
TRABALHO DE GRADUAÇÃO

DRIVING MOBILE ROBOTS: A COMPARATIVE
ANALYSIS BETWEEN SIGNAL FUSION METHODS

FOR SYSTEMS WITH AIDED GUIDANCE

Carolina Sartori da Silva

Brasília, Maio de 2021

UNIVERSIDADE DE BRASILIA
Faculdade de Tecnologia

Curso de Graduação em Engenharia de Controle e Automação

TRABALHO DE GRADUAÇÃO

DRIVING MOBILE ROBOTS: A COMPARATIVE
ANALYSIS BETWEEN SIGNAL FUSION METHODS

FOR SYSTEMS WITH AIDED GUIDANCE

Carolina Sartori da Silva

Relatório submetido como requisito parcial de obtenção

de grau de Engenheiro de Controle e Automação

Banca Examinadora

Prof. Carla Cavalcante Koike, CiC/UnB
Orientadora

Prof. Flávio de Barros Vidal, CiC/UnB
Coorientador

Prof. Guilherme Caribé de Carvalho
Examinador interno

Jones Yudi Mori Alves da Silva
Examinador interno

Brasília, Maio de 2021

FICHA CATALOGRÁFICA

SARTORI DA SILVA, CAROLINA
Driving mobile robots: a comparative analysis between signal fusion methods for systems with
aided guidance.

[Distrito Federal] 2021.

X, 69p., 297 mm (FT/UnB, Engenheiro, Controle e Automação, 2021). Trabalho de Graduação –
Universidade de Brasília.Faculdade de Tecnologia.

1. Mobile robots 2. Kalman filter
3. Signal fusion 4. Aided guidance

I. Mecatrônica/FT/UnB

REFERÊNCIA BIBLIOGRÁFICA

SARTORI DA SILVA, CAROLINA, (2021). Driving mobile robots: a comparative analysis
between signal fusion methods for systems with aided guidance. Trabalho de Graduação em Engen-
haria de Controle e Automação, Publicação FT.TG-n◦03, Faculdade de Tecnologia, Universidade
de Brasília, Brasília, DF, 84p.

CESSÃO DE DIREITOS

AUTOR: Carolina Sartori da Silva

TÍTULO DO TRABALHO DE GRADUAÇÃO: Driving mobile robots: a comparative analysis
between signal fusion methods for systems with aided guidance.

GRAU: Engenheiro ANO: 2021

É concedida à Universidade de Brasília permissão para reproduzir cópias deste Trabalho de
Graduação e para emprestar ou vender tais cópias somente para propósitos acadêmicos e científicos.
O autor reserva outros direitos de publicação e nenhuma parte desse Trabalho de Graduação pode
ser reproduzida sem autorização por escrito do autor.

Carolina Sartori da Silva

Universidade de Brasília, Asa Norte.

70910-900 Brasília – DF – Brasil.

Dedicatória

Dedico este trabalho à minha mãe, Regina, meu pai, Ítalo, minha irmã, Isabela e à minha
avó, Maria Cecília. Sem vocês isso não teria sido possível.

Carolina Sartori da Silva

Agradecimentos

Agradeço a todos que me acompanharam durante toda a minha graduação, colegas de
curso e amigos, que tornaram essa longa jornada mais prazerosa e construtiva.
Aos meus colegas do intercâmbio em Torino, que se tornaram amigos que espero levar
para toda a vida. Agradeço por todas conversas, risadas, viagens e principalmente pelos
ensinamentos. Graças a vocês hoje sou uma pessoa e uma profissional melhor.
A todos os meus amigos da vida, que mesmo muitas vezes não entendendo os meus
questionamentos e dúvidas com o curso, sempre me apoiaram, ajudaram e estiveram
comigo. Vocês me fizeram a pessoa que sou hoje.
Agradeço também aos meus orientadores, que me apoiaram ao longo dos dois últimos
anos no desenvolvimento deste trabalho e em meu crescimento profissional.
Por fim, agradeço à minha família, que sempre me apoiou em todas as decisões, todos
os momentos de dificuldades e tornaram todo essa trajetória mais leve e feliz.

Carolina Sartori da Silva

RESUMO

A robótica é um campo da engenharia que têm se popularizado muito nos últimos anos, sub-
stituindo humanos em tarefas repetitivas ou que representem algum risco à saúde ou segurança do
trabalhador. Entretanto, uma desvantagem da utilização de robôs é o alto custo dos treinamentos
para os operadores, algumas vezes tornando seu emprego economicamente inviável. Um meio para
solucionar este problema é usar sistemas de auxílio à guiagem do robô, permitindo que mesmo
um operador inexperiente consiga utilizá-lo de forma satisfatória. Uma forma de implementar tais
sistemas é usando redes neurais, que aprendem a sequência de comandos necessários para realizar
determinada tarefa e podem auxiliar o operador em sua execução. Este trabalho propõe, então,
uma implementação do filtro de Kalman para realizar a fusão do sinal de entrada do operador com
o sinal de entrada da rede, tendo assim um único sinal de saída para o robô. Os objetivos deste
trabalho são propor um algoritmo para o filtro de Kalman para realizar a fusão dos sinais, validar
o filtro em simulações usando uma base de dados adquirida previamente e validar o filtro no robô
testando com diversos usuários, quantitativa e qualitativamente, por meio de uma pesquisa sobre
a percepção dos usuários. Para realizar a validação do filtro de Kalman como método de fusão
de sinais, este foi comparado com outros dois métodos mais simples: network with 0.05 threshold
(usa o sinal de saída da rede como entrada para o robô caso a diferença entre a entrada do usuário
e a da rede seja maior que 5%) e mean with 0.05 threshold (usa a média aritmética entre a saída da
rede e a entrada do usuário como entrada para o robô caso a diferença entre a entrada do usuário
e a média seja maior que 5%). Depois de todas as etapas de validação, foi possível concluir que o
filtro de Kalman garantiu trajetórias mais suaves e foi preferido por 37,5% dos usuários.

Palavras Chave: Robótica móvel, Filtro de Kalman, Fusão de sinais, Assitência de direção.

ABSTRACT

Robotics is a field of engineering that has become very popular in recent years, replacing humans in
repetitive tasks and activities that represent a risk to the health or safety of the worker. However,
a disadvantage of using robots is the high cost of training for operators, sometimes making the
use of such robots economically unfeasible. One way to solve this problem is to use systems to
help guiding the robot, allowing even an inexperienced operator to use it satisfactorily. One way
to implement such strategies is to use neural networks, which learn the sequence of commands
necessary to perform a given task and assist the operator in its execution. This work proposes an
implementation of the Kalman filter to perform the fusion of the operator’s input signal with the
network’s input signal, thus having a single output signal for the robot. The objectives of this work
are to propose an algorithm for the Kalman filter to perform the fusion of the signals, to validate
the filter in simulations using a previously acquired database and to validate the filter with the
robot, testing with several users, quantitatively and qualitatively, by means of a survey on the
perception of users. To perform the validation of the Kalman filter as a signal fusion method, it
was compared with two other simpler methods: network with 0.05 threshold (uses the network
output signal as input to the robot in case the difference between the user input and that of the
network is greater than 5%) and mean with 0.05 threshold (uses the average between the network
output and the user input as the input to the robot if the difference between the user input and
the average is greater than 5%). After all the validation steps, it was possible to conclude that
the Kalman filter guaranteed smoother trajectories and was preferred by 37.5% of users.

Keywords: Mobile robots, Kalman filter, Signal fusion, Aided guidance

Contents

1 Introduction . 1

1.1 Context . 1

1.2 Problem definition and objectives . 1

1.3 Manuscript Presentation . 2

2 Theoretical Foundations . 3

2.1 Robotics . 3

2.1.1 Introduction . 3

2.1.2 Robot mechanical structure . 5

2.1.3 Industrial Robots . 9

2.1.4 Advanced Robotics . 9

2.2 Probabilistic Robotics . 11

2.2.1 Introduction . 11

2.2.2 Recursive State Estimation . 11

2.2.3 Gaussian Filters . 15

2.3 Deep Learning . 18

2.3.1 Machine Learning Basics . 18

2.3.2 Convolutional Networks . 19

2.4 Previous work . 20

3 Methodology . 22

3.1 System Modeling . 22

3.2 Implementation and validation of the Kalman Filter 23

3.3 Database . 24

iii

3.4 Quantitative validation of the model . 25

3.5 Softwares used . 27

3.6 Implementation of the Kalman Filter Algorithm for Simulation 27

3.7 System implemented . 28

3.8 Simulation and tests . 29

3.8.1 Trajectory . 31

3.8.2 First phase: using the Xbox controller . 32

3.8.3 Second phase: using the keyboard . 32

3.9 Evaluation questionnaire . 33

3.9.1 Questionnaire for tests in first phase, using the Xbox controller 34

3.9.2 Questionnaire for second phase tests, using the keyboard 36

4 Results. 38

4.1 Quantitative validation of the Kalman Filter using the previous database 38

4.1.1 Graphics validation . 38

4.1.2 Percentage mean error analysis . 44

4.2 Simulated tests . 46

4.2.1 User perceptions - Qualitative validation . 46

4.2.2 Trajectories - Quantitative validation . 55

5 Conclusions . 66

5.1 Future perspectives . 67

REFERENCES . 68

List of Figures

2.1 Main types of wheels - Adapted from [1]. 6

2.2 A differential-drive mobile robot - Adapted from [1]. 7

2.3 A synchro-drive mobile robot - Adapted from [1]. 7

2.4 A tricycle mobile robot - Adapted from [1]. 8

2.5 A car-like mobile robot - Adapted from [1]. 8

2.6 An omnidirectional mobile robot - Adapted from [1]. 9

2.7 Route in an eight shape - Source: Thúlio Noslen [2]. 20

2.8 Complete route - Source: Thúlio Noslen [2]. 20

3.1 Simplified diagram of the modeled system. 22

3.2 Complete route - Source: Thúlio Noslen [2]. 24

3.3 Route in an eight shape - Source: Thúlio Noslen [2]. 25

3.4 Perspective view of the robot path. 31

3.5 Superior view of the trajectory, with indication of the ideal route. 32

4.1 Updated states in X - eight-shaped route, user am. 40

4.2 Updated states in Y - eight-shaped route, user am. 40

4.3 Actualized states in X - eight-shaped route, user gm. 40

4.4 Actualized states in Y - eight-shaped route, user gm. 41

4.5 Comparison between the Updated states and the Output from the Data Base -
eight-shaped route, user am. 41

4.6 Comparison between the actualized states and the Output from the Data Base -
eight-shaped route, user gm. 42

4.7 Updated states in X - building route, user am. 42

4.8 Updated states in Y - building route, user am. 43

4.9 Actualized states in X - building route, user gm. 43

v

4.10 Actualized states in Y - building route, user gm. 43

4.11 Comparison between the actualized states and the Output from the Data Base -
building route, user am. 44

4.12 Comparison between the actualized states and the Output from the Data Base -
building route, user gm. 44

4.13 Analysis of user preference, considering both joystick (in person) and keyboard
(remote) tests. 48

4.14 Analysis of user preference, considering only the order of the tests and not each
method (for both keyboard and joystick). 49

4.15 Analysis of the relationship between gender and preferred method by the user. . . 50

4.16 Analysis of the relationship between gender and preferred method by the user,
considering which phase the test was performed. 50

4.17 Trajectories done by user 10 using the joystick as input method, separated by
method used. 56

4.18 Trajectories done by user 10 (female, between 21 and 25 years old, with no famili-
arity with robots, very familiar with video games and very skilled with joystick)
using the joystick as input method, with the four trajectories represented together. 57

4.19 Trajectories done by user 7 (female, between 26 and 30 years old, with no familiarity
with robots, not familiar with video games and not skilled with joystick) using the
joystick as input method. 58

4.20 Trajectories done by user 28 (male, between 21 and 25 years old, with no familiarity
with robots, very familiar with video games and not skilled with the keyboard) using
the keyboard as input method. 59

4.21 Trajectories done by user 18 (male, between 26 and 30 years old, with no familiarity
with robots, very familiar with video games and very skilled with the keyboard)
using the keyboard as input method. 60

4.22 Average of the second order variation, per direction, for all users - Remote test
(keyboard). 62

4.23 Average of the second order variation, per direction, for all users - In person test
(joystick). 63

List of Tables

2.1 Kalman Filter Algorithm, step by step, for linear Gaussian state transitions and
measurements. 17

3.1 Ranges of values of the output signal from the Joystick. 24

3.2 Data Base Variables. 25

3.3 System software specifications. 27

3.4 Xbox One control button mapping. 29

3.5 Keyboard key mapping. 30

3.6 Test sequences. 31

4.1 Average error for the building trajectory . 45

4.2 Average error for the eight trajectory . 45

4.3 Average error both trajectories . 46

4.4 Tests performed, classified by the order of the methods used. 47

4.5 User preference analysis, considering both phases. 47

4.6 User preference analysis, considering only the order of the tests and not each method
(for both keyboard and joystick). 48

4.7 Gender of the users. 49

4.8 User’s age. 51

4.9 Level of education. 51

4.10 Experience with operating robots or machinery. 51

4.11 How familiar the users are with video games. 52

4.12 How skilled the users are with the input method (keyboard or joystick) for games. 52

4.13 Internet interference with the execution of the tests. 52

4.14 Users perception regarding the interference of the red method (network with 0.05
threshold). 53

vii

4.15 Users perception of comfort while driving with the red method (network with 0.05
threshold). 53

4.16 Users perception of how the red method (network with 0.05 threshold) could be
improved, regarding its interference. 53

4.17 Users perception regarding the interference of the yellow method (mean with 0.05
threshold). 54

4.18 Users perception of comfort while driving with the yellow method (mean with 0.05
threshold). 54

4.19 Users perception of how the yellow method (mean with 0.05 threshold) could be
improved, regarding its interference. 54

4.20 Users perception regarding the interference of the green method (Kalman filter). . 55

4.21 Users perception of comfort while driving with the green method (Kalman filter). . 55

4.22 Users perception of how the green method (Kalman filter) could be improved, re-
garding its interference. 55

4.23 Second-order variation analysis, for all users - Remote tests (keyboard used as input
method). 61

4.24 Second order variation analysis, for all users - In person tests (joystick used as input
method). 63

4.25 Percentile differences between the user input, network input and system output -
In person tests (joystick used as input method). 64

4.26 Percentile differences between the user input, network input and system output -
Remote tests (keyboard used as input method). 64

4.27 Analysis of the average percentage of network interference in each of the methods. 65

List of Symbols

Latin Symbols

A State matrix
B Control or input matrix
C Measured state matrix
E Expectation of a random variable
Q Covariance matrix of the measured state
R Covariance of the noise of the posterior state
u Control or input vector
x States vector
z Measured state

Greek Symbols

σ Standard deviation
Σ Covariance Matrix
µ Mean vector
ε Gaussian vector that describes the uncertainty introduced by

the state transition
δ Measurement noise

Grupos Adimensionais

p(x) Probability Density Function of a random variable x
p(x, y) Joint distribution of two random variables

Subscritos

t Current instant in continuous time
t− 1 Previous instant in continuous time
k Current instant in discrete time
k + 1 Following instant in continuous time

ix

Siglas

CNN Convolution Neural Networks
PDF Probability Denstity Function
ROS Robot Operating System

Chapter 1

Introduction

1.1 Context

Robots, as will be explained further in Chapter 2, Section 2.1, are machines that can be helpful
if used and built right. They can be guided by an external operator or by an embedded computer.

