
Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

An OSGi Implementation for Autonomous
Goal-Oriented Deployment

João Paulo C. de Araujo

Monografia apresentada como requisito parcial
para conclusão do Bacharelado em Ciência da Computação

Orientador
Prof.ª Dr.ª Genaína Nunes Rodrigues

Brasília
2017

Universidade de Brasília — UnB
Instituto de Ciências Exatas
Departamento de Ciência da Computação
Bacharelado em Ciência da Computação

Coordenador: Prof. Dr. Rodrigo Bonifácio de Almeida

Banca examinadora composta por:

Prof.ª Dr.ª Genaína Nunes Rodrigues (Orientador) — CIC/UnB
Prof. Dr. George Luiz Medeiros Teodoro — CIC/UnB
Prof. Dr. Felipe Pontes Guimarães — Agência Espacial Brasileira

CIP — Catalogação Internacional na Publicação

de Araujo, João Paulo C..

An OSGi Implementation for Autonomous Goal-Oriented Deployment
/ João Paulo C. de Araujo. Brasília : UnB, 2017.
55 p. : il. ; 29,5 cm.

Monografia (Graduação) — Universidade de Brasília, Brasília, 2017.

1. Dependabilidade, 2. Engenharia de Requisitos Orientada a
Objetivos, 3. Modelagem de Contexto, 4. Recursos Heterogêneos,
5. Planejamento de Deployment, 6. OSGi

CDU 004.4

Endereço: Universidade de Brasília
Campus Universitário Darcy Ribeiro — Asa Norte
CEP 70910-900
Brasília–DF — Brasil

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

An OSGi Implementation for Autonomous
Goal-Oriented Deployment

João Paulo C. de Araujo

Monografia apresentada como requisito parcial
para conclusão do Bacharelado em Ciência da Computação

Prof.ª Dr.ª Genaína Nunes Rodrigues (Orientador)
CIC/UnB

Prof. Dr. George Luiz Medeiros Teodoro Prof. Dr. Felipe Pontes Guimarães
CIC/UnB Agência Espacial Brasileira

Prof. Dr. Rodrigo Bonifácio de Almeida
Coordenador do Bacharelado em Ciência da Computação

Brasília, 08 de Dezembro de 2017

Agradecimentos

Thanks to God, and my savior Jesus Christ, for giving me a purpose and meaning
in life. What is the point of searching for academic excellence? Or at least of trying to
develop a good final project? In five hundred of years, no one will ever remember of the
young kid from Brasilia who tried to do his best, pulling dozens of all-nighters and leaving
his social life behind, neither of his work, for it will be totally outdated. I ask again, what
is the meaning of all of it? I found that meaning in something greater than me. By looking
at life through this materialistic lenses, I saw myself in complete desperation, lacking for
something that nothing in this world would never satisfy, since any satisfaction I’d find
was only temporary. I’ve found rest only in the words of a Jew who said: “Everyone who
drinks this water will be thirsty again, but whoever drinks the water I give them will
never thirst.” (John 4:13,14) He said that only him could provide me with everything I
was searching for, namely, a purpose, and he provided it in the most unimaginable way:
by excelling in all areas of his life here on earth and exchanging his perfect resume for my
failed one in the cross, through sheer grace! He was everything I cannot be and achieved
everything I cannot achieve. Now, I don’t need to live by seeking for pleasures or finding
significance through my performance, for I already have the ultimate pleasure in him and
his perfect curriculum was graciously given to me. My life now is dedicated to follow him
and to grow more likely to his character. If there is any aspect of this work that is good
in any form, it is because of his kindness in providing me with wisdom and knowledge.

I also want to thank my girlfriend Luiza, for being the one person who, even
though did not know a thing about programming, patiently and diligently listened to de-
tailed descriptions of the problems I’ve faced during the execution of this project. Thanks
to Genaína, my professor adviser, who was attentive and available, answering my emails
almost in real time, always receiving me with a smile in her face. Thanks to Gabriel
Rodrigues, author of the GoalD methodology, for being solicit and altruistically helping
me with this project. Thanks also to my family for all the support, and to my friends
Marcello Doudement, Érica Rios, Arnaldo Junior and Érica Lima who helped me keep
my sanity during the college years.

iv

Resumo

Com a expansão da tecnologia de Internet das coisas, novos desafios computa-
cionais têm surgido. Estes possuem como característica principal seu alto grau de he-
terogeneidade de recursos, uma vez que são compostos pelos mais variados dispositivos,
os quais se utilizam de uma infraestrutura de orientação a serviços para publicarem e
descobrirem funcionalidades por meio de serviços. Tendo em vista a natureza complexa
de tais sistemas, torna-se necessário o uso de ambientes de gerenciamento de deployment
desses recursos heterogêneos. Dentre eles, um potencial framework é o padrão OSGi, que
se caracteriza por ser um framework Java para desenvolvimento e deployment de progra-
mas modulares (em bundles). Nesse trabalho, será abordada a integração do OSGi ao
GoalD, uma plataforma para deployment de recursos heterogêneos conforme a abordagem
orientada a objetivos, por meio da descrição detalhada da implementação de cada uma
das atividades do processo de deployment autônomo, definida pelo GoalD, utilizando os
conceitos e técnicas apresentados pela tecnologia OSGi.

Palavras-chave: Dependabilidade, Engenharia de Requisitos Orientada a Objetivos, Mo-
delagem de Contexto, Recursos Heterogêneos, Planejamento de Deployment, OSGi

v

Abstract

With the expansion of the Internet of Things technology, new computational chal-
lenges have risen. Their main characteristic is the high degree of resource heterogeneity,
once they are composed by the most variant kinds of devices, which make use of a service-
oriented infrastructure to publish and discover functionalities through services. Seeing the
complex nature of such systems, it is necessary the use of deployment management envi-
ronments to handle such heterogeneous resources. Amongst them, a potential framework
is the OSGi standard, which is known for being a Java framework for the development
and deployment of modular applications (bundles). In this work, it will be addressed the
integration of OSGi to GoalD, a platform for the deployment of heterogeneous resources
that follows the goal-oriented approach, through the detailed description of the imple-
mentation of each activity of the autonomous deployment process, defined by GoalD, by
using the concepts and techniques presented by the OSGi technology.

Keywords: Dependability, Goal-Oriented Requirements Engineering, Context Modelling,
Heterogenous Resources, Deployment Planning, OSGi

vi

Sumário

1 Introduction 1
1.1 Problem Definition . 1
1.2 Proposed Solution . 2
1.3 Structure . 3

2 Background 4
2.1 Goal-Oriented Requirements Engineering (GORE) 4
2.2 GoalD . 6
2.3 OSGi . 8

2.3.1 Bundles . 9
2.3.2 Services . 11
2.3.3 The Requirement-Capability Model 13
2.3.4 OSGi Bundle Repositories (OBR) 15

2.4 Apache Maven Development Tool . 16

3 Filling Station Advisor 18

4 Goal-Oriented OSGi Environment 20
4.1 Offline Activities . 22

4.1.1 Goal Modeling . 22
4.1.2 Mapping Components . 23
4.1.3 Packaging Artifacts . 25

4.2 Online Activities . 29
4.2.1 Conceptual Model . 29
4.2.2 Automated Deployment Planning 31
4.2.3 Deployment Execution . 34

5 Evaluation 38

6 Conclusion 43
6.1 Future Work . 44

Referências 46

vii

Lista de Figuras

2.1 AND/OR-Refinements [24] . 5
2.2 Interface Type and Component Example [29] 6
2.3 Overview of the Steps in Goal-D [24] . 7
2.4 Refinement Patterns in Goal-D [24] . 8
2.5 OSGi Framework Layers [3] . 9
2.6 Bundle’s Life Cycle State Diagram [3] . 10
2.7 An OSGi Service [23] . 12
2.8 Requirement-Capability Model Example 14
2.9 Repository XML File Format . 16

3.1 CGM of the Filling Station Advisor [24] 19
3.2 Context Space of the Filling Station Advisor [24] 19

4.1 AND-Refinement - G4 Component Specification 23
4.2 OR-Refinement - G1 Component Specification 24
4.3 P1 and P2 Manifest Files . 26
4.4 G1 Manifest File . 26
4.5 P7 Manifest File . 27
4.6 P15 XML File . 28
4.7 Framework’s Class Diagram . 30
4.8 New Goal Registration Process’ Sequence Diagram 32
4.9 Re-planning Process’ Sequence Diagram 33
4.10 Installation Process’ Sequence Diagram . 35

5.1 Computing Environment Evaluation Scenarios [24] 38
5.2 Quantity of Bundles over Time for New Goals 40
5.3 Quantity of Bundles over Time when Re-planning 40
5.4 Size of bundles over Time for Test Cases 41
5.5 Size of bundles over Time for Re-plan Cases 42

viii

Capítulo 1

Introduction

Thanks to the advance of technology, the second decade of the twentieth first
century started with previsions for the future never imagined before. Computers, which
have gotten smaller and cheaper, fitting in purses and pockets, now are being embedded
into coffee machines, dish washers, street lamps, and any other device based on electricity
that has an on/off switch. The advent of technologies such as Internet of Things [9],
Ubiquitous Computing [11] and Opportunistic Computing [25] allowed for these devices
to interact with each other, since, now, each one of them can be connected do the Internet
and are able to form computational environments, providing its different resources as input
for new possible solutions.

While this creates unimaginable possibilities for the development of new soluti-
ons that may ease the lives of millions of people around the globe, it also brings a few
challenges. One of them is the difficulty found in developing softwares able to harvest
the capability of these diverse environments. Such computing environments are defined as
highly heterogeneous and are "formed by different sets of devices, with different resources,
and which are only partially known at design-time"[24].

The challenge, thus, consists of analyzing the environment in run-time, in order to
gather the available artifacts required for a given system to run properly. This involves an
efficient deployment planning process for providing the needed artifacts, and the correct
deployment of such artifacts, which is the process of getting these software artifacts ready
to be used.

1.1 Problem Definition

After analyzing the current deployment methods in literature and finding none
that correctly suits the described needs in an autonomous manner and without a previous
knowledge of the environment, Rodrigues [24] describes a methodology intended to solve
this challenge, named GoalD. His approach tackles three main obstacles to the deployment
in such environments, which are: heterogeneity, uncertainty at design time and autono-
mous deployment. Initially, the heterogeneity is related to the broad range of resources

1

that can be found. Next, the uncertainty at design time considers that different configu-
rations may emerge during the execution. Finally, the autonomous deployment specifies
that the system must be planned and deployed without the assistance of a human.

Following this track, the GoalD approach revolves around getting to the bottom of
these three obstacles by relying on Goal-oriented Requirements Engineering for modeling
user’s desires and providing a suitable configuration, for a given a set of available artifacts.
This is done by performing a set of activities that can be divided into two stages: offline
and online. The offline activities are: goal modeling, mapping goals to components and
artifact packaging. The online activities consist of automated deployment planning and
deployment execution.

Nevertheless, Rodrigues’ project gives special attention to the autonomous de-
ployment planning, providing details about the generation of the artifacts and their au-
tonomous selection for meeting a specific user goal through a series of activities, leaving
the process of getting the artifacts ready to run to be deeper explained in a future stage
of his work. Consequently, he aims to verify GoalD’s potential to the real world, thus,
offering a proof of concept of his methodology. In the end, he asserts that his proposed
deployment planning algorithm is reliable, efficient and scalable, without providing the
assessment with an actual implementation integrated with a real framework for fetching
and binding the artifacts. Therefore, his solution lacks a concrete manner of certifying
the feasibility of GoalD’s approach.

By the end of the description of the GoalD’s activities, he indicates the OSGi
technology as a viable solution for the integration with GoalD, since it allows for the
dynamic fetch and bind of components in run-time. Having said that, the following
research agenda remains: "Is OSGi an adequate solution for a concrete implementation
of the GoalD’s approach?"

1.2 Proposed Solution

The present work reasons about the feasibility of OSGi as a potential solution
for a GoalD implementation. By focusing on providing GoalD with a fully functional im-
plementation of its approach, this project integrates all of the online and offline activities
with the OSGi approach. This is done by immersing in the OSGi technology concepts
in order to bring light to how OSGi can be adapted in order to accommodate the steps
performed in the GoalD methodology. This is accomplished through the mapping of the
GoalD’s terms to OSGi concepts in a twofold way: a description of each GoalD offline
activity by using the technology offered by OSGi and the implementation of a framework
for the online phase, which is responsible for acquiring the artifacts and binding them
autonomously at runtime.

