
University of Brasília
Computer Science Department

Automatic Lifting of Functions for Incremental
Analysis

Breno Augusto Fatureto de Bortolli

Monograph submitted in partial fullfilment of
the requirements to the Computer Engineering Program at University of Brasília

Advisor
Prof. Dr. Vander Ramos Alves

Co-advisor
Prof. Dr. Leopoldo Motta Teixeira

Brasília
2022

University of Brasília
Computer Science Department

Automatic Lifting of Functions for Incremental
Analysis

Breno Augusto Fatureto de Bortolli

Monograph submitted in partial fullfilment of
the requirements to the Computer Engineering Program at University of Brasília

Prof. Dr. Vander Ramos Alves (Advisor)
CIC/UnB

Prof. Dr. Leopoldo Motta Teixeira (Co-advisor)
CIn/UFPE

Prof. Dr. Genaina Nunes Rodrigues Prof. Dr. Ralf Lämmel
CIC/UnB Universität Koblenz-Landau

Prof. João José Costa Gondim
Coordinator of Computer Engineering Program at University of Brasília

Brasília, May 12, 2022

“We can’t have full knowledge all at once. We must start by believing; then
afterwards we may be led on to master the evidence for ourselves.”

—St. Thomas Aquinas

Dedicated to

This thesis is dedicated to my aunt Márcia,
without whom I would not be where I am.

iv

Acknowledgements

Thanks to my advisors Vander Alves and Leopoldo Teixeira for giving me consistently
good feedback for this thesis and beforehand for my undergraduate research. This period
from 2019 to 2022 highly motivated me to keep learning more about deep topics.

Thanks to Frédéric Chopin for writing the music that I listened to consistently over
the production of this work, and throughout long days of writing and programming in
general.

Thanks to the Free Software Foundation and to all the GNU Emacs developers for
developing such a high-value piece of software. The entirety of this work, from coding to
writing, was made on Emacs.

Thanks to my family for providing the environment and opportunity for me to discover
and nurture my vocation.

Thanks to my girlfriend for reminding me to take care of myself and for always pro-
viding kind words of encouragement.

v

Abstract

Evolution is a fact of software development. Modern software workflows employ software
analyses extensively on large codebases that are under constant evolution. As such,
analyses need to develop some method that deals with incremental changes in the input,
often in ways that reuse previously computed results. Despite that, software analyses
often deal with that in ad-hoc ways, requiring high development and engineering costs to
deal with evolution. This work develops an approach of systematic reuse based on the
natural unfolding of recursive procedures on tree-shaped data structures. A preliminary
empirical assessment suggests that the method achieves fine-grained reuse for a class of
software analyses We evaluated an implementaion of our method on a couple of scenarios
in which the input undergoes evolution, and were able to obtain significant speed-up after
successive evolutions when compared to the plain analysis.

Keywords: Static analysis, Evolution-aware analysis, Metaprogramming

vi

Resumo

Evolução é um fato do desenvolvimento de software. Fluxos modernos de desenvolvimento
de software usam análises extensivamente em grandes bases de código que estão sob
constante evolução. Como consequência, análises precisam desenvolver métodos de lidar
com mudanças incrementais na entrada, geralmente de maneiras que reutilizam resultados
computados previamente. Apesar disso, análises de software geralmente lidam com isso de
maneira ad-hoc. Este trabalho tem como objetivo desenvolver uma abordagem de reuso
sistemática baseada no desdobramento natural de processos recursivos em estruturas com
formato de árvore. Uma avaliação empírica preliminar sugere que o método obtémreuso de
granularidade fina para uma classe de análises de software. Avaliamos a implementação do
nosso método em dois cenários em que a entrada passa por evolução, e obtemos aceleração
significativa da análise em relação à análise simples após evoluções sucessivas.

Palavras-chave: Análise estática, Análise ciente de evolução, Metaprogramação

vii

Contents

1 Introduction 1

2 Background 4
2.1 Programming in Racket and Tree-Walk Analyses 4

3 Problem Statement 7
3.1 Running example . 8

4 Method 12
4.1 Method Definition . 12
4.2 Design . 14
4.3 Running Example Revisited . 19
4.4 Implementation . 21

5 Preliminary Evaluation 28
5.1 tree-count-even . 29
5.2 expr-depth . 30

6 Conclusion 35
6.1 Summary . 35
6.2 Limitations . 35
6.3 Related Work . 35
6.4 Future Work . 37

References 38

viii

List of Figures

3.1 Input tree . 8
3.2 Input data after change . 10

4.1 Plain analysis and evolution aware analysis 13
4.2 Base analysis procedure. OL refers to object language. 15
4.3 Evolution-aware analysis procedure. ML refers to metalanguage. 15
4.4 Overview of the Metainterpreter . 18
4.5 Input tree . 19
4.6 Cache of the countEven function . 19
4.7 Input data after change . 19
4.8 Cache with evicted entries . 19
4.9 Cache after update . 21

5.1 tree-count-even nodes inserted vs. nodes accessed, method vs. baseline . . . 30
5.2 tree-count-even Running time in milliseconds per iteration, method vs. base-

line . 31
5.3 expr-depth evolution round vs. number of node accesses, method vs. baseline 33
5.4 expr-depth Running time in milliseconds per iteration, method vs. baseline . 34

ix

Chapter 1

Introduction

As software grows larger and more complex, developers rely more on static code analysis.
These analyses are able to derive an ensemble of useful metrics and properties, such as
type correctness, degree of code complexity, and unreachable control-flow paths. These
analyses are integral to the software development workflow, and allow users to develop
programs that have increased correctness and quality guarantees [1].

A large set of static code analyses typically walk through the abstract syntax tree
of the program in order to derive useful metrics or properties. In some sense, the task
of software analyses is similar to that of a tree-walk interpreter, in the sense that the
results of a parent node is derived from a computation involving data of the current node
along with recursive calls to the node’s children. The recursive shape of the input data
is thus mirrored in the recursive, accumulative structure of the analysis. In contrast with
interpreters, however, static code analyses are often simpler in complexity, primarily to
not run into problems regarding termination [2][3].

Static code analyses, however, often either do not take evolution into account, or imple-
ment coarse-grained methods in order to track software changes, such as using checksums
or file write timestamps in order to determine whether there have been changes at the
level of source code files. Furthermore, these systems often deal with dependencies of the
input in regard to the output in an ad-hoc way.

The GNU make program, for instance, verifies file modification timestamps in order to
determine whether to re-execute a computation. While the program is able to determine
the order in which to carry out operations in regard to dependencies, it requires the user
to manually specify the files on which each rule depends.1

The low resolution of dependencies and the inability to deal with evolution incurs an
expensive computational cost for running the analysis, specially as systems grow larger
with more frequent changes. This is a common situation in software development work-

1https://www.gnu.org/software/make/manual/html_node/How-Make-Works.html

1

flow. In this scenario, code undergoes some sort of analysis. Developers then make small
changes to the code base. After these changes are committed to a central repository [1],
the analysis has to be performed again from scratch or taking into consideration low-
resolution units of change, such as on the level of individual files.

We can make a distinction between approaches that work on the level of artifacts, such
as files, called tool-based approaches, and ones that work with the abstractions provided
by a host programming language, called language-based approaches [18]. We pose that
operating on a language-level provides unexploited potential for dealing with evolution,
in the grounds that such a level allows us to better investigate the relationships between
incremental evolution and the impact on the corresponding computation.

