = 2 dB... 93

4.31 Comparison between polar encoding performance under BPSK and QPSK
transmission, for N = 1024, K = 512, L = 8 and CRC-16, decoded by
SSCL-SPC and constructed using DEGA optimized for Eb/N0 = 2 dB.......... 93

LIST OF SYMBOLS

Mathematical symbols
I(W) The symmetric capacity of the B-DMC W

Z(W) The Bhattacharyya parameter of the B-DMC W

log(x) The natural logarithm of x
loga(x) The base a logarithm of x
A⊗ B The Kroneker product of matrices A and B
A⊗n The n-th Kroneker power of matrix A
RN The reverse shuffling matrix
SN The shuffling matrix
|A| The cardinality of set A
An The cartesian product {(a0, ..., an−1) | ai ∈ A, 0 ≤ i ≤ n− 1}
W n The channel W n : X n → Yn obtained by n parallel uses of W
W

(i)
n The i-th split channel W (i)

n :M → Yn ×X i−1

Wn The W combined channel Wn :Mk → Yn

xvi

LIST OF ACRONYMS AND ABBREVIATIONS

AWGN Additive White Gaussian Noise. xi, xiii, 2, 9–11, 14, 21, 43, 45,
46, 48, 50, 63, 64

B-DMC Binary-input Discrete Memoryless Channel. 8, 15, 16, 30, 31, 33,
43

BCH Bose–Chaudhuri–Hocquenghem. 18
BEC Binary Erasure Channel. 8, 9, 14, 15, 23, 43, 44
BEE Bit Error Evolution. 2, 48
BER Bit Error Rate. 50, 63, 96
BPSK Binary Phase-Shift Keying. xi, xiii, 11, 13, 14, 21, 45, 46, 48, 50,

63, 64
BSC Binary Symmetric Channel. xi, 8, 14, 16, 20, 21, 23–25

CD Compact Disc. 5, 18
CRC Cyclic Redundancy Check. 80, 81, 95

DEGA Density Evolution - Gaussian Approximation. xiii, 2, 45–48, 73–
76

DMC Discrete Memoryless Channel. 7, 10, 24, 25
DVB-RCS2 Digital Video Broadcasting - Return Channel via Satellite - Sec-

ond Generation. 18, 60, 95
DVB-S2 Digital Video Broadcasting - Satellite - Second Generation. 19
DVD Digital Video Disc. 18

EB Exabytes. 1

Fast-SSC Fast Simplified Successive Cancellation. xiii, 74–76
FEC Forward Error Correction. 1
FER Frame Error Rate. 50, 63, 96

i.i.d. independent and identically distributed. 10

LDPC Low-Density Parity-Check. 1, 18, 19, 24
LLR Log-Likelihood Ratio. 13–15, 17, 66, 69
LR Likelihood Ratio. 13, 34

xvii

Acronyms xviii

MAP Maximum a Posteriori. 12, 20–22, 27
ML Maximum Likelihood. 12, 16, 27, 33, 34, 76, 79, 88, 94

PC Personal Computer. 1
PSD Power Spectral Density. 11

QPSK Quadrature Phase-Shift Keying. xi, 11
QR Quick Response. 18

REP REPetition. xiii, 74, 75, 82, 85
RM Reed-Muller. 18, 19, 33
RS Reed-Solomon. 18
RV Random Variable. 34

SC Successive Cancellation. i, xiii, 2, 24, 27, 33–35, 39, 43, 48, 58,
64, 66, 73, 76, 79, 81, 88, 92, 94–96

SCL Successive Cancellation List. i, 3, 60, 66, 78, 96
SNR Signal-to-Noise Ratio. 11, 18, 19, 96
SPC Single Parity Check. xiii, 75, 82–84
SSC Simplified Successive Cancellation. i, xiii, 3, 72, 74, 95
SSCL Simplified Successive Cancellation List. 3, 82, 85, 96

TV Television. 1

VR Virtual Reality. 1

WiMAX Worldwide Interoperability for Microwave Access. 18

NOTATION

iff We represent the sentence "if and only if" by "iff".. 16

vectors Vectors are represented by bold lowercase letters, indicating x = (x0, ..., xn−1).
Another equivalent notation is xn1 = (x1, ..., xn), where the indexing starts at 1. Also, xn1,o is
the vector with all odd entries of xn1 and xn1,e is the vector with all even entries of xn1 .. 27

xix

INTRODUCTION

The last 20 years have experienced the rapid evolution of the Internet. Uncountable services
such as social media and content streaming, initially available mainly for Personal Comput-
ers (PCs), are now available for mobile phones. Also, new streaming modalities such as
gaming, Virtual Reality (VR) and high resolution video are being introduced. An immediate
consequence of this is the increase of global mobile data traffic: just in the last five years, the
global mobile data traffic went from under 10 Exabytes (EB) in 2015 to 50 EB in 2020, with
projected traffic of over 200 EB for 2026 [1]. This projection accounts for approximately
100 EB of data traffic in 2G/3G/4G mobile technologies and approximately 100 EB in 5G
[1].

Even though we sometimes experience connection loss while using our phones, we cer-
tainly don’t see any noise while watching videos online, as we used to see in old television.
This is made possible through two techniques. The first one is to use digital communica-
tions, which allows the ideal regeneration of the information bits transmitted [2]. However,
the noise we saw in old Television (TV) didn’t disappear. It is still there, and that’s why
we need the second technique: Forward Error Correction (FEC) that detects and corrects the
errors introduced.

Such error correcting techniques are bounded by a fundamental limit imposed by the
Noisy-Channel Coding Theorem proved by Shannon in 1948 [3]. However, no technique to
provably achieve this limit was known until 2009, when Arikan [4] proposed polar codes.
These codes take advantage of a phenomenon called channel polarization, in which some
bits are transmitted with great reliability and others don’t. Despite being proven to achieve
channel capacity, they do so only by letting the block length go to infinity, and, using the
initial definitions proposed by Arikan, these codes show poor error performance when com-
pared to state-of-the-art Turbo and Low-Density Parity-Check (LDPC) codes [5].

The 4G LTE [6] system used Turbo [7] codes as the data channel FEC, while the 5G
[8] system uses LDPC [7]. Both these techniques are the state-of-the-art in channel coding
and are empirically shown to have capacity achieving properties [7]. Since their discovery,
polar codes were improved and refined, in a manner that they are able to achieve comparable
performance to these other state-of-the-art techniques [5]. In fact, polar codes are proposed
as the FEC scheme in 5G control channels [8]. Polar codes are still an active area of research
as it makes way into new systems.

1

1

1.1 OBJECTIVES

The first objective of this work is to present a comprehensive review of polar coding the-
ory and state-of-the-art techniques. Three main elements are presented: the basic theory of
polar codes, approximate construction methods and efficient decoding algorithms that allow
reduced latency. We also provide the reader with the required concepts in communications
and coding theory. We expect that the reader is able to gain intuition on the techniques
approached as detailed descriptions of the algorithms are presented.

The second objective of this work is to develop our own software implementations of
the algorithms reviewed, in order to generate comprehensive simulation results. We used
the Python programming language, with parts of the code optimized using the Pythran [9]
static compiler. Without this optimization, the simulation campaigns would not have been
completed in practical time. We won’t get into the details of the code development, however,
behind the scenes, there are countless hours spent on code debugging and optimization.

Thirdly, we present the reader with the aforementioned simulation results. We compare
the construction methods presented for multiple decoding algorithms and show an analysis
on the similarities between the construction methods, which highlights potential future areas
of research. We also explore how changing the modulation used causes optimality loss in
polar codes and highlight possible workarounds.

As another contribution, we also show that the natural order decoding of polar codes
isn’t a consequence of the encoding matrix, but of the way we define the recursive structure
of polar codes instead. We derive new recursive relations, which are similar to the ones
obtained by Arikan [4], for the new recursive structure proposed.

1.2 WORK OVERVIEW

We begin in Chapter 2 by introducing the communication and coding theory required to
the development of polar codes. We approach themes such as discrete memoryless channels,
Additive White Gaussian Noise (AWGN) channel and block codes. This chapter is organized
in a different than usual format: it contains definitions and examples that help illustrate the
concepts presented. Also, some results used in later chapters will be derived there.

Chapter 3 contains the fundamental blocks of polar coding theory. Among other topics,
we present the Channel Polarization and Polar Coding theorems and introduce the Succes-
sive Cancellation (SC) decoding [4]. We then present four approximated methods of code
construction, namely the Density Evolution - Gaussian Approximation (DEGA) [10], Mod-
ified DEGA [11], Bit Error Evolution (BEE) [11] and Bhattacharyya [11]. We follow by

2

presenting comprehensive simulation results that allow us to compare the different construc-
tion methods. We also approach polar systematic encoding and other practical aspects of
polar encoding.

Chapter 4 begins by introducing the binary tree decoding algorithm, which sets ground
for us to review the Simplified Successive Cancellation (SSC) and Fast-SSC algorithms
[12, 13]. Then, we introduce the Successive Cancellation List (SCL) decoding and CRC-
concatenated polar codes [5, 14]. Next, we present the Simplified Successive Cancellation
List (SSCL) and SSCL-SPC decoding algorithms [15]. We show simulation results that as-
sess the effect of multiple code settings on the error performance and follow by analysing
the error performance behaviour of the four construction methods.

Finally, Chapter 5 presents the conclusions and some insights on future works.

3

COMMUNICATION THEORY

2.1 INTRODUCTION

The main goal of this chapter is to introduce fundamental elements that will be used
throughout the development of polar coding theory. Here, we explore them in a general
context of communications and coding theory; we expect that this approach will help the
reader to understand the essence of such concepts and later, when polar codes are introduced
in the next chapters, it becomes clear which parts of the theory belong to a more general
context and which belong to polar coding theory. Also, this chapter adopts a different than
usual format: it is built around definitions and examples, used to illustrate concepts and to
derive results that will be used in later chapters.

Section 2.2 introduces the general abstraction of a communications link. Next, Sec-
tion 2.3 approaches the mathematical modelling of the communications channel: we review
concepts such as discrete memoryless channels, Binary Erasure Channels (BEC), AWGN

channels, decision rules, likelihood ratios, and introduce the symmetric capacity and Bhat-

tacharyya parameter definitions. Section 2.4 presents a brief history of error correcting
codes and goes through some of their fundamental definitions, such as block codes, linear

codes and coset codes. Lastly, Section 2.5 presents the conclusions.

2.2 COMMUNICATIONS LINK

We begin by defining communication as the process of transferring information between
two points in space or time. It is easy to think of examples were information is transferred
between two points in space: when someone sends a text message to someone else far away
or when the radio station broadcasts FM radio to thousands of receivers at different places
simultaneously. However, sometimes we fail to see that our modern everyday life depends
heavily on communication systems, and that we are constantly transferring information in
time, space or both at once. When we store information we are essentially transferring infor-
mation from the past to the present. When one searches the web for something using their
smartphones they are retrieving information stored some time ago, on a server or computer
far away, to the present time and location.

We define a communications link as the collection of procedures performed in order to
effectively transfer information between two points in space or time. The following steps
show to be sufficient to describe a communications link [2]:

4

2

a) some information is generated at the transmitter;

b) the information is inserted into a signal that must be compatible with transmission on
a particular physical medium; we call this process modulation;

c) the signal is propagated throughout the physical medium, called the channel; remem-
ber, this medium can be both space and/or time;

d) the signal is received at the receiver and the information is recovered from the received
signal; this process is called demodulation;

e) the information is consumed at the receiver.

Information
Source Modulator Channel Demodulator Information

Consumer

Message	Signal Transmitted	Signal Received	Signal Message	Signal

Transmitter	(TX) Receiver	(RX)

Figure 2.1 – An illustration of a generic communications link.

We can say that a communications link begins at the generation of information at the
transmitter and ends when this information is consumed at the receiver. The steps above are
illustrated on Figure 2.1.

As expected, the transmitted signal is susceptible to impairments that the channel may
introduce in a way that the recovery of the information from the received signal doesn’t al-
ways occur perfectly. Examples of such impairments are the interference from other signals
propagating in the same medium, thermal noise generated at the receiver or even a scratch on
a Compact Disc (CD). As an attempt to overcome such impairments, we need to introduce
redundancy on the information, in a process called channel coding. A brief introduction to
this topic and the hereby adopted mathematical modeling of the channel will be addressed in
Sections 2.4 and 2.3 respectively. For further information on these topics and on communi-
cations systems, refer to [2, 7, 16].

2.3 MATHEMATICAL MODELLING OF THE CHANNEL

We can approach the communications problem using many abstraction levels, one of
which is shown in Figure 2.1. Note that this level of abstraction does not dictate how the

5

transmitted signal should be represented. The complete description of the signal in all points
of space and time within its propagation medium is often unnecessary. Instead, we model the
communications link with statistical quantities that approximate or simplify the representa-
tion of the real physical quantities [2, 16].

Imagine that a communications link is used to transmit bits from the source to the con-
sumer. In order to test this system, you program the source to transmit a known sequence
of bits, and you observe what is being received. Now, regardless of how the actual signal
transmission occurs, you are only observing bits; you notice that some of them are received
properly, but some others don’t. You then start to compute statistics of how often bits are
received incorrectly. However, you realize that simply computing how often errors occur
may not be sufficient in order to describe your link: the probability of error can change over
time or past bits or past errors can affect the result of future bits.

We then generalize the idea of this previous thought experiment. Suppose we only have
access to the message signal and that it is made of symbols from a certain alphabet X . At
the output of the channel we have symbols from some other alphabet Y . Why the alphabet
Y may be different from X will be clarified using examples. This simplified setup is shown
in Figure 2.2.

Information
Source Channel Information

Consumer

Message
Symbols

Message
Symbols

Figure 2.2 – Simplified communications link assuming the symbols generated are transmitted
directly through the channel.

2.3.1 Discrete Memoryless Channels

As is expected, the mathematical modelling of the channel is based on statistics and the
definition of a discrete channel itself is made only by defining a collection of probability
measure functions.

Definition 2.1 (Discrete Channel). Given the finite sets X and Y , respectively called
input alphabet and output alphabet, and an arbitrary set S called set of states, a dis-

crete channel is a system of probability measure functions

pn(β1, ..., βn | α1, ..., αn; s),

6

with

α1, ..., αn ∈ X ,

β1, ..., βn ∈ Y ,

s ∈ S,

n = 1, 2, ..., (2.1)

that is, a function system that satisfies

1. pn(β1, ..., βn | α1, ..., αn; s) ≥ 0 for all n, α1, ..., αn, β1, ..., βn, s ;

2.
∑

β1,...,βn
pn(β1, ..., βn | α1, ..., αn; s) = 1 for all n, α1, ..., αn, s.

We interpret pn(β1, ..., βn | α1, ..., αn; s) as the probability of receiving the symbol se-
quence β1, ..., βn at the channel output after applying the sequence α1, ..., αn on its input,
given the channel was at state s just before α1 was transmitted.

On this work we are particularly interested on channels that are said to be memoryless.
This is because a core assumption used on the theory of polar codes is that the channels used
are memoryless.

Definition 2.2. A discrete channel is said to be memoryless if it satisfies

1. the probability pn(β1, ..., βn | α1, ..., αn; s) doesn’t depend on the state s and
can be written as pn(β1, ..., βn | α1, ..., αn) ;

2. pn(β1, ..., βn | α1, ..., αn) =
∏n

i=1 p1(βi | αi).

We can see that on memoryless channels the transition probabilities depends only on
its input and output symbols, therefore there is no initial condition or internal state on the
channel that changes over time. Also, the transmission of multiple symbols sequentially can
be treated symbol by symbol individually: each symbol transmission is independent from
the others.

Then, for a Discrete Memoryless Channel (DMC), knowing the probabilities p1(β | α) is
sufficient to characterize the transmission of any sequence. We adopt therefore the following
notation.

Definition 2.3. W : X → Y represents a DMC W with input alphabet X and output
alphabet Y . We denote p1(y | x) by W (y | x), y ∈ Y , x ∈ X .

7

Figure 2.3 – Binary symmetric channel W with crossover probability p.

Definition 2.4 (Binary-Input Channel). We say a channel W : X → Y has binary-
input if |X | = 2. Without loss of generality, we will represent the symbols of X as
{0, 1}.

Definition 2.5 (Binary Symmetric Channel). A Binary-input Discrete Memoryless
Channel (B-DMC) W is said to be symmetric if there exists a permutation π such that

1. π = π−1;

2. ∀y ∈ Y ,W (y | 1) = W (π(y) | 0).

In a symmetrical channel, for each transition W (y | 1) there exists a symbol π(y) such
that W (π(y) | 0) = W (y | 1). Also, it is easy to see that W (π(y) | 1) = W (π(π(y)) | 0) =
W (y | 0).

Example 2.1 (Binary Symmetric Channel)
If

1. X = Y = {0, 1},

2. W (0|1) = W (1|0) = p,

3. W (0|0) = W (1|1) = 1− p,

we say that W is a Binary Symmetric Channel (BSC) with crossover probability p. A
visual representation of this channel is shown in Figure 2.3.

Definition 2.6 (Binary Erasure Channel). A B-DMC W is said to be a Binary Erasure
Channel (BEC) if for each y ∈ Y either

W (y | 0)W (y | 1) = 0

8

or
W (y | 0) = W (y | 1).

In the latter case, y is said to be an erasure symbol.

We can see that erasure symbols have equally likely transitions from 0 or 1. For non-
erasure symbols, it must be true that the transition from 1 or 0 has probability zero.

Example 2.2 (Binary Erasure Channel)
If

1. X = {0, 1},Y = {0, 1, e},

2. W (1|0) = W (0|1) = 0,

3. W (0|0) = W (1|1) = 1− ε,

4. W (e|0) = W (e|1) = ε,

then W is a BEC with erasure probability ε. A visual representation of this channel is
shown in Figure 2.4.

Figure 2.4 – Binary erasure channel W with erasure probability ε.

We can think of the BEC on Example 2.2 as a channel where there is no crossover prob-
ability. In this channel, there is no chance a 0 at the input will generate a 1 at the output, and
vice versa.

2.3.2 AWGN Channel

The channel definition at Section 2.3.1 is a mathematical abstraction that doesn’t reveal
any physical aspect of what may be happening at a real communications link. When actual
physical channel impairments are concerned, a basic model used widely in communications
theory is the Additive White Gaussian Noise (AWGN) channel. We can define this kind of
noise by being:

9

a) additive, since it adds to the signal and other channel impairments;

b) white, meaning its power is evenly distributed in all of the signal frequency range;

c) Gaussian, meaning it follows a normal distribution. In addition, we consider that this
distribution has zero mean.

A common technique to transmit signals over space is using linear modulation over pass-
band channels [2]. Using this technique, one can transmit different information on two
time-orthogonal signals called in-phase (I) and quadrature (Q) components, which can be
recovered independently at the receiver and can be represented as the real and imaginary
parts of complex numbers. There are modulation schemes that have a dimension higher than
two, by using signals orthogonal in frequency, as an example. However, we will focus on
two-dimensional modulation.

Definition 2.7. The AWGN channel will be described using the input alphabet

X = {s0, s1, ..., sM−1} ⊂ C

and output alphabet
Y = C.

Given x ∈ X at the channel input, the output is y = x+N ∈ Y , whereN = nI+j ·nQ
and nI , nQ are independent and identically distributed (i.i.d.) samples from a zero
mean normal distribution with variance σ, that is, nI , nQ ∼ N(0, σ).

+

Figure 2.5 – A representation of the AWGN channel.

A representation of the AWGN channel can be seen on Figure 2.5. Definition 2.7 creates
an algebraic relation between the output and the input of the channel, in contrast with the
pure statistical Definition 2.1 of DMCs. Nevertheless, one can obtain probability density
functions p1(y | x), x ∈ X , y ∈ Y defined by [2]

p1(y | x) =
1

2πσ2
exp

(
−‖y − x‖

2

2σ2

)
. (2.2)

10

BPSK QPSK

Figure 2.6 – BPSK and QPSK constellations.

If we limit the symbols in X to the real numbers and Y also to R, we have that [2]

p1(y | x) =
1√
2πσ2

exp

(
−‖y − x‖

2

2σ2

)
. (2.3)

By our definition, the AWGN channel is memoryless.

An important measure that is related to the transmitted signal power is the symbol energy.

Definition 2.8. The symbol energy Es is defined as

Es =
1

M

M−1∑
i=0

‖si‖2.

One can model the AWGN in frequency as a random process with constant Power Spec-
tral Density (PSD) of N0/2 [2]. It can be shown that after each component of the signal is
retrieved the variance per dimension is σ = N0/2. There are many ways to measure the
Signal-to-Noise Ratio (SNR), but a common way that of doing so is using the symbol energy
and the noise PSD N0, defined as

Es
N0

. (2.4)

The input alphabet X , also called constellation, is made of symbols si that are points
on the complex plane. Two common constellations are shown in Figure 2.6, namely Binary
Phase-Shift Keying (BPSK) and Quadrature Phase-Shift Keying (QPSK). At the lowest level,
however, these symbols usually also represent bits, and so M = 2n and each sequence of n
bits is mapped to a symbol si, as exemplified in Figure 2.7.

11

symbol mapping
01...1

bits

Figure 2.7 – An example of a symbol mapping operation.

2.3.3 Decision Rules

Upon receiving a symbol y at the output of the channel, one needs to decide which
symbol si ∈ X = {s0, ..., sM−1} was transmitted, or how likely was si transmitted. In order
to accomplish this, we define the Maximum a Posteriori (MAP) and Maximum Likelihood
(ML) decision rules.

Definition 2.9. A decision rule is a function δ : Y → X which maps the received
symbols y ∈ Y to an input symbol x ∈ X .

Definition 2.10 (ML Decision Rule). The ML decision rule is defined as

δML(y) = argmax
i∈{0,...,M−1}

p(y | x = si), (2.5)

where p(y | x = si) is the conditional probability of receiving y given si was trans-
mitted in the case the output alphabet Y is discrete or, if Y is continuous, it is the
conditional probability density.

Definition 2.11 (MAP Decision Rule). The MAP decision rule is defined as

δMAP(y) = argmax
i∈{0,...,M−1}

p(x = si | y)

= argmax
i∈{0,...,M−1}

τip(y | x = si), (2.6)

where τi = p(x = si) is known as the prior probability that x = si and p(x = si | y)
is the conditional probability that x = si given the a posteriori observation y. The
inversion of the conditional was made using the Bayes rule.

The MAP rule accounts for the case where not all symbols are equally likely to appear
on the input. However, if τi ≡ 1/M the MAP and ML rules are equivalent. It can be shown
[2] that the MAP rule produces the minimum average error probability.

12

Definition 2.12 (Likelihood Ratio). When bits are mapped to the symbols si ∈ X , we
can define the Likelihood Ratio (LR) of the i-th bit bi on the bit sequence (b0, ..., bn−1)

as
lbi(y) =

p(bi = 0 | y)
p(bi = 1 | y)

,

where p(bi = j | y) is the conditional probability of bi = j given y was observed at
the channel output.