In the robotics field, there are two main categories of robots: automated and teleoperated [1].
The first has the decision-making process made by an internal or external computer, without the
necessity of human assistance. A human operator controls the latter, which is then responsible for
all the decision-making process. Usually, the operator needs to be minimally skilled for the job.
That need may represent a considerable cost, depending on the operation to be executed. The
robot itself is already expensive equipment so that the total price can get high quickly.

To reduce the cost of education, the operator is driving the teleoperated robots with some
autonomy. The final movement depends on the signal the operator sent and the decision taken by
the robot’s system.

Artificial intelligence, specifically neural networks, is an example of a decision-making al-
gorithm used in this type of solution. That said, this work aims to provide a method to fuse the
neural network’s output, deciding the ideal trajectory with the input signal sent from the operator
to make the trajectory intended by the operator as flawless as possible.

The use of robots with some autonomy, guaranteeing a smooth and safe trajectory, can be
beneficial in several areas. Some examples are rovers to explore remote locations, robotic arms in
the industry, and developing delicate activities.

1.2 Problem definition and objectives

As said in Section 1.1, a current obstacle of the industry regarding teleoperated robots is the
cost of operator training to pilot the robot safely and efficiently.

One possible solution to that problem is using an embedded decision-making algorithm, usually

1

involving artificial intelligence, to help the operator drive through a safe trajectory. The problem
one aims to propose a solution to is merging the output signal of the neural network embedded in
the robot’s system and the input signal given by an operator with little or no training.

Kalman filter provides a way to fuse two sensor signals by modelling the system in the space
state form and using the two sensors as inputs. That way, the output would be the two input
signals merged into one that can be used as input to the robot. This work uses a Kalman filter
whose input is the neural network’s output and the operator’s input.

To realise this project, it will be used a database made by another student at the University
of Brasília, Thúlio Noslen [2].

The main objective of this project is to propose and validate a method of signal fusion based
on the Kalman Filter so that the user’s input signal and that of the network can be properly used
with the robot. Therefore, this objective can be divided into the following sub-objectives:

• Propose a Kalman Filter algorithm to fuse the two signals;

• Validate the filter in simulation using the database;

• Validate the filter in the robot, quantitatively, testing with several users;

• Validate the filter qualitatively, analysing the perception of those users.

1.3 Manuscript Presentation

This manuscript has the following chapters:

• Chapter 2 - Theoretical Foundations: gives a brief introduction to the concepts used to
develop and understand this work;

• Chapter 3 - Methodology: the techniques used are defined here and the experimental pro-
cedures are listed;

• Chapter 4 - Results: shows the results obtained this far with the use of the proposed Kalman
Filter algorithm;

• Chapter 5 - Conclusions: contains a summary of the work done and the final considerations
regarding the results.

2

Chapter 2

Theoretical Foundations
This chapter describes briefly the theoretical
foundations necessary to understand and to de-
velop this work. It has a section about Robotics
2.1, one about Probabilistic Robotics 2.2 and
another about Deep Learning 2.3.

2.1 Robotics

2.1.1 Introduction

The field of robotics is mainly concerned with the study of machines that can replace humans
in executing a task regarding decision-making and physical activities. This field has a deep cultural
meaning since humans have been seeking something to serve as a substitute in some tasks and
something that mimics our behaviour in the various interactions with the environment surrounding
us.

Since the Greeks, one of the greatest ambitions of humankind has been to give life to their
artefacts. We can see that clearly in several myths, like the Titan Prometheus, the giant Talus,
and, more recently, the tale of Frankenstein. In the 1920s, already in the Industrial Age, the
Czech playwright Karel Čapek introduced a mechanical creature whose purpose was to replace
humans in subordinate labour duties, which he named automaton. On that same occasion, in the
play Rossum’s Universal Robots (R.U.R.), he coined the term robot, at the time derived from the
term robota, which means “executive labour” in Slav languages [1]. However, in Karel’s science
fiction tale, the automaton built by Rossum rises against humankind, unlike what happened in
the following years.

A couple of decades later, in the 1940s, the Russian Isaac Asimov, a science fiction writer,
described a robot as an automaton with a human appearance but deprived of any feelings. Its
brain purely dictated its behaviour, which was programmed in such a way to satisfy specific rules of
ethical behaviour defined by the human who built it. Asimov was also responsible for introducing
the term robotics as being the science devoted to studying robots based on the three fundamental
laws [1] :

3

• A robot may not injure a human being or, through inaction, allow a human being to come
to harm;

• A robot must obey the orders given by human beings, except when such orders would conflict
with the first law;

• A robot must protect its own existence, as long as such protection does not conflict with the
first or the second law.

These laws were established in the fiction field, but they were carried out to the science field,
setting rules of behaviour to consider as specifications of a robot design as an industrial product
done by engineers. From that age, robots were seen as machines able to modify the environment
they are in, independently of their exterior. In fact, robotics is often described as the science that
studies the intelligent connection between perception and action.

Considering that, one may start describing the essential component of a robot: its mechanical
system. In general, it is composed of a locomotion apparatus and a manipulation apparatus, the
first usually being wheels, crawlers or mechanical legs, and the latter being mechanical arms, end-
effectors or artificial hands. The combination of the locomotion apparatus and the manipulation
apparatus is one way to categorize the robot.

Having defined the mechanical system, now one must describe the several abilities of a robot.
The ones described in the following paragraphs are the capabilities to exert an action, percept the
environment, and connect the action to perception.

The first one, the capability of exerting an action, is composed of both locomotion and manipu-
lation abilities and is provided by an actuation system, which animates the mechanical components
of the structure [1]. It refers to the context of motion control, dealing with drivers, transmissions
and motors.

The second, the capability to percept the environment it is in, is carried out by the sensory
system, which can acquire data regarding the mechanical system, both internal to the system and
the external status of the environment. It refers to the context of sensors, materials properties,
signal conditioning, information retrieval and data processing.

The third and last regards the connection of the first and the second. Therefore, it combines
the perception of the environment with the execution of tasks in an intelligent fashion provided
by the control system, which is responsible for commanding the execution of actions towards a
goal set by the planning technique, respecting all constraints imposed by the environment and the
robot itself. Its context is that of control and supervision of robot motions, artificial intelligence
and expert system, as well as computer architecture and programming environment [1].

Having defined all that, one can easily see that robotics is an interdisciplinary subject con-
cerning areas such as mechanics, control, electronics and computers.

4

2.1.2 Robot mechanical structure

The robot’s mechanical structure is its key feature. As was said before, robots can be clas-
sified into two main classes by their mechanical structure: those with a fixed base, called robot
manipulators, and those with mobile-based, called mobile robots.

The mechanical structure of a robot manipulator is, as described by Siciliano [1] composed of
a sequence of links (rigid bodies) connected by joints (means of articulation). The manipulator
itself is characterized by an arm that provides mobility, a wrist that ensures dexterity and an end-
effector that performs the task. The fundamental structure is the serial or open kinematic chain.
The kinematic chain is said to be open when there is only one sequence of links connecting its
ends. Although that is the most common case, the manipulator can also have a closed kinematic
chain when the sequence of links forms a loop.

The articulation between two consecutive links can be either a prismatic or a revolution joint.
Both create a relative motion between the two links, but the first is translational, and the latter is
rotational. Usually, revolution joints are preferred because of their compactness and reliability. In
an open kinematic chain, each prismatic or revolute joint provides one degree of freedom (DOF)
to the structure. However, in a closed kinematic chain, the number of DOFs is always smaller
than the number of joints in the structure due to constraints imposed by the loop.

The degrees of freedom should be properly distributed along the structure so that it can have
a sufficient number to execute the tasks it was designed for. If there are more DOFs than what
is necessary to execute the task, the robot is said to be redundant. One may then define the
concept of workspace, which is the portion of the environment that the manipulator’s end-effector
can access. The workspace is directly dependent on both the manipulator structure and the
mechanical joints.

At last, there is a classification for the manipulators depending on the type and sequence of
arm’s DOFs. Therefore, the robots can be defined as Cartesian, cylindrical, spherical, SCARA or
anthropomorphic [1].

The understanding of the basics of the mechanical structure of mobile robots is of the most
importance for this work. Its main feature is the presence of a mobile base that freely allows the
robot to move in the environment. One other aspect they differ from the manipulators is the use
because they are much more common in service applications, so autonomous motion capabilities
are required.

From a mechanical point of view, a mobile robot consists of one or more rigid bodies, with or
without joints, equipped with a locomotion system. Knowing that we can separate two classes of
mobile robots:

• Wheeled: is the most common class, consisting of a rigid body and a system of wheels that
provide motion. Other rigid bodies can be attached to the main one through revolute joints.

• Legged: is less common and composed of multiple rigid bodies connected by prismatic
or revolute joints, the latter being more used than the first. There is a large variety of

5

mechanical structures in this class, most of them inspired by the study of living organisms
(biomimetic robotics).

The wheeled type will now be explained a bit further since it is the type of robot used in this
project. Its basic mechanical element being, indeed, the wheel. According to Siciliano in [1], there
are mainly three types of conventional wheels:

• Fixed wheel: it can rotate about an axis that goes through the centre of the wheel, being
orthogonal to the wheel plane. It is rigidly attached to the chassis, and its orientation with
respect to the wheel is constant. It can be seen on the left side of Figure 2.1.

• Steerable wheel: it has two axes of rotation, the first being the same as the fixed wheel, and
the second is vertical and goes through the centre of the wheel. This allows the chassis to
be in a different orientation with respect to the wheel. This type can be seen in the centre
of Figure 2.1.

• Caster wheel: also has two axes of rotation, but the vertical one does not pass through
the centre of the wheel but is displaced by a fixed offset. This allows the wheel to rotate
automatically, aligning with the direction of the motion with ease. This type of wheel is
mainly used to provide a supporting point for static balance without affecting the mobility
of the base, as seen in supermarket shopping carts. An example can be seen on the right
side of Figure 2.1.

Figure 2.1: Main types of wheels - Adapted from [1].

Using those three types of wheels, one can provide a variety of kinematic structures. Only the
most relevant combinations will be briefly described here.

The first is a differential drive, a vehicle with two fixed wheels, with a common axis of rotation,
combined with one or more caster wheels, usually smaller than the fixed ones, to keep the structure
statically stable. The two fixes wheels are separately controlled so that different velocities can

6

be applied. This allows the robot to turn freely and even rotate on the spot, depending on the
controls applied. It can be seen in Figure 2.2 shown below.

Figure 2.2: A differential-drive mobile robot - Adapted from [1].

Figure 2.3: A synchro-drive mobile robot - Adapted from [1].

The second is a synchro-drive kinematic arrangement and is shown in Figure 2.3 above. As
described by Siciliano [1], one can obtain that by aligning three steerable wheels, which are syn-
chronously run by two motors through a mechanical coupling mechanism. One of the motors
controls the rotation of the wheels around the vertical axis, affecting its orientation. The other
one controls the rotation of the wheels regarding the horizontal axis, providing a driving force to
the vehicle. A third motor is often used to rotate the upper part of the chassis independently,
which can be useful to orient arbitrarily a directional sensor, for example.

The third is a tricycle vehicle, the one shown in Figure 2.4. It has three wheels, as the name
suggests. Two of them are fixed, mounted on a rear axle, and the other is a steerable one, mounted
in the front. The fixed wheels are controlled by a single motor which gives them traction, and the
steerable one is driven by another motor that changes its orientation. Another configuration can
be with the two fixed wheels passive and the steering wheel being controlled by two motors, one
to give it orientation and the other to provide traction.

The fourth is the car-like vehicle, which is the one used in this project and is also the most
common kind of vehicle in our day-to-day life. A simple model for it can be seen in Figure 2.5,

7

Figure 2.4: A tricycle mobile robot - Adapted from [1].

and it is the most relatable one since most of us have been in contact with machines with this
configuration. It has two fixed wheels mounted on the rear axle and two steerable wheels mounted
on the front. As in the tricycle, one motor provides traction, which can be located on the front or
the rear, and another provides changes of orientation of the front wheels in respect to the chassis.
It is important to emphasize that the two front wheels must have a different orientation when the
vehicle is in a curved trajectory to avoid slippage. The internal wheel is slightly more steered than
the external one. This is achievable by the use of a device called Ackermann steering.

Figure 2.5: A car-like mobile robot - Adapted from [1].

The fifth and last is the omnidirectional vehicle, which has three caster wheels usually arranged
in a symmetric pattern. The traction of the three wheels is provided by three different motors,
keeping each wheel independent. This allows the vehicle to move instantaneously in any Cartesian
direction, as it can re-orient itself on the spot. An example can be seen in Figure 2.6.

The workspace of a mobile robot, unlike the case of manipulators, is potentially unlimited.
Although many mobile robots are subject to constraints on the admissible instantaneous motions,
it does not prevent the possibility of attaining any position and orientation in the workspace. This
also implies that the number of DOFs is smaller than the number of configuration variables [1].

Finally, one can think of merging the mechanical structure of a manipulator with that of a
mobile robot. Such configuration is called mobile manipulator and combines the uses and the
dexterity of a manipulator with the unlimited possibilities of workspaces provided by the mobile
base.

8

Figure 2.6: An omnidirectional mobile robot - Adapted from [1].