The paradigm of static code analysis is replicated whenever one has to traverse a tree-
shaped structure with a recursive function. Examples of such analyses include traversing
any model described in a structure such as XML or JSON. As with static code analysis,
these analyses compute a result on the overall input based on combinations of partial re-
sults of smaller units. Furthermore, these units often have a recursive structure, structure
that which is mimicked in the unrolling of the analysis function itself. Despite seminal
work in incremental computatoin [4], research in this direction is still scarce.

We thus identify an opportunity to deal with evolution-aware software analyses in a
more general language-based manner. To do this, we examine the relation between the
recursive analysis functions and the input data structures they operate on, as well as the
dependency relations originating from tree-shaped data. In this way, we devise a method
that is able to recompute analysis functions in a manner that takes into consideration
fine-grained evolution of the input data.

This work explores the relationship between the unfolding of computational processes
and the manner in which evolution manifests in tree-shaped data structures. Our method
exploits the evaluation mechanism of the language in which the analysis is written in,
referred to as the object language, in order to compute applications of an analysis in
an evolved input in a manner that reuses previous results. Furthermore, we modify the
evaluation semantics of the object language in a way that we store partial results derived
in a recomputation for later use. In this manner, we can perform successive applications
of an analysis after iterated rounds of evolution on the input. The component that
inspects the code of the analysis is called the metainterpreter. This component analyses
the evolution applied to the input, as well as the code of the analysis function, in order
to (1) generate an expression for the result that reutilizes previous computations and (2)
evaluate the expression in a bottom up manner, such that we keep track of the partial
results generated during the process.

The remainder of the work is organized as follows. Chapter 2 gives background on

2

tree-walk analysis, as well as a brief exposition of programming in Racket and its metapro-
gramming abilities. Chapter 3 describes the problem of incremental analysis in detail, and
introduces points in which our technique will become relevant. Chapter 4 describes the
method as well as its Racket implementation. Chapter 5 carries out a preliminary em-
pirical analysis in order to assess the potential benefits of our method. In Chapter 6 we
summarize our work, examine its limitations, discuss related work, and consider future
directions.

3

Chapter 2

Background

In this chapter, we provide a high-level overview of the type of analysis explored in this
work, namely tree-walk analyses. We provide an overview of the Racket programming
language, and also briefly describe the manner in which metaprogramming is done in this
language.

2.1 Programming in Racket and Tree-Walk Analyses

The implementation of the technique presented in this work is done in the Racket pro-
gramming language. This is a Lisp based on the Scheme dialect. Its simple syntax enables
us to easily write programs that operate on programs, thus making it a natural fit for our
method. It also provides useful features such as structs and an extensive library of data
structures and utilities. Therefore it also gives us the power needed to implement the
method without having to concern ourselves with implementing the core data structures
and abstractions needed.1

We can think of expressions in Racket are parenthesized lists or atoms.2 These ex-
pressions are called s-expressions. Examples of atoms are variable identifiers and symbols.
Function applications are denoted by lists where the first element is the function and the
remaining elements are the arguments. For example, (+ 1 2) denotes the addition of 1
and 2, or the application of function + to the arguments 1 and 2.

Note that the syntax of Lisp allows us to easily deal with elements that correspond
to code. We do not need to parse code into a detached abstract syntax tree; the tree

1The reader who wishes to learn more about Racket may refer to the Racket Language Guide at
https://docs.racket-lang.org/guide/

2Racket also affords some syntactic improvements, such as the use of square brackets, in order to
reduce the number of parentheses. For the intents of this work, we take into consideration the simpler,
albeit less ergonomic, syntactic structure which can be seen in the Scheme dialect of Lisp.

4

structure of the code is explicit in the code itself. As a result, we can easily manipulate
pieces of data that represent code and later on evaluate them.

We can obtain the data corresponding to a piece of code by quoting it. Executing the
expression (+ 1 2) in a Racket evaluator will give is the result, namely 3. But if we quote
it as follows ’(+ 1 2) (note the apostrophe), we obtain a list containing the elements +,
1, and 2. We obtain the first element of a list with the car operation, and the remaining
elements with the cdr operation. Therefore, to obtain the operation from the list we do
(car ’(+ 1 2)), and to obtain the list of operands we do (cdr ’(+ 1 2)).3

Suppose we want to write a function that receives as input an expression and returns
the amount of times that the addition operation is executed. We essentially need to
write a function that traverses nested lists, accumulating the number of times that the +
operator is seen. The code for this function is shown in Listing 2.1.

1 (define (count-add expr)
2 (cond ((null? expr) expr)
3 ((list? expr)
4 (+ (count-add (car expr)) (count-add (cdr expr))))
5 ((eq? expr ’+) 1)
6 (else 0)))
7

Listing 2.1: Function that counts the number of additions in an s-expression

Other than analyzing code, we can also execute transformed code with ease. The
eval function receives an expression (in data form) as input and returns the result of
evaluating that expression. For instance, (eval ’(+ 1 2)) evaluates the expression ’(+
1 2), returning 3. Take, for instance, the situation where we want to print a message
whenever the addition function is invoked, without modifying the code of a program. We
can define a function that logs a message before returning the sum of the arguments. We
then write a function that transforms all the addition calls into this version with logging.
After we obtain the transformed program, we simply execute the obtained expression
using eval. The code for this example is in Listing 2.2.4

3The name of these operations refers back to the car and cdr instructions of the IBM 704, for which
the first Lisp implementation was created [5]. They can be taken to mean, respectively, contents of the
address register and contents of the decrement register [6].

4For more information on implementing full interpreters in Scheme, the reader may refer to Structure
and Interpretation of Computer Programs [7].

5

1 (define (log-add x y)
2 (println (format " Adding ~a and ~a" x y))
3 (+ x y))
4

5 (define (transform-add expr)
6 (cond ((null? expr) expr)
7 ((list? expr)
8 (cons (transform-add (car expr))
9 (transform-add (cdr expr))))

10 ((eq? expr ’+)
11 log-add)
12 (else expr)))
13

14 (define program
15 ’(+ 1 (+ 2 3)))
16

17 (define transformed-program
18 (transform-add program))
19

20 (eval transformed-program)
21 ; " Adding 2 and 3"
22 ; " Adding 1 and 5"
23 ; 6
24

Listing 2.2: Function that counts the number of additions in an s-expression

One final mechanism that is useful for manipulating programs is quasiquoting. Like
quoting, this allows us to generate pieces of data that correspond to code. Additionally,
it allows us to interpolate expressions that are evaluated at object creation time. While
quoting allows us to return expressions literally, quasiquoting allows us to insert pieces
that are evaluated. Whereas we quote expressions with an apostrophe (’), we quasiquote
expressions with a backtick (‘) and prefix evaluated expressions with a comma. As such,
‘(+ ,(* 2 3) ,(* 4 5)) evaluates to ’(+ 6 20).5

5The Racket guide contains a detailed section on quasiquoting at https://docs.racket-lang.org/
reference/quasiquote.html

6

Chapter 3

Problem Statement

Evolution is an essential part of software analysis. Artifacts are not analyzed only once
after they are complete; on the contrary, they undergo analysis at multiple points as they
evolve through the software development lifecycle. As such, analyses need to implement
evolution-awareness mechanisms into them. Many tools often take into consideration
file modification timestamps in order to determine whether an artifact has undergone a
change before rebuilding. With the assistance of a dependency graph, for instance, tools
rebuild only the artifacts impacted by a change, and reuse previously generated results.

