o

Universidade de Brasilia
Instituto de Ciéncias Exatas
Departamento de Ciéncia da Computagao

Ablation Study of AC2CD
Hyperparameters

Rafael Henrique Nogalha de Lima

Artigo apresentado como requisito parcial para
conclusao do Bacharelado em Ciéncia da Computacao

Orientadora
Prof. Dra. Célia Ghedini Ralha

Brasilia
2023

L

Universidade de Brasilia
Instituto de Ciéncias Exatas
Departamento de Ciéncia da Computagao

Ablation Study of AC2CD
Hyperparameters

Rafael Henrique Nogalha de Lima

Artigo apresentado como requisito parcial para
conclusao do Bacharelado em Ciéncia da Computacao

Prof. Dra. Célia Ghedini Ralha (Orientadora)
CIC/UnB

Prof. Dr. Thiago Paulo Faleiros MSc. Aurélio Ribeiro Costa
CIC/UnB STI/STF

Prof. Dr. Marcelo Grandi Mandelli
Coordenador do Bacharelado em Ciéncia da Computagao

Brasilia, 14 de julho de 2023

Ablation Study of AC2CD Hyperparameters

Rafael Henrique Nogalha de Lima

Department of Computer Science, University of Brasilia
Campus Darcy Ribeiro, Brasilia, Federal District, Brazil
rafael.nogalha@aluno.unb.br

Abstract. This article presents an ablation study for Deep Reinforce-
ment Learning (DRL) with a case of the Actor-Critic Architecture for
Community Detection (AC2CD), developed upon DRL and Graph At-
tention Networks (GAT). The ablation study method is sustained by
the explainable artificial intelligence approach, including execution time,
memory, and GPU usage to assess the AC2CD performance. The datasets
used in the experiments include two real-world data. The first is an email
network between members of a European research institution (Email-Eu)
with 1,005 nodes, 25,571 edges, and 42 communities, available on the
Stanford Snap Project. The second is a High School contact and friend-
ship network in Marseilles, France, in December 2013 with 329 nodes,
45,047 edges, and nine communities, available on Socio Patterns Website.
The three hyperparameters used to analyze the architecture execution
are the learn_rate, batch_size, and n_games, varying from 10%, 30%, 50%,
and 70%. With the achieved experimental results, we find a set of hy-
perparameters with optimal balance contributing to analysis that might
interest the DRL and GAT communities for each analyzed dataset.

Keywords: Ablation study - AC2CD - Hyperparameters.

1 Introduction

Undoubtedly, Machine Learning (ML) is no longer far from the reality of the
Artificial Intelligence (AI) community and the current society. Reinforcement
Learning (RL) and Deep Reinforcement Learning (DRL) refer to learning how to
make decisions sequentially while being influenced by the environment, becoming
mature in the past years [30]. In short, the RL goal is to map situations to actions
that maximize a numerical reward signal indicating how well the agent performs
tasks. Agents learn through trial and error, adjusting actions to achieve the
highest possible reward. And DRL integrates deep learning into RL techniques
to train an agent.

Given the advancement in research and the diverse applications of ML, specif-
ically RL, in various fields, including scientific and commercial domains, it be-
comes imperative to understand the impact of selecting specific components and
parameters for developing an ML system, given its complexity. Therefore, a com-
pelling approach to address this issue is to conduct an Ablation Study (AS) [22].

2 Rafael Henrique Nogalha de Lima

As presented in [29], the AS technique is a scientific examination of ML systems
to gain insight into the effects of code blocks on performance. And because of
that, the method of AS has gained significant attention in the field of ML in
recent years.

The AS findings inform future research on optimizing actor-critic architec-
tures and potentially lead to the development of automated hyperparameters
tuning techniques. The actor-critic is a Temporal Difference (TD) version of
policy gradient with two networks: actor and critic. The actor decides which ac-
tion to take, and the critic informs the actor how good the action was and how
it should adjust. Investigating the impact of learning strategies and other com-
ponents on the optimization process contributes to the broader understanding
of DRL models and their transformation towards based Explainable Artificial
Intelligence (XAI) [14].

Therefore, the main objective of this work is to present an AS approach
using an actor-critic architecture developed upon DRL, and Graph Attention
Networks (GAT), called the Actor-Critic for Community Detection (AC2CD) [4].
The AS aims to analyze and identify the components that significantly influence
the AC2CD algorithm when executing a real-world dataset of an email network
between members of a European research institution (Email-Eu) and a High
School contact and friendship network in Marseilles, France, in December 2013
presented in Section 3.6. We evaluate the AC2CD performance by empirically
modifying specific hyperparameters within the algorithm.

This work contribution is to present an AS with the AC2CD architecture,
shedding light on the influential factors that contribute to the algorithm’s per-
formance. The insights gained from this study contribute to the ongoing efforts
to enhance the efficiency and effectiveness of DRL algorithms in real-world ap-
plications in the X AT direction. The rest of the manuscript presents in Section 2
related work, Section 3 materials and methods, Section 4 the results with dis-
cussion, and in Section 5 conclusion and future work.