Using the Bayes rule, we get

lbi(y) =
p(bi = 0 | y)
p(bi = 1 | y)

=
p(y | bi = 0)τ0

p(y | bi = 1)τ1

.

Note that, after swapping the conditionals, p may represent a probability density or a proba-
bility function.

Definition 2.13 (Log-Likelihood Ratio). For algebraic convenience, we define the
Log-Likelihood Ratio (LLR) as

Lbi(y) = log (lbi(y))

= log

(
p(y | bi = 0)

p(y | bi = 1)

)
+ log

(
τ0

τ1

)
= Lposterior

bi
(y) + Lprior.

(2.7)

From Eq. (2.7) one can see that for equal priors the sign of Lbi(y) shows which condi-
tional probability is bigger, and that its magnitude shows how big one probability is when
compared to the other. This is a measure of reliability of an observation, and this extra in-
formation besides the signal of the LLR will be used later when bits are transmitted using
redundancy.

We can compute p(y | bi = j) by summing probabilities on all symbols on which bi = j

p(y | bi = j) =
1

τj

∑
sk|bi=j

p(y | sk)p(sk). (2.8)

Example 2.3 (BPSK Transmission)
Consider the BPSK transmission under an AWGN channel with noise variance σ. Let
X = {−1, 1} with a mapping x = (−1)b when the bit b is transmitted, Y = C and

13

τ0 = τ1 = 1/2. If y = r + j · q we have that

l(y) =
exp

(
− (r−1)2+q2

2σ2

)
exp

(
− (r+1)2+q2

2σ2

)
= exp

(
2r

σ2

)
L(y) =

2r

σ2
. (2.9)

From this example, we can see that the output likelihood for the BPSK AWGN depends
on a channel characteristic, namely the noise variance σ2. If we observe r = 50 with σ = 1,
then L(y) = 100, which would show that with a great reliability x = 0. However, note that
it is extremely unlikely to receive r = 50 both when x = 0 or when x = 1, but the ratio of
the conditional densities is very large.

Example 2.4 (BSC)
For a BSC with X = Y = {0, 1} and τ0 = τ1 = 1/2,

l(0) =
1− p
p

,

l(1) =
p

1− p
. (2.10)

It can also be seen on Example 2.4 that the LLRs depend on a channel characteristic,
namely p.

Example 2.5 (BEC)
For a BEC W with X = {0, 1}, Y = {0, 1, e} and τ0 = τ1 = 1/2,

l(0) =
1− ε
0

= inf,

l(1) =
0

1− ε
= 0,

l(e) =
ε

ε
= 1. (2.11)

Using LLR,

L(0) = inf,

L(1) = − inf,

L(e) = 0. (2.12)

14

Example 2.5 shows that for a BEC the LLR values polarize towards − inf and inf for
non-erasure symbols, since W (y | 0)W (y | 1) = 0, and that for erasure symbols one can
extract no information of whether x = 0 or x = 1, since W (y | 0) = W (y | 1).

2.3.4 Channel Capacity and the Bhattacharyya Parameter

An important quantity related to a communications channel is its capacity. Shannon
showed in his famous 1948 paper [3] that the transmission of information bits can be achieved
with arbitrarily small probability of error, given that the transmission rate is below this quan-
tity.

Definition 2.14 (Mutual Information). Given two discrete random variablesX, Y with
sample spaces X ,Y , their mutual information is calculated as

I(X;Y) =
∑
y∈Y

∑
x∈X

p(x, y) log2

(
p(x, y)

p(x)p(y)

)
. (2.13)

For continuous variables, the corresponding sums in Definition 2.14 should be replaced
by integrals. Note that ifX, Y are independent, I(X;Y) = 0, meaning that Y doesn’t convey
any information on X .

Definition 2.15 (Channel Capacity). Consider a memoryless channel modeled by
p(y | x), x ∈ X and y ∈ Y . The channel capacity is defined as

C = max
p(x)

I(X;Y), (2.14)

where p(x) is the marginal distribution of X .

Using the properties that p(x, y) = p(x)p(y | x) and p(y) =
∑

x∈X p(x, y), we can
rewrite the mutual information as

I(X;Y) =
∑
y∈Y

∑
x∈X

p(y | x)p(x) log2

(
p(y | x)∑

x∈X p(x)p(y | x)

)
. (2.15)

By assuming a binary-input channel with equal priors, we get the following definition.

Definition 2.16 (Symmetric Capacity). Given a B-DMC W : X → Y , we define the

15

symmetric capacity as

I(W) =
∑
y∈Y

∑
x∈X

1

2
W (y | x) log2

(
W (y | x)

1
2
W (y | 0) + 1

2
W (y | 1)

)
. (2.16)

The symmetric capacity is equal to the Shannon capacity in Definition 2.15 when W
is symmetric.

Definition 2.17 (Bhattacharyya Parameter). Given a B-DMC W : X → Y , we define
the Bhattacharyya parameter as

Z(W) =
∑
y∈Y

√
W (y | 0)W (y | 1). (2.17)

The Bhattacharyya parameter is an upper bound on the probability of ML decision error
when W is used once to transmit a 0 or a 1. The following definition shows the relationship
between I(W) and Z(W).

Proposition 2.1. For any B-DMC W , we have

I(W) ≥ log2

2

1 + Z(W)
(2.18)

I(W) ≤
√

1− Z(W)2. (2.19)

This proposition makes clear the intuition that I(W) ≈ 1 if and only if Z(W) ≈ 0, and
I(W) ≈ 0 if and only if Z(W) ≈ 1. From this point, we define "iff" as "if and only if".

2.4 INTRODUCTION TO ERROR CORRECTING CODES

The modern communications and information theory is considered to be founded by
Claude Shannon in his 1948 paper A Mathematical Theory of Communication [3]. There,
he showed that there is a fundamental limit on how many information symbols, or bits, one
can transmit through a noisy channel per unit of time with an arbitrarily small probability of
error. However, practical applications only approached this limit in the early 1990s.

As it was seen on the previous sections, the transmission of information through a channel
is prone to errors. In order to avoid such errors, one can transmit information with redun-
dancy. A simple example is, instead of transmitting the bit 0 or 1 through a BSC, transmit
the triple 000 or 111. By doing this, one could assume, upon receiving 001, that the sequence

16

000 was sent.

Encoder

Decoder

Received Signal /
Code Word

Message Code Word

Estimated
Message

Figure 2.8 – Diagram representing the block encoding/decoding operations.

The process of generating the redundant sequence is called encoding, and the estimation
of the message from the received sequence is called decoding. In this introduction, we are
interested in block codes, codes in which blocks of message symbols are encoded into blocks
of code word symbols. Block codes are memoryless: the encoding/decoding operations are
independent between blocks. This process can be represented in general as seen in Figure
2.8.

The encoding operation can be represented by an injective function f : Mk → X n

that maps the message sequences composed of symbols from M into sequences of encoded
symbols from X . We can call the image of the encoding function f as the code word set
C ⊂ An. Also, the decoding operation can be seen as a function g : Yn →Mk that maps the
received signal into the message set. Note that in Figure 2.8 the decoder input can be either
a sequence from X n or a signal directly from the channel output, such as LLR values in Rn.
As seen before, the LLR values convey more information about the transmitted bit, such as
the reliability of the estimate, and this information can be used by the decoder to make a
better estimate of the message.

Definition 2.18. A block code with k information bits, n − k redundancy bits and
block size n is represented by (n, k). The code rate is defined as

R =
k

n
. (2.20)

The code rate is a measure of how much redundancy is inserted into the encoded block
when compared to the message length.

Example 2.6
Let M = {a, b} and C = {000, 111}, with the mapping a → 000, b → 111. We can
see that X = {0, 1} and X n has eight elements, but only two are valid code words,
which enables the decoder to detect errors. We are treating a, b and 0, 1 as symbols

17

only, and there is no explicit mathematical relationship between these symbols. Also,
without the knowledge of the channel, one cannot determine how a received message
like 010 should be decoded. Figure 2.9 shows all the possible received sequences in a
cube lattice.

Figure 2.9 – 3-bit binary cube.

Since the code word length is bigger than the message length, more symbols will be
transmitted in order to transmit one information bit. Then, by measuring the SNR using only
the symbol energy one would not account that more energy is being used. We then define
the bit energy per N0 ratio as

Eb
N0

=
1

R

Es
N0

. (2.21)

2.4.1 A Brief History

The story of error correcting codes dates back to 1950 when Richard Hamming proposed
the Hamming codes as an attempt to automatically correct errors introduced in punched
cards used in computers at that time. However, this technique couldn’t approach the limit
proposed by Shannon and the search for better performing codes continued. Later in 1954
the Reed-Muller (RM) codes were proposed and further used in deep-space communication.
Around 1959-60, the Bose–Chaudhuri–Hocquenghem (BCH) codes were invented, which
are still used until the present time in satellite communications, CDs, Digital Video Discs
(DVDs) and bar codes. Around the same time, the Reed-Solomon (RS) codes were intro-
duced and were subsequently used in CDs, DVDs, Blu-ray discs and Quick Response (QR)
codes. It wasn’t until 1993 when the turbo codes were introduced that practical codes could
approach the Shannon capacity. Turbo codes are used in 3G and 4G mobile telephony, DVB-
RCS2 satellite communications and WiMAX wireless communications standards. Later on,
in 1996, a family of codes developed by Robert Gallager in 1963 in his doctoral dissertation
were rediscovered: the Low-Density Parity-Check (LDPC) codes. At the time of their dis-
covery, LDPC codes were impractical to implement. However, this technique found usages

18

in DVB-S2 satellite communications standard and in the data channel of the recent mobile
5G standard.

Even though LDPC and turbo codes have shown capacity-achieving capabilities in prac-
tical applications [7, 16], they are not mathematically proven to do so and suffer from error
floors at high SNR [7, 16]. Over seventy years after Shannon predicted the existence of a
capacity achieving codes, Arikan [4] proposed polar codes as provably capacity-achieving
codes, which are closely related to RM codes. The last decade experienced a large amount
of research regarding this technique, which allowed polar codes to present comparable per-
formance to LDPC codes [5].

2.4.2 Linear Codes

It is not imperative that X n or X have an algebraic structure that allows elements of
these sets to be operated with others using addition and/or multiplication operations. How-
ever, by introducing such structure to these sets one can create more efficient mappings and
encoding/decoding algorithms.

Definition 2.19 (Linear Codes). Let K be a finite field and Kk, Kn be vector spaces
with element-wise addition and multiplication. A linear code maps messages from
the message space Kk to the code word space C ∈ Kn, k ≤ n, by multiplying the
message u ∈ Kk by a generator matrix G, obtaining x = uG.

Example 2.7
A code does not have to be binary. Consider K = {0, 1, 2} with modulo 3 addition
and multiplication. If

G =

[
1 1 0

1 2 1

]
(2.22)

then

Kk = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)} (2.23)

and

C = {(0, 0, 0), (1, 2, 1), (2, 1, 2), (1, 1, 0), (2, 0, 1),

(0, 2, 2), (2, 2, 0), (0, 1, 1), (1, 0, 2)}. (2.24)

19

Definition 2.20 (Coset Codes). Given a linear code C over a finite field K generated
by G and x ∈ Kn, we define x + C

∆
= {x + y|y ∈ C} as a G-coset code. It is easy to

see that if x ∈ C then x + C = C, since C is subspace.

Example 2.8
Continuing Example 2.7, let x = (1, 1, 1). Then

x + C = {(1, 1, 1), (2, 0, 2), (0, 2, 0), (2, 2, 1), (0, 1, 2),

(1, 0, 0), (0, 0, 1), (1, 2, 2), (2, 1, 0)}. (2.25)

Since x +C only contains (0, 0, 0) if x ∈ C, we can see that x +C won’t always be a
subspace of Kn.

2.4.3 Decoding and Distances

When we introduced redundancy in Example 2.6, we represented each message word
with an amount of symbols greater than the necessary to list all possible messages. This
means that we introduced extra possible received words that don’t correspond to any valid
input message. Figure 2.9 shows every sequence placed in vertices of a cube in a manner
that sequences connected by an edge have only one bit of difference, sequences separated
by square diagonals differ by two bits and sequences separated by cube diagonals differ by
three bits.

A possible decoding strategy would be to choose the code word closest to the received
sequence. It will be shown later that for BSC with equal priors this corresponds to MAP
decoding. In fact, the notion of distance is at the core of the decoding problem.

Definition 2.21 (Hamming Distance). The Hamming distance is the number of in-
dexes on which two sequences of symbols x, y are different. More formally, we define
the Hamming distance of two sequences x = (x0, ..., xn−1) and y = (y0, ..., yn−1) of
Kn as

dH(x, y) = |{i|xi 6= yi}|, (2.26)

where |A| is the number of elements in setA. Also, the Hamming weight of a sequence
is defined by

dH(x, 0), (2.27)

when x ∈ X ⊂ N.

20

Example 2.9 (Block Codes in BSC Channel)
Consider X = {0, 1} and f : X k → X n an encoding function with code word set
C. Then, a code word x ∈ C is transmitted though a BSC channel with crossover
probability p and y ∈ X n is received at the output of the channel. Assuming equal
priors, each code word x ∈ C is equally likely to happen, and the MAP rule is

δMAP(y) = argmax
x∈C

p(y | x). (2.28)

Given x ∈ C, we have that dH(y, x) is equal to the number of different entries, and,
assuming x was transmitted, it is also the amount of errors. Then,

p(y | x) = pdH(x,y)(1− p)n−dH(x,y). (2.29)

Assuming p < 1/2, we have that pi(1− p)n−i ≥ pj(1− p)n−j if i ≤ j, and the MAP
rule reduces to

δMAP(y) = argmin
x∈C

dH(y, x). (2.30)

Following the steps in Example 2.9, we can show that if somehow p > 1/2, then the
MAP rule would reduce to finding the code word with the greater distance. Also, if the
crossover probability was not the same for 0 and 1 transmission, this minimum distance rule
wouldn’t coincide with the MAP rule.

Example 2.10 (Block Codes in AWGN Channel)
Consider X = {0, 1} and f : X k → X n an encoding function with code word set
C. Then, a code word x ∈ C is transmitted though an AWGN channel with variance
σ = N0/2 using BPSK mapping and y ∈ Rn is received at the output of the channel.
Assuming equal priors, each code word x ∈ C is equally likely to happen, and the
MAP rule is

δMAP(y) = argmax
x∈C

p(y | x). (2.31)

Given x ∈ C, let z ∈ {−1, 1}n be the mapped version of x, using 0→ 1 and 1→ −1

21

and CB ⊂ {−1, 1}n be the set of the mapped code words. We have that

p(y | x) = p(y | z) =
n−1∏
i=0

1√
2πσ2

exp

(
−(yi − zi)2

2σ2

)

=

(
1√
2πσ2

)n
exp

(
−
∑n−1

i=0 (yi − zi)2

2σ2

)

=

(
1√
2πσ2

)n
exp

(
−‖y− z‖2

2σ2

)
.

Then, the MAP rule reduces to

δMAP(y) = argmin
z∈CB

‖y− z‖2. (2.32)

Once again, the MAP rule could be expressed in terms of distances. However, when the
message length k is big enough, testing all the distances of the 2k possible code words is
impractical. The main challenge of coding theory is to find a mathematical encoding rule f
that generates a setC with known properties and structure that allows simpler decoding other
than exhaustion of all possibilities. Besides allowing such efficient decoding algorithms, the
structure of C must allow good correcting performance. On Example 2.6, we deliberately
chose 111 and 000 as code words in order to maximize the distance between them. If 000 and
010 were chosen instead, with only one error one could falsely detect the other code word.

Given a generator matrix G, there is a procedure for finding the smallest Hamming dis-
tance between code words [7]. However, for large enough message length k, it is impractical
to perform such procedure for an arbitrary matrix G.

Shannon’s fundamental theorem [3] shows that an arbitrarily small probability of error is
achievable through a large enough code length n. The following example shows an intuitive
reasoning on why larger codes are able to show better error performance.

Example 2.11
Let X = {0, 1} be the message and code word alphabet of a code f : X k → X n

with code word set C. We have 2k possible messages, 2k possible code words and 2n

possible received sequences. Lets have a look at the ratio

|C|
|X n|

=
|X k|
|X n|

=
2k

2n
= 2k−n. (2.33)

If the code rate
R =

k

n
(2.34)

22

is fixed, then
C

|X n|
= 2n(R−1) (2.35)

and, as n→∞, assuming R < 1,

C

|X n|
→ 0. (2.36)

This means that the set C gets smaller and smaller when compared to X n and the
code words in C can be spread out throughout X n more sparsely, allowing a greater
distance between them, making lower the probability that a received sequence y is too
far apart from the transmitted code word c and closer to another code word c′.

2.5 CONCLUSION

We began this chapter by introducing fundamental concepts in communications theory
and by presenting a mathematical modeling of the communications channel. We used the
BEC and BSC channels to exemplify discrete channels and later defined the AWGN channel.
Important concepts, such as symbol energy, signal-to-noise ratio, along with decision rules

and likelihood ratios were defined. Important metrics of rate and reliability, namely the
symmetric capacity and the Bhattacharyya parameter were also defined.

Next, an introduction and a brief history of error correcting codes was made, where it be-
came clear that, at least for BPSK under AWGN channel, optimal decoding of block codes
is equivalent to finding the code word with minimum distance. For large codes, finding this
code word may be computationally unfeasible, and one of the main goals of error correcting
theory is to find encoding schemes that allow less complex decoding with good error perfor-
mance. Finally, we illustrated why large blocks allow better error performance. In the next
chapter we proceed by applying the concepts introduced in this chapter to polar codes.

23

THEORETICAL ASPECTS AND
CONSTRUCTION OF POLAR CODES

3.1 INTRODUCTION

Discovered in 2009 by Arikan [4], polar codes are the first family of error correcting
codes to provably achieve the channel capacity. More precisely, Arikan showed that for
any code rate R smaller than the channel capacity, arbitrary small block error probability is
achieved as the block size N goes to infinity. Another key feature of polar codes is that they
are shown to have encoding and decoding complexity O(N logN) [4], which immediately
made them attractive to further research. The possibility that polar codes can show similar or
better performance than state-of-the-art codes such as Turbo and Low-Density Parity-Check
(LDPC) codes has made this an active area of research [17].

The objective of this chapter is to introduce fundamental concepts of polar codes and to
illustrate them with simulation results. Such concepts include virtual channels, approached
in Section 3.2, and channel polarization, presented in Section 3.3. We then study the basic
principles of the Successive Cancellation (SC) decoding proposed by Arikan [4] in Section
3.4. In Section 3.5 we show that the natural order decoding of polar codes is a property
of the recursive structure proposed, not the encoding matrix. We show how this codes are
constructed in Section 3.6 and present the simulation results and analysis in Section 3.7.
Practical aspects of polar encoding are discussed in more detail in Section 3.8. Finally, the
conclusions are presented in Section 3.9. The more detailed description of the decoder and
decoding optimizations are left to Chapter 4.

3.2 VIRTUAL CHANNELS

It was seen in Example 2.9 that the decoding of a block code through a Binary Symmet-
ric Channel (BSC) W : {0, 1} → {0, 1} can be performed considering the whole block as a
single output of the channel. To illustrate this, Figure 3.1 shows the example where repeti-
tion encoding is used to transmit through a BSC: each 3-symbol block at the output can be
considered as a symbol of a new output alphabet of a new channel W ′ : {0, 1} → {0, 1}3.
The new transition probabilities can be obtained using the Hamming distances, as shown in
Example 2.9.

Given a Discrete Memoryless Channel (DMC) W : X → Y , there are three types of

24

3

synthetic channels that are of interest:

1. parallel use channels;

2. combined channels;

3. split channels.

Parallel use channels concatenate n copies of a DMCW to represent symbols transmitted
in series as being transmitted all at once in parallel. Combined channels, just like W ′ in the
example above, incorporate the encoder structure into the channel. Lastly, split channels
consider the idea that bits are decoded serially, and that estimates of the previous bits may
already be available. The next subsections approach these channels.

Figure 3.1 – Combined BSC channel with repetition encoding.

3.2.1 Parallel Use Channels

Suppose we transmit the sequence x ∈ X n symbol by symbol in a sequential manner
through W and obtain y ∈ Yn at the output. Since the channel is memoryless, the transmis-
sion through the channel can be thought as happening in parallel, as depicted in Figure 3.2,
and we can consider the equivalent channel W n : X n → Yn with transition probabilities

W n(y | x) =
n−1∏
i=0

W (yi | xi). (3.1)

3.2.2 Combined Channels

A combined channel is obtained by inserting the encoding structure into the channel,
as illustrated in Figure 3.3. Note that the channel is represented as a parallel use channel

25

W n instead of using serial transmission. Since the encoding function f is injective, and
considering the notation x = f(m), we have that the transition probabilities of the combined
channel Wn :Mk → Yn are given by

Wn(y | m) = W n(y | f(m)) =
n−1∏
i=0

W (yi | xi). (3.2)

Figure 3.2 – Representation of a parallel use channel with W as the base channel.

Encoder Channel

Figure 3.3 – Generic representation of a combined channel.

Example 3.1 (Polar Encoding Kernel)
Polar encoding is done recursively, and the building block used will be introduced in
this example. Figure 3.4 shows a combined channel with linear block coding of two
bits, with

x = uF , (3.3)

where

F =

[
1 0

1 1

]
. (3.4)

The⊕ operation represents mod-2 summation or, equivalently, a sum in the finite field
GF(2). The transition probabilities are

W2(y1, y2 | u1, u2) = W (y1 | u1 ⊕ u2)W (y2 | u2). (3.5)

26

Note that instead of transmitting u1 and u2 directly, we are transmitting u2 and its
differential to u1, u1 ⊕ u2.

Figure 3.4 – Polar encoding kernel and combined channel W2.

3.2.3 Split Channels

Before going into the split channel definition, we introduce a vector notation that will be
handy. The notation aN1 represents the vector (a1, ..., aN). We write aji , 1 ≤ i ≤ j ≤ N ,
to represent the subvector (ai, ..., aj). In the case when i > j, we have that aji represents an
empty set. Given A ∈ {1, ..., N} a index subset, the subvector (ak : k ∈ A) is indicated by
aA.

Polar codes are provably shown to achieve channel capacity under SC decoding [4]. This
type of decoding considers that the message bits are decoded in a serial manner: m1 is
decoded first, and then its estimate m̂1 is used jointly with the channel output yn1 to decode
the next bit m2. Next, both estimates m̂1 and m̂2 are used along with yn1 to decode m3.
Inspired by this notion, we start our path on defining the split channels. After decoding m1,
the most natural thought is to look at the probability p(yn1 | m2 = i) , i ∈ {0, 1}. This
probability considers all bits but m2 to be unknown. The Maximum a Posteriori (MAP) rule
would require to compute for both i = 0 and i = 1 and decide which one is larger. However,
after doing this first for m1, we have a hint of its value. What if we computed the probability
p(yn1 ,m1 = j | m2 = i) instead? As it turns out, computing probabilities this way, using the
previously estimated bits, allows very reliable bit decisions at some positions, but also very
unreliable bit decisions at other positions when using polar coding [4]. Then, if information
bits are only transmitted on the reliable positions, channel capacity can be achieved [4].

