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ABSTRACT

This work consists of validation of VAT (Virtual Aeroacoustic Tunnel) for a single

airfoil vortical gust reponse.

The software used to acquire the simulations results is the Virtual Aeroacoustic

Tunnel (VAT), an inhouse code developed by the Computational Aeroacoustics Labo-

ratory of University of Braśılia, which obtains the aeroacoustics field by the solutions

of Navier-Stokes, Euler or Linearized-Euler equations in its compressible formulation

through volume elements discretization.

The work is part of the Silent Aircraft project sponsored by Embraer - Brazilian

Aeronautics Enterprise and associated with University of Braśılia among others.

Key-Words: Aeroacoustics, single airfoil Noise, Vortical Gust, linearized-euler equa-

tions, Numerical Simulation, Immersed Boundary.
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1 INTRODUCTION

1.1 Work Frame

The work is divided in 7 chapters. The first chapter is the introduction, which

includes the work purposes and General aspects.

The second chapter highlights some airframe noise sources, emphasizing self-induced

airfoil noise.

The third chapter brings a bibliografic review.

The fourth chapter brings the set of the Airfoil Gust Reponse Problem.

The fifth chapter describes the governing equations, the mathematical model and

the numerical method used to obtain the aeroacoustic solution for the proposed prob-

lem.

The sixth chapter characterizes the preliminary results obtained for each airofoil

simulated, the time-averaged-euler solution for the symmetric airfoil, the gust imple-

mentations approaches and the linearzed-euler solutions for the symmetric airfoil.

The seventh chapter presents the work’s conclusions and next steps.

1.2 Work Purposes

The major purpose of this work is to study the self-induced noise produced on

airfoils interacting with gust using the Virtual Aeroacoustic Tunnel (VAT) developed

by the Computational Aeroacoustic laboratory (CaaLab). This work consists of three

stages. The first stage consist in a time-averaged solutions of the euler equations to

be used as a mean field for a linearized euler solution. The second stage is the gust

implementation on the code and the later is to validate the code using the vortical

gust airfoil interaction proposed in the NASA “Fourth Computational Aeroacoustic

Workshop on Benchmark Problems”.

1.3 Work Placement

Air traffic is predicted to grow by 5% per year in the short and medium term.

Technology improvements are required to facilitate this growth without unacceptable

levels of noise. In this context Embraer and FAPESP created the project Aeronave

Silenciosa. The project objective is to research about aircraft noise reduction and noise

generation mechanisms. CAALab-UnB (Computacional Aeroacoustic Laboratory) is

inserted in this project and the focus is fan noise.
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1.3.1 general aspects

1.3.1.1 Aircraft noise and health issues

On a 1997 questionnaire distributed to two groups (one living near a major airport,

and the other in a quiet neighborhood) two-thirds of those living near the airport

indicated they were bothered by aircraft noise, and most said that it interfered with

their daily activities. The same two-thirds complained more than the other group of

sleep difficulties, and also perceived themselves as being in poorer health.

Perhaps even more alarming, the European Commission, which governs the Euro-

pean Union (E.U.), considers living near an airport to be a risk factor for coronary heart

disease and stroke, as increased blood pressure from noise pollution can trigger these

more serious maladies. The E.U. estimates that 20 percent of Europe’s population (or

about 80 million people) are exposed to airport noise levels it considers unhealthy and

unacceptable.

Airport noise can also have negative effects on children’s health and development.

A 1980 study examining the impact of airport noise on children’s health found higher

blood pressure in kids living near Los Angeles’LAX airport than in those living farther

away. A 1995 German study found a link between chronic noise exposure at Munich’s

International Airport and elevated nervous system activity and cardiovascular levels in

children living nearby. And a 2005 study published in the prestigious British medical

journal, The Lancet, found that kids living near airports in Britain, Holland and Spain

lagged behind their classmates in reading by two months for every five decibel increase

above average noise levels in their surroundings. The study also associated aircraft

noise with lowered reading comprehension, even after socio-economic differences were

considered. website (1),

2



1.3.1.2 Some Acoustic Definitions

The sound pressure level, eq 1.1, is a logarithmic measure of the square root of the

mean squared - rms of the acoustic pressure fluctuation - p′(rms) relative to a refference

value.

SPL = 20log10

(
p′rms
pref

)
where pref = 2.10−5 in air (1.1)

The sound intensity I is defined as the energy flux (power per surface area) corre-

sponding to sound propagation. The Intensity Level (IL) is given by eq 1.2

IL = 10log10

(
I

10−12

W

m2

)
(1.2)

The reference pressure level in air pref = 2.10−5Pa correspond to the threshold of

hearing at 1kHz for a typical human ear. The reference intensity level Iref = 10−12 W
m2

is related to this pref = 2.10−5Pa in air by the relationship valid for prograssive plane

waves:

I =
p′2rms
ρ0c0

(1.3)

where ρ0c0 = 4.102 kg

m2s for air under atmospheric conditions.

An important aspect of acoustics is the frequency analysis of a acoustic spectrum.

The acoustic spectrum can be obtained by the Fourier transform given by eq. 1.4.

F (w) =

∫ ∞
−∞

f(t)e−iwt dt, i2 = −1 (1.4)

where F (w) is the complex amplitude, f(t) is the function to be transformed, t is

the variable and w the angular frequency.

The sound signal resulted of a numeric simulation are discrete. The Fourier trans-

form in the discrete form is given by eq. 1.5

xk =
1

n

n−1∑
j=0

fje
2πi
n
jk, k = 0, 1, 2, ..., n− 1 (1.5)

In this way, the acoustic signal without treatment is transformed from the time

domain to the frequency domain by the fourier transform. Figure 1.1 shows an ex-

ample of the Fourier transform. Figure 1.1-a shows a sine fuction and the respect

frequency spectrum. Figure 1.1-b shows a signal with multiple frequencies and the

respect frequency spectrum.

3



Figure 1.1: Fourier transform example.(Basic Principles of Sound and an Introduction to
Aircraft Noise (Embraer))

In figure 1.1 is possible to define two basic types of noise: tonal noise and broadband

noise. The tonal is characterized by a dominant frequency. The broadband noise does

not have a dominant frequency and the spectrum is diffuse in a frequency range.

1.3.1.3 Sound Fields Radiated by Simple Sources

A monopole is a source which radiates sound equally well in all directions. The

simplest example of a monopole source would be a sphere whose radius alternately

expands and contracts sinusoidally. The monopole source creates a sound wave by

alternately introducing and removing fluid into the surrounding area. A boxed loud-

speaker at low frequencies acts as a monopole. The directivity pattern for a monopole

source is shown in the figure 1.2.

Figure 1.2: monopole - illustration and directivity diagram - figure from
http://www.kettering.edu/ drussell/
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A dipole source consists of two monopole sources of equal strength but opposite

phase and separated by a small distance compared with the wavelength of sound.

While one source expands the other source contracts. The result is that the fluid (air)

near the two sources sloshes back and forth to produce the sound. A sphere which

oscillates back and forth acts like a dipole source, as does an unboxed loudspeaker

(while the front is pushing outwards the back is sucking in). A dipole source does not

radiate sound in all directions equally. The directivity pattern shown in figure 1.3;

there are two regions where sound is radiated very well, and two regions where sound

cancels.

Figure 1.3: dipole - illustration and directivity diagram - figure from
http://www.kettering.edu/ drussell/

If two opposite phase monopoles make up a dipole, then two opposite dipoles make

up a quadrupole source. In a Lateral Quadrupole arrangement the two dipoles do

not lie along the same line (four monopoles with alternating phase at the corners of a

square). The directivity pattern for a lateral quadrupole looks like a clover-leaf pattern;

sound is radiated well in front of each monopole source, but sound is canceled at points

equidistant from adjacent opposite monopoles.

5



Figure 1.4: quadrupole - illustration and directivity diagram - figure from
http://www.kettering.edu/ drussell/
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2 AIRCRAFT NOISE SOURCES

This chapter describes categories of noise sources in aircrafts with emphasis on

airfoil noise.

2.1 Airframe noise

Airframe noise used to considered as the lower limit of aircraft noise. During take-

off, engine noise still dominates over airframe noise, but during approach and landing,

the noise leves of modern aircraft engines with large bypass ratios have been reduced

so much that airframe noise and engine noise are of comparable levels.

Figure 2.1: The most important airframe noise sources

Airframe noise is generated by aerodynamic sound sources that become active when

a structure interacts with a flow. The sources can generate tones, e.g. by vortex

shedding from cylindrical stays of a landing gear, or broad band noise, like the turbulent

boundary layer on the fuselage. The Sources can be small, like a resonating cavity, or

they can have large extent, like the flaps mounted upstream of a wing. This large

range of scales and source mechanisms makes the study of airframe noise so difficult.