Firstly, GoalD’s offline activities are mapped into OSGi elements. The first offline
activity, goal modeling, is performed at an early stage of a system’s development. The
second offline activity considers OSGi services as goals and Java classes as components in
order to conceptually match the methodology with the implementation. The third offline

2

activity packages GoalD’s artifacts as OSGi bundles, and stores the results in OSGi Bundle
repositories.

Lastly, an OSGi Framework was implemented for a complete integration of the
online activities of fetching and binding bundles in an autonomous manner. The first
online activity shows the integration of the Deployment Planning Algorithm developed
by Rodrigues with the OSGi Framework, as to provide a deployment plan given a set of
context resources. This activity has two main processes: the new goal registration and the
re-planning process. The last activity, the Deployment Execution, explains how the pro-
cesses of fetching and binding of OSGi bundles are performed in an highly heterogeneous
environment using our developed framework.

1.3 Structure

This work is organized as follows: Chapter 2 gives an introduction on the chief
concepts of the theoretical background that outlines this work. Chapter 3 describes the
Filling Station Advisor, the motivating example used for illustrating the ideas presented.
Next, Chapter 4 provides the explanation of the solution in a thorough way, starting with
an description of each GoalD activity realized by the OSGi technology, followed by a
detailed explanation of each process done by the Framework implemented. Afterwards,
in Chapter 5, the solution is evaluated considering performance and efficiency. Lastly,
Chapter 6 lays out the conclusions of the work and proposes future projects.

3

Capítulo 2

Background

This chapter will present the main concepts related to Goal-Oriented Require-
ments Engineering, the GoalD approach, the OSGi framework and the Maven project.
All of those are key to a better understanding of the solution proposed by this project.

2.1 Goal-Oriented Requirements Engineering (GORE)

A goal is defined by Van Lamsweerde as an "objective the system should achieve
through cooperation of agents in the software-to-be and in the environment,"[18] and has
a significant importance to the requirements engineering area due to the aid it provides
in regard to solving human agents viewpoint conflicts and to the comprehension of the
existence and the responsibilities of the requirements components[14], which allows the
linkage of low-level details to high-level concerns.

The Goal-Oriented Requirements Engineering approach (GORE) was developed
to take advantage of these benefits. It alludes to the usage of goals for every activity
of the Requirements Engineering area and aims to acquire and represent systems and
software requirements at the intentional level [28]. Modeling requirements as goals, or
Goal Modeling, is the technique of representation of those systems that provides a powerful
way of understanding the needs of the stakeholders besides figuring out the motives behind
the development of a piece of software. In the end, a goal model revolves around laying
out user goals and ways to meet them [1]. The GORE approach has a major impact
in the development of systems, specially if they must adapt to different situations like
environment changes, system capability changes and changes in the problem to be solved
[15].

A goal model usually utilizes a directed graph tree to delineate the goals in a
top-down manner so that goals can be successively refined via AND/OR decompositions
and ultimately satisfied by the leaf nodes, which represent tasks that must be performed
by actors. On the one hand, AND-refinements tie in a goal with a group of subgoals, and
the fulfillment all of the subgoals is the only sufficient condition in regard to satisfying
the goal. On the other hand, the OR-refinement relates a goal to a set of alternative

4

subgoals, meaning that meeting one of the subgoals is enough for satisfying the goal. The
refinement comes to an end when each subgoal is utterly achievable by some particular
agent capable of monitoring and controlling it [28]. Figure 2.1 depicts both AND- and
OR-Refinements.

Amongst these methodologies, TROPOS [12] holds particular promise. In its
heart, there is his modeling language, which is the base for constructing conceptual goal
models. It rests in the concepts of actor, goal, plan, resource, dependency, capability and
belief. An Actor is an entity that possess intentionality and represents agents, roles or
positions. An actor can have none to multiple goals. A Goal is related to the interests
of a particular actor, and is divided in softgoals and hard goals, meaning goals whose
definition and satisfiability criteria are unclear, for the former, or trenchant, for the latter.
A Plan can be defined as "a way of doing something"[12], and as a declaration of which
refinement paths should be taken in the directed tree in order to achieve the main goal. A
Resource corresponds to an entity with physical or informational attributes. Dependencies
are subordination relationships between two actors which point out that one depends on
the other, the depender and the dependee, severally. The Capability express an actor’s
competency to define, choose and execute a plan in order to satisfy a goal. Finally, a
Belief declares the world’s knowledge of an actor.

Figura 2.1: AND/OR-Refinements [24]

Moreover, Ali et al. [1] defined the concept of Context, in order to take into
account the variability that may be found in a setting. A Context is "a partial state of
the world that is relevant to an actor’s goals,"or a set of properties and variants that
an actor is compelled to watch in order to make a decision. Since variants were only
allowed by regular Goal Models, but not clear-cut defined, an extension of TROPOS,
named Contextual Goal Model, was created to meet the notions of context and goals by
specifying explicitly which changes in the environment can be adopted and when. This
allows for systematic derivation of variants based on the several different contexts that
may appear [1]. Figure 2.1 describes C1 and C2 as contexts of the G1 OR-refinement
of the Filling Station Advisor Application, explained in Chapter 3, as an example of how
contexts are depicted in Contextual Goal Models.

A natural question that comes to mind is how to build an architecture that
upholds the presented goal modeling. This must be done without losing its benefits
of adaptation in environments that are highly heterogeneous and susceptible to run-

5

time changes, as well as all its variants and different contexts. Lamsweerde [28] sug-
gests that the derivation process should be systematic, incremental, meet functional and
non-functional requirements and make room for different architectural approaches to be
foregrounded.

Yu et al. [29] corroborates Lamsweerde’s idea by proposing a methodology that
systematically preserves the variability property into the architecture according to a goal
model. This is achieved by a component-based design that utilizes interface-binding for
accomplishing goals through the arrangement of components, the called Component-
connector view. This view assigns to each goal a component and an interface type, a
collection of message signatures that lays out the bindings between the components and
provides them a way of interacting with the environment. Two types of interface are defi-
ned by him: a provides interface, which delineates how a functionality of the component
can be accessed, and a requires interface, that specify to which provides interface the
component must be bound to. AND-refinement goals are characterized for having several
requires interfaces as subgoals, while OR-refined have only one, indicating that any of the
subgoals’ provides interfaces can be bound to the goal.

Figura 2.2: Interface Type and Component Example [29]

2.2 GoalD

Motivated by the heterogeneity of devices that have been emerging in the last
few decades and the complexity needed for new environments to handle them, Rodrigues
[24] suggested, in his master’s degree final project, an approach named Goal-D. It focus
on the deployment of systems in highly heterogeneous environments based on a goal-
oriented design of requirements. By deployment, he means the full stack of operations
that go all the way from reasoning which artifacts should be deployed to determining the
best configuration through an analysis of the context and finally to getting them up and
running.

This methodology is divided in two main sets of activities, with one being offline
and the other online. The offline activities are responsible for developing and publishing
components and are held by software engineers. In this stage, there are three main tasks
that are performed: the first consists on collecting requirements and modeling them as
goals, the second relates to mapping the goals obtained into components, and the third
performs the packaging of components into artifacts. Those artifacts are stored in a repo-
sitory for later use in the online activities. The online activities relate to choosing which
components, now artifacts, meet the environment’s needs based the presented context
and the application of these components. The online activities can be divided into two:
deployment planning, that analyses the environment and reasons about which artifacts

6

will satisfy the goals portrayed in the offline stage; and designing the deployment of those
artifacts by fetching them on the repository and binding them. Each activity will be
further explained next.

Figura 2.3: Overview of the Steps in Goal-D [24]

The first of the offline activities is Goal modeling, specifically, building contextual
goal models as described in the previous subsection. The concept of a context in Goal-D
still holds the definition given by Ali et al. [1] but it is described in a more concrete way
as a set of resources, meaning that, when present in an environment, a resource points
out that a correspondent computational capability is available to operate and is able to
achieve the related goal. Contexts, thus, represent restrictions to the suitability of a plan
and Goal-D utilizes them to configure variability at deployment time.

The second offline activity consists of obtaining components from goals. Goal-
D also borrows the notion of components from literature as being units of composition
that have "contractually specified interfaces and explicit context dependencies only."[13] It
views the architecture as organized in terms of components and interfaces, but, differently
from Yu et al. [29], this approach considers context conditions when associating goals to
components.

The AND/OR-refinements are also related to the definitions from literature [28]
[29] and play an important role in this activity since each refinement follows different
patterns resulting in different kinds of components. AND-refinements follow a pattern
in which there is an interface specification for each node and a component specification
that requires every sub-node’s interface and provides the interface for the node being
specified. The satisfaction of this goal happens only when all its subgoals are fulfilled.
OR-refinements observe a pattern that maintains an specification of the interface’s node
and a different component specification for each sub-node, allowing for variability. The
goal is accomplished when at least one of its subgoals needs are met. Both refinements can
be related to context conditions in context goal models. Goal refinement with contexts
alongside AND/OR-patterns strongly support the variability present in heterogeneous
environments since they enable the adaptation of systems in different scenarios.

The third offline activity is responsible for packaging components into artifacts.
Artifacts, in this methodology, are components packaged into deployment units along-
side with a set of metadata. This metadata includes the following informations: name,
conditions, defines, implements and depends. The name metadata specifies a unique iden-
tification for the artifact; the conditions metadata relates to the artifact’s context, or the

7

Figura 2.4: Refinement Patterns in Goal-D [24]

restrictions needed for the artifact to be deployed; the defines metadata indicates that an
artifact defines the contract for a group of goals; the implements metadata points out that
the artifact supplies the implementation for a set of goals; and the depends metadata,
indicates a dependency on other artifact’s provides and defines.

As a matter of variability, an interface should be packaged in different artifact
than the component that implements it, so that components will not be fetched in an
environment that they are not going to be used [29]. Artifact packages are then outlined
in two different categories, namely, Definition and Implementation. While a Definition
artifact encapsulates interfaces and declares the goals it defines, an Implementation ar-
tifact packages components with the implements metadata and the depends metadata,
announcing the goals it provides implementation for and showing a list of artifacts it de-
pends on, respectively. Finally, after being packaged, an artifact is stored and registered
in a repository in order to be seen by prospective environments.

One of the main activities of the online stage, called Automated Deployment
Planning, is characterized by the analysis of the computing resources described in the
repository that are available in the environment. This is done after an explicit definition
of a set of goals by the stakeholders. As a result, a set of artifacts is selected which
are able to fulfill the goals considering the available computational resources laid out in
the environment. This set is named Deployment Plan. Subsequently, the Deployment
execution is responsible for fetching the contents of the Deployment Plan and binding the
components from the acquired artifacts.

2.3 OSGi

As a means for the Goal-D methodology to be able to automatically deploy com-
ponents, described previously, it is essential the usage of a platform that is capable of
retrieving artifacts and binding them, based on a Deployment Plan developed beforehand.
To this effect, the Java framework OSGi was analyzed for this project. The OSGi tech-
nology was developed in 1999 by the non-profit organization called OSGi Alliance [2],
formerly known as Open Service Gateway Initiative. It aids in the process of turning

8

pieces of modular software into components besides guaranteeing the management and
concurrence of applications and services held by highly heterogeneous devices.

The OSGi’s Framework functionality is described in terms of the four layers that
composes it [3]. Built on top of the Java 2, the Security Layer is an optional layer archi-
tecture that offers a secure packaging format and is intended to applications that operate
in controlled environments. The Module Layer specifies a modularization model by provi-
ding support for packaging, deploying, and validating components and applications based
on Java. The Life Cycle Layer defines an Application Programming Interface (API) for
managing bundles life cycle; moreover, it presents an event API for a better control of
the Framework’s operations. The Service Layer eases bundle development and deploy-
ment by providing a programming pattern that detaches the the specification from the
implementation, as suggested in [29].

Figura 2.5: OSGi Framework Layers [3]

In the following subsections, the OSGi’s chief concepts related to the solution
will be laid out. Initially, the definition of bundle will be presented. Afterwards, the
idea of services will be deepened in light of the model and applied in three of the most
used methodologies. Next, a contract model used in bundle retrieval, titled Requirement-
Capability, will be indicated. Lastly, it will be shown how OSGi defines and utilizes
repositories for acquiring bundles for usage in deployment time.