The probability p(yn1 ,m1 = j | m2 = i) can be interpreted as the transition probability of
a channel that has yn1 andm1 at its output andm2 at its input. In principle,m1 can assume any
estimate: it can be the actual m1 value that entered the channel, or it can be the Maximum
Likelihood (ML) estimate of m1, or it can even be a random value. We wish then to compute

27

p(yn1 ,m
i−1
1 | mi), and begin by noting that

p(yn1 ,m
i−1
1 | mi) =

p(yn1 ,m
i−1
1 ,mi)

p(mi)

=
1

p(mi)

∑
mk

i+1∈Xk−i

p(yn1 ,m
k
1)

=
1

p(mi)

∑
mk

i+1∈Xk−i

p(yn1 | mk
1) · p(mk

1)

=
p(mk

1)

p(mi)

∑
mk

i+1∈Xk−i

Wn(y
n
1 | mk

1)

=
1

2k−1

∑
mk

i+1∈Xk−i

Wn(y
n
1 | mk

1), (3.6)

where it was assumed that all messages mk
1 are equally likely and the split channel Wn was

used.

We define the i-th split channelW (i)
n :M → Yn×M i−1 as having transition probabilities

W (i)
n (yn1 ,m

i−1
1 | mi) =

1

2k−1

∑
mk

i+1∈Xk−i

Wn(y
n
1 | mk

1). (3.7)

Figure 3.5 shows a split channel representation. This representation may wrongly lead one
to believe that the actual inputs mi−1

1 are available to the output of the channel. Instead,
this representation means that mi−1

1 is considered to be given at the input of the combined
channel Wn: the terms Wn(y

n
1 | mk

1) in Eq. (3.7) have mi−1
1 fixed.

Example 3.2 (Polar Coding Core Split Channels)
Following the Example 3.1, we have that

W
(1)
2 (y2

1 | u1) =
∑
u2

1

2
W2(y

2
1 | u2

1)

=
∑
u2

1

2
W 2(y2

1 | u1 ⊕ u2, u2)

=
∑
u2

1

2
W (y1 | u1 ⊕ u2)W (y2 | u2), (3.8)

28

and

W
(2)
2 (y2

1, u1 | u2) =
1

2
W2(y

2
1 | u2

1)

=
1

2
W 2(y2

1 | u1 ⊕ u2, u2)

=
1

2
W (y1 | u1 ⊕ u2)W (y2 | u2). (3.9)

Figure 3.5 – Representation of a split channel.

3.3 THEORETICAL PRELIMINARIES ON POLAR CODING

We begin by defining the Kronecker product of two matrices A m-by-n and B r-by-s as

A⊗ B =

A11B . . . A1nB

...
Am1B . . . AmnB

 , (3.10)

which is an mr-by-ns matrix. The Kroneker power A⊗n is defined as A ⊗ A⊗(n−1), for all
n ≥ 1, and A⊗0 ∆

= [1].

Polar encoding is really straightforward. Given the encoder kernel

F =

[
1 0

1 1

]
, (3.11)

29

polar codes are a family of linear block codes obtained by the encoding matrix FN = F⊗n,
where N = 2n. The encoder maps the bits uN1 to the code word, which will be the input of
the channel, by the operation

xN1 = uN1 FN . (3.12)

Using this definition, we have that

, (3.13)

. (3.14)

Here, the dashed lines are only to indicate how the previous matrices are used to construct
the larger ones. Note how these matrices are obtained by tiling copies of the previous matrix
next to each other, leaving zeros on the upper right corner. A very important property of FN
is that it is its own inverse, namely F−1

N = FN .

From this point on, let W : X → Y be a Binary-input Discrete Memoryless Channel (B-
DMC) used to transmit the encoded bits. Also, when used on the context of polar coding, the
combined and split channels have the notationWN : XN → YN andW (i)

N : X → YN×X i−1,
respectively, and the mapping between the input uN1 and the bits uN1 FN available at the
parallel use channel WN is left implicit.

The recursive definition of the polar encoding matrix FN allows us to define a recur-
sive construction of the polar encoder and the polar split and combined channels. Figure
3.4 shows how a combined channel W2 can be constructed using 2 copies of W and some
encoding operations and, taking this iteration to the next level, Figure 3.6 shows how two
combined channels W2 can be used to construct the combined channel W4. More generally,
Figure 3.7 shows the recursive construction of the channelsWN . Note that the upper channel
WN/2 receives the bit by bit sum of the first and second half bits, and that the second half
is passed to the next channel WN/2 untouched. On the next channel, each half is then also
divided and the process is repeated. Each copy of WN/2 is called a constituent code.

30

The following theorem proved by Arikan [4] is a key result of split channels and gives
the idea on why polar codes are named in such way.

Theorem 3.1 (Channel Polarization) For any B-DMC W , the channels {W (i)
N } po-

larize in the sense that, for any fixed δ ∈ (0, 1), as N goes to infinity through powers
of two, the fraction of indices i ∈ {1, ..., N} for which I(W (i)

N) ∈ (1 − δ, 1] goes to
I(W) and the fraction for which I(W (i)

N) ∈ [0, δ) goes to 1− I(W).

Figure 3.6 – The channel W4 using polar encoding.

This theorem basically states that out of the N bit channels available, approximately
N · I(W) of them are extremely reliable, with capacities near 1, and approximately N · (1−
I(W)) are extremely unreliable, with capacities near 0. Note that capacities near 1 do not
necessarily mean reliability, since the capacity is a measure of maximum rate. However, in
Chapter 2 we saw that I(W) ≈ 1 iff Z(W) ≈ 0, and Z(W) is a measure of reliability.
Considering the N · I(W) channels with capacity near 1, one should expect that the total
capacity is near N · I(W) · 1: in fact, we have that [4]

N∑
i=1

I(W
(i)
N) = N · I(W). (3.15)

This is the same total capacity of N parallel copies of W transmitting uncoded bits. It then

31

Figure 3.7 – The recursive construction of the combined channel WN using two WN/2 chan-
nels.

32

becomes clear that the total capacity is conserved, but instead redistributed and concentrated
in a group of bit channels.

However, this result alone is not enough to ensure that polar coding is capacity achiev-
able. Instead, it shows that we should only send data bits on the channels that are most
reliable, leaving the remaining positions on a fixed known value, and it motivates the follow-
ing definition.

Definition 3.1 (FN -Coset Codes). Let A be an arbitrary subset of {1, ..., N}. Then,
we can rewrite Eq. (3.12) as

xN1 = uAFN(A)⊕ uACFN(AC), (3.16)

where FN(A) denotes the submatrix of FN composed of the rows of indexes in A.
The idea is to fix some bit values uAC at fixed positions AC , while varying uA. Using
Definition 2.20, these are coset codes of the linear code with generator matrix FN(A).
These codes will be identified by (N,K,A, uAC), where K is the size of A, which is
also called the information set. Also, uAC is referred as frozen bits or vector.

The family of Reed-Muller (RM) codes are closely related to polar codes. In fact, RM
codes are FN -coset codes, with A chosen so that no deleted row has a Hamming weight
larger than the remaining rows and uAC is set to zero. Arikan [4] showed that RM codes are
asymptotically unreliable under SC decoding.

Now, the question is: how do we select the most reliable bit indexes A? The definition
of polar codes makes this explicit.

Definition 3.2 (Polar Codes). Given a B-DMC W , a FN -coset code with parameters
(N,K,A, uAC) will be called a polar code for W if the information set A is chosen
as a K-element subset of {1, ..., N} such that Z(W (i)

N) ≤ Z(W
(j)
N) for all i ∈ A,

j ∈ AC .

Remember that Z(W (i)
N) is a measure of reliability of the split channel Z(W (i)

N): it rep-
resents an upper bound for the decision error probability under ML decoding. Choosing the
most reliable bit positions to transmit information bits results in the following theorem [4].

Theorem 3.2 (Polar Coding) For any symmetric B-DMC W and any fixed R <

I(W), consider any sequence of FN -coset codes (N,K,A, uAC) with N increasing to
infinity, K = bNRc, A chosen according to Definition 3.2, and uAC fixed arbitrarily.

33

The block error probability under SC decoding satisfies

Pe(N,K,A, uAC) = O(N−1/4). (3.17)

Theorem 3.2 shows that polar codes are capacity achieving, since choosing any rate
smaller than the channel capacity leads to a probability of block error that decreases to 0
as N → ∞. Also, the choice of uAC can be arbitrary, since the error bound doesn’t depend
on this value. Hence, we opt for the choice where uAC is the all zero vector. Therefore, a
polar code will be identified by the parameters (N,K,A).

3.4 SUCCESSIVE CANCELLATION DECODING

The idea behind SC decoding is to decode the bits in a serial manner and to use the bit
estimates already obtained to decode the next bit. The decoding is carried out using the
following expression to obtain the i-th bit estimate ûi

ûi =

0, if i ∈ AC

hi(y
N
1 , û

i−1
1), if i ∈ A,

(3.18)

i starting at 1 and going to N , and hi : YN × X i−1 → X , i ∈ A, are decision functions
defined as

hi(y
N
1 , û

i−1
1) =

0, if W
(i)
N (yN1 ,û

i−1
1 |0)

W
(i)
N (yN1 ,û

i−1
1 |1)

≥ 1

1, otherwise.
(3.19)

This decision rule compares the transition probabilities for the split channels and decides
for 0 or 1 based on which probability is larger, resembling the ML rule. Indeed, considering
that only the values of yN1 , û

i−1
1 are available, this rule makes the best choice. However, future

frozen bits are treated as Random Variables (RVs): as seen in Eq. (3.7), the sum is carried
over all possibilities of future bits. In this situation, optimality is traded by the possibility
of efficient computation of hi using recursive formulas. For sake of simplicity, we adopt the
following notation for the split channel Likelihood Ratios (LRs)

l
(i)
N (yN1 , û

i−1
1) =

W
(i)
N (yN1 , û

i−1
1 | 0)

W
(i)
N (yN1 , û

i−1
1 | 1)

(3.20)

L
(i)
N (yN1 , û

i−1
1) = log(l

(i)
N). (3.21)

34

Example 3.3 (SC Decoding with N = 2)
Following example 3.2, we have that

l
(1)
2 (y2

1) =

∑
u2

1
2
W (y1 | 0⊕ u2)W (y2 | u2)∑

u2
1
2
W (y1 | 1⊕ u2)W (y2 | u2)

=
W (y1 | 0)W (y2 | 0) +W (y1 | 1)W (y2 | 1)
W (y1 | 1)W (y2 | 0) +W (y1 | 0)W (y2 | 1)

=

W (y1 | 0)W (y2 | 0)
W (y1 | 1)W (y2 | 1)

+ 1

W (y1 | 1)W (y2 | 0)
W (y1 | 1)W (y2 | 1)

+
W (y1 | 0)W (y2 | 1)
W (y1 | 1)W (y2 | 1)

=
l
(1)
1 (y1)l

(1)
1 (y2) + 1

l
(1)
1 (y2) + l

(1)
1 (y1)

,

and

l
(2)
2 (y2

1, û1) =
1
2
W (y1 | û1 ⊕ 0)W (y2 | 0)

1
2
W (y1 | û1 ⊕ 1)W (y2 | 1)

=

W (y1 | 0)W (y2 | 0)
W (y1 | 1)W (y2 | 1)

, if û1 = 0

W (y1 | 1)W (y2 | 0)
W (y1 | 0)W (y2 | 1)

, if û1 = 1

=

l
(1)
1 (y1) · l(1)

1 (y2), if û1 = 0

l
(1)
1 (y2)

l
(1)
1 (y1)

, if û1 = 1.

The expressions obtained in Example 3.3 are important and will be shown in Section 3.5
to be valid not only for N = 2. We then define

f(la, lb) =
la · lb + 1

la + lb
, (3.22)

g(la, lb, u) = lb · (la)(1−2u), (3.23)

where we note that the value of u ∈ {0, 1} determines whether we multiply or divide the
likelihoods. Figure 3.8 shows how the encoding structure converts into decoding structures.
From now on we take the liberty of representing l(1)

1 (yj) by lj .

Let’s walk through the decoding performed considering the structure on Figure 3.9. First,
y4

1 is used to obtain the channel likelihood ratios l41. At the upper copy of W2, l1 and l2 are
combined though an f node to obtain l(1)

2 (y2
1), and at the lower copy of W2, l3 and l4 are

35

Figure 3.8 – Polar decoding basic nodes.

also combined through an f node to obtain l(1)
2 (y4

3). Note that for each constituent code the
decoding is carried out identically, given the different inputs y2

1 and y4
3 . If we were to decode

the smaller components W2 separately, we would then obtain the estimates v̂1, v̂3 using the
decision function on Eq. (3.19). However, these decoders are part of a greater decoding
structure and the decoding carries on. The next step is to use both l(1)

2 likelihoods to compute
l
(1)
4 (y4

1) = f(l
(1)
2 (y2

1), l
(1)
2 (y4

3)) using an f node and u1 is estimated using l(1)
4 (y4

1). With this
value in hand we proceed by computing l(3)

4 (y4
1, û1), since u3 is the bit paired with the g node

in this structure. After û3 is obtained, we can compute v̂1 = û1 ⊕ û3 and v̂3 = û3. Now, we
have the first bit estimate of the two component decoders W2 and can proceed to compute
l
(2)
2 (y2

1, v̂1) and l(2)
2 (y4

3, v̂3). The same procedure for obtaining û1, û3 is used to obtain û2 and
û4, in this sequence. Figure 3.9 makes clear that x̂4

1 are only obtained after û4 is decoded.

But what if we demand the bits to be decoded on the natural order? Also, one may notice
that first one starts decoding the smaller constituent codes, W , then follow to W2,W4, . . .

and so on. The decoding is made inside out. It would be interesting if we could decode
outside in: after obtaining the channel likelihood ratios we would proceed to a decoder of
order N/2, and so on, recursively.

We can solve both problems using the equivalent combined channel diagram shown in
Figure 3.10. Since FN = F−1

N for all N , we can flip the entire encoding structure left to
right, swapping inputs and outputs. However, we can only do this with the encoding part
of the combined channel; that’s why the structure of WN/2 was dissolved into the channels
W and the encoding structures FN/2. Note how on Figure 3.10 the ⊕ operations that were
previously carried at the input of WN are now carried just before the channels W .

If we proceed the decoding using the structure on Figure 3.10, we decode the bits ui in

36

1st 2nd 3rd 4th

a)

b)

Figure 3.9 – Successive cancellation decoding steps for N = 4. a) Likelihood flow, from
right to left. b) Estimated bits flow, from left to right.

37

Figure 3.10 – An equivalent representation of the combined channel using two FN/2 en-
coders.

the natural order. In fact, we prove this by induction. For F1, it follows immediately. Now,
given xN1 = uN1 FN , we have that every bit on xN1 depends on the last bit of the input uN ,
since the last row of FN is an all one vector. Therefore, we do not know the value of any bit
of v̂N/21 until the estimate ûN/2 is made, and we have no option but to compute f(li, li+N/2)
for 1 ≤ i ≤ N/2 and feed this values to FN/2. Now, using the induction hypothesis, inside
the structure of FN/2 the decoding will yield ûN/21 in the natural order. At this point, v̂N/21

becomes available all at once after ûN/2 is known and we compute g(li, li+N/2, v̂i) for 1 ≤ i ≤
N/2. These g values are fed to the lower FN/2 structure and, using the induction hypothesis
again, ûNN/2+1 becomes available in the natural order.

On Figure 3.11 we illustrate for N = 4 that just by inverting the encoder we can decode
the input bits on the natural order. Just inverting the encoder is a solution to the decoding
order problem, but is not the only one. Arikan [4] proposed that the inputs are permuted by
the reverse shuffle matrix RN that separates all the even from the odd indexes by mapping

38

1st 2nd 3rd 4th

Figure 3.11 – Equivalent successive cancellation decoding steps for N = 4.

(u1, ...uN) into (u1, u3, ..., uN − 1, u2, u4, ..., uN), and you can also show by induction that
this change results in decoding in the natural order. In fact, Arikan uses a different encoding
matrix, namely

GN = BNFN , (3.24)

where BN is constructed recursively using

BN = RN(I2 ⊗ BN/2). (3.25)

We have that BN is a permutation matrix [4], in a way that FN and GN are equivalent encod-
ing matrices.

The advantage of SC decoding is its low complexity of O(N logN) [4]. Due to its
serial nature, SC decoding shows large latency. Arikan [4] showed that SC decoding can be
performed with latency 2N − 1 for a code with length N . It would be desired, however, for
the decoding latency to be sublinear in N . On Chapter 4 we show how this can be achieved
without introducing any performance loss.

3.5 RECURSIVE RELATIONS

One of the greatest advantages of polar coding are the recursive relations for the split
channel probabilities. These recursive relations are important, since the computation using
Eq. (3.7) requires to sum on all the possibilities of uNi+1 and is computationally unfeasible.
However, neither of the generic structures shown in Figures 3.7 or 3.10 are suited for the
derivation of a recursive formula between the split channels. The structure on Figure 3.7
has the problem that the decoding is not made in the natural order, and the structure on

39

Figure 3.12 – Another equivalent representation of the combined channel using recursive
construction.

Figure 3.10 doesn’t show recursive construction in terms of WN/2. Arikan [4] solved this
problem and obtained the recursive relations by introducing the permutation matrix RN to
the encoding matrix. We wish to show similar relations, but maintaining the encoding matrix
as FN and natural order decoding.

The equivalent structure proposed in Figure 3.12 shows how the combined channel can
be represented in order to facilitate the derivation of the recursive formulas. Note that even
though the RN matrix is in our schematic, this representation is equivalent to the one in Fig-
ure 3.10. Here, RN represents the reverse shuffling matrix and SN represents the shuffling
matrix, which maps (s1, s2, ..., sN/2, sN/2+1, ..., sN) into (s1, sN/2+1, s2, ..., sN/2, sN), shuf-
fling the lower and upper halves of the vector. An important notation used here is that ak1,e
designates all the even entries of ak1, and ak1,o designates all the odd entries of ak1. As an
example, a6

1,o = (a1, a3, a5).

We have that the recursive relations for our proposed scheme are

W
(2i−1)
2N =

∑
u2i

1

2
W

(i)
N (y2N

1,o , u
2i−2
1,o ⊕ u2i−2

1,e | u2i−1 ⊕ u2i)W
(i)
N (y2N

1,e , u
2i−2
1,e | u2i) (3.26)

40

and

W
(2i)
2N =

1

2
W

(i)
N (y2N

1,o , u
2i−2
1,o ⊕ u2i−2

1,e | u2i−1 ⊕ u2i)W
(i)
N (y2N

1,e , u
2i−2
1,e | u2i), (3.27)

derived with the steps in Appendix A. Note how these formulas resemble the ones obtained
in Example 3.2. Remember that the expressions obtained for f and g nodes result from this
shape of recursion: W (2i−1)

2N is the sum of two product terms and W (2i)
2N is a single product

term. If we plug these expressions on the likelihood definition at Eq. (3.20) we get

l
(2i−1)
N (yN1 , û

2i−2
1) =

l
(i)
N/2(y

N
1,o, û

2i−2
1,o ⊕ û2i−2

1,e)l
(i)
N/2(y

N
1,e, û

2i−2
1,e) + 1

l
(i)
N/2(y

N
1,o, û

2i−2
1,o ⊕ û2i−2

1,e) + l
(i)
N/2(y

N
1,e, û

2i−2
1,e)

(3.28)

and

l
(2i)
N (yN1 , û

2i−2
1) =

[
l
(i)
N/2(y

N
1,o, û

2i−2
1,o ⊕ û2i−2

1,e)
]1−2û2i−1

· l(i)N/2(y
N
1,e, û

2i−2
1,e). (3.29)

These recursive expressions seem to be only a headache. However, they are necessary
to show that the intuitive idea of evolving the likelihood ratios using the f and g nodes used
in Figure 3.8 is actually equivalent to computing the split channel likelihood ratios. This
intuitive idea presented earlier will lead to a binary tree decoding algorithm in Chapter 4.
Figure 3.12 shows that the input of a WN channel is made of several f and g nodes, and that
this construction is recursive. This means that whenever we see the f and g node pattern and
compute likelihood ratios using Eqs. (3.22, 3.23) we are actually computing split channel
likelihoods at the input of some channel WN .

Consider that we want to decode the bit 1 ≤ k ≤ N from a code with N = 2n. If we do
some re-indexing to start at 0, we now are decoding the bit k′ = k − 1. In this new scenario,
if k′ = 2i we use Eq. (3.28) and if k′ = 2i + 1 we use Eq. (3.29). Let k′ have a binary
representation of bn...b1. If b1 = 0, then k′ is even and the first recursion step will be an
f node that will compute Eq. (3.28). If b1 = 1, then k′ is odd and the first recursion step
will be a g node that will compute Eq. (3.29). In either case, we have that i has the binary
representation bn...b2, which means that this reasoning can be repeated with b2 to obtain the
recursive relations for l(i)N/2, in a manner that the digits b1, ..., bn show all the recursive steps
needed at once. Since we can’t perform any calculation until we reach l(0)

1 , knowing the
binary representation bn...b1 of k′ allows us to start the recursion at the channel level and
evolve until we reach the split channel desired, by applying f and g according to the bits
bj , starting at bn with l(0)

1 and ending at b1 with l(k
′)

N . Figure 3.13 shows the split channel
evolution on the example where N = 8.

41

Fi
gu

re
3.

13
–

A
n

ex
am

pl
e

of
th

e
sp

lit
ch

an
ne

lr
ec

ur
si

ve
ev

ol
ut

io
n

fo
rN

=
8.

42

3.6 CODE CONSTRUCTION

We showed earlier in this chapter that polar codes must be constructed choosing the
bit indexes i on which the Bhattacharyya parameter of the split channel Z(W (i)

N) are the
smallest. Polar codes are non-universal, that is, its construction depends on the channel
W . However, [18] showed that the non-universality of polar codes are an aspect of the SC
decoding proposed by Arikan, not the encoding matrix itself.

Code construction for an arbitrary B-DMC W is possible, though impractical. This is
because the Bhattacharyya parameter of the split channels would be obtained through

Z(WN(i)) =
∑

yN1 ∈YN

∑
ui−1
1 ∈X i−1

√
W

(i)
N (yN1 , u

i−1
1 | 0)W (i)

N (yN1 , u
i−1
1 | 1), (3.30)

which is a sum over all possible outputs and is, for larger N , impractical. We have, however,
some recursive inequalities that hold for every W , namely [4]

Z
(
W

(2i−1)
2N

)
≤ 2Z

(
W

(i)
N

)
− Z

(
W

(i)
N

)2

, (3.31)

Z
(
W

(2i)
2N

)
= Z

(
W

(i)
N

)2

, (3.32)

where equality is only observed iff W is a Binary Erasure Channel (BEC).