2.1.3 Industrial Robots

Industrial robotics is the field of robotics most concerned with robot design, control and
applications in the industry. Its applications is that of operating in a structured environment,
whose physical characteristics are mostly known a priori. Hence, limited autonomy is required
[1].

The first industrial robots began to be developed in the 1960s, is highly influenced by two tech-
nologies: numerically controlled machines for precise manufacturing and teleoperators for remote
radioactive material handling. Those first generations of industrial robots were characterized by
versatility since they employed different end-effectors at the tip of the manipulator; adaptability
to a priori unknown situations; positioning accuracy, by adopting feedback control techniques;
and execution repeatability, since they could be programmed for various operations. This family
of robots gained wide popularity because it allowed the realization of automated manufacturing
systems.

One of the applications in the industrial field is the Automated Guided Vehicles (AGV), which
are utilized to ensure the handling of parts and tools around the shop floor from one manufacturing
cell to the next.

2.1.4 Advanced Robotics

The expression “advanced robotics” is commonly used to refer to the science of studying robots
with marked characteristics of autonomy by operating in scarcely structured or unstructured
environments, as stated by Siciliano [1].

The motivations for this field are many, ranging from the need for automata whenever human
operators are safe or not available to the opportunity of developing products for potentially wide
markets aimed at improving quality of life [1].

9

One subclass of industrial robots is the robots and is the category this work fits the most.
The context is applying robots in areas where humans could not survive or would be exposed to
unnecessary risk. Such robots can carry out exploration tasks and report data on the environment
to a remote operator or even help find missing people in a disaster.

10

2.2 Probabilistic Robotics

2.2.1 Introduction

Rephrasing the concept of robotics said before in 2.1.1, robotics is the science of manipulating
and perceiving the world through computer-controlled devices. Robotics systems perceive inform-
ation on the environment they are in through sensors and apply forces through their manipulators.
Nevertheless, in order to do those tasks, robots need to be able to contour the uncertainty that
exists in the physical world.

The robot’s environments are inherently unpredictable, as our world is. The challenge is
making robots as capable of dealing with it as we are. Sensors are a good alternative, but they are
limited in what they can perceive. Limitations arise from various factors, such as the range and
the resolution. Sensors are also subject to noise, which makes the measurements made change in
unpredictable ways and, by doing so, limits the ability to extract information. Another source of
uncertainty is the actuation system, which involves motors and other mechanisms, being inherently
unpredictable to some extent. Finally, the last primary source is algorithmic approximations
because robots are real-time systems, but it limits the amount of computation that can be carried
out.

That said, one can correctly assume that the uncertainty level depends directly on the ap-
plication itself and its domain. That is the reason for using probabilistic robotic, because then
"instead of relying on a single “best guess” as to what might be the case, probabilistic algorithms
represent information by probability distributions over a whole space of guesses" [3]. This type of
solution outperforms alternative techniques in various real-world applications.

The implications of that, according to Thrun [3], is the contrast with traditional programming
techniques in robotics and probabilistic approaches, which tend to be more robust in the face
of limitations, both model and sensor ones. Also, probabilistic algorithms have more flexible
requirements on the accuracy of the models, relieving the programmer from the burden of coming
up with an accurate model, which can be a problem in some situations.

However, as also stated by Thrun [3], all those advantages come at a price. Probabilistic al-
gorithms make the system a lot more computationally complex and bring the need to approximate.
This is due to the fact that probabilistic algorithms are inherently less efficient, and there is the
need to consider a hole distribution of probability instead of a single value.

2.2.2 Recursive State Estimation

The core of probabilistic robotics is the idea of estimating states from sensor data, according
to Thrun [3]. It aims to recover the state variables from the data obtained, so probabilistic state
estimation algorithms compute the belief distributions over possible states. A simple example is
the estimation of a mobile robot localization.

Although it is assumed that the reader has some basic knowledge of probability and statistics,

11

some basic concepts in probability will be introduced since they will be referred to later in the
text. The first one is random variables, which are variables that, as described by Thrun [3],
"can take on multiple values, and they do so according to specific probabilistic laws. The process
of calculating these laws for random variables that are derived from other random variables and
the observed data is called probabilistic inference". Then, there is the Probability Density
Function (PDF), and the PDF of a normal distribution is given by the following Gaussian
function [3]:

p(x) = (2πσ2)−
1
2 exp{−1

2
(x− µ)2

σ2 } (2.1)

The normal distribution assumes that x is a scalar value, but often it can be a multi-dimensional
value, as in the case of this work. In that case, it is a normal distribution over a vector, and it called
multivariate. Those functions are characterized by the following form of the density function,
where µ is the mean vector, and Σ is a covariance matrix, whose characteristics are of being
a positive semidefinite and symmetric matrix.

p(x) = (2πΣ)−
1
2 exp{−1

2(x− µ)T Σ−1(x− µ)} (2.2)

Both definitions, the equations 2.1and 2.2, described by Thrun in [3], are equivalent if Σ = σ2

and x is a scalar instead of a vector. A couple of details that need to be explained is that the PDF
value is not upper-bounded by 1 and that it will be silently assumed that all continuous random
variables are measurable, so all continuous distributions actually possess densities.

The following two concepts are the joint distribution and independence, and the latter
depends on the first. The joint distribution of two random variables X and Y is given by [3]:

p(x, y) = p(X = x and Y = y) (2.3)

And if X and Y are independent, it becomes:

p(x, y) = p(x)p(y) (2.4)

However, often random variables carry information about other random variables. In that
case, it is called conditional probability, and it is denoted by [3]:

p(x|y) = p(X = x|Y = y) (2.5)

12

If p(y) > 0, the conditional probability is defined by:

p(x|y) = p(x, y)
p(y) (2.6)

And if X and Y are independent, it is assumed that Y tell us nothing about the value of X,
so the probability is given by:

p(x|y) = p(x)p(y)
p(y) = p(x) (2.7)

Then, following the definition of conditional probability is the theorem of total probability.
It is defined as follows, where the equation 2.8 represents the definition for discrete systems and
the equation 2.9 represents the continuous systems.

p(x) = Σyp(x|y)p(y) (2.8)

p(x) =
∫
p(x|y)p(y)dy (2.9)

If p(x|y) or p(y) are equal to zero, then the product p(x|y)p(y) is also zero, regardless of the
value of the remaining factor.

Of equal importance is the Bayes rule, which relates a conditional dependence p(x|y) to the
“opposite” dependency, p(y|x). As in the total probability theorem, the rule requires p(y) > 0, as
it acts as a normalizer, making sure the result is not greater than 1. The equation 2.10 represents
the definition for discrete systems and the equation 2.11 represents the continuous systems.

p(x|y) = p(y|x)p(x)
p(y) = p(y|x)p(x)

Σx′p(y|x′)p(x′) (2.10)

p(x|y) = p(y|x)p(x)
p(y) = p(y|x)p(x)∫

p(y|x′)p(x′)dx′ (2.11)

The probability p(x|y) showed above is called the posterior probability distribution over
X. Thus the Bayes rule provides a convenient way to compute a posterior probability using the
“opposite” conditional probability p(y|x) [3]. That said, if one is interested in inferring a quantity
x from sensor y, the Bayes rules allows that through the calculation of the probability of data y
assuming the value x.

13

Now, one can condition the rule for combining probabilities of independent random variables
on other variables:

p(x|z) = p(x|z, y) (2.12)

p(y|z) = p(y|z, x) (2.13)

This rule applies in every case where the variable y carries no information about the variable
x if the third variable z is known. That is called a conditional independence, that must not
be confused with absolute independence.

The last two concepts to be treated here are the expectation of a random variable and its
covariance. The first is given by the equations 2.14 and 2.15, for discrete systems and continous
systems respectively, and the latter is given by 2.16.

E[X] = Σxxp(x) (2.14)

E[X] =
∫
xp(x)dx (2.15)

Cov[X] = E[X − E[X]2] = E[X2]− E[X]2 (2.16)

Using the concepts explained above, one can now understand how the robot percept the en-
vironment using sensors. Perception is the robot’s ability to use sensor measurements to obtain
information about the state of the environment it is in. The result of that interaction is simply
called measurement, but sometimes can also be referred to as observation or percept. The robot
may also keep a record of all past sensor measurements, and that is called data. Therefore, the
environment measurement data provides information about the momentary state of that environ-
ment.

The robot can also record all past control action, which is called control data and carries
information about the change of state in the environment. An alternative source of data are
odometers, a specific type of sensor that measures the revolution of a robot‘s wheels. As such,
they provide information about a change of state, thus being considered control data.

The evolution of state and measurement is governed by probabilistic law, as said by Thrun
[3]. Assuming that a state x is complete, meaning it is the best predictor one can have about the
future, its information about past measurements and states is sufficient. In particular, xt−1 is a

14

sufficient statistic of all previous measurements and controls up to this point in time. Other than
that, only the control signal ut matters if the state xt−1 is known.

Writing that in probabilistic terms, one can have the following equality, which is also an
example of conditional independence:

p(xt|x0:t−1, z1:t−1, u1:t) = p(xt|xt−1, ut) (2.17)

The right half of the expression above, equation 2.17, is called the space transition prob-
ability. It specifies how the environmental state evolves over time as a function of robot controls
ut. The environment must be considered stochastic, so the expression must be a probability dis-
tribution, not a deterministic function. Although it is indexed regarding the variable t, meaning
time, sometimes the state transition is not time-dependent, so it can also be indexed as p(x′u,x),
where x′ is the successor and x is the predecessor state.

2.2.3 Gaussian Filters

This section will now introduce an important and specific family of recursive state estimator,
called Gaussian Filters. This type of filter is based on the implementation of Bayes Filters for
continuous spaces, but those will not be explained here for the sake of keeping this work brief.
Gaussian filters are also the most popular family of techniques up to date, according to Thrun
[3], and all Gaussian techniques share the basic idea that beliefs are represented by multivariate
normal distributions. The equation 2.18 is the same as the equation 2.2.

p(x) = (2πΣ)−
1
2 exp{−1

2(x− µ)T Σ−1(x− µ)} (2.18)

Two sets of parameters characterize the density over the variable x:

• The mean µ, that is a vector with the same dimensionality as the state x;

• The covariance Σ, that is a quadratic matrix, symmetric and positive-semidefinite, and its
dimensionality is the same as the state x squared.

The idea that one may have to represent the posterior estimation by a Gaussian has essential
characteristics to be considered. First, Gaussians are unimodal, meaning they possess a single
maximum. This characteristic is suitable for most robotic problems since the posterior is usually
focused around the true state with a small margin of uncertainty [3]. However, it is a poor choice
for many global estimation problems since many distinct hypotheses may exist.

Entering now a bit more in the topic of interest, theKalman Filter will now be introduced. It
is the most popular and probably the most studied technique for implementing Bayes Filters, being

15

invented by Swerling in 1958 and Kalman in 1960, thus the name. It is basically a technique for
filtering and predicting linear Gaussian systems, implementing belief computation for continuous
states. Thus, it does not apply to discrete or hybrid state spaces.

The first important concept is the Gaussian Posterior. The Kalman filter represents the
belief in terms of time t, the belief µt and the covariance Σt. The posterior consists of the following
affirmations:

1. The state transition probability, defined in the equation 2.19, must be a linear function in
its arguments with added Gaussian noise, as shown in the equation 2.20, where xt and xt−1

are state vectors, ut is the control vector, and both At and Bt are matrixes. The vectors are
represented as in 3.1.

p(xt|ut, xt−1) (2.19)

xt = Atxt−1 +Btut + εt (2.20)

xt =

x1,t

x2,t

...

xn,t

 and ut =

u1,t

u2,t

...

un,t

Thus, as described by Thrun [3], if one multiplies the satate and control vector by At and Bt,
respectively, the state transition function becomes linear in its arguments. So, the Kalman
filter assumes a system with linear dynamics. The random variable εt is a Gaussian vector
that describes the uncertainty introduced by the state transition. It has the same dimensions
as the state vector, its mean is zero and Rt will denote its covariance.

The mean of the posterior state is given by the equation 2.21 and the covariance Rt.

p(xt|ut, xt−1) = det(2πRt)−
1
2 exp{−1

2(xt−Atxt−1−Btut)TT−1
t (xt−Atxt−1−Btut} (2.21)

2. The measurement probability p(zt|xt) must also be linear in its arguments, with an added
Gaussian noise, where Ct is a matrix with dimensions kxn, k being the dimension of the
measurement vector zt. The vector δt describes the measurement noise, and its distribution
is a multivariate Gaussian with zero mean and covariance Qt [3].

zt = Ctxt + δt (2.22)

16

The measurement probability is then given by the equation 2.23 [3].

p(zt|xt) = det(2πQt)−
1
2 exp{−1

2(zt − Ctxt)TQ−1
t (zt − Ctxt)} (2.23)

3. Last but not least, the initial belief bel(x0) must have a normal distribution, where µ0 is the
mean and Σ0 is the covariance. The belief is represented as shown in the equation 2.24 [3].

bel(x0) = p(x0) = det(2πΣ0)−
1
2 exp{−1

2(x0 − µ0)T Σ−1
0 (x0 − µ0)} (2.24)

2.2.3.1 The Kalman Filter Algorithm

The mathematical algorithm, as stated in Thruns book [3], can be seen on the Table 2.1.

Algorithm Kalman_filter(µt−1, Σt−1, ut, zt)

1: µt = Atµt−1 +Btut

2: Σt = AtΣt−1A
T
t +Rt

3: Kt = ΣtC
T
t (CtΣtC

T
t +Qt)−1

4: µt = µt +Kt(zt − Ctµt)
5: Σt = (I −KtCt)Σt

6: return µt, Σt

Table 2.1: Kalman Filter Algorithm, step by step, for linear Gaussian state transitions and meas-
urements.

Kalman filters uses as input the belief at time t− 1, represented by µt−1 and Σt−1. To update
its parameters, it requires the control signal ut and the measurement zt. Then, the output is the
belief at time t, represented by µt and Σt. As stated by Thrun [3], the update of the mean value
is done using the deterministic version of the state transition function 2.20, and the update of the
value of the covariance is considering the fact that states depend on previous states, doing that
through the matrix At. Then, the Kalman Gain is the variable Kt. It specifies the degree of
incorporation of the measurement into the new estimated state.

Seeing the algorithm shown in the Table 2.1, one may see that the Kalman filter is compu-
tationally quite efficient, as stated by Thrun [3], so it makes sense that it is the most popular
algorithm in probabilistic robotics today.