2.3.1 Bundles

OSGi’s Core Specification defines a bundle as "a unit of modularization"[3]. It
is also defined as a JAR package consisting of a collection of configuration files, codes
and resources [16]. A bundle contains basically two main informations. First, a set of
resources, like Java classes, images, HTML files among others, that are required in order
to provide some intended functionality. Second, a file called Manifest, which holds all
the meta data for describing the bundle’s attributes and other contents in the JAR file.
A bundle can also contain two optional directories for storing extra information like the

9

bundle’s source code or additional information, in the OSGI-OPT, or service registration
information for the Framework, in the OSGI-INF.

The bundle’s attributes, or headers, presented in the Manifest file are used to pro-
vide useful information for the Framework like its identity, a description of what it holds
and instructions on how it should be used. Gédéon [16] divides the headers into three main
sections: the mandatory headers, the functional headers and the informational headers.
The mandatory headers are the ones needed by the Framework for properly registering
a bundle and consist of the Bundle-manifesVersion and the Bundle-symbolicName. The
functional headers relate to the requirements that the bundle needs from the service plat-
form, as the Bundle-requiredExecutionEnvironment, Import-package and Export-package.
Lastly, the informational headers provide extra informations for the bundle’s clients, like
Bundle-name and Bundle-Description. Furthermore, the Core Specification says that
custom headers may be annexed to the Manifest as long as it does not clash with OSGi
Alliance defined names or header names registered by other organizations. [3]

A bundle’s life cycle observes the following pattern [3]: after the installation
of the bundle in the Framework, some of its information is retained in a local bundle
cache and the bundle is set to the INSTALLED state. Next, the Framework makes an
effort to resolve all of the bundle’s dependencies and, if it succeeds, the bundle goes to the
RESOLVED state, else, it remains in the INSTALLED state. From the RESOLVED state,
while initiating, the module unit is attributed with the STARTING state and becomes
ACTIVE when successfully started. After its initialization, if the bundle stops, he goes
to the STOPPING state during the stoppage process and goes back to the RESOLVED
state if all of his dependencies are still met. Bundles remain stored in the Framework
until explicitly uninstalled, when they transit to the UNINSTALLED state. In this state,
a bundle cannot move to another state and, if it is still displayed, is because there might
be a lost reference to it somewhere.

Figura 2.6: Bundle’s Life Cycle State Diagram [3]

Hall et al. [17] explicitly defines how bundle’s dependency management is per-
formed by the OSGi Framework, also called bundle dependency resolution. They define

10

resolution as "The process of matching a given bundle’s imported packages to exported
packages from other bundles and doing so in a consistent way so any given bundle only has
access to a single version of any type."The resolution of a bundle may transitively resolve
other unsatisfied bundles. Each import package from a bundle is conceptually "wired",
or given access, to a matching export one, resulting on a graph of satisfied bundles. In
the case of any dependency getting unsatisfied, the resolve process fails and the bundle
becomes incapable of starting, staying in the INSTALLED state. Otherwise, the resolved
bundles get the RESOLVED state and are ready to initiate execution, transitioning to
the ACTIVE state. Moreover, the Framework favors first the highest version, when it co-
mes to multiple matching candidates, and later the installation order, when the matching
bundles have the same version.

Although down to code, two other concepts related to bundles that are relevant
to a better understanding of the proposal of this project are Bundle Contexts and Bundle
Listeners, since they play an important role in the deployment of bundles and in the
autonomous characteristic of the solution. Bundle Contexts are Java objects that are
utilized for relating the Framework to its installed objects. Every bundle is associated with
a Bundle Context object when installed, fact that grants it access to methods that allows
the bundle to interact with the Framework. The bundle becomes able to be notified about
the Framework’s published events, to register a service object, to install new bundles, to
get a list of the installed bundles, to get the bundle object for a bundle, among other
benefits. Meanwhile, Bundle Listeners are listener interfaces that are associated with
bundle events. They are called when a bundle event occurs, namely, when the bundle
changes its life cycle state [3]. How these ideas impact the solution will be discussed in
later sections.

2.3.2 Services

Even though the modularization of applications into bundles provides several be-
nefits, as shown previously, it also has a drawback. By nature, bundles can not assume
that the desired context will be available at runtime due do the volatility of the environ-
ment and, thereby, bundles need to be dissociated so that the functional pieces can be
organized in different ways, allowing for variability. Nevertheless, decoupling individual
modules isolates them, making intrinsically impossible for them to interact with each
other. [23] While using the Bundle Dependency resolution may provide a solution, it ties
the bundle with implementation details of the provider, not allowing for the different orga-
nizations of bundles that may occur. Besides, it handles the resolution on startup, which
makes difficult to adapt to environments where bundles may come and go frequently. The
notion of service comes in to fill this gap.

Generally speaking, a service is a kind of "work done by another"that implies a
contract among the provider and the consumer. From this follows that, as long as the
contract is met, the consumer should not be concerned about the implementation details
of the service provided. Likewise, services in OSGi are defined by Hall et al. as interfaces
in Java that depict contracts within service providers and prospective clients [17], and are
defined by the OSGi Core Specification as "an object registered with the service registry

11

under one or more interfaces together with properties. The service can be discovered
and used by bundles."[3] This means that OSGi makes use of the notion of interfaces
to detach specification from implementation, thus providing a flexible way of applying
several different implementations. This is done by referencing the interface rather than
the implementation [23]. Therefore, "the selection of a specific implementation, optimized
for a specific need or from a specific vendor, can thereby be deferred to run-time"[3], and,
without the need for restarting an application, services can be dynamically swapped,
making room for the variability found in heterogeneous environments.

Taking advantage of this handful concept, the OSGi Core Specification defines
the Service Layer which delineates a programming model following an interface-based
approach that can be portrayed as dynamic, concise and consistent [3] - critical attributes
for the implementation proposed by this project due to the diversity of devices in which
the Framework is intended to run, allowing for continually stable systems, even with a
mix and match of distinct implementations. It is a publish, find and bind model that
incorporates service-oriented computing (SOA) concepts in the fact that service providers
publish their functionalities in a service registry, becoming visible for clients to search and
consume.

Figura 2.7: An OSGi Service [23]

Since context may vary during the lifetime of a system, several mechanisms were
developed to handle the dynamic behavior of services and bundles [23]. Three of them are
noteworthy and are described below: the OSGi’s Service Tracker, the Service Activator
Toolkit and the OSGi’s Declarative Services.

First, the Service Tracker is a tool that listens to events published by the Fra-
mework that are related to specific services the bundle needs by using Java objects called
service listeners. Once the tracker realizes that all the required services are registered, the
bundle can acquire them and initiate its execution. The variability is handled in the Ser-
vice Tracker mechanism with the help of service tracker customizers, wich are responsible
for re-binding bundles when one of the bundles stops providing a service, allowing for an
autonomous and uninterrupted execution of the application. Even though it provides a
greater control over the bundle’s life cycle, this approach is seen as a costly alternative

12

for having to deal with OSGi’s dynamicity by code. It makes the process of balancing
the simplicity of modular applications with system scalability highly difficult since adding
more services increases the customizer’s creation complexity.

Secondly, the third-party Service Activator Toolkit (SAT) is a utility bundle which
offers an abstract activator class, thus allowing the re-use of complex but well-tested ser-
vice listeners. It provides tools that aid in the development of bundle activators, bundle
runtime and interdependency analysis and others. In this approach, code complexity cle-
arly diminishes, when compared to Service Tracker since much is pre-built. Nevertheless,
its usage generates a considerable overhead which increases start up time, since the ac-
tivators are loaded even if the services required are not available. Therefore, in order
to observe enhancements in comparison with Service Trackers, this utility bundle must
be applied in scenarios with a high number of bundles, more than hundreds and below
millions, each of them with great probabilities of being initialized.

Lastly, strictly related with the methodology proposed by Yu et al. [29], the De-
clarative Services is a component model that provides a light-weight methodology for de-
pendency service management [17]. It defines a way for bundles to publish their provided
and required services, through an XML file, besides handling the binding and unbinding
of services [23]. Moreover, since it has a declarative nature, meaning that it uses a decla-
rative model for registering the service and handling dependencies, there is no need for
an activator or any sort of code. This approach is based on the concept of components,
which are entities that make reference to, or provide, zero or more services, and consist of
an XML file for service description, and a class for bind handling. The XML file is stored
inside a folder called OSGI/INF within the bundle and the class binds the consumer with
the provider through an initialization method conventionally called startup. Declarative
Services is very scalable, scaling up to systems with thousands of bundles, having better
performance in environments where bundles only run occasionally [23] and, by removing
code, the development gets less complex and brings performance enhancements. However,
once much is done automatically, maintenance becomes more difficult.

It is remarkable that, in spite of the many nuances in all three approaches, well-
structured OSGi systems may be developed based on any of them, once the domain logic
gets little or no modifications. Hence, one must take into consideration the environment
in which the system is intended to run and the desired benefits in order to make a choice
of which methodology to follow. In this project, the Declarative Services approach was
chosen due to its proximity with the literature [29] [18] and for having a close relationship
with the concepts of the solution proposed by the Goal-D [24].

2.3.3 The Requirement-Capability Model

The usage of a service also suggests a form of discovery or negotiation, indica-
ting that each service implementation has a set of identifying features [17]. This happens
because different implementations may vary in certain characteristics like quality, configu-
ration settings or set of Java methods utilized for instance, and the client must explicitly

13

specify the needed, or even desired, attributes required in a service in order to properly
run. This helps in strong contract design between the parties involved in the process.

Nevertheless, interfaces are not a reliable way of defining such strong contracts
since they simply define the methods that make up a service, which are implemented by
providers, leaving aside useful informations as of "what"the service actually does besides
quality and configuration related issues. One form of capturing these knowledge is by
attaching them as metadata, i.e. in the Manifest file. By doing so, the Framework
becomes able to filter in only the desired services, needing not to load and access the
service itself.

Consequently, the OSGi Alliance, in accordance with this pattern, developed a
generic constraint model that describes dependency relationships named Requirements and
Capabilities [3]. This model provides a contract definition through dedicated functional
headers that starts by the specification of a distinct namespace in which a unique set
of attributes and directives is presented. Attributes are responsible for the matching
process, and directives give information about the namespace’s semantics. Furthermore,
Capabilities are tied to specific Namespaces and are responsible for describing features or
functions provided by a resource when active in the environment, by supplying values for
its attributes and directives. Requirements, subsequently, symbolize that a given resource
is available in the environment when satisfied and are related to specific Capabilities, each
having an LDAP filter that matches the related Capability’s attributes. A Resource with
requirement headers, thus, only function properly when all of the requirements are satisfied
by a matching Capability. Accordingly, the declaration of a Capability is made by usign
the Provide-Capability header in the service provider bundle’s Manifest file, while the
declaration of a Requirement is make through the Require-Capability header. The process
of matching Requirements and Capabilities is called resolving.

Augé [10] describes a pet grooming service as an example to illustrate these con-
cepts. Since there are numbers of kinds of pets and skills, tools and facilities required may
differ, so clients may find difficulties when finding an appropriate agency to groom pets.
He declares a namespace called pet.grooming with four attributes: type, that specifies
which kind of pets the agency grooms; length, which limits the size of the pet; soap, that
names the type of soap utilized; and rate, which points out the rate per hour charged.
In each agency’s OSGi Bundle Manifest, there can be found a Provide-Capability header
presenting the namespace, and a value for each of the four attributes described. The cli-
ents requirements are set by specifying the proper namespace along with an LDAP filter
for selecting matching agencies. An example of the headers is depicted by figure 2.3.3
below.

Figura 2.8: Requirement-Capability Model Example

14

2.3.4 OSGi Bundle Repositories (OBR)

Due to the modular aspect of OSGi-based applications, systems are likely to grow
over time, requiring larger groups of bundles, thereby, making more difficult to manage
their deployment in an ad-hoc manner. In large systems, an automated solution becomes
a sine qua non given the impracticality of maintaining hundreds or even thousands of
bundles manually. A possible solution is to create an agent that specifies the information
related to the installation or update of the bundles externally from the managed bundles
[17]. One of the implementations of such solution is the OSGi Bundle repository (OBR).
It is a proposal for a specification of the OSGi Technology that intends to deal with
bundle deployment in a two-fold approach: the discovery of the needed bundles amongst
the ones that are available for deployment, and the deployment of the desired bundles
and its dependencies.