Airframe noise levels are directly linked to the aircraft flight speed, so for the design

of new aircraft, the key to lower noise levels is to ensure low landing speed. A very

good introduction to the subject and an overview of the development of airframe noise

research since the 1970s is given by Dobrzynski (2010)

Airframe noise is generally dominated by the noise of the landing gear and the

high-lift devices. Cavity tones play an important role on some aircraft although these

7



tones can almost always be eliminated. Usually, airframe noise sources rank in the

order: landing gears, slotted slats, flap and slat side edges, flap and slat tracks, spoilers,

followed by interaction sources, e.g. landing gear wake and flap interaction (Dobrzynski

(2010)). Usually, for short range aircraft with single aisles, the landing gears and high-

lift devices contribute more or less equally, while for large, long range and wide body

aircraft twin aisles, the dominating airframe noise sources are located in the landing

gears.

2.2 Airfoils self-noise mechanism

Airfoil self-noise mechanism is a first effort to understand aerodynamic noise gener-

ation. Brooks et al (1989), define Airfoil Self-noise as a interaction between an airfoil

blade and the turbulence produced in its own boundary layer and near wake. Brooks

et al (1989), highlights 5 self-noise mechanism. Turbulent-Boundary-Layer-Trailing-

Edge-Noise (TBL-TE), Separation-Stall Noise, Laminar-Boundary-Layer-Vortex-Shedding

(LBL-VS) Noise, Tip Vortex Formation Noise and Trailing-Edge-Bluntness-Vortex-

Shedding Noise. At high Reynolds number Re, Turbulent Boundary Layer develop

over most of the airfoil. Noise is produced as this turbulence passes over the Trailing

edge. At low Reynolds number, largely laminar boundary layers develop, whose insta-

bilities result in vortex shedding and associated noise from the trailing edge. Cunha

(2009) suggest a correlation between the stream topology and the Laminar-Boundary-

Layer-Vortex-Shedding noise. For nonzero angles of attack, the flow can detach near

the TE on the suction sideof the airfoil to produce TE noise due to the shed turbulent

vorticity. At very high angles of attack, the separeted flow near the TE gives way

to large-scale saparation (deep stall) causing the airfoil to radiate low-frequency noise

similar to that of a bluff body in flow. Pimenta and Vizioli (2009) suggest that in an

airfoil cascade in off-design conditions (high angles of attack) the noise mechanism is

due to this large-scale saparations. For a blunt TE the vortex shedding occur in the

small separeted flow region aft TE and it is a source of noise. The remaining source

considered by Brooks et al (1989), is due to the formation of the tip vortex, containing

highly turbulent flow, occuring near the tips of lifting blades of wings.
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3 BIBLIOGRAFIC REVIEW

This chapter shows a resume about the works on vortical gust presented in the

“Fourth Computational Aeroacoustic Workshop on Benchmark Problems”and a breaf

bibliografic review about self-induced noise on airfoils.

3.1 Works on vortical gust response

Scott(2004) proposed a Benchmark problem to test the ability of a CFD/CAA code

to accurately predict the unsteady aerodynamic and aeroacoustic reponse of a single

airfoil to a two-dimensional, periodic vortical gust.

About this benchmark Wang et al (2004), Vladimir et al (2004a), and Vladimir

et al (2004b), contributed in the workshop and proposed different numerical methods

to predict the gust response.

Wang et al (2004), used the method of space-time conservation element and so-

lution element (abbreviated as the CE/SE method). This method is a finite volume

method with second-order accuracy in both space and time. The flux conservation is

enforced in both space and time instead of space only. It has low numerical dissipation

and disparsion errors. It uses simple non-reflecting boundary conditions and is compat-

ible with unstructured meshes. Wang et al (2004), compared results with GUST3D (a

frequency-domain solver) and DSEM (a time-domain high-order Discontinuous Spec-

tra Element Method). Comparisons with GUST3D showed good agreement for lower

frequencies and comparisons with DSEM the good agreement occur for these higher

frequencies.

Vladimir et al (2004a), argues that the CAA codes have been developed to accu-

rately capture transient flow behavior by combining a high-accuray spatial differencing

scheme with an optimized time-marching method. Thus, any unsteady problem is a

transient problem that requires high time accuracy throughout the calculation process.

For Vladimir et al (2004a), the gust-airfoil interaction problem is an example of a

periodic problem, where the exact transient solution starting from the initial condi-

tions may not be of interest. So, the long-term periodic solution is usually the desired

output, with the excessive accuracy of the transient calculations being redundant. This

view does not match with cases of validation of codes that can solve problem that are

non-periodic, but is interesting if the interest is periodic problems.

Vladimir et al (2004a), uses the STMA approach proposed by Hixon (2003). In this

work the unsteady marching problem in two spatial dimensions is transformed into a

steady-state iteractive problem in three dimensions (see figure 3.1). At the same time,
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the highly convergent iterative methods from classical CFD can be apllied, increasing

accuracy (by using better time derivatives), reducing CPU time (because of less grid

points in space-time as well as improved iterative methods), and increasing the parallel

performance of the codes (through larger block volumes on each processor and reduced

synchronization needs during the iterative proces).

For Vladimir et al (2004a), in application to the unsteady gust-airfoil interaction

problem, the periodic nature of the flow can be further used to minimize the compu-

tational time and effort required to solve the test cases. In particular, the mesh is

designed to cover one period of the vortical gust in the time direction, with a peri-

odic boundary condition applied at the time inflow and time outflow boundaries. The

STMA solves the nonlinear Euler equations. A iterative method is used to solve the

Governing Equations in conservative form. The results for lower frequencies used a

mesh of 433*125*17 and for the higher frequency 605*240*17. Even for the higher

frequency (finer mesh) the gust was not well solved in the far field regins, which con-

tributed to some inaccuracy in the acoustic derectivity prediction in the far field.

Figure 3.1: Computational (x,y,t) domain with instantaneus ρv-component of gust, k=1.0.
Vladimir et al (2004a),

Vladimir et al (2004b), uses a numerical formulation that employs the low-storage

4th order 5-6 Low Dispersion and Dissipation Runge-Kutta scheme for time march-

ing, and the prefactored 6th order compact scheme and explicit boundary stencils for

derivatives. Most of results reported below were obtained from an older prefactored

code that used the 10th order explicit filtering at every stage of the Runge-Kutta solver

to provide dissipation. A C-grid 2D topology (see figure 3.2) is used to generate grids

for both cases of symmetric and cambered Joukowski airfoil, with the grid extending

at least 10 chords away from the surface in each direction. Algebraic clustering around

10



the airfoil in the normal direction and near the trailing edge with streching ratio of

1.05 was used to compound the grid. Some oscilations and loss of accuracy are ob-

served in numerical results near the trailing edge due to the singularity treatment i the

grid topology. a careful clustering of grid points near the trailing edge helps to keep

these effects localized, with minimal impact on the overall solution. The Vladimir et

al (2004b), results showed good directivity response for the symmetric airfoil, though

for the cambered airfoil the results suffered significantly from the poor gust resolution

in the corner regions of the domain and the results for the higher frequency was not

even showed.

Figure 3.2: left: grid-partitioned computaional domain. Right: grid details near cambered
airfoil surface. Vladimir et al (2004b),

3.2 Bibliografic Review on self-induced noise

About self induced noise on airfoil the first important contribution on experimental

data is attributed to Paterson et al (1972), . An experiment in a low turbulence

intensity (0,1%) open-jet wind tunnel located in an anechoic chamber was conducted.

The far-field acoustic pressure fluctuation was measured as well as the airfoil surface

pressure fluctuation on NACA 0012 and NACA 0018 two-dimensional airfoils. The

characterization of the vortex shedding for a typical helicopter rotor section through

measurements of both surface and far-field acoustics pressure fluctuations was the

major objective of the experiment.

Paterson et al (1972), concluded that tonal noise was observed in low and moderate

Reynolds numbers and was caused by the vortex shedding on the trailing edge. It was

observed that a laminar boundary layer on the suction side of the airfoil is a required

factor in order to generate tonal noise. Therefore if it is turbulent no tonal noise is
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observed. The experimental results provided a well defined description of the ladder-

type pattern of the tonal frequency related to the velocity. Morevoer, an expression

for the frequency of the main tone as a function of the Strouhal based velocity was

proposed. Finally, it was also observed that the nature of the tone was a dipole located

near the trailing edge of the airfoil.