2 Related Work

This section presents related work focusing on AS and DRL using an actor-critic
architecture with publications from 2018 to 2023. Table 1 presents an outline of
the related work, including AS, DRL, actor-critic, and GAT aspects.

The authors in [8] present a new approach using DRL and actor-critic for
a multi-agent system that analyzes and simulates an environment with multi-
ple intelligent agents across various domains. Additionally, the authors conduct
an AS to assess the effectiveness of the innovative components in the proposed
method. The results show that each actor-critic algorithm component is indis-
pensable for good interception performance, including success rate, good reward,
and interception steps.

In [21], the authors explore the utilization of DRL for congestion control in
cellular network settings. Congestion control uses algorithms responsible for reg-
ulating the data transmission rate in a network to prevent congestion. Using the

Ablation Study of AC2CD Hyperparameters 3

Table 1. Related work outline.

Reference AS DRL [Actor-critic |GAT
Fan et al. (2023) [8] v’ v’ v’

Naqvi & Anggorojati (2022) [21]|v~ v’

Ye et al. (2022) [32] v’ v’ v’

da Silva Filho et al. (2022) [5] |[v~ v’

Hessel et al. (2018) [15] v’ v’

This study v’ v’ v’ v’

policy gradient method, the author employs an AS to identify the component
that influences the algorithm. With the AS, the authors remove or modify pa-
rameters to analyze the impact of the changes on the algorithm’s performance. In
conclusion, a higher reward for the method presented is only sometimes related
to better networking performance.

In [32], the authors focus on the popularity of multi-agent DRL demand for
large-scale real-world tasks, which hamper the models’ low sample efficiency and
the high data collection cost. Thus, AS is used to investigate, validate and under-
stand the contribution of each component in multi-agent actor-critic methods.
The authors propose PEDMA, a plugin unit for multi-agent DRL that consists
of three techniques: (i) parallel environments to accelerate the data acquisition;
(ii) experience augmentation that utilizes the permutation invariance property
of the multi-agent system to reduce the cost of acquiring data; and (iii) delayed
updated policies to improve the data utilization efficiency of the multi-agent
DRL model. Experiments on three multi-agent benchmark tasks show that the
multi-agent actor-critic model trained with PEDMA outperforms the baselines
and state-of-the-art algorithms.

The authors in [5] discuss the learning-to-optimize method for automatically
optimizing algorithms from data instead of using traditional hyperparameters
tuning. The focus is on learning global optimization by DRL. The authors ad-
vocate that learning to optimize could be a better-explored theme. It provides a
direct framework to understand an optimizer able to deal with the exploration-
exploitation dilemma and that the applied techniques improved stability and
generalization. Thus, the authors conducted AS to investigate the significance
of learning strategies and components concerning this optimization.

In [15], the authors perform an AS to understand the contribution of the
components and parameters in the Deep Q-Network (DQN) algorithm that uti-
lizes DRL to address the challenge of learning in complex and high-dimensional
environments. In each ablation phase, an algorithm component is removed or
changed. Subsequently, the algorithm’s performance is analyzed. The authors
propose Rainbow to combine improvements in DRL. In experiments, the au-
thors examine six extensions to the DQN algorithm and empirically study their
combination. The results show that the combination provides state-of-the-art

4 Rafael Henrique Nogalha de Lima

performance on the Atari 2600 benchmark considering data efficiency and final
performance.

Note this work is the only one that includes GAT as a novel convolution-style
neural network architecture that operates on graph-structured data. GAT is one
of the most popular types of graph neural networks applied to the community
detection problem. But although GAT presents a significant direction for ML
research, it has received comparatively low levels of attention, motivating this
AS to assess its effectiveness through the AC2CD case study.

3 Material and Methods

3.1 AI Overview

According to [30], the AT field is vast, encompassing various domains of knowl-
edge such as engineering, pharmacy, biology, medicine, and many others. Cur-
rently, AT has branched out and formed subfields such as ML. Since 1959, [27]
has defined ML as a field of study that allows computers to learn without being
explicitly programmed. ML aims to emulate human intelligence through learning
based on the parameters of the environment and context in which the machine
is embedded [7]. Traditionally, ML is categorized into three types: supervised
learning, unsupervised learning, and RL [30].

Supervised learning is a type of learning that utilizes a training set of labeled
examples provided by an experienced external supervisor. Unsupervised learning
is a type of ML that seeks to find hidden structures in unlabeled data. RL oper-
ates through rewards given by the model to the learner for each correct learning
instance. The objective is to learn mapping situations to actions to maximize
the accumulated reward. There are two essential characteristics: trial-and-error
search refers to the learner’s attempts throughout the algorithm involving trial
and error to receive a reward upon successful execution. The delayed reward
relates to the consequences of the agent’s learning, which determines the imme-
diate reward and the next state of the environment and future rewards [16].

