

Universidade de Brasília

Faculdade de Economia, Administração e Contabilidade

Departamento de Administração

LAURO SILVEIRA PEDREIRA DE FREITAS JÚNIOR

MODELO DE TRANSBORDO PARA PROBLEMAS DE DESIGNAÇÃO DE INSPETORES: Um estudo de caso na Agência Nacional de Aviação Civil.

LAURO SILVEIRA PEDREIRA DE FREITAS JÚNIOR

MODELO DE TRANSBORDO PARA PROBLEMAS DESIGNAÇÃO DE INSPETORES: Um estudo de caso na Agência Nacional de Aviação Civil.

> Projeto de monografia apresentado Departamento de Administração como requisito parcial à obtenção do título de Bacharel em Administração.

Professor orientador: Dr. Carlos Rosano Peña

Professor co-orientador: Msc.Victor Rafael R.

Celestino

Silveira Pedreira de Freitas Júnior, Lauro

Modelo de transbordo para problemas de designação de inspetores: Um estudo de caso na Agência Nacional de Aviação Civil.. – Brasília, 2017.

f.: il.

Monografía (bacharelado) – Universidade de Brasília, Departamento de Administração, 2017.

Orientador: Prof. Dr. Carlos Rosano Peña.

Co-orientador: Prof. Msc. Victor Rafael R. Celestino, Departamento de Administração.

1. Modelo. 2. Designação. 3. Transbordo. 4. Excel. 5. Simulação. 6. Monte Carlo

LAURO SILVEIRA PEDREIRA DE FREITAS JÚNIOR

MODELO DE TRANSBORDO PARA PROBLEMAS DE DESIGNAÇÃO DE INSPETORES: Um estudo de caso na Agência Nacional de Aviação Civil.

A Comissão Examinadora, abaixo identificada, aprova o Trabalho de Conclusão do Curso de Administração da Universidade de Brasília do (a) aluno (a)

Lauro Silveira Pedreira de Freitas Júnior

Msc. Victor Rafael Rezende Celestino Professor Co-orientador

Dr. Carlos Rosano Peña Professor Orientador

Dr. Roque Magno de Oliveira, Professor-Examinador

Msc. Victor Rafael Rezende Celestino Professor Examinador

Brasília, 13 de novembro de 2017

Dedico este trabalho aos meus pais, avós e a toda minha família e amigos que, com muito carinho e apoio, não mediram esforços para que eu chegasse até esta etapa da minha vida.

AGRADECIMENTOS

Agradeço, primeiramente, a minha mãe, por ser a razão do meu existir, a minha inspiração diária e meu socorro presente tanto nas horas felizes como também na hora da angústia e da dificuldade.

Ao meu pai, in memoriam, por sempre ter acredito no meu potencial e, quando criança, ter incentivado meus estudos.

Aos meus avós, pelo carinho e amor que me proporcionaram e que com certeza impulsionou a minha determinação em atingir meus objetivos.

Ao meu orientador Victor Celestino que me ajudou, desde o inicio, respondendo à duvidas, auxiliando na resolução de dificuldades técnicas e sempre me encorajando com palavras de conforto e motivação.

Aos meus amigos Alessandra e Emmanuel, que foram essenciais para o sucesso desta grande jornada que foi a graduação em administração.

RESUMO

Mecanismos de otimização computacionais são ferramentas utilizadas para múltiplas funcionalidades. Uma delas trata de designação de pessoas e resolução de problemas de escalonamento de pessoal. O problema estudado foi o designação ótima de inspetores de fiscalização da Agência Nacional de Aviação Civil (ANAC), entre as unidades federativas espalhadas pelo território brasileiro (26 Estados Brasileiros e o Distrito Federal). Esta pesquisa tem o objetivo de propor um modelo de transbordo, que possibilita a otimização de custos de deslocamento entre as unidades federativas e, ainda, que cada localidade seja tanto de oferta de inspetores como de demanda, com a utilização de uma ferramenta de otimização, o Excel, com o suplemento *OpenSolver*. A partir de dados secundários provindos de registro em forma de série histórica, buscou-se uma solução ótima ao problema de designação de inspetores apresentado pela organização alvo deste estudo de caso. Este estudo é de natureza empírica com análise descritiva e abordagem probabilística já que se utiliza de simulações para prever as demandas por missões de fiscalização. A simulação utilizada segue o método de Monte Carlo que prevê cenários em base a dados estatísticos como média e desvio padrão, com capacidade de realização de várias interações, o que a torna mais confiável. Os resultados obtidos apresentam custos operacionais considerando o objetivo geral do modelo: a redução de custos de deslocamento, respeitando as restrições de oferta. A análise dos resultados demostra que a utilização da ferramenta é viável para a resolução do problema de alocação, pois este logra obter os resultados esperados. Com respeito a confiabilidade do modelo, pode-se afirmar favoravelmente, com base na análise de sensibilidade da solução obtida.

Palavras-chave: Modelo. Designação. Transbordo. Excel. Simulação. Monte Carlo.

LISTA DE FIGURAS

Figura 1- Representação do Modelo de transbordo	.Erro! Indicador não definido
Figura 2- Modelo de Transbordo para designação de inspetore	es47
Figura 3- Estrutura Organizacional da ANAC(continua)	48
Figura 4- Seção V da Superintendência de Aeronavegabilidad	e (continua)50

LISTA DE TABELAS

Tabela 1- Tabela Matriz estatística das simulações (continua)	3
Tabela 2- Matriz de custos de passagens (continua)	33
Tabela 3- Tabela de resultados modelo de transbordo	
Tabela 4- Tabela média de indicadores de oferta .	35
Tabela 5- Tabela média de indicadores de demanda.	35
Tabela 6- Tabela top 10 maior custo reduzido	36
Tabela 7- Tabela Média de análise de sensibilidade do modelo (continua)	

SUMÁRIO

1 IN	TROD	JÇÃO	11
1.1 1.2 1.3 1.4 1.5	2 Fo 3 Ol 4 Ol	ontextualização ormulação do problema bjetivo Geral bjetivos Específicos stificativa	12 13
2	REFEI	RENCIAL TEÓRICO	15
2.1 2.2		s Problemas de Escalonamento de Pessoal (PEP)	
	2.2.1	A programação linear	19
	2.2.2	O método Simplex	20
	2.2.3	O Solver	20
	2.2.4	Otimização em redes	21
	2.2.5	A simulação de Monte Carlo	23
3	MÉTO	DOS E TÉCNICAS DE PESQUISA	23
3.1 3.2 3.3	2 Ca 3 Pa	po e descrição geral da pesquisaaracterização da organizaçãoopulação e amostra.	25
3.4		strumento de pesquisa	
		LTADOS E DISCUSSÃO	
		LUSÕES E RECOMENDAÇÕES	
REF	ERÊN	CIAS	38
APÊ	NDICE	S	41
	ndice <i>A</i> nido.	A – Representação do Modelo de Transporto Erro! Indicado	r não
Apêr	ndice E	B – Tabelas de análise de sensibilidade do modelo	41
Apêr	ndice C	C - Modelo de Transbordo	47
ANE	XOS.		48
Anex	ко А –	Estrutura Organizacional da ANAC	48
		Seção V do Regimento Interno da ANAC- Responsabilidades da dência de Aeronavegabilidade	50

1 INTRODUÇÃO

1.1 Contextualização

Como consequência de políticas públicas de inclusão social e da facilitação do acesso ao crédito, observa-se, na atualidade, um aumento na demanda por serviços e produtos que antes não eram de acesso popular. Um bom exemplo é o crescimento da utilização do transporte aéreo, que se vê decorrente de uma migração das classes trabalhadoras para uma nova classe média, com maior poder de compra, trazendo grandes investimentos em infraestrutura e o aumento da oferta de voos e destinos pelas empresas aéreas. Além disso, o setor de indústria aeronáutico de jatos comerciais no Brasil integra o clube que congrega os quatro maiores fabricantes de aeronaves do mundo, junto com o Boeing (Estados Unidos), a Airbus (Alemanha, França, Inglaterra e Espanha) e a Bombardier (Canadá) (GOMES, 2012). Esses fatos reforçam a importância da aviação civil para a economia brasileira.

Com o desenvolvimento do setor, a necessidade de aperfeiçoamento de formas, de controle, monitoramento e alocação de recursos, sejam estes humanos, monetários ou materiais, é evidente. É fato que a administração pública passa por um período de cortes orçamentários forçando-a a medidas de melhoria de processos para a manutenção ou melhoria da produtividade. Observa-se que os processos de tomada de decisão ainda acontecem de uma forma arcaica e necessitam de atualização tecnológica.

A Agência Nacional de Aviação Civil (ANAC), órgão responsável pela fiscalização e manutenção da qualidade do setor de aviação civil, em seu programa de missões de inspeção, atua, justamente, como certificadora e responsável pela vistoria em aeronaves, aeroportos e qualificação das empresas aéreas para assim garantir a segurança, a integridade e o bem-estar dos consumidores. Ainda, a ANAC é integrante da administração pública indireta, o que significa estar sujeita a limitação de gastos e à cortes de orçamento.

1.2 Formulação do problema

No planejamento de expansão do setor aéreo é especialmente importante o uso de ferramentas de apoio à tomada de decisão. O ramo de conhecimento que trata especificamente desse tipo de problema é a pesquisa operacional. Segundo Arenales et al (2015), pesquisa operacional é a aplicação de métodos científicos em análise de sistemas complexos para auxiliar no processo de tomada de decisões como aquelas que envolvem: projeção, planejamento e operacionalização de sistemas sempre respeitando a eficiência na alocação de recursos

A pesquisa operacional apresenta modelos que possuem múltiplas funcionalidades, os chamados modelos matemáticos. Este tipo de modelagem possui a vantagem de aplicação personalizada de forma a atender qualquer situação, desde que elaborada abrangendo as restrições e obrigações do problema. A utilização desse tipo de modelagem busca o aprimoramento de processos internos e desdobra na utilização correta de recursos, atendendo as necessidades dos *stakeholders* com eficiência.