Arikan [4] proposed a Monte Carlo method for determining Z(W (i)
N). However, since

extensive computer simulations have to be carried out, a search for other methods and ap-
proximations began. Next, we explore four approximate construction methods available at
the literature [11]. On the rest of this section, we consider the indexing of the bit channels
starting at 0.

3.6.1 Bhattacharyya Method

If we consider that the inequalities at Eqs. (3.31, 3.32) hold approximately, we can
determine the Bhattacharyya parameters by recursion. The proposed approximation for the
Additive White Gaussian Noise (AWGN) channel requires us to start at

Z(W) = exp

(
−Es
N0

)
(3.33)

and then follow by applying Eqs. (3.31, 3.32). The derivation of Eq. (3.33) is left to the
Appendix B.

For a BEC with erasure probability ε, it is easy to verify that Z(W) = ε. Then, since
Eqs. (3.31, 3.32) hold for any BEC, this construction corresponds to the construction for a

43

0.0

0.2

0.4

0.6

0.8

1.0
B

ha
tta

ch
ar

yy
a

Pa
ra

m
et

er

0 200 400 600 800 1000
Bit Index

Frozen Information Frozen Information

Figure 3.14 – Plot of the Bhattacharyya parameters Z(W (i)
N) obtained with the Bhattacharyya

construction method for N = 1024 and Es/N0 = −1.5 dB. The information and frozen
indexes are chosen for K = 512.

BEC with erasure probability exp (−Es/N0).

This process is summarized by Algorithm 1. At the end of the process, the vector Z is
sorted from lower to higher values, and the information setA is chosen to contain the indexes
with the smaller Bhattacharyya parameters.

Figure 3.14 shows the Bhattacharyya parameters obtained using Algorithm 1 for N =

1024 and Es/N0 = −1.5 dB. Choosing the K = 512 smallest values results on the division
shown. It can be seen that the information bits concentrate on the higher indexes, while
frozen bits concentrate in lower indexes. However, we see clusters of frozen bits among the
information bits, and vice-versa.

Algorithm 1: Bhattacharyya Method
Input: Design Es/N0 in dB (Es/N0|dB), code order n (length N = 2n)

Output: Vector of Bhattacharyya parameters (Z)

1 Z ′[0] = exp(−10Es/N0|dB/10);

2 for i = 1 to n do

3 for j = 0 to 2i−1 − 1 do

4 z = Z ′[j];

5 Z[2j] = 2z − z2;

6 Z[2j + 1] = z2;

7 Z ′ = Z

8 return Z;

44

3.6.2 Density Evolution - Gaussian Approximation (DEGA)

Recall that on Example 2.3 we showed that the log-likelihood ratios for a Binary Phase-
Shift Keying (BPSK) system under AWGN transmission was given by

L(y) =
2r

σ2
, (3.34)

where y is the received complex sample y = r + j · q. Under the assumption of all zero
transmission, we have that L(y) is random variable drawn from a Gaussian distribution with
mean

E

[
2r

σ2

]
=

2

σ2
E[r]

=
2

σ2
(3.35)

and variance

var
[
2r

σ2

]
=

4

σ4
var[r]

=
4

σ2
. (3.36)

Here, we assumed Es = 1.

An alternative to finding the Bhattacharyya parameters is to find the distribution of the
values L(i)

N = log(l
(i)
N). Remember that if L(i)

N is close to zero, then the decision of the bit i
is unreliable. It is known that the distribution of this values is not Gaussian, since transform-
ing L(y) into L(i)

N requires non-linear transformations on the f and g nodes. However, the
Density Evolution - Gaussian Approximation (DEGA) method assumes two key things:

1. that the density evolves approximately as Gaussian as we do these transformations;

2. that the relationship between the mean and variance var[L(i)
N] = 2 ·E[L(i)

N] holds as the
densities evolve.

Then, one just needs to keep track of the distributions means. At the end of the process,
the lower the absolute value of the mean is, the closer to zero the values of L(i)

N usually lie
and less reliable the bit channel i is.

Using the terminologymi
N = E[L

(i)
N], the DEGA method performs the following updates

[10]
m2i

2N = φ−1
(
1−

(
1− φ

(
mi
N

))2
)
, (3.37)

m2i+1
2N = 2mi

N , (3.38)

45

where φ is an approximation function [19] of the one at [10]

φ(x) =

exp(−0.4527x0.86 + 0.0218), 0 < x < 10,√
π
x
exp

(−x
4

) (
1− 10

7x

)
, x ≥ 10.

(3.39)

The inverse function φ−1 was approximated numerically by a piecewise function.

Algorithm 2 shows the complete procedure. After obtaining the mean vector, the values
are sorted from higher to lower values, and the indexes with the largest means are selected
to compose A.

Figure 3.15 shows the meansmi
N obtained with the DEGA construction method forN =

1024 and Es/N0 = −1.5 dB. It can be seen that the behaviour of the means is quite erratic,
even for low and high indexes. However, for this Es/N0 setting the distribution of frozen
and information bits is quite similar to the one in Figure 3.14.

Algorithm 2: DEGA Method
Input: Design Es/N0 in dB (Es/N0|dB), code order n (length N = 2n)

Output: Vector of approximated means (M)

1 M ′[0] = 4× 10Es/N0|dB/10;

2 for i = 1 to n do

3 for j = 0 to 2i−1 − 1 do

4 m =M ′[j];

5 M [2j] = φ−1(1− (1− φ(m))2);

6 M [2j + 1] = 2m;

7 M ′ =M

8 return M ;

3.6.3 Modified DEGA (M-DEGA)

Instead of using the φ function to update the means, another approximation is derived at
[11], inspired by the BPSK error probability under AWGN channel

Pe = Q

(√
2
Es
N0

)
, (3.40)

where
Q(x) =

1√
2π

∫ ∞
x

e−
t2

2 dt . (3.41)

46

10 2

100

102

104
D

EG
A

 L
ik

el
ih

oo
d

M
ea

n

0 200 400 600 800 1000
Bit Index

Frozen Information Frozen Information

Figure 3.15 – Plot of the likelihood meansmi
N obtained with the DEGA construction method

for N = 1024 and Es/N0 = −1.5 dB. The information and frozen indexes are chosen for
K = 512.

The means are updated by

m2i
2N = 2Q−1

(
2Q

(√
mi
N

2

)(
1−Q

(√
mi
N

2

)))2

, (3.42)

m2i+1
2N = 2mi

N , (3.43)

and the complete algorithm is shown in Algorithm 3. At the end of the algorithm, just like in
DEGA, the indexes with the largest means are chosen to compose A, since these values are
associated to more certainty of L(i)

N .

Algorithm 3: M-DEGA Method
Input: Design Es/N0 in dB (Es/N0|dB), code order n (length N = 2n)

Output: Vector of approximated means (M)

1 M ′[0] = 4× 10Es/N0|dB/10;

2 for i = 1 to n do

3 for j = 0 to 2i−1 − 1 do

4 m =M ′[j];

5 M [2j] = 2Q−1
(
2Q
(√

m
2

) (
1−Q

(√
m
2

)))2;

6 M [2j + 1] = 2m;

7 M ′ =M

8 return M ;

47

10 4

10 2

100

102

104

M
-D

EG
A

 L
ik

el
ih

oo
d

M
ea

n

0 200 400 600 800 1000
Bit Index

Frozen Information Frozen Information

Figure 3.16 – Plot of the likelihood means mi
N obtained with the M-DEGA construction

method for N = 1024 and Es/N0 = −1.5 dB. Values below the plot range were clipped to
10−4. The information and frozen indexes are chosen for K = 512.

Figure 3.16 shows the means mi
N obtained with the M-DEGA construction method for

N = 1024 and Es/N0 = −1.5 dB. Similar to DEGA, it can be seen that the behaviour of the
means is quite erratic. We also observe that for this Es/N0 setting the distribution of frozen
and information bits is quite similar to the one in Figure 3.14.

3.6.4 Bit Error Evolution (BEE)

Instead of obtaining the Bhattacharyya parameters or evolving the means, [11] proposes
the evolution of the bit error rate of the channels W (i)

N when all bits other than i are frozen.
Using the notation p(i)

N to denote the bit error probability ofW (i)
N , the approximated evolution

of these probabilities is
p2i

2N = 2piN(1− piN), (3.44)

p2i+1
2N = Q

(√
2Q−1(piN)

)
. (3.45)

The complete algorithm is shown in Algorithm 4. At the end of the algorithm, the probability
vector is sorted and the indexes with the smaller probabilities of error are chosen to compose
the information set A.

We simulated the N = 16 polar code with all bits frozen, except for bit i, using SC
decoding and AWGN channel under BPSK transmission. Figure 3.17 shows the simulation
results along with the bit channel error rates obtained with the Bit Error Evolution (BEE)
approximation. We immediately see that the approximation matches the simulation results
and that bit error rates below 10−5 are achieved.

48

Algorithm 4: BEE Method
Input: Design Es/N0 in dB (Es/N0|dB), code order n (length N = 2n)

Output: Vector of approximated bit error probabilities (P)

1 P ′[0] = Q(
√
2 · 10Es/N0|dB/10);

2 for i = 1 to n do

3 for j = 0 to 2i−1 − 1 do

4 p = P ′[j];

5 P [2j] = 2p(1− p);
6 P [2j + 1] = Q(

√
2Q−1(p));

7 P ′ = P

8 return P ;

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Bit Channel

10 6

10 5

10 4

10 3

10 2

10 1

100

B
ER

Simulated Bit Error Evolution

Figure 3.17 – A comparison between the simulated and BEE bit channel error rate for
Es/N0 = −2 dB and N = 16.

49

0.00

0.25

0.50
B

it
C

ha
nn

el
 E

rr
or

 P
ro

ba
bi

lit
y

0 200 400 600 800 1000
Bit Index

Frozen Information Frozen Information

Figure 3.18 – Plot of the bit channel error probability p(i)
N obtained with the BEE construction

method for N = 1024 and Es/N0 = −1.5 dB. The information and frozen indexes are
chosen for K = 512.

Also, Figure 3.18 shows the bit channel error probabilities obtained using Algorithm 4
for N = 1024 and Es/N0 = −1.5 dB. At this point it becomes clear that, at least visually,
all of the four methods presented have a similar frozen/information bit distribution.

3.7 SIMULATION RESULTS

At this point we are ready to present some simulation results. Monte Carlo [20] simu-
lations were carried out in order to obtain the Bit Error Rate (BER) and Frame Error Rate
(FER) of multiple of polar codes with multiple settings.

3.7.1 Code Construction

Figures 3.19-3.21 show the polar code BER and FER performance comparison using the
different construction methods presented for code rates 1/3, 1/2 and 3/4 under AWGN chan-
nel and BPSK transmission, withN = 4096. The code rate 1/3 cannot be obtained for blocks
with size N = 4096 and was approximated. When FER is of concern, all three code rates
exhibit the same behaviour: DEGA, M-DEGA and BEE have similar performance, DEGA
performing slightly better, while the Bhattacharyya method performs the worst. When BER
is of concert, at low Eb/N0 the DEGA method performs worse and at high Eb/N0 the Bhat-
tacharyya method performs worse. From these results, it is clear that the Bhattacharyya ap-
proximation shows poor performance when compared to DEGA, M-DEGA and BEE, while
it is unclear which of these last three approximations performs best.

50

1 0 1 2
Eb/N0 [dB]

10 4

10 3

10 2

10 1

100
FER

1 0 1 2
Eb/N0 [dB]

10 5

10 4

10 3

10 2

10 1

BER

Bhattacharyya DEGA M-DEGA BEE

Figure 3.19 – Simulation results for N = 4096 and K = 1365 (R ≈ 1/3).

0.0 0.5 1.0 1.5 2.0 2.5
Eb/N0 [dB]

10 3

10 2

10 1

100
FER

0.0 0.5 1.0 1.5 2.0 2.5
Eb/N0 [dB]

10 4

10 3

10 2

10 1

BER

Bhattacharyya DEGA M-DEGA BEE

Figure 3.20 – Simulation results for N = 4096 and K = 2048 (R = 1/2).

1 2 3 4
Eb/N0 [dB]

10 4

10 3

10 2

10 1

100
FER

1 2 3 4
Eb/N0 [dB]

10 5

10 4

10 3

10 2

10 1

BER

Bhattacharyya DEGA M-DEGA BEE

Figure 3.21 – Simulation results for N = 4096 and K = 3072 (R = 3/4).

51

0 1 2 3
Eb/N0 [dB]

10 5

10 4

10 3

10 2

10 1

100
FER

0 1 2 3
Eb/N0 [dB]

10 6

10 5

10 4

10 3

10 2

10 1

BER

Bhattacharyya DEGA M-DEGA BEE

Figure 3.22 – Simulation results for N = 1024 and K = 341 (R ≈ 1/3).

0 1 2 3
Eb/N0 [dB]

10 4

10 3

10 2

10 1

100
FER

0 1 2 3
Eb/N0 [dB]

10 5

10 4

10 3

10 2

10 1

BER

Bhattacharyya DEGA M-DEGA BEE

Figure 3.23 – Simulation results for N = 1024 and K = 512 (R = 1/2).

1 2 3 4
Eb/N0 [dB]

10 4

10 3

10 2

10 1

100
FER

1 2 3 4
Eb/N0 [dB]

10 5

10 4

10 3

10 2

10 1

BER

Bhattacharyya DEGA M-DEGA BEE

Figure 3.24 – Simulation results for N = 1024 and K = 768 (R = 3/4).

52

0 1 2 3 4
Eb/N0 [dB]

10 3

10 2

10 1

100FER

0 1 2 3 4
Eb/N0 [dB]

10 4

10 3

10 2

10 1

BER

Bhattacharyya DEGA M-DEGA BEE

Figure 3.25 – Simulation results for N = 256 and K = 85 (R ≈ 1/3).

0 1 2 3 4
Eb/N0 [dB]

10 4

10 3

10 2

10 1

100
FER

0 1 2 3 4
Eb/N0 [dB]

10 5

10 4

10 3

10 2

10 1

BER

Bhattacharyya DEGA M-DEGA BEE

Figure 3.26 – Simulation results for N = 256 and K = 128 (R = 1/2).

2 3 4 5
Eb/N0 [dB]

10 3

10 2

10 1

100
FER

2 3 4 5
Eb/N0 [dB]

10 4

10 3

10 2

10 1

BER

Bhattacharyya DEGA M-DEGA BEE

Figure 3.27 – Simulation results for N = 256 and K = 192 (R = 3/4).

53

Figures 3.22-3.24 show the results for N = 1024 and Figures 3.25-3.27 show the results
for N = 256. We can see that the Bhattacharyya approximation still performs worse, but the
overall performance difference for these block lengths is small. Specially, at N = 256 and
R = 3/4, all methods show the same performance.

These curves show that for smallN the construction methods are equivalent. Perhaps, the
approximation error builds up when constructing larger N , which explains why the curves
differ the most for N = 4096. To investigate further, we analyze how similar the final distri-
bution of information and frozen bits is for the different methods. We first begin by analysing
a case in which a small difference between the methods was observed: N = 256, K = 192

and Eb/N0 = 5 dB, in Figure 3.27. Figure 3.28 shows the bit indexes on which the DEGA,
M-DEGA and BEE approximations have a different result than the Bhattacharyya approxi-
mation in this scenario. The Bhattacharyya method was chosen as a reference since all the
other methods have similar performance. The up-ticks show positions that were classified as
information bits in Bhattacharyya but as frozen bits on the methods shown, and down-ticks
show positions that were classified as frozen bits in Bhattacharyya but as information bits
on the methods shown. We see that in this case DEGA, M-DEGA and BEE have the same
construction, differing only in two positions from the Bhattacharyya method. Since the num-
ber of information bits is K for every construction method, the difference observed can be
thought as information bit positions that moved to other positions, leaving behind gaps with
frozen bits. This also means that the up- and down-ticks come in pairs.

Since the curves for N = 4096 and R = 1/2 in Figure 3.20 showed a considerable
performance difference between the Bhattacharyya method and the other three methods, we
investigated the similarity between the frozen and information bit distribution in this case.
Figure 3.29 shows the bit indexes on which the DEGA, M-DEGA and BEE approximations
have a different result than the Bhattacharyya approximation for N = 4096, K = 2048 and
Eb/N0 = 2.5 dB. We can see that DEGA, M-DEGA and BEE have similar distributions
of information and frozen bits. The up-ticks that are seen mostly on higher bit positions
represent information positions in Bhattacharyya that were relocated to where the down-
ticks are.

In order to analyze how similar the construction methods are for different Eb/N0, Fig-
ures 3.30-3.31 show the similarity between the shown methods to the Bhattacharyya method.
The similarity is computed as the number of bit positions that have a different classification
than the Bhattacharyya classification. For N = 256 and K = 192, the largest observed
difference was 97.65% for the DEGA method, which corresponds to 6 different bit classifi-
cations. For N = 4096 and K = 2048, the largest observed difference was 97.46% for the
DEGA method, which corresponds to 104 different bit classifications. These results show
that a small percentage of different bit positions are responsible for the error performance
differences observed.

54

DEGA

M-DEGA

0 50 100 150 200 250
Bit Index

BEE

Equal to Bhattacharyya Information in Bhattacharyya Frozen in Bhattacharyya

Figure 3.28 – Information and frozen bit differences comparing the shown methods to the
Bhattacharyya approximation, with N = 256, K = 192 and Eb/N0 = 5 dB.

DEGA

M-DEGA

0 1000 2000 3000 4000
Bit Index

BEE

Equal to Bhattacharyya Information in Bhattacharyya Frozen in Bhattacharyya

Figure 3.29 – Information and frozen bit differences comparing the shown methods to the
Bhattacharyya approximation, with N = 4096, K = 2048 and Eb/N0 = 2.5 dB.

55

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Design Eb/N0 [dB]

97.50

98.00

98.50

99.00

99.50

100.00
Si

m
ila

rit
y

to
 B

ha
tta

ch
ar

yy
a

(%
)

Bhattacharyya DEGA M-DEGA BEE

Figure 3.30 – Similarity of the information and frozen bit distributions using the Bhat-
tacharyya approximation as reference, with N = 256 and K = 192.

0.0 0.5 1.0 1.5 2.0 2.5
Design Eb/N0 [dB]

97.50

98.00

98.50

99.00

99.50

100.00

Si
m

ila
rit

y
to

 B
ha

tta
ch

ar
yy

a
(%

)

Bhattacharyya DEGA M-DEGA BEE

Figure 3.31 – Similarity of the information and frozen bit distributions using the Bhat-
tacharyya approximation as reference, with N = 4096 and K = 2048.

56

0 1 2 3 4
Design Eb/N0 [dB]

10 2

10 1

100
FER

0 1 2 3 4
Design Eb/N0 [dB]

10 2

10 1

100
BER

Channel Eb/N0 = 2 dB

Figure 3.32 – Polar code performance for fixed channel Eb/N0 = 2 dB while varying the
design Eb/N0, for N = 1024, K = 512 and using the DEGA construction method.

2 3 4 5
Design Eb/N0 [dB]

10 4

10 3

FER

2 3 4 5
Design Eb/N0 [dB]

10 5

10 4

BER

Channel Eb/N0 = 3.5 dB

Figure 3.33 – Polar code performance for fixed channel Eb/N0 = 3.5 dB while varying the
design Eb/N0, for N = 1024, K = 512 and using the DEGA construction method.

1 2 3 4 5
Design Eb/N0 [dB]

10 5

10 4

10 3

10 2

FER

1 2 3 4 5
Design Eb/N0 [dB]

10 6

10 5

10 4

10 3

10 2

BER

Channel Eb/N0 = 3 dB

Figure 3.34 – Polar code performance for fixed channel Eb/N0 = 3 dB while varying the
design Eb/N0, for N = 4096, K = 2048 and using the DEGA construction method.

57

Another important thing to consider is that in practical applications matching the design
Es/N0 to the channel Es/N0 may not be possible. This is because the channel Es/N0 is
unknow; it has to be estimated. Another problem is how often one can estimate the channel
Es/N0, or how often can the encoder and decoder change their frozen bit configuration. A
possible strategy is to quantize the design Es/N0 domain to some fixed values and transmit
with the compromise of performance in favor of the convenience of using the same encoder
and decoder design for a broader operation range.

Figures 3.32-3.34 show what happens for a fixed channel Eb/N0 while varying the de-
sign Eb/N0 using the DEGA construction method. On the N = 1024, K = 512 and channel
Eb/N0 = 2 dB scenario, we can see a small variation on BER and FER performance. Chang-
ing the channel Eb/N0 to 3.5 dB makes the design Eb/N0 choice more critical, since a local
minimum in FER occurs at the design Eb/N0 = 3.5 dB. On the N = 4096, K = 2048 and
channel Eb/N0 = 3 dB scenario we see dramatic performance variation while varying the
design Eb/N0. Figure 3.34 shows a clear local minimum on FER when the design Eb/N0

matches the channel Eb/N0, and the FER performance ranges from above 10−2 to below
10−5.

Figures 3.32-3.34 also show how polar codes under SC decoding are non-universal codes,
meaning that the code construction depends on the channel W . Another way of showing
this is by Figure 3.35. There, the bit channel error rate is shown for three different bit
channels, and it can be seen that which channel is the most reliable varies as the channel
Es/N0 changes.

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Es/N0 [dB]

10 6

10 5

10 4

10 3

10 2

10 1

BER

Bit Channel 13 Bit Channel 129 Bit Channel 130

Figure 3.35 – Simulated bit channel error rate forN = 256 for the channels 13, 129 and 130.

58

1 0 1 2 3 4
Eb/N0 [dB]

10 4

10 3

10 2

10 1

100
FER

1 0 1 2 3 4
Eb/N0 [dB]

10 5

10 4

10 3

10 2

10 1

BER

R = 1/3 R = 1/2 R = 3/4

Figure 3.36 – Simulation results for N = 4096 using the DEGA construction method.

0 1 2 3 4
Eb/N0 [dB]

10 5

10 4

10 3

10 2

10 1

100
FER

0 1 2 3 4
Eb/N0 [dB]

10 6

10 5

10 4

10 3

10 2

10 1

BER

R = 1/3 R = 1/2 R = 3/4

Figure 3.37 – Simulation results for N = 1024 using the DEGA construction method.

0 1 2 3 4 5
Eb/N0 [dB]

10 4

10 3

10 2

10 1

100
FER

0 1 2 3 4 5
Eb/N0 [dB]

10 5

10 4

10 3

10 2

10 1

BER

R = 1/3 R = 1/2 R = 3/4

Figure 3.38 – Simulation results for N = 256 using the DEGA construction method.

59

0 1 2 3 4
Eb/N0 [dB]

10 4

10 3

10 2

10 1

100
FER

0 1 2 3 4
Eb/N0 [dB]

10 5

10 4

10 3

10 2

10 1

BER

N = 256 N = 1024 N = 4096 N = 16 384

Figure 3.39 – Simulation results for R = 1/2 using the DEGA construction method.