Tam (1974) proposed a feedback mechanism to explain the ladder-type structure

and concluded that the vortex shedding mechanism is inappropriate to justify the tonal

noise generation. Tam (1974) used the data from Paterson et al (1972), experiments

and made a stability analysis to formulate a theory which illustrates that the tonal noise

is actually generated by the feedback loop. The loop consists of an unstable laminar

boundary layer on the pressure side of the airfoil that meets the boundary layer on the

suction side at the trailing edge and an unstable wake is formed. The wake disturbances

are amplified as they propagates donwstream. This oscillatory movement induces the

emission of acoustic waves. The feedback loop is completed as the acoustic waves

meet the trailing edge and new disturbances are introduced in the wake. Therefore,

it was concluded that the self-excited feedback loop is consistent with the presence of

a laminar boundary layer on the pressure side of the airfoil, as observed by Paterson

et al (1972), . It is also explained the reason why the frequency of discrete tones

increases with the velocity. The presence of multiple frequencies observed by Paterson

et al (1972), implies that more than one unstable wave’s modes are excited. The

dipole nature of the noise is explained by the oscillation of the wake which generates

the sound near the airfoil trailing edge . Finally, Tam (1974) proposed an expression to

the discrete frequencies which considers the ladder-type pattern of the tonal frequency.

Nash et al (1999), conducted an extensive work to investigate the trailing-edge noise

generation mechanism. The results suggest that on an acoustic lining environment the

ladder-type structure of discrete frequencies disappears. LDA measurements reveal

high instabilities on the boundary layer near the trailing edge on the pressure side of

the airfoil. Visualizations show that these instabilities roll up to form a regular wake,

which is shed in the same frequency of the tonal noise. The presence of instabilities and

the acoustic field has a straight correlation with the separated flow on the pressure side

of the airfoil and the unsteady Kutta condition is not satisfied. The stability analysis

shows that the tonal noise main frequency and the frequency of the most amplified

boundary layer instability are the same. Nash et al (1999), proposed a new trailing-

edge noise generation mechanism. An adverse pressure gradient on the pressure side of

the airfoil generates a region which has a point of inflection and the flow is completely

separated near the trailing edge. The massively amplification of the T-S waves occurs

in this region. Therefore the instabilities roll up into a vortex. The interaction between
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the instabilities and the trailing edge results in an oscillatory field that spreads all over

the airfoil and vibrates at the same frequency of the most amplified instabilities.

A recent experimental study was performed by Chong et al (2009), . This work

elucidates the feedback-loop and reaffirms some important features of the trailing edge

noise proposed by others investigators. A NACA 0012 airfoil in a low turbulence

intensity (0,1% for a Mach number of 0.3) in a open jet wind tunnel placed on anechoic

chamber (8m × 8m × 8m) experiment was conducted. In order to predict the beginning

and the end of the boundary layer separation XFOIL code was used.

Chong et al (2009), concluded that the shear layer of the separated region, acting

as the amplifier of the incoming T-S wave, is responsible for the noise scattering at the

trailing edge. The noise spectrum comprises a broadband hump, embedded with mul-

tiples discrete tones. When the T-S waves are scattered into noise, the main frequency

is expected to be the characteristic frequency of the instability. An inflection velocity

profile of the trailing edge boundary layer is required to occur the noise radiation by

the scattering of aerodynamic disturbance.

Measurements of unsteady surface pressure were perfomed with an instrumented

NACA 0015 airfoil by Larssen and Devenport (1999) in the Virginia Tech Stability

Wind Tunnel. This facilitiy test section has 7.32 m long with a 1.83 m-square cross

section. At 30m/s, flow through the empty test section is virtually uniform and of

low turbulence intensity (< 0.05%). Background noise levels are acceptable for the

aerodynamic measureemnts of interest. Measurements of this work were made at Re =

1.17· 106 with the airfoil at zero angle of attack. a square bi-planar grid is mounted

5.82 m upstream of the airfoil leading edge. This grid generates a turbulence with a

streamwise integral lengthscale λ = 8.18cm to result in a turbulence intensity of 3.93%

at 30 m/s. The airfoil is instrumented with an array os 96 microphones, embedded in

the upper and lower airfoil surfaces over the center of its span.

Casper and Farassat (2002) uses an analytic result in acoustic called “Formulation

1B” proposed by Farassat to compute broadband trailing edge noise from an unsteady

surface pressure distribution on a thin airfoil in the time-domain. This formulation

is a solution of the Fowcs Williams-Hawkings equation with the loading source term.

The results are compared to analytical results and experimental measurements. Good

agreement between predictions and measurements is obtained. Casper and Farassat

(2002) argues that any successful broadband loading noise prediction requires an under-

standing of two physical process: the character of the time-dependent surface pressure

that provides the acoustic source, and the manner in wich that source gives rise to an

acoustic signal. Casper and Farassat (2002) are advocates of the use of time domain

methods in the prediction of broadband noise because of the decoupling of the aerody-
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namics from the acoustic. For Casper and Farassat (2002) the chief advantages of time

domain methods is their potential for direct use of time-dependent surface pressure

statistics from experiments or computer simulations.
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4 AIRFOIL-GUST INTERACTION

BENCHMARK

Most unsteady aerodynamic and aeroacoustic analyses considering interaction of

upstream flow nonuniformities with downstream structural components follow linear

theory wherein the unteady part of the flow is considered a small pertubation about

the steady mean flowfield, Crivellini et al(2002), . This approach relies on solutions to

the linearized Euler equations and is used to understand problems like the rotor-stator

interaction.

The single airfoil gust reponse problem was proposed in the fourth CAA workshop

on benchmark problems in order to assess the capacity of a numerical methodology in

handling the generation and propagation of sound waves in the presence of complex

geometries with no dispersion or dissipation. The fourth CAA workshop emphasizes

the apllication of CAA methods to the solution of realistc problems. In this focus a

pratical application of CAA for computing noise generated by turbomachinery involves

the modeling of the noise source mechanism as a vortical gust interacting with an airfoil.

4.1 Benchmark Setup

The upstream velocity is

~U = U∞~i+ ~acos[~k −~iU∞t] (4.1)

where ~x = (x, y) denotes the spatial coordinates, ~a = (ax, ay) is the gust amplitude

vector with ax = −εU∞ky/|~k|, ay = εU∞kx/|~k|, ~k is the wave number vector, and ε is

a small parameter satisfying ε� 1

The x component of the upstream velocity is

Ux = U∞ + axcos[(x− U∞t)kx + yky] (4.2)

The y component of the upstream velocity is

Uy = aycos[(x− U∞t)kx + yky] (4.3)

Figure 4.1 and 4.2 illustrate the gust with vector that represents the upstream ve-

locity variation. Figure 4.1 shows the isolated components ~U where Ux gust component

is shown in lines in y direction and Uy gust component is shown in lines in x direction.

Figure 4.2 shows the vortical-gust vector with the two components for multiple points

of the field.
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Figure 4.1: Airfoil in a two-dimensional, periodic gust (k = 1.0) (component Ux and Uy
separated)

Figure 4.2: Airfoil in a two-dimensional, periodic gust (k = 1.0)
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Figure 4.3 illustrates the vorticity field imposed by the vortical-gust.

Figure 4.3: vorticity field imposed by the vortical-gust for k = 1

In order to establish a time dependent flow field, a time dependent acceleration is

imposed as follow.

gx =
∂Ux
∂t

= U∞kxax sin[(x− U∞t)kx + yky] (4.4)

gy =
∂Uy
∂t

= U∞kxay sin[(x− U∞t)kx + yky] (4.5)

where gx and gy are the x and y components of the acceleration imposed on the

field.
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4.2 Geometry: the joukowski airfoils

The problem will be solved for a Joukowski airfoil that can be genereted as follows.

Set

ζ1 = r0e
iθ + ζ0 (4.6)

where

ζ0 = −ε1 + iε2 (4.7)

is a complex constant. Letting z = x − iy denote the airfoil coordinates in the

complex z plane, the transformation

z = (ζ1 +
d2

ζ1
e−iα) (4.8)

transform the ζ1 circle defined by equation 4.6 into the desired airfoil shape.

For Case 1, use r0 = 0.54632753, ε1 = 0.05062004, ε2 = 0, d2 = 0.24572591, α = 0

and 0 < θ < 2π. Figure 4.4 illustrates the airfoil for Case 1.

Figure 4.4: Airfoil geometry for Case 1
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For Case 2, use r0 = 0.54676443, ε1 = 0.05062004, ε2 = 0.02185310, d2 = 0.24572591,

α = 0.034906585 and −β < θ < 2π − β where β = 0.039978687. Figure 4.5 illustrates

the airfoil for Case 2.

Figure 4.5: Airfoil geometry for Case 2

The above procedure generate a Joukowski airfoil of chord length 2, situated very

nearly between x = −1 and x = 1. To generate the geometry a MatLab 7 routine was

created.