There are two problems with this. One is that the units of change are often taken to
be too coarse grained. This causes more work to be duplicated than needed. Take, for
instance, the case where only one statement is changed in a file with thousands of lines.
A compiler has to deal with that single file from scratch, and also rebuild artifacts that
depend on that file, despite the fact that only a fraction of the actual abstract syntax tree
may have changed.

The other problem is that different tools may have different views of what constitutes
a change and what are the units of reuse. When dealing with compilers, the unit of change
is often taken to be changes to a source code file. In an interactive environment for a
interpreted or JIT runtime, the units of change may be an individual function or class
definition. This implies in different mechanisms for handling evolution.

As a result of this situation, we have high costs in the computational dimension from
unnecessary recomputations, as well as high engineering costs needed to develop custom
solutions to handle evolution. We propose a fine-grained mechanism in which the unit
of change is a modification to the AST, and recomputation takes into consideration the
AST nodes affected by a change.

The advantage of this is that the pattern of modifying nodes in a tree-shaped struc-
tured is mimicked in the unfolding of recursive computational processes on these struc-

7

7t0

5t1

1t3

0t7 2t8

4t4

10t2

8t5 12t6

Figure 3.1: Input tree

tures. As such, there is a unexploited correspondence between input data structures and
function evaluation that may afford us to provide a uniform method of reuse.

Throughout this work, we use the terms input data and model, as well as cache and
context, interchangeably.

3.1 Running example

1 data Tree = Node Int Tree Tree
2 | Null
3

4 countEven tree =
5 case tree of
6 Node x l r ->
7 (if even x then 1 else 0)
8 + countEven l
9 + countEven r

10 Null -> 0
11

Listing 3.1: Running example in pseudo-Haskell

To motivate the research problem addressed in this work, we rely on the running
example of counting nodes of a binary tree that stores integers, as described in Listing 3.1.

We note that computation of the function on a node depends on a combination of a
local computation with the recursive calls on each of the node’s children. Another key
aspect is that we visit each node once. The state of the computation is thus carried
around purely by the expansion of the recursive calls, i.e., the call stack.

The evolution on the model can be expressed in terms of evolution primitives [8]. An
evolution primitive is a change that adds, removes, or changes a node in the model. In
the binary-tree example, an evolution primitive may be inserting a node below an existing
node, changing an existing node, or removing a subtree.

8

Suppose, for example, we wish to compute the countEven function on the tree depicted
in Figure 3.1. We can think of the computation in terms of an expression that expands
until all recursive calls are expanded. Let us denote the countEven function by f and the
root node of the tree by t0. We start with a base expression.

f(t0)

We perform one round of expansion of the expression up to the recursive calls. At
this point, we compute a local function that checks whether the value of the node is
even, returning 1 if this is the case and 0 otherwise. Since the root node contains 7, this
computation results in the atom 0. We also perform one round of expansion up to the
recursive calls on the node’s left and right children, denoted by t1 and t2 respectively.

0 + f(t1) + f(t2)

We can then repeat this process recursively, until we have no more function calls to
the base function. At this point, we have an expression whose evaluation reduces to the
result of the function application.

0 + f(t1) + f(t2)
0 + (0 + f(t3) + f(t4)) + (1 + f(t5) + f(t6))
0 + (0 + (0 + f(t7) + f(t8)) + 1) + (1 + 1 + 1)
0 + (0 + (0 + 1 + 1) + 1) + (1 + 1 + 1)
→ 6

If we go back to the expanded expression evaluation and inspect the step-by-step
bottom-up evaluation, we can see that each step of the reduction corresponds to the
partial result of the function on some subtree.

9

7t0

5t1

1t3

0t7 2t8

4t4

10t2

8t5

6t9

12t6

Figure 3.2: Input data after change

0 + (0 + (0 +
t7︷︸︸︷
1 +

t8︷︸︸︷
1) +

t4︷︸︸︷
1) + (1 +

t5︷︸︸︷
1 +

t6︷︸︸︷
1)

0 + (0 + (0 + 1 + 1) + 1) +
t2︷︸︸︷
3

0 + (0 +
t3︷︸︸︷
2 +1) + 3

0 +
t1︷︸︸︷
3 +3

t0︷︸︸︷
6

This whole process shows that there is a correspondence between the shape of the
expression and shape of the input data structure, and a correspondence between the
bottom-up evaluation of the expression and the partial results of the function on each
piece of the model. This suggests the possibility of exploiting these correspondences in
order to achieve efficient recomputation.

Let us consider the case where we insert a new node into the tree. The expression
expansion is the same as before up to the step where we expand node t5. At this point,
we expand the expression taking into account the new node, but notice that most of
the expression remains unchanged. Having performed the process with the initial data
structure, we observe that we could prune much of the expression with the partial results
computed beforehand.

10

0 + f(t1) + f(t2)
0 + (0 + f(t3) + f(t4)) + (1 + f(t5) + f(t6))
0 + (0 + (0 + f(t7) + f(t8)) + 1) + (1 + (1 + 0 + f(t9)) + 1)
0 + (0 + (0 + 1 + 1) + 1) + (1 + (1 + 0 + 1) + 1)
→ 7

A model is taken to be a tree-shaped data structure that represents an artifact. This
can be, for instance, an abstract syntax tree or an XML description of the artifact. In
the running example, the model is the binary tree. We focus on analysis functions on a
model. We require the analysis function to have a specific compositional structure.

11

Chapter 4

Method

To address the research problem described in Chapter 3, in this chapter we present a
method that transforms a plain analysis into one that is able to reuse previous results in
order to compute results for evolved models after an initial computation. The remainder
of this chapter is organized as follows: Section 4.1 defines the method; Section 4.2 presents
its design; Section 4.3 illustrates the method with an example, and Section 4.4 highlights
key aspects of its implementation.

4.1 Method Definition

When we analyze a model for the first time, we store the values of the partial computations
in a cache. Afterwards, the model is evolved in some way, as described by an evolution
primitive. When running the analysis for the second time, instead of recomputing the
results from scratch, we generate an expression that computes the result of the analysis on
the evolved model. We use the existing cache to prune out portions of the expression that
have already been computed. Afterwards, we obtain the result by evaluating the remaining
expression, and enrich the cache with the results of the subexpressions generated in the
process. These workflows are depicted in Figure 4.1.

Our method depends on some assumptions about the model and the analysis function.
First, the method requires the model to be described in terms of nodes, and those nodes
need to be well-founded, i.e., there is a well-founded relation on the set of nodes. We can
think of this as stating that the model has a hierarchical description. Second, we assume
that the analysis function is compositional, in the sense that the result of the analysis on
a node is composed on a combination of a value derived from the current node along with
the recursive results of the function on the child nodes.

We hold that these assumptions are reasonable for a large class of analyses and input
data structures. These assumptions comprise stateless tree-traversal functions, such as

12

ResultAnalyzerInput data

ResultEvolution-Aware AnalysisEvolved input data

Cache

Figure 4.1: Plain analysis and evolution aware analysis

elementary syntactic analyses on programs. Incremental changes to the input data can
be expressed in terms of evolution primitives [8].

Models often exhibit a recursive, tree-like structure. As a result, analyses have a com-
positional structure, based on a base computation combined with the results of recursive
calls to subpieces of the model. Exploiting the compositional structure of tree-shaped data
structures alongside with the recursive expansion of analyses thus allows us to partition
the execution into parts that may be reused later. Therefore, upon changing the model,
we may be able to replay the analysis in an alternative mode, running expensive com-
putational steps only for the parts that have been changed, while reusing partial results
from unchanged portions of the input.