For the discovery process, a place where the JAR files of bundles are stored, along
with other resources, is defined as a repository. This storage is described by an XML file
which specifies each resource through its metadata, allowing to search the repository for
specific resources without needing to fetch them first. Resources are a generic represen-
tations of artifacts, such as bundles, certificates, configuration files and others, whose
metadata may contain the requirements or capabilities which are inserted onto the XML
file. This file can be created by hand, but there are several tools that provides automatic
and more reliable ways of storing the artifacts, like Maven integration used in this project.

The image 2.9 shows an example of a repository descriptor file. The root element
is a tag that contains as attributes the name of the repository and the date in which
the repository was last modified, so the OBR can identify when changes occur. For each
resource there is a block of tags, in which the bundle’s Manifest headers are laid out as
tags or tag attributes. Tags named capability represent the packages that a bundle or a
resource exports, and can be tied to the Manifest header Export-Package for instance.
The tag property name, which determines the name of the package exported, and the
other properties are based on the header attributes. Likewise, the require tag can be
related to the Import-Package header, and represents a resource’s required package. The
name property also defines the name of the needed package and the property filter has
the LDAP filter that matches a specific package. With the information in the XML file,
and using an API defined in the OSGi Enterprise Specification [4], the OBR is able to
resolve a set of bundles to be deployed.

With the information in the XML file, and using an API defined in the OSGi
Enterprise Specification [4], the OBR is able to resolve a set of bundles to be deployed.

The benefits of using XML-based repositories and the OBR approach come speci-
ally from the simplicity of the approach. Once a repository is only a place where bundles
are stored, any developer can build his own bundle repository by describing in an XML
file the set of bundles he wants to publish. Besides, even though possible, XML-based
repositories do not require a server-side process, since the OBR API handles all the job.
Repositories can also refer to other repositories, creating a federation structure and al-
lowing for the discovery of a greater number of resources, thus, reducing the risk of failures
in the fetching process.

15

Figura 2.9: Repository XML File Format

2.4 Apache Maven Development Tool

Maven is a "software project management and comprehension tool"which ma-
nages the build, reporting and documentation of a given project based on the concept
of a project object model (POM) [22]. It aims to provide the developer with a greater
comprehension of the complete state of a development effort in the minimal amount of
time possible.

It revolves around the concept of a build life cycle, which is divided into seven
distinct phases, namely, validate, compile, test, package, verify, install and deploy. First,
in the validate phase, the project is validated by checking its correctness and the avai-
lability of the needed information. Second, the compile phase involves the compilation
of the project. Third, in the test phase, the compiled code is tested with the help of a
unit testing framework. Fourth, in the package phase, the compiled code is packaged in
a distributed format. Next, the verify state relates to checks on the results of the tests to
ensure quality. Later, in the install phase, the package is installed in the local repository.
Lastly, the deploy stage is responsible for copying the final package to a remote repository
[20].

The Project Object File, also known as POM, is an XML file that is considered
the basic unit of work in Maven, which holds information related to the project and build
configuration details. Among the set of possible tags that go inside this files, some are
noteworthy and are described next. The project is the root tag for defining a project; the
modelVersion tag relates to the model of the POM file, which should be set to ’4.0.0’,
as for today; the groupID tag uniquely identifies the project’s group, while the artifactId
tag identifies the project; version specifies the version of the artifact in the specified
group; name is related to the actual name of the project and description brings a short
description of it; package specifies which type of artifact will be built; dependencies brings

16

a list of the projects that the project depends on in order to function properly; the build
tag lays out the information needed for the build of the project; as a child of the build tag,
the plugin tag are artifacts that provide goals to Maven, which are bound to the phases
of the build’s life cycle; lastly, the distribuitionManagement tag holds the information of
the repository to which the artifact will be registered [21].

In this chapter, chief concepts related to the solution proposed by this project
where laid out. First, general concepts of Goal-Oriented Requirements Engineering were
presented as Goal modeling, Goal-Oriented design and Contextual Goal Models. Af-
terwards, the Goal-D approach was thoroughly described in order to properly contextua-
lize this project. The online and the offline phases were described and each activity was
delineated, along with important concepts like context, artifacts and others. Next, the
OSGi technology, specially the OSGi Framework was presented. Bundles were presented
with the Manifest file and the bundle’s life cycle. Later, it was shown how the OSGi
uses the notion of services to provide an approach that favors the variability intended by
the Goal-D and the definition of strong contracts for these services with the usage of the
Requirement-Capability model. Lastly, the Apache Maven was detailed once it was used
in some stages of the development of this project.

17

Capítulo 3

Filling Station Advisor

The motivating example that will be used throughout this work is the application
described by Rodrigues in [24] called Filling Station Advisor. As the name suggests, this
application revolves around providing the driver, the human or the artificial intelligence
behind the wheel, places where the car can be refueled or recharged, taking into account
proximity and convenience. A station can be conveniently reached if it meets certain
prerequisites, like the type of fuel that the car runs on or reachability considering the
amount of fuel left, as well as some user preferences, like route deviation, or the quality
of service provided.

One of the main characteristics of the advisor is that it is intended to run in
environments where the set of devices may vary. It may run on a smart phone or a
system navigation, calculate the fuel autonomy by reading fuel levels or by using data
from onboard computer, search for stations using Internet access or relying on user input,
amongst other possibilities. The advisor, thereby, must autonomously indicate the best
station taking into account the heterogeneity of the environment without losing track of
the user preferences.

In an effort to develop an application that matches the attributes described,
Rodrigues modeled the application requirements as goals, following the methodology pro-
posed by literature [1] [12] [28] [29]. The requisite Assist vehicle refueling was modeled as
the root goal, and refined in five subgoals, each considering a few of the different contexts
that may happen. Initially, the subgoal named Get Position is responsible for acquiring
the vehicle position, either with an antenna or with a GPS system. Secondly, the Assess
distance to empty subgoal intends to calculate how long the amount of fuel is going to
last, through the data obtained by an on-board computer, accessing data about fuel level,
or by getting user input. Thirdly, the subgoal called Recover information about nearby
filling stations gathers information of the filling stations available within reach online or
based on a cached result. Next, Decide on the most convenient filling station subgoal
uses the information obtained by the other subgoals and the user preferences to choose
the most convenient filling station. Lastly, the subgoal Notify driver is responsible for
deciding how and when to notify the driver, by using the navigation system, a synthesized
or prerecorded voice, or an on-screen notification. Figure 3.1 better illustrates this idea.

18

Figura 3.1: CGM of the Filling Station Advisor [24]

Continuing on this track, a contextual goal model was designed to depict the
goals and subgoals in a tree structure. Each goal described was assigned to a label: G0,
G1, G2, G3, G4 and G5, respectively. G0: Assist vehicle refueling was AND-refined into
the other five subgoals since it needs all of them to be satisfied in order to be fulfilled. The
goals G1, G2, G3 and G5 were OR-refined, meaning that, for each, if any of its subtrees
have their requirements met, the goal is achieved, thus making variability feasible, seeing
that any of the different settings can be used. In addition, contexts are portrayed in the
associations as required context [1] denoting that the plan is executed only if the context
holds. Figure 3.2 shows the variability context expected for the subgoals, defining the
context space of the environment in which the system is intended to run.

Figura 3.2: Context Space of the Filling Station Advisor [24]

19

Capítulo 4

Goal-Oriented OSGi Environment

The GoalD methodology [24], described in the background chapter, provides an
autonomous way of deploying systems based on a Goal-Oriented approach. Rodrigues
defines a set of offline and online activities that pervades all of the stages required for
the deployment of an application, that goes from goal modeling to fetching and binding
units of a modular system in a heterogeneous environment. Nevertheless, after a careful
reading, it is possible to observe that his analysis offers just a proof of concept of GoalD,
meaning that his project revolves around verifying that his methodology has potential for
real-world application. By using an evaluation methodology called Goal-Question-Metric
(GQM), the feasibility of GoalD was tested on the Filling Station Advisor application
by checking the reliability, efficiency and scalability of his planning algorithm, leaving
the assessment with an actual implementation of a modular system, integrated with a
framework for fetching and binding artifacts, for a future stage of his work. Therefore,
even though his proposal was met, his description lacks a way of certifying in a concrete
manner the feasibility of the method.

For the purpose of providing a fully functional implementation of the GoalD
approach, this work will explore the OSGi Framework and technology as a potential
solution. The so described as "the best model to modularize Java"[2] was chosen to
compose this project since it suits GoalD’s needs in at least three ways.

First, it provides a very flexible, open and common architecture for a diverse group
of developers and service providers allowing for the development of diverse smart devices,
offering the variability needed by GoalD’s intended background [24]. The Core Specifica-
tion states that this technology "targets set-top boxes, service gateways, cable modems,
consumer electronics, PCs, industrial computers, cars, mobile phones, and more"[3]. In
other words, the OSGi Framework aims to work on a variety of devices with differing
hardware attributes. This broad range of intended computing environments is due to the
general notion given to resources, responsible for providing the features and the functions
packaged in bundles, which can basically be anything from only standard Java classes to
displays and secure USB key stores. Rodrigues, on the same track, characterizes these
computing environments as highly heterogeneous and states that the first challenge of his
project is to tackle the non-uniformity of such environments. Consequently, as the inten-

20

ded set up for the GoalD methodology is the one that OSGi focuses on, this technology
was opted for composing such analysis.

Second, it allows for a run-time selection of available implementations. The pro-
gramming model brought by the OSGi Framework’s service layer decouples the speci-
fication of a service from its implementation, letting applications bind to services only
through the specification. Hence, the selection of the specific implementation of a service
can be postponed to run-time. The Core Specification describes this model as collabora-
tive, meaning that "the service layer must provide a mechanism for bundles to publish,
find, and bind to each other’s services without having a priori knowledge of those bundles
[3]". In the meanwhile, Rodrigues’ project defines as his second challenge the conside-
ration of the uncertainty at design time, once the set up of the computing environment
of the end user cannot be previously asserted by the architect or the developer of the
system. Therefore, the service layer’s intentions match the challenge proposed, making
OSGi a viable candidate for implementing the GoalD approach.

Thirdly, It offers the desired automatic way of binding services. The OSGi Fra-
mework’s Service Layer makes use of a service registry which enables bundles to add new
services, check for available services or be informed of the state of services through an
specific API. This empowers systems to install new features or update and modify exis-
ting ones in a programmatic way, without needing human intervention in the process,
allowing for dynamic environments where services may come and go and bundles can be
updated on the fly. The Core Specification points out that "the service mechanism must
be able to handle changes in the outside world and underlying structures directly"[3], and
then describes the API for handling the mentioned changes by code. Tied to this cha-
racteristic, the third challenge laid out in the GoalD’s proposal relates to the automatic
deployment of the components, seeing that a deployment specialist may not be available
at deployment time given a certain environment. Thus, the OSGi offers an automatic
framework that meets GoalD’s intentions, attesting the OSGi as a sound option for a
GoalD implementation.

Besides the rationale presented, the OSGi technology brings other noteworthy
benefits that add to it as an option to underlie the GoalD implementation, like enabling a
low-cost development and maintenance of components, due to the capability of incorpora-
ting pre-built and pre-tested modules into an application [2]; reduction of the complexity
of the code, for it makes use of a modular architecture that is convenient for both large-
scale and small, even embedded, systems; dynamically handling of bundles, which allows
bundles to be started, stopped, updated and uninstalled without requiring the system to
restart; and others. A more complete list of the benefits of using OSGi can be found in
[5].

Hence, owing to the previously described features, the OSGi technology was found
to be a remarkable match for Rodrigues’ proposed methodology and was used in this
project to implement the GoalD’s approach.

As to certify that the OSGi technology is a strong match for the GoalD metho-
dology, an OSGi implementation for an autonomous Goal-Oriented deployment was de-
veloped using the approach defined by Rodrigues in his project. Such implementation

21

was built in a twofold approach, following the two sets of activities outlined by GoalD:
the development of bundles as GoalD artifacts, which comprehends the offline stages, and
an OSGi framework implementation, for the automated deployment of the bundles of the
online activities.