4.3 Geometry details

The virtual Aeroacoustic Tunnel (VAT) uses the immersed boundary method, wich

uses two distinct meshes; the eulerian mesh, a cartesian regular mesh, wich represents

the control volumes located all over the flow field and the lagrangean mesh, wich

indicates the points that determinates the geometry immersed in the flow. Since it

is necessary to fill all the volumes of the eulerian mesh with points of the lagrangean

mesh indicating the normal direction of the surface, the trailing edge was modified to

meet immersed boundary mesh requirements. Figure 4.6 and 4.7shows the trucaded

trailing edge.
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Figure 4.6: Truncaded Trailing edge of Case 1 airfoil

Figure 4.7: Truncaded Trailing edge of Case 2 airfoil
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5 GOVERNING EQUATIONS

For study purposes the Continuum Hypothesis is assumed. Thus, it starts from the

fundament that a fluid particle can be defined and it is big enough when compared

to the molecular scales and small enough when compared to the proposed problem

dimensions. Therefore, being the fluid continuous, the obtained equations for a con-

trol volume are also continuous and differential. The present work is based on mass,

momentum and energy conservation equations in their differential and nondimensional

formulation, beyond others constitutive equations which are detailed below.

Every variable is non-dimensionalized according to Anderson et al (1983), proposal.

Thereunto, characteristic variables such as the freestream flow velocity, U∗∞, and the

problem characteristic lenght, L∗, are used. It is important to note that ’∗’ indicates

dimensional variables and ’∞’ indicates freestream properties.

x =
x∗

L∗
, y =

y∗

L∗
, z =

z∗

L∗
, t =

t∗

L∗/U∗∞
,

u =
u∗

U∗∞
, v =

v∗

U∗∞
, w =

w∗

U∗∞
,

p =
p∗

ρ∗∞ (U∗∞)2 , ρ =
ρ∗

ρ∗∞
,

T =
T ∗

T ∗∞
, e =

e∗

(U∗∞)2 , µ =
µ∗

µ∗∞
, f =

f ∗

ρ∗∞ (U∗∞)2 /L∗
. (5.1)

Where, x, y and z are the spatial coordinates, u, v e w are the velocity vector

components in the i, j and k directions, t is the temporal coordinate, ρ is the fluid

density, p is the thermodynamic pressure, T is the temperature, e is the internal energy

per unit mass and µ is dynamic viscosity.

The continuity equation or mass conservation equation is:

∂ρ

∂t
+

∂

∂xi
(ρui) = 0, (5.2)

The above equation shows that mass is conserved throughout the control volume,

whereas mass can not be created nor destroyed. Since Eq. (5.2) is in conservative

formulation, the first term represents the temporal variation of mass inside the control

volume and the second term represents the mass flux through the control volume i.e.the

advective term.

The momentum equation is given by:

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) = − ∂p

∂xi
+
∂τij
∂xj

+ fi, (5.3)
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Where, p is the thermodynamic pressure and τij is the shear stress tensor. On the

left side, the first term represents the mass temporal variation and the second term

represents the momentum net flux through the control volume. On the right side, the

first term represents the pressure field force and the second term represents the shear

stress forces.

The shear stress tensor, τij, is given by Eq. (5.4) below. The first term is the

straining rate.

τij =
1

Re
(µSij) =

1

Re

{
µ

[(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
δij
∂uk
∂xk

]}
, (5.4)

Where µ is the dynamic viscosity, δij is the Kronecker’s delta and Re is the Reynolds

number, defined as:

Re =
ρ∗∞U

∗
∞L
∗

µ∗∞
. (5.5)

Finally, the energy equation is:

∂

∂t
(ρeT ) +

∂

∂xi
(ρeTui) = − ∂

∂xi
(pui) +

∂

∂xi
(τijuj)−

∂qi
∂xi

+ fiui. (5.6)

In the above equation it is known that ρeT is the total energy per unit volume.

Thus, on the left side the first term represents the temporal variation of total energy

and the second represents the flux of total energy through the control surface in i-

direction. On the right side, the first term refers to the work due to the pressure field

force and the second terms represents the work due to shear stresses. The third term

is the heat transferred and qi represents the heat flux density in i-direction.

The Fourier equation, provides the qi components according to Eq. (5.7):

qi = −k

(
∂T

∂xi

)
, (5.7)

Or in the non-dimensionalized form, Eq (5.8):

qi = − µ

(γ − 1) M2 Re Pr

(
∂T

∂xi

)
. (5.8)

Where k is the thermal conductivity, γ is the specific heat ratio under constant pressure

and volume and M and Pr are Mach and Prandtl numbers as follows:

M =
U∗∞√
γ R∗ T ∗∞

, Pr =
c∗p
k∗∞

µ∗∞. (5.9)

The physical meaning of the Prandtl number is the ratio between momentum dif-

fusivity and thermal diffusivity, while Mach number represents the ratio between the

flow velocity and the sound velocity.

The total energy per unit mass is the sum of internal energy (e) and kinetic energy

(ek):
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eT = e+ ek = cvT +
ui ui

2
(5.10)

The above equations total five scalar equations, but contain seven variables: u, p,

ρ, e, T , µ and k. Hence, four constitutive equations are needed.

Treating air as a thermally and calorically perfect gas, i.e. cv is constant:

e = cvT (5.11)

For the compressible flow of a perfect gas, the relation between pressure and tem-

perature as showed by Anderson (1990) is:

p = (γ − 1) ρe (5.12)

T =
γ M2 p

ρ
. (5.13)

Anderson (1990) evidences that dynamic viscosity is given by Sutherland equation:

µ = C1
T 3/2

T + C2

, C1 =

[
(T ∗∞)1/2

µ∗∞

]
C∗1 , C2 =

C∗2
T ∗∞

, (5.14)

Where C∗1 and C∗2 are dimensional constants.

For a calorically perfect gas, thermal conductivity k is:

k = µ
cp
Pr

. (5.15)

In order to avoid the numerical oscillations resulting from the discrete forcing approach

used by the immersed boundary methodology, a volume pseudo-force (fi) and its associ-

ated volume pseudo-work (fiui) are introduced in the right-hand side of the momentum

and energy equations in order to continuously accelerate, using a non-inertial frame of

reference, the entire flow field from the stagnation condition to the free-flow condition

during the acceleration time, ta. For a free-flow velocity aligned with the Cartesian

x-direction (u∞ = U∗∞i) the only component of the pseudo-force fi is

fx =
f ∗x

ρ∗∞ (U∗∞)2 /L∗
=

ρ∗ (U∗∞/t
∗
a)

ρ∗∞ (U∗∞)2 /L∗
=

(
ρ∗

ρ∗∞

)(
L∗/U∗∞
t∗a

)
=
ρ

ta
, (5.16)

for t ≤ ta. After this acceleration time, the value of the pseudo-force fi must be

zero, since the free-flow conditions are achieved, resulting in

fx = 0, (5.17)

for t > ta.
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To impose the acceleration necessary to establish the vortical gust a pseudo-force

(gi) and its associated volume pseudo-work (giui) are introduced in the right-hand side

on the momentum and energy equations. The x and y component of this pseudo-force

are given by

gx = −kρε
√

2

2
sin[k(x+ y − t)] (5.18)

gy = +kρε

√
2

2
sin[k(x+ y − t)] (5.19)

The present work is interested in the instabilities genereted by the advective therm

of the momentum equation. In this focus a compressible and inviscid abordation is

more interesting. The fisical meaning of Euler equations take into account that the

Reynolds number tends to infinity. So τij = 0 tends to zero.

Taking τij = 0, the Unsteady nonlinear Euler equations are given by:

∂ρ

∂t
+

∂

∂xi
(ρui) = 0, (5.20)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) = − ∂p

∂xi
+ fi, (5.21)

∂

∂t
(ρeT ) +

∂

∂xi
(ρeTui) = − ∂

∂xi
(pui)−

∂qi
∂xi

+ fiui + . (5.22)

Since the gust amplitude ~a satisfies |~a| � U∞, the linearized Unstedy Euler equa-

tions can be solved.