Our technique reuses previous work by recomputing the analysis only for the pieces of
the model affected by a change. We assume the existence of a cache that stores results of
partial computations on the model. We then apply an evolution to the model, marking
the affected parts of the model in the process. Afterwards, we expand the expression of
the analysis as much as needed, reusing results of the unaffected parts.

We describe our framework in terms of recursive functions on tree data structures.
Given an initial model m, an evolved model m′, and a function f , we are able to compute
f(m′) in a way that reuses previous results, given that f(m) has been computed in the
past.

Our technique operates on programs. As such, it is useful to make a distinction

13

between the metalanguage and object language. The object language is the language in
which the analysis under consideration is written. The metalanguage is the language in
which we perform the operations of our method, including transformations to code in
the object language. We assume that the metalanguage has the capability to inspect,
manipulate, and execute code in the object language. We can also think of our method
as implementing an analysis domain-specific embedded language (DSEL) for which the
host language provides base operations [9].

We now describe the steps of the method. Given that the code of the analysis is
written in some object language, we make use of a metalanguage to generate code that
computes the transformed function.

Our method comprises the following steps:

1. Apply evolution to the input. Given an evolution primitive, apply it to the input
data, marking the affected nodes along the process.

2. Function expansion. We perform a fixed-point operator unfolding of the function on
the evolved model. We use the preexisting cache to prune the expansion and achieve
reuse. We also keep track of the partial expressions that arise from traversing the
affected nodes of the input data structure.

3. Expression evaluation. We evaluate the expression obtained in the previous step in
a bottom-up fashion to obtain the result of the function application. At each step
of the evaluation, using the information obtained in step 2, we associate the partial
value obtained with the corresponding affected node in the input data structure.
This information is stored in an auxiliary context.

4. Cache update. Using the auxiliary context created in step 3, we add the results
computed for the affected nodes back to the initial cache. This allows us to achieve
efficient recomputation after successive evolutions.

4.2 Design

We call the metalanguage component of our method the metainterpreter. This
component can be thought of as a mechanism to modify the original evaluation
semantics of the object language taking under consideration evolutions on the input.
The metainterpreter communicates with the facilities of the object language in order
to accomplish the goal of computing the analysis function with evolution-awareness.

14

The typical analysis procedure is illustrated in Figure 4.2. An analysis is written in
the object language as a piece of data that, alongside the input data, is fed to the
interpreter of the object language, producing the analysis result.

In contrast, the evolution-aware analysis process described in this work feeds the
object language analysis and input data as input to a metainterpreter written in the
metalanguage. The metainterpreter has access to a cache, performs expression ex-
pansion, and calls upon the object language interpreter to evaluate object language
expressions. As the output, we have the result and, as a side effect, an updated
cache.

Analysis
(OL code)

Input Data
ResultInterpreter (OL)

Figure 4.2: Base analysis procedure. OL refers to object language.

Analysis
(OL code)

Input Data

Metainterpreter (ML)

Interpreter (OL)

Cache

Result

Figure 4.3: Evolution-aware analysis procedure. ML refers to metalanguage.

The core of the expression expansion component of the metainterpreter can be
described in terms of two mutually recursive functions that traverse the abstract
syntax tree of the object language: unfold and reduce. The former does the

15

expansion of the expression taking into consideration the preexisting cache of partial
results, referred to as context, while the latter is responsible for expanding function
applications that are not computed at the time of program transformation. The
pseudocode for these two functions is shown in Algorithms 1 and 2.

Algorithm 1 unfold
Input: expression expr

Output: result expression resultExpr

Result: bctx contains mappings from generated expressions to corresponding input
nodes

case App f arg ← expr do
if f is transformed function then

if arg is in context then
return ctx[arg]

else
expr’ := rewrite f arg
resultExpr := unfold ctx bctx expr’
bctx[resultExpr] <- arg
return resultExpr

end
else

return reduce ctx expr
end

end
return expr

Algorithm 2 reduce
Input: expression expr

Output: result expression
case App f arg ← expr do

arg’ := unfold arg
return App f arg’

end
return expr

16

Algorithm 3 eval↑

Input: result expression expr

Output: evaluated result
Result: fctx contains mappings from input nodes to corresponding analysis results
if expr not in bctx then

return eval expr . expr does not correspond to any node in the input data
else

inputNode := bctx[expr] . expr corresponds to some node in the input
if inputNode in fctx then
return fctx[inputNode] . already computed expr; result is in fctx

else
if isCompound expr then

expr := map eval↑ expr

return eval expr′

else
return eval expr

end
end

end

Algorithm 1 starts by examining if the current expression is the application to the
function under transformation. If that is the case, we then check if the argument is
in the context. If it is, we simply return the cached result, otherwise we expand the
expression and apply unfold once again.

The rewrite function shown in Algorithm 2 expands the function expression up to
the recursive calls. If the expression denotes the application of some other function,
we return a call to the function with each argument unfolded. For any other language
construct, we simply return the expression unchanged.

The other component of the metainterpreter is called the lifted evaluator, denoted
eval↑, whose pseudocode is shown in Algorithm 3. This component is responsible
for implementing the transformed bottom-up evaluation semantics that we need
in order to obtain the updated partial results to be filled in the cache later. The
main task of the lifted evaluator is keeping track of the results of the expressions
as they are evaluated so we can fill the cache after the process is done. The lifted
evaluator is written in the metalanguage, and communicates with the cache and
with the interpreter of the object language. An overview of the components of the
metainterpreter is shown in Figure 4.4.

17

Metainterpreter (ML)

Reduce

lifted
evaluator

Cache

Analysis

Input data

Interpreter (OL)

Unfold

bctx Resultfctx

Figure 4.4: Overview of the Metainterpreter

18

7t0

5t1

1t3

0t7 2t8

4t4

10t2

8t5 12t6

Figure 4.5: Input tree

6c0

3c1

2c3

1c7 1c8

1c4

3c2

1c5 1c6

Figure 4.6: Cache of the countEven function

7t0

5t1

1t3

0t7 2t8

4t4

10t2

8t5

6t9

12t6

Figure 4.7: Input data after change

×c0

3c1

2c3

1c7 1c8

1c4

×c2

×c5 1c6

Figure 4.8: Cache with evicted entries

4.3 Running Example Revisited

To illustrate the method define in Section 4.2, we will revisit the countEven function from
the running example (c.f. Section 3.1). We are given an input tree and a cache containing
the results of partial computations on that tree, as depicted in Figures 4.5 and 4.6. We
use the correspondence assumption to denote the cache as having a structure isomorphic
to that of the tree. This makes evident the correspondence between the expansion of the
function and the input structure.

Now suppose we insert a node containing the value 6 below the 8 node, as shown in
Figure 4.7. We carry out step 1, updating the cache by erasing the values that correspond
to locations affected by the change. This can be seen as marking each node from the
path of the parent to the first affected node. Meanwhile, the remaining nodes are left
unchanged. This process is depicted in Figure 4.8.

Note that in this step, we use the correspondence assumption to map the nodes that
have been affected by the change. This allows us to rewind the computation exactly up
to the point where we need and no more.

Now we are able to perform the expansion of the function expression as prescribed
by step 2. Taking into account the values of the nodes in the input model, we can then
expand the recursive expression step-by-step.