17

2.3 Deep Learning

Deep Learning is a specific type of machine learning. As the name suggests, it is a deeper
application of the concepts of machine learning, so to understand the concepts of deep learning
properly, it is necessary to introduce machine learning basics.

2.3.1 Machine Learning Basics

Currently, it is common for one to find oneself with an absurd amount of data available about
almost any topic. That is because we are in the era of big data. This situation calls for automated
methods of data analysis, or data science as some may call it.

That automated method is what machine learning provides us. In particular, it can be defined
as a combination of methods that detect patterns in data automatically and then uses the un-
covered patterns to predict, or better-said estimate, future data. Besides that, it can also be used
to perform several kinds of decision making under uncertainty.

Knowing that, it becomes evident that a good way to solve such problems is to use probability
theory, as that can be applied to solve any problem involving uncertainty. In machine learning,
the uncertainty can come in several forms: what is the best model for a data set? What is the
best prediction? What should be the subsequent measurement to assure the best set of data?

One can divide machine learning into three main types, even though the last one is still barely
used. The first and simplest one is the predictive or supervised learning approach, where the
goal is to learn a mapping from the given inputs to the given outputs, starting from a labelled
set of input-output pairs. This set is called the training set. This type is equivalent to giving
someone the question and the correct answer to learn a subject [4].

One simple example given by Murphy (2012) [5] is that each training input is a D-dimensional
vector of numbers representing the height and the weight of a person. Those are called features
(or attributes or even covariates). In general, the input set will be a complex structured
object. The output or response variable can be anything, but it is usually assumed to be a
classification, a pattern recognition or a regression.

The second type of machine learning is named unsupervised learning or descriptive learn-
ing. In this one, the goal is to find interesting patterns to solve the problem at hand. Because of
that, it can also be sometimes called knowledge discovery. This kind of problem is much less
defined than the first one since the algorithm does not know which patterns to look for, and there
is no obvious error metric to be used. As the name suggests, it is indeed unsupervised, meaning
that the machine is left to decide which patterns are more important and how it will define them.
This is equivalent to telling someone to learn about machine learning and leaving one to figure
out by oneself how to do it and which books to use.

The third and last type, and also somewhat less commonly used one, is called reinforcement
learning. As the name suggests, it is similar to the reinforcement teaching commonly used with
kids, where there is some occasional reward or punishment signal associated with the machine’s

18

behaviour. This type will not be explored further in this work since it is not relevant to the other
concepts used here.

Two other concepts that are worth describing is overfitting and underfitting. Those are
problems that one working with neural networks needs to be careful about since they can ruin
the whole project if not considered. Overfitting is when the function describing the pattern is
too fitted to the training data. The function can perfectly describe the input data, but when
faced with a different set of data, it gives the wrong results. Underfitting is usually the problem
encountered when trying to avoid overfitting, being when the function is too general and can not
even describe properly the training data so that a different set will give an even worse result.
There are several methods for fixing those problems, but they are unfortunately out of the scope
of this work. However, it can be found in Murphy’s book [5], and on Goodfellow’s book [4].

2.3.2 Convolutional Networks

Convolutional Networks, also known as convolutional neural networks (CNNs), were first
introduced by Yann LeCun in 1989. It is a specialized kind of neural network for processing data
known to have a grid-like topology. Two simple examples of this type of neural network can be
time-series data and image data, the first being represented as a 1D grid with samples at regular
time intervals and the latter a 2D grid of pixels.

A convolutional neural network employs the mathematical operation convolution, which is a
specialized type of linear operation. A convolution network can be described simply as a neural
network that uses a convolution in place of general matrix multiplications in at least one of their
layers, according to Goodfellow [4].

Using convolution offers a couple of advantages since it is suitable for working with inputs of
variable sizes. That brings the possibility of working with sparse interactions, parameter sharing
and equivariant representations.

19

2.4 Previous work

This work was based on the work done previously by another student, Thúlio Noslen. As
described by him in [2], the work "proposed the use of a deep LSTM network in order to create a
steering assistance module from data collected from an experienced pilot". The robot model used
was the Pioneer 3AT, the same one used in this work, as is explained in Section 3.7.

To do so, the first step was to create a database composed of the input data from an experienced
pilot, composing the ideal trajectory for each route. The second step was to propose, train and
validate two deep LSTM networks, one for each route, that could learn the patterns of the ideal
driving. The third and last step was to validate the network with inexperienced users in real-time.

As said earlier, two routes were used: one with an eight-shape trajectory and another that
goes around one of the buildings in UnB. The routes can be seen, respectively, in Figures 2.7 and
2.8. Each trajectory was used to train one LSTM network that learned the driving patterns of
an experienced driver and could then help an inexperienced user drive a softer and overall better
trajectory.

Figure 2.7: Route in an eight shape - Source: Thúlio Noslen [2].

Figure 2.8: Complete route - Source: Thúlio Noslen [2].

When validating the proposed algorithm with the inexperienced users, along with the algorithm

20

turned off, four simple signal fusion were implemented:

• Network with 0.05 threshold: if the difference between the user input and the network
input is bellow 5%, then the user input is used directly as the output. If it is above 5%, the
network input is used as output.

• Network with 0.20 threshold: if the difference between the user input and the network
input is bellow 20%, then the user input is used directly as the output. If it is above 20%,
the network input is used as output.

• Mean with 0.05 threshold: if the difference between the user input and the average
between the user input and the network input is bellow 5%, then the user input is used
directly as the output. If it is above 5%, the average is used as output.

• Mean with 0.20 threshold: if the difference between the user input and the average
between the user input and the network input is bellow 5%, then the user input is used
directly as the output. If it is above 5%, the average is used as output.

• Off: the user input is used as output directly.

With the networks trained and the signal fusion methods implemented, validation with in-
experienced users could be made. This validation was done with 14 users, each one testing two
different fusion methods driving the robot in person. During the tests, the user input, network
input and system output data was recorded, allowing both the analysis was done by Noslen in [2]
and [6] and the execution of this present work. The routes and the database created with the user
validation step are explained in further details Section 3.3.

Noslen’s full work can be seen in [2] and [6].

21

Chapter 3

Methodology
This chapter explains the mathematical model
proposed for the system; the implemented Kal-
man Filter Algorithm; the database used to valid-
ate the Kalman Filter implemented, and how the
tests were carried out to do the final validation.

3.1 System Modeling

The system used in this work can be seen in Figure 3.1 and is composed of four main parts:

• User: the user is the main input of the system since it feeds both the signal fusion system
and the neural network;

• Neural network: has the user commands as input and outputs the corrected command,
being the other input to the signal fusion system.

• Signal fusion system: in this work, the signal fusion system studied is the Kalman filter,
which receives two input signals and outputs one fused signal.

• Robot: in this diagram is represented by a car.

Figure 3.1: Simplified diagram of the modeled system.

22

The system shown in Figure 3.1, in order to work with the Kalman Filter, needs to be in the
space states format, as shown in the Equation 2.20. The specific model for this system is described
by the Equation3.1, that is an adaptation of the Equation 2.20. The matrix A is shown below,
and the matrix was actually divided into B1 and B2. That division was made to simplify the
modelling process and to the process to modify the weights later. The vector with the inputs ut

was also divided since there are two inputs. One is the neural network output, and the other is
the user input. That could also be a single vector, as the matrix B could be only one, but it was
divided to simplify the modelling process.

x[k + 1] = Ax[k] +B1u1[k] +B2u2[k] + ε[k] (3.1)

A =
[
1 0
0 1

]
, B1 =

[1
2 0
0 1

2

]
and B2 =

[1
2 0
0 1

2

]

The matrices B1 and B2 are identical because the first implementation considers that the
network and the input from the user should have the same weight on the output signal.

The output is given by the Equation 3.2.

y[k] = Cx[k] (3.2)

3.2 Implementation and validation of the Kalman Filter

The language chosen to implement the Kalman Filter Algorithm was Python, and it was chosen
due to its simplicity and number of relevant libraries in the data analysis field, as well as being
compatible with ROS (Robot Operating System). ROS is the software used to implement the
system proposed working with the robot, as will be explained in Section 3.5.

The algorithm is based on the mathematical model showed in Subsection 2.2.3.1. The noises
used are Gaussian white noises. The observation noise is constant and does not depend on the
data set analysed. The covariance used to generate the noise is constant and set to 5e−4 for the
X-axis and 5e−3 for the Y-axis. Those values are completely arbitrary and will be validated on
the next step of the project when the algorithm is implemented with the robot. The noise of the
process depends on the data set used, so it is calculated using the covariance of the data.

The recursive part of the algorithm is implemented considering the system is online so that it
can be implemented on the robot without the need for many adaptations. To implement that, the
algorithm gets one set of data at a time, as if the user and the neural network had just generated
it, and works as if it does not have access to "future" data. The covariance is re-calculated each
time and used to generate the process noise. Then, both the process noise and the observation

23

noise are used to calculate the other matrices and the updated state. The updated state is then
computed and plotted in a graph.

The output of the filter is the mean of the updated state, but it must be validated to determine
the best approach to be used with the robot.

3.3 Database

The database used to validate the proposed model was made by another student, Thúlio Noslen
[2], and contains all the data obtained during the experiments done by him separated into folders
by user.

The robot used was a Pioneer 3AT, and the input method was an Xbox One controller with a
built-in joystick. The value ranges for the joystick signal the ones shown in Table 3.1. One crucial
observation is that the axes for the robot and the control are reversed, so in the robot, the y-axis
means the robot is turning (left or right), and the x-axis means backwards and forward.

Table 3.1: Ranges of values of the output signal from the Joystick.

Axis 0 to 1 0 to -1
X Turn to the right Turn to the left
Y Forward Backward

The experiment consisted of letting an inexperienced user pilot the robot through two routes,
the first is through almost the whole second floor of the Computer Science building at the Uni-
versity of Brasília, as shown in Figure 3.2, and the second is doing an eight-shaped route at the
same building, as shown in Figure 3.3.

Figure 3.2: Complete route - Source: Thúlio Noslen [2].

The neural network used to build this database was trained by Thúlio Noslen, and the method
used to do it can be found in his work [2]. It was trained by a good pilot, whose piloting is assumed
to be soft, without sudden manoeuvres, there is no acceleration in straight lines and the curves
are done with small acceleration, regardless of the robot’s velocity.

24

Figure 3.3: Route in an eight shape - Source: Thúlio Noslen [2].

The database has a few variables in it, all listed and described in the Table 3.2.

Table 3.2: Data Base Variables.

Variable Description
datetime saves the date and time the experiment was performed
enabled shows if the system is enabled or if the user is driving on its own
network shows which network is being used
method method used to combine the two inputs for the robot
thresh saves the value of the threshold used to merge the signals
diff difference between the two inputs for the robot
acting shows if the network is acting on the movement or not
vx robot’s velocity in x
vz robot’s velocity in z
jb enable button for the joystick
jpx joystick command in x
jpy joystick command in y
jcx neural network command in x
jcy neural network command in y
jox output command signal in x
joy output command signal in y

The data described is then used as input to the Kalman Filter algorithm to generate an output
to feed the robot.

3.4 Quantitative validation of the model

It is necessary to validate the proposed model analytically before testing it in simulations to
ensure the Kalman Filter is working properly. To do so, the quantitative validation was done by

25

comparing the Kalman Filter’s output signal with the ones from Thúlio’s work [2]. The database
is defined in Section 3.3.

The comparison was made in two steps:

1. Comparing the graphs generated by the program with the output from the database and
the output of the implemented filter. The updated states in X and Y are also analysed to
make sure the results are coherent considering the path.

2. Analysing the mean error between the outputs from the database and the output of the
implemented filter [7].

The following guidelines guided the graphical comparison:

• The comparison between the output obtained from the database and the updated states,
the expected results are for the two data sets to be close, but not identical. Both graphs
should overlap or at least partially overlap.

• The analysis of the updated states in the eight-shaped route, for the states in X, the expected
result is something similar to a squared wave, but with much noise. For the updated states
in Y, it is expected to be close to one most of the time.

• The analysis of the updated states in the building route, for the states in X, the expected
result is a signal with some values close to one and minus one, but most of it should be
around zero. For the states in Y, the expected result is similar to the eight-shaped route, so
it is expected to be close to one most of the time.

The values showed in the graphs have the same format as the input signal from the user,
which means it has the same format as the output of the joystick used to make the database. The
maximum value is 1, and the minimum is −1. On the X-axis, 1 means left and −1 means right,
and on the Y-axis, 1 means forward and −1 means backwards. If the value is around zero, it
means there is almost no imposed acceleration.

The mean error was calculated using the updated states in each axis (X and Y) and their
respective values from the database, and then the percentage value of this error is calculated so
that it is possible to judge the results as good or bad following a pre-established maximum value
[7].

The mean error for each axis should then be calculated using the relation shown in 3.3. It is
necessary to use (Updated state)i+1 because the states calculated with the Kalman filter have an
offset of one in the algorithm implemented.

Average error = Σn−1
i=0 [(Updated state)i+1 − (Database state)i]

n
(3.3)

The following criteria should guide the mean error comparison:

26

• An error smaller than 5% is considered acceptable since the outputs are supposed to be
close, but not identical;

• The analysis should be made comparing the X-axis and Y-axis separately so that it is possible
to tell in which axis the modelled system needs adjustments.

The results of this quantitative validation can be found in Chapter 4, Section 4.1.

3.5 Softwares used

The software used to simulate the robot were ROS (Robot Operating System) and Gazebo.
The first one is, as described in its website [8], “an open-source, meta-operating system for your
robot. It provides the services you would expect from an operating system, including hardware
abstraction, low-level device control, implementation of commonly-used functionality, message-
passing between processes, and package management. It also provides tools and libraries for
obtaining, building, writing, and running code across multiple computers”. The second, Gazebo, is
a robust 3D robot simulator that has, according to its website [9], several features, such as dynamics
simulation, sensors and noise, robot models and extensive command-line tools. Also, it seamlessly
integrates with ROS. In addition to that, there is a package ready to use with the Pioneer robot
model used in this work, that will be described in subsection 3.7, called p3at_tutorial.

The specifications of the software used to implement the simulation were selected due to the
package used to implement the robot, described in subsection 3.7 and already employed by Thúlio
[2]. The specifications can be seen in Table 3.3.