∂

∂t
(ρ0 + ρ′) +

∂

∂xi
[(ρui)0] + (ρui)

′] = 0, (5.23)

∂

∂t

[
(ρui)0 + (ρui)

′]+ ∂

∂xj

[
(ρui)0 uj0 + (ρui)

′ uj0 + (ρui)0 u
′
j+
]

= − ∂

∂xi
(p0 + p′)+fi+gi,

(5.24)

∂

∂t

[
(ρeT )0 + (ρeT )′

]
+

∂

∂xi

[
(ρeT )0 ui0 + (ρeT )′ ui0 + (ρeT )0 u

′
i

]
=

− ∂

∂xi
(p0ui0 + p0u

′
i + p′ui0) + fi (ui0 + u′i) + gi (ui0 + u′i) (5.25)

The nondimensional upstream velocity is given by:

Ux = −ε
√

2

2
cos[k(x+ y − t)] (5.26)

Uy = +ε

√
2

2
cos[k(x+ y − t)] (5.27)

The nondimensional acceleration imposed on the field to induce the upstream velocity

described above is
∂Ux
∂t

= −kε
√

2

2
sin[k(x+ y − t)] (5.28)

∂Ux
∂t

= +kε

√
2

2
sin[k(x+ y − t)] (5.29)
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5.1 Numerical Method

In order to numerically solve the unsteady compressible Euler equations using a

finite volume approach, Eqs. (5.20), (5.21) and (5.22) are written in the vector form

∂U

∂t
+
∂E

∂x
+
∂F

∂y
+
∂G

∂z
= R, (5.30)

where the vectors U, E, F, G and R are given by

U =



ρ

ρu

ρv

ρw

ρeT


, (5.31)

E =



ρu

ρu2 + p

ρuv

ρuw

(ρeT + p)u


, (5.32)

F =



ρv

ρvu

ρv2 + p

ρvw

(ρeT + p) v


(5.33)

G =



ρw

ρwu

ρwv

ρw2 + p

(ρeT + p)w


, (5.34)

R =



0

fx + gx + gy

0

0

(fx + gx + gy)u


. (5.35)
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For the linearized Euler equations, the vectors U, E, F, G and R are given by

U =



ρ0 + ρ′

(ρu)0 + (ρu)′

(ρv)0 + (ρv)′

(ρw)0 + (ρw)′

(ρeT )0 + (ρeT )′


, (5.36)

E =



(ρu)0 + (ρu)′

(ρu)0u0 + (ρu)0u
′ + (ρu)′u0 + p0 + p′

(ρu)0v0 + (ρu)0v
′ + (ρu)′v0

(ρu)0w0 + (ρu)0w
′ + (ρu)′w0

[(ρeT )0 + p0]u0 +
[
(ρeT )′ + p′

]
u0 + [(ρeT )0 + p0]u

′


, (5.37)

F =



(ρv)0 + (ρv)′

(ρv)0u0 + (ρv)0u
′ + (ρv)′u0

(ρv)0v0 + (ρv)0v
′ + (ρv)′v0 + p0 + p′

(ρv)0w0 + (ρv)0w
′ + (ρv)′w0

[(ρeT )0 + p0] v0 +
[
(ρeT )′ + p′

]
v0 + [(ρeT )0 + p0] v

′


, (5.38)

G =



(ρw)0 + (ρw)′

(ρw)0u0 + (ρw)0u
′ + (ρw)′u0

(ρw)0v0 + (ρw)0v
′ + (ρw)′v0

(ρw)0w0 + (ρw)0w
′ + (ρw)′w0 + p0 + p′

[(ρeT )0 + p0]w0 +
[
(ρeT )′ + p′

]
w0 + [(ρeT )0 + p0]w

′


, (5.39)

R =



0

fx + gx + gy

0

0

(fx + gx + gy)u0 + (fx + gx + gy)u
′


. (5.40)

Defining tensor Π as

Π = E⊗ i + F⊗ j + G⊗ k, (5.41)

Eq. (5.30) is rewritten as
∂U

∂t
+∇ · Π = R. (5.42)

Integrating the above equation over the control volume V , and applying the divergence

theorem to the first term of the right-hand side results

∂

∂t

∫
V

UdV = −
∫
V

(∇ · Π) dV +

∫
V

RdV = −
∫
S

(Π · n) dS +

∫
V

RdV, (5.43)
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Defining the volumetric mean of vectors U and R in the control volume V as

U ≡ 1

V

∫
V

UdV (5.44)

and

R ≡ 1

V

∫
V

RdV, (5.45)

respectively, Eq. (5.43) is written as

∂U

∂t
= − 1

V

∫
S

(Π · n)dS + R. (5.46)

For the volume (i, j, k), the first-order approximation of the temporal derivative is

given by (
∂U

∂t

)
i,j,k

=
∆Ui,j,k

∆t
+ O (∆t) , (5.47)

and the temporal approximation of Eq. (5.47) for a hexahedral control volume is

∆Ui,j,k = − ∆t

Vi,j,k

[∫
Si+1/2

(Π · n) dS +

∫
Si−1/2

(Π · n) dS+∫
Sj+1/2

(Π · n) dS +

∫
Sj−1/2

(Π · n) dS+

∫
Sk+1/2

(Π · n) dS +

∫
Sk−1/2

(Π · n) dS

]
+ ∆tR, (5.48)

where Si+1/2, Si−1/2, Sj+1/2, Sj−1/2, Sk+1/2 e Sk−1/2 are the surfaces that define the hex-

ahedral control volume and Si+1/2 is the common surface between volume (i, j, k) and

volume (i+ 1, j, k).

Considering that the value of tensor Π is constant over the control surfaces, it is

possible to define F(U)i,j,k as a function of the flux of tensor Π over the control surfaces

as

F(U)i,j,k = − ∆t

Vi,j,k

[
(Π · S)i+1/2 + (Π · S)i−1/2+

(Π · S)j+1/2 + (Π · S)j−1/2+

(Π · S)k+1/2 + (Π · S)k−1/2

]
+ ∆tR, (5.49)

and the resulting spatial approximation of Eq. (5.48) is

∆Ui,j,k = F
(
U
)
i,j,k

+D
(
U
)
i,j,k

(5.50)

where D(U)i,j,k is an explicit artificial dissipation. In order to calculate F(U)i,j,k, the

flux of tensor Π over the control surfaces must be calculated. For the control surface

27



Si+1/2, this flux is given by

(Π · S)i+1/2 =



(Π · S)1

(Π · S)2

(Π · S)3

(Π · S)4

(Π · S)5


i+1/2

. (5.51)

The first component of the vector defined by the above equation is associated to

the continuity equation and given by

(Π · S)1 = ρi+1/2 (qs)i+1/2 , (5.52)

where the volumetric flux is

(qs)i+1/2 = ui+1/2 · Si+1/2 = ui+1/2 (sx)i+1/2 + vi+1/2 (sy)i+1/2 + wi+1/2 (sz)i+1/2 . (5.53)

The second, third, and fourth components are associated to the three components

of the momentum equation and are respectively given by

(Π · S)2 = (ρu)i+1/2 (qs)i+1/2 + pi+1/2 (sx)i+1/2 , (5.54)

(Π · S)3 = (ρv)i+1/2 (qs)i+1/2 + pi+1/2 (sy)i+1/2 , (5.55)

and,

(Π · S)4 = (ρw)i+1/2 (qs)i+1/2 + pi+1/2 (sz)i+1/2 . (5.56)

The fifth component is associated with the energy equation and given by

(Π · S)5 = (ρeT )i+1/2 (qs)i+1/2 + pi+1/2 (qs)i+1/2 . (5.57)

For the linearized Euler equations, the first component of the vector defined by the

above equation is associated to the continuity equation and given by

(Π · S)1 = (ρ0)i+1/2 [(qs)0]i+1/2 + (ρ0)i+1/2

[
(qs)

′]
i+1/2

+ (ρ′)i+1/2 [(qs)0]i+1/2 , (5.58)

where the volumetric flux of the time-averaged and perturbation velocities are given

by

[(qs)0]i+1/2 = (u0)i+1/2 (sx)i+1/2 + (v0)i+1/2 (sy)i+1/2 + (w0)i+1/2 (sz)i+1/2 , (5.59)

and [
(qs)

′]
i+1/2

= (u′)i+1/2 (sx)i+1/2 + (v′)i+1/2 (sy)i+1/2 + (w′)i+1/2 (sz)i+1/2 , (5.60)
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respectevely. The second, third, and fourth components are associated to the three

components of the momentum equation and are respectively given by

(Π · S)2 = [(ρu)0]i+1/2
[(qs)0]i+1/2 + (p0)i+1/2 (sx)i+1/2 +

[
(ρu)′

]
i+1/2

[(qs)0]i+1/2 +

[(ρu)0]i+1/2

[
(qs)

′]
i+1/2

+ (p′)i+1/2 (sx)i+1/2 (5.61)

(Π · S)3 = [(ρv)0]i+1/2 [(qs)0]i+1/2 + (p0)i+1/2 (sx)i+1/2 +
[
(ρv)′

]
i+1/2

[(qs)0]i+1/2 +

[(ρv)0]i+1/2

[
(qs)

′]
i+1/2

+ (p′)i+1/2 (sx)i+1/2 (5.62)

and,

(Π · S)4 = [(ρw)0]i+1/2 [(qs)0]i+1/2 + (p0)i+1/2 (sx)i+1/2 +
[
(ρw)′

]
i+1/2

[(qs)0]i+1/2 +

[(ρw)0]i+1/2

[
(qs)

′]
i+1/2

+ (p′)i+1/2 (sx)i+1/2 (5.63)

The fifth component is associated with the energy equation and given by

(Π · S)5 =
{

[(ρeT )0]i+1/2 + (p0)i+1/2

}
[(qs)0]i+1/2 +

{
[(ρeT )0]i+1/2 + (p0)i+1/2

} [
(qs)

′]
i+1/2{[

(ρeT )′
]
i+1/2

+ (p′)i+1/2

}
[(qs)0]i+1/2 (5.64)