3.7.2 Code Rate and Block Size

Figures 3.36-3.38 show how the code rate affects the polar coding performance, using
the DEGA construction method for N = 4096, N = 1024 and N = 256. As expected, the
more redundancy the block has, the best the code performs. Lastly, Figure 3.39 shows the
effect of the block size N on the code performance. Clearly, using larger blocks provide
better FER and BER performance. However, as was stated earlier in Section 3.4, using large
blocks have a penalty on the decoding latency.

3.7.3 Comparison with Turbo Codes

Figure 3.40 shows a comparison between the state-of-the-art Turbo codes used in the
Digital Video Broadcasting - Return Channel via Satellite - Second Generation (DVB-RCS2)
system and the DEGA constructed polar code, both with block length N = 1024 and code
rate R = 1/2. It is clear that polar codes perform worse than Turbo codes for the same
block length. In order to address this performance issue, a different decoding scheme will be
introduced in Chapter 4, namely the Successive Cancellation List (SCL) decoding scheme.

60

1.0 1.5 2.0 2.5
Eb/N0 [dB]

10 5

10 4

10 3

10 2

10 1

100
FER

1.0 1.5 2.0 2.5
Eb/N0 [dB]

10 6

10 5

10 4

10 3

10 2

10 1

BER

DVB-RCS2 Turbo Polar

Figure 3.40 – Simulation results for R = 1/2 comparing the DVB-RCS2 Turbo codes with
the DEGA constructed polar codes for N = 1024.

3.8 PRACTICAL ASPECTS OF THE ENCODER IMPLEMENTATION

The first step of the encoder is to fill the K most reliable positions of the vector uN1 with
K message bits, leaving all the other entries frozen with zeroes. Then, the second step is to
encode uN1 using the encoding matrix FN . Although just multiplying the vector uN1 by FN
is an option, it isn’t the most efficient one. Firstly, if you are implementing polar codes in
software, these matrix multiplication will use unnecessary integer multiplications, resulting
in large integers that will need to be taken modulo-2 afterwards. Secondly, if implemented
in hardware without any parallelization, one would need N time steps, one for each bit, to
complete the encoding.

In fact, one can take advantages of the recursive structure of the construction of FN and
perform the encoding in n = log2N time steps [4]. Figure 3.41 shows such implementation
for N = 8. Note that if all sums are implemented in parallel only 3 time steps are required
to compute x8

1 = u8
1F8, each time step corresponding to a layer in this diagram. This can

be generalized for every N = 2n. As discussed earlier, there are two equivalent encoder
implementations, one being the mirrored version of the other.

3.8.1 Systematic Encoding

Some linear codes are systematic: given the encoding matrix Gk×n and the message
bits mk

1, we perform the operation xn1 = mk
1G and get the vector xn1 = (mk

1, p
n−k
1), or a

permutation of this vector, meaning that the message bits always appear unaltered on the
exact same positions, and the rest of the bits pn−k1 are parity bits. When we perform the polar
encoding xN1 = uN1 FN , we in fact obtain a non-systematic code word xN1 , where the bits uA

61

Figure 3.41 – a) An encoder implementation for F8. Each edge carries a bit value, 0 or 1, and
each node adds modulo-2 the values carried by the edges at the left and transmits the results
to all edges on the right. b) Equivalent implementation that uses the fact that F−1

N = FN .

62

do not appear in xN1 explicitly. As we will see later, systematic encoding will be useful when
we use decoding algorithms based on binary trees.

Recall that polar codes are FN -coset codes, meaning we have

xN1 = uAFN(A)⊕ uACFN(AC)

= uAFN(A), (3.46)

considering that the frozen bits uAC are all zero. By separating the columns of FN(A) with
indexes in A, we obtain the sub-vectors xA and xAC , namely

xA = uAFN(A,A) (3.47)

xAC = uAFN(A,AC), (3.48)

where FN(A,B) denotes the sub-matrix [FNi,j] with i ∈ A and j ∈ B. It is easy to verify that
FN(A,A) is lower-triangular, meaning it is invertible. Then, if it is desired that xA contains
the information bits, one must feed the encoder with

uA = xA[FN(A,A)]−1. (3.49)

It was shown that this encoding has time complexity O(N log2N)[21].

For some, but not all, choices ofA, FN(A,A) is its own inverse, meaning that if we feed
xA = uAFN(A,A) again to the encoder and force xAC to zero, then we get

xA
′ = xAFN(A,A)

= uAFN(A,A)FN(A,A)

= uA, (3.50)

in a way that systematic encoding is possible by passing the information bits through the
encoder twice, ensuring that the frozen bits are 0 on each turn. Since the encoding by FN is
done in time log2N [4], this reduces the amount of time steps to O(log2N).

Arikan [21] showed empirically that systematic polar encoding performs better on the
BER, while having the exact same FER. This may be an advantage depending on the ap-
plication considered: when the whole block is discarded if any error is detected, then both
types of encoding are equivalent. Figure 3.42 shows the BER and FER performance of a
N = 4096, K = 2048 polar code constructed using DEGA with BPSK transmission over
AWGN obtained by our implementation. We see a decoding behaviour compatible with
Arikan’s findings [21].

63

0.0 0.5 1.0 1.5 2.0 2.5
Eb/N0 [dB]

10 3

10 2

10 1

100
FER

0.0 0.5 1.0 1.5 2.0 2.5
Eb/N0 [dB]

10 5

10 4

10 3

10 2

10 1

BER

Systematic Non-Systematic

Figure 3.42 – Polar code performance for systematic and non-systematic encoding under
SC decoding, with N = 4096, K = 2048 and constructed using DEGA, transmitted using
BPSK over AWGN channel.

3.9 CONCLUSION

We began this chapter by introducing virtual channels, a concept on the theoretical foun-
dation of polar codes. While exposing the theoretical preliminaries of polar codes we re-
viewed the Channel Polarization and the Polar Coding theorems. This last theorem is the
one that proves that polar codes are capacity achieving. We also reviewed SC decoding,
which makes polar codes attractive due to their low complexity O(N logN) [4]. However,
its latency of 2N − 1 [4] is a weak point of this technique. We showed that the natural order
decoding is not a property of the encoding matrix, but of the recursive structure considered
instead. We showed new recursive formulas compatible with the new recursive structure
proposed.

Our simulation results showed that polar codes have poor performance for small N ,
which makes their counterpart Turbo codes more attractive. Also, polar codes exhibit non-
universal code construction, which requires code optimization for every channel type and
SNR. The optimal construction method is unfeasible and approximations are required. We
reviewed the DEGA, M-DEGA, BEE and Bhattacharyya construction methods and presented
figures that allowed the visualization of how the parameters used to construct the code evolve
for each algorithm. It was shown that for smallN all methods have similar performance. For
larger N , the DEGA, M-DEGA and BEE methods performed better than the Bhattacharyya
method. By comparing the similarity between the construction methods it was shown that a
small percentage of bit positions is responsible for the difference observed.

On the next chapter we introduce simplifications to the SC decoding that tackle the la-
tency issue of polar codes. We also introduce the list decoding scheme, which enables error

64

performance gains, and present simulation results that confirm this. We then present an
analysis on how list decoders are affected by code construction settings.

65

DECODING ALGORITHMS FOR POLAR
CODES

4.1 INTRODUCTION

As it was seen before, polar codes have the disadvantage of having high latency and
low performance for small N . After the original Successive Cancellation (SC) decoder was
proposed by Arikan [4], some improvements became to appear in the literature that tackled
both this problems.

After introducing hardware friendly decoding expressions and an algorithm based on
binary trees in Sections 4.2 and 4.3, we show how the latency of polar decoding can be
improved by removing redundant steps on the decoding algorithm, without introducing per-
formance loss, in Sections 4.4 and 4.5. Introducing another type of decoding in Section
4.6, namely Successive Cancellation List (SCL) decoding, the performance of polar codes
was improved. By introducing CRC concatenated polar codes in Section 4.7, comparable
performance to state-of-the-art codes was observed. In Section 4.8 optimizations in the list
decoding, similar to those for SC decoding, are presented. The simulation results are pre-
sented in Section 4.9 and an analysis on the impact of code construction settings on the error
performance was made. Finally, Section 4.10 presents the conclusions.

4.2 HARDWARE FRIENDLY DECODING

On Chapter 3 we showed how we operate the bit likelihood ratios using the f and g

functions defined as
f(la, lb) =

la · lb + 1

la + lb
(4.1)

g(la, lb, u) = lb · (la)(1−2u) (4.2)

in order to perform polar decoding. Since this values involve likelihoods, they can get very
close to zero or very large. It is then advantageous to use Log-Likelihood Ratio (LLR)
instead. Adapting these expressions to work with log-likelihoods we get

f(La, Lb) = log

(
eLa+Lb + 1

eLa + eLb

)
, (4.3)

66

4

g(La, Lb, u) = Lb + (−1)uLa. (4.4)

However, we are not completely free of large values appearing at the exponential, or
small values appearing on the quotient in f . In order to overcome this, and also to perform
these computations in a more hardware friendly way, we use the following approximation
for f [22]

f(La, Lb) ≈ sgn(La) sgn(Lb)min(|La|, |Lb|). (4.5)

It then becomes clear that g nodes can increase the certainty of the bit decision by sum-
ming values with equal sign. On the other hand, f nodes never increase the certainty since
the result absolute value is always the minimum from its inputs. Using this approximation
causes of course performance loss.

4.3 DECODING TREE

From now on, lets use the convention that the bit indexing will start at zero, for conve-
nience. On Chapter 3 we showed that, in order to decode the i-th bit of a polar code with
N = 2n, one uses the binary representation bn−1...b0 of i, where we start by combining some
channel likelihoods using f if bn−1 = 0 or using g if bn−1 = 1. We can see that the decoding
structure is recursive, because if we consider k = 0bn−2...b0 and k + 2n−1 = 1bn−2...b0, we
see that the remaining decoding steps will be the same. Figure 4.1 makes this more precise.

In order to decode uN/2−1
0 we start by applying f(li, li+N/2) for 0 ≤ i ≤ N/2 − 1.

The rest of the decoding can be thought as decoding a polar code with length N/2 and
inputs f(li, li+N/2). After obtaining the estimates ûN/2−1

0 , we encode these values using
FN/2 to obtain v̂

N/2−1
0 , which we use to compute g(li, li+N/2, v̂i) for 0 ≤ i ≤ N/2 − 1.

Again, the rest of the decoding to obtain ûN−1
N/2 can be thought as another polar decoder with

length N/2 fed by g(li, li+N/2, v̂i). At this point, the bit estimates ûN−1
0 are all available,

and if non-systematic encoding is used, one can stop the decoding here. However, there are
two scenarios on which one must perform another step. Firstly, for systematic codes, the
information bits are in x̂N−1

0 . Also, if the decoding of uN−1
0 is part of a larger polar code,

then one also may need to compute x̂N−1
0 and feed these values to larger code. On both these

scenarios, we continue the algorithm by encoding ûN−1
N/2 using FN/2 to obtain v̂N−1

N/2 , and then
get x̂i = v̂i ⊕ v̂i+N/2 for 0 ≤ i ≤ N/2− 1 and x̂i = v̂i for N/2 ≤ i ≤ N − 1.

This process can be thought of traversing a binary tree, constructed from the structure in
Figure 4.2. Each node represents a polar decoder with size 2s, where s is the level of the
node. At a level s = k the following sequence is followed:

67

Figure 4.1 – An equivalent representation of the combined channel using two FN/2 encoders.

68

1. the node ν at s = k receives the LLR vector α = {α0, ..., α2k−1} from its parent node;

2. using α, the node ν computes αl = {αl0, ..., αl2k−1−1
} and passes these values to the

left child decoder;

3. the left child decoder goes through all the decoding operations and provides ν with the
node bit vector βl = {βl0, ..., βl2k−1−1

};

4. the node ν uses α and βl to compute αr = {αr0, ..., αr2k−1−1
} and passes these values

to the right child decoder;

5. the right child decoder goes through all the decoding operations and provides ν with
the node bit vector βr = {βr0 , ..., βr2k−1−1

};

6. the node ν finishes its decoding operations by computing β and providing these values
to its parent node.

Given the LLR vector α = {α0, ..., α2k−1} at level s = k, the left likelihoods are com-
puted using

αli = f(αi, αi+2k−1), (4.6)

where f can be the exact version at Eq. (4.3) or the hardware friendly version at Eq. (4.5).
Next, after βl = {βl0, ..., βl2k−1−1

} is available, the right likelihoods are computed using

αri = g(αi, αi+2k−1 , βli), (4.7)

where g is the function at Eq. (4.4). After βr = {βr0 , ..., βr2k−1−1
} is available, β =

{β0, ..., β2k−1} is computed using

βi =

βli ⊕ βri , if 0 ≤ i ≤ 2k−1 − 1

βli otherwise.
(4.8)

The recursion stops at leaf nodes where s = 0. Leaves receive just α0 from the parent

Figure 4.2 – Representation of the recursive polar decoding process.

69

Figure 4.3 – Polar decoding binary tree node notation.

node, and no left and right calculation is needed. The leaf β0 is obtained by

β0 =

0, if the leaf index is frozen or α0 > 0

1, otherwise.
(4.9)

Figure 4.3 shows a convenient node notation that uniquely identifies each node on the tree
using two numbers, the level s = k and the level index i. Left node indexes are obtained by
updating the index i of the parent node to 2i and right node indexes are obtained by updating
i to 2i+ 1. Figure 4.4 shows an example of such notation on a tree with depth 3.

According to this proposed notation, the likelihoods at node νki can be identified by
αk
i = {αki,0, ..., αki,2k−1

}, and the node bits can be identified by βki = {βki,0, ..., βki,2k−1
}. The

leaves indexes of the node νki are identified by the set

V k
i = {i ∈ {0, ..., 2k − 1} | i is leaf of νki } (4.10)

= {i · 2k, i · 2k + 1, ..., (i+ 1) · 2k − 1}. (4.11)

0

0 1

0 1 2 3

0 1 2 3 4 5 6 7

Figure 4.4 – Example of the proposed node notation for a tree with depth 3.

70

The vector of the leaf bits is identified as

β(V k
i) = {β0

i,0 | i ∈ V k
i }. (4.12)

Given this, we have that ûi = β0
i and that the relationship between the node bits and the leaf

bits is βki = β(V k
i)F2k , meaning that the leaf bits are encoded to obtain the node bits, and

vice-versa. For a polar code with N = 2n, we have that ûN−1
0 = β(V n

0) and x̂N−1
0 = βn0 .

Also, we have that the bit likelihoods L(i)
N = α0

i .

4.3.1 Linear Node Indexing

The node indexing presented so far uses two numbers to identify a node. This notation
is useful for the theoretical approach so far. However, since the level s = k has more nodes
than the level s = k − 1, this type of indexing may lead to non-uniform data containers.
Also, two numbers have to be passed to the children nodes for their complete identification.
We introduce next an indexing scheme that was particularly useful when implementing the
binary tree decoding algorithm in software. For hardware applications, the convenience of
using this scheme must be assessed.

For a binary tree with depth s = k, there is a 1 to 1 mapping between the numbers
{0, ..., 2k+1 − 2} and the nodes on the tree, which allows a linear 1-Dimensional indexing
of the tree. Figure 4.5 shows how the left and right children node indexes are obtained,
and Figure 4.6 shows the example of a binary tree with depth 3 and 1-D indexing. One
disadvantage of this node indexing is that it is absolute: the tree starts at the node with index
i = 0 and can’t be expanded upwards. However, this indexing scheme was proven to be
useful on our software implementation of the tree decoding algorithm.

Figure 4.5 – Linearly indexed binary tree index construction.

71

0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

Figure 4.6 – Example of linear node indexing for a binary tree with depth 3.

4.4 SIMPLIFIED SUCCESSIVE CANCELLATION DECODING

As the tree algorithm makes explicit, the recursive structure of polar codes allows us to
break the decoding process into the decoding of smaller codes. One can take advantage of
this and shorten the decoding time by decoding specific nodes with reduced complexity. We
then introduced the Simplified Successive Cancellation (SSC) [12] decoding.

Figure 4.7 shows a binary tree with N = 8, where the frozen leaves are depicted as black
circles and the information leaves are depicted as white circles. We then begin by defining
two special types of nodes, namely Rate-0 nodes and Rate-1 nodes.

4.4.1 Rate-0 Nodes

Rate-0 nodes have only frozen leaves. On the example in Figure 4.7, at node ν2
0 there is

no need to compute αl, since its left child has only frozen leaves and we know that βl will be
all zero. We then proceed directly to computing αr. By doing this, we are actually pruning
out the tree.

0

0 1

0 1 2 3

0 1 2 3 4 5 6 7

Figure 4.7 – Binary decoding tree for N = 8, where Rate-0 nodes are represented with black
circles, Rate-1 nodes are represented with white circles and mixed nodes are represented
with grey circles.

72

0

0 1

1 2 3

2 3 4 5

Figure 4.8 – Pruned decoding tree, considering that Rate-0 nodes do not have to be visited
and that Rate-1 nodes are decoded directly.

4.4.2 Rate-1 Nodes

Rate-1 nodes have only information leaves, and it turns out that there is no need to tra-
verse this node to obtain βki . We compute these values directly from the node likelihoods αk

i

[12]

βki,j =

0, if αki,j > 0

1, otherwise.
(4.13)

Note that one does not obtain the estimates of the leaf bits ûj , j ∈ V k
i , directly. Instead, one

obtains the node bits βki . Figure 4.8 shows how the decoding tree can be pruned considering
these approximations.

After decoding a Rate-1 node νki , one has two options: encode the node bits βki using
F2k to obtain the leaf bits or continue the decoding until βn0 is reached at the top of the tree.
In the case systematic encoding is used, it is advantageous to obtain the top node bits βn0 ,
since they contain the information bits. In addition, in this case, it is unnecessary to obtain
the leaf bits. If non-systematic encoding is used, one can obtain βn0 and encode these bits to
obtain ûN−1

0 all at once, or compute the leaf bits for every Rate-1 node, but halt the decoding
without reaching the top node at the end. We do not have any claim of which method is best
for non-systematic encoding.

Figure 4.9 shows a tree example with N = 1024 and K = 512, using the DEGA con-
struction method. We can see that we have Rate-0 and Rate-1 nodes as large as 64 bits, at
s = 6. It was shown at [23] that this type of decoding has sublinear latency O(N1−1/µ),
where µ is a parameter called the scaling exponent of the transmission channel. Note that
this form of decoding has the exact same performance as the traditional SC decoding [12].

73

s = 10

s = 9

s = 8

s = 7
s = 6

Rate-0
Rate-1
Neither

Figure 4.9 – Example of decoding tree for SSC decoding with N = 1024, K = 512 and
constructed using the Density Evolution - Gaussian Approximation (DEGA) method with
design Es/N0 = 0 dB.

4.5 FAST SIMPLIFIED SUCCESSIVE CANCELLATION

Two other node types stand out for providing simple direct decoding without any perfor-
mance loss, reducing further the decoding latency. The technique described next is the Fast
Simplified Successive Cancellation (Fast-SSC) [13] decoding.

4.5.1 REP Nodes

We define REPetition (REP) nodes as nodes in which only the rightmost leaf is an infor-
mation bit, that is, β(V k

i) = {0, ..., 0, βν}. For this case, the likelihoods of the frozen leaves
do not matter and since all the bits before the decoding of βν are zero, at every computation
of the right likelihoods using g, the likelihoods will be summed, in a manner that the value
of βν can be decided by

βν =

0, if
∑2k−1

j=0 αki,j > 0

1, otherwise.
(4.14)

The node bits are obtained by encoding the leaf bits using F2k and, since the last row of this
matrix is always 1, we have that βki = {βν , ..., βν}. This makes clear that rate 1/N polar
codes are very large repetition codes.

74

0

REP SPC

Figure 4.10 – Pruned decoding tree, considering REP and SPC nodes.

4.5.2 SPC Nodes

The REP nodes counterparts are Single Parity Check (SPC) nodes, in which the only
frozen leaf is the leftmost one, that is, β(V k

i) = {0, β0
ν ..., β

2k−2
ν }. The node betas βki are

computed in two steps. At first, hard decision is made just like in Rate-1 nodes

β′j =

0, if αki,j > 0

1, otherwise.
(4.15)

Then, we compute the parity of this hard decision with

γ =
2k−1⊕
j=0

β′j, (4.16)

along with the index of the least reliable likelihood

m = argmin
j
|αki,j|. (4.17)

Finally, we flip the least reliable bit if the parity is odd

βki,j =

β′j, if j 6= m

β′j ⊕ γ, if j = m.
(4.18)

One can see that in Figure 4.7 the node ν2
0 is a REP node and that the node ν2

1 is a SPC
node. Figure 4.10 shows the tree from Figure 4.7 but pruned considering the REP and SPC
nodes. Figure 4.11 shows a Fast-SSC tree example with N = 1024 and K = 512, using the
DEGA construction method. We can see that we have REP and SPC nodes as large as 128
bits, at s = 7.

75

s = 10

s = 9

s = 8

s = 7
s = 6

Rate-0
Rate-1
REP
SPC
Neither

Figure 4.11 – Example of decoding tree for Fast-SSC decoding with N = 1024, K = 512
and constructed using the DEGA method with design Es/N0 = 0 dB.

4.6 SUCCESSIVE CANCELLATION LIST DECODING

What if, instead of only choosing ûi according to its likelihood, we considered both 0
and 1 options to decode the next bits? This is the basic idea of list decoding. However, if we
consider every bit possibility, this problem scales up exponentially and corresponds to the
Maximum Likelihood (ML) decoding. To keep the number of paths limited, the list decoding
is done for a certain list size, in a manner that if the number of paths exceeds the list size
some paths are pruned. In order to decide which paths to keep, a path metric is used, and the
paths with the smallest metrics are allowed to continue decoding. Figure 4.12 a) shows all
16 possible paths for the decoding of û3

0, and Figure 4.12 b) shows an example of how the
tree is pruned to keep the list size at L = 2.

If both possibilities for ûi are considered then at some point a g node will compute
different likelihoods for each path. In fact, each path corresponds to a different SC decoder.
However, for a list decoder with size L and code size N , efficient hardware implementations
[5, 14, 15] allow space complexity O(L ·N) and time complexity O(L ·N logN).

In order to perform list decoding we will use the LLR based [14] scheme instead of the
original scheme proposed by [5]. The decoder is initiated with the path metric PM(−1)

l = 0

and begins traversing the decoding tree to compute L(0)
N . Once this value is available, each

76

0 1
a)

b)

Figure 4.12 – a) Tree depicting the decoding paths lj as the bits ûi are decoded. b) Example
of pruned path tree with list size L = 2, where pruned paths appear in red.

Figure 4.13 – Upon reaching bit i, a path l splits into two paths l′ and l′′, each having a
different value for ûi.

77

possibility for û0 originates a new path with different metrics, as depicted in Figure 4.13.
The rest of the decoding is then carried out separately for each hypothesis of û0, which will
lead to L(1)

N [l′] being computed differently as L(1)
N [l′′].