We start with the function call of function f on the evolved model m′.

19

f(m′)

Next, we perform one round of expansion, denoting the left and right children of the
root node of the tree by t1 and t2, respectively.

0 + f(t1) + f(t2)

Note that, since the result of the left subtree is not affected by the change, we can
reuse the previously computed result (as shown in Figure 4.8). We can thus expand the
expression once more with the previously computed result.

0 + 3 + f(t2)

We perform this successively, reusing results from unaffected subtrees along the way.

0 + 3 + f(t2)
0 + 3 + (1 + f(t5) + f(t6))
0 + 3 + (1 + f(t5) + 1)
0 + 3 + (1 + (1 + f(t9)) + 1)
0 + 3 + (1 + (1 + 1) + 1)

Finally, given that node t9 is the newly added leaf node, we reach a base case. The
result of the computation is now the evaluation of the obtained expression, as per step 3.

0 + 3 + (1 + (1 + 1) + 1)
= 7

We also need to associate the evaluation of the subexpressions to the nodes affected
by the change, as per step 3. We can visualize this process by decomposing the result
expression. Note that each expression points to the subexpression of some other affected
node, denoted as e(ti). We can thus evaluate all these expressions in a way that takes
into consideration their dependencies.

20

7c0

3c1

2c3

1c7 1c8

1c4

4c2

2c5

1c9

1c6

Figure 4.9: Cache after update

t0 → 0 + 3 + e(t2) → 7
t2 → 1 + e(t5) + 1 → 4
t5 → 1 + e(t9) → 2
t9 → 1 → 1

To finalize, we carry out step 4 and update the cache. The updated cache is shown in
Figure 4.9.

We have only visited the nodes affected by the change. In an expensive computation,
this could mean that we save significant time by not having to recompute the function
for a large amount of nodes.

4.4 Implementation

We implemented the technique described in this work using Racket.1 In this implemen-
tation, both the object and metalanguages are both Racket. The language provides ex-
tensive metaprogramming capabilities, therefore being a natural fit for this method. The
dynamic character of the language easily allows us to manipulate and evaluate syntax
objects on runtime, while also providing useful libraries of standard data structures. One
decisive aspect is the homoiconicity between code and data. Since the syntax is essentially
the bare abstract syntax tree, we are easily able transform analysis functions in order to
leverage our method.2

1https://racket-lang.org/
2The implementation is available as a repository on GitHub https://github.com/brenoafb/

evolution-aware-analysis

21

One important aspect is that Racket allows us to modify data structures in place.
This allows us to apply evolution primitives in place. We can also use the pointer address
of composite objects as their identity. This allows fast lookup of large trees in hash maps,
which is crucial for the speed of our technique.

In order to implement mappings, such as for the ctx, bctx, and fctx elements of the
design, we utilize the built-in hasheq data structure.3 To achieve efficient indexing, the
implementation relies on pointers to identify data structures in memory. As such, the
implementation relies heavility on mutation. Another benefit of that is that we are able
to work with data structures in place, thus allowing us to easily apply evolution primitives
and mark affected structures in one operation.

One way to achieve the expansion of the function expression up to the recursion is
by using quasiquoting. This language feature allows us to specify a piece of data that
corresponds to some code, while interpolating expressions that are evaluated when the
object is constructed.

Take the countEven function from the running example. In Racket, we can imple-
ment it in the manner described in Listing 4.1, in the tree-count-even function. The
implementation requires us to specify a meta-transformed version of the function, which
instead of returning a value, returns the syntax for the expression of the function. This
is accomplished in the code for the tree-count-even-m function. Note that this func-
tion uses quasiquotes to generate an expression that corresponds to the expression of the
function up to the recursion point, shown in lines 18-19 and 21-22).

3https://docs.racket-lang.org/reference/hashtables.html

22

1 (struct tree
2 ([value #: mutable]
3 [left #: mutable]
4 [right #: mutable]))
5

6 (define (tree-count-even tree)
7 (cond ((null? tree) 0)
8 ((even? (tree-value-log tree))
9 (+ 1 (tree-count-even (tree-left tree))

10 (tree-count-even (tree-right tree))))
11 (else
12 (+ 0 (tree-count-even (tree-left tree))
13 (tree-count-even (tree-right tree))))))
14

15 (define (tree-count-even-m tree)
16 (cond ((null? tree) 0)
17 ((even? (tree-value-log tree))
18 ‘(+ 1 (tree-count-even ,(tree-left tree))
19 (tree-count-even ,(tree-right tree))))
20 (else
21 ‘(+ 0 (tree-count-even ,(tree-left tree))
22 (tree-count-even ,(tree-right tree))))))
23

Listing 4.1: Running example implementation in Racket

We implement the key reduce and unfold functions in a very similar manner to the
one described in Section 4.2. The Racket code is in Listing 4.2. The unfold function
explicitly keeps track of partial expressions generated along the process. These expressions
are stored in the back context bctx, which associates a node in the input data structure
to an expression whose result corresponds to the respective partial result. In this manner,
we can separate out the expansion of the main expression with the accumulation of partial
expressions. This association is done in a hash map where the key is the expression and
the value is the corresponding node.

The unfold! function (Listing 4.2) implements the core of the metainterpreter. We
start by checking whether the expression passed is a function application (line 7). If it
is, we need to verify whether it is the application of the function under consideration.
If this is the case, we extract the argument of the function application (line 9). If the
argument is in the context, we have already computed its result, and we simply return
that result (lines 10-11). Otherwise, we recursively call unfold! and store this in the
result variable. This is done so we can later on store the expression obtained in the
back context bctx (lines 12-14). Note that in the recursive call to unfold!, we apply

23

the meta-transformed function to the argument of the function call. This carries out the
process of expanding the function expression up to the recursive calls, which in the formal
description is done by the rewrite function.

If the expression passed to unfold! is the application of some other function, we
call reduce! on the expression in order to carry out the expansion (line 18). reduce!
recursively calls unfold! in order to execute the full expansion of the function application
expression.

We need to implement an evaluation mechanism different to that of the object-language
in order to be able to compute the result expression in a bottom-up manner while accu-
mulating the partial results. We do this in the eval-lift function, shown in Listing 4.3,
which takes the expression-to-node mapping bctx, a node-to-result mapping fctx to be
filled in the process, and the topmost expression. The back context contains mappings
from expressions generated during the unfolding process to the corresponding input node.
As a result, if the received expression is not in bctx, it is an expression that does not
correspond to any node, therefore we only return its evaluation without caching its result
(lines 2-3). Otherwise, we obtain the input node that corresponds to the expression re-
ceived (line 4) and check whether we have already computed this expression by verifying
whether it is in the forward context fctx (lines 4-5). If this is the case, we simply return
the precomputed result (line 7). Otherwise, we need to evaluate this expression. If it is
a compound expression, we evaluate each of these components with eval-lift and then
evaluate the resulting expression, storing its result in the fctx in the process (lines 9-15).
If it is an atomic expression, we evaluate it’s result, store it in the fctx, and return it.

In order to allow for successive evolutions, we need to update the cache with the results
of the partial expressions generated. We do this in the update-ctx function, shown in
Listing 4.4, which receives the context ctx and the result context fctx. The function
simply merges the two contexts together. When generating the expression for a further
evolved input, we can use this updated context in order to reuse partial results produced
in the current iteration.