For [9], DRL is an RL approach combined with deep learning employed when
decisions become too complex for RL alone. A neural network estimates states
instead of mapping all possible solutions, allowing for a more manageable solu-
tion space in the decision-making process.

3.2 Community Detection

Community detection is one of the fundamental problems in network analysis,
belonging to the field of complex network studies. According to [10], the com-
munity detection technique is characterized by having a community structure,
where the nodes in the network are grouped into sets such that each set of nodes
is densely connected. For [2], community detection is the process of identifying
relevant communities in a network that evolves as in a dynamic network. Com-
munity detection is vital to understanding the structure of complex networks.

Ablation Study of AC2CD Hyperparameters 5

Community detection techniques are helpful for social media algorithms to
discover people with similar opinions, functions, purposes, and shared interests
significant to scientific inquiry and data analytics. There are classic methods
of community detection using spectral clustering [23] and statistical inference
[17]. However, such methods drop out, as deep learning techniques demonstrate
an increased capacity to handle high-dimensional graph data with impressive
performance.

3.3 Actor-critic

Actor-critic is a TD learning method representing the policy function indepen-
dent of the value function. The policy function returns a probability distribution
over possible agents’ actions based on the provided state or the agents’ strategy
to achieve a goal. On the other hand, the value function determines the expected
return for an agent starting in a particular state and continually acting under a
specific policy [11,30].

In the actor-critic learning method, the actor decides which action to take.
The critic provides feedback to the actor on the quality of the action and how
it can be adjusted to achieve the goal [18]. In short, the actor-critic is a hybrid
architecture combining value-based and policy-based methods that help to sta-
bilize the training by reducing the variance. It provides a solution to reducing
the RL algorithm variance, training agents faster and better.

3.4 AC2CD Overview

The AC2CD is employed to find an optimal community structure in a dynamic
social network while also serving as a learning component to select actions and
improve the value function [4]. It explores the power of GAT, proposing a commu-
nity detection model using an actor-critic DRL-based architecture to maximize
the local modularity density of a community structure in the context of dynamic
online networks. AC2CD uses the message-passing feature of GAT as an element
to propagate the label for each community, thus improving the modularity den-
sity of the community structure.

The implementation of actor-critic uses Proximal Policy Optimization (PPO)
in the clipped version and generalized advantage estimation to compute the
surrogate function of the policy gradient. According to [6], PPO performs the
best in terms of profit and loss, training time, and data needed compared to Q-
learning and deep Q-learning. It is worth noting that the proposed architecture
can accommodate other implementations of Graph Neural Networks (GNN) as
Graph Convolution Networks (GCN). The source code is in Python language
and available to the research community.’

Figure 1 presents the AC2CD architecture overview highlighting the actor-
critic components in gray. The GNN components include a Dropout regular-
ization layer and the first attention layer GATConvi. The ReLU activation and

! nttps://gitlab.com/InfoKnow/SocialNetwork/ac2cd

6 Rafael Henrique Nogalha de Lima

Dropout layers, and the second attention layer, GATConv2, with the output Soft-
max activation layer. The input data corresponds to network snapshots taken
at each network change and embedded by the encoder in the data manipulation
as a discrete-time dynamic graph. The Edge list.txt is a file in the coordinate
format (or ijv format), where each line corresponds to an edge, i.e., a pair of
node ids and possibly edges attributes (timestamp, weight, and other features).

The Data manipulation module in AC2CD utilizes FEdge list.txt and Ground
truth.tzt files for generating embeddings. The latter contains node-community
assignments, while the former stores network information in various formats,
including temporal and non-temporal networks. Figure 1 shows the interaction
among the agent, environment, and internal entities, with nodes represented as
256-dimensional vectors using the Node2Vector method [12].

Figure 1 shows the Environment component presenting its data structures,
including the edge index of the network and a coordinate format list representing
the network’s connectivity. The environment manages the action and observation
spaces, which are initialized at the beginning of the execution, i.e., at the time
step to. At each time step t, the environment receives an action a; generated by
the agent and computes the effects produced a;, developing a new state s;11, a
reward 741, and indicating if the state is terminal (line 9 of the Algorithm 1).

Graph Attention Network (Actor)

AC2CD (Agent) i @ PyG

i D Error

Graph Attention Network (Critic)

T
Reward

@ Environment

Edge Featr Detected

P N structure

: Edge list.txt : e & .
: am i 4 eec o

H manipulation | !

: Ground : ° []

: truth.xt : ®
| ; o9

Fig. 1. The AC2CD architecture from [3].