As illustrated in Figure 4.13, when bit i is reached the path l is split into two other paths
with different choices for ûi, and the path metrics are updated using [14]

PM(i)
l′ = φ(PM(i−1)

l , L
(i)
N [l], ûi[l

′]), (4.19)

where PM(i−1)
l is the path metric at stage i− 1 and path l, L(i)

N [l] is the log-likelihood ratio of
the bit ui at path l and ûi[l′] is the choice of ûi at path l′. The function φ is defined as [14]

φ(µ, λ, u) = µ+ log(1 + e−(1−2u)λ). (4.20)

If the number of paths reaches the list size L at bit k, then at bit k + 1 we will have 2L

path metric values after computing Eq. (4.19), and only the paths with smallest metrics will
be allowed to continue. Figure 4.12 b) shows this process, where the red branches had their
metrics computed, but were discarded.

Instead of using φ, we can use the approximated version [14]

φ̃(µ, λ, u) =

µ, if u = 1
2
[1− sgn(λ)]

µ+ |λ| otherwise,
(4.21)

where sgn(x) is the sign function that returns 1 if x ≥ 0 and −1 if x < 0. When applied to
the path metrics, the above expression translates to

PM(i)
l′ =

PM(i−1)
l , if ûi[l′] = 1

2
[1− sgn(L

(i)
N [l])]

PM(i−1)
l + |L(i)

N [l]|, otherwise.
(4.22)

Note that the path metric remains the same when ûi[l′] = 0 and L(i)
N [l] ≥ 0, or when

ûi[l
′] = 1 and L(i)

N [l] < 0. In other words, when the bit estimate ûi[l′] agrees with the sign of
L

(i)
N [l], the path metric stays the same. When the bit estimate ûi[l′] disagrees with the sign of

L
(i)
N [l], a penalty of |L(i)

N [l]| is added to the metric. This is somehow intuitive, since paths on
which we choose the opposite of what L(i)

N [l] tells us to choose receive a penalty. The greater
the value of |L(i)

N [l]| is, the larger the penalty is for going against the certainty of L(i)
N [l].

If it weren’t for the frozen bits, we could always choose ûi[l′] so that the metric doesn’t
receive any penalty. At frozen bits, a path that had the smallest metric can receive a large
penalty for having L(i)

N [l′] < 0.

Figure 4.14 shows the SCL decoding performance for various list sizes and block length

78

N = 1024, where the code was constructed using DEGA optimized for Eb/N0 = 2 dB. We
observe that L = 32 shows much better performance than L = 1, which corresponds to SC
decoding. However, the performance difference between L = 16 and L = 32 is very narrow.
In fact, the authors in [5] showed a way of computing the ML bound of polar codes. They
essentially simulated the behavior of L → ∞ without actually simulating infinite lists. It
was found that one could approach ML decoding performance closely for list sizes small as
L = 32.

1.0 1.5 2.0 2.5 3.0
Eb/N0 [dB]

10 3

10 2

10 1

100
FER

1.0 1.5 2.0 2.5 3.0
Eb/N0 [dB]

10 4

10 3

10 2

10 1

BER

L = 1 L = 2 L = 4 L = 8 L = 16 L = 32

Figure 4.14 – Successive cancellation list decoding performance for N = 1024, L = 1 (SC)
to L = 32, using a fixed DEGA construction method optimized for Eb/N0 = 2 dB.

4.6.1 Comparison with Turbo Codes

Recall that in Section 3.7.3 we compared the SC decoding with the DVB-RCS2 Turbo
codes. Figure 4.15 shows the comparison between the same Turbo codes and polar codes
decoded by a list decoder with L = 32, both having a block size of N = 1024. It is clear that
polar codes, even with list decoding, show poor performance when compared to this state-of-
the-art technique. This is in principle a huge setback to polar codes, since [5] showed that the
ML bound lies not far from the L = 32 performance. This means that polar codes alone can
only achieve smaller block error probabilities by increasing N , which is guaranteed by the
polar coding theorems presented in Chapter 3. If polar codes alone are bounded by this poor
performance, we must look for another solutions involving modifications on polar codes. On
the next section we explore one such modification.

79

1.0 1.5 2.0 2.5 3.0
Eb/N0 [dB]

10 5

10 4

10 3

10 2

10 1

FER

1.0 1.5 2.0 2.5 3.0
Eb/N0 [dB]

10 6

10 5

10 4

10 3

10 2

10 1
BER

DVB-RCS2 Turbo Polar - L = 32

Figure 4.15 – Comparison between the DVB-RCS2 Turbo codes and polar codes with suc-
cessive cancellation list decoding, L = 32 and constructed using fixed DEGA construction
optimized for Eb/N0 = 2 dB, for block length N = 1024 and code rate R = 1/2.

4.7 CRC CONCATENATED POLAR CODES

The authors of [5] noted that even though the path with the smallest metric resulted on a
wrong path, the final list contained the transmitted code word. We need to implement a way
of detecting the right path among the final paths without depending on the path metrics. This
turns out to be easily accomplished by inserting a redundancy check on polar codes.

By proposing a concatenation of polar codes with Cyclic Redundancy Check (CRC),
the polar coding performance can be improved significantly. CRC is a type of parity check
defined by generator polynomials g(x) [7]. Given any bit sequence (b0, ..., bm), a polynomial
g(x) with degree T will generate a T -bit redundancy word. This type of redundancy check
is used to detect errors on the sequence, since a vast list of error patterns are guaranteed to
result in different CRC words [7].

Firstly, for a polar code with length N and K unfrozen bits, one uses K −T information
bits to generate a T -bit CRC word. Then, CRC concatenated polar codes are obtained by
setting the T most reliable bits to the T -bit CRC, and the remaining K − T positions to
information bits. Note that the code rate

R =
K − T
N

(4.23)

is affected by this operation.

The decoding is done identically to the list decoding described in the previous section,
differing only when the final paths list is obtained:

80

a) if at least one final path has a correct CRC, then we choose the path with the smallest
metric and matching CRC;

b) if no final path has a correct CRC, then we choose the path with the smallest metric.

1.0 1.5 2.0 2.5 3.0 3.5
Eb/N0 [dB]

10 4

10 3

10 2

10 1

100
FER

1.0 1.5 2.0 2.5 3.0 3.5
Eb/N0 [dB]

10 5

10 4

10 3

10 2

10 1

BER

Fast-SSC SCL - L = 8 SCL - L = 8 - CRC-16

Figure 4.16 – A comparison between the Fast-SSC, SCL and SCL-CRC decoding schemes,
with L = 8, for polar codes with block size N = 1024 and K = 512. The CRC used is
CRC-16.

Figure 4.16 shows the comparison between polar codes decoded with Fast-SSC, SCL
and SCL-CRC for L = 8, using block size N = 1024 and K = 512. The CRC used has
the polynomial 1 + x2 + x15 + x16. Recall that Fast-SSC presents the same performance as
the original SC decoding. We see a dramatic performance gain when using CRC concate-
nated polar codes. At BER ≈ 10−5, the encoding gain is near 1 dB, meaning that SCL-CRC
was able to achieve BER of 10−5 1 dB before Fast-SSC. The reader may notice that for low
Eb/N0 the SCL scheme performs slightly better than SCL-CRC. This may sound contradic-
tory, since a block successfully decoded by SCL would also have a matching CRC, and the
performance of SCL-CRC is expected to be better or equal than that of SCL. However, recall
that introducing the CRC causes a reduction on the effective code rate, which in turn causes
a shift on the SCL-CRC curve, making it perform slightly worse than SCL in terms of in-
formation bit-energy-to-noise ratio Eb/N0. Complete simulation results with other list sizes
will be presented later, since they were obtained using a simplified list decoding algorithm.

4.8 SIMPLIFIED SUCCESSIVE CANCELLATION LIST DECODING

The previous algorithm describes a procedure to perform list decoding that requires one
to obtain the leaf likelihoods L(i)

N . However, there are strategies to prune the decoding tree

81

in a manner similar to the techniques presented in Sections 4.4 and 4.5. The authors in [15]
proposed the Simplified Successive Cancellation List (SSCL) decoder capable of decoding
Rate-0, Rate-1 and REP nodes directly without any performance loss. In the same work,
an approximation is made to decode SPC nodes directly, which introduces no performance
loss for L ≤ 2 and introduces negligible performance loss for L > 2. Such decoding is
called SSCL-SPC. Further optimizations were carried out [24] resulting in Fast-SSCL and
Fast-SSCL-SPC. This section approaches SSCL and SSCL-SPC only.

4.8.1 Rate-0 Nodes

Consider that the decoding reaches a Rate-0 node νki . We know that the leftmost leaf of
this node has index tl = i ·2k and that its rightmost leaf has index tr = (i+1)2k−1. We also
know that the last path split occurred in bit tl − 1. Lets denote the list of all surviving paths
after the splitting at bit tl − 1 as Ltl−1. At Rate-0 nodes, we can update all paths l ∈ Ltl−1

using [15]

PM(tr)
l = PM(tl−1)

l +
1

2

2k−1∑
j=0

|αki,j[l]| − αki,j[l]. (4.24)

Note that 1
2
(|x| − x) equals to 0 for x > 0 and to |x| for x ≤ 0, in a manner that each

term of the sum in Eq. (4.24) is either 0 or |αki,j[l]|. We can then see that the penalty each
path l ∈ Ltl−1 receives is the sum of |αki,j[l]| for all j in which αki,j[l] is negative. This is
intuitive since any negative node likelihood αki,j[l] goes against the fact that all node bits in
βki should be zero. Also, note that there is no path splitting in Rate-0 nodes, the metrics are
just updated.

4.8.2 REP Nodes

At a REP node νki we showed earlier that βki = {βν , ..., βν}. Using the auxiliary variable
ην [l

′] = 1−2βν [l′] and also using the same notation used for Rate-0 nodes, all paths l ∈ Ltl−1

are updated using [15]

PM(tr)
l′ = PM(tl−1)

l +
1

2

2k−1∑
j=0

|αki,j[l]| − ην [l′]αki,j[l]. (4.25)

If at path l′ we have that βν [l′] = 0, then ην [l′] = 1 and the path metrics are updated just
like in Rate-0 nodes. This makes sense, since in this case βki [l

′] = {0, ..., 0}. If βν [l′] = 1,
then ην [l′] = −1 and, since 1

2
(|x|+x) equals to |x| for x > 0 and to 0 for x ≤ 0, we have that

the path penalty is the sum of |αki,j[l]| for all j in which αki,j[l] is positive. This also makes
sense, since in this case βki [l

′] = {1, ..., 1} and any positive likelihood αki,j[l] goes against

82

this hypothesis.

4.8.3 Rate-1 Nodes

If the decoding reaches a Rate-1 node νki with leftmost leaf index tl and rightmost leaf
index tr, the path metrics are updated for 0 ≤ j ≤ 2k − 1 as [15]

PM(tl+j)
l′ =

PM(tl+j−1)
l , if βki,j[l

′] = 1
2
[1− sgn(αki,j[l])]

PM(tl+j−1)
l + |αki,j[l]|, otherwise.

(4.26)

For Rate-1 nodes the path metrics are updated just like they would be at leaf nodes, but
instead of using the leaf likelihoods and leaf bits one uses node likelihoods and node bits.

4.8.4 SPC Nodes

The following procedure implements the approximated SPC list decoding found in [15].
For an SPC node νki with leftmost leaf tl, rightmost leaf tr and paths Ltl−1, we first begin by
finding the indexes of the least reliable likelihood for every path l ∈ Ltl−1

m[l] = argmin
j
|αki,j[l]|. (4.27)

The decoding in SPC nodes will follow a different order from the natural one, starting atm[l]

instead of 0. To accomplish this, we use a permutation πl[j] that maps

πl[j] =

m[l], if j = 0

j − 1, if j ≤ m[l]

j, if m[l] < j ≤ 2k − 1.

(4.28)

An example with k = 3 and m[l] = 5 yields πl = (5, 0, 1, 2, 3, 4, 6, 7). The next step is to
compute the hard decision for each path l ∈ Ltl−1

β′j[l] =

0, if αki,j[l] > 0

1, otherwise,
(4.29)

and use these values to compute the parity of each path with

γ[l] =
2k−1⊕
j=0

β′j[l]. (4.30)

83

The least reliable bit is decoded first, without any path splitting, by updating the metric
with

PM(tl)
l =

PM(tl−1)
l + |αki,m[l]|, if γ[l] = 1

PM(tl−1)
l , otherwise.

(4.31)

For the remaining bits, with 1 ≤ j ≤ 2k − 1, we split the paths according to

PM(tl+j)
l′ =

PM(tl+j−1)

l , if βki,πl[j][l
′] =

1
2
[1− sgn(αki,πl[j][l])]

PM(tl+j−1)
l + |αki,πl[j][l]|+ (1− 2γ[l])|αki,m[l]|, otherwise.

(4.32)
Notice that we use πl[j] to index the node likelihoods and bits instead of j. This ensures that
the path metrics are indexed in the natural order, from tl to tr, but also ensures that at the
same time the node bits are decoded starting with m[l], followed by the natural order with a
gap where m[l] should be.

After all bits are estimated, we set the less reliable bit of each surviving path l ∈ Ltr to
preserve the even-parity constraint

βki,m[l][l] =
2k−1⊕
j=0
j 6=m[l]

βki,j[l]. (4.33)

This approximation to decode SPC nodes is exact for L ≤ 2 and introduces negligible
performance loss for L > 2 [15]. The permutation choice πl is not the only one possible.
In fact, any permutation πl such that πl[0] = m[l] is valid. This fact is explored in [24] to
decode SPC and Rate-1 nodes with reduced latency. The basic intuition for this fact will be
given in Subsection 4.8.5.

4.8.5 General Case

Based on the decoding result for Rate-1 nodes in [15], we show next how the path metrics
for any node can theoretically be computed.

For convenience, lets use the notation ηki,j = (1 − 2βki,j). At a Rate-1 node νki with
leftmost leaf index tl, rightmost leaf index tr and paths l ∈ Ltl−1 we have that [15]

PM(tr)
l′ = PM(tl−1)

l +
1

2

2k−1∑
j=0

|αki,j[l]| − ηki,j[l′]αki,j[l], (4.34)

where l′ is a path obtained after the last bit decision j = 2k−1 was made. We see that, when

84

sgn(αki,j[l]) 6= ηki,j[l
′], the corresponding term in the sum is different from zero, meaning that

at step j the splitting that eventually led to path l′ had βki,j chosen differently from what the
sign of αki,j[l] told us to choose, and a penalty was applied.

The catch here is that the only thing that restricts Eq. (4.34) to be applied for every node
νki is that at Rate-1 nodes one has the ability to freely choose βki,j for every j, since there are
no frozen bits. If we have a Rate-0 node, the frozen bits constrain βki to {0, ..., 0}, and Eq.
(4.34) becomes equivalent to Eq. (4.24). If we have a REP node, the frozen bits constrain
βki to {0, ..., 0} or {1, ..., 1}, and Eq. (4.34) becomes equivalent to Eq. (4.25).

Then, Eq. (4.34) is valid for any node νki , as long as the leaf bit vector β(V k
i) has the bits

in frozen positions set to zero, which means we can’t choose βki freely; these bits can only
be code words of a polar code with N = 2k.

For a Rate-1 node, imagine that at step t the paths in Lt remained, and that a particular
path metric PM(t)

l′ is left out. We can guarantee that for the remaining of this Rate-1 node
decoding this path would remain left out. This is because the other L paths Lt that survived
after step t can be decoded so as to receive no penalty, since the remaining bits βki,j can be
decoded according to αki,j without any frozen bit restriction. By doing this, if the metric
PM(t)

l′ or any of its children were to be in the final list, then the L paths in Lt with smaller
metrics should also be, a contradiction.

For other nodes, however, sequentially splitting the paths and choosing the smallest met-
rics doesn’t guarantee that the final paths have the smallest metrics on that node, since a
restriction on βki,j may force a large penalty on a surviving path.

A great result obtained from Eq. (4.34) is explored in [24], which states that if the path
splitting is made on the sorted metrics, from smaller absolute values to larger, then one
doesn’t necessarily need to split paths N = 2k times. At the present work, we don’t apply
this extra sorting step and use only the algorithms SSCL and SSCL-SPC in [15].

4.9 SIMULATION RESULTS

4.9.1 List Size Effect

We begin by showing the effect of the list size L on the code performance. Figure 4.17
shows the code performance as we increase the list size, with N = 1024, K = 512, CRC-16
with polynomial 1+x2+x15+x16, decoded using SSCL-SPC and constructed using DEGA
optimized for Eb/N0 = 2 dB. We chose the DEGA construction algorithm for reasons that
will be clarified later in this section. These results show a dramatic performance increase by
introducing the CRC.

85

1.0 1.5 2.0 2.5
Eb/N0 [dB]

10 5

10 4

10 3

10 2

10 1

100
FER

1.0 1.5 2.0 2.5
Eb/N0 [dB]

10 6

10 5

10 4

10 3

10 2

10 1

BER

L = 1 L = 2 L = 4 L = 8 L = 16 L = 32

Figure 4.17 – Polar coding performance for different list sizes, withN = 1024,K = 512 and
CRC-16, decoded using SSCL-SPC and constructed using DEGA optimized for Eb/N0 = 2
dB.

4.9.2 SSCL-SPC Performance Loss

Lets now justify the claim [15] that SSCL-SPC introduces negligible performance loss
to SCL decoding. Figures 4.18-4.19 show the performance comparison between SSCL and
SSCL-SPC for N = 1024 and rates 1/2 and 3/4. For both list sizes and code rates, the
performance loss caused by SSCL-SPC is in fact negligible. We put this data into another
separate plot in Figure 4.20, on which we can see how the code rate affects the decoding
performance. It can be seen that using L = 8 instead of L = 4 presents similar gains at both
rates of 1/2 and 3/4.

4.9.3 Comparison with Turbo Codes

The previous sections and chapters had many comparisons between polar codes and the
state-of-the-art Turbo codes. It was shown earlier that even with list decoding the perfor-
mance was far worse than that of the DVB-RCS2 Turbo codes. We repeat this comparison
with CRC concatenated polar codes. Figure 4.21 shows a comparison between the DVB-
RCS2 Turbo code and a polar code with SSCL-SPC decoding, CRC-16 and constructed
using DEGA optimized for the channel Eb/N0. Both codes have N = 1024 and K = 512,
but the polar codes have a slightly smaller code rate due to the CRC bits. We see that after
improving the polar coding performance with the concatenation of CRC polar codes were
able to outperform Turbo codes, at least for lower Eb/N0 values. We also see that the polar

86

1.0 1.5 2.0 2.5
Eb/N0 [dB]

10 4

10 3

10 2

10 1

FER

1.0 1.5 2.0 2.5
Eb/N0 [dB]

10 5

10 4

10 3

10 2

10 1

BER

SSCL-SPC L = 4 SSCL L = 4 SSCL-SPC L = 8 SSCL L = 8

Figure 4.18 – Polar coding performance comparison between SSCL and SSCL-SPC, with
N = 1024, K = 512 and CRC-16, for list sizes L = 4 and L = 8 and constructed using
DEGA optimized for Eb/N0 = 2 dB.

1.0 1.5 2.0 2.5
Eb/N0 [dB]

10 4

10 3

10 2

10 1

FER

1.0 1.5 2.0 2.5
Eb/N0 [dB]

10 5

10 4

10 3

10 2

10 1

BER

SSCL-SPC L = 4 SSCL L = 4 SSCL-SPC L = 8 SSCL L = 8

Figure 4.19 – Polar coding performance comparison between SSCL and SSCL-SPC, with
N = 1024, K = 768 (R = 3/4) and CRC-16, for list sizes L = 4 and L = 8 and constructed
using DEGA optimized for Eb/N0 = 2 dB.

1/2

3/4 3/4

1/2

Figure 4.20 – Polar coding performance for R = 1/2 and R = 1/3, with N = 1024 and
CRC-16, for list sizes L = 4 and L = 8, decoded using SSCL-SPC and constructed using
DEGA optimized for Eb/N0 = 2 dB.

87

1.0 1.5 2.0 2.5
Eb/N0 [dB]

10 5

10 4

10 3

10 2

10 1

FER

1.0 1.5 2.0 2.5
Eb/N0 [dB]

10 6

10 5

10 4

10 3

10 2

10 1
BER

DVB-RCS2 Turbo Polar - L = 32 - CRC-16

Figure 4.21 – Performance comparison between the DVB-RCS2 Turbo code and polar code
with SSCL-SPC decoding, L = 32, CRC-16 and constructed using DEGA dynamic con-
struction, both codes with N = 1024. The polar code has K = 496 information bits and the
Turbo code has K = 512 information bits.

code curve falls slower than the curve of Turbo codes. We will see next that this may be
caused by suboptimal code construction.

4.9.4 Code Construction

Now, we will analyze how the construction method affects code performance. We focus
our analysis on the list size L = 8, since they can be simulated quicker than L = 32 and
has a list size big enough to show excellent performance improvement. Remember that
the construction methods presented in Section 3.6 were developed under the context of SC
decoding, and that for ML decoding the code construction is universal, being valid for every
channel [18]. Also, introducing CRC to the decoding modifies the definition of polar codes.
These facts imply that it is unknown how optimal construction looks like for SCL-CRC
decoding, and we illustrate this with the following results.

Figure 4.22 shows how the different construction methods perform for polar codes with
N = 1024, K = 512 and L = 8, CRC-16, decoded using SSCL and optimized for Eb/N0 =

2 dB. Remember that in Chapter 3 all four construction methods had similar performance
for N = 1024 and SC decoding, with the Bhattacharyya method performing slightly worse.
Surprisingly, for the SSCL-CRC decoding scheme the difference between the methods is
considerable and the DEGA method performed better than the other methods for the entire
Eb/N0 range simulated. When using the SSCL-SPC decoding scheme, the results are almost
the same, as it is seen in Figure 4.23. This motivates us to investigate how different the node
classification is for these different methods.

88

1.0 1.5 2.0 2.5
Eb/N0 [dB]

10 4

10 3

10 2

10 1

FER

1.0 1.5 2.0 2.5
Eb/N0 [dB]

10 5

10 4

10 3

10 2

10 1
BER

Bhattacharyya M-DEGA BEE DEGA

Figure 4.22 – A comparison between the different construction methods for polar codes with
N = 1024, K = 512, L = 8, CRC-16, decoded using SSCL and optimized for Eb/N0 = 2
dB.

1.0 1.5 2.0 2.5
Eb/N0 [dB]

10 4

10 3

10 2

10 1

FER

1.0 1.5 2.0 2.5
Eb/N0 [dB]

10 5

10 4

10 3

10 2

10 1
BER

Bhattacharyya M-DEGA BEE DEGA

Figure 4.23 – A comparison between the different construction methods for polar codes
with N = 1024, K = 512, L = 8, CRC-16, decoded using SSCL-SPC and optimized for
Eb/N0 = 2 dB.