The typical evolution-aware computation flow is described in Listing 4.5. The evolution-
aware version of the tree-count-even is shown in the evolution-aware-tree-count-even
function (lines 1-18). This function starts by initializing the back and forward contexts
(lines 3-4) which will be used in the expression expansion, carried out by unfold! (lines
6-12), and bottom-up evaluation with reuse steps, carried out by eval-lift (lines 13-16).
Note that in the expression expansion process, we pass as input to unfold! an expression
that corresponds to the plain function call of tree-count-even on the argument. (line
12).

After the evolution-aware version of the analysis is defined, initial analysis is carried

24

out as usual on an empty context the first time the analysis is executed (lines 20-28).
Then, we apply the evolution primitive to the input data structure (line 31). To do this
in a manner that marks the affected nodes, we implement modification primitives on the
input data structure that mark the nodes affected by the change. We accomplish this by
implementing an access function that receives a callback function which is executed on
each node accessed by the recursive modifier. Since evolution often involves a top-down
recursive traversal of the structure, this does not add significant computational cost. For
this example, the callback is shown in lines 23-24. Finally, we execute the same function
call to the evolution-aware analysis (line 34). The difference is that this time, the cache
will be populated, so we are able to perform the computation with reuse of the results
computed in the previous run. This concludes the procedure.

1 (define (reduce ! ctx bctx f meta-f expr) (cons (car expr) (map (lambda
2 (x) (unfold ! ctx bctx f meta-f x)) (cdr expr))))
3

4 (define (unfold ! ctx bctx f meta-f expr)
5 (if (func-app ? expr)
6 (if (eq? (car expr) f)
7 (let ((arg (cadr expr)))
8 (if (in-ctx ? ctx arg)
9 (ctx-get ctx arg)

10 (let ((result
11 (unfold ! ctx bctx f meta-f
12 (apply meta-f (list arg)))))
13 (begin
14 (hash-set ! bctx result arg)
15 result)))))
16 (reduce ! ctx bctx f meta-f expr))
17 expr)
18

Listing 4.2: reduce and unfold in Racket implementation

25

1 (define (eval-lift bctx fctx expr)
2 (if (not (hash-has-key ? bctx expr))
3 (eval expr ns)
4 (let ((src (hash-ref bctx expr)))
5 (cond ((hash-has-key ? fctx src)
6 ; we already computed this expr
7 (hash-ref fctx src))
8 ; haven ’t computed expr yet
9 ((list? expr)

10 (let*
11 ((new-expr (map (lambda (x) (eval-lift bctx fctx x))

expr))
12 (result (eval new-expr ns)))
13 (begin
14 (hash-set ! fctx src result)
15 result)))
16 (else
17 (let ((result (eval expr ns)))
18 (begin
19 (hash-set ! fctx src result)
20 result)))))))
21

Listing 4.3: Custom evaluation mechanism implementation

1 (define (update-ctx ctx fctx)
2 (hash-union ctx fctx))
3

Listing 4.4: Function used to load newly evaluated results into cache

26

1 (define (evolution-aware-tree-count-even tree ctx)
2 ; Initialize back and forward contexts
3 (define bctx (make-hasheq))
4 (define fctx (make-hasheq))
5 ; Apply evolution-aware analysis
6 (define
7 expr
8 (unfold ! ctx
9 bctx

10 ’tree-count-even
11 tree-count-even-m
12 ‘(tree-count-even ,tree)))
13 ; Evaluate expression bottom-up and obtain the final result
14 (define result (eval-lift bctx fctx expr))
15 ; Update context
16 (update-ctx ctx fctx)
17 ; Return result
18 result)
19

20 (define my-tree (make-new-tree))
21 (define ctx (make-hasheq))
22

23 (define (mark-node-callback tree)
24 (hash-remove ! ctx tree))
25

26 ; Execute initial computation .
27 ; Since the context is empty , we will compute from scratch .
28 (evolution-aware-tree-count-even my-tree ctx)
29

30 ; Apply evolution
31 (tree-insert ! my-tree some-value mark-node-callback)
32

33 ; This time , the computation will run with reuse.
34 (evolution-aware-tree-count-even my-tree ctx)
35

Listing 4.5: Example of typical evolution-aware analysis usage

27

Chapter 5

Preliminary Evaluation

In order to provide a preliminary evaluation of this work, we use the implementation
described in Section 4.4 to evaluate the method in a set of scenarios. In these scenarios,
we start with a base input and, at each round, apply an evolution that extends the input
in some way. We then evaluate an analysis function on the input.1

We implement two analysis functions:

tree-count-even Count the number of nodes containing even numbers in a binary tree.
At each round, insert a random number in the tree in a balanced fashion. Run the
analysis after each evolution.

expr-depth Compute the total depth of an s-expression in a Lisp program. At each
round, mutate the program randomly. Such mutation may be wrapping an existing
sub-expression in a structure, or inserting a new expression in the program. Run
the analysis after each evolution.

In the tree-count-even scenario, we initialize a tree with a given size and apply
a random node insertion repeatedly. We assume that this scenario, in contrast to node
removal or value update, is representative of the more costly situation in which an analysis
needs to be executed multiple times, namely that where the input data structure grows
at each round. In the expr-depth scenario, we start with a base program, which can be
seen as a list of s-expressions, and extend the program by either adding new s-expressions
at some level or enclosing existing s-expressions in function applications. An overview of
the scenarios is shown in Table 5.

We hold two goals for this experiment:

• Assess empirical correctness. The results given by our method should always match
those given by the baseline analysis.

1The code of the experiments, along with the implementation of the method, is available as a repository
on GitHub https://github.com/brenoafb/evolution-aware-analysis

28

• Assess time benefit. The execution time for the analysis powered by our method
should be lower than the baseline analysis.

In order to accomplish the first goal, for each scenario, we execute the baseline analysis
function and the evolution-aware version enabled by our method and compare the results.
The criterion is that the results match exactly at each step.

The second goal is accomplished by measuring the execution time and input accesses
for each iteration in both scenarios. The first metric determines whether our method
obtains measurable speed-up in comparison to the baseline. The second metric is used to
determine the degree in which we accomplish reuse. A lower number of accesses of the
input data shows us that we accomplish a higher degree of reuse.

The experiments were run on a NixOS 21.11 system with an Intel i7-8650U with 16GB
of RAM, on Racket version 8.4.

Scenario Input Data Analysis Evolution scenario
tree-count-even Integer binary tree Count even numbers in the tree Insert nodes in balanced fashion
expr-depth Lisp programs Maximum s-expression depth Randomly mutate program

5.1 tree-count-even

For this scenario, we start with a balanced binary tree of 1000 nodes and add 1000 new
nodes randomly in a balanced manner, one at a time. We run the analysis after adding
each node.

The correctness assessment consists of whether our method obtains the same results
as the baseline analysis at each step. We simply evolve the input at each step, execute
the baseline analysis, execute the evolution-aware analysis, and compare the results. For
each step, the evolution-aware analysis yields the same results as the baseline analysis.

In order to carry out the performance assessment, we keep track of the number of
nodes accessed in the input data structure at each round, as well as the execution time
of each iteration. We expect a lower number of accesses to correspond to a lower number
of computations executing without reuse.

In Figure 5.1 we see that the baseline has to access every node of the tree at each
round of analysis, as expected. Our method, however, is able to execute the analysis by
accessing only a small fraction of the tree’s nodes. This indicates that we have been able
to achieve a great amount of reuse throughout the function evaluation.