Os benefícios provenientes da aplicação da otimização matemática para problemas empresariais, vão desde a minimização de custos até a maximização do lucro da organização. Ao incluir variáveis, como por exemplo, restrições orçamentárias ou exigências de qualidade de vida, a modelagem proporciona soluções aos gestores que maximizam o retorno da empresa e tornam o trabalho dos funcionários mais efetivo, satisfatório e seguro.

Para a manutenção do programa de missões de fiscalizações da ANAC, vistos os cortes orçamentários decorrentes das políticas públicas, vê-se a necessidade de melhoria no processo de designação de inspetores mediante a implantação de um modelo matemático, que respeite as restrições impostas pela instituição e que proporcione tanto uma solução de redução de custos como a manutenção do bem-estar funcional.

O trabalho do inspetor compõe atividades que necessitam de deslocamento para localidades específicas dentro do território brasileiro e tipos de fiscalizações específicas para cada localidade, isto é, existe uma especificidade para cada missão. Logo, cada missão é restrita ao conhecimento de profissionais qualificados além de existir um custo exclusivo atrelado a cada uma. A modelagem adequada ao problema de alocação de profissionais proporciona uma solução ótima que supra tanto a demanda de inspeções por localidade como a minimização de custos de deslocamento para cada localidade/ tipo de missão.

A aplicação de métodos de otimização, para designação de jornadas de trabalho, deve garantir a alocação de funcionários minimamente necessária para suprir a demanda com o máximo nível de qualidade ao mesmo tempo que utiliza apenas o número indispensável de funcionários para realizar as tarefas.

Existem alguns pontos críticos que ressaltam a complexidade do problema de designação de inspetores da ANAC e que estão fora do modelo de designação atual dos gestores do projeto. Missões com requisitos de conhecimento específico possuem demandas espalhadas pelos 26 Estados Brasileiros e o Distrito Federal. No entanto, os profissionais capacitados para realizar tais missões são escassos e, muitas vezes designados para fiscalizações com requisitos de conhecimento mais recorrentes. Como consequência, existem localidades com grandes fluxos de inspeções e outras não suficientemente supridas.

É comum dentro das organizações existir designações errôneas, o que pode ocasionar ociosidade. O problema jaz na falta de um critério de otimalidade que considere tanto os custos de alocação dos profissionais como restrições que imponham um mínimo de missões por localidade e por tipo de fiscalização.

Este trabalho apresenta o problema de designação do programa de fiscalização da ANAC que trata da alocação eficiente de inspetores em missões de fiscalização e a inclusão de requisitos mínimos de missões exigidas por unidade federativa espalhada pelo território brasileiro. O problema demanda melhoria nos processos gerenciais de tomada de decisão, de modo a atender às limitações de recursos e a manutenção operacional do programa.

Ainda, existe a compreensão sobre a seguinte a seguinte questão: "Qual a influência da utilização da modelagem matemática no processo de tomada de decisão em um problema de alocação de profissionais de fiscalização da Agência Nacional de Aviação Civil?"

1.3 Objetivo Geral

Propor uma ferramenta de pesquisa operacional que proporcione uma solução ótima ao problema de designação de inspetores à missões de fiscalização, que considere tantos os custos de deslocamento quanto os requisitos mínimos exigidos pelo planejamento anual do programa da ANAC auxiliando os gestores na tomada de decisão.

1.4 Objetivos Específicos

- Identificar quais as missões e localidades a serem computadas na ferramenta de pesquisa operacional, de modo a atender as necessidades do problema de alocação da ANAC e a definir as variáveis de decisão da modelagem.
- Simular uma matriz de custos de deslocamento entre unidades federativas utilizando uma pesquisa de mercado.
- Propor um modelo estocástico que simule a demanda por missões por localidade considerando variáveis estatísticas provindas da série histórica.
- Propor um modelo de designação de profissionais que considere os custos de alocação por deslocamento entre unidades federativas.
- Analisar a viabilidade da ferramenta de otimização em suprir a demanda exigida pela ANAC.

1.5 Justificativa

Como parte do levantamento de pesquisas necessário para a realização deste trabalho, pode-se constatar que a pesquisa operacional, mais especificamente a otimização por modelos matemáticos computacionais, é uma área de conhecimento com um número pequeno de publicações em artigos científicos. Por ser uma vertente da administração que possui um cunho muito prático, esta linha de pesquisa possui ampla aplicabilidade para soluções que auxiliam os gestores na tomada de decisão.

Pode-se dizer que a pesquisa operacional é um tema que ainda está em desenvolvimento, visto que é uma vertente da academia que se desenvolve junto às atualizações da tecnologia. A utilização deste tipo de pesquisa surge como solução em meio à atual conjuntura econômica, política e social que decorre em uma necessidade de aprimoramento de processos gerenciais.

Por outro lado, existe o crescimento do setor aéreo vista sua maior procura como opção de transporte. Um dos fatores é a crescente movimentação para tornar esse tipo de locomoção cada vez mais popularizado. Vê-se também que:

"O principal fator para o aumento do número de viajantes foram os avanços das técnicas de construção aeronáutica: os aviões ficaram maiores, mais

rápidos e mais seguros. Além disso, os avanços tecnológicos, a maior concorrência entre as empresas tornou as passagens aéreas relativamente mais baratas". (MOREIRA, SENE, 2008, p. 362).

Esse movimento de aumento de produtividade e de redução de custos tem como contrapartida a necessidade de aprimoramento dos mecanismos regulatórios que possuem função meio para a manutenção da qualidade, da segurança e do bem-estar do consumidor. Ainda, a aplicação de formas de melhoria em processos gerenciais e o emprego de ferramentas de apoio à tomada de decisão visam um aprimoramento da utilização de recursos públicos.

Este trabalho decorre de uma necessidade, apresentada pelos gestores do programa de fiscalização da ANAC, de um modelo de designação de funcionários que vise tanto a redução de custos como a manutenção mínima de missões por unidade federativa. A apresentação dos benefícios da utilização da modelagem matemática nos resultados operacionais almeja que os gestores sejam instigados a recorrer à pesquisa operacional como ferramenta de apoio à tomada de decisão no operacional do programa de fiscalização.

Ainda, este projeto de monografia é requisito parcial à obtenção do título de Bacharel em Administração no Departamento de Administração da Universidade de Brasília.

2 REFERENCIAL TEÓRICO

Modelos de alocação de recurso, tanto humanos como materiais, são ferramentas tecnológicas que proporcionam soluções à problemas do dia a dia das organizações. É importante a utilização de quaisquer recursos que consigam uma eficiência maior na hora da tomada de decisão, principalmente em mercados competitivos e conjunturas econômicas desfavoráveis. Recursos utilizados de forma incorreta podem decorrer em problemas financeiros sérios para as organizações. A análise de eficiência, em uma perspectiva científica, diz respeito ao quanto entra (*inputs*) e o quanto saí (*outputs*) do sistema administrado em questão.

A combinação ótima dos insumos e métodos necessários (inputs) no processo produtivo de modo que gerem o máximo de produto (output) é o que se conceitua como eficiência (PEÑA, 2008). Logo, eficiência remete a capacidade de "fazer mais com menos" e de minimizar a relação insumos – produtos.

Ainda temos que:

"a eficiência não pode ser entendida apenas como maximização do lucro, mas sim como um melhor exercício das missões de interesse coletivo que incumbe ao Estado, que deve obter a maior realização prática possível das finalidades do ordenamento jurídico, com os menores ônus possíveis, tanto para o próprio Estado, especialmente de índole financeira, como para as liberdades dos cidadãos". (ARAGÃO,2005, p.37),

O entendimento sobre qual o impacto da utilização de uma ferramenta de pesquisa operacional como apoio na designação de profissionais é um ponto importante a ser tratado pois a melhor utilização de recursos públicos é requisito perante um momento de cortes orçamentários e redução de custos.

2.1 Os Problemas de Escalonamento de Pessoal (PEP)

Para entender os Problemas de Escalonamento de Pessoal (PEP), é importante a conceituação de dois termos específicos: *schedulling* (agendamento ou escalonamento) e *rostering* (rodízio ou alistamento).

Fazer designações de tarefas em um determinado lapso de tempo, tal que todas as tarefas sejam supridas por, pelo menos, um funcionário satisfazendo a certas restrições é um problema conhecido na literatura como problema de *rostering* na sua forma geral (STEINER, 2004)

Logo, *schedulling* entende-se como o processo de elaborar um modelo de escala de tarefas para um determinado problema. Já *rostering* é o processo de atribuição dos profissionais dentro de dita escala (atribuição nominal dos profissionais à escala de trabalho).

Pinedo (1995), coloca escalonamento como um processo de tomada de decisão que é muito utilizado em muitos sistemas de produção e de gestão de pessoal. Esse tipo de sistema também pode ser aplicado para a resolução de problemas de transporte e em outros tipos de serviço.

Para Devesse (2016), esse tipo de problema lida com a produção de escalas de maneira a maximizar o atendimento dos requisitos de preferencial pessoal, respeitando as restrições impostas por planejamento e normas organizacionais.

No momento da elaboração de uma escala de trabalho, geralmente, o objetivo da solução do problema é a de redução de custos para a alocação de recursos humanos. A alocação de recursos humanos competentes para a execução de tarefas é crucial, pois falhas nesse tipo de tomada de decisão implicam perda de tempo, retrabalho e, consequentemente, implicam em perdas de produtividade.