Software Specifications
Operating system Ubuntu 18.04
ROS ROS Melodic
Gazebo Gazebo 9
Python Version 2.7

Table 3.3: System software specifications.

3.6 Implementation of the Kalman Filter Algorithm for Simula-
tion

The proposed model was validated (Section 4.1), so the Kalman Filter Algorithm implemented
could then be adjusted to work in simulation with the robot. To implement that, the system
implemented by Thúlio in his work [2] is used, including the Kalman Filter as a new method of
signal fusion.

The implemented Kalman Filter, previously described in Section 3.2, was adjusted in order to

27

receive the data from the simulation and act as an online signal fusion method. To implement
that, the following modifications had to be made:

• Only the values from instants k and k-1 are saved in variables and used in the calculations,
and the previous values are saved for future analysis.

• The mean, used to calculate the covariance and both process and observation noises, is
calculated cumulatively and considers all previous values. This calculation was implemented
for the sake of simplicity, and, as stated by Chui in [10], it is a convenient way to calculate
the mean for real-time applications using Kalman filtering.

3.7 System implemented

The robot model used in this work is the Pioneer 3-AT, a general-purpose mobile robot with
four steerable wheels with rough tires, as described in ROS website [11]. This model can be
used in ROS using a few drivers, such as “rosaria”, and both model and launch files are available
to download on ROS website [12]. The package used to implement these simulations is called
p3at_tutorial and can be found to download on authors GitHub [13]. This package was chosen
because it is very stable and well documented, so the use is simple and easy to combine with the
remaining work since it uses the node cmd_vel to implement the robots’ movements.

Since the original work done by Thúlio [2] used an Xbox One controller as an input method,
the same one was used here in the first phase, and no changes were made to the input algorithm
used by him in his work. The initial idea was to perform all tests using this method, but since the
pandemic requires social distancing and in-person encounters are not recommended, the second
phase was done remotely using the user’s keyboard as input. For the implementation using the
controller as the input method, the buttons were mapped in the input algorithm, as shown in
Table 3.4.

With the model defined and working, it was necessary to implement the robot’s control. Be-
cause of the Coronavirus pandemic, it was necessary to divide the tests into two phases:

• Phase 1: was performed in person and with a group of 13 users, using an Xbox One
controller as the input method;

• Phase 2: was performed remotely with a group of 20 users, using the keyboard as the input
method.

Using the keyboard as the input method, the second phase required a few adjustments in
the input method algorithm originally used by Thúlio. The main difference between those input
methods is that the keyboard is a discrete signal composed of several step functions that can
have significant distances between values of consecutive sampling times. At the same time, the
Xbox controller is much closer to a continuous signal, allowing the user greater control over the
changes in the input signal. This relation between discrete and continuous signals can be seen

28

Button name Index Used to:
Left joystick 0 and 1 Control the robot

Power 8 Turn system on and off
Left bumper 4 Enable movement

X 3 Switches network
A 0 Switches method
B 1 Switches threshold

Right bumper 5 Marker

Table 3.4: Xbox One control button mapping.

in more detail in the references [14], and [15] and the description of the conversion of analogical
to digital signal, done for the Xbox controller, in this case, can be seen in [16]. Aside from the
adjustments made, it is important to remember that since the system was originally made to work
with a continuous input signal from the Xbox controller, which also allows a fine adjustment of
the trajectory, different behaviour can be expected when using a discrete signal coming from the
keyboard. This difference in behaviour are detailed in Chapter 4, specifically in Subsection 4.2.2.

As with the controller, it was necessary to map some keys to control the robot, as can be seen
in Table 3.5. Since the main goal here was to simulate a continuous signal such as the one from
the controller, the approach was different from what is usually done when controlling a robot with
the keyboard. There are two main differences here:

• The first is that four extra keys were added to the system to simulate the diagonal position
of the joystick in the controller. This means a signal is sent both on the X-axis and the
Y-axis simultaneously, allowing the robot to have an angular velocity and take turns and go
forward.

• The second is that the velocity is not increased by clicking a specific key once, but instead
is increased by repeatedly clicking on the key of the direction the user wants to increase
the speed. That aimed to simulate the fine adjustment achieved with the joystick since the
velocity would increase by 5% at a time.

3.8 Simulation and tests

As stated in Sections 3.5 and 3.7, the simulation and tests were divided into two phases: the
first was done in person, using an Xbox controller as the input method, and the second was done
remotely, using the user’s keyboard as the input method. Both were executed using a virtual
machine with Linux Ubuntu, as described in Section 3.5, the only difference being the input
method. This implied changing the input algorithm, and, for the second phase, another software
was required to allow the user to access the computer and use the robot remotely. To implement
that, a software named Parsec [17], commonly used to play shared-screen games remotely was

29

Key X Y
i 1 0
j 0 1
l 0 -1
, -1 0
u 1 1
o 1 -1
. -1 -1
m -1 1

Table 3.5: Keyboard key mapping.

used to allow the user to access the computer, seeing the screen and using their keyboard as input
with low latency. This software was chosen for three main reasons:

• It works on the main modern operating systems, such as Windows 7+, macOS 10.11+ and
Ubuntu 18.04, however hosting is available only for Windows 8.1+;

• It allows low latency peer-to-peer connection, delivering 60 fps HD video over the network
and virtually lag-free [17];

• It is free to use and lightweight, so it would be easy for any of the users to download and
use and would not compromise too much the host computer computing system.

To validate the Kalman filter as a signal fusion method, it was necessary to compare it with
other signal fusion methods. To allow that, two more straightforward methods were used:

• Network with threshold of 0.05: if the difference between the users’ input and the
network’s input is smaller than the chosen threshold of 0.05 (5%), then the user input is
used directly as input for the robot. If it is equal to or bigger than the threshold, then the
network’s input is used directly as input for the robot.

• Mean with threshold of 0.05: if the difference between the users’ input and the network’s
input is smaller than the chosen threshold of 0.05 (5%), then the user input is used directly
as input for the robot. If it is equal to or bigger than the threshold, the arithmetic average
of both input signals is used as input for the robot.

Since the objective here is to find which method the user prefers, the tests had to be random
to ensure the results are not biased. That said, six test sequences were predefined, and each user
would get a different one so that each method would be the first one, the middle one and the last
one for at least one of the users. Every user had one round to learn how to use the controller or
the keyboard and get used to the simulation. After the first round, the user would start the tests
following the assigned sequence. The sequences used can be seen in Table 3.6. Also, as explained
in further details in Section 3.9, each test received a colour code so that the user’s opinion would
not be influenced by the method implemented. The colour code is as follows:

30

• Network with threshold of 0.05: red;

• Mean with threshold of 0.05: yellow;

• Kalman filter: green.

Test Order
A Red, yellow and green
B Red, green and yellow
C Yellow, red and green
D Yellow, green and yellow
E Green, red and yellow
F Green, yellow and red

Table 3.6: Test sequences.

3.8.1 Trajectory

The user’s path was established in the simulation using traffic cones, which indicate where the
curves should happen. Figure 3.4 shows a perspective view of the path that will be executed, being
possible to differentiate well the objects in the scene. Figure 3.5 presents the trajectory considered
ideal for carrying out the indicated route, making a zigzag between the six cones equally spaced,
going around the last cone and then returning to the beginning.

Figure 3.4: Perspective view of the robot path.

This trajectory is similar to the eight-shaped trajectory implemented by Thúlio [2], but longer
and slightly more complicated.

31

Figure 3.5: Superior view of the trajectory, with indication of the ideal route.

3.8.2 First phase: using the Xbox controller

For the tests executed in person, each user received the following set of information:

• The main goal is to complete the trajectory as smoothly as possible, going between the cones
until the end and coming back to the start point;

• In order for the system to work, one has to keep pressing the left bumper of the controller
at all times, since as soon as one lets it go, the robot will stop responding;

• One has one round, the first one, to learn how to use the robot, from the second round
forward the tests will begin;

• One will not be aware of the method being tested only after the questionnaire is responded
to to avoid any bias.

After receiving the initial information, the users could begin the simulation, starting with the
learning round. Since some of the users presented some difficulties using the controller, sometimes
it was necessary to abort the test and start over, as will be further explained in Chapter 4.

3.8.3 Second phase: using the keyboard

For the tests performed remotely, each user received the following set of information:

• The main goal is to complete the trajectory as smoothly as possible, going between the cones
until the end and coming back to the start point;

• The keys you can use to control the robot are the following:

– i: go forward;

32

– j: turn left;

– l: turn right;

– u: turn left while going forward;

– o: turn right while going forward;

– space bar: stop the robot.

• One should prioritize using u and o while driving and moving backwards is not allowed;

• One has one round, the first one, to learn how to use the robot, from the second round
forward the tests will begin;

• One will not be aware of the method being tested, only after the questionnaire is responded,
to avoid any bias.

As explained for the tests in the first phase, in Subsection 3.8.2, after receiving the initial
information, the users were allowed to begin the simulation, starting with the learning round.
The difference in the second phase was that at the end of each round, the whole system would be
restarted to guarantee all rounds for all users were the same, and the robot always began in the
same position. That was necessary here and not in the in-person tests due to the considerable
increase in difficulty, so to avoid differences between users, it was set as the standard for all tests.
This will be further explained in Chapter 4.

3.9 Evaluation questionnaire

The questionnaire was used to acquire the user’s perception of which method was the most
comfortable to drive the robot with and which one allowed to perform smoother curves. To
achieve that, the survey must question if the user about previous experience with robots or heavy
machinery and experience with the use of joystick or keyboard for games, depending on the type
of test the user performed. According to Meyer in [18], it is essential to evaluate whether the user
knows how to use the system being tested and is comfortable with it since both knowledge and
comfort with the system can increase or decrease the difficulty in its use and even jeopardize its
functioning.

The questionnaire was always applied at the end of the test after all three methods were
executed, and the user only knew the colour code so that their responses would not be biased.

Since the tests were divided into two phases, it was necessary to use two different surveys.
The main evaluation is the same in both, but the survey for the second phase had a few more
questions to evaluate if the internet connection interfered with the execution of the tests and to
verify if the user was able to complete all four rounds. The questions for each questionnaire can
be seen in the following subsections.

33

3.9.1 Questionnaire for tests in first phase, using the Xbox controller

The questions used in this questionnaire where all in Portuguese, since the all the tests were
carried out in Brasília, Brazil, so they are translated to English here. The original questions, in
Portuguese, can be found in the attachments at the end of this document.

The first set of questions aims to acquire general information about the user, with some
socioeconomic questions. After that, there are three questions about previous experience with
video games and using a joystick.

1. How old are you?

• Less than 20 years old;

• 21 to 25 years old;

• 26 to 30 years old;

• 31 to 35 years old;

• 36 to 40 years old;

• 41 to 45 years old;

• 45 to 50 years old;

• 51 to 55 years old;

• 56 to 60 years old;

• More than 60 years old.

2. Which gender do you identify with the most?

• Female;

• Male;

• I prefer not to declare.

3. What is your level of education?

• Incomplete elementary school;

• Complete elementary school;

• Incomplete high school;

• Complete high school;

• Incomplete higher education;

• Complete higher education;

• MBA, postgraduate or specialization;

• Master;

• PHD.

4. Do you have experience with operating robots or machinery?

34

• Yes;

• No.

5. How familiar are you with video games?

• I am not;

• A little;

• A lot.

6. How skilled are you with the use of joystick controls for games?

• I am not;

• A little;

• A lot.

The main objective of the second set of questions was to collect information regarding the
user’s general perception of the tests performed. The questions can be seen below.

1. What was the sequence used?

• A;

• B;

• C;

• D;

• E;

• F.

2. Was there a significant difference between the methods used?

• Yes;

• No.

3. If so, which one was the most comfortable to drive the robot?

• Method red;

• Method yellow;

• Method green.

4. If not, please describe your experience with the tests performed.

5. Describe the points that you liked the most in the method chosen as the most comfortable
one.

6. Besides comfort, on what else did you notice a difference between the methods used?

35

Finally, the last three sections aimed to evaluate the user’s perception of each method tested.
Since all three sections have the same questions, changing only the colour of the method evaluated,
only the first one will be listed here.

1. What is your perception about the interference of the red method in the guidance of the
robot?

• Very little interference;

• Little interference;

• Moderate;

• Too much interference.

2. How comfortable was it to drive the robot using the red method?

• Not comfortable;

• Moderate;

• Very comfortable.

3. In your perception, the red method should:

• Interfere more;

• Interfere less;

• The interference is adequate.

3.9.2 Questionnaire for second phase tests, using the keyboard

The first five questions are the same used in the first phase questionnaire (3.9.1) with difference
only in the 6th question, since in the second phase is critical to know whether the user is skilled
with keyboard for games, instead of being skilled with a joystick.

6. How skilled are you with the use of keyboards for games?

• I am not;

• A little;

• A lot.

The main objective of the second set of questions was to collect information regarding the
user’s general perception of the tests performed. Here, a few questions were added to the second
phase questionnaire to acquire information regarding the internet connection and whether the user
could finish all the tests. Since the other questions are the same as the ones used for the first
phase (3.9.1), only the new ones will be listed below.

2. Did the internet connection interfere with the testing?

36

• Yes;

• No;

• Could not tell.

3. Was the software used to perform the tests adequate?

• Yes;

• No.

4. Were you able to finish all tests?

• Yes;

• No.

5. If not, what prevented you from finishing the tests?

At last, the last three sections are the same as the ones used for the in-person questionnaire
and can be seen in Subsection 3.9.1.

37

Chapter 4

Results
This chapter presents the results obtained as well
as their critical analysis.

This chapter will present the results of the analysis described in Chapter 3. The first validation
was done using the database acquired by Noslen in his work [2], starting with a graphical validation
and then doing a percentage mean error analysis. After this validation, since the proposed filter
passed all the criteria listed in 3.2, the system was then adjusted to work with the simulated robot
in order to allow the second validation.

The simulations were performed with 33 users, and those tests were divided into two phases,
described in Section 3.8. This validation consisted of two different analysis:

• User perception: it was acquired via a questionnaire, described in Section 3.9. This
composes the qualitative validation of the Kalman filter as a signal fusion method.

• Trajectories: this analysis composes the quantitative validation of the model, consisting
of analysing the data acquired during the simulations and comparing the different methods
tests.