For the running time, we measure the time it takes to run one iteration, starting at node
insertion and ending after the final result and partial results are evaluated. We measure

29

the execution time with Racket’s built-in (current-inexact-monotonic-milliseconds)
at the two points and compute the difference. Each measurement is collected 10 times.
In Figure 5.2, we see the average of the 10 points plotted. The graph shows that time
taken for the baseline analysis grows at each iteration, which reflects the growing size of
the input data structure. Our method, however, displays a much smaller rate of growth in
execution time, along with lower execution time overall. We note that the initial execution
with our method requires a much higher execution time, since the cache is initially empty.

Figure 5.1: tree-count-even nodes inserted vs. nodes accessed, method vs. baseline

5.2 expr-depth

In this scenario, we start with a base 100KLOC Racket program and mutate the program
1000 times in a random manner. We perform analysis after each mutation. The analysis

30

Figure 5.2: tree-count-even Running time in milliseconds per iteration, method vs. base-
line

31

consists of summing the total depth of s-expressions in a program. For instance, an atom
is taken to have zero depth. The depth of a list is one plus the depth of its elements.
This is a simple compositional analysis that fits our framework. A mutation either inserts
a new expression in a list or wraps some random expression in a program in a function
application, such that the new expression has one additional nesting level than the original.
Note that, in order to perform a mutation, we walk the AST from the root and at each
node either continue with 80% chance, wrap the current node in an s-expression with 10%
chance, or insert a new randomly-generated expression after the current one with 10%
chance.

As with the tree-count-even scenario, we evaluate empirical correctness by running
our method alongside the base analysis and comparing the results. We start with the
base Racket program and evolve it 1000 times, comparing the results at each iteration.
The implementation successfully passed this test.

The metrics in this scenario are tracked differently than in the tree-count-even one.
Instead of tracking the number of individual nodes accessed in the input, we instead keep
track of the number of times we access nodes of an expression in the input data at each
round. This is done since a node in an s-expression may be accessed multiple times,
or may have different components accessed if it is a compound expression. Similarly to
the tree-count-even scenario examined earlier, however, we expect a lower number of
accesses to correspond to a lower number of computations executing without reuse.

In Figure 5.3 we see that, in the base analysis, the amount of accesses to expression
nodes remains approximately constant throughout the execution. Our method, however,
starts out with the same amount of accesses as the baseline, however this sharply decreases
on successive executions. This provides evidence that our method is able to accomplish
the same analysis by accessing only a fraction of the nodes as the baseline analysis.

Figure 5.4 shows the running time of each iteration. The running time for the ini-
tial iteration with our analysis was too great to be shown alongside the other elements.
We observed that the initial iteration in this scenario took 31.962 seconds on average,
meaning that there is significant cost in running our method with an unpopulated cache.
Despite that, once the cache was populated, the running time on subsequent iterations
was significantly faster on our method than on the baseline analysis.

32

Figure 5.3: expr-depth evolution round vs. number of node accesses, method vs. baseline

33

Figure 5.4: expr-depth Running time in milliseconds per iteration, method vs. baseline

34

Chapter 6

Conclusion

6.1 Summary

We have described a metaprogramming method to provide computation of analysis on
tree-shaped data structures with reuse. The method consists of a metainterpreter written
in a metalanguage operating on top of a base interpreter of an object language in which
an analysis is written. Our method requires no substantial modification to the code of
the original analysis, and is able to achieve great amounts of reuse between successive
executions.

6.2 Limitations

The exploratory nature of this work predisposes it to some shortcomings. The initial
execution of the evolution-aware analysis, in which the cache is empty, is exceedingly
slow. This process could be alleviated by running the initial analysis with a memoized
version of the procedure. There exist automatic memoization techniques that can make
this process viable [10]. However, the reliance on automatic memoization may make the
technique redundant. Therefore, we need to further evaluate the potential benefits of the
symbolic approach taken in this work to exploit these to a higher extent.

Another shortcoming is due to the limitation imposed on the manner on which the
data structure is traversed. The limitation to stateless tree-walk analyses is a key concern
to address for large-scale real-world analyses.

6.3 Related Work

There has been significant work in dealing with evolution-aware analysis across many dis-
ciplines, with varying degrees of automaticity and generality. In the vein of transforming

35

existing analyses to deal with evolution, Arzt et al. [11] describes a technique for per-
forming data-flow analysis in inputs that change incrementally, named REVISER. This
technique operates on analysis described with the IFDS/IDE frameworks, in which a user
describes a data-flow analysis as a set of templates. In similar spirit to our method, RE-
VISER operates on an analysis that has been executed before, updating the results where
necessary due to a change. When applying evolutions, instead of using evolution primi-
tives, REVISER relies on a structural diff in order to pinpoint the nodes affected by the
change. Sundaresh and Hudak [4] describe a general approach based on partial evaluation
to deal with incremental functions. As with our approach, theirs take into consideration
changes in the input in order to recompute only parts that have been affected. While
our approach is restricted to recursive functions on tree-shaped input data structures,
theirs is able to deal with a wider variety of analyses. In the context of functional pro-
gramming, Leather et al. [12] describe a method for incrementalizing folds on algebraic
data types. A fold, or catamorphism, is a function that traverses a data structure while
accumulating values. We can see the type of functions treated in this work as folds. In
contrast to this work, however, theirs examines the passing of information from parent to
children nodes (downwards incrementalization), from children to parent nodes (upwards
incrementalization), and both ways simultaenously (circular incrementalization).

There are also techniques for automatically transforming existing analyses in a man-
ner that deals with some orthogonal aspect, such as evolution or variability. Shahin
and Chechik [13] describe a technique for automatically transforming plain analyses into
variability-aware ones. A variability-aware analysis takes into consideration multiple con-
figurations of a program prescribed by a set of configuration variables or flags, for instance
C preprocessor directives. As when dealing with evolution, adapting analyses to deal with
variability is time-consuming and error-prone. While our method is able to transform a
plain analysis to deal with evolution, theirs is able to transform an existing analysis to
deal with variability.

Other approaches for dealing with software evolution include Rothenberg et al. [14],
which describes a automata-based approach to perform incremental verification, and
Trostanetski et al. [15], which describes an approach to detect semantic differences in
imperative programs. This approach works on programs that arise from a patching pro-
cess, such as when a program undergoes evolution.

Concerns in the usability of development environments have also driven the develop-
ment of evolution-aware techniques for providing better support for techniques such as
syntax highlighting. The Tree Sitter parser generator tool1is able to deal with incremental
changes in a program’s source code to provide incremental updating of the abstract syntax

1https://tree-sitter.github.io/tree-sitter/

36

tree. This way, text editors are able to verify the syntax of a program as the user types
without slowing down, for instance. Tree sitter is based on the research of Wagner [16],
which describes a set of algorithms and data structures used in the construction of an
incremental software development environment.

6.4 Future Work

The metaprogramming technique described in this work requires little annotations in
the analysis that is transformed. There may be further work required in determining
to which extent these annotations can be performed automatically, and in which degree
we may change the amount of computations of the original function performed by the
metainterpreter. This may include work alongside the limitations in expressivity of the
analyses handled by our method, as well as studies on the termination properties of such
computations.

The field of Software Product Line Engineering (SPLE) studies software in which
variability occurs [17][18][19]. Whereas software evolution can be seen as variability in
time, the field of SPLE has focused mostly with variability in space. As such, there is
a concern with dealing with variability in both dimensions [20][21]. We plan to extend
the framework developed in this work could be used to deal with variability in space
as well as time. One possible strategy is to integrate it into a recent automatic lift for
variability [13].