Os modelos mais utilizados para a resolução de problemas de alistamentos estão presentes na pesquisa operacional. Mediante a utilização de modelagem matemática, os recursos computacionais solucionam esse tipo de problema de forma, rápida e eficiente, de modo a apoiar na tomada de decisão dos gestores responsáveis.

2.2 A Pesquisa Operacional

Os problemas de Pesquisa Operacional (PO) existem desde longa data. Somente a partir da 2ª Grande Guerra, todavia, passaram a ser tratados a partir de uma abordagem instituída, sendo organizados na forma de uma disciplina ou área do conhecimento (RAVINDRAN et al., 1987).

As origens da pesquisa operacional, como abordagem científica, se deram com a necessidade dos militares, em tempos de guerra, de alocar recursos, que eram escassos, para operações militares de forma rápida e produtiva. Para isso, uma força tarefa de cientistas começou a fazer análise das operações militares e tratar de problemas táticos e estratégicos mediante a metodologia científica.

No Brasil, esse tipo de abordagem teve seu inicio nos anos 60, quando foi fundada a SOBRAPO (Sociedade Brasileira de Pesquisa Operacional), a principal instituição que, até hoje, funciona com um periódico científico para temas relacionados à pesquisa operacional.

A PO tem a finalidade de desenvolver, seguindo a metodologia científica, ferramentas que possuam a capacidade de análise de sistemas complexos com o propósito de prospecção de cenários e comparação estratégica. O seu principal objetivo é o de proporcionar ao usuário suporte para a elaboração de estratégias e na hora de tomar decisões.

Segundo Arantes et.al (2015), a pesquisa operacional, e em particular, a programação linear, trata de problemas de decisão e faz uso de modelos matemáticos que procuram representar o problema real investigado. As ferramentas de modelagem utilizam algoritmos

matemáticos para fazer uma simplificação da realidade e proporcionar suporte aos gestores na hora de definir ações e traçar estratégias.

A modelagem é o processo pelo qual se formula a ferramenta de pesquisa operacional. É importante que as variáveis e as relações matemáticas do modelo sejam condizentes com o problema real, porém suficientemente simples para que seja viável a formulação do modelo. Esses modelos possuem recursos de análise, a chamada "análise de sensibilidade", que proporcionam a visualização dos resultados da ferramenta e das soluções apresentadas. Interpretar de forma correta a análise de sensibilidade torna possível a inferência sobre a validade e a representatividade do modelo.

Segundo Hieller & Lieberman (1977), a análise de pós-otimalidade estabelece quais parâmetros do modelo são mais críticos (os "parâmetros sensíveis") na determinação do problema. Os parâmetros sensíveis dos modelos são aqueles valores que, ao serem alterados além do limite permissível, modificam a solução ótima do problema. Pode-se inferir sobre quão confiável é a solução ótima proposta em um modelo por meio da validação do mesmo na representação do problema real.

A qualidade da solução apresentada pelo modelo depende de quão confiáveis são as suas entradas (*inputs*) e da acuracidade do modelo. Como a programação matemática é uma simplificação da realidade, existe uma diferença entre a solução ótima apresentada na solução do modelo e a solução ótima real. Esta diferença depende diretamente da precisão do modelo em descrever o comportamento original do problema.

A abordagem de resolução de um problema, por meio de pesquisa operacional, envolve várias fases: (1) definição do problema; (2) construção do problema; (3) solução do modelo; (4) validação do modelo e (5) implementação da solução. (ARANTES, et.al., 2015).

A fase (1) define qual o objetivo do problema a ser otimizado e determina o seu escopo. A fase (2) constrói as relações matemáticas entre as variáveis apresentadas no escopo do problema, lógicas de simulação de outras variáveis e a combinação entre elas. A fase (3) utiliza de algoritmos matemáticos para encontrar a solução ótima do problema. A fase (4) verifica, por meio da análise de sensibilidade, a validade e representatividade do problema real. A fase (5) representa a fase de implantação da solução ótima encontrada, no problema real.

A forma de estruturação de problemas de PO se dá, geralmente, por meio da conversão das variáveis de decisão em uma função objetivo (por exemplo, maximizar o lucro da empresa ou minimizar o custo de produção de um determinado produto). Todo modelo é sujeito a restrições, associadas à disponibilidade de recursos (restrições de limitações) e à requisitos específicos do problema (restrições de mínimo requerido).

Os modelos utilizados na pesquisa operacional podem ser classificados conforme a técnica utilizada para solucionar o problema (BRANDEAU; CHIU. 1989). Os modelos então podem ser classificados como: otimização ou exatos; heurísticos; e simulação.

Modelos de otimização ou exatos são aqueles que selecionam, em meio a todas as soluções viáveis de um problema, a mais favorável. A solução ótima apresentada deve atender a todas as restrições impostas pela modelagem. Os modelos heurísticos são aqueles onde se utiliza uma heurística para a redução no tempo de processamento para solução do problema. Esse tipo de solução, geralmente, é decorrente de problemas onde há urgência de uma resolução. Logo, a solução apresentada não é ótima, mas satisfatória para a urgência em que é requerida. Os modelos de simulação são aqueles modelos de natureza estocástica, que se utilizam de simulações para a obtenção de informações estatísticas que irão ajudar na hora de tomada de decisão. Nesses modelos, quanto maior o número de sucessões de simulação, maior a confiabilidade da ferramenta.

Segundo Graves (1974), os métodos de otimização são os mais adequados, pois são operacionalmente viáveis para as organizações que possuem dados disponíveis em seus bancos de dados. Com isso, uma análise pode proporcionar inferência sobre os *trade-offs* dos problemas de PO.

Dentre os modelos de otimização, existem aqueles que tratam de problemas de várias naturezas: os modelos de otimização linear, otimização não linear, otimização inteira a otimização em redes, entre outros.

2.2.1 A programação linear

Para a utilização da programação linear, o modelo deve ter uma função objetivo linear e estar sujeito a restrições lineares. Para isso, a modelagem deve responder a certas hipóteses:

- "i) Proporcionalidade: a contribuição de cada atividade ao valor da função objetivo é proporcional ao nível de atividade da variável x. De modo semelhante, a contribuição de cada atividade do lado esquerdo de cada restrição é proporcional ao nível de atividade de x.
- ii) Aditividade: toda função em um modelo de programação linear (seja a função objetivo, seja a função que se encontra do lado esquerdo de uma restrição) é a soma das contribuições individuais das respectivas atividades.
- iii) Divisibilidade: as variáveis de decisão em um modelo de programação linear podem assumir quaisquer valores, inclusive valores não inteiros, que satisfaçam as restrições e a não negatividade.

iv) Certeza: assume-se o valor atribuído a cada parâmetro do modelo como uma constante conhecida". (HILLIER.& LIEBERMAN, 1977, p.25-35):

2.2.2 O método Simplex

Criado por George Dantzig, em 1947, o Método Simplex é a técnica utilizada para se determinar, numericamente, a solução ótima de um modelo de Programação Linear.

Para Bronson & Naadimuthu (1997), o método Simplex busca uma solução ótima para as variáveis de decisão do modelo. Todo modelo possui uma função objetivo, que é decorrente das variáveis de decisão. Essa função é o critério de otimalidade do problema, e pode ser maximizada ou minimizada para encontrar o valor ótimo do problema (OV). Os valores ótimos das variáveis de decisão são a solução ótima do problema e devem respeitar as restrições do modelo.

O método Simplex é o método usado em ferramentas computacionais como o Solver, para a resolução de problemas de PL. Visto que o objeto de estudo do trabalho é mais importante que a conceituação do método, o leitor que se sentir instigado em aprofundar conhecimentos sobre o Simplex pode encontrar uma descrição mais detalhada na obra de Hieller & Lieberman.

2.2.3 O Solver

A ferramenta *solver* é um *Add-In* do Excel que utiliza algoritmos numéricos para apresentar soluções à modelos de otimização, como por exemplo os modelos de programação linear. Ao fazer isso, o Solver utiliza-se de programação com algoritmos matemáticos, que funcionam com o método Simplex, para encontrar de forma eficiente, fácil e rápida a solução a modelos organizados em planilhas de Excel.

Segundo (MOORE & WEATHERFORD, 2005, p. 75),

"Todas as formulas do Excel usadas em seu modelo de PL de planilha devem envolver relações estritamente lineares entre as variáveis, direta ou indiretamente, já que elas pertencem ao cálculo da célula de função objetivo e à especificação de quaisquer restrições".

Para a correta otimização dos problemas de PL, com a utilização da ferramenta Solver, o modelo de planilha deve estar corretamente elaborado conforme os pretextos da otimização

linear: toda formula que incluir variáveis de decisão deve estar conforme à hipótese de linearidade, e todas as restrições devem ser atendidas para que a solução apresentada seja viável e ótima.

2.2.4 Otimização em redes

As soluções apresentadas mediante a utilização de modelos específicos para resolução de problemas de PO é mais conveniente do que as soluções provenientes de modelos e algoritmos genéricos. Os problemas de programação linear possuem várias opções específicas para modelagem por tipo de problema. No caso do problema de alocação da ANAC a melhor opção é a construção de um modelo de fluxo de redes.

Modelos de fluxo de redes são usados para proporcionar solução a diversos problemas empresariais tais como: problemas de transporte, problemas de energia, de produção, de alocação, problemas que envolvam ativos financeiros, entre outros. A grande vantagem da otimização de rede é a de proporcionar representação visual do problema, facilitando a interpretação e a construção da modelagem.