89

Bhattacharyya

M-DEGA

0 200 400 600 800 1000
Bit Index

BEE

Equal to DEGA Information in DEGA Frozen in DEGA

Figure 4.24 – Information and frozen bit differences comparing the shown methods to the
DEGA approximation, with N = 1024, K = 512 and Eb/N0 = 2 dB. A 496 = 512 − 16
information length was considered to convert Eb/N0 to Es/N0.

Figure 4.24 shows the node classification differences between the shown methods and
the DEGA mehtod for N = 1024, K = 512 and Eb/N0 = 2 dB. We see that the DEGA
method differs only in 10 positions from the M-DEGA and BEE methods and in 16 positions
for the Bhattacharyya method. Namely, 5 bit indexes that carry information bits in DEGA
are switched to frozen in M-DEGA and BEE. We can see that these information positions are
transferred to higher index positions. It is surprising that only 10 different positions in DEGA
are responsible for the performance difference observed. This result shows how sensitive
the list decoding performance is to the construction method. Further investigation must be
carried out on the direction of finding an optimal construction method for list decoders.

Next, we analyse how sensitive to the design Eb/N0 the list decoding performance is.
Figure 4.25 shows the code performance for a fixed channel Eb/N0 of 2 dB, while varying
the design Eb/N0, for N = 1024, K = 512, L = 8 and CRC-16, decoded using SSCL and
constructed using the DEGA construction method. We see that the decoding performance
is best not only when the design Eb/N0 matches the channel Eb/N0 at 2 dB; the design
Eb/N0 = 0 dB shows also a similar performance. Figure 4.26 shows the bit positions on
which these two scenarios are different and we see that only 8 classifications are changed.
From Figure 4.25 we can see an increase in BER and FER when the design Eb/N0 changes
from 0 to 0.5 dB. Inspired by this, we show Figure 4.27, which depicts the bit positions on
which the scenarios 0.5 and 2 dB are different. Surprisingly enough, the number of switched
positions on both scenarios 0 and 0.5 dB is also 8. In a future work, these results can be
further investigated to show why changing only 8 positions in the Eb/N0 = 0.5 dB scenario
causes performance loss, while doing the same in the Eb/N0 = 0 dB scenario doesn’t.

90

0 1 2 3 4
Design Eb/N0 [dB]

10 3

10 2

10 1
FER

0 1 2 3 4
Design Eb/N0 [dB]

10 4

10 3

10 2
BER

Channel Eb/N0 = 2 dB

Figure 4.25 – Polar code performance for fixed channel Eb/N0 = 2 dB while varying the
design Eb/N0, for N = 1024, K = 512, L = 8, CRC-16 and decoded using SSCL and
constructed using the DEGA construction method.

0 200 400 600 800 1000

Eb/N0 = 0

Equal to Eb/N0 = 2 Information in Eb/N0 = 2 Frozen in Eb/N0 = 2

Figure 4.26 – Information and frozen bit differences comparing the DEGA construction
method at 0 and 2 dB Eb/N0 design, with N = 1024 and K = 512. A 496 = 512 − 16
information length was considered to convert Eb/N0 to Es/N0.

0 200 400 600 800 1000

Eb/N0 = 0.5

Equal to Eb/N0 = 2 Information in Eb/N0 = 2 Frozen in Eb/N0 = 2

Figure 4.27 – Information and frozen bit differences comparing the DEGA construction
method at 0.5 and 2 dB Eb/N0 design, with N = 1024 and K = 512. A 496 = 512 − 16
information length was considered to convert Eb/N0 to Es/N0.

91

1.0 1.5 2.0 2.5
Eb/N0 [dB]

10 4

10 3

10 2

10 1

FER

1.0 1.5 2.0 2.5
Eb/N0 [dB]

10 5

10 4

10 3

10 2

10 1
BER

Fixed Design Eb/N0 = 2dB Dynamic Design

Figure 4.28 – Performance comparison between fixed design at Eb/N0 = 2 dB and dynamic
design to match the channel Eb/N0, withN = 1024, K = 512, L = 8 and CRC-16, decoded
using SSCL-SPC and constructed using DEGA.

On the same line of thinking, we removed the fixed design Eb/N0 = 2 dB and simulated
L = 8 and L = 32 by changing the design to match the channel Eb/N0. Figures 4.28-4.29
show the simulation results, which show that for L = 8 there is no visible performance
improvement obtained by changing the design Eb/N0 at every simulated channel Eb/N0. On
the other hand, for L = 32, the dynamic design performs better at high Eb/N0.

4.9.5 Systematic Encoding and QPSK Transmission

We now test how systematic encoding affects the SCL-CRC performance. Figure 4.30
shows the comparison between between systematic and non-systematic polar encoding for
N = 1024 and L = 8, and we see a similar behavior to the systematic encoding under SC de-
coding: both encoding types have the same FER performance with better BER performance
for the systematic codes.

Finally, we consider polar codes under QPSK transmission instead of BPSK. Polar codes
were shown to achieve channel capacity for memoryless discrete channels. Apart from
AWGN not being a discrete channel, transmission using QPSK is not memoryless. This
is because in QPSK each symbol transmits two bits at a time, and both bits are bonded
statistically. Considering these two facts alone, it is expected that polar codes have poorer
performance under QPSK, which is confirmed in Figure 4.31. Another interesting behavior
is that for QPSK the M-DEGA construction performs better than DEGA. A possible strategy
to approximate QPSK with a memoryless channel is to introduce a bit interleaver before in-
troducing the encoded bits to the constellation mapping. However, this isn’t explored in this
work.

92

1.0 1.5 2.0 2.5
Eb/N0 [dB]

10 5

10 4

10 3

10 2

10 1

FER

1.0 1.5 2.0 2.5
Eb/N0 [dB]

10 6

10 5

10 4

10 3

10 2

BER

Fixed Design Eb/N0 = 2dB Dynamic Design

Figure 4.29 – Performance comparison between fixed design at Eb/N0 = 2 dB and dynamic
design to match the channel Eb/N0, with N = 1024, K = 512, L = 32 and CRC-16,
decoded using SSCL-SPC and constructed using DEGA.

1.0 1.5 2.0 2.5
Eb/N0 [dB]

10 4

10 3

10 2

10 1

FER

1.0 1.5 2.0 2.5
Eb/N0 [dB]

10 5

10 4

10 3

10 2

10 1
BER

Non-Systematic Systematic

Figure 4.30 – Comparison between systematic and non-systematic polar encoding for N =
1024, K = 512, L = 8 and CRC-16, decoded by SSCL-SPC and constructed using DEGA
optimized for Eb/N0 = 2 dB.

BPSK BPSK

QPSK QPSK

Figure 4.31 – Comparison between polar encoding performance under BPSK and QPSK
transmission, for N = 1024, K = 512, L = 8 and CRC-16, decoded by SSCL-SPC and
constructed using DEGA optimized for Eb/N0 = 2 dB.

93

4.10 CONCLUSION

We started the chapter by formalizing a decoding algorithm based on a binary tree. This
algorithm makes intuitive the idea that polar decoding is carried out recursively. Then, we
proceeded by showing how the original SC decoding can be optimized without any perfor-
mance loss, originating the Simplified SC (SSC) and Fast-SSC schemes [12, 13]. Then, we
proceeded by introducing the Successive Cancellation List (SCL) decoding [5, 14], which
allows one to approach the ML decoding of polar codes. We showed that even with perfor-
mance near ML, polar codes can’t compete with state-of-the-art DVB-RCS2 Turbo codes,
which motivates the introduction of CRC concatenated polar codes. A preliminary analysis
for list size L = 8 presented a 1 dB gain when compared to SC decoding. Simplifications to
the SCL decoding, similar to those introduced to SC decoding, were introduced, which led
to the SSCL and SSCL-SPC [15] decoding.

The first simulation results presented showed how CRC-aided performance increases
dramatically when increasing the list size L. We explored the effects of code rate in list
decoding and confirmed that the performance loss introduced by SSCL-SPC is in fact negli-
bible [15]. CRC-aided list decoding allowed polar codes to achieve competitive performance
when compared to same length and same rate Turbo codes.

We resumed the simulation results section by exploring the effects of code construction
and design Eb/N0 on the code performance, which showed how sensitive the code perfor-
mance is to these settings. We concluded by analysing systematic list decoding and by
performing an experiment using QPSK transmission.

94

CONCLUSION

We began this work in Chapter 2 by introducing and illustrating some fundamental concepts
in communications and coding theory. These concepts included the mathematical modeling
of the channel, where we reviewed discrete memoryless channels, Binary Erasure Chan-

nels (BEC), AWGN channels, and definitions such as the symmetric capacity and the Bhat-

tacharyya parameter. We introduced block codes, linear codes and coset codes, and showed
how optimal decoding is closely related to minimizing distances and is a computationally
unfeasible problem.

Next, in Chapter 3, we introduced virtual channels, a concept in the foundation of polar
codes, and then proceeded to the underlying theoretical aspects of this coding technique.
While on the theoretical realm, we showed that the Successive Cancellation (SC) decoding
can be performed in the natural order without the need of the permutation matrix RN pro-
posed by Arikan [4], which was accomplished using equivalent representations of the polar
decoder. We were also able to derive recursive relations, similar to those obtained by Arikan
[4], that validate previously proposed tree algorithms [12, 13].

While still in Chapter 3, we reviewed several approximated construction methods for
the AWGN channel, namely DEGA [10], M-DEGA [11], BEE [11] and Bhattacharyya [4]
approximations. We performed computer simulations that allowed us to visualize the dif-
ferences between these techniques and also allowed us to assess their performance. Our
results show that under SC decoding the DEGA, M-DEGA and BEE methods had similar
performance, while the Bhattacharyya approximation led to a poorer performance.

We devoted Chapter 4 to the detailed description of other decoding schemes and their per-
formance. We first began by introducing lower latency versions of the SC decoding, namely
the Simplified Successive Cancellation (SSC) [12] and Fast-SSC [13] decoders, which have
the exact same performance as SC decoders [12, 13]. Even though polar codes are proven
to achieve channel capacity, our simulation results showed that polar codes with SC decod-
ing have poor performance when compared to same length and same rate state-of-the-art
Turbo codes used on the Digital Video Broadcasting - Return Channel via Satellite - Second
Generation (DVB-RCS2) standard. To address this issue, list decoding of polar codes was
proposed by [5]. Our simulation results showed that even by introducing list decoding, polar
codes also had a poor performance when compared to Turbo codes. Further improvement
can be obtained by concatenating polar codes with a Cyclic Redundancy Check (CRC) word,
as proposed by [5]. As our simulation results confirm, this modification improved drastically
the performance of polar codes, making them a competitive alternative to DVB-RCS2 Turbo
codes.

95

5

Also in Chapter 4, we presented the lower latency versions of the Successive Cancellation
List (SCL) decoder, namely the Simplified Successive Cancellation List (SSCL) and SSCL-
SPC decoders [15]. Our simulation results confirmed the claim of [15] that the approximated
technique SSCL-SPC has negligible performance loss when compared to SSCL.

Optimal construction methods for CRC-aided polar codes are currently unknown: the
same methods developed for SC decoding are also used for list decoding. To investigate fur-
ther, a comparison between the four construction methods presented showed that the DEGA
method has the best performance for CRC-aided polar codes. This comparison also revealed
how sensitive to the construction method this performance is: only a few different bit po-
sitions between the methods caused the difference in performance observed. Also, by sim-
ulating the construction methods optimized to different Signal-to-Noise Ratios (SNRs), we
showed that the CRC-aided list decoding performance is very sensitive to the SNR setting of
the construction method.

We also considered SCL-CRC decoding using systematic polar codes. Our results show
that the same behavior shown for SC decoding of systematic codes by Arikan [21] also
happens for SCL-CRC decoding: both non-systematic and systematic schemes present the
same Frame Error Rate (FER), while the systematic scheme has a better Bit Error Rate
(BER) performance. Finally, we considered SCL-CRC decoding of QPSK modulated polar
codes. We showed that polar codes perform worse in this case, as it was expected, since the
conditions on which polar codes are modeled disappear. Also, the DEGA method performs
better than M-DEGA in this scenario.

5.1 FUTURE WORK

Polar codes are still an active area of research. Throughout this work, we encountered
several opportunities for future work. They are:

• search for better code construction approximations for SC decoding;

• search for optimal or approximated construction methods for CRC-aided polar codes;

• search for further latency improvements on the decoding algorithms;

• search how to adapt polar codes and their construction methods to other constellations,
such as QPSK;

• simulate polar codes for higher order constellations such as 8PSK and 16QAM;

• investigate the performance of polar codes in satellite communications.

96

BIBLIOGRAPHY

[1] Ericsson, “Ericsson mobility report,” https://www.ericsson.com/4adc87/assets/local/
mobility-report/documents/2020/november-2020-ericsson-mobility-report.pdf, 2020,
[Online; accessed in 03/12/2020].

[2] U. Madhow, Introduction to Communication Systems. Cambridge University Press,
2014.

[3] C. E. Shannon, “A mathematical theory of communication,” The Bell System Technical

Journal, vol. 27, no. 4, pp. 623–656, 1948.

[4] E. Arikan, “Channel polarization: A method for constructing capacity-achieving codes
for symmetric binary-input memoryless channels,” IEEE Transactions on Information

Theory, vol. 55, no. 7, pp. 3051–3073, July 2009.

[5] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Transactions on Information

Theory, vol. 61, no. 5, pp. 2213–2226, 2015.

[6] 3GPP, “LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and
channel coding,” 3rd Generation Partnership Project (3GPP), Technical Specification
(TS) 36.212, 01 2010, version 10.0.0.

[7] T. Moon, Error Correction Coding: Mathematical Methods and Algorithms. Wiley,
2005.

[8] 3GPP, “5G; NR; Multiplexing and channel coding,” 3rd Generation Partnership Project
(3GPP), Technical Specification (TS) 38.212, 07 2018, version 15.2.0.

[9] S. Guelton, P. Brunet, M. Amini, A. Merlini, X. Corbillon, and A. Raynaud, “Pythran:
Enabling static optimization of scientific python programs,” Computational Science &

Discovery, vol. 8, no. 1, p. 014001, 2015.

[10] P. Trifonov, “Efficient design and decoding of polar codes,” IEEE Transactions on

Communications, vol. 60, no. 11, pp. 3221–3227, 2012.

[11] B. Tahir, “Construction and performance of polar codes for transmission over the awgn
channel,” Master’s thesis, Technische Universität Wien, 2017.

[12] A. Alamdar-Yazdi and F. R. Kschischang, “A simplified successive-cancellation de-
coder for polar codes,” IEEE Communications Letters, vol. 15, no. 12, pp. 1378–1380,
2011.

97

https://www.ericsson.com/4adc87/assets/local/mobility-report/documents/2020/november-2020-ericsson-mobility-report.pdf
https://www.ericsson.com/4adc87/assets/local/mobility-report/documents/2020/november-2020-ericsson-mobility-report.pdf

[13] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Fast polar decoders:
Algorithm and implementation,” IEEE Journal on Selected Areas in Communications,
vol. 32, no. 5, pp. 946–957, 2014.

[14] A. Balatsoukas-Stimming, M. B. Parizi, and A. Burg, “Llr-based successive cancella-
tion list decoding of polar codes,” IEEE Transactions on Signal Processing, vol. 63,
no. 19, pp. 5165–5179, 2015.

[15] S. A. Hashemi, C. Condo, and W. J. Gross, “A fast polar code list decoder architecture
based on sphere decoding,” IEEE Transactions on Circuits and Systems I: Regular

Papers, vol. 63, no. 12, pp. 2368–2380, 2016.

[16] B. Sklar, Digital Communications: Fundamentals and Applications, ser. Prentice Hall
Communications Engineering and Emerging Techno. Prentice-Hall PTR, 2001.

[17] E. Ankan, N. ul Hassan, M. Lentmaier, G. Montorsi, and J. Sayir, “Challenges and
some new directions in channel coding,” Journal of Communications and Networks,
vol. 17, no. 4, pp. 328–338, 2015.

[18] E. Sasoglu, “Polar coding theorems for discrete systems,” Ph.D. dissertation, EPFL,
2011.

[19] Sae-Young Chung, T. J. Richardson, and R. L. Urbanke, “Analysis of sum-product
decoding of low-density parity-check codes using a gaussian approximation,” IEEE

Transactions on Information Theory, vol. 47, no. 2, pp. 657–670, 2001.

[20] W. Tranter, K. Kosbar, T. Rappaport, and K. Shanmugan, Principles of Communication

Systems Simulation with Wireless Applications, ser. Prentice Hall Communications
E. Prentice Hall, 2004. [Online]. Available: https://books.google.com.br/books?id=
3AcfAQAAIAAJ

[21] E. Arikan, “Systematic polar coding,” IEEE Communications Letters, vol. 15, no. 8,
pp. 860–862, 2011.

[22] C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross, “A semi-parallel successive-
cancellation decoder for polar codes,” IEEE Transactions on Signal Processing, vol. 61,
no. 2, pp. 289–299, 2013.

[23] M. Mondelli, S. A. Hashemi, J. Cioffi, and A. Goldsmith, “Sublinear latency for simpli-
fied successive cancellation decoding of polar codes,” IEEE Transactions on Wireless

Communications, pp. 1–1, 2020.

[24] S. A. Hashemi, C. Condo, and W. J. Gross, “Fast and flexible successive-cancellation
list decoders for polar codes,” IEEE Transactions on Signal Processing, vol. 65, no. 21,
pp. 5756–5769, 2017.

98

https://books.google.com.br/books?id=3AcfAQAAIAAJ
https://books.google.com.br/books?id=3AcfAQAAIAAJ

APPENDIX

99

RECURSIVE RELATION

Here we show how the recursive relations

W
(2i−1)
2N =

∑
u2i

1

2
W

(i)
N (y2N

1,o , u
2i−2
1,o ⊕ u2i−2

1,e | u2i−1 ⊕ u2i)W
(i)
N (y2N

1,e , u
2i−2
1,e | u2i) (A.1)

and

W
(2i)
2N =

1

2
W

(i)
N (y2N

1,o , u
2i−2
1,o ⊕ u2i−2

1,e | u2i−1 ⊕ u2i)W
(i)
N (y2N

1,e , u
2i−2
1,e | u2i) (A.2)

are obtained.

We begin by noting that the combined channel transition probabilities W2N(y
2N
1 | u2N

1)

can be written recursively using

W2N(y
2N
1 | u2N

1) = WN(y
2N
1,o | u2N

1,o ⊕ u2N
1,e)WN(y

2N
1,e | u2N

1,e). (A.3)

Here, we used the fact that the two copies of WN used to build W2N are independent, and
that the inputs to these channels are obtained as depicted in Figure A.1. Next, we substitute
A.3 in the split channel definition

W
(2i−1)
2N (y2N

1 , u2i−2
1 | u2i−1)

∆
=

1

22N−1

∑
u2N2i

W2N(y
2N
1 | u2N

1)

=
1

22N−1

∑
u2N2i

WN(y
2N
1,o | u2N

1,o ⊕ u2N
1,e)WN(y

2N
1,e | u2N

1,e)

=
1

22N−1

∑
u2N2i,o,u

2N
2i,e

WN(y
2N
1,o | u2N

1,o ⊕ u2N
1,e)WN(y

2N
1,e | u2N

1,e)

=
∑
u2i

1

2

∑
u2N2i+1,e

1

2N−1
WN(y

2N
1,e | u2N

1,e)
∑
u2N2i+1,o

1

2N−1
WN(y

2N
1,o | u2N

1,o ⊕ u2N
1,e). (A.4)

Until now, we only separated the sums. Now, note that in the last sum the vector u2N
1,o ⊕ u2N

1,e

has its lower part u2i
1,o⊕u2i

1,e fixed, while the top part u2N
2i+1,o⊕u2N

2i+1,e varies. For each u2N
2i+1,e

fixed, determined by the outer sum, varying u2N
2i+1,o on the inner sum results in the top part

u2N
2i+1,o ⊕ u2N

2i+1,e assuming every possible value in XN−i. Using the split channel definition
again, we rewrite the last sum as

∑
u2N2i+1,o

1

2N−1
WN(y

2N
1,o | u2N

1,o ⊕ u2N
1,e) = W

(i)
N (y2N

1,o , u
2i−2
1,o ⊕ u2i−2

1,e | u2i−1 ⊕ u2i). (A.5)

100

A

Figure A.1 – An equivalent representation of the combined channel using a recursive con-
struction suitable to obtain the recursive relations.

101

Substituting A.5 in A.4 we get

W
(2i−1)
2N (y2N

1 , u2i−2
1 | u2i−1)

=
∑
u2i

1

2

∑
u2N2i+1,e

1

2N−1
WN(y

2N
1,e | u2N

1,e)W
(i)
N (y2N

1,o , u
2i−2
1,o ⊕ u2i−2

1,e | u2i−1 ⊕ u2i) (A.6)

and, factoring out the W (i)
N term we get

W
(2i−1)
2N (y2N

1 , u2i−2
1 | u2i−1)

=
∑
u2i

1

2
W

(i)
N (y2N

1,o , u
2i−2
1,o ⊕ u2i−2

1,e | u2i−1 ⊕ u2i)
∑
u2N2i+1,e

1

2N−1
WN(y

2N
1,e | u2N

1,e). (A.7)

Using the split channel definition again, we get to the final result

W
(2i−1)
2N (y2N

1 , u2i−2
1 | u2i−1)

=
∑
u2i

1

2
W

(i)
N (y2N

1,o , u
2i−2
1,o ⊕ u2i−2

1,e | u2i−1 ⊕ u2i)W
(i)
N (y2N

1,e , u
2i−2
1,e | u2i). (A.8)

The second relation can be obtained by writing

W
(2i)
2N (y2N

1 , u2i−1
1 | u2i) =

1

2

∑
u2N2i+1,e

1

2N−1
WN(y

2N
1,e | u2N

1,e)
∑
u2N2i+1,o

1

2N−1
WN(y

2N
1,o | u2N

1,o ⊕ u2N
1,e)

(A.9)
and by carrying out the rest of the development in the same way as was for the first relation.

102

AWGN BHATTACHARYYA PARAMETER

If W : {−
√
Es,
√
Es} → C is the AWGN channel with variance σ2 = N0/2 under BPSK

transmission, we have that the Bhattacharyya parameter is computed by

Z(W) =

∫ ∞
−∞

∫ ∞
−∞

√
W (r + j · q |

√
Es)W (r + j · q | −

√
Es) dr dq, (B.1)

where

W (r + j · q | ±
√
Es) =

1

2πσ2
exp

(
−q

2 + (r ∓
√
Es)

2

2σ2

)
, (B.2)

and double integrals are used instead of sums, since we have 2-dimensinal probability density
functions W (· | ·). Then,

Z(W) =

∫ ∞
−∞

∫ ∞
−∞

1

2πσ2

√
exp

(
−2q2 − (r −

√
Es)2 − (r +

√
Es)2

2σ2

)
dr dq

=

∫ ∞
−∞

∫ ∞
−∞

1

2πσ2

√
exp

(
−2q2 − r2 + 2r

√
Es − Es − r2 − 2r

√
Es − Es

2σ2

)
dr dq

=

∫ ∞
−∞

∫ ∞
−∞

1

2πσ2

√
exp

(
−2q2 − 2r2 − 2Es

2σ2

)
dr dq

=

∫ ∞
−∞

∫ ∞
−∞

1

2πσ2
exp

(
−q2 − r2 − Es

2σ2

)
dr dq

= exp

(
−Es
2σ2

)∫ ∞
−∞

∫ ∞
−∞

1

2πσ2
exp

(
−(q2 + r2)

2σ2

)
dr dq. (B.3)

Since the two-dimensional Gaussian function above has area 1, we get the final result

Z(W) = exp

(
− Es
2σ2

)
= exp

(
−Es
N0

)
.