In order to calculate the flux (Π · S) according to Eqs. (5.52) to (5.57), it is neces-

sary to approximate the values of the variables at the control surface Si+1/2 from the

mean values of the conservative variables in the control volumes, given by the vectors

Ui,j,k =



ρ

ρu

ρv

ρw

ρeT


i,j,k

=



ρ0 + ρ′

(ρu)0 + (ρu)′

(ρv)0 + (ρv)′

(ρw)0 + (ρw)′

(ρeT )0 + (ρeT )′


i,j,k

(5.65)

In order to obtain the momentum and energy primitive variables, the Favre mean

is used to calculate the mass-averaged momentum and energy primitive variables as

ũ =
ρu

ρ
, ṽ =

ρv

ρ
, w̃ =

ρw

ρ
, ẽT =

ρeT
ρ
. (5.66)

ũ0 =
(ρu)0

ρ0

, ṽ0 =
(ρv)0

ρ0

, w̃0 =
(ρw)0

ρ0

, ẽT 0 =
(ρeT )0

ρ0

. (5.67)

ũ′ =
(ρu)′

ρ′
, ṽ′ =

(ρv)′

ρ′
, w̃′ =

(ρw)′

ρ′
, ẽT

′ =
(ρeT )′

ρ′
. (5.68)

The mean of the total energy is given by

ẽT = ẽ+ ẽk = ẽ+
ũu+ ṽv + w̃w

2
. (5.69)
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(ẽT )0 = ẽ0 + (ẽk)0 = ẽ0 +
(ũu)0 + (ṽv)0 + (w̃w)0

2
. (5.70)

(ẽT )′ = ẽ′ + (ẽk)
′ = ẽ′ +

(ũu)′ + (ṽv)′ + (w̃w)′

2
. (5.71)

Since it is not possible to directly calculate the mass-averaged kinetic energy, given by

the second term of the right-hand side of the above equation, the internal energy is

calculated as

e = ẽT − ek = ẽT −
ũũ+ ṽṽ + w̃w̃

2
, (5.72)

e0 = (ẽT )0 − (ek)0 = (ẽT )0 −
ũ0ũ0 + ṽ0ṽ0 + w̃0w̃0

2
, (5.73)

e′ = (ẽT )′ − (ek)
′ = (ẽT )′ − ũ′ũ′ + ṽ′ṽ′ + w̃′w̃′

2
, (5.74)

and the mean of the thermodynamic variables p and T are calculated as

p = (γ − 1) ρ e, T =
γ M2 p

ρ
, (5.75)

p
0

= (γ − 1) ρ0 e0, T 0 =
γ M2 p

0

ρ0

, (5.76)

p′ = (γ − 1) ρ′ e′, T ′ =
γ M2 p′

ρ′
. (5.77)

It is important to note that the first terms in the right-hand side of Eqs. (5.52),

(5.54), (5.55), (5.56), and (5.57) are the fluxes of mass, momentum and total energy

through surface Si+1/2 and the other terms are fluxes that are functions of the right-

hand sides of the momentum and total energy equations. In order to evaluate all this

terms at that surface, in this work is used the fourth-order skew-symmetric scheme

proposed by Ducros Ducros et al (2000), et al. where

ui+1/2 =
2

3
(ũi + ũi+1)−

1

12
(ũi−1 + ũi + ũi+1 + ũi+2) , (5.78)

(u0)i+1/2 =
2

3

[
(ũ0)i + (ũ0)i+1

]
− 1

12

[
(ũ0)i−1 + (ũ0)i + (ũ0)i+1 + (ũ0)i+2

]
, (5.79)

(u′)i+1/2 =
2

3

[
(ũ′)i + (ũ′)i+1

]
− 1

12

[
(ũ′)i−1 + (ũ′)i + (ũ′)i+1 + (ũ′)i+2

]
, (5.80)

for the primitive variables, exemplified in the above equation by the x−direction com-

ponent of the velocity, and where

(ρu)i+1/2 =
2

3

[
(ρu)i + (ρu)i+1

]
− 1

12

[
(ρu)i−1 + (ρu)i + (ρu)i+1 + (ρu)i+2

]
, (5.81)

[(ρu)0]i+1/2 =
2

3
{[(ρu)0]i+[(ρu)0]i+1}−

1

12
{[(ρu)0]i−1 +[(ρu)0]i+[(ρu)0]i+1 +[(ρu)0]i+2},

(5.82)
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[
(ρu)′

]
i+1/2

=
2

3
{
[
(ρu)′

]
i
+
[
(ρu)′

]
i+1
}− 1

12
{
[
(ρu)′

]
i−1

+
[
(ρu)′

]
i
+
[
(ρu)′

]
i+1

+
[
(ρu)′

]
i+2
},

(5.83)

for the conservative variables, also exemplified by the x−direction component of the

specific momentum.

The scheme proposed by Eqs. (5.78) to (5.83) is a centered one, and therefore,

an explicit artificial viscosity was previously included in Eq. (5.50). In order to en-

hance the numerical method with shock-capturing capabilities and the ability to cope

with steep gradient regions, this artificial dissipation uses the basic idea proposed by

Jameson et al (1981), given by

D(U) = [di+1/2(U)− di−1/2(U)] + [dj+1/2(U)− dj−1/2(U)] + [dk+1/2(U)− dk−1/2(U)],(5.84)

where

di+1/2(U) = ε
(2)
i+1/2[Ui+1 −Ui]− ε(4)

i+1/2[Ui+2 − 3Ui+1 + 3Ui −Ui−1]. (5.85)

The first and second terms of Eq. (5.85) are second-order and fourth-order dissi-

pation operators, respectively. The first one acts in the shock and the second one acts

over steep gradient regions, like the viscous regions. The coefficients of Eq. (5.85) are

given by

ε
(2)
i+1/2 = K (2)max (Ψi,Ψi+1) , ε

(4)
i+1/2 = max

[
0,
(

K (4) − ε(2)
i+1/2

)]
, (5.86)

where

K (2) = 1/4, K (4) = 1/256, (5.87)

and sensor Ψi is given by

Ψi =
|p
i+1
− 2p

i
+ p

i−1
|

|p
i+1
|+ |2p

i
|+ |p

i−1
|
. (5.88)

This dissipation model was successfully applied in the numerical simulation of

vortex-shock interactions in laminar flows Bobenrieth (2005), unsteady aerodynamic

forces over circular cylinders in transonic flow Bobenrieth et al. (2006a), , the effect of

plunging and pitching motions over an airfoil in transonic laminar flow Bobenrieth et

al. (2006b), , the effect of the plunging velocity over an airfoil in subsonic laminar flow

Bobenrieth (2006c), and subsonic, transonic, and supersonic cavity flows Bobenrieth

(2008). It was also recently applied in the direct computation of noise generated by

stator cascades Bobenrieth et al. (2010), .

The proposed vorticity-based sensor,

(Ψrot)i+1/2 = K
(2)
rot · |O× u|i+1/2, (5.89)
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and the proposed divergence-based sensor,

(Ψdiv)i+1/2 = K
(2)
div · |O · u|i+1/2, (5.90)

are implemented in the artificial dissipation model by substituting the pressure-based

sensor in the calculation of the coefficient of the second-order dissipation operator as

ε
(2)
i+1/2 = max

[
(Ψrot)i+1/2 , (Ψdiv)i+1/2

]
. (5.91)

Since the calculation of the divergence and the vorticity of the velocity field is

fourth-order acurate in space, the resulting numerical method is fourth-order accurate

in space and third-order accurate in time.

In order to advance Eq. (5.50) in time, a third-order Runge-Kutta is used as

proposed by Shu and reported by Yee (1997). This yield to the following three steps:

U
1

= U
n −

[
F
(
U
n)−D (Un)]

, (5.92)

U
2

=
3

4
U
n

+
1

4
U

1 − 1

4

[
F
(
U

1
)
−D

(
U

1
)]
, (5.93)

U
n+1

=
1

3
U
n

+
2

3
U

2 − 2

3

[
F
(
U

2
)
−D

(
U

2
)]
. (5.94)

As used in this work, the resulting numerical method is fourth-order accurate in

space and third-order accurate in time. The immersed boundary methodology is ap-

plied in the manner described by Bobenrieth et al.(2009), .

5.2 Immersed-Boundary Technique

The approach used in this work for imposing the boundary conditions at the bound-

ary volumes, defined as the control volumes that contain one or more surface-grid

points, is a discrete forcing one where the boundary conditions are directly imposed

directly to the boundary volumes. In all the control volumes, the mean values of the

conservative variables are given by

Ui,j,k =



ρ

ρũ

ρṽ

ρw̃

ρ ẽT


i,j,k

. (5.95)

In the boundary volumes, the no-slip condition directly results in the boundary values

ũ = ṽ = w̃ = 0. (5.96)
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Since the total energy is the sum of the internal and kinetic energy, the application of

the no-slip condition in Eq. (5.72) results in

ẽT = e, (5.97)

bearing, for the boundary volumes

U
b

i,j,k =



ρ

0

0

0

e



b

i,j,k

, (5.98)

where the superscript b indicates that the finite volume (i, j, k) is a boundary volume. It

is important to note that the number of boundary volumes is less or equal to the number

of surface points, since more than one surface points can lie within one boundary

volume.