This solution will provide GoalD with a fully functional implementation of its
approach, by integrating all of the offline and online activities with the OSGi Technology.
In this chapter, the proposed solution will be laid out along with specific details. For
a better understanding, it was divided into the two set of activities used by GoalD,
the offline and the online stages. In each, the concepts from Goal-Oriented Requirements
Engineering and from the GoalD approach will be mapped to the OSGi technology through
a description of the implementation of each GoalD activity, initially the offline activities,
followed by the online ones.

4.1 Offline Activities

This subsection will bring an in-depth description of the GoalD’s offline activities
in light of the OSGi implementation proposed as a solution. As described in Section
2.2, the offline activities consist of: requirement modeling as goals, mapping goals into
components and packaging components into artifacts.

4.1.1 Goal Modeling

Some of the activities of the offline stage require partial or no integration with the
OSGi technology to function properly, as it is the case of the first activity, namely, goal
modeling. In this activity, a Deployment Goal Model, which basically is a Contextual Goal
Model that takes into account the notion of resources, is developed in order to specify the
restrictions faced by the deployment environment. Hence, the requirements engineer holds
responsibility on eliciting the requirements and designing them as goals, depicting them
as a Contextual Goal Model. Rodrigues states that a requirements engineer along with
the participation of a domain specialist, possibly the user, are responsible for coordinating
this phase. In the Filling Station Advisor, for example, the goal model showed in Figure
3.1 portrays the work done by the specialist after modeling requirements as goals and
applying the notion of context.

Goals can be seen in terms of services provided by OSGi bundles. Each goal, in
order to be satisfied, relies on the satisfaction of all of its sub-goals, or at least one of
them, depending on the kind of refinement applied. Analogously, a service can only be
provided if all of the services required by him are being provided. In the case of tasks,
the leaf-nodes of the tree, they work as actual implementation of the services offered by
means of the OSGi bundles, with no dependencies. In case of the root goal, it can be
seen as a regular goal that depends on other services, but provides the application as
a general. This parallelism enables the variability in the computing environment since

22

goals, as services, can be fulfilled by more than one subgoal, or service implementation
due to all the interface binding described in Section 2.3.2

4.1.2 Mapping Components

Mapping goals into components is an example of an activity that partially needs
the integration with a framework. It is a twofold assignment composed of component
analysis and component development. On the one hand, the component analysis task
does not require the usage of the OSGi Framework to be fulfilled, only the expertise of
the architect in charge. He receives the Deployment Goal model obtained from the earlier
stage and identifies the components and interfaces that should be developed in order to
reflect the model. On the other hand, the component development task requires the use
of the OSGi technology for the creation of the components that will be used in future
stages of the approach.

In this project, components are developed as Java classes and are built using
the same pattern designed by Yu et al. [29], but enhanced by Rodrigues for supporting
context restrictions. For each AND-refinement, there is a Java Interface for every sub-
node, that serves as a service specification for the OSGi Service Layer, and a class, or a set
of classes, that relies on each of the sub-nodes Interfaces as dependencies, and implements
the node interface. An example to illustrate the usage of AND-refinements is the G4 of
the Filling Station, which is responsible for choosing the most convenient filling station
and is AND-refined in P12: Get Constraints and P13: Choose Filling Station. This goal
can be mapped into two Java classes: a Java Interface that defines the API for the G4:
Decide more convenient, and other that references the P12 and P13 interfaces by using
their methods in its domain logic, and that implements the API for G4. Figure 4.1 depicts
the resulting specification.

Figura 4.1: AND-Refinement - G4 Component Specification

OR-refinements, differently, result in one Java interface specification for the goal
node being described and an implementation class for each sub-node, in order to allow the

23

sub-goals to, when satisfied, provide the service depicted as the goal node. An example
that can be taken from the Filling Station Advisor application is the G1, which relates
to getting the vehicle’s position in some sort of way, thus, being OR-refined in two pos-
sibilities P1: Get position using GPS and P2: get position using antenna triangulation.
As a result, the specification for this goal will be developed by two Java classes, an in-
terface, that defines the API contract of the service provided by G1, and two classes that
implement this API using different hardware definitions - a GPS system and an antenna
triangulation. The result can be seen in Figure 4.2.

Subsequently, the main difference between AND- and OR-refinements is that each
sub-goal is a different implementation of the service API of the goal, while every subgoal
in an AND-refinement has its own API and implementation and the goal is satisfied only
when all services provided by its sub-nodes are available. Nevertheless, depicting goals as
services also brings variability for AND-refinements. This happens since, by performing an
AND-refinement pattern, Java interfaces are developed for every sub-goal, which allows
different service implementations for each of these interfaces, a similar result obtained
when OR-refining a goal.

Figura 4.2: OR-Refinement - G1 Component Specification

However, this project brings a different means for defining contexts. While Ro-
drigues, with his extended nomenclature for depicting contexts in goal models, propagates
context conditions inside of the body of the component as explicit attributes in form of
condition elements, the Framework proposed by this project portrays context conditions
as metadata headers in the manifest file of a bundle. This choice was made for two main
reasons.

Firstly, this information is not related to the code itself and probably would not
be used by the internal structures to provide a service since, if the context condition
is not met, that branch of the goal model tree would never be chosen and, thereby,
the very bundle itself would not be fetched. As a consequence, if the context condition
were to be stored inside the Java class, the information would be lost and, thus, of no
use. Secondly, if stored as headers, context conditions would be easily accessed by the

24

planner. The headers of the Manifest file become tags in the XML file which are used by
the OBR to search for bundles, meaning that, if this information is stored as a header,
the Goal-D’s planner algorithm would have easy access to it when generating a feasible
deployment plan, for it relies on the repository file to create a plan. Hence, by searching
for a more cohesive implementation and due to the purpose of the context condition as
to limit alternative strategies in deployment time, this project chose to allocate this piece
of information inside the Manifest header file of the component bundle. Where and how
the headers are stored will be further explained next.

4.1.3 Packaging Artifacts

The last offline activity of GoalD is the packaging of components into artifacts.
As outlined previously, components are seen as Java classes by the OSGi technology,
which can be either interfaces or regular classes. Since classes are packaged as bundles,
there can be observed a one-to-one correspondence between artifacts and bundles. Further
explained in Section 2.3.1, bundles can be defined as JAR packages containing a set of Java
classes, a metadata file that describes the bundle’s attributes, and other resources. In a
similar manner, Rodrigues declares that "GoalD’s artifacts include packaged components
and interfaces as well as metadata that describe the packaged elements". Therefore,
bundles and artifacts have a similar definition and are used to store the same kind of data,
making an easy conceptual match among the OSGi technology and the GoalD approach.
This subsection will first present the information that is packaged inside a bundle, while
specifying the relation between the artifacts attributes used by GoalD and the headers
that are used by the OSGi in the Manifest file. Then, we describe how artifacts are added
to repositories.

Package Metadata

Two pieces of metadata information are packaged inside a bundle. The first is the
manifest file, which relates to the general metadata stored in order to properly identify
the bundle and its attributes. The second is the declarative services metadata, which
defines the services provided or required by the bundle.

Initially, the manifest file can be correlated with the artifacts identification me-
tadata. The artifacts metadata are responsible for holding information related to goals,
dependencies and context conditions in five main attributes: name, conditions, defines,
implements and depends. Similarly, the OSGi Core Specification states that a bundle "can
carry descriptive information about itself in the manifest file that is contained in its JAR
file [3]". This manifest file contains headers that may be described as reserved headers [6],
or custom headers. The Bundle-SymbolicName reserved header is said to, along with the
version header, uniquely identify a bundle, being used in the proposed implementation of
this project to represent the name artifact attribute. The bundle header called Bundle-
Condition, dissimilarly, is a custom header developed particularly for this project to store
information about the context conditions of the environment and relates to the depends
artifact attribute. Figure 4.3 shows part of the Manifest files for the bundle package of

25

the tasks P1: Get position using GPS and P2: Get position using antenna triangulation,
with their respective context conditions.

Figura 4.3: P1 and P2 Manifest Files

Moreover, other OSGi headers can be used to identify the type of artifact. As de-
fined in the GoalD methodology, different kinds of artifacts may hold different attributes,
since interfaces and components are packaged into separate artifacts to favor variability
and low-coupling. Definition artifacts are packaged also with the defines metadata, which
stores a list of goals that such artifacts provide a definition for, while implementation arti-
facts declare the implements metadata and hold a list of the goals, or service, provided by
the packaged components. In OSGi, we see the same happening. Java classes and inter-
faces are packaged in separated bundles, allowing for different implementation of services
to come and go in runtime. Next, we see how both kinds of artifacts are implemented
with this technology.

Definition Artifacts are associated with bundles that provide the API contract of
services, defined in this project as API bundles, which declare a reserved header in the
Manifest file called Export-Package. This header lists the contracts the bundle defines.
Service providers and clients hold in their header file the Import-Package reserved header,
specifying which APIs they make use of. In the Filling Station Advisor, an example of
an API bundle, or a definition artifact, is the contract definition of the service related
to G1: Get position. It will be packaged into a bundle, only with its interface definition
alongside its manifest header file, depicted in Figure 4.4

Figura 4.4: G1 Manifest File

Similarly, implementation artifacts are liable of holding the implements and the
depends metadata, both related to a list of goals that the component either provides or
relies on, depending on the AND/OR-patterns described earlier. In OSGi terms, we define
goal as a service, which provides the intended functionality only if all of its dependencies
are met. As a means for variability, each goal implements a service with a unique set
of identifying features, suggesting that, depending on the available context, services with
different features will be more desirable. Therefore, in order to describe accordingly this
idea, the Requirement-Capability model, explained in length in Section 2.3.3, was used.

26

Both implements and depends metadata are packaged into bundles’ manifest files
as follows: on the one hand, the implements artifact is stored inside the bundle manifest
file as a Provide-Capability functional header, specifying the list of provided services based
on the namespace and the service’s attributes. On the other hand, the depends artifact
metadata is placed in the bundle’s Manifest file as a functional header Require-Capability,
which delineates a list of services that the bundle requires for a proper execution, based on
a Namespace and an LDAP query that matches with the attributes of a service provider
in the same Namespace. As an example, the Manifest file of of the P7: User input and
distance track of the goal model is depicted in Figure 4.5.

Figura 4.5: P7 Manifest File

Lastly, declarative services metadata are also packaged into bundles for service
definition. OSGi bundles not only are responsible for storing classes and metadata, but
they may also contain optional directories for holding extra information, as described in
section 2.3.1. As stated in Section 2.3.2, this project uses concepts from the Declarative
Services approach to publish and bind the services in the OSGi implementation, for it is
a lightweight methodology and close to concepts already described. Declarative Services
add to the bundle package a folder called OSGI/INF, which contains an XML file used
to describe the service provided, along with the required service dependencies.

Service provisions are laid out in the XML file through the implementation tag,
with the class attribute that expresses the fully qualified name of the class that imple-
ments that service, and the service tag, which holds the provide tag with the interface
attribute, meaning that the described component provides the interface attribute as a
service. Conversely, service requirements declare dependency on other services by using
the reference tag, which has the following attributes: Name, which is the name of the
reference; Interface, that specifies the fully qualified name of the class that the component
uses to access the service; Cardinality, which states whether the reference is mandatory
and if the component implementation supports single bound or multiple bound services;
Policy, which relates to the dynamicity of the component; Bind, which tells the name
of the binding method of the component implementation class with the service required;
amongst others. Declarative Services also define the Service-Component header in the
manifest file, indicating the name of the XML file that will be used.

Figure 4.6 shows a snapshot of the XML file packaged in the P15: Alert user
by sound bundle implemented. This bundle provides the service related to G5, while

27

referencing service implemented by one of the contexts c8 or c9, which are the Voice
Synthesizer and the Audio Player.

Figura 4.6: P15 XML File

Repository Storage

After packaging the components, with their respective metadata and service re-
gistry information, inside of bundles, the Goal-D methodology specifies that the resulting
bundles should be registered in a repository in order to be distributed to the target envi-
ronment. In this project, the M2Eclipse project, that provides an Apache Maven Project
integration for the Eclipse IDE, was used for registering the bundles obtained from the
earlier activities into a local repository.