Ablation Study of AC2CD Hyperparameters 7

Algorithm 1 presents the AC2CD for community detection, including the in-
put (i.e., Input:) with Dataset and the hyperparameters (Hp). The manipulation
of Dataset is made by DataManip(Dataset). The method Agent(Hp) create the
agent according to Hp and consequently makes the actor, the Critic networks,
and the experience memory store the last episodes of execution. Inside the loop,
line 5 to line 12, while not in a terminal state, the agent chooses an action
based on the observations and executes a step returning a new observation, the
reward, and a flag indicating that the new state is terminal. After the learning
process, the model file is ready to infer the community assignment for nodes in
a network, and the output is the score stored in the score_history variable.

The Ac2CD experimental work indicates that AC2CD copes well with dy-
namic real-world social networks. Nevertheless, the performance of such com-
plex architecture motivates AS approach to enhance performance to evaluate
the growing size of dynamic social networks.

Algorithm 1: Community Detection in AC2CD

Input: Dataset
Input: Hp

1 node_emb, edge_index < DataM anip(Dataset);

2 env < GAT Env(node_emb, edge_indez);

3 agent < Agent(Hp);

4 score_history < [[;

5 while n < Hp.maz_iter do

6 obs < env.reset();

7 while not done do

8 action, prob, val < agent.choose_action(obs);
9 new_obs,reward,done <— env.step(action);

10 agent.remember(obs, action, reward,prob,val);
11 if n % Hp.train_interval == 0 then

12 L agent.learn();

3.5 Ablation Study

With the growth of ML approaches, various domains of knowledge have bene-
fited. However, systems with AI have become complex and hard to understand
and explain. As a result, a new approach to Al-based systems has emerged to
provide explainability to human users, highlighting the strengths and weaknesses
of the algorithm and conveying an understanding of how it will behave in the
future. According to [13], XAI enables greater transparency and interpretability
in complex Al systems allowing users’ trust and permitting humans to make
informed decisions while effectively cooperating with such systems. XAI bridges
the gap between the black-box nature of traditional Al and the human need for

8 Rafael Henrique Nogalha de Lima

comprehensibility by providing explanations for algorithmic decisions. That en-
hances the usability and ethical considerations of AI applications across various
domains.

The first idea of AS comes from speech recognition studies [25]. Although not
a new idea, it is a relatively young Al research theme [14]. AS is defined by [20]
as a scientific method that involves highlighting or removing individual or blocks
of components from a system to prove and understand which aspects of a system
are vital through statistical analysis. Using statistics and analyzing the results
obtained from AS, it is possible to gain insights into the relative importance
of the parameters of architecture or model. With these insights, improving sys-
tems’ design, optimization, and interpretability is possible. AS is a valuable tool
for discovering the component’s influence in ML systems. Through statistical
analysis, it is possible to enhance the interpretability of ML approaches.

There are different ways to conduct an AS. One can remove architectural
elements or use the Hp. They are used to configure an ML model and specify
the algorithm to minimize the loss function, for example, [24]. The use of AS
in XAI systems becomes interesting, considering its complementarity to under-
standing Al systems. The AS aims to understand the importance of parameters
and code blocks in an architecture or model [14]. This study enables identifying
and quantifying the influence of various components on an algorithm, model, or
architecture, leading to a better understanding of the underlying mechanisms.
This understanding is crucial for building trust and ensuring transparency in Al
systems.

3.6 Ablation Study Method

Figure 2 presents the experimental method with three steps. The first step in-
cludes the datasets and baseline definitions. The first dataset is called Email-Eu-
Core (EC), available on the Snap Project website? and used as input to AC2CD.
The second dataset is the High School Contact and Friendship Network (HS),
available on the Socio Patterns website® and also used as input to AC2CD.
The second step includes the hyperparameter variations during the AC2CD ex-
ecutions (tunning). Finally, in the third step, we use the AS to observe the
importance of the selected hyperparameters. The effect analysis focuses on the
execution time, GPU, and memory usage.

The EC is a directed network representing an email network between mem-
bers of a European research institution (Email-Eu). According to [31], the net-
work is formed by an edge (u,v), where u represents the person who sends at
least one email to v. The communities in the dataset represent the departments
in the organization. There are 1,005 nodes, 25,571 edges, and 42 communities,
with the longest path being seven, and the average clustering coefficient is 0.3994.

2 https:/ /snap.stanford.edu/data/email-Eu-core.html
3 http: / /www.sociopatterns.org/datasets/high-school-contact-and-friendship-
networks/

Ablation Study of AC2CD Hyperparameters 9

First Step Second Step Third Step

Tuning Hyperparameter Analyze

Dataset A !
AC2CD Tuning -~ Ablation Study

Baseline

Fig. 2. Experimental method diagram.

The HS comprises a directed network of contacts and friendship relations
between students in a high school in Marseilles, France, in December 2013. Ac-
cording to [19], the network is formed by lines with the form (ij), meaning that
the student 7 reported a friendship with student j. And is formed by a metadata
file where each line has the form (IDiCiG17), meaning that class C'i and gender
Gi of the student has I Di. There are 329 nodes, 45047 edges and 9 communities.