4.1 Quantitative validation of the Kalman Filter using the pre-
vious database

The quantitative validation of the model using previous data, as explained in Section 3.4, was
divided into two stages: using charts and using the percentage mean error. Those results can be
seen in the following subsections.

4.1.1 Graphics validation

The graphic validation consisted of comparing the graphs generated with the output from
the database and the output of the implemented filter. The updated states in X and Y are also
analysed to make sure the results are coherent considering the robot’s path. Both outputs were

38

plotted in the same graph in order to allow the analysis. This was a simple validation to check
whether the results were coherent or not, so the data from only two users were used.

The data set presents the results obtained. Two different users were chosen randomly, user
am and gm, and the data from their eight-shaped route and building route was used as a base
comparison for this analysis. The data sets used are the ones listed below.

1. User am, eight-shaped route (Subsection 4.1.1.1);

2. User gm, eight-shaped route (Subsection 4.1.1.1);

3. User am, building route (Subsection 4.1.1.2);

4. User gm, building route (Subsection 4.1.1.2);

For the comparison between the output in the database and the updated states in the Kalman
filter, the expected results are for the two data sets to be close but not necessarily identical. Both
charts should, at least partially, overlap.

Analysing the updated states in the eight-shaped route, for the states in X, the expected result
is something similar to a squared wave but with a lot of noise. This result is expected because
the updated states in X should have the same format as the signal from the Xbox controller in X.
Since this route is the eight-shaped one, one should expect constant movements from one side to
the other, mimicking a squared wave. The noises seen are expected because the user can choose
to make the curve with more or less intensity by varying the input value in X, so adjustments
during the trajectory are expected. The updated states in Y are expected to be close to one most
of the time since it represents the linear velocity. Since the robot is moving forward during the
test, it is expected to be close to one, whereas that is the maximum value it can achieve.

Finally, in the analysis of the actualised states in the building route, for the states in X, the
expected result is a signal with some values close to one and minus one, but most of it should be
around zero. This is expected because the building route had mainly straight lines and only a few
turns, so the user only needed to change the input signal in X to correct the trajectory during
the straight parts or perform the curves. For the states in Y, the expected result is similar to the
eight-shaped route, so it is expected to be close to one most of the time.

4.1.1.1 Eight-shaped route

The batch of results from user am is showed in Figures 4.1, 4.2 and 4.5. The results from user
gm are showed in Figures 4.3, 4.4 and 4.6.

The Figures 4.1 and 4.2 show the actualized states in X and Y, respectively, from user am.
The graphs for user gm are shown in Figures 4.3 and 4.4. Analysing the graphs, it is clear that
the pattern follows the expected behaviour defined in the Section 3.4. The states in X are in a
shape similar to a squared wave and the states in Y are near to one most of the time.

39

Figure 4.1: Updated states in X - eight-shaped route, user am.

Figure 4.2: Updated states in Y - eight-shaped route, user am.

Figure 4.3: Actualized states in X - eight-shaped route, user gm.

40

Figure 4.4: Actualized states in Y - eight-shaped route, user gm.

The last analysis for the eight-shaped route can be done combining the signals in one graph,
as shown in Figures 4.5 and 4.6. This combination results in the representation of the movement
the joystick would make in order to create the signals in X and Y, shown in Figures 4.1 and 4.2 for
user am and in Figures 4.3 and 4.4 for user gm. Considering that the route is composed mainly
of curves, the user is mostly going forward while constantly turning left and right to perform the
eight-shaped route, and this representation is expected to be shaped similar to the upper part of
an umbrella. The point in the centre happens whenever the user lets the joystick loose, and it
goes back to its original position, and user am has one line going the opposite direction because
at some point, it tried to move the robot backwards. The updated states overlap the states from
the database for both users, validating the proposed Kalman filter.

Figure 4.5: Comparison between the Updated states and the Output from the Data Base - eight-
shaped route, user am.

41

Figure 4.6: Comparison between the actualized states and the Output from the Data Base -
eight-shaped route, user gm.

4.1.1.2 Building route

The batch of results form user am is showed in the Figures 4.7, 4.8 and 4.11. The results from
user gm are shown in Figures 4.9, 4.10 and 4.12.

The Figures 4.7 and 4.8 show the updated states in X and Y, respectively, for user am. The
Figures 4.9 and 4.10 show the updated states for user gm. Analysing the graphs, one can see
that the pattern follows again the expected behaviour defined in Section 3.4. The states in X vary
between one and minus one, but most of the time, it is smaller than 0, 5, therefore considered to
be close to zero. It has those variations because the trajectory is quite long, and the user needs to
correct it sometimes before the robot arrives at the next corner. The states in Y are at one most
of the time, confirming that the robot was moving forward most of the time.

Figure 4.7: Updated states in X - building route, user am.

42

Figure 4.8: Updated states in Y - building route, user am.

Figure 4.9: Actualized states in X - building route, user gm.

Figure 4.10: Actualized states in Y - building route, user gm.

The last two graphs, shown in Figures 4.11 and 4.12, show the combination of the updated

43

states in X and Y for each user. As explained in 4.1.1.1, this representation is expected to have a
shape similar to the upper part of an umbrella since it is the movement the joystick is supposed
to make to generate the input signal. The updated states overlap the states from the database for
both users, validating the proposed Kalman filter.

Figure 4.11: Comparison between the actualized states and the Output from the Data Base -
building route, user am.

Figure 4.12: Comparison between the actualized states and the Output from the Data Base -
building route, user gm.

4.1.2 Percentage mean error analysis

The graphical analysis done previously is a good starting point, but one can go further and
analyse the results analytically. The following tables show the results of the mean error for each
trajectory analysed, that is, the building and the eight shape. All signal fusion methods used by
Thúlio in his work [2] were compared to the Kalman filter:

• Network with 0.05 threshold: if the difference between the user input and the network

44

input is bellow 5%, then the user input is used directly as the output. If it is above 5%, the
network input is used as output.

• Network with 0.20 threshold: if the difference between the user input and the network
input is bellow 20%, then the user input is used directly as the output. If it is above 20%,
the network input is used as output.

• Mean with 0.05 threshold: if the difference between the user input and the average
between the user input and the network input is bellow 5%, then the user input is used
directly as the output. If it is above 5%, the average is used as output.

• Mean with 0.20 threshold: if the difference between the user input and the average
between the user input and the network input is bellow 5%, then the user input is used
directly as the output. If it is above 5%, the average is used as output.

• Off: the user input is used as output directly.

Table 4.1: Average error for the building trajectory

Method
Absolute mean error Percentage mean error

X Y X Y
Network with 0.05 threshold 0.00668026 -0.02550249 2.0655% 2.5413%
Network with 0.20 threshold 0.00226939 -0.02194258 1.1969% 2.1856%
Mean with 0.05 threshold 0.00098402 -0.00733841 0.2849% 0.7331%
Mean with 0.2 threshold 0.00122919 0.00672693 0.2454% 0.6727%
Off 0.00000267 0.00000804 0.008639% 0.002831%

Table 4.2: Average error for the eight trajectory

Method
Absolute mean error Percentage mean error

X Y X Y
Network with 0.05 threshold 0.00283381 -0.06303956 0.9058% 6.3495%
Network with 0.20 threshold -0.01439740 -0.03264266 1.8123% 3.2643%
Mean with 0.05 threshold -0.00764797 -0.02243746 0.7647% 2.2437%
Mean with 0.2 threshold -0.00435120 0.01002543 0.4351% 1.3816%
Off 0.00002455 0.00009597 0.002455% 0.009597%

Analysing the results shown in the tables above, one can see clearly that the percentile mean
error is acceptable for all cases, staying below under 5% and in most cases staying under 1%. The
only case where the error was above 5% is in the first one in Table 4.2, and even in that case, it
was close enough to be considered acceptable.

Another detail that one should notice in the tables is the accuracy the filter has when the
test type is with both the mean algorithm and the net off. In those, the error is considerably
lower. The main explanation is that the whole system has more error when the other test types
are executed.

45

Table 4.3: Average error both trajectories

Method
Absolute mean error Percentage mean error

X Y X Y
Network with 0.05 threshold 0.00465581 -0.04525884 1.4552% 4.5456%
Network with 0.20 threshold -0.00513807 -0.02669817 1.4705% 2.6650%
Mean with 0.05 threshold -0.00353466 -0.01495741 0.5339% 1.4954%
Mean with 0.2 threshold -0.00130788 0.00633079 0.3317% 0.9677%
Off 0.00001361 0.00005201 0.005547% 0.006214%

Having analysed the tables shown and using 5% as the limit of acceptable error, the values
of the actualised state vector (used as the output of the filter and the comparison value for this
analysis), the filter is validated and can be used as-is as the project goes on.

4.2 Simulated tests

The results of the tests will be analysed in this Section. For this analysis, there are two essential
sources of information: the users’ perception, which will compose the qualitative validation of
the system, and the trajectories recorded from the tests, which will compose the quantitative
validation. It is essential to consider, also, that the tests were carried out in two phases: in the
first phase, the users used a joystick as the input method, and in the second phase, the users used
a keyboard as the input method. This difference in the input methods must be considered when
analysing the results for both the qualitative and quantitative validations.

In total, 32 tests were done to validate the system: 13 were in person, and 19 were done
remotely, using the keyboard as the input method. Also, three users participated in both phases,
and all three of them reported that it was significantly more challenging to control the robot with
the keyboard than with the joystick.

The distribution of the tests can be seen in Table 4.4. Since the users tested the methods in
different orders, it can be assumed that this factor did not favour one method or another. Both
the qualitative analysis of users’ preference and the quantitative analysis of the trajectories can
be done considering that all methods were tested in the same conditions. Only the first order (A
- Network, mean and Kalman filter) was done two times more than the others, and it happened
solely because of the number of users.

4.2.1 User perceptions - Qualitative validation

The qualitative validation was made by analysing the responses of the perception questionnaire,
presented in Section 3.9. The first thing one should look for in this analysis is which method most
users preferred and any difference between the two different phases. This can be seen in Table 4.5
and its graphic representation in Figure 4.13.

46

Table 4.4: Tests performed, classified by the order of the methods used.

Order All tests Phase 1 (joystick) Phase 2 (keyboard)

A Network, mean
and Kalman filter

7 21.88% 3 9.38% 4 12.50%

B Network, Kalman
filter and mean

5 15.63% 2 6.25% 3 9.38%

C Mean, network
and Kalman filter

5 15.63% 2 6.25% 3 9.38%

D Mean, Kalman
filter and network

5 15.63% 2 6.25% 3 9.38%

E Kalman filter,
network and mean

5 15.63% 2 6.25% 3 9.38%

F Kalman filter,
mean and network

5 15.63% 2 6.25% 3 9.38%

Total 32 users 100% 13 users 41% 19 users 59%

Table 4.5: User preference analysis, considering both phases.

Test All tests Phase 1 (joystick) Phase 2 (keyboard)
Red (Network with
0.05 threshold)

8 25.00% 3 9.38% 5 15.63%

Yellow (Mean with
0.05 threshold)

12 37.50% 5 15.63% 7 21.88%

Green
(Kalman Filter)

12 37.50% 5 15.63% 7 21.88%

TOTAL 32 users 100% 13 users 41% 19 users 59%

The first and most straightforward conclusion that one can draw from those values is that the
method red (Network with 0.05 threshold) was the least liked by the users, both in remote and
in-person tests. The main explanation for that perception is that it is the most rigid method, so
it gives less freedom of choice during the test to the user, and most people do not feel comfortable
with that. The second conclusion one can draw is that regarding the comfort during the tests,
both the yellow and the green methods had the same number of users preferring them. That said,
it is not possible to determine which method was best with just this set of data.

47

Table 4.6: User preference analysis, considering only the order of the tests and not each method
(for both keyboard and joystick).

Test order All tests Phase 1 (joystick) Phase 2 (keyboard)
First 8 25.00% 1 3.13% 7 21.88%
Second 9 28.13% 5 15.63% 4 12.50%
Third 15 46.88% 7 21.88% 8 25.00%
TOTAL 32 users 100% 13 users 41% 19 users 59%

Figure 4.13: Analysis of user preference, considering both joystick (in person) and keyboard
(remote) tests.

The next thing that must be analysed from the questionnaire, considering user preference
solely, is if there is any relation between the order the users did the tests and the test they chose
as most comfortable. This information is shown in Table 4.6 and in Figure 4.14, its graphic
representation.

Analysing the graph shown in Figure 4.14, one can easily see that most users (46.88% of
them) preferred the last method they tried. That was expected since the users tend to feel more
comfortable with the whole system after using it longer. Also, it implies that user perception,
although very important, cannot be the only parameter analysed to decide which method is better.

48

Figure 4.14: Analysis of user preference, considering only the order of the tests and not each
method (for both keyboard and joystick).

Going forward with the analysis of the data obtained with the questionnaire, one can start the
socioeconomic analysis of respondents.

Table 4.7: Gender of the users.

Gender All tests Phase 1 (joystick) Phase 2 (keyboard)
Female 16 50.00% 8 25.00% 8 25.00%
Male 16 50.00% 5 15.63% 11 34.38%
I prefer not to declare 0 0.00% 0 0.00% 0 0.00%

TOTAL 32 users 100% 13 users 41% 19 users 59%

The first data to be analysed is the user’s gender. From Table 4.7, one can see that considering
both phases, 50% of the users declared themselves to be female, and 50% declared to be male.
None of the users preferred not to declare their gender. This is a balanced distribution, even
though the user’s gender is not assumed to interfere with the results and will not be considered
in the quantitative analysis.

49

Figure 4.15: Analysis of the relationship between gender and preferred method by the user.

Figure 4.16: Analysis of the relationship between gender and preferred method by the user,
considering which phase the test was performed.

Analysing Figures 4.15 and 4.16, one can see that more female users preferred the Kalman
filter method than the other two methods, while male users preferred the mean method. Also,
one can see that the least liked method amongst women was the network one.

The following analysis to be made is regarding the age and education level of the users. From
the data shown in Tables 4.8 and 4.9, one can see that most users are still in university or have
completed a higher education degree. That resonates well with the age of the users since most of
them fall in one of the first three age groups, being up to 30 years old.

50

Table 4.8: User’s age.