Para a aplicação em problemas de alocação, esse tipo de modelo se destaca, pois, ao contrário dos modelos de designação e transporte, onde existe uma saída e uma entrada, o modelo de redes, mais especificamente o modelo de transbordo, pode possuir múltiplas entradas, multiprodutos e multiobjetivos.

Segundo Marquez Diaz (2011, p.16),

"A otimização de redes se identifica como um grafo G(N,A), onde N é o conjunto de nós e A é o conjunto de arcos da rede. Em síntese, os nós representam a infraestrutura combinada do transporte, já os arcos possuem função de unir os nós adjacentes e permitem a tipologia da rede"

Uma rede é formada por um conjunto de traços e pontos que se conectam entre si, apresentando uma representação gráfica e ordenada de um problema. Os traços são chamados de arcos (ou ligações, bordas, ramificações). Os pontos são chamados de "nós" (ou vértices). Geralmente os nós são desenhados como círculos e possuem capacidade tanto de entrada como de saída. Os arcos são representados por flechas e possuem o nome combinado dos nós que eles conectam (saída e destino), por exemplo, um arco que vai desde o nó A ao nó B, possui o nome de arco AB.

Existem três tipos de nós: os nós de origem, os nós de demanda e os nós de transbordo. Os nós de origem possuem sempre valor positivo, logo que são os nós onde entram os recursos. Os nós de demanda possuem valor negativo o que representa o valor requerido daquele recurso, naquela localidade. São chamados nós de transbordo, aqueles em que tudo o que entra de recursos, sai e é transportado para os nós de destino, logo seu valor final sempre é 0.

Ainda, existem 2 tipos de arcos, os direcionados e os não direcionados (ou ligações). Os arcos direcionados são aqueles que o fluxo permitido se desloca apenas em uma única direção, por exemplo em uma estrada de mão única. Já os arcos não direcionados, também chamados de ligações, são aqueles que não possuem direcionamento em uma só via, isto é, podem ir em ambas direções, como por exemplo as malhas dutoviárias para transporte de líquidos ou grãos.

Para a construção de uma rede é necessário que hajam, pelo menos, dois "nós" conectados por um arco não direcionado. Em uma otimização de redes, todo nó deve possuir uma quantidade de entrada (caso seja nó de origem) ou uma quantidade requerida (caso seja nó de demanda). Todo arco possui uma quantidade máxima de fluxo de recursos, a chamada capacidade de arco. A solução de um modelo de redes apresenta quais nós devem ser de origem e quais os arcos a serem utilizados para suprir as necessidades dos nós de demanda, considerando o custo de deslocamento atrelado a cada arco.

2.2.4.1 Modelo de Transbordo

O modelo de transporte é aquele que trata do deslocamento de uma carga de um ponto de origem a um ponto de destino e visa a minimização de custos necessários para suprir "j" centros consumidores (destinos) a partir de "i" centros fornecedores (origens). O modelo de transbordo visa a inclusão de um ponto intermediário, entre a origem e o destino, o centro de distribuição "k" (transbordo). Este tipo de modelo possui a característica de que, um nó pode ser, simultaneamente, de destino, de transbordo e de origem.

Para melhor visualização, pode-se exemplificar os problemas de transbordo da seguinte forma: existem várias cargas produzidas em várias fábricas, que possuem um número dado de capacidade produtiva. Cada localização (nó de destino) possui uma demanda a ser suprida para cada tipo de carga produzida em cada fábrica. Essa demanda é suprida mediante o deslocamento da carga requerida via centros de distribuição (nó de transbordo). Toda

localização está atrelada a, pelo menos, um centro de distribuição ou diretamente à uma fábrica. Ainda, existe um custo e uma capacidade de deslocamento entre as fábricas e os centros de distribuição.

Os problemas de transbordo visam o transporte das cargas de forma a minimizar os custos de transporte, suprir as demandas dos centros consumidores, atendendo as restrições de capacidade produtiva dos centros distribuidores e a capacidade de fluxo das ligações.

2.2.5 A simulação de Monte Carlo

Segundo Moore & Weatherford (2005), os modelos de análise determinísticos costumam ser difíceis de se obter por causa de alguns fatores de complicação. Estes podem ser, por exemplo, a presença de variáveis aleatórias no modelo, como é o caso da demanda por missões de alocação, a qual não é definida no presente estudo de caso.

De forma geral, os modelos determinísticos somente possuem a capacidade de prever situações em " estado de estabilidade" (MOORE & WEATHERFORD, 2005). Já os modelos estocásticos conseguem construir múltiplos cenários baseados em dados estatísticos, o que proporciona um retrato que pode ser usado na hora de construir a modelagem matemática de um problema de otimização.

A fim de lograr uma distribuição de demanda mais democrática e, ao mesmo tempo, de manter a fidelidade à realidade operacional da organização, os métodos utilizados em problemas de designação, onde existem aleatoriedade de demanda, recorrem à simulação para prever cenários futuros de demanda.

Pela simulação de Monte Carlo, a geração de números aleatórios é realizada mediante uma base estatística e uma distribuição de probabilidade. Segundo Moore & Weatherford (2005), costuma-se supor que quantidades aleatórias seguem uma distribuição normal, isto é, o tipo de simulação a ser utilizado deve respeitar as normas da normalidade, geralmente dependendo de variáveis estatísticas provindas de análise de series históricas.

3 MÉTODOS E TÉCNICAS DE PESQUISA

Medeiros (2005) coloca o objetivo da pesquisa científica como a contribuição para o desenvolvimento humano. Com esse objetivo, métodos adequados para cada natureza

pesquisada devem ser acompanhados e passar por um planejamento rigoroso para que o seu resultado seja considerado científico e representativo academicamente. A seguir serão apresentadas as características gerais da metodologia utilizada para o desenvolvimento da presente pesquisa.

3.1 Tipo e descrição geral da pesquisa

Segundo Gil (2005, p. 17), pesquisa é definida como:

(...)"o procedimento racional e sistemático que tem como objetivo proporcionar respostas aos problemas que são propostos. A pesquisa desenvolve-se por um processo constituído de várias fases, desde a formulação do problema até a apresentação e discussão dos resultados".

Este projeto é um trabalho de pesquisa descritiva com conhecimento empírico e de natureza quantitativa. Segundo Tartuce (2006), conhecimento empírico é aquele que é adquirido através de ações não planejadas. Este tipo de conhecimento remete à uma simplificação da realidade, para o cabimento da pesquisa, sendo retratados os seus pontos críticos.

Para Roesch (1996), uma pesquisa é definida como quantitativa porque aborda a mensuração de informações sobre uma população: por exemplo, contar quantos, ou em que proporção seus membros têm determinada opinião ou percepção, assim como com que frequência determinados acontecimentos estão associados entre si.

Por meio de um levantamento descritivo, a presente pesquisa busca informações para ação e predição ao associar os resultados sobre grupo pesquisado. Será realizada uma revisão documental a partir de dados secundários obtidos na organização objeto de estudo, que apesar de terem sido coletados para outros propósitos, que não o da presente pesquisa, servirão de insumos para ilustrar a problemática estudada.

A pesquisa possui uma abordagem probabilística, com levantamento de informações selecionadas por conveniência, logo que os dados a serem analisados são aqueles disponibilizados pelos supervisores da Superintendência de Aeronavegabilidade da ANAC, no monitoramento de seu programa de fiscalização.

Os dados provêm do registro das atividades de servidores da ANAC que realizam atividades de certificação, supervisão e auditoria. Os registros disponíveis para a realização da

pesquisa proveem de uma série histórica de missões realizadas no período de 2016. Tais missões exigem a locomoção dos profissionais, desde as sedes da ANAC até os respectivos pontos de demanda, distribuídos pelas 26 capitais estaduais do território brasileiro e do Distrito Federal.

3.2 Caracterização da organização

Segundo o Regimento Interno da ANAC (2016, Artigo 1°),

"A Agência Nacional de Aviação Civil - ANAC, autarquia sob regime especial criada pela Lei nº 11.182, de 27 de setembro de 2005, e regulamentada pelo Decreto nº 5.731, de 20 de março de 2006, com independência administrativa, autonomia financeira, ausência de subordinação hierárquica e mandato fixo de seus dirigentes, tem sede e foro no Distrito Federal, é vinculada ao Ministério dos Transportes, Portos e Aviação Civil e tem por finalidade regular e fiscalizar as atividades de aviação civil e de infraestrutura aeronáutica e aeroportuária. A Agência está presente ao longo do território nacional por meio das Unidades Administrativas Regionais distribuídos estrategicamente pelos estados brasileiros".

Sua missão é garantir a todos os brasileiros a segurança e a excelência da aviação civil. Já sua visão é a de ser uma autoridade de referência internacional na promoção da segurança e do desenvolvimento da aviação civil.