3.7 Experimental Setup

The AC2CD includes 16 Hp.* We use in the AS three empirically defined as the
most influential ones with the baseline values of learn_rate=40 (LR), batch_size=40
(BS), n_games=100 (NG). The AS setup uses I equal to the percentage varia-
tions of 10%, 30%, 50%, and 70%. Tests provided the comprehensiveness cov-
erage of these percentages. The LR determines how much an agent learns from
each sample in the environment [26]. The BS represents the number of samples
propagated during the training session [28]. Lastly, NG defines the number of
episodes the agent will process.

The AS method uses the Scalene profiler.> The AS execution starts, and the
matplotlib® tool to generate graphics is used for GPU and memory analysis.
This experiment aims to determine a set of Hp in H that minimizes GPU and
memory consumption for the AC2CD while achieving maximum speed. As shown
in Figure 3, Scalene is chosen due to its superior performance compared to other
well-known profilers. The results indicate its effectiveness in slowing down the
program, profiling memory and GPU usage, and providing system time analysis.
Additionally, a .json file generated by Scalene allows for line-level and function-
level profiling, offering information about specific functions and lines of code, as
documented in [1].

The executions followed 125 turns for each dataset with six scenarios, in-
cluding the baseline for a GPU consumption comparison, memory usage, and
execution time. The selection of the six scenarios considered the lowest GPU

4 https://gitlab.com/InfoKnow/SocialNetwork/ac2cd
® https://github.com/plasma-umass/scalene
5 https://matplotlib.org/

10 Rafael Henrique Nogalha de Lima

Profiler Slowdown I,im's.or l'nmfuliﬁed Threads Mnlli: P}'tl\o_n Vs, S_*lem Profiles Python vs. GPL Memory Ct)p_\ Detects
Functions Code processing CTime Time Memory C Memory Trends Volume Leaks
CPU-only profilers
pprofile (stat.) 1.0x lines v 4 - -
py-spy 10x lines v Vi 7
pyinstrument 1.7% functions v - -
cProfile 1.7x functions v -
yappi wallclock 32« functions v v
yappi CPU 3.6« functions v v
line_profiler 2.2x lines - -
Profile 151 functions ' -
pprofile (det.) 36.8x lines v v - -
memory-only profilers
i1 27% lines - - - - - peakonly
memory_profiler 2371 lines - - - - - RSS
memray 4.0 lines - 4 - - - peak only v
CPU+memory profilers
Austin (CPU+mem) 1.0% lines v 4 v - - RSS
Scalene (CPU+GPU) 1.0 both v/ s v v v - - v
Scalene (all) (D) v v v v ® O v ® - v v

Fig. 3. Comparison of profiler tools.

consumption, memory usage, and execution time. It is essential to highlight
that the set of Hp does not operate individually for GPU consumption, memory,
and execution time. In other words, if we choose a set of Hp, it will be cho-
sen for GPU consumption, memory, and execution time collectively rather than
individually for each of them.

The experiments use a computer with a CPU Intel® Xeon Gold 5220R with
48 cores, 187GB of RAM, and two GPU NVIDIA® V100S. The operating system
used is Ubuntu, with external libraries provided by the Conda project.”

4 Results and Discussion

In this section, the GPU and memory usage, and run-time execution results are
present for the AC2CD architecture after executing it with I variations of 10%,
30%, 50%, 70% using EC and HS datasets. The results of the baseline execution
for EC were 12.092 GiB for the memory GPU usage, 1.124 GiB for memory
consumption, and 1h40m24s for run-time execution. And HS was 17.339 GiB
for the memory GPU usage, 1.006 GiB for the memory consumption, and 10m26s
for run-time execution (Figures 4 and 7).

4.1 GPU Consumption

Figure 4 presents the best results for GPU usage with EC and HS datasets.
Note that GPU consumption with EC (i.e., blue bars) is higher for the baseline
(black dotted line with 12.092 GiB), BS(10%) (i.e., 12.025 GiB), and NG(10%)
(i.e., 11.999 GiB). For the LR(70%) (i.e., 10.911 GiB), and LR(30%), BS(30%),
NG(10%) (i.e., 10.223 GiB), both sets of hyperparameters are adequate, but the
last is the best result in terms of GPU consumption. This figure also presents the

" Conda Project available at https://docs.conda.io/en/latest/

Ablation Study of AC2CD Hyperparameters 11

best results for GPU usage with HS (i.e., green bars). The baseline (red dotted
line) is the highest value with 17.339 GiB of GPU consumption, and for this
dataset, the best result is LR(70%) and BS(70%) (i.e., 14.123 GiB).

17.57 e o o

15.0

12.5

10.0

7.5

GPU consumption (GiB)

5.0
= = EC-Baseline

= = HS-Baseline
23] mm EC
B HS

LR(70%) BS(10%) NG(10%) LR(30%) LR(30%) LR(70%) LR(30%) LR(50%) LR(50%) LR(70%)
BS(30%) BS(30%) BS(70%) BS(50%) BS(50%) BS(50%) BS(70%)

NG(10%) NG(10%) NG(30%) NG(10%)

Fig. 4. Best results in terms of GPU consumption with EC and HS datasets.