Age All tests Phase 1 (joystick) Phase 2 (keyboard)
Less than 20 4 12.50% 3 9.38% 1 3.13%
21 to 25 17 53.13% 4 12.50% 13 40.63%
26 to 30 4 12.50% 2 6.25% 2 6.25%
31 to 35 0 0.00% 0 0.00% 0 0.00%
36 to 40 1 3.13% 0 0.00% 1 3.13%
41 to 45 0 0.00% 0 0.00% 0 0.00%
46 to 50 4 12.50% 3 9.38% 1 3.13%
51 to 56 2 6.25% 1 3.13% 1 3.13%
56 to 60 0 0.00% 0 0.00% 0 0.00%
More than 60 0 0.00% 0 0.00% 0 0.00%
TOTAL 32 100% 13 41% 19 59%

Table 4.9: Level of education.

Education level All tests Phase 1 (joystick) Phase 2 (keyboard)
Incomplete elementary school 0 0.00% 0 0.00% 0 0.00%
Complete elementary school 0 0.00% 0 0.00% 0 0.00%
Incomplete high school 1 3.13% 1 3.13% 0 0.00%
Complete high school 0 0.00% 0 0.00% 0 0.00%
Incomplete higher education 18 56.25% 5 15.63% 13 40.63%
Complete higher education 5 15.63% 1 3.13% 4 12.50%
MBA, postgraduate or specialization 5 15.63% 4 12.50% 1 3.13%
Master 1 3.13% 1 3.13% 0 0.00%
PhD 2 6.25% 1 3.13% 1 3.13%

TOTAL 32 100% 13 41% 19 59%

The following information to be analysed is the users experience with operating robots or
machinery of any kind. The responses from this question are summarised in Table 4.10 and one
can see that most users do not have experience with robots or machinery. That is a good indicator
because most of them fall in the desired target audience of inexperienced users.

Table 4.10: Experience with operating robots or machinery.

Answer All tests Phase 1 (joystick) Phase 2 (keyboard)
Yes 2 6.25% 0 0.00% 2 6.25%
No 30 93.75% 13 40.63% 17 53.13%

TOTAL 32 100% 13 41% 19 59%

The last information to be evaluated is familiarity with video games and skills with the input
method, whose data can be seen in Tables 4.11 and 4.12, respectively. Form Table 4.11, one can

51

see that almost all users (84.88%) declared to have some familiarity with video games, most of
them (46.88%) having said to have "a lot". Also, in Table 4.12, the pattern is repeated. Most of
the users (78..13%) declared to have skills to some degree with the used input method (keyboard
or joystick), most of them (46.88%) saying to have "a lot".

Table 4.11: How familiar the users are with video games.

Answer All tests Phase 1 (joystick) Phase 2 (keyboard)
I am not 5 15.63% 3 9.38% 2 6.25%
A little 12 37.50% 5 15.63% 7 21.88%
A lot 15 46.88% 5 15.63% 10 31.25%
TOTAL 32 100% 13 41% 19 59%

Table 4.12: How skilled the users are with the input method (keyboard or joystick) for games.

Answer All tests Phase 1 (joystick) Phase 2 (keyboard)
I am not 7 21.88% 5 15.63% 2 6.25%
A little 10 31.25% 3 9.38% 7 21.88%
A lot 15 46.88% 5 15.63% 10 31.25%
TOTAL 32 100% 13 41% 19 59%

Last but not least, for the remote test is vital to analyse how many users were disturbed by
the internet connection. In Table 4.13, one can see that most of the users (68.42%) did not have
any problems.

Table 4.13: Internet interference with the execution of the tests.

Answer Phase 2 (keyboard)
Yes 5 26.32%
No 13 68.42%
Could not tell 1 5.26%

4.2.1.1 Red method - Network with 0.05 threshold

Starting the analysis of the perception of users about each specific method, one can see in
Table 4.14 that most users (65.63%) felt that the red method had little or very little interference
in the robot’s piloting, even though this was the method that most interfered in the trajectory, as
it will be seen in Subsection 4.2.2. The data shown in Table 4.16 show that although most users
feel this method has little or very little interference, most of them (56.25%) answered that the
interference is adequate.

When analysing the data shown in Table 4.15, one can see that most users felt that the comfort
was moderate in the red method. However, as will be seen in Subsection 4.2.2, this method was
the one most of the users faced difficulties while driving, even some of them could not finish the

52

Table 4.14: Users perception regarding the interference of the red method (network with 0.05
threshold).

Answer All tests Phase 1 (joystick) Phase 2 (keyboard)
Very little interference 13 40.63% 4 12.50% 9 28.13%
Little interference 8 25.00% 2 6.25% 6 18.75%
Moderate interference 8 25.00% 4 12.50% 4 12.50%
Too much interference 3 9.38% 3 9.38% 0 0.00%

TOTAL 32 100% 13 41% 19 59%

intended trajectory on the first try because they would hit one of the traffic cones or go too far
from the route and had to start over: this only happened in this method.

Table 4.15: Users perception of comfort while driving with the red method (network with 0.05
threshold).

Answer All tests Phase 1 (joystick) Phase 2 (keyboard)
Very comfortable 7 21.88% 4 12.50% 3 9.38%
Moderate 14 43.75% 6 18.75% 8 25.00%
Not comfortable 11 34.38% 3 9.38% 8 25.00%

TOTAL 32 100% 13 41% 19 59%

Table 4.16: Users perception of how the red method (network with 0.05 threshold) could be
improved, regarding its interference.

Answer All tests Phase 1 (joystick) Phase 2 (keyboard)
Interfere more 4 12.50% 2 6.25% 2 6.25%
Interfere less 10 31.25% 6 18.75% 4 12.50%
The interference is adequate 18 56.25% 5 15.63% 13 40.63%

TOTAL 32 100% 13 41% 19 59%

4.2.1.2 Yellow method - Mean with 0.05 threshold

The same analysis done for the red method in 4.2.1.1 can be done for the yellow method as
well. Starting with the perception of interference, one can see from Table 4.17 that most users
(56.26%) found that this method had little or very little interference in the driving. However,
contradicting that, the data in Table 4.19 shows that most users (56.25%) would prefer if the
yellow method interfered less.

Analysing the comfort the users felt while driving the robot with the yellow method, one can
see from Table 4.18 that less than one-fifth of the users felt this method was not comfortable to
drive with, and 43.75% of them felt it was very comfortable. This was the method that more
users pointed out to be very comfortable to drive with. Considering that most users that liked

53

Table 4.17: Users perception regarding the interference of the yellow method (mean with 0.05
threshold).

Answer All tests Phase 1 (joystick) Phase 2 (keyboard)
Very little interference 7 21.88% 3 9.38% 4 12.50%
Little interference 11 34.38% 4 12.50% 7 21.88%
Moderate interference 12 37.50% 5 15.63% 7 21.88%
Too much interference 2 6.25% 1 3.13% 1 3.13%

TOTAL 32 100% 13 41% 19 59%

this method said they felt the robot responded faster to the inputs made, both in the remote and
the in-person tests, it makes sense that only a few users would feel uncomfortable using it.

Table 4.18: Users perception of comfort while driving with the yellow method (mean with 0.05
threshold).

Answer All tests Phase 1 (joystick) Phase 2 (keyboard)
Very comfortable 14 43.75% 5 15.63% 9 28.13%
Moderate 12 37.50% 6 18.75% 6 18.75%
Not comfortable 6 18.75% 2 6.25% 4 12.50%

TOTAL 32 100% 13 41% 19 59%

Table 4.19: Users perception of how the yellow method (mean with 0.05 threshold) could be
improved, regarding its interference.

Answer All tests Phase 1 (joystick) Phase 2 (keyboard)
Interfere more 8 25.00% 3 9.38% 5 15.63%
Interfere less 18 56.25% 7 21.88% 11 34.38%
The interference is adequate 6 18.75% 3 9.38% 3 9.38%

TOTAL 32 100% 13 41% 19 59%

4.2.1.3 Green method - Kalman filter

Lastly, one can analyse the users’ perception of the Kalman filter method. This was the one
in which more users felt the interference during the trajectory, as can be seen in Table 4.20 that
43.88% of them felt the method had moderate or too much interference. Corroborating with that
information, in Table 4.22 one can see that 50% of the users felt that this method should interfere
less.

However, 40.63% of users said that this method was very comfortable to drive with, and less
than 30% said it was uncomfortable. This points out that even if the user feels that the method
is interfering, it does not mean that it is bad. In fact, 7 users (1 from the first phase and 6 from
the second phase) even pointed out during the tests that the method was indeed interfering with

54

Table 4.20: Users perception regarding the interference of the green method (Kalman filter).

Answer All tests Phase 1 (joystick) Phase 2 (keyboard)
Very little interference 3 9.38% 3 9.38% 0 0.00%
Little interference 14 43.75% 6 18.75% 8 25.00%
Moderate interference 9 28.13% 2 6.25% 7 21.88%
Too much interference 6 18.75% 2 6.25% 4 12.50%

TOTAL 32 100% 13 41% 19 59%

the driving and felt that they drove better because of it.

Table 4.21: Users perception of comfort while driving with the green method (Kalman filter).

Answer All tests Phase 1 (joystick) Phase 2 (keyboard)
Very comfortable 13 40.63% 5 15.63% 8 25.00%
Moderate 10 31.25% 5 15.63% 5 15.63%
Not comfortable 9 28.13% 3 9.38% 6 18.75%

TOTAL 32 100% 13 41% 19 59%

Table 4.22: Users perception of how the green method (Kalman filter) could be improved, regarding
its interference.

Answer All tests Phase 1 (joystick) Phase 2 (keyboard)
Interfere more 8 25.00% 1 3.13% 7 21.88%
Interfere less 16 50.00% 7 21.88% 9 28.13%
The interference is adequate 8 25.00% 5 15.63% 3 9.38%

TOTAL 32 100% 13 41% 19 59%

4.2.2 Trajectories - Quantitative validation

We will now start the quantitative analysis made with the data saved from the simulations
made in ROS and Gazebo. From this data, it was possible to create graphs showing the trajectories
made by users, as well as to analyse the second derivatives from said trajectories to define how
smooth the driving was. Also, it is possible to analyse the average differences between user input
and network input for each method and the difference between what the users intended as input
and what they got as output from the system to the robot. Therefore, the following topics will
deal with such analyses.

The first and most important result obtained with this analysis was that the Kalman filter did
indeed give the smoothest trajectories, even if the qualitative analysis made in Subsection 4.2.1
did not show that explicitly. This deduction is due to the low value of the second derivative of the
position found for the Kalman filter. Also, the red method (Network with 0.05 threshold) was, in
general, the one with the most abrupt changes in the movement when considering the in-person

55

tests, as will be shown in 4.2.2.2.

4.2.2.1 Analysis of graphical representations of trajectories

The analysis of the graphical representation of the curves will be done for a couple of users
only, since the overall analysis of the data done later on can give one more conclusive information
about the tests as a whole, and the main objective will be to show the differences between the tests
done using the joystick as input method (in person) and the ones with the keyboard (remote). It
is essential to make this comparison because the neural network used was trained to work with
an input signal from a joystick or at least with a similar profile, and the profile of the input signal
generated by the keyboard, as explained earlier, is quite different. Also, as one will be able to
see from the following graphs, the users had a significant increase in difficulty while using the
keyboard.

The first thing to do is define how the trajectory graphs are supposed to be understood. All
four trajectories from user 10, one for each method tested, can be seen in Figure 4.17. The X-axis
represents the trajectory that was supposed to be made, and the Y-axis represents how far from
the centre of the trajectory the user went. The beginning of each test always occurred on the left
side of the graphs, with the robot’s position around x=-10, and the centres of the oval shapes
one can see were the traffic cones that indicated the desired path, as can be seen in Figure 3.5.
Although one can see how each trajectory was in this figure, it is not clear the comparison between
them, and one cannot tell which one was smoother. To solve that, all four curves will be plotted
in the same graph, as shown in Figure 4.18.

Figure 4.17: Trajectories done by user 10 using the joystick as input method, separated by method
used.

56

One can now begin to compare the trajectories done by different users. Both Figures 4.18 and
4.19 show trajectories done by user using the joystick as input method. User 7, shown in Figure
4.19, found the tests harder and even had to restart the tests twice because it lost control of the
robot and went out of the path designated to the simulations. Although the graph shows only the
successful attempts, one can see that the driving was not as smooth as the one done by user 10 in
Figure 4.18 and was not as balanced either, having big differences in the trajectories done in each
round.

Figure 4.18: Trajectories done by user 10 (female, between 21 and 25 years old, with no familiarity
with robots, very familiar with video games and very skilled with joystick) using the joystick as
input method, with the four trajectories represented together.

57

Figure 4.19: Trajectories done by user 7 (female, between 26 and 30 years old, with no familiarity
with robots, not familiar with video games and not skilled with joystick) using the joystick as
input method.

The following comparison to be made is between the trajectories done using the joystick and
the ones using the keyboard, shown in Figures 4.20 and 4.21. User 28 was the one that obtained
the smoothest curves and most well-rounded trajectories among the ones that used the keyboard.
In its graph, one can see that although this user had a good result with all four rounds, the one
was done using the Kalman filter was smoother and more balanced throughout the whole path.
However, when asked which method was the most comfortable one to drive the robot with, this
user said the red (network with 0.05 threshold) one was better.

58

Figure 4.20: Trajectories done by user 28 (male, between 21 and 25 years old, with no familiarity
with robots, very familiar with video games and not skilled with the keyboard) using the keyboard
as input method.

In contrast, user 18 obtained the worst set of trajectories. This user had great difficulties using
the keyboard as the input method and, as one can see from Figure 4.21, could not go around all
cones properly. Moreover, even in that extreme case, the Kalman filter method was the smoothest,
preventing any harsh curves like the ones seen on the learning round from happening. That is, it
accomplished its objective nicely.

59

Figure 4.21: Trajectories done by user 18 (male, between 26 and 30 years old, with no familiarity
with robots, very familiar with video games and very skilled with the keyboard) using the keyboard
as input method.

4.2.2.2 Overall analysis

The first analysis will be of the second-order variation analysis, shown in Tables 4.23 and 4.24.
This data represents the average of the second derivative of the robot’s position in each test made.
The analysis here consists of finding the method that provided the smoother average trajectory,
so the smaller the value of the second-order variation, the smoother the trajectory was since those
values represent the average spikes in the positions of the robot.

The graphs shown in Figures 4.22 and 4.23 are the graphical representation of the data shown
in Tables 4.23 and 4.24, respectively. The type of graph used is called boxplot because it allows
the analysis of several important data characteristics in one plot [19]. The box represents half of
the data, showing the distance between the first and the third quartiles. The line inside the box
represents the median, and the lines outside the boxes represent the standard deviation. Finally,
the dots outside the boxes represent the outlier values present in the dataset.