As atividades realizadas pela ANAC podem ser estruturadas da seguinte forma:

- I **Regulamentação:** compreende os processos relacionados ao estabelecimento de requisitos a entidades do Sistema de Aviação Civil por meio da elaboração e atualização de atos normativos de competência da ANAC:
- II **Certificação e Outorga:** compreende os processos relacionados a verificação do atendimento a requisitos estabelecidos em atos normativos para que produto, empresa, processo, serviço ou pessoa possa prestar serviços, executar atividades ou ser operado dentro do Sistema de Aviação Civil;
- III- **Fiscalização:** compreende os processos relacionados a verificação da conformidade de produtos, empresas, processos, serviços ou pessoas que atuam, de forma lícita ou ilícita dentro do Sistema de Aviação Civil, e a respectiva ação da Agência em caso de não conformidade;
- IV- **Relações Institucionais:** compreende os processos de relacionamento da ANAC com entes externos, dentro e fora do Sistema de Aviação Civil, a exceção dos processos já relacionados a outros macroprocessos; e
- V Gestão Interna: compreende processos de suporte ou de gestão cujos clientes são servidores e áreas internas da Agência, de forma a manter ou melhorar processos internos, competências, estrutura e infraestrutura administrativa." (Regimento Interno da ANAC, 2016, Artigo1°)

Para fiscalizar o funcionamento da aviação civil no país e assegurar níveis aceitáveis de segurança e de qualidade na prestação dos serviços aos passageiros, a ANAC realiza atividades de vigilância continuada e ações fiscais. Na vigilância continuada, o acompanhamento sobre o desempenho de produtos, empresas, operações, processos e serviços e dos profissionais certificados se dá de forma planejada e constante. Nas ações fiscais, o foco da Agência é identificar e prevenir infrações aos regulamentos do setor e, em parceria com outros órgãos, a prática de atos ilegais.

Ao ser considerada uma autarquia, a organização estudada possui uma estrutura organizacional imposta pela sua lei de criação, a Lei 11.182/2005. Segundo o Art. 9° , a ANAC tem como órgão de deliberação máxima a Diretoria, contando, também, com uma Procuradoria, uma Corregedoria, um Conselho Consultivo e uma Ouvidoria, além das unidades especializadas.

Ainda, conforme o Art. 10°, a Diretoria atua em regime de colegiado e é composta por 1 (um) Diretor-Presidente e 4 (quatro) Diretores, que decidirão por maioria absoluta, cabendo ao Diretor-Presidente, além do voto ordinário, o voto de qualidade. Encontra-se no anexo A, a estrutura organizacional completa para consulta.

A unidade especializada de onde surge o problema desta pesquisa é a Superintendência de Aeronavegabilidade, cuja estrutura organizacional se encontra no Anexo A. Suas responsabilidades são, dentre outras, as de fiscalização e monitoramento dos aeroportos mediante seu programa de missões. Encontra-se no anexo B, a seção V do regimento interno da ANAC, que diz respeito as responsabilidades desta superintendência.

3.3 População e amostra.

Para o desenvolvimento desse projeto de pesquisa, a amostra a ser utilizada foi delineada por conveniência, já que é feita por levantamento de dados disponíveis do monitoramento do programa de fiscalização da ANAC. Os participantes são servidores públicos federais responsáveis por realizar atividades inerentes ao órgão em sua função de agência reguladora da aviação civil em todo território brasileiro.

Buscou-se o maior nível de abrangência possível na seleção da amostragem visando proporcionar a máxima representatividade da população objeto de estudo, a Gerência-Geral de Aero navegabilidade Continuada – GGAC, setor para o qual as designações são planejadas,

operacionalizadas e analisadas. A GGAC possui 99 inspetores que estão alocados em diferentes unidades federativas do território brasileiro, chamadas as unidades de oferta. A lista com a quantidade de inspetores por unidade federativa está presente na tabela a seguir:

Tabela 1- Tabela de Oferta de inspetores

Unidade Federativa	Quantidade de inspetores
Amazonas	1
Bahia	1
Distrito Federal	12
Minas Gerais	1
Mato Grosso do Sul	1
Pernambuco	4
Paraná	5
Rio de Janeiro	36
Rio Grande do Norte	2
Rio Grande do Sul	8
São Paulo	28
Total	99

O foco da pesquisa é a análise quantitativa do trabalho de inspetores que exercem suas atividades em diversas localidades do território brasileiro, de modo a aperfeiçoar a utilização do capital humano e reduzir os custos operacionais do programa.

3.4 Instrumento de pesquisa

A realização deste projeto de pesquisa é efetuada por meio de análise documental com levantamento e tratamento de dados secundários. Os dados a serem utilizados são dados históricos de missões realizadas durante o ano de 2016 proporcionados pela instituição estudada.

A série histórica é um retrato anual das missões de fiscalização onde são registradas a quantidade de missões realizadas em cada unidade federativa, como também os profissionais qualificados presente para alocação de missões em cada unidade. A série histórica de missões está apresentada na tabela a seguir:

Tabela 2- Série Histórica de inspeções

Unidade Federativa	Quantidade de missões
Acre	7
Alagoas	5
Amapá	2
Amazonas	13
Bahia	11
Ceará	11
Distrito Federal	4
Espirito Santo	1
Goiás	23
Maranhão	6
Mato Grosso	21
Mato Grosso do Sul	11
Minas Gerais	24
Pará	28
Paraíba	1
Paraná	29
Pernambuco	4
Piauí	5
Rio de Janeiro	65
Rio Grande do Sul	13
Rondônia	3
Roraima	2
Santa Catarina	10
São Paulo	125
Sergipe	2
Tocantins	3
Total	429

Vale ressaltar que não necessariamente os profissionais de cada localidade exercerem missões dentre o território coberto pela mesma, podendo ser designados a qualquer ponto de demanda espalhado pelo território brasileiro.

O problema trata de alocação de profissionais desde pontos de origem até pontos de demanda em unidades federativas do Brasil, isto é, cada unidade federativa pode tanto enviar como receber profissionais desde/para as outras 26 localidades.

A ferramenta utilizada para o tratamento dos dados e a modelagem matemática é o Excel, complementada pelo suplemento Opensolver, que tem a função algorítmico-matemática do processo de otimização. Os dados são computados na ferramenta, em forma de variáveis de decisão, respeitando restrições, tanto de capacidade como de necessidade. A solução ótima apresentada pelo modelo proporciona inferência sobre qual a influência da utilização da pesquisa operacional na solução de problemas de alocação, permitindo comparações dos resultados pré e pós-otimização.

29

A fim de resolver o problema de ociosidade de certas localidades, onde a demanda de fiscalização é menor que em outras, optou-se pela utilização de um modelo estocástico. Por meio da utilização da simulação de Monte Carlo, são gerados cenários prováveis, simulados tomando em consideração variáveis estatísticas extraídas da serie histórica fornecida pela organização estudada. Vale destacar que, ao ser um modelo estocástico, além da simplificação da realidade, está sujeito à probabilidade. No caso deste modelo, a solução encontrada para resolver o problema de ociosidade é transformar a probabilidade de ocorrência das missões em uma variável aleatória.

A modelagem a ser utilizada para a utilização da ferramenta é o modelo de transbordo. Este modelo proporciona a possibilidade de otimização considerando cada localidade, concomitantemente, um ponto de origem, de demanda e de transbordo.

A formulação do problema em modelo simbólico foi feita primeiramente com a determinação das variáveis de decisão do modelo, que são as alocações Xij sendo i as variáveis de oferta (que estão representadas pela sigla das unidades federativas e j as variáveis de demanda (que estão representadas pelos números de 1 a 27). A função objetivo do modelo é a de minização dos custos das alocações e pode ser representada simbolicamente da seguinte maneira:

Função objetivo: $Min(\sum x_{ij})$.

As restrições do modelo podem ser representadas da seguinte maneira:

Restrições de oferta:

$$\begin{split} & \Sigma(x_{AM1} + x_{AM2} + x_{AM3} + x_{AM4} + \ldots + x_{AM27}) \leq 1 \\ & \Sigma(x_{BA1} + x_{BA2} + x_{BA3} + x_{BA4} + \ldots + x_{BA27}) \leq 1 \\ & \Sigma(x_{DF1} + x_{DF2} + x_{DF3} + x_{DF4} + \ldots + x_{DF27}) \leq 12 \\ & \Sigma(x_{MG1} + x_{MG2} + x_{MG3} + x_{MG4} + \ldots + x_{MG27}) \leq 1 \\ & \Sigma(x_{MS1} + x_{MS2} + x_{MS3} + x_{MS4} + \ldots + x_{MS27}) \leq 1 \\ & \Sigma(x_{PE1} + x_{PE2} + x_{PE3} + x_{PE4} + \ldots + x_{PE27}) \leq 4 \\ & \Sigma(x_{PR1} + x_{PR2} + x_{PR3} + x_{PR4} + \ldots + x_{PR27}) \leq 5 \\ & \Sigma(x_{RJ1} + x_{RJ2} + x_{RJ3} + x_{RJ4} + \ldots + x_{RJ27}) \leq 36 \\ & \Sigma(x_{RN1} + x_{RN2} + x_{RN3} + x_{RN4} + \ldots + x_{RN27}) \leq 2 \\ & \Sigma(x_{RS1} + x_{RS2} + x_{RS3} + x_{RS4} + \ldots + x_{RS27}) \leq 8 \\ & \Sigma(x_{SP1} + x_{SP2} + x_{SP3} + x_{SP4} + \ldots + x_{SP27}) \leq 28 \\ & \Sigma(x_{i1} + x_{i2} + x_{3} + x_{i4} + \ldots + x_{i27}) \leq 99 \end{split}$$