Finally, Racket was chosen as the implementation language in part due to its sim-
ple syntax and interactive environment, allowing us to prototype quickly. We believe,
however, that there is significant potential in exploring a purely functional solution in a
language such as Haskell [22]. Haskell is widely used for developing DSELs [9]. Besides
that, there are elegant functional abstractions for exploring the main elements of this work,
such as pattern matching for analysis and transformation of data structures, generic pro-
gramming with the Scrap Your Boilerplate design pattern for applying transformations
and traversing data structures [23], and zippers to provide the concept of location within
a data structure [24][25].

37

References

[1] Harman, Mark and Peter O’Hearn: From start-ups to scale-ups: Opportunities and
open problems for static and dynamic program analysis. In 2018 IEEE 18th Inter-
national Working Conference on Source Code Analysis and Manipulation (SCAM),
pages 1–23, 2018. 1, 2

[2] Ranta, A.: Implementing Programming Languages. College Publications, 2012. 1

[3] Møller, Anders and Michael I. Schwartzbach: Static program analysis,
October 2018. Department of Computer Science, Aarhus University,
http://cs.au.dk/˜amoeller/spa/. 1

[4] Sundaresh, R. S. and Paul Hudak: A theory of incremental computation and its
application. In Proceedings of the 18th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’91, page 1–13, New York, NY, USA,
1991. Association for Computing Machinery, ISBN 0897914198. https://doi.org/
10.1145/99583.99587. 2, 36

[5] McCarthy, John: History of LISP. In History of programming languages, pages
173–185. Association for Computing Machinery, New York, NY, USA, June 1978,
ISBN 978-0-12-745040-7. https://doi.org/10.1145/800025.1198360, visited on
2022-05-01. 5

[6] Mitchell, John C.: Concepts in Programming Languages. Cambridge University Press,
2002. 5

[7] Abelson, Harold and Gerald Jay Sussman: Structure and Interpretation of Computer
Programs. MIT Press, Cambridge, MA, USA, July 1984, ISBN 978-0-262-01077-1. 5

[8] Marques, Maíra, Jocelyn Simmonds, Pedro O. Rossel, and María Cecilia Bastar-
rica: Software product line evolution: A systematic literature review. Informa-
tion and Software Technology, 105:190–208, 2019, ISSN 0950-5849. https://www.
sciencedirect.com/science/article/pii/S0950584918301848. 8, 13

[9] Hudak, Paul:Modular domain specific languages and tools. In Proceedings of the Fifth
International Conference on Software Reuse, ICSR 1998, Victoria, BC, Canada,
June 2-5, 1998, pages 134–142, 1998. https://doi.org/10.1109/ICSR.1998.
685738. 14, 37

[10] Wimmer, Simon, Shuwei Hu, and Tobias Nipkow: Verified memoization and dynamic
programming. In Avigad, J. and A. Mahboubi (editors): Interactive Theorem Proving
(ITP 2018), volume 10895, pages 579–596, 2018. 35

38

[11] Arzt, Steven and Eric Bodden: Reviser: efficiently updating IDE-/IFDS-based data-
flow analyses in response to incremental program changes. In Proceedings of the
36th International Conference on Software Engineering, ICSE 2014, pages 288–
298, New York, NY, USA, May 2014. Association for Computing Machinery,
ISBN 978-1-4503-2756-5. https://doi.org/10.1145/2568225.2568243, visited on
2022-05-01. 36

[12] Leather, Sean, Andres Löh, and Johan Jeuring: Pull-ups, push-downs, and passing it
around - exercises in functional incrementalization. In Morazán, Marco T. and Sven-
Bodo Scholz (editors): Implementation and Application of Functional Languages -
21st International Symposium, IFL 2009, South Orange, NJ, USA, September 23-25,
2009, Revised Selected Papers, volume 6041 of Lecture Notes in Computer Science,
pages 159–178. Springer, 2009. https://doi.org/10.1007/978-3-642-16478-1_
10. 36

[13] Shahin, Ramy and Marsha Chechik: Automatic and Efficient Variability-Aware Lift-
ing of Functional Programs. arXiv:2010.00697 [cs], October 2020. http://arxiv.
org/abs/2010.00697, visited on 2022-05-01, arXiv: 2010.00697. 36, 37

[14] Rothenberg, Bat Chen, Daniel Dietsch, and Matthias Heizmann: Incremental verifi-
cation using trace abstraction. In Podelski, Andreas (editor): Static Analysis, pages
364–382, Cham, 2018. Springer International Publishing, ISBN 978-3-319-99725-4.
36

[15] Trostanetski, Anna, Orna Grumberg, and Daniel Kroening: Modular demand-driven
analysis of semantic difference for program versions. In Ranzato, Francesco (edi-
tor): Static Analysis, pages 405–427, Cham, 2017. Springer International Publishing,
ISBN 978-3-319-66706-5. 36

[16] Wagner, Tim A.: Practical Algorithms for Incremental Software Development Envi-
ronments. PhD thesis, EECS Department, University of California, Berkeley, Mar
1998. http://www2.eecs.berkeley.edu/Pubs/TechRpts/1998/5885.html. 37

[17] Clements, Paul and Linda Northrop: Software Product Lines: Practices and Patterns.
Addison-Wesley Professional, 2001. 37

[18] Apel, Sven, Don Batory, Christian Kästner, and Gunter Saake: Feature-Oriented
Software Product Lines: Concepts and Implementation. Springer, 2013. 2, 37

[19] Linden, Frank J. van der, Klaus Schmid, and Eelco Rommes: Software Product Lines
in Action: The Best Industrial Practice in Product Line Engineering. Springer-
Verlag, 2007. 37

[20] Thüm, Thomas, Leopoldo Teixeira, Klaus Schmid, Eric Walkingshaw, Mukelabai
Mukelabai, Mahsa Varshosaz, Goetz Botterweck, Ina Schaefer, and Timo Kehrer:
Towards efficient analysis of variation in time and space. In Proceedings of the
23rd International Systems and Software Product Line Conference, Volume A, SPLC,
2019. 37

39

[21] Krueger, Charles W.: Variation management for software production lines. In Soft-
ware Product Lines, Second International Conference, SPLC 2, San Diego, CA, USA,
August 19-22, 2002, Proceedings, pages 37–48, 2002. https://doi.org/10.1007/
3-540-45652-X_3. 37

[22] Marlow, Simon et al.: Haskell 2010 language report. Available online http://www.
haskell. org/(May 2011), 2010. 37

[23] Lämmel, Ralf and Simon Peyton Jones: Scrap your boilerplate: A practical de-
sign pattern for generic programming. SIGPLAN Not., 38(3):26–37, jan 2003,
ISSN 0362-1340. https://doi.org/10.1145/640136.604179. 37

[24] Huet, Gérard P.: The zipper. J. Funct. Program., 7(5):549–554, 1997. http://
journals.cambridge.org/action/displayAbstract?aid=44121. 37

[25] Adams, Michael D.: Scrap your zippers: A generic zipper for heterogeneous types.
In WGP ’10: Proceedings of the 2010 ACM SIGPLAN workshop on Generic pro-
gramming, pages 13–24, New York, NY, USA, 2010. ACM, ISBN 978-1-4503-0251-7.
37

40