In both phases, the standard deviations are high for two main reasons:

• There were few users, that is, few sets of data to analyse, so a high standard deviation is to
be expected;

• The users had different driving profiles, meaning that some of them preferred to perform
the curves more open, some of them tried to stay closer to the centre of the route, and also
the level of difficulty faced was different from one another. This caused several differences
in the trajectories made.

60

Table 4.23: Second-order variation analysis, for all users - Remote tests (keyboard used as input
method).

Direction
Learning Network

Average Standard deviation Average Standard deviation

Linear
Forward 48.2402 31.1142 20.9681 14.1806
Backward 59.5282 27.6504 29.6090 19.6379

Angular
Left 43.9538 22.2744 18.7693 10.8822
Right 50.2897 22.5679 23.7479 14.8770

Direction
Mean Kalman filter

Average Standard deviation Average Standard deviation

Linear
Forward 19.1200 11.8489 6.9395 3.7628
Backward 26.1463 19.3831 8.6685 4.3352

Angular
Left 18.4636 12.6435 6.2961 3.1427
Right 21.7727 14.9672 7.0006 3.4443

From Figure 4.22, one can see that the Kalman filter did provide smoother movements in all
four directions, with its averages of the second-order variation of the position being considerably
more petite than the other methods and with the smallest standard deviations. Also, one can see
that the network and mean method presented similar values, meaning that when the keyboard was
used as the input method, there was not much difference in smoothness between those methods.

Finally, the behaviour seen for the learning round was expected since most users had great
difficulties driving with the keyboard, as can be seen from the example given in Figure 4.21. Also,
the users tended to increase the velocity too fast by mistake and then abruptly stopped the robot
to correct the path. Also, most users were not able to make smooth curves on their own, as can be
seen in the example given in Figure 4.20, where even the best user was not able to make smooth
curves without help.

This shows that even in an unfavourable situation, where the user is provided with an input
method different from what the system was originally made to use and is unable to carry out
the route in a satisfactory way, the aid methods were able to fulfil their objective of correcting
the trajectory and providing smooth curves. This is especially true for the Kalman filter method,
which guaranteed the smoothest curves among the three evaluated methods.

61

Figure 4.22: Average of the second order variation, per direction, for all users - Remote test
(keyboard).

Now analysing the tests carried out in person, using the joystick as the input method, one
can see from Figure 4.23 that the learning rounds averages are much closer to the red and yellow
methods than in the remote tests. This was expected because the users were able to make smoother
trajectories even without the help of the methods, as can be seen in the examples shown in Figures
4.18 and 4.19. Also, one can see that in this case, the Kalman filter performed even better, being
even further from the other methods, presenting smaller averages when compared with the network
and mean methods.

Lastly, one may notice that the overall values seen in the tests done with the joystick as input
method were much higher than those seen in the keyboard tests. This can be explained by the
users’ driving profile in each method due to the behaviour imposed by the input method.

• The keyboard imposed a smaller and more constant velocity due to two main reasons: the
user did not have to hold any key to maintain the velocity, so it was easier to use a constant
velocity than not, and since it was hard to perform the tests, most users felt more comfortable
driving slower.

• The joystick gave more freedom of movement since it was easier to control the robot, so the
users felt more comfortable driving faster. Indeed, many users said that they would prefer
if the robot went faster, comments that did not happen in the remote tests.

62

Table 4.24: Second order variation analysis, for all users - In person tests (joystick used as input
method).

Direction
Learning Network

Average Standard deviation Average Standard deviation

Linear
Forward 239.0497 79.3228 233.4334 46.5733
Backward 222.2069 82.1677 243.8541 57.4500

Angular
Left 194.5987 65.2137 197.6361 34.4480
Right 195.5957 65.5269 208.2130 44.1867

Direction
Mean Kalman filter

Average Standard deviation Average Standard deviation

Linear
Forward 208.2290 83.8692 101.7654 34.2651
Backward 216.9606 88.6800 93.5195 31.1897

Angular
Left 176.1674 68.1713 83.1563 28.0715
Right 178.8295 70.2188 76.5865 24.8862

Figure 4.23: Average of the second order variation, per direction, for all users - In person test
(joystick).

The next analysis is based on Tables 4.26 and 4.25, which show the differences between the
user input, network input and system output to the robot. Here, network input stands for the
output of the network that acts as input to the method tested.

From the data shown, one can see that in both test phases, the red method presented a more
significant difference between the network input and the user input. This pattern repeats itself
when one looks at the differences between the user input (that is, what the user wanted the robot
to do) and the system output (that the system actually made the robot do). When looking at

63

Table 4.25: Percentile differences between the user input, network input and system output - In
person tests (joystick used as input method).

Red (Network) Yellow (Mean) Green (Kalman filter)
Network input
vs. User input

X 7.6165% 2.9213% 3.0013%
Y 9.2246% 3.0330% 3.4155%

User input vs.
System output

X 5.5145% 1.4364% 3.0006%
Y 7.6236% 1.6383% 3.4153%

the keyboard tests, shown in Table 4.26, this difference can go up to 26.46%. Comparing the
green and yellow methods, one can see that the values are much smaller and closer to each other,
especially in the in-person tests. This explains why most users felt more comfortable and preferred
those two methods over the red since they did have more control over what the robot was doing
and did not have to "fight" the system as much to impose their own will.

Table 4.26: Percentile differences between the user input, network input and system output -
Remote tests (keyboard used as input method).

Red (Network) Yellow (Mean) Green (Kalman filter)
Network input
vs. User input

X 26.2873% 10.1288% 10.0613%
Y 26.4592% 8.5214% 8.4914%

User input vs.
System output

X 24.3907% 9.0385% 10.0619%
Y 25.8554% 7.8768% 8.4935%

The higher values seen in Table 4.26 were expected because of the input method used. Since
the system was originally made to work with an input signal coming from the Xbox controller, as
explained in 3.7, some opposition from the system to the movement should be expected, especially
because the driving profile of the users also changed a lot form one input method to the other, as
one can see comparing the Figures 4.18, 4.19, 4.20 and 4.21.

Last but not least, one can analyse the overall average interference of the neural network in
each method tests in both test phases, shown in Table 4.27. This percentage shows the fraction of
the movement decisions that the neural network acted on. That said, the Kalman filter method
is expected to have values close to 100%, since this method does not have a threshold. However,
for the neural network and mean methods, the values can bring some insights into the proposed
system’s performance. As expected, in both phases, the red method had a significantly higher
percentage of network interference when compared with the yellow method. That means that
the user more freedom when driving with the yellow method, justifying once again the fact that
few users preferred the red method, as shown in Subsection 4.2.1. Comparing the tests using the
joystick with the ones using the keyboard, the data are shown in Table 4.27 also supports the
conclusion that in the remote tests, the system had a different behaviour, interfering even more
in the movement and giving less freedom to the user.

64

Table 4.27: Analysis of the average percentage of network interference in each of the methods.

Test phase Red (Network) Yellow (mean) Green (Kalman filter)
In person (joystick) 23.02% 8.42% 99.82%
Remote (keyboard) 81.23% 61.24% 98.12%

65

Chapter 5

Conclusions

A problem found in the robotics field is the high cost of training for operators of teleoperated
robots. One way to reduce these costs is to implement a system that gives some autonomy to the
robots so that even an inexperienced operator can guide them without significant difficulties. This
work consisted of proposing and testing a signal fusion method that can be used to implement
such an autonomy system.

The main objectives were:

1. Propose a Kalman filter algorithm to fuse the two input signals;

2. Validate the filter in simulations using the database;

3. Validate the filter in the robot, quantitatively, testing with several users;

4. Validate the filter qualitatively, analysing the perception of those users.

The modelling of the system and the proposed algorithm for the Kalman filter can be seen in
the Methodology chapter (Chapter 3), and it was validated in four steps. The first one was done
with the preexisting database, with the results shown in Section 4.1. All the criteria defined for this
validation in the Sections 3.2 and 3.4 were matched, having an average error for both trajectories
testes (building and eight) smaller than 5%, so the system passed the first stage validation.

Following that, the system was validated with different users via simulation, this time divided
into two phases: one executed in person, using an Xbox controller as the input method, and
another one carried out remotely, using a keyboard as the input method. Although the user
perception analysis on its own was inconclusive since 37.50% of the users preferred the Kalman
filter and 37.50% preferred the mean method, when the quantitative analysis is made, there is no
doubt that the Kalman filter is a superior method, providing smoother trajectories overall. This
results can be seen in Sections 4.2.1 and 4.2.2, respectively.

66

5.1 Future perspectives

To improve the results obtained with the Kalman filter, some modification in its implementa-
tion could be made. One of them is upgrading the estimation of the process noise using a denoising
autoencoder (an artificial neural network able to estimate the original data) [20]. Variations in the
input matrices (B1 and B2) could be made, distributing the weight of the input signals differently.

Also, testing the system with more users, preferably using both input methods, would allow a
more in-depth statistical analysis, mainly in users’ perception. Furthermore, different tests could
be performed, such as using a fixed velocity and allowing the user to change direction only.

67

REFERENCES

[1] SICILIANO, B. et al. Robotics: modelling, planning and control. [S.l.]: Springer Science &
Business Media, 2010.

[2] SANTOS, T. N. S. Aprendizado automático utilizando um modelo lstm aplicado como auxiliar
no controle de orientação e velocidade de robô móvel. v. 0, p. 0–84, jul. 2019.

[3] THRUN, S.; BURGARD, W.; FOX, D. Probabilistic robotics. [S.l.]: MIT press, 2005.

[4] GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep learning. [S.l.]: MIT press, 2016.

[5] MURPHY, K. P. Machine learning: a probabilistic perspective. [S.l.]: MIT press, 2012.

[6] SANTOS, T. N. S. et al. Driving mobile robots using a deep lstm architecture: An experimental
approach. IEEE Latin America Transactions, v. 100, n. 1e, 2020.

[7] MYTTENAERE, A. D. et al. Mean absolute percentage error for regression models. Neuro-
computing, Elsevier, v. 192, p. 38–48, 2016.

[8] DATTALO, A. ROS Introduction. maio 2021. http://wiki.ros.org/ROS/Introduction.

[9] FOUNDATION, O. S. R. Gazebo - Robot simulation made easy. maio 2021. http://
gazebosim.org/.

[10] CHUI, C. K.; CHEN, G. et al. Kalman filtering. [S.l.]: Springer, 1999.

[11] ROS. Pioneer 3-AT. maio 2021. https://robots.ros.org/pioneer-3-at/.

[12] MICHEL, O. Adept MobileRobots Pioneer and Pioneer-compatible platforms. maio 2021.
http://wiki.ros.org/Robots/AMR_Pioneer_Compatible.

[13] ARAUJO, G. F. P. P3at tutorial package. maio 2021. https://github.com/Gastd/p3at_
tutorial.

[14] OGATA, K. Discrete-time control systems. [S.l.]: Prentice-Hall, Inc., 1995.

[15] OGATA, K. Modern control engineering. [S.l.]: Prentice hall, 2010.

[16] TOCCI, R. J.; WIDMER, N. S.; MOSS, G. Sistemas Digitais, princípios e aplicações. 10a
edição. [S.l.]: Editora Pearson Prentice-Hall, 805p, 2008.

68

http://wiki.ros.org/ROS/Introduction
http://gazebosim.org/
http://gazebosim.org/
https://robots.ros.org/pioneer-3-at/
http://wiki.ros.org/Robots/AMR_Pioneer_Compatible
https://github.com/Gastd/p3at_tutorial
https://github.com/Gastd/p3at_tutorial

[17] BOXER, B. Parsec Fact Sheeet. maio 2021. https://drive.google.com/drive/folders/
1nlF8PFMrtb8z2fq94WG9oQwrRxAhwsaa/.

[18] MEYER, W. et al. Avaliação de operadores e técnicos de manutenção de máquinas agrícolas
no setor canavieiro. Multi-Science Journal (ISSN 2359-6902), v. 1, n. 3, p. 64–68, 2015.

[19] MINITAB. Interpretar os principais resultados para Boxplot. maio 2021. https:
//support.minitab.com/pt-br/minitab/18/help-and-how-to/graphs/how-to/boxplot/
interpret-the-results/key-results/.

[20] PARK, S. et al. Measurement noise recommendation for efficient kalman filtering over a
large amount of sensor data. Sensors, Multidisciplinary Digital Publishing Institute, v. 19, n. 5,
p. 1168, 2019.

69

https://drive.google.com/drive/folders/1nlF8PFMrtb8z2fq94WG9oQwrRxAhwsaa/
https://drive.google.com/drive/folders/1nlF8PFMrtb8z2fq94WG9oQwrRxAhwsaa/
https://support.minitab.com/pt-br/minitab/18/help-and-how-to/graphs/how-to/boxplot/interpret-the-results/key-results/
https://support.minitab.com/pt-br/minitab/18/help-and-how-to/graphs/how-to/boxplot/interpret-the-results/key-results/
https://support.minitab.com/pt-br/minitab/18/help-and-how-to/graphs/how-to/boxplot/interpret-the-results/key-results/

	Introduction
	Context
	Problem definition and objectives
	Manuscript Presentation

	Theoretical Foundations
	Robotics
	Introduction
	Robot mechanical structure
	Industrial Robots
	Advanced Robotics

	Probabilistic Robotics
	Introduction
	Recursive State Estimation
	Gaussian Filters

	Deep Learning
	Machine Learning Basics
	Convolutional Networks

	Previous work

	Methodology
	System Modeling
	Implementation and validation of the Kalman Filter
	Database
	Quantitative validation of the model
	Softwares used
	Implementation of the Kalman Filter Algorithm for Simulation
	System implemented
	Simulation and tests
	Trajectory
	First phase: using the Xbox controller
	Second phase: using the keyboard

	Evaluation questionnaire
	Questionnaire for tests in first phase, using the Xbox controller
	Questionnaire for second phase tests, using the keyboard

	Results
	Quantitative validation of the Kalman Filter using the previous database
	Graphics validation
	Percentage mean error analysis

	Simulated tests
	User perceptions - Qualitative validation
	Trajectories - Quantitative validation

	Conclusions
	Future perspectives

	REFERENCES