Restrições de Demanda

```
(x_{AM1} + x_{BA1} + x_{DF1} + x_{MG4} + x_{MS1} + x_{PE1} + x_{PR1} + x_{RJ1} + x_{RN1} + x_{RS1} + x_{SP1}) \le \beta
(x_{AM2} + x_{BA2} + x_{DF2} + x_{MG2} + x_{MS2} + x_{PE2} + x_{PR2} + x_{RI2} + x_{RN2} + x_{RS2} + x_{SP2}) \le \beta
(x_{AM3} + x_{BA3} + x_{DF3} + x_{MG3} + x_{MS3} + x_{PE3} + x_{PR3} + x_{RI3} + x_{RN3} + x_{RS3} + x_{SP3}) \le \beta
(x_{AM4} + x_{BA4} + x_{DF4} + x_{MG4} + x_{MS4} + x_{PE4} + x_{PR4} + x_{RI4} + x_{RN4} + x_{RS4} + x_{SP4}) \le \beta
(x_{AM5} + x_{BA5} + x_{DF5} + x_{MG5} + x_{MS5} + x_{PE5} + x_{PR5} + x_{RI5} + x_{RN5} + x_{RS5} + x_{SP5}) \le \beta
(x_{AM5} + x_{BA5} + x_{DF5} + x_{MG5} + x_{MS5} + x_{PE5} + x_{PR5} + x_{RI5} + x_{RN5} + x_{RS5} + x_{SP5}) \le \beta
(x_{AM6} + x_{BA6} + x_{DF6} + x_{MG6} + x_{MS6} + x_{PE6} + x_{PR6} + x_{RJ6} + x_{RN6} + x_{RS6} + x_{SP6}) \le \beta
(x_{AM7} + x_{BA7} + x_{DF7} + x_{MG7} + x_{MS7} + x_{PE7} + x_{PR7} + x_{RJ7} + x_{RN7} + x_{RS7} + x_{SP7}) \le \beta
(x_{AM8} + x_{BA8} + x_{DF8} + x_{MG8} + x_{MS8} + x_{PE8} + x_{PR8} + x_{RI8} + x_{RN8} + x_{RS8} + x_{SP8}) \le \beta
(x_{AM9} + x_{BA9} + x_{DF9} + x_{MG9} + x_{MS9} + x_{PE9} + x_{PR9} + x_{RJ9} + x_{RN9} + x_{RS9} + x_{SP9}) \le \beta
(x_{AM10} + x_{BA10} + x_{DF10} + x_{MG10} + x_{MS10} + x_{PE10} + x_{PR10} + x_{RI10} + x_{RN10} + x_{RS10} + x_{SP10}) \le \beta
(x_{AM11} + x_{BA11} + x_{DF11} + x_{MG11} + x_{MS11} + x_{PE11} + x_{PR11} + x_{RI11} + x_{RN11} + x_{RS11} + x_{SP11}) \le \beta
(x_{AM12} + x_{BA12} + x_{DF12} + x_{MG12} + x_{MS12} + x_{PE12} + x_{PR12} + x_{RJ12} + x_{RN12} + x_{RS12} + x_{SP12}) \le \beta
(x_{AM13} + x_{BA13} + x_{DF13} + x_{MG13} + x_{MS13} + x_{PE13} + x_{PR13} + x_{RJ13} + x_{RN13} + x_{RS13} + x_{SP13}) \le \beta
(x_{AM14} + x_{BA14} + x_{DF14} + x_{MG14} + x_{MS14} + x_{PE14} + x_{PR14} + x_{RI14} + x_{RN14} + x_{RS14} + x_{SP14}) \le \beta
(x_{AM15} + x_{BA15} + x_{DF15} + x_{MG15} + x_{MS15} + x_{PE15} + x_{PR15} + x_{RI15} + x_{RN15} + x_{RS15} + x_{SP15}) \le \beta
(x_{AM16} + x_{BA16} + x_{DF16} + x_{MG16} + x_{MS16} + x_{PE16} + x_{PR16} + x_{RI16} + x_{RN16} + x_{RS16} + x_{SP1}) \le \beta
(x_{AM16} + x_{BA16} + x_{DF16} + x_{MG46} + x_{MS16} + x_{PE16} + x_{PR16} + x_{RI16} + x_{RN16} + x_{RS16} + x_{SP16}) \le \beta
(x_{AM17} + x_{BA17} + x_{DF17} + x_{MG17} + x_{MS17} + x_{PE17} + x_{PR17} + x_{RJ17} + x_{RN17} + x_{RS17} + x_{SP17}) \le \beta
(x_{AM17} + x_{BA17} + x_{DF17} + x_{MG17} + x_{MS17} + x_{PE17} + x_{PR17} + x_{RJ17} + x_{RN17} + x_{RS17} + x_{SP17}) \le \beta
(x_{AM18} + x_{BA18} + x_{DF18} + x_{MG18} + x_{MS18} + x_{PE18} + x_{PR18} + x_{RJ18} + x_{RN18} + x_{RS18} + x_{SP18}) \le \beta
(x_{AM19} + x_{BA19} + x_{DF19} + x_{MG19} + x_{MS19} + x_{PE19} + x_{PR19} + x_{R/19} + x_{RN19} + x_{RS19} + x_{SP19}) \le \beta
(x_{AM20} + x_{BA20} + x_{DF20} + x_{MG20} + x_{MS20} + x_{PE20} + x_{PR20} + x_{RI20} + x_{RN20} + x_{RS20} + x_{SP20}) \le \beta
(x_{AM21} + x_{BA21} + x_{DF21} + x_{MG21} + x_{MS21} + x_{PE21} + x_{PR21} + x_{RI21} + x_{RN21} + x_{RS21} + x_{SP21}) \le \beta
(x_{AM22} + x_{BA22} + x_{DF22} + x_{MG22} + x_{MS22} + x_{PE22} + x_{PR22} + x_{RJ22} + x_{RN22} + x_{RS22} + x_{SP22}) \le \beta
(x_{AM23} + x_{BA23} + x_{DF23} + x_{MG23} + x_{MS23} + x_{PE23} + x_{PR23} + x_{RJ23} + x_{RN23} + x_{RS23} + x_{SP23}) \le \beta
(x_{AM24} + x_{BA24} + x_{DF24} + x_{MG24} + x_{MS24} + x_{PE24} + x_{PR24} + x_{RI24} + x_{RN24} + x_{RS24} + x_{SP24}) \le \beta
(x_{AM25} + x_{BA25} + x_{DF25} + x_{MG25} + x_{MS25} + x_{PE25} + x_{PR25} + x_{RI25} + x_{RN25} + x_{RS25} + x_{SP25}) \le \beta
(x_{AM26} + x_{BA26} + x_{DF26} + x_{MG26} + x_{MS26} + x_{PE26} + x_{PR26} + x_{RI26} + x_{RN26} + x_{RS26} + x_{SP26}) \le \beta
(x_{AM27} + x_{BA27} + x_{DF27} + x_{MG27} + x_{MS27} + x_{PE27} + x_{PR27} + x_{RI27} + x_{RN27} + x_{RS27} + x_{SP27}) \le \beta
i: Unidades de oferta ( AM,BA,DF,MG,MS,PE,PR,RJ,RN,RS,SP)
J: Unidades de demanda (1,2,3,4,5,...,27)
```

β: Variável aleatória provinda da simulação de Monte Carlo

As simulações de demanda foram feitas seguindo o método de Monte Carlo nos passos a seguir: Primeiramente, a série histórica anual foi convertida em mensal, pois optou-se por fazer otimizações mensais. Seguido a isso, foi calculado o desvio padrão e a média a partir dos dados históricos previamente convertidos à dados mensais. Como existe um problema de ociosidade de certas localidades, a solução é dada por uma probabilidade de ocorrência aleatória gerada pela função =ALEATÓRIO ().

Para concluir a simulação foi utilizada a formula de Excel INV.NORM(), que distribui números a partir de dados estatísticos tais como média, desvio padrão e probabilidade de ocorrência. A distribuição retorna Os resultados da matriz estatística estão demostrados a seguir:

Tabela 3- Tabela Matriz estatística das simulações

Desvio Desvio						
Anual		Mensal	Média Mensal	Padrão	Probabilidade Aleatória	Simulação
			111011541	Mensal	1110010110	
AC	7	0,58333	0,2917	0,1704023	0,431119482	0,262097652
AL	5	0,41667	0,2083	0,1345275	0,761260565	0,30389672
AP	2	0,16667	0,0833	0,0680414	0,48794001	0,081276135
AM	13	1,08333	0,5417	0,3368479	0,544515232	0,579331556
BA	11	0,91667	0,4583	0,3077019	0,664014303	0,588627841
CE	11	0,91667	0,4583	0,3077019	0,257162834	0,257675674
DF	4	0,33333	0,1667	0,1097134	0,256126645	0,09476782
ES	1	0,08333	0,0417	0,0481125	0,960354194	0,126095058
GO	23	1,91667	0,9583	0,5255612	0,997100311	2,408311372
MA	6	0,50000	0,2500	0,1500831	0,379438836	0,20393126
MT	21	1,75000	0,8750	0,4461031	0,155153495	0,422393615
MS	11	0,91667	0,4583	0,3077019	0,139970293	0,125875939
MG	24	2,00000	1,0000	0,5908141	0,331276888	0,742174634
PA	28	2,33333	1,1667	0,6712928	0,156673591	0,489853468
PB	1	0,08333	0,0417	0,0481125	0,681634999	0,064389043
PR	29	2,41667	1,2083	0,7387583	0,603666427	1,402515053
PE	4	0,33333	0,1667	0,1097134	0,255920417	0,094697505
PΙ	5	0,41667	0,2083	0,1345275	0,178722771	0,084535298
RJ	65	5,41667	2,7083	1,1596861	0,098467794	1,211953875
RS	13	1,08333	0,5417	0,3577668	0,190401513	0,228113537
RO	3	0,25000	0,1250	0,0862582	0,058265901	0,010382118
RR	2	0,16667	0,0833	0,0680414	0,668976462	0,113073447
SC	10	0,83333	0,4167	0,2197281	0,087112865	0,118111093
SP	125	10,41667	5,2083	2,1436566	0,99623971	10,93804485
SE	2	0,16667	0,0833	0,0680414	0,876236997	0,162014985
TO	3	0,25000	0,1250	0,0862582	0,119489893	0,02342747

Fonte: Elaborado pelo autor

As formulas foram utilizadas para cada localização, a fim de conseguir uma simulação personalizada, uma vez que as médias e desvio padrões individuais são distintos dos coletivos.