In order to register a bundle, each bundle project was given a Maven nature,
meaning that the internal structures as folder organizations were slightly modified as to
conform to a Maven project. In this process, besides some Maven Dependencies that were
added, a POM XML file was created to cope with the deployment cycle of the project
by Maven. In this file, some standard configurations needed to be set so that the bundle
could be correctly enlisted to the repository, in other words, some XML tags must have the
following default values in order to properly register the bundle to the repository. First, to
the packaging tag should be given the value ’bundle’, for it will tell Maven to package the
artifact with the specific attributes of a bundle, not only as a simple JAR file. Next, the
artifactId and version tags were set with the same values as the Bundle-SymbolicName
and Bundle-Version functional headers, since they have the same function of providing
a unique identification. The artifact org.osgi.core must be added as a dependency in the
dependencies tag, for it is used throughout the deployment and execution of the bundle,
so it must be declared. Any other bundles that it depends on must be added also as
dependencies in the same way, for example, the bundles that provide the packages that
are imported through the Import-Package header.

Inside the build tags, there are two main configurations. The first is related to
additional resources that should be packaged inside the bundle, the resources tag, in which
the name of the Declarative Services XML file folder ought to be specified. The second is
the plugin set of tags, where the maven-bundle-plugin is to be stated. The configuration
tag, child of the plugins, will hold the most important pieces of information in regarding
to the bundle’s metadata, such as the headers Bundle-SymbolicName, Bundle-Version,
Import-Package, Provide-Capability, Require-Capability, Service-Component, and others.
The maven-compiler-plugin is also another artifact that should be added inside the plugins

28

tags. DistributionManagement tags hold the identification and place of the repository to
which the bundle ought to be registered. Lastly, and least important, the name and
description tags should also be set with valid values, since they provide a human readable
description of the bundle, which can be accessed through OBRs for manual fetching.

After the configuration of the POM file, Maven goes through all of its build life
cycle phases in order to enlist the bundle into the remote repository. When it gets to the
install phase, the bundle is registered in a repository placed locally, usually inside of the
.m2 folder in the home folder, along with the created XML file for the description of the
registered bundles. Finally, when it gets to the deploy phase, Maven submits the bundle
to a remote repository.

In sum, this section has shown that goals can be seen as services provided by OSGi
bundles, while components are Java classes obtained by applying AND/OR-refinement
patterns in every node of the goal model. As components are packaged in artifacts, Java
classes are packaged into bundles, along with their specific metadata in terms of headers
in the manifest file and service registration information. These bundles may contain
only Java interfaces, for definition artifacts, or implementations of these interfaces for
implements artifacts and are registered in remote bundle repositories through the build
life cycle of the Maven project. These repositories consist of basically an XML file with
the description of the stored bundles for later search.

4.2 Online Activities

This section explains how the online activities of the Goal-D approach were im-
plemented using the OSGi technology as a base ground. In order to attest to the feasibility
of Goal-D, a concrete implementation of the online activities was built, through the de-
velopment of a supporting framework that provides the characteristics desired by GoalD,
detailed in Section 2.2, found here [8] The project metamodel is presented first. Then,
the online activities, namely, the automated deployment planning and the deployment
execution, are described in regard to their relation with the OSGi technology, along with
the different processes performed by each.

4.2.1 Conceptual Model

The conceptual model of our framework is depicted in the class diagram of Figure
4.7. It consists of four major elements: the Environment Interface, the Launcher, the
Planner and the OBR agent, which is specialized as a local and a remote repository
agent.

First, the Environment Interface is a boundary stereotype which identifies an
entity that interfaces the communication between the Framework and the outer world.
It has a two-fold liability: listen to context changes and inform the Framework about
new goals set by the user. As the GoalD approach is intended to run in highly dynamic
environments where computational devices may come and go, this entity is responsible

29

Figura 4.7: Framework’s Class Diagram

for reading the context, listening for possible changes, so that the system may work
autonomously. Besides, different goals may be desired by the end user, which must be
acknowledged by the Framework for a proper action. Moreover, in order to notify the
Framework about the changes that may occur unexpectedly, a control stereotype was
depicted in the class diagram, named Environment Controller, which interprets these
events and notifies the Framework. As for this project’s scope, the Environment Interface
and the Environment Controller are considered abstractions since their implementation
have little impact on the research question asked.

Second, the Launcher is the central entity of the model, for it is responsible for
controlling the main actions of the Framework and calling the other entities whenever
needed, a somewhat similar approach to the proxy design pattern. It holds account on
launching the implementation, by setting up important configurations for the execution
of the OSGi Framework environment like installing essential bundles, adding remote re-
positories, and other tasks. It is also responsible for handling each bundle’s life cycle, and
listening for bundle state changes, once it uses methods such as install, start, stop and
uninstall for the former and setListener for the latter. Besides, it manages the execution
of the deployment plan with the methods setGoal and replan. Since it handles the main
operations needed for the automated deployment of bundles, this entity is considered the
core of the implementation.

Next, the planner entity is fundamentally based on the Deployment Plan Algo-
rithm developed in Goal-D, which revolves around providing a deployment plan based on

30

a set of context conditions available in the environment at a given moment. Thus, to
achieve this, this entity keeps a list of scenario constraints as an attribute that holds the
environment context conditions mentioned, and makes use of a method called getPlan to
provide Launcher with the desired plan.

Lastly, the OBR agent entity is accountable for interfacing the repository for
fetching bundle artifacts and deploying them into the environment. It holds two speciali-
zations, the localRepoAdmin entity and the remoteRepoAdmin, which have the same job
but act in different locations. On the one hand, the localRepoAdmin search for bundles
in the local machine, by looking at the Eclipse plugin folder, where all of the default
bundles are stored. This entity is primarily intended to install the configuration essential
bundles, for they are more likely to be found there, and to save computational resources,
once it does not need to perform the search in a remote location when the bundle may
be found locally. On the other hand, the remoteRepoAdmin looks for bundles in remote
locations, namely, remote OSGi Bundle repositories. Different repositories can be added
through the specific location of the XML descriptor file by the addRepository method, and
a bundle can be searched in any of these added repositories by the search4BundleRemotely
method.

In conclusion, these four entities, the Environment Interface, the Launcher, the
planner and the OBR agent, are responsible for the entire process of deployment planning,
and acquiring and wiring the bundles, in other words, accomplishing the Goal-D’s online
activities.

4.2.2 Automated Deployment Planning

The automated deployment planning, said to be the focus of the online phase,
relies on the repository created containing the bundles developed during the offline phase.
A set of goals to be achieved are provided, or, in OSGi terms, a set of services are
requested, and the target environment computes a deployment plan by using the set of
resources available at a given moment as context conditions to pick the branches of the
goal model tree that can fulfill the request.

As the deployment planning algorithm is already developed by the Goal-D’s pro-
ject, the framework presented here is only responsible for providing the information related
to the set of goals and the context conditions of the environment, so that the plan can
be generated. In order to stick to the scope of this project, the implementation deve-
loped abstracts away the Environment Interface entity that is responsible for gathering
the information of the available computing resources, storing them in a list of the current
context conditions, and notifying the framework. Moreover, the Environment Controller
entity was also considered to be already existent, providing the implementation with a
set of goals to be executed. The framework, thus, stores this information and calls the
Deployment Planning algorithm with a plan request, giving the set of context conditions
and the set of goals to be met.

The deployment plan algorithm was simply inserted into the OSGi Framework
implemented as a solution for this project, as it has already been concretely developed

31

by Rodrigues in his work. It is used as a module that holds information about bundles
registered in the repository and is in charge of generating a plan upon request for a given
goal.

The deployment planning activity is performed by our framework through two
different processes. The first, new goal registration process, provides the framework with
the user desired goals to be achieved, while the second, re-planning process, is related
with the autonomous characteristic of our implementation for it enables the adaptation
of the system according to the environment context.

New Goal Registration Process

The first process is the New Goal Registration Process. This procedure aims to
acknowledge that a new goal is defined and generates a deployment plan that fully and
correctly satisfies the goal. It is portrayed by the Sequence diagram of Figure 4.8.

Figura 4.8: New Goal Registration Process’ Sequence Diagram

The process starts when the Environment Interface entity perceives a new goal
registration from the Environment, which could be an end user requesting for nearby
Filling Stations or a sensor indicating low fuel. Such goal registration is interpreted
by the Environment Controller and passed as parameter by the setGoal method to the
Launcher. The Launcher receives the goal as a string, and asks the Planner entity for
a new plan. Then, the getPlan method is called, which is responsible for generating a
deployment plan given a set of environment constraints. This method returns a list of
strings, which refers to the set of names of the bundles that must be deployed so that
the Environment’s goal can be achieved. At last, for each name on list, the Launcher
performs the Installation procedure of the deployment execution activity. Upon success

32

on fetching and binding all of the bundles on the Deployment Plan, the service requested
is provided for the Environment.

Re-planning Process

Next, the re-planning operation is key for providing the autonomous characte-
ristic for the developed implementation. When the environment stops providing some
computational feature, like the cellphone running out of battery, thus, interrupting the
Internet connection, the set of bundles given by the Planner’s Deployment plan at a cer-
tain moment are not able to provide the service anymore. Thereby, a new plan must be
generated in order to the environment continue to be served. This functionality can be
achieved in two different ways: the first is depicted in the sequence diagram in Figure 4.9,
the other is through the Launcher listener.

Figura 4.9: Re-planning Process’ Sequence Diagram

The figure describes a process that starts when the Environment Interface iden-
tifies that a given resource is lost. The Environment Controller elucidates this fact and
informs the Launcher, by calling the removeScenarioRes. The Launcher, in turn, removes
that resource from the list of registered contexts. Afterwards, the Launcher asks the Plan-
ner to generate a new deployment plan through the getPlan method. The Planner, then,
making use of the new set of context conditions, analyze the contents of the repository in
order to provide a new Deployment Plan so that the Framework may continue providing
the environment desired service. A new list of strings related to the names of the bundles
is returned, and the Launcher proceeds by comparing the list of bundles that are alre-
ady installed and the new list, installing only the bundles that are not on the new plan,

33

by performing the Installation process described in Figure 4.10. In case of successfully
fetching and binding the new set of bundles, the service provision is guaranteed and our
Framework returns to provide it.

Alternatively, the re-planning process can be carried out by using the listener
attribute of the Launcher. This attribute is liable for listening for changes in the life cycle
state of every bundle active in the environment. Once a bundle stops, transitioning from
the ACTIVE state to any other state, the listener acknowledges it and calls the replan
method, which works as described above.

This is one of the most remarkable features our proposed framework, since it
enables the system to adapt to context changes, without requiring human intervention.
It is also possible, depending on the decoupling level of the bundles being utilized, for the
application to recover needing not to stop providing the service to the environment, as
this is one of the OSGi technology features.

4.2.3 Deployment Execution

In the Deployment Execution activity, the plan provided by the Deployment
Planning algorithm is executed in order to fetch the bundles from the remote repository
and bind them, providing the requested service. The plan is composed of a list of bundle
names, each matching the Bundle-SymbolicName header of unique bundle disposed in the
repository.

After receiving from the Planner the deployment plan, the OSGi framework is
responsible for looping through the list of bundle names and performing the installation
process, depicted in Figure 4.10. For each bundle in the list, first, the Framework checks
if it is already installed, then searches for a equivalent bundle in the local machine. Later,
in case of package not found, the search is performed in remote repositories. Once the
bundle is found, it is acquired and installed, and an attempt of resolving it is done, in other
words, the Framework checks whether all of its dependencies are available. A dependency
is said to be available if the bundle that it refers to is in the ACTIVE state.

The details of the installation process are as follows: this procedure starts when
the method install is called. It performs a search in two basic locations: locally and
remotely. The initial search is done locally aiming for performance and a better use
of computational resources and is executed by the LocalRepoAdm entity when the se-
arch4BundleLocally method is called. The method receives as a parameter a string that
refers to the bundle’s name, which is checked, at first, to see if it ends with the ".jar"
extension, indicating that the name given is already the bundle name that should be
searched for. The method then, conforms the string to the specific format used in the
search which is "file:" followed by the path in the local machine and the bundle name,
ending with the extension ".jar". Otherwise, if the name lacks the extension, it probably
is not complete, missing the version or the timestamp, for instance. In this case, the
LocalRepoAdm retrieves all of the files in the default bundle folder and tries to find a
bundle that contains the parameter. Once found, the method returns a string in the
format described. In case of receiving the bundle file name in the correct format, the

34

Figura 4.10: Installation Process’ Sequence Diagram

Launcher calls another method from the LocalRepoAdm, the installLocalBundle, which
is responsible for the installation of the given bundle. To begin with, it makes sure that
the bundle is not already installed, and then uses the OSGi’s Framework Bundlecontext
object to install the bundle in the environment. In case of success, a bundle object that
alludes to the newly installed bundle is returned.