103

B

RESUMO ESTENDIDO EM LÍNGUA
PORTUGUESA

Título: Estudo e Análise de Desempenho de Algoritmos de Construção e Decodificação de
Códigos Polares em Canais de Comunicação com Ruído do Tipo Branco Gaussiano (AWGN)
Autor: Rodrigo Andres Rodrigues Fischer
Orientador: Prof. Dr. João Paulo Leite
Monografia de Trabalho de Conclusão de Curso em Engenharia Elétrica
Brasília, 11 de dezembro de 2020

Palavras-chave: Códigos Polares, AWGN, Algoritmos de Construção, Algoritmos de De-
codificação.

INTRODUÇÃO

O correto funcionamento da maioria dos sistemas de comunicação depende de usarmos
técnicas para corrigir os erros introduzidos pelo canal de comunicação. Ruído térmico, por
exemplo, presente nos circuitos dos dispositivos de comunicação, pode causar erros na re-
cepção do sinal enviado. Em 1948, Shannon [3] mostrou com o Teorema Fundamental da
Teoria da Informação que os esquemas de codificação de erro tem desempenho limitado
por um certo limite, conhecido como capacidade do canal. Entretanto, foi apenas em 2009
que Arikan [4] propôs os códigos polares, a primeira família de códigos com construção
explícita a provadamente atingir a capacidade do canal. Esses códigos tiram proveito de
um fenômeno denominado polarização de canal, no qual alguns bits são transmitidos com
grande confiabilidade e outros não.

Os códigos polares são atraentes por possuírem esquemas de codificação e decodificação
com baixa complexidade e por possuírem uma construção explícita que os torna capazes de
atingir a capacidade do canal. Porém, essa capacidade é atingida apenas quando o tamanho
do bloco tende ao infinito. De fato, verificou-se que os códigos polares, da maneira como
definidos por Arikan, apresentam desempenho de erro inferior àquele dos códigos LDPC [5].
Além disso, sua construção ótima, apesar de explícita, é um problema computacionalmente
intratável. Outro desafio dessa técnica é a sua alta latência, que possui dependência linear
com o tamanho de bloco. Estes e outros desafios tornaram os códigos polares uma área ativa
de pesquisa na última década.

104

C

OBJETIVOS

O primeiro objetivo deste trabalho é apresentar uma revisão abrangente de três tópicos
principais: a teoria básica dos códigos polares, métodos de construção aproximados, e al-
goritmos de decodificação eficientes que permitem a redução da latência de decodificação.
Antes de entrar em códigos polares, fornecemos ao leitor os conceitos necessários em teo-
ria de comunicações e codificação para que o leitor seja capaz de ganhar intuição sobre as
técnicas abordadas à medida que descrições detalhadas dos algoritmos são apresentadas.

Neste trabalho, abordamos as técnicas de decodificação Successive Cancelation (SC),
proposta originalmente por [4], e Successive Cancelation List (SCL) [5, 14], proposta a fim
de tornar o desempenho dos códigos polares comparável com outras técnicas estado-da-arte.
Vertentes de menor latência de ambos os decodificadores são tratadas, como o Simplified SC
[12] e Fast-SC [13], Simplified SCL e SSCL-SPC [15]. Além disso, o desempenho desses
decodificadores é avaliado com diferentes técnicas de construção, entre elas a construção
Bhattacharyya [11], BEE (Bit Error Evolution) [11], DEGA (Density Evolution with Gaus-
sian Approximation) [10] e, por fim, Modified DEGA [11].

O segundo objetivo deste trabalho é desenvolver implementações próprias em software
dos algoritmos revisados, a fim de gerar resultados de simulação abrangentes. Utilizamos a
linguagem de programação Python, com partes do código otimizadas utilizando o compila-
dor estático Pythran [9].

Em terceiro lugar, apresentamos ao leitor os resultados de simulações mencionados acima.
Comparamos os métodos de construção apresentados para múltiplos algoritmos de decodi-
ficação e mostramos uma análise sobre as semelhanças entre os métodos de construção, o
que destaca potenciais áreas futuras de pesquisa. Também exploramos como a mudança da
modulação utilizada causa a perda de condições ótimas dos códigos polares, e destacamos
possíveis soluções para esse problema.

Como outra contribuição, também mostramos que a decodificação da ordem natural dos
códigos polares não é uma consequência da matriz de codificação, mas da forma como de-
finimos a estrutura recursiva dos códigos polares. Obtivemos novas relações recursivas, que
são similares às obtidas por Arikan [4], para a nova estrutura de recursâo proposta.

105

RESULTADOS E DISCUSSÃO

Decodificação em Ordem Natural

Primeiramente, mostramos que o esquema de codificação mostrado na Figura C.1 é equi-
valente à codificação feita por

x = uF, (C.1)

mas que permite, porém, a decodificação na ordem natural, sem o uso da matriz de per-
mutação introduzida por Arikan. Utilizando o argumento da indução matemática, podemos
mostrar que, assumindo a decodificação na ordem natural em WN/2, temos decodificação em
ordem natural emWN . Mostramos as seguintes relações recursivas para o esquema proposto:

W
(2i−1)
2N =

∑
u2i

1

2
W

(i)
N (y2N

1,o , u
2i−2
1,o ⊕ u2i−2

1,e | u2i−1 ⊕ u2i)W
(i)
N (y2N

1,e , u
2i−2
1,e | u2i), (C.2)

W
(2i)
2N =

1

2
W

(i)
N (y2N

1,o , u
2i−2
1,o ⊕ u2i−2

1,e | u2i−1 ⊕ u2i)W
(i)
N (y2N

1,e , u
2i−2
1,e | u2i). (C.3)

Análise da Decodificação SC e Métodos de Construção

Mostramos gráficos que permitem visualizar a distribuição dos parâmetros utilizados
para construir os códigos para as diferentes técnicas. Na Figura C.2 observamos como os
parâmetros Bhattacharyya aproximados estão distribuídos no intervalo [0, 1], e como essa
distribuição se reflete nos índices de informação (information) e congelados (frozen). Um
gráfico análogo para o método M-DEGA é mostrado na Figura C.3.

Em seguida, comparamos os diferentes métodos de construção para blocos de diversos
tamanhos e diversas taxas de código. Nas Figuras C.4 e C.5 podemos ver para N = 4096

e N = 256, respectivamente, o efeito do método de construção no desempenho de erro dos
códigos, medido em taxa de erro de quadro (FER) e taxa de erro de bit (BER). Podemos
ver que para N = 4096 o método Bhattacharyya apresenta pior desempenho, enquanto para
N = 256 todos os métodos apresentam desempenho similar.

Uma análise extra foi feita para o casoN = 4096, onde, na Figura C.6, vemos as posições
de bit onde os métodos mostrados foram diferentes do método Bhattacharyya. Podemos ver
um deslocamento de bits de informação das posições superiores para as posições inferiores.

Outra análise importante é mostrada na Figura C.7, que mostra o que acontece quando
variamos a SNR de projeto, enquanto mantemos a SNR do canal fixa. Vemos claramente um
mínimo local quando a SNR de projeto é a mesma que a SNR do canal.

106

Figura C.1 – Uma representação equivalente dos canais combinados adequada para a deco-
dificação em ordem natural.

0.0

0.2

0.4

0.6

0.8

1.0

B
ha

tta
ch

ar
yy

a
Pa

ra
m

et
er

0 200 400 600 800 1000
Bit Index

Frozen Information Frozen Information

Figura C.2 – Gráfico dos parâmetros Bhattacharyya obtidos com o método de construção
Bhattacharyya para N = 1024 e Es/N0 = −1.5 dB. Os índices de informação e congelados
foram escolhidos para K = 512.

107

10 4

10 2

100

102

104

M
-D

EG
A

 L
ik

el
ih

oo
d

M
ea

n

0 200 400 600 800 1000
Bit Index

Frozen Information Frozen Information

Figura C.3 – Gráfico das médias das verossimilhanças mi
N obtidas com o método de cons-

trução M-DEGA para N = 1024 e Es/N0 = −1.5 dB. Valores menores que o intervalo
mostrado foram representados em 10−4. Os índices de informação e congelados foram esco-
lhidos para K = 512.

0.0 0.5 1.0 1.5 2.0 2.5
Eb/N0 [dB]

10 3

10 2

10 1

100
FER

0.0 0.5 1.0 1.5 2.0 2.5
Eb/N0 [dB]

10 4

10 3

10 2

10 1

BER

Bhattacharyya DEGA M-DEGA BEE

Figura C.4 – Resultados da simulação para N = 4096 e K = 2048 (R = 1/2).

108

0 1 2 3 4
Eb/N0 [dB]

10 4

10 3

10 2

10 1

100
FER

0 1 2 3 4
Eb/N0 [dB]

10 5

10 4

10 3

10 2

10 1

BER

Bhattacharyya DEGA M-DEGA BEE

Figura C.5 – Resultados da simulação para N = 256 e K = 128 (R = 1/2).

DEGA

M-DEGA

0 1000 2000 3000 4000
Bit Index

BEE

Equal to Bhattacharyya Information in Bhattacharyya Frozen in Bhattacharyya

Figura C.6 – Diferença entre os bits de informação e congelados para os métodos mostrados,
comparando-se com o método Bhattacharyya, com N = 4096, K = 2048 e Eb/N0 = 2.5
dB.

109

1 2 3 4 5
Design Eb/N0 [dB]

10 5

10 4

10 3

10 2

FER

1 2 3 4 5
Design Eb/N0 [dB]

10 6

10 5

10 4

10 3

10 2

BER

Channel Eb/N0 = 3 dB

Figura C.7 – Desempenho para Eb/N0 = 3 dB do canal fixa, enquanto variou-se a Eb/N0 de
projeto, para N = 4096, K = 2048 e utilizando o método de construção DEGA.

Como foi observado na Figura C.7, o projeto dos códigos polares varia de acordo com
as condições do canal. Um gráfico que deixa visível o porquê isso acontece é mostrado na
Figura C.8, onde vemos que, por exemplo, o canal 13 era o menos confiável de todos para
Es/N0 baixo, enquanto para Es/N0 mais alta foi o mais confiável.

Por fim, mostramos o efeito do aumento do tamanho de bloco no desempenho dos có-
digos polares. Na Figura C.9 vemos que ao se aumentar o valor de N de 256 para 16 384,
um fator de 64x, obtivemos um ganho de aproximadamente 2 dB para BER de 10−4. Além
disso, comparamos os códigos polares com N = 1024 e K = 512 com os códigos Turbo
do padrão DVB-RCS2 de comunicações satelitais com a mesma taxa de código e tamanho
de bloco. Podemos ver que os códigos polares apresentam desempenho insatisfatório em
comparação com os códigos Turbo.

Análise da Decodificação SCL e Métodos de Construção

Primeiramente, mostramos como tanto o algoritmo SC ou o algoritmo SCL podem ter
sua latência reduzida utilizando-se esquemas de decodificação simplificados. Na Figura C.11
vemos como a árvore de decodificação pode ser podada ao se introduzir tipos especiais de
nós que permitem a decodificação direta sem prosseguir a diante para as folhas. Vemos
na Figura C.11 que nós simplificados com tamanho até 27 = 128 foram obtidos para essa
configuração.

Em seguida, introduzimos o método SCL proposto por [5], cujo objetivo é melhorar o
desempenho dos códigos polares. Na Figura C.12 observamos o desempenho dessa técnica
para diversos tamanhos de lista. Fica claro que aumentar o tamanho da lista oferece uma me-
lhora no desempenho desses códigos, mas também que há um certo limite que é rapidamente
atingido.

110

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Es/N0 [dB]

10 6

10 5

10 4

10 3

10 2

10 1

BER

Bit Channel 13 Bit Channel 129 Bit Channel 130

Figura C.8 – Taxa de erro de canal de bit simulada para N = 256 para os canais 13, 129 e
130.

0 1 2 3 4
Eb/N0 [dB]

10 4

10 3

10 2

10 1

100
FER

0 1 2 3 4
Eb/N0 [dB]

10 5

10 4

10 3

10 2

10 1

BER

N = 256 N = 1024 N = 4096 N = 16 384

Figura C.9 – Resultados da simulação para R = 1/2 utilizando-se o método de construção
DEGA.

111

1.0 1.5 2.0 2.5
Eb/N0 [dB]

10 5

10 4

10 3

10 2

10 1

100
FER

1.0 1.5 2.0 2.5
Eb/N0 [dB]

10 6

10 5

10 4

10 3

10 2

10 1

BER

DVB-RCS2 Turbo Polar

Figura C.10 – Resultados da simulação para R = 1/2 onde compara-se os códigos Turbo do
DVB-RCS2 com os códigos polares construídos usando DEGA para N = 1024.

s = 10

s = 9

s = 8

s = 7
s = 6

Rate-0
Rate-1
REP
SPC
Neither

Figura C.11 – Exemplo de árvore de decodificação para o Fast-SSC/SSCL-SPC com N =
1024, K = 512 e construído utilizando-se o DEGA com Es/N0 = 0 dB.

112

1.0 1.5 2.0 2.5 3.0
Eb/N0 [dB]

10 3

10 2

10 1

100
FER

1.0 1.5 2.0 2.5 3.0
Eb/N0 [dB]

10 4

10 3

10 2

10 1

BER

L = 1 L = 2 L = 4 L = 8 L = 16 L = 32

Figura C.12 – Desempenho da decodificação SCL para N = 1024, L = 1 (SC) até L = 32,
utilizando-se o método DEGA otimizado para Eb/N0 = 2 dB.

Após introduzir a verificação de paridade CRC [5], fomos capazes de obter uma me-
lhora significativa no desempenho dos códigos polares, como é mostrado na Figura C.13.
Na Figura C.14 vemos como os códigos polares concatenados com CRC se comportam com
outros tamanhos de lista. Utilizando-se essa configuração, conseguimos mostrar que os có-
digos polares são capazes de atingir desempenho de erro comparável aos códigos Turbo do
DVB-RCS2, como apontado na Figura C.15.

Comparamos também o desempenho dos códigos polares com SLC para os métodos de
construção abordados. Vemos na Figura C.16 que o método DEGA foi o que apresentou
melhor desempenho, enquanto o M-DEGA e BEE apresentaram desempenho similar, e o
método Bhattacharyya apresentou o pior desempenho. Esses vão contra o que foi observado
antes, que os métodos M-DEGA, BEE e DEGA apresentavam desempenho similar. De fato,
métodos otimizados para SCL-CRC ainda são uma área ativa de pesquisa. Outro indício da
não otimalidade desses métodos para o caso SCL-CRC é apresentado na Figura C.17, onde
vemos que temos dois pontos de mínimo local, e em um desses pontos a SNR de projeto é
diferente da do canal.

Por fim, analisamos o comportamento dos códigos polares com o QPSK. No QPSK,
perdemos a hipótese de que o canal é sem memória, uma vez que dois bits são transmitidos
de uma vez em um mesmo símbolo. Podemos ver uma piora de desempenho entre o QPSK
e o BPSK. Surpreendentemente, o método M-DEGA apresentou melhor desempenho que o
DEGA para o QPSK.

113

1.0 1.5 2.0 2.5 3.0 3.5
Eb/N0 [dB]

10 4

10 3

10 2

10 1

100
FER

1.0 1.5 2.0 2.5 3.0 3.5
Eb/N0 [dB]

10 5

10 4

10 3

10 2

10 1

BER

Fast-SSC SCL - L = 8 SCL - L = 8 - CRC-16

Figura C.13 – Uma comparação entre o Fast-SSC, SCL e SCL-CRC, com L = 8, para
tamanho de bloco N = 1024 e K = 512. Utilizamos o CRC-16.

1.0 1.5 2.0 2.5
Eb/N0 [dB]

10 5

10 4

10 3

10 2

10 1

100
FER

1.0 1.5 2.0 2.5
Eb/N0 [dB]

10 6

10 5

10 4

10 3

10 2

10 1

BER

L = 1 L = 2 L = 4 L = 8 L = 16 L = 32

Figura C.14 – Desempenho dos códigos polares com diferentes tamanhos de lista, com
N = 1024, K = 512 e CRC-16, decodificados com SSCL-SPC e construídos com DEGA
otimizado para Eb/N0 = 2 dB.

114

1.0 1.5 2.0 2.5
Eb/N0 [dB]

10 5

10 4

10 3

10 2

10 1

FER

1.0 1.5 2.0 2.5
Eb/N0 [dB]

10 6

10 5

10 4

10 3

10 2

10 1
BER

DVB-RCS2 Turbo Polar - L = 32 - CRC-16

Figura C.15 – Comparação de desempenho de erro entre os códigos Turbo do DVB-RCS2 e
códigos polares decodificados com SSCL-SPC, com L = 32, CRC-16 e construídos usando
o DEGA otimizado com a SNR do canal. Ambos os códigos possuemN = 1024. Os códigos
polares possuem K = 496 bits de informação e os códigos Turbo K = 512.

1.0 1.5 2.0 2.5
Eb/N0 [dB]

10 4

10 3

10 2

10 1

FER

1.0 1.5 2.0 2.5
Eb/N0 [dB]

10 5

10 4

10 3

10 2

10 1
BER

Bhattacharyya M-DEGA BEE DEGA

Figura C.16 – Uma comparação entre os diferentes métodos de construção para códigos
polares com N = 1024, K = 512, L = 8, CRC-16, decodificados com SSCL-SPC e
otimizados para Eb/N0 = 2 dB.

115

0 1 2 3 4
Design Eb/N0 [dB]

10 3

10 2

10 1
FER

0 1 2 3 4
Design Eb/N0 [dB]

10 4

10 3

10 2
BER

Channel Eb/N0 = 2 dB

Figura C.17 – Desempenho dos códigos polares para Eb/N0 = 2 dB fixa, enquanto variou-se
a Eb/N0 de projeto, para N = 1024, K = 512, L = 8, CRC-16, decodificados utilizando-se
SSCL e construídos utilizando-se o DEGA.

BPSK BPSK

QPSK QPSK

Figura C.18 – Comparação de desempenho dos códigos polares para transmissão BPSK e
QPSK, para N = 1024, K = 512, L = 8 and CRC-16, decodificados com SSCL-SPC e
construídos utilizando-se DEGA para Eb/N0 = 2 dB.

116

CONCLUSÕES

No campo teórico, mostramos que a decodificação SC pode ser realizada na ordem natu-
ral sem a necessidade da matriz de permutação proposta por Arikan, o que foi realizado uti-
lizando representações equivalentes dos canais combinados. Também conseguimos derivar
relações recursivas, semelhantes às obtidas por Arikan, que validam algoritmos de árvores
previamente propostos em [12, 13].

Realizamos simulações computacionais nos permitiram visualizar as diferenças entre os
diferentes métodos de construção e também nos permitiram avaliar seu desempenho. Nossos
resultados mostram que sob a decodificação SC os métodos DEGA, M-DEGA e BEE tiveram
desempenho semelhante, enquanto a aproximação de Bhattacharyya teve o pior desempenho.

Embora os códigos polares sejam comprovadamente capazes de atingir a capacidade de
canal, nossos resultados de simulação mostraram que esses códigos com decodificação SC
têm desempenho ruim quando comparados com códigos Turbo de mesmo comprimento e
a mesma taxa. Para resolver este problema, a decodificação em lista foi proposta por [5].
Nossos resultados de simulação mostraram que mesmo introduzindo a decodificação por
lista, os códigos polares também tiveram um desempenho ruim quando comparados aos
códigos Turbo. É possível obter melhorias adicionais ao concatenar códigos polares com
uma palavra CRC, como proposto por [5]. Como confirmam nossos resultados de simulação,
esta modificação melhorou drasticamente o desempenho desses códigos, tornando-os uma
alternativa competitiva aos códigos Turbo DVB-RCS2.

Os métodos de construção ótimos para o SCL-CRC são atualmente desconhecidos. Para
investigar mais, uma comparação entre os quatro métodos de construção apresentados para
o SC mostrou que o método DEGA tem o melhor desempenho para os códigos polares
concatenados com CRC. Ao simular o método DEGA otimizado para diferentes SNR de
projeto, mostramos que o desempenho de decodificação do SCL-CRC é muito sensível a
esse parâmetro.

Finalmente, consideramos os códigos polares com modulação QPSK. Mostramos que
esses códigos têm pior desempenho neste caso, como era esperado, uma vez que as condições
nas quais os códigos polares são projetados desaparecem.

117

	Introduction
	Objectives
	Work Overview

	Communication Theory
	Introduction
	Communications Link
	Mathematical Modelling of the Channel
	Discrete Memoryless Channels
	AWGN Channel
	Decision Rules
	Channel Capacity and the Bhattacharyya Parameter

	Introduction to Error Correcting Codes
	A Brief History
	Linear Codes
	Decoding and Distances

	Conclusion

	Theoretical Aspects and Construction of Polar Codes
	Introduction
	Virtual Channels
	Parallel Use Channels
	Combined Channels
	Split Channels

	Theoretical Preliminaries on Polar Coding
	Successive Cancellation Decoding
	Recursive Relations
	Code Construction
	Bhattacharyya Method
	Density Evolution - Gaussian Approximation (DEGA)
	Modified DEGA (M-DEGA)
	Bit Error Evolution (BEE)

	Simulation Results
	Code Construction
	Code Rate and Block Size
	Comparison with Turbo Codes

	Practical Aspects of the Encoder Implementation
	Systematic Encoding

	Conclusion

	Decoding Algorithms for Polar Codes
	Introduction
	Hardware Friendly Decoding
	Decoding Tree
	Linear Node Indexing

	Simplified Successive Cancellation Decoding
	Rate-0 Nodes
	Rate-1 Nodes

	Fast Simplified Successive Cancellation
	REP Nodes
	SPC Nodes

	Successive Cancellation List Decoding
	Comparison with Turbo Codes

	CRC Concatenated Polar Codes
	Simplified Successive Cancellation List Decoding
	Rate-0 Nodes
	REP Nodes
	Rate-1 Nodes
	SPC Nodes
	General Case

	Simulation Results
	List Size Effect
	SSCL-SPC Performance Loss
	Comparison with Turbo Codes
	Code Construction
	Systematic Encoding and QPSK Transmission

	Conclusion

	Conclusion
	Future Work

	REFERENCES
	Recursive Relation
	AWGN Bhattacharyya Parameter
	Resumo Estendido em Língua Portuguesa