Ainda, o modelo gera automaticamente 100 interações para cada localização proporcionando assim uma nova média e desvio padrão a ser utilizado para a previsão de demanda. Os resultados finais provem da média e desvio padrão obtidos por essas interações e alocados em uma distribuição normal pela fórmula: =DIST.NORM.N(). Os resultados da simulações proporcionaram números decimais pelo que foi necessária a utilização da fórmula =INT() para arredondamento e para sua utilização no modelo.

A inferência sobre a confiabilidade é possibilitada pela análise de sensibilidade pósotimização do resultado operacional obtido por meio de planilhas com indicadores, os quais proporcionam informações que dizem respeito à validade e à confiabilidade do modelo. Os indicadores estudados foram: o preço sombra, o custo reduzido, os aumentos e diminuições permissíveis do lado direito das restrições (RHS), e os valores ótimos obtidos das designações.

Com a análise destas variáveis torna-se possível chegar a uma conclusão com relação à qual o efeito da utilização da pesquisa operacional no problema de alocação da ANAC.

4. RESULTADOS E DISCUSSÃO

Os resultados encontrados provêm do tratamento dos dados históricos (presentes na Tabela 1) na modelagem matemática criada que está anexa no Apêndice C. Os resultados estão apresentados mediante tabelas de Excel extraídas dos relatórios automáticos da ferramenta e incluem a análise de sensibilidade do modelo, que mostra quais são as variáveis sensíveis do problema, e os resultados referentes a custos operacionais das designações. Isso proporciona inferência sobre a confiabilidade da modelagem e se é válida a sua utilização para otimização de recursos na organização estudada.

A matriz de custos de deslocamento foi elaborada mediante a busca real de preços de passagens aéreas, selecionando, por trecho, as mais convenientes financeiramente. Como o modelo sugere otimizações mensais, o período de busca das passagens foi de um mês, isto é, buscaram-se as passagens, com antecedência de 30 dias da data da viagem . Estabeleceu-se a data padrão de 20 de outubro de 2017 para que não hajam divergências de preço entre as passagens por variáveis sazonais. A ferramenta utilizada para realizar as buscas foi o Google Voos, pois proporciona preços de várias companhias aéreas, com todas as taxas embutidas, e ainda ressalta qual o melhor preço para o roteiro pesquisado. Os resultados da matriz estão presentes na tabela 2.

Tabela 4- Matriz de custos de passagens (continua)

	Tau	era 4-	IVIau 12	ae ci	istos a	e passa	igens (Contin	iua)		
	AM	BA	DF	MG	MS	PE	PR	RJ	RN	RS	SP
AC	1450	1192	1125	1187	1145	1342	1846	1165	1140	2242	910
AL	1112	434	686	584	766	324	666	657	544	772	760
AP	838	924	570	857	743	1056	1880	883	1136	1812	831
AM	0	740	478	904	685	920	742	618	728	924	740
BA	740	0	448	263	511	330	532	478	450	626	512
CE	649	352	757	656	762	432	620	710	616	780	664
DF	533	456	0	319	324	546	438	228	997	592	236
ES	902	434	312	225	434	562	320	283	1039	446	271
GO	711	658	264	591	468	640	273	412	878	371	330
MA	802	836	698	862	507	660	1014	590	535	862	550
MT	931	762	398	601	278	873	489	385	942	544	474
MS	1056	728	376	441	0	744	422	355	983	480	397
MG	904	287	319	0	312	603	310	225	655	370	203
PA	655	863	970	871	691	972	1000	800	1211	868	715
PB	1474	863	840	825	785	340	812	751	482	972	727
PR	780	587	358	310	422	626	0	338	820	240	232
PE	920	330	460	603	712	0	626	500	580	550	580
PI	1390	838	762	729	607	560	742	635	450	788	854
RJ	737	478	228	225	353	500	338	0	930	386	238
RS	928	626	530	370	398	550	240	386	802	0	338
RO	360	904	852	905	990	1096	1170	800	1155	1408	936
RR	786	1516	1308	1482	928	1170	1100	1032	1392	1201	1134
SC	974	526	426	436	482	626	372	470	848	246	252
SP	740	512	228	206	271	594	232	238	820	338	0
SE	1052	272	651	817	713	424	764	606	644	822	658
ТО	1066	701	336	453	437	774	656	527	1214	656	432
a: Elaborado nal	outor										

Fonte: Elaborado pelo autor.

Os resultados de custos totais estão apresentados na Tabela 2 e retratam 13 valores ótimos obtidos pela otimização do modelo considerando a matriz de passagens e os 12 cenários mensais diferentes gerados pela simulação de Monte Carlo:

Tabela 5- Tabela de resultados modelo de transbordo.

Tuotia e Tuotia de Tesanados inodero de transcordo.								
Resultados Mensais	Qtd missões	Custo						
JAN	42	20.728						
FEV	33	16.299						
MAR	34	12.582						
ABR	39	17.289						
MAI	37	19.246						
JUN	30	13.327						
JUL	35	17.614						
AGO	34	14.685						
SET	34	14.786						
OUT	28	13.257						
NOV	32	12.876						
DEZ	23	9.788						
TOTAL ANUAL	401	182.477						

Fonte: Elaborado pelo autor

As simulações apresentam um total de missões anual menor que os registros da serie histórica de 2016 que foi de 429 missões. A apresentação destes resultados visa a sua utilização como insumo para posteriores comparações entre os custos operacionais da série histórica de 2016 com aqueles provindos da utilização do modelo de otimização.

O modelo gerou, ainda de forma automática, tabelas de sensibilidade que apontam aspectos importantes para a sua validação. A sensibilidade das variáveis proporciona inferência sobre a confiabilidade da ferramenta. Os valores são todos em termos monetários e ressaltam indicadores que proporcionam inferência sobre o modelo. Ainda, vale destacar a existência de uma relação inversamente proporcional entre sensibilidade e confiabilidade: quanto mais sensíveis a mudança são as variáveis e as restrições, menos confiável é o modelo.

As tabelas de análise de sensibilidade são estruturadas da forma a seguir. Primeiramente são apresentados os valores ótimos obtidos pelo modelo com suas respectivas analises de sensibilidade, isto é, quanto pode haver de aumento e diminuição nas variáveis de decisão para que os resultados obtidos continuem os mesmos. A segunda parte apresenta os mesmos dados que a primeira, porém com ênfase nas restrições do modelo.

Segundo Moore & Weatherford (2005), na análise de sensibilidade, o preço sombra é a quantidade em que a função objetivo (diminuição de custos do estudo de caso) melhoraria se o limite da restrição (valor RHS) aumentasse em uma unidade.

Pelos resultados obtidos infere-se que existem soluções ainda melhores, caso haja expansões em termo de oferta de inspetores, já que as unidades federativas de AM, DF, MG, MS e RJ, em média, possuem preço sombra negativo. Isso significa que um aumento de uma unidade de oferta diminuiria o custo de deslocamento na quantidade exibida pelo preço sombra. A unidade Federativa de SP é a única que traria maiores custos de deslocamento caso optasse por expansão de ofertas de inspetores, pois possui um preço sombra positivo.

No caso de expansão de demanda, o comportamento é contrário, indicando maior custos totais caso hajam maior demanda por inspetores, logo que os preços sombras são, em média, positivos. As tabelas 6 e 7 que indicam a média dos indicadores de oferta e demanda mostram na terceira coluna os valores dos preços sombra. Na segunda coluna apresentam-se os resultados das otimizações e ,na terceira coluna, o lado direito das restrições. Nas colunas subsequentes apresenta-se os aumentos e diminuições permitidos do lado direito das restrições para que o problema continue tendo a mesma solução ótima.

Tabela 6- Tabela média de indicadores de oferta.

Nome	Valor Final	Preço Sombra	Valor RHS	Aumento permissível	Diminuição permissível
AM Total	12	-279	1	1E+100	1
BA Total	11	0	12	1E+100	4
DF Total	100	-67	1	1	1
MG Total	12	-82	1	3	0
MS Total	12	-282	4	1E+100	1
PE Total	45	0	5	1E+100	5
PR Total	5	0	36	1E+100	29
RJ Total	87	-177	2	1E+100	1
RN Total	24	0	8	1E+100	7
RS Total	11	0	28	1E+100	21
SP Total	82	758	1	17	1

Fonte: Elaborado pelo autor

Tabela 7- Tabela média de indicadores de demanda

Nome	Valor Final	Preço Sombra	Valor RHS	Aumento permissível	Diminuição permissível
Total AC	17	758	1	17	1
Total AL	21	546	2	16	1
Total AP	36	428	3	2	3
Total AM	4	114	0	0	0
Total BA	7	194	1	0	0
Total CE	5	258	0	2	0
Total DF	27	0	2	4	2
Total ES	38	226	3	18	3
Total GO	0	0	0	0	0
Total MA	17	503	1	18	1
Total MT	0	0	0	0	0
Total MS	5	37	0	0	0
Total MG	0	0	0	0	0
Total PA	0	0	0	0	0
Total PB	43	550	4	7	2
Total PR	0	0	0	0	0
Total PE	25	255	2	1	1
Total PI	22	553	2	21	2
Total RJ	0	0	0	0	0
Total RS	4	0	0	2	0
Total RO	16	470	1	12	1
Total RR	32	931	3	19	2
Total SC	7	144	1	4	1
Total SP	0	0	0	0	0
Total SE	38	528	3	23	3
Total TO	37	336	3	4	3

Fonte: Elaborado pelo autor

Os aumentos e diminuições permissíveis dizem respeito a quanto poderia se aumentar o valor do RHS, mantendo-se o mesmo valor ótimo obtido pelas otimizações. Isto é um indicador de confiabilidade do modelo. Logo, pode-se afirmar que o modelo é confiável visto a presença de aumentos e diminuições permissíveis infinitos.