However, if the local search fails, the Launcher tries a different approach by invo-
king the search4BundleRemotelly method, in which the RemoteRepoAdm entity searches
performed in a remote repository. Parallel to the search4BundleLocally method, this
method receives the bundle’s name as a parameter and checks its format beforehand. If
the format is correct, it conforms it to a requirement LDAP string, as the Requirement-
Capability model indicates, for a correct search on the repository. Afterwards, the filter
created is used to query the remote repository for matching bundles, and the most fit is
chosen to be deployed based on pre-chosen quality criteria. The deployment is done by the
resolving process, where dependencies are elicited and fetched along with the requested
bundle. Upon success, the method returns and the Launcher acquires the Bundle object.

As for this stage of the project, it is noteworthy the fact that the "most fit"means
the bundle with the highest version, being this the only quality criteria. In future stage, it

35

is intended to enhance the usage of the Requirement-Capability filter , in order to enable
it build a more complex set of LDAP filters that takes into account quality aspects for a
better search.

Bundles are fetched in remote search by using the OBR agent developed by the
Apache Felix OSGi Bundle Repository, an implementation of the OBR format and R5
format [4] [19], explained in further detail in section 2.3.4. Upon request, this agent is
responsible for reading the XML file, which contains the information about the stored
bundles, and querying for a specific bundle through a LDAP filter expression. When it
finds a match, the corresponding bundle is retrieved and installed in the environment.

Afterwards, an internal OSGi process called resolve begins, by checking for the
availability of its dependencies and binding the requirements of the given bundle to the
capabilities of its reliances, creating the so called "Wires", in OSGi terms. Then, if the
resolving process succeeds, the bundle goes to the RESOLVED state and the Framework
activates it, making the service it implements available for other bundles to use. Otherwise
stated, if all of the subgoals of a refinement are accomplished, a given goal from the goal
model tree is satisfied, allowing for goals in upper levels to have their dependencies fulfilled.
However, when a lazy activation policy is set, a bundle may stay on the STARTING state
until one of its methods is called, thereafter transiting to the ACTIVE state. After all,
when all of the bundles on the list are fetched and binded, and their respective services
are being provided, the root goal is satisfied, thus, delivering the desired functionality.

Moreover, the implementation also counts on a very important feature for adding
the autonomous characteristic to the solution. A bundle listener was developed and inser-
ted into the framework in order to catch bundle transition events, so, whenever a bundle
changes from one state to another, the framework is notified and is capable of automa-
tically handling the situation if needed, thus, without relying on human intervention. In
a specific way, whenever some context condition changes in the environment, specially in
case of sudden unavailability, causing the bundle that makes use of it to stop, the listener
is acknowledged and seeks for a turnaround solution, most likely re-planning with the new
set of context resources.

As an example, suppose a scenario in the Filling Station Advisor Application
where the GPS and the Antenna Triangulation service are available in the environment,
both able to fulfill the G1: Get position, but with the GPS active at a given moment.
If the GPS signal is lost, and the bundle that implements P1 stops, the listener gets a
notification and makes a new plan, now using the Antenna Triangulation service as a
means to meet G1’s dependencies. Since this situation was overcame without requiring
any actions from the user, it was said to be autonomously handled.

In this section, it was presented how the online activities can be implemented with
the usage of the OSGi technology. Initially, the automated deployment planning, which
is responsible for providing our framework with a deployment plan upon user request or
sudden context changes. Lastly, the deployment execution, which outlines the installation
process on each bundle of the deployment plan, by fetching them from a repository and
binding them in order to fulfill the desired goal.

In conclusion, in this chapter we explained our implementation of GoalD in OSGi.

36

This was accomplished through the description of each GoalD activity in light of the OSGi
technology and our implemented framework, the offline and online activities. Initially, the
offline activities consists of (1) goal modeling, which is performed in an early stage of the
software development and outputs the Goal model that outlines the requirements of the
system; (2) mapping components, which relates goals to OSGi services and components
to Java classes considering the goal refinements; and (3) packaging artifacts, which is
responsible for packaging components and metadata into OSGi bundles and registering
them into repositories. Later, the online activities are (1) automated deployment planning,
which performs the registration of user goals and the re-planning, in case of context
changes; and (2) deployment execution, which is responsible for executing the installation
process, which fetches bundles from repositories and bind them together, providing the
requested service.

37

Capítulo 5

Evaluation

In order to evaluate the efficiency of the Framework OSGi implemented for the
online activity, a series of tests were performed considering the Filling Station Advisor
application, the motivating example of this project. Thereby, This section is intended to
present the results of these experiments and provide an explanation about the outcome.
Two tests were made: one that correlates the quantity of bundles in the repository over
the execution time, and another that measures the time given the size of the bundles in
the repository.

The tests were performed in an Asus computer, running a 64-bit Windows 10
Home Edition operational system with 4GB of installed RAM, along with an Intel(R)
Core(TM) i3-3217U CPU processor at 1.80 GHz. They were accomplished by using the
bundles created in the Eclipse Neon IDE, in version 4.6.3, through the implementation
process described throughout this project, starting from the Goal Model from figure 3.1,
going through the mapping of goals to Java classes and service declarations, until their
package into bundles and storage in a remote repository. This process resulted in the
creation of 31 bundles of 3 kilobytes, approximately, each containing only plain text as a
means of providing a functional example for testing.

Figura 5.1: Computing Environment Evaluation Scenarios [24]

38

Each of the tests were divided into two experiments targeting different functio-
nalities of the system. The first evaluates the time spent in order to set a new goal, and
finish its execution, while the second computes the time taken to re-plan when the scena-
rio resources vary. They were executed 100 times and the average was taken for analysis.
For the first, the same scenarios used in the evaluation of the GoalD methodology were
applied here, and are displayed in Table 5.1. Figure 5.1 depicts contexts c1 to c10 as
they were defined by Rodrigues in his project and is placed here for reference.

Scenario Context Condition

S1 c2, c4, c6, c9
S2 c1, c3, c5, c8
S3 c1, c5, c8
S4 c1, c3, c6, c10
S5 c1, c3, c5, c7
S6 c3, c6, c8
S7 c1, c3, c7

Tabela 5.1: Test Case Scenarios for Executing a New Plan

For the second, we created five scenarios that happen one after the other, starting
from S1.1 until S1.5, in order to force the system to re-plan. They represent small steps
taken as if we were transitioning from scenario S1 to S2. Table 5.2 below depicts this
transition and the test cases for the re-planning process.

Scenario Context Condition

S1.1 c2, c4, c6, c9
S1.2 c1, c3, c5, c8
S1.3 c1, c5, c8
S1.4 c1, c3, c6, c10
S1.5 c1, c3, c5, c7

Tabela 5.2: Test Case Scenarios for Re-planning

The first part of the initial test relates to the time spent in order to set a new
plan, obtain the deployment plan and install all of the bundles from the plan, namely, the
New Goal Registration process. Initially, the test was run with the 31 bundles created by
the GoalD approach. Afterwards, each bundle was replicated as of showing the variability
that is intended for the target environment, starting with the duplication of the initial
number, followed by the multiplication by five in the initial number. It is noteworthy that
the root goal was not multiplied, since it cannot vary for it the bundle name correspondent
has to be specified by the environment when registering a new goal. So, the tests were
performed with 31, 91 and 151 bundles inside the repository.

As it is depicted in Figure 5.2, little changed in regard to time, when new bundles
were added to the repository. The test cases S6 and S7 successfully pointed errors when

39

Figura 5.2: Quantity of Bundles over Time for New Goals

generating the Deployment Plan for not enough resources were provided, resulting in a
small amount of time to finish the execution of the process. In the other cases, the Filling
Station Advisor was executed correctly, and the quantity of bundles in the repository
seems to have little influence on the time elapsed, since even with five times more bundles
the total time increased by a small amount. This probably happens because all of the
processing is client-side, done through the reading of a simple XML file for finding the
matching bundle, which does not require much computation.

Figura 5.3: Quantity of Bundles over Time when Re-planning

Differently, when looking at the results of the second experiment of the first test in
Figure 5.3, it is possible to infer that the time taken to re-plan has grown steadily given a
larger set of bundles. Test case worked successfully in S1.1, for not enough resources were
presented for reactivating the Filling Station Advisor application. But it is possible to see
an exponential growth in time when more bundles were added, which can relate to the

40

time taken to uninstall unused bundles by the new plan, that may have to disable entire
branches of the goal planning and install others completely different, adding a significant
amount of time to the final result.

The second test performed intends to measure the efficiency of the same processes
but now with varying bundle’s sizes. As mentioned earlier, the bundles were originally
created with a size near to 3K, since their packages only consisted of the metadata, the
Java classes and the service declarations. Next, an image was packaged inside each bundle,
increasing their size to 2 Mb. Next, a bigger file was packaged, adding up to 10 Mb in
each bundle. Later, 20Mb and, lastly, the bundles got to the size of 200 Mb in order to
have a better understanding of the curve of efficiency.

Figura 5.4: Size of bundles over Time for Test Cases

The first experiment of the second test evaluated the time taken by the New Goal
Registration process, considering an increased bundle size. In order to better display the
results, a logarithmic scale was adopted in Chart ??. It depicts, in general, that as the
bundles grow bigger, more time is spent in the referred process, since the test cases S1 to
S5 present a very similar curve that escalates quickly. The other two cases, S6 and S7
represent the two cases in which there is no generated plan.

The second experiment of the second test, portrayed in Figure ??, measures the
time elapsed when performing the re-planing, while taking into account the increasing
size of the bundles inside the repository. Just like in the earlier experiment, the 31 initial
bundles had their sizes enlarged in order to correctly execute this test, and the chart
shows a logarithmic scale to better display the outcome. The results were very similar
to the previous experiment: there can be seen a quick growth in time due to the size
difference, by looking at the curves of the cases when the planning was successful. The
difference between them might be due to the magnitude of the variation between the test

41

Figura 5.5: Size of bundles over Time for Re-plan Cases

cases. Moreover, the test case that differs from the others relates to failing plans when
not enough resources are available.

After a careful analysis of the results presented in this Chapter, it is possible
to conclude that the first test presents this implementation as a very scalable solution,
since, even with the quantity of bundles multiplied by five, just a small variation of time
was detected. This is important once the Framework may search in large of repositories
in order to find a satisfiable bundle, even in federations of repositories, where thousands
of bundles may be available for search. So, if the solution presented here supports large
quantities of bundles, it will most likely suit the intended settings of a real world appli-
cation. A further analysis of the Re-planning process should be done, though, in order to
correctly understand the reasons that made it take so long.

Nevertheless, by looking at the outcome of the second test, the solution here
presented is shown not to be as efficient as it should. Even though it suits the scope of
the project of checking if the OSGi is a viable solution to implement GoalD, the time
spent in order to process the bundles, by fetching and binding them, is not ideal. This
happens because the environment in which the Framework developed is intended to run
may contain resources with the most varied sizes, so a better performance is needed in
order to applying it in a real-world scenario.

42

Capítulo 6

Conclusion

In this project, the OSGi technology was proposed as a means to concretely as-
sert the feasibility of the GoalD methodology. In this perspective, all of the activities
delineated by GoalD were mapped into concrete development patterns, by observing a
correspondence between GoalD concepts and OSGi main ideas, and through the imple-
mentation of a framework that allows the process of fetching and binding of artifacts in
run-time.

It was shown that OSGi fulfills the three challenges outlined in GoalD disserta-
tion: heterogeneity, uncertainty at design-time and autonomous deployment. For the first
challenge, heterogeneity, it was explained that OSGi targets environments with highly
diverse kinds of devices due to the notion of resources, which are responsible for providing
any set of computational features packaged into small units of modularity. For the second
challenge, uncertainty at design-time, OSGi proved to be a match for GoalD, since it
allows for a run-time selection of available implementations. This is achieved through the
notion of a service, in which providers are binded with clients through very specific con-
tracts, created beforehand at design-time. The last challenge, autonomous deployment,
is achieved by OSGi through the same notion of services, which may come and go, and
are binded in a programmatic manner, thus, not requiring human intervention. Because
of these three facts, OSGi was found to be a match to the integration with GoalD.