In order to obtain the boundary values for the density, ρ, and the internal energy,

e, the averaged equation of state,

p =

(
1

γM2
∞

)
ρ T , (5.99)

is derived in the normal outward direction from the solid wall. With this objective, it

is defined n as a unit vector with a direction that is normal to the wall with outward

sense, where the Cartesian components are n = nxi + nyj + nzk and the magnitude is

|n| =
√
n2
x + n2

y + n2
y = 1. Depending on the resolution of the Cartesian and surface

grids, more than one surface point can lie within a boundary volume, and in this case

it is used the mean among all normal unit vectors associated to the grid points that

lie within the boundary volume. With the normal direction defined by one unit vector

in the boundary volume or by an averaged unit vector over the boundary volume, the

derivative in this direction is given by

∂p

∂n
=

(
1

γM2
∞

)
∂

∂n
(ρ T ) =

(
1

γM2
∞

)(
ρ
∂T

∂n
+ T

∂ρ

∂n

)
. (5.100)

For an adiabatic wall, ∂T/∂n = 0, and considering the boundary-layer approximation,

∂p/∂n = 0, Eq. (5.100) yields
∂ρ

∂n
= 0, (5.101)

and since

e =
1

γ(γ − 1)M2
∞
T , (5.102)
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the adiabatic wall condition results in

∂e

∂n
= 0. (5.103)

Defining n as a unit vector with a direction that is normal to the solid wall and a

sense that is outward with Cartesian components n = nxi + nyj + nzk, the derivates

of the averaged density and internal energy are written as

∂ρ

∂n
=
∂ρ

∂x

∂x

∂n
+
∂ρ

∂y

∂y

∂n
+
∂ρ

∂z

∂z

∂n
= nx

∂ρ

∂x
+ ny

∂ρ

∂y
+ nz

∂ρ

∂z
(5.104)

and
∂e

∂n
=
∂e

∂x

∂x

∂n
+
∂e

∂y

∂y

∂n
+
∂e

∂z

∂z

∂n
= nx

∂e

∂x
+ ny

∂e

∂y
+ nz

∂e

∂z
. (5.105)

For the boundary volumes, Eqs. (5.101) and (5.103) apply and result in

0 = nx

(
∂ρ

∂x

)b
i,j,k

+ ny

(
∂ρ

∂y

)b
i,j,k

+ nz

(
∂ρ

∂z

)b
i,j,k

(5.106)

and

0 = nx

(
∂e

∂x

)b
i,j,k

+ ny

(
∂e

∂y

)b
i,j,k

+ nz

(
∂e

∂z

)b
i,j,k

. (5.107)

If nx > 0, in regular region of the Cartesian grid the derivative ∂ρ/ ∂x in the

boundary volumes can be calculated with fourth-order spatial precision using a forward

finite-difference approach as(
∂ρ

∂x

)b
i,j,k

=
1

12∆x

[
−25ρ b

i,j,k + 48ρi+1,j,k − 36ρi+2,j,k + 16ρi+3,j,k − 3ρi+4,j,k +O(∆x)4
]
.

(5.108)

Defining the difference operator

D+
i ρ =

1

25

(
48ρi+1,j,k − 36ρi+2,j,k + 16ρi+3,j,k − 3ρi+4,j,k

)
, (5.109)

Eq. (5.108) is written as(
∂ρ

∂x

)
i,j,k

=
25

12∆x

[
−ρ b

i,j,k +D+
i ρ+O(∆x)4

]
. (5.110)

If n = i (nx = 1, ny = 0 and nz = 0), Eq. (5.106) gives

0 =

(
∂ρ

∂x

)b
i,j,k

, (5.111)

and introducing this result in Eq. (5.110) yields

ρ b
i,j,k = D+

i ρ+O(∆x)4. (5.112)
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Following the same line of reasoning, if n = j (nx = 0, ny = 1 and nz = 0),

ρ b
i,j,k = D+

j ρ+O(∆y)4, (5.113)

and if n = k (nx = 0, ny = 0 and nz = 1),

ρ b
i,j,k = D+

k ρ+O(∆z)4. (5.114)

For the generalized case, where n = nxi + nyj + nzk, the averaged density is calcu-

lated in the boundary volumes as the weighted value

ρ b
i,j,k =

|nx|Diρ+ |ny|Djρ+ |nz|Dkρ

|nx|+ |ny|+ |nz|
. (5.115)

Following an analogous procedure, since ∂ρ/∂n = ∂e/∂n = 0, the averaged internal

energy is calculated as the weighted value

e bi,j,k =
|nx|Die+ |ny|Dje+ |nz|Dke

|nx|+ |ny|+ |nz|
, (5.116)

where the difference operators (Di, Dj and Dk) can be in the forward direction (D+
i ,

D+
j and D+

k ), if the values of nx, ny and nz are positive, or in the backward direction

(D−i , D−j and D−k ), if the values of nx, ny and nz are negative. For the case of the

averaged density, the operator D+
i is given by Eq. (5.109), and the other forward and

backward difference operators are given by

D+
j ρ =

1

25

(
48ρi,j+1,k − 36ρi,j+2,k + 16ρi,j+3,k − 3ρi,j+4,k

)
, (5.117)

D+
k ρ =

1

25

(
48ρi,j,k+1 − 36ρi,j,k+2 + 16ρi,j,k+3 − 3ρi,j,k+4

)
, (5.118)

D−i ρ =
1

25

(
48ρi−1,j,k − 36ρi−2,j,k + 16ρi−3,j,k − 3ρi−4,j,k

)
, (5.119)

D−j ρ =
1

25

(
48ρi,j−1,k − 36ρi,j−2,k + 16ρi,j−3,k − 3ρi,j−4,k

)
, (5.120)

D−k ρ =
1

25

(
48ρi,j,k−1 − 36ρi,j,k−2 + 16ρi,j,k−3 − 3ρi,j,k−4

)
. (5.121)

In this manner, the conservative variables vector for the boundary volumes is given by

U
b

i,j,k =



ρ b
i,j,k

0

0

0

e bi,j,k


, (5.122)

where the first and last components are given by Eqs. (5.115) and (5.116), respectively.
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6 NUMERICAL SIMULATIONS

6.1 Vat-parameters

In order to solve the Linearized Unsteady Euler Equations a Time-Avagered Flow

solution of the Euler equation is necessary. Indeed, analysis of the instantaneus field

is necessary to make sure the simulation was carried out in the right way. Since the

problems are highly nonlinear (Re → ∞) numerical errors may occur. This errors

are associated with numeric oscilations and a fine adjustment of VAT parameters is

necessary to control these oscilations.

6.1.1 Time-step

Time step is an important variable in numeric simulations because it is the time

discretization. Since the equations that are solved on VAT have a hyperbolic nature,

the Courant-Friedrichs-Lewy condition must be achieved for the numerical solution

convergence, Hirsch (2007). VAT uses an explicit time-marching scheme, so it is nec-

essary to control the Courant or CFL number. The CFL is an adimensional number

defined as:

CFL =
a4t
4x

(6.1)

where a is the convection velocity (a = U∞ + c), 4t is the time-step and 4x =

L/nunit, where nunit is the number of elements over the main length.

Ducros et al (2000), say that, for this numerical scheme, the local CFL must be

CFL <
√

2 on every point of the domain to garantee numerical stability.

For this problem the stream vortices are a low pressure zone. The local velocity and

the termodynamic properties are very different from the free stream. So CFL must be

a reduced number to garantee numerical stability. Figure 6.1 shows an instantaneus

field of a simulation carried out with CFL = 0.774 (time − step = 1.5 ∗ 10−6) and

figure 6.2 shows an instantaneus field for CFL = 0.516 (time − step = 1.0 ∗ 10−6).

Note that for CFL = 0.516 the results are satisfactory. Both of the fields showed are

for 104 iterations, the airfoil is for case 1 (symmetric airfoil).
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Figure 6.1: numeric oscilations due to nonlinearity of eulers equation. The variable plotted
is βT = |∇T |1/20.
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Figure 6.2: instantaneus field of 104 iterations for case1. The variable plotted is βT =
|∇T |1/20.
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6.1.2 Artificial Viscosity with Pressure Based Sensor

In order to enhance the numerical method with shock-capturing capabilities and

the ability to cope with steep gradient regions, VAT uses an artificial dissipation pro-

posed by Jameson et al (1981), . This dissipation must control the numeric error

without interefe in the fisical meaning of the simulation. Figure 6.3 and 6.4 shows nu-

meric oscilations due to inadequate values of K(2) and K(4), the constants that control

the artificial dissipation. Figure 6.5 shows an instantaneus field simulated with the

adequate values of K(2) and K(4).