Segundo HIELER & LIEBERMAN (1977), custo reduzido diz respeito à quantia em que a seu valor ótimo é prejudicado para poder introduzir mais uma unidade daquela variável de decisão na solução ótima. O custo reduzido, presente na tabela média de análise de sensibilidade, disponível no Apêndice B, apresenta valores médios altos, o que sugere que a inserção de mais uma alocação entre determinadas localidades aumentaria em proporcionalmente os custos de deslocamento. As alocações com maior custo reduzido aão aquelas em que o custo marginal é maior, isto é, são mais custosas para a operação. Estas estão apresentadas a seguir:

Tabela 8- Tabela top 10 maior custo reduzido

Deslocamento	Custo Reduzido
RS AC	1484
PR AP	1453
RN PA	1388
RS AP	1385
AM MS	1331
PE PA	1254
AM MT	1243
AM RS	1240
AM PB	1236
AM MG	1216

Fonte: Elaborado pelo autor

Os custos reduzidos positivos destes deslocamentos apontam que o aumento de mais um deslocamento entre essas localidades proporcionaria o aumento igual ao valor do custo reduzido no valor ótimo obtido pelas otimizações.

5. CONCLUSÕES E RECOMENDAÇÕES

Como dito por HIELER & LIEBERMAN (1977), a análise de sensibilidade, na pesquisa operacional, diz respeito a validade e a confiabilidade do modelo. Com base nas informações obtidas, pode-se inferir que a utilização da ferramenta de pesquisa operacional para a resolução de problemas de alocação de inspetores é recomendada.

Embora as informações relacionadas a custos operacionais reais não estivesse disponíveis, o que impossibilitou uma comparação entre o modelo simulado e o real, os

resultados evidenciam a capacidade do modelo em alocar recursos de forma eficiente. Inseridos os custos presentes de deslocamento, o modelo proporciona valores ótimos de forma, rápida e correta, algo que seria inviável realizar de forma manual.

Segundo MENDES (2011), seguindo o tradicionalismo, o processo para lidar com a incerteza consiste em atribuir valores mais prováveis a essas variáveis exógenas, chamados cenários, calcular os resultados e decidir em função de uma média de todos os cenários. A simulação de Monte Carlo resolve certamente o problema de incerteza de demanda já que proporciona cenários futuros que condizem com os dados da série histórica, quando se diz respeito à número de missões, e ainda entrega simulações com probabilidade de ocorrência aleatórias. Assim, a probabilidade de certa localidade de oferta alocar profissionais para certa localidade de demanda é aleatória e gerada a cada simulação.

As limitações da pesquisa se concentram na falta de disponibilidade de informações de custos reais, como por exemplo os custos operacionais atrelados a série histórica da organização estudada ou até o histórico mensal de missões. Estas informações, caso fossem disponibilizadas proporcionariam uma maior inferência sobre a efetividade da modelagem matemática já que trariam a possibilidade de comparação entre os resultados obtidos pelo tratamento de dados do modelo e os resultados obtidos a partir de alocações de forma manual.

Outras complicações dizem respeito à construção da modelagem já que o problema possui alta complexidade e necessita de equipamentos tanto de hardware como de software com boa capacidade de processamento. Por exemplo, o suplemento "solver" original do Excel teve que ser substituído pela utilização do *OpenSolver*, um genérico que não possui limites de variáveis de decisão e proporciona resultados da mesma forma que o suplemento original.

Apesar das complicações, a modelagem se demostrou eficiente já que, vista a análise de resultados, a sensibilidade do modelo indica que este possui confiabilidade para ser utilizado como ferramenta de gestão. Com isso, infere-se sobre a capacidade do modelo em atingir os objetivos que este propõe, tanto em termos de redução de custos como também em termos de suprimento total da demanda.

Segundo a análise de resultados, o modelo logrou realizar sua função principal: cruzar os custos da matriz das passagens com a quantidade de alocações em cada nó, respeitando as limitações de oferta.

Logo, conclui-se que a utilização de uma ferramenta de pesquisa operacional é adequada para problemas de alocação de profissionais. O modelo conseguiu atingir o seu principal objetivo: alocar profissionais de forma a tanto suprir a demanda de inspeções como a redução de custos de deslocamento.

Sugere-se que, para análises posteriores, sejam realizadas análises comparativas entre os resultados obtidos por meio da otimização e os resultados do processo real na ANAC. Em uma pesquisa futura, os resultados e a análise de sensibilidade obtida com os dados simulados podem ser comparados com uma otimização obtida com os resultados operacionais reais. Dessa forma, seria possível obter a validação do modelo pretendido. Ainda, sugere-se, para próximos estudos, uma interação entre custos operacionais e variáveis de bem- estar operacional para que se tenham resultados tanto favoráveis economicamente como também em termos de satisfação dos inspetores.

Finalmente, como mencionado anteriormente, o modelo de transbordo permite a modelagem multiproduto, a qual permitirá a inclusão das especificidades da capacitação dos inspetores e da natureza das diferentes missões, que foram simplificadas neste trabalho.

REFERÊNCIAS

ARAGÃO, Alexandre Santos. **O princípio da eficiência**. Revista de direito administrativo, v. 237, p. 1-6, 2005.

ARENALES, M., ARMENTANO, V., MORABITO, R., & YANASSE, H. (2015). **Pesquisa operacional: para cursos de engenharia.** Elsevier Brasil.

BRANDEAU, M. L.; CHIU, S. S. An overview of representative problems in location research. Management Science. V. 35, n. 6, p. 645-674, Jun. 1989.

BREGALDA, Paulo F., 1981, **Introdução à Programação Linear**, Campus, Rio de Janeiro, Brasil.

BRONSON, R.; NAADIMUTHU, G. Operations research, Schaum's outlines. 1997.

BRITO JUNIOR, Irineu de. **Análise do impacto logístico de diferentes regimes aduaneiros no abastecimento de itens aeronáuticos empregando modelo de transbordo multiproduto com custos fixos**. 2004. Dissertação (Mestrado em Sistemas Logísticos) - Escola Politécnica, Universidade de São Paulo, São Paulo, 2004. doi:10.11606/D.3.2004.tde-06052004-173818. Acesso em: 2017-05-22.

BRÜCKER, Peter. Scheduling algorithms. Berlin: Sringer-Verlag, 1998.

DEVESSE, Valdemar Abrão Pedro Anastácio. **Métodos de solução para o problema de escalonamento de médicos**. Tese de Doutorado. Universidade de São Paulo.

GEOFFRION, Arthur M.; GRAVES, Glenn W. Multicommodity distribution system design by Benders decomposition. Management science, v. 20, n. 5, p. 822-844, 1974.

GIL, Antônio Carlos. Métodos e técnicas de pesquisa social. São Paulo: Atlas, 1999. **Como elaborar projetos de pesquisa**, v. 4, 2005.

GOMES, Sérgio Bittencourt Varella. A indústria aeronáutica no Brasil: evolução recente e perspectivas. 2012.

HILLIER, F. S. A. L.; LIEBERMAN, G. Introduction to mathematical programming. 1977.

INTERNATIONAL CIVIL AVIATION ORGANIZATION (ICAO). **Human Factors Guidelines for Aircraft Maintenance Manual (Doc 9824)**. Montreal, Canadá: ICAO, 2003.
Disponível em: http://www.icao.int/ANB/humanfactors/Documents.html Acesso em:
Maio 2017.

KAUARK, Fabiana da Silva; MANHÃES, Fernanda Castro; MEDEIROS, Carlos Henrique. **Metodologia da pesquisa: um guia prático**. 2010.

MARQUEZ, Luis Gabriel. **Optimización de uma red de transporte combinado para la exportación del carbón del interior de Colombia**. Disponível em:http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1794-12372011000200008&lng=en&nrm=iso. Acesso em: maio 2017.

MENDES, Armando Brito (2011). **"Simulação de Monte Carlo"**. In Luís Mendes Gomes (Coord.), «Ok, computer!: confluências na informática», Ponta Delgada: Influir: 26-27. ISBN: 978-989-97107-1-9.

MENDONÇA, R. Determinantes da Queda na Desigualdade de Renda no Brasil. IPEA. Texto para discussão nº 1460, 2010.

MOREIRA, J. C.; SENE, E. Impactos ambientais urbanos. Moreira JC, Sene E. Geografia. São Paulo: Scipione, , 2008.

PINEDO, Micheal. **Scheduling: Theory, Algorithms and Systems**. Prentice Hall, Englewood Cliffs, New Jersey, 1995.

KAUARK, Fabiana da Silva; MANHÃES, Fernanda Castro; MEDEIROS, Carlos Henrique. **Metodologia da pesquisa: um guia prático.** 2010

RAVIDRAN, A., PHILLIPS, D.T. & SOLBERG, J.J. (1987). **Operations Research, Principles and Practice**, 2nd Ed.. New York: John Wiley.

.

ROESCH, Sylvia Maria Azevedo; BECKER, Grace Vieira; DE MELLO, Maria Ivone. **Projetos de estágio e de pesquisa em administração: guia para estágios, trabalhos de conclusão, dissertações e estudos de caso**. Editora Atlas SA, 2000.

STEINER, M. T. A. et al. **Determinação de escalas de plantão para militares considerando preferências e hierarquia**. Pesquisa Operacional. 