In order to provide GoalD with a fully functional implementation in terms of the
OSGi technology, we used GoalD’s division of online and offline activities for describing
the reification of each GoalD offline activity into steps used in the development of OSGi
bundles along with the development of a framework which accommodates the fetching
and binding processes of the online activities.

Initially, the offline activities were translated into steps of OSGi bundle deve-
lopment. In the first offline activity, modeling requirements as goals, little was added
by OSGi since it is a process done by the software architect when eliciting the system
requirements. In the second offline activity, mapping components as goals, components
were defined as Java classes and, according with the type of refinement, different patterns
were used to create them. Goals were mapped into the OSGi services for they may rely
on other services in order to be provided, just as goals in the refinement process. In the

43

third offline activity, packaging artifacts, this project implements the package of artifacts
into OSGi bundles, since they store the same kind of information, namely classes, meta-
data and other resources. This step also considers a repository to which the bundles are
registered. Such repositories are tightly related to OBRs, in which bundles are fetched by
searching an XML file and retrieving them to the environment.

Later, for the online phase, a functional Framework for the autonomous genera-
tion and execution of deployment plans was developed. Our framework was developed in
order to concretely implement the online GoalD activities in an autonomous manner, by
relying on four main agents: an environment interface, for context detection; the Laun-
cher, responsible for requesting plans and executing them by fetching remote repositories
and binding bundles; the OBR, which stores bundles for later fetching; and the Planner,
which relates to the generation of deployment plans when requested.

The two steps of the online phase were implemented as follows: first, the deploy-
ment planning was achieved by integrating the Deployment Planning algorithm developed
by Rodrigues with our framework, for the generation of a deployment plan upon request.
This step performs two main process, the new goal registration process, which is accoun-
table for understanding new user’s goals in order to provide a specific plan, and execute
it; and the re-planning process, that listens to the environment and acts when a given
context condition ceases to exist, thus, this process enables the autonomous generation
of a new plan in order to reestablish the provision of a given goal, or service. Second,
we further contribute to the deployment execution step of Goald by using our framework
for searching OBRs to retrieve and bind bundles of a given deployment plan, through the
installation process performed over each bundle on the plan.

When evaluating the Framework used in the online activities, we saw that it is
a very scalable solution, for the New Goal Registration process have little impact when
performing the search in larger sets of bundles, even though, the Re-planning process
has a quick increase in time due to the increased computational complexity. Conversely,
efficiency is not a plus for this solution, since the results show that for the bigger the
bundles are in the set, the greater is the time spent on both new goal and re-plan processes,
since more time is spent on acquiring the bundles from the repository.

After an exhaustive examination of the OSGi technology, it was possible to con-
clude that each of the activities of the GoalD along with its chief ideas can be mapped onto
OSGi concepts. Besides, the Framework developed enables an autonomous deployment
in highly heterogeneous environments, which are the intended background for the GoalD
methodology. Therefore, as a conclusion, OSGi has shown to be an adequate solution for
a concrete implementation of the GoalD’s approach.

6.1 Future Work

As for an advance of the work described in this project, three possible enhance-
ments can be proposed: the integration of the Planner’s repository with the OSGi Bundle

44

Repository (OBR), the creation of a remote repository for a better performance evaluation
and the development of a context listener.

The first, relates to the integration of the remote repository created with the help
of Maven to the repository that the Planner entity reads for generating the deployment
plan. Rodrigues’ work, as a means to evaluate his solution, implemented the planner
algorithm, which was broadly used in this project, specially on the online activities. And,
to support it, he built his own version of an ideal repository that stores the component
attributes required by the GoalD approach in a convenient way, accessing them through
methods very tied to his specific implementation. Simply put, he does not make use
of the Maven created XML file for consulting the repository data when planning the
deployment of bundles. So, in order to keep the integrity of his work, little was altered
from his implementation by the solution proposed here. This fact resulted in a small
shortcoming: two different repositories were created and had to be managed separately.
One of them keeps the information of the registered bundles in an XML file, deployed
using Maven, and is used by the Implementation of this project for performing the fetching
process, further explained in Subsection 4.2, while the other repository is held inside the
GoalD’s project and mirrors the remote repository, being updated manually. Although
this fact may bring inconsistencies in large projects with a high number of bundles, this
is not the case when it comes to the motivating example used here, the Filling Station
Advisor application, which was built using a small number of bundles, making easy to
overcome this situation. However, it is planned for a future stage of this work to integrate
both repositories for a better consistency.

The second, refers to the creation of a remote repository for enhancing perfor-
mance evaluation. In order to meet the objectives outlined by this project, it was enough
to simply create another local repository in a different folder and see it as if it was pla-
ced in a remote location, once all of the experiments were only performed locally, even
though this new repository is still referred as remote. However, in a future stage of this
project, a remote repository will be created for a further analysis of the efficiency of the
methodology. This can be done with the usage of a tool named Nexus Repository [27],
which is built on top of the OSGi container Apache Karaf [7], and is able to proxy and
cache remote OBRs, apply CRUD privileges for access control, and other features. Thus,
providing opportunities to enhance efficiency [26].

The third and last enhancement that is planned for a future stage is the deve-
lopment of a context listener. As for the current phase, the Environment Interface and
Environment Controller entities were abstracted away in order to shorten the scope of the
project. They are responsible for listening to the environment and gathering information
about the context conditions available, as well as notifying the Launcher entity about
the come and go of devices in dynamic places. This choice was made since the manner
in which our framework receives information about context is irrelevant to attest to the
feasibility of the OSGi as a possible implementation of GoalD. But, in later phases, it is
planned to develop this layer in order to perform more accurate tests on our framework’s
efficiency.

45

Referências

[1] Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini. A goal-based framework for contex-
tual requirements modeling and analysis. Requirements Engineering, 15(4):439–458,
2010. 4, 5, 7, 18, 19

[2] OSGi Alliance. About us. https://www.osgi.org/about-us/, 1999. 8, 20, 21

[3] OSGi Alliance. OSGi Core Release 6. osgi.org, 2014. viii, 9, 10, 11, 12, 14, 20, 21,
25

[4] OSGi Alliance. OSGi Enterprise Release 6. osgi.org, 2015. 15, 36

[5] OSGi Alliance. Benefits of Using OSGi. https://www.osgi.org/developer/
benefits-of-using-osgi/, 2017. 21

[6] OSGi Alliance. Bundle Headers Reference. https://www.osgi.org/
bundle-headers-reference/, 2017. 25

[7] Apache. Apache Karaf. http://karaf.apache.org/, 2017. 45

[8] Joao Paulo Araujo. An OSGI Implementation for Autonomous Goal-Oriented De-
ployment: The project’s code. https://github.com/jcosta9/OSGi, 2017. 29

[9] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of Things: A survey.
Computer Networks, 54(15):2787–2805, October 2010. 1

[10] Ray Augé. Using Requirements and Capabilities. http://blog.osgi.org/2015/
12/using-requirements-and-capabilities.html, 2015. 14

[11] Genevieve Bell and Paul Dourish. Yesterday’s tomorrows: notes on ubiquitous com-
puting’s dominant vision. Personal and Ubiquitous Computing, 11(2):133–143, Fe-
bruary 2007. 1

[12] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and John Mylo-
poulos. Tropos: An agent-oriented software development methodology. Autonomous
Agents and Multi-Agent Systems, 8(3):203–236, 2004. 5, 18

[13] Ivica Crnkovic and Magnus Larsson. Component-based software engineering-new
paradigm of software development. Invited talk and report, MIPRO, pages 523–524,
2001. 7

46

https://www.osgi.org/about-us/
osgi.org
osgi.org
https://www.osgi.org/developer/benefits-of-using-osgi/
https://www.osgi.org/developer/benefits-of-using-osgi/
https://www.osgi.org/bundle-headers-reference/
https://www.osgi.org/bundle-headers-reference/
http://karaf.apache.org/
https://github.com/jcosta9/OSGi
http://blog.osgi.org/2015/12/using-requirements-and-capabilities.html
http://blog.osgi.org/2015/12/using-requirements-and-capabilities.html

[14] Anne Dardenne, Axel Van Lamsweerde, and Stephen Fickas. Goal-directed require-
ments acquisition. Science of computer programming, 20(1-2):3–50, 1993. 4

[15] Scott A. DeLoach, Walamitien H. Oyenan, and Eric T. Matson. A capabilities-based
model for adaptive organizations. Autonomous Agents and Multi-Agent Systems,
16(1):13–56, February 2008. 4

[16] Walid Gédéon. OSGi and Apache Felix 3.0: beginner’s guide ; build your very own
OSGi applications using the flexible and powerful Felix Framework. Learn by doing:
less theory, more results. Packt Publ, Birmingham, 2010. OCLC: 753206534. 9, 10

[17] Richard S. Hall, Karl Pauls, Stuart McCullock, and David Savage. OSGi in Action:
Creating Modular Applications in Java. Manning Publications, 2010. 10, 11, 13, 15

[18] Van Lamsweerde. Goal-oriented requirements engineering: a guided tour. in requi-
rements engineering. Fifth IEEE International Symposium, pages 249–262, 2001. 4,
13

[19] Apache Maven. Apache Felix OSGi Bundle Repository
(OBR). http://felix.apache.org/documentation/subprojects/
apache-felix-osgi-bundle-repository.html, 2017. 36

[20] Apache Maven. Introduction to the Build Lifecycle. https://maven.apache.org/
guides/introduction/introduction-to-the-lifecycle.html, 2017. 16

[21] Apache Maven. Introduction to the POM. https://maven.apache.org/guides/
introduction/introduction-to-the-pom.html, 2017. 17

[22] Apache Maven. Welcome to Apache Maven. https://maven.apache.org/index.
html, 2017. 16

[23] Jeff McAffer, Paul VanderLei, and Simon Archer. OSGi and Equinox: Creating highly
modular Java systems. Addison-Wesley Professional, 2010. viii, 11, 12, 13

[24] Gabriel Rodrigues. Autonomic goal-driven deployment in heterogeneous computing
environments. 2012. viii, 1, 5, 6, 7, 8, 13, 18, 19, 20, 38

[25] Stephen D. Smaldone. Improving the Performance, Availability, and Security of Data
Access for Opportunistic Mobile Computing. PhD thesis, Rutgers University, New
Brunswick, NJ, USA, 2011. 1

[26] Sonatype. Nexus Pro: Support for OSGi Bundle Repositories (OBRs). http://blog.
sonatype.com/2009/07/nexus-pro-support-for-osgi-bundle-repositories/,
2017. 45

[27] Sonatype. Nexus Repository. https://www.sonatype.com/
nexus-repository-sonatype, 2017. 45

[28] Axel Van Lamsweerde. From system goals to software architecture. Formal Methods
for Software Architectures, pages 25–43, 2003. 4, 5, 6, 7, 18

47

http://felix.apache.org/documentation/subprojects/apache-felix-osgi-bundle-repository.html
http://felix.apache.org/documentation/subprojects/apache-felix-osgi-bundle-repository.html
https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
https://maven.apache.org/guides/introduction/introduction-to-the-pom.html
https://maven.apache.org/guides/introduction/introduction-to-the-pom.html
https://maven.apache.org/index.html
https://maven.apache.org/index.html
http://blog.sonatype.com/2009/07/nexus-pro-support-for-osgi-bundle-repositories/
http://blog.sonatype.com/2009/07/nexus-pro-support-for-osgi-bundle-repositories/
https://www.sonatype.com/nexus-repository-sonatype
https://www.sonatype.com/nexus-repository-sonatype

[29] Yijun Yu, Alexei Lapouchnian, Sotirios Liaskos, John Mylopoulos, and Julio Leite.
From goals to high-variability software design. Foundations of Intelligent Systems,
pages 1–16, 2008. viii, 6, 7, 8, 9, 13, 18, 23

48

	Agradecimentos
	Resumo
	Abstract
	Introduction
	Problem Definition
	Proposed Solution
	Structure

	Background
	Goal-Oriented Requirements Engineering (GORE)
	GoalD
	OSGi
	Bundles
	Services
	The Requirement-Capability Model
	OSGi Bundle Repositories (OBR)

	Apache Maven Development Tool

	Filling Station Advisor
	Goal-Oriented OSGi Environment
	Offline Activities
	Goal Modeling
	Mapping Components
	Packaging Artifacts

	Online Activities
	Conceptual Model
	Automated Deployment Planning
	Deployment Execution

	Evaluation
	Conclusion
	Future Work

	Referências