Furthermore, Figure 5 presents the Scalene interface for LR(30%), BS(10%),
and NG(10%) with the EC dataset. The percentage of GPU consumption (i.e.,
31.2% corresponds to 10.223 GiB) is displayed using a pie graph in the GPU
utilization column (GPU wutil.). The GPU memory column presents the code line
memory consumption. Finally, the function that consumes the GPU referring
to the previously shown code line appears below the FUNCTION PROFILE
column. Note that the code segment related to agent learning (Agent.learn) for
each node in the EC is the one that consumes the most GPU in this configuration.
In general, this is the code block that consumes most of the AC2CD algorithm.
In addition, Figure 6 presents the Scalene interface for the GPU consumption
(i.e., 43.1% corresponds to 14.123 GiB) with LR(70%), BS(70%) with the HS
dataset, where the Agent.learn consumes more GPU memory.

TIME MEMORY MEMORY MEMORY MEMORY COPY GPU GPU FUNCTION PROFILE (click to reset order)
average peak timeline activity util. _memory /home/rf_henrique/ac2cd/src/PP02CD. py
. | 1 T— d sgq W 238 Agent . learn
I | | B B 22 7 GPU:inuse: 31.2% emory.generate_batches
‘ ! 2 Agent . choose_action
T i a9 ActorNetwork. forward
I 136 CriticNetwork. forward
46 PPOMemory . store_memory
\—__ 57 PPOMemory . clear_memory
106 ActorNetwork. save_checkpoint
198 Agent . remember

Fig. 5. Scalene interface for LR(30%), BS(10%), NG(10%) with the EC dataset.

12 Rafael Henrique Nogalha de Lima

Agent.choose_action

TIME MEMORY MEMORY MEMORY MEMORY FUNCTION PROFILE (click to reset order)
average peak timeline activity /home/rf_henrique/aczcd/src/PPOZCD.py
——— r
] Agent.learn
| GPU: inuse: 43.1% rnetwork . forward
I 8 PPOMemory . generate_batches

CriticNetwork. forward
46 PPOMemory . store_memory

PPOMemory. clear_memory

|

49 CriticMetwork.save_checkpoint

Agent. remember

Fig. 6. Scalene interface for LR(70%), BS(70%) with the HS dataset.

What is interesting in the execution of HS is that, despite having fewer
communities and being smaller than the EC dataset, it consumes more GPU.
That might occur due to the different transformations in the dataset file for
EC, where the torch.LongTensor generates the index, transposing data by the
generated index, as seen in Listing 1. In contrast, for the HS dataset, both the
index and data are derived using the from_networkz function, which converts
a graph to a torch_geometric.data.Data instance® as seen in Listing 2. Another
possibility for the high GPU consumption is the use of metadata in HS, which
makes the execution of this dataset more complex, requiring more computational
power.

index = torch.LongTensor (
np.vstack ((adj.row, adj.col))
)

data = Data(edge_-index=torch.transpose (index,0,1))
enconder = embedding.Encoder (data ,index ,device=self.device)

Listing 1. Code execution fragment with the EC dataset.

data = from_networkx (graph)

encoder = embedding. Encoder (data ,
data.edge_index ,
device=self.device

Listing 2. Code execution fragment with the HS dataset.

8 https://pytorch-geometric.readthedocs.io/en/latest/

Ablation Study of AC2CD Hyperparameters 13
Memory Consumption

As observed in Figure 7, the memory consumption does not exhibit as much
variation comparing the GPU consumption of the EC dataset (Figure 4). We can
attribute this behavior to the fact that most memory allocation in the AC2CD
is related to tensors GPU stored consumption. As possible to observe, BS(10%)
is the best result of memory consumption with 1.123 GiB.

For the HS dataset, the baseline consumes 1.006 GiB, and for LR(70%),
BS(70%) consumes 1.021 GiB, and LR(70%), BS(70%), NG(10%) consumes
1.022 GiB. In relation to LR(50%), BS(50%), NG(30%) the consumption is 1.007
GiB. Finally, LR(30%), BS(50%), and LR(50%) BS(50%), NG(10%) represent
the best results for memory consumption, with a consumption of 1.003 GiB.

=
[=}

o
™

o
o

Memory consumption (GiB)
o
IS

== EC-Baseline
== HS-Baseline
N EC
B HS

e
[N

o
o

LR(70%) BS(10%) NG(10%) LR(30%) LR(30%) LR(70%) LR(30%) LR(50%) LR(50%) LR(70%)

BS(30%) BS(30%) BS(70%) BS(50%) BS(50%) BS(50%) BS(70%)
NG(10%) NG(10%) NG(30%) NG(10%)

Fig. 7. Best results regarding memory consumption with EC and HS datasets.

Run time Execution

We can observe in Table 2 that in the EC dataset, the LR(70%) is the faster
execution with 1h19min23s. On the other hand, the execution with LR(30%),
BS(30%), and NG(10%) is the slowest compared to the other five percentage
variation executions taking 2h7min35s. It happens because the NG hyperpa-
rameter determines the number of episodes the agent will process during the
execution of the architecture, affecting the run time execution.

Regarding the HS, the execution time is shorter than the EC dataset due
to having fewer nodes, edges, and communities. The shortest time is achieved
with LR(70%), BS(70%) with 3min25s, and LR(70%), BS(70%), NG(10%) with
4min08s also proved to be a good option. On the other hand, the baseline showed
the worst time in the execution comparison with 10min26s.

14 Rafael Henrique Nogalha de Lima

Table 2. Run-time results for EC and HS datasets.

EC hyperparameter| EC Run-time execution|HS hyperparameter|HS Run-time execution

baseline 1h40m24s baseline 10m26s
LR(70%)

LR(70%) 1h19m23s BS(70%) 3m25s
LR(30%)

BS(10%) 1h25m02s BS(50%) 4mb3s
LR(50%)

NG(10%) 1h34m10s BS(50%) 7Tm08s
NG(10%)
LR (50%)

I];lzsi((gg?)) 1h29m23s BS(50%) 8m05s
¢ NG(30%)
LR(30%) LR(70%)

BS(30%) 2h7m35s BS(70%) 4m08s
NG(10%) NG(10%)

5 Conclusion

This work contribution is to present an AS to AC2CD architecture, shedding
light on the influential factors that contribute to the algorithm’s performance.
The insights gained contribute to the ongoing efforts to enhance the efficiency
and effectiveness of DRL algorithms in real-world applications in the XAI direc-
tion.

The AS application in AC2CD reveals that it is vital to carefully consider
the values of LR, BS, and NG hyperparameters to optimize GPU and memory
consumption and run-time execution. Based on the results obtained from our
experiments and analyses for the EC and HS datasets, it is evident that LR
and BS influence most of the GPU and memory usage, and NG has the most
significant impact on run-time execution.

Therefore, for the EC dataset, the LR(30%), BS(30%), NG(10%), and BS(10%)
proved adequate options for the hyperparameters configuration of AC2CD archi-
tecture considering GPU memory usage and memory consumption, respectively.
And for run-time execution, LR(70%) proved to be adequate. Regarding the
HS dataset, the LR(70%) and BS(70%) indicate a good option for GPU con-
sumption and execution time. Additionally, it was a good option for memory
consumption. Although LR(30%), BS(50%), and LR(50%), BS(50%), NG(10%)
perform better in terms of memory, the GPU consumption and execution time
are not favorable.

Finally, the AS results indicate that DRL architectural structures and hyper-
parameters impact GPU, memory, and run-time execution results. In addition,
the dataset manipulation by the architecture also influences the execution re-
sults. We suggest the DRL developers give special attention to simplifying the
architecture, considering tensors, encoders, and learning algorithms to accelerate
execution, achieving the best infrastructure results.

Ablation Study of AC2CD Hyperparameters 15

In future work, we will consider the implementation of AS for the remaining
hyperparameters of the AC2CD architecture with other datasets exploring the
potential for automatic hyperparameter tuning. Additionally, investigating the
impact of an AS on the agent’s learning stage within the AC2CD architecture
presents a promising research area for advancing the study of DRL models with
a focus on XAI transformations. This path of research holds the potential for
significant advancements in understanding and interpreting the decision-making
processes of DRL models.

Acknowledgment

I would be glad to express my gratitude to my supervisor Prof. Célia G. Ralha,
for her assistance during my final project study and to Aurélio R. Costa for
providing technical support throughout the project.

References

1. Emery Berger, Sam Stern, and Juan Pizzorno. Triangulating python performance
issues with scalene, 2022. arXiv:2212.07597 [cs.PL].

2. Rémy Cazabet and Frédéric Amblard. Dynamic Community Detection, pages 404—
414. Springer New York, New York, NY, 2014.

3. Aurélio Ribeiro Costa. Adaptive Model to Community Detection in Dynamic So-
cial Networks. PhD thesis, Computer Science Department, University of Brasilia,
Brasilia, Brazil, 2023.

4. Aurélio Ribeiro Costa and Célia Ghedini Ralha. AC2CD: An actor—critic archi-
tecture for community detection in dynamic social networks. Knowledge-Based
Systems, 261:110202, 2023.

5. Moésio Wenceslau da Silva Filho, Gabriel A. Barbosa, and Péricles B. C. Miranda.
Learning global optimization by deep reinforcement learning. In Proc. of 11"
Brazilian Conference on Intelligent Systems (BRACIS), page 417-433, 2022.

6. Jiayi Du, Muyang Jin, Petter N Kolm, Gordon Ritter, Yixuan Wang, and Bofei
Zhang. Deep reinforcement learning for option replication and hedging. The Jour-
nal of Financial Data Science, 2(4):44-57, 2020.

7. Issam El Naga and Martin J. Murphy. What Is Machine Learning?, pages 3—11.
Springer International Publishing, Cham, 2015.

8. Dongyu Fan, Haikuo Shen, and Lijing Dong. Switching-aware multi-agent deep
reinforcement learning for target interception. Applied Intelligence, 53(7):7876—
7891, 2023.

9. Vincent Frangois-Lavet, Peter Henderson, Riashat Islam, Marc G Bellemare, et al.
An introduction to deep reinforcement learning. Foundations and Trends in Ma-
chine Learning, 11(3-4):219-354, 2018.

10. Michelle Girvan and Mark EJ Newman. Community structure in social and biolog-
ical networks. Proceedings of the national academy of sciences, 99(12):7821-7826,
2002.

11. Ivo Grondman, Lucian Busoniu, Gabriel AD Lopes, and Robert Babuska. A sur-
vey of actor-critic reinforcement learning: Standard and natural policy gradients.
IEEFE Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), 42(6):1291-1307, 2012.

16

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Rafael Henrique Nogalha de Lima

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks.
In Proc. of the 22nd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining, pages 855—864, 2016.

David Gunning and David Aha. Darpa’s explainable artificial intelligence (xai)
program. Al magazine, 40(2):44-58, 2019.

Isha Hameed, Samuel Sharpe, Daniel Barcklow, Justin Au-Yeung, Sahil Verma,
Jocelyn Huang, Brian Barr, and C. Bayan Bruss. Based-xai: Breaking ablation
studies down for explainable artificial intelligence, 2022. arXiv:2207.05566 [cs.LG].
Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, et al. Rainbow:
Combining improvements in deep reinforcement learning. In Proc. of AAAI Conf.
on Artificial Intelligence, volume 32, 2018.

Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement
learning: A survey. J. Artif. Int. Res., 4(1):237-285, may 1996.

Brian Karrer and Mark EJ Newman. Stochastic blockmodels and community
structure in networks. Physical review E, 83(1), 2011.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in Neural Inf.
Proc. Sys., 12, 1999.

Rossana Mastrandrea, Julie Fournet, and Alain Barrat. Contact patterns in a high
school: a comparison between data collected using wearable sensors, contact diaries
and friendship surveys. PloS one, 10(9):e0136497, 2015.

Richard Meyes, Melanie Lu, Constantin Waubert de Puiseau, and Tobias Meisen.
Ablation studies in artificial neural networks, 2019. arXiv:1901.08644 [cs.NE].
Haidlir Naqvi and Bayu Anggorojati. Ablation study of deep reinforcement learn-
ing congestion control in cellular network settings. In Proc. of 25" Int. Symposium
on Wireless Personal Multimedia Communications (WPMC), pages 80-85. IEEE,
2022.

Allen Newel. A tutorial on speech understanding systems. In D. R. Reddy, editor,
Speech Recognition Invited Papers Presented at the 197} IEEE Symposium, pages
3-54. Academic Press, CMU, USA, 1975.

Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis and
an algorithm. Advances in Neural Inf. Proc. Sys., 14, 2001.

Philipp Probst, Anne-Laure Boulesteix, and Bernd Bischl. Tunability: Impor-
tance of hyperparameters of machine learning algorithms. The Journal of Machine
Learning Research, 20(1):1934-1965, 2019.

Dabbala Rajagopal Reddy. Speech recognition: invited papers presented at the 197}
IEEE symposium. Elsevier, 1975.

Joshua Romoft. Decomposing the Bellman Equation in Reinforcement Learning.
PhD thesis, School of Computer Science, McGill University, Montreal, Canada,
2021.

A. L. Samuel. Some studies in machine learning using the game of checkers. IBM
Journal of Research and Development, 3(3):210-229, 1959.

Brennan Shacklett, Erik Wijmans, Aleksei Petrenko, Manolis Savva, Dhruv
Batra, et al. Large batch simulation for deep reinforcement learning, 2021.
arXiv:2103.07013 [cs.LG].

Sina Sheikholeslami. Ablation programming for machine learning. Master’s thesis,
KTH Royal Institute of Technology, School of Electrical Eng. and Comp. Science
(EECS), SE-100 44 Stockholm, Sweden, 2019.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
The MIT Press, second edition, 2018.

31.

32.

Ablation Study of AC2CD Hyperparameters 17

Lei Tang and Huan Liu. Relational learning via latent social dimensions. In Proc.
of 15" ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, page
817-826, 2009.

Zhenhui Ye, Yining Chen, Xiaohong Jiang, Guanghua Song, Bowei Yang, and
Sheng Fan. Improving sample efficiency in multi-agent actor-critic methods. Ap-
plied Intelligence, pages 1-14, 2022.