Figure 6.3: instantaneus field of 62 ∗ 104 iterations for case1, K(2) = 0.25 and K(4) = 1/128.
The variable plotted is βT = |∇T |1/20.

39



Figure 6.4: instantaneus field of 2 ∗ 104 iterations for case1, K(2) = 0.175 and K(4) = 1/128.
The variable plotted is βT = |∇T |1/20.
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Figure 6.5: instantaneus field of 47 ∗ 104 iterations for case1, K(2) = 0.5 and K(4) = 1/64.
The variable plotted is βT = |∇T |1/20.
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6.2 Time-Averaged Flow Solution with Pressure Based Sensor

In this section preliminary results are shown. The first results are the Euler solu-

tions, since a time-avegered flow solution of the euler equations is necessary to solve

the linearized euler equations. All the simulations are two-dimensional, Mach number

is 0.5 and one hundred elements along the airfoil chord, a 8x8 chords domain of regular

cartesian mesh and a stretch zone of 150 elements in a rate of 1.05 in the directions

+x, -x, +y and -y.

Figures 6.6 and 6.7 show acceptable simulations to acquire the time-avered so-

lutions. Figures 6.8 to 6.11 shows intantaneus and mean pressure probes located 4

chords above the airfoil. The probes signal indicates a stablished mean field satisfatory

to input data on the linearized-euler simulations.

Figure 6.6: Unsteady flow solution for the nonlinear Euler equations for case1. The variable
plotted is βT = |∇T |1/20.
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Figure 6.7: Unsteady flow solution for the nonlinear Euler equations for case2. The variable
plotted is βT = |∇T |1/20.
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Figure 6.8: pressure probe above the airfoil for case1.

Figure 6.9: mean pressure probe above the airfoil for case1.
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Figure 6.10: pressure probe above the airfoil for case2.

Figure 6.11: mean pressure probe above the airfoil for case2.
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6.3 Time-Averaged Flow Solution with Divergent and Vorticity Sensors

In this section preliminary results for the new formulation of artificial viscosity

are shown. These simulations were carried out to test the new sensor with the Euler

solver. The values of K
(2)
div, K

(2)
rot and K(4) used in this simulations suplies a first input

to the linearized-euler solver. All the simulations are two-dimensional, Mach number

igual 0.5 and one hundred elements along the airfoil chord, a 6x6 chords domain of

regular cartesian mesh and a stretch zone of 200 elements in a rate of 1.05 in the

directions +x, -x, +y and -y. Although the code performance was not affected by

the new sensors implementation, there were no hardware disponibility to evalute 8x8

domain simulations.

Figure 6.12: Unsteady flow solution for the nonlinear Euler equations for case1 with the new
sensors implementation. The variable plotted is βT = |∇T |1/20.
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Figure 6.12 shows a satisfatory aeroacoustic field. The sensors values used was:

K
(2)
div = 8.0x10−4, K

(2)
rot = 2.0x10−5 and K(4) = 4.0x10 − 3. A not expected result is

noted in all Euler simulation. A stream spread is noted in the instantaneus field, figure

6.12, and in the mean field, figure 6.13. Although this unexpected stream the fisical

meaning of the simulation does not seem to be afected since the cp field still symetric,

as shown in figure 6.13. The pressure distribuition on the airfoil surface corresponded

to the expectations and the pressure probes in the mean field shows no oscilations as

shown in figures 6.14 and 6.15.

Figure 6.13: mean cp field for case 1
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Figure 6.14: mean and instantaneus pressure probes localized under the airfoil for case 1

Figure 6.15: mean and instantaneus pressure probes localized in the stream for case 1
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6.4 Linearized-euler Solutions

6.4.1 Vortical gust on uniform flow field

The first approach for the vortical gust implementation was by a time dependent

acceleration, equations 4.4 and 4.5, imposed on the right-hand-side of the governing

equations, eq. 5.24 and 5.25.

To evaluate the vortical gust implementation the gust was imposed in a uniform

flow field. Mach number igual 0.5 and one hundred elements per length unit, a 1x1

domain of regular cartesian mesh and a stretch zone of 100 elements in a rate of 1.01

in the directions +x, -x, +y and -y.

Figure 6.16 shows the mean and instantaneus probes localized in the center of

domain for uniform flow field for k=1.0. It shows a tendency to pressure mean (black

line) to be a constant in P = Pinf . The instantaneus probe (blue line) shows a pressure

response to a velocity variation in the domain as expected.

Figure 6.16: mean and instantaneus pressure probes localized in the center of domain for
uniform flow field for k=1.0

With no boundary conditions the gust implementation went as expected, but com-

bined with the immersed boundary condition undesirable results as floating point ex-

trapolation.
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Alternatively to the first approach, the time dependent velocity gust was imposed

in a fixed y position upstream the airfoil in the regular domain as illustrated in fig.

6.17

Figure 6.17: v’ field for kx = ky = 0.1

In this approach the pressure response to the velocity imposition in the flow field

was the same as in the first approach. Figure 6.18 show this pressure response for

k=2.0.
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Figure 6.18: mean and instantaneus pressure probes localized in the center of domain for
uniform flow field for k=2.0
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6.4.2 Airfoil Gust Response

Figures 6.19, 6.20 and 6.21 show the v′y field for k=2.0, 1.0 and 0.1 respectively in

the regular domain 6x6.

Figure 6.19: v’ field for kx = ky = 2.0
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Figure 6.20: v’ field for kx = ky = 1.0
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Figure 6.21: v’ field for kx = ky = 0.1
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Figures 6.24 to 6.27 present the acoustic intensity case 1 k=0.1, 1.0 and 2.0. The

expected results are graphics with directivity of a dipole source.

Figure 6.22: Acoustic intensity on circle R = 1C, Case 1, k=0.1

Figure 6.23: Acoustic intensity on circle R = 2C, Case 1, k=0.1
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Figure 6.24: Acoustic intensity on circle R = 1C, Case 1, k=1.0

Figure 6.25: Acoustic intensity on circle R = 2C, Case 1, k=1.0
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Figure 6.26: Acoustic intensity on circle R = 1C, Case 1, k=2.0

Figure 6.27: Acoustic intensity on circle R = 2C, Case 1, k=2.0
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Figure 6.28: probe position

The directivity results are not as expected, altough the dipole caracteristics for the

gust reponse are noted in the pressure probes located above and under the airfoil as

shown in figure 6.29.

Figure 6.29: probes 03 and 07 pressure signal, Case 1, k=2.0
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In Figure 6.30 the probes signal confirm the directivity graph shown in figure 6.27.

The pressure variation is higher in probe 5 then in probe 3 as expected after the

directivity graph.

Figure 6.30: probes 03 and 05 pressure signal, Case 1, k=2.0

Figure 6.31 shows the pressure response in probe 03 for two different wave number.

As expected, the response for a wave number two times higher (k=2.0) has twice the

frequency of the response for k=1.0.
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Figure 6.31: probes 03 pressure signal, Case 1, k=2.0 and k=1.0
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7 CONCLUSION

The main objective of this work is the study of the self-induced noise produced

on airfoils interacting with gust using the Virtual Aeroacoustic Tunnel (VAT). Com-

parisons between VAT results and GUST-3D, the NASA frequency-domain code, are

shown in figures 6.23 and 6.25. Differences in the acoustic signals demonstrate some

over dumping. This is probabily due to the artificial dissipation inherent of VAT code

or some numeric dispearsion of the signal.

Figure 7.1: acoustic intensity comparation for case 1 k=0.1 r=1.0
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Figure 7.2: acoustic intensity comparation for case 1 k=1.0 r=1.0

Figure 7.3: acoustic intensity comparation for case 1 k=2.0 r=1.0
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Analyzing the frequency spectrum is possible to understand why the acoustic in-

tensity gets so different. Figures 7.4 to 7.6 show the frequency spectrum for probe

03 for k=0.1, 1.0, 2.0 respectively. The broadband spectrum indicates that VAT code

spreads the acoustic signal in multiple frequencies without a dominant tonal.

Figure 7.4: probes 03 frequency spectrum, Case 1, k=0.1

Figure 7.5: probes 03 frequency spectrum, Case 1, k=0.1
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Figure 7.6: probes 03 frequency spectrum, Case 1, k=0.1

7.1 Next Steps

The following steps of the present work are:

1. Understanding this frequency spread and control it;

2. Solve the euler equations with different boundary conditions to evalute the mean

field;

3. Solve the euler and the linearized euler equations for the asymmetric airfoil;

4. Compare the new results with the NASA “Fourth Computational Aeroacoustic

Workshop on Benchmark Problems”
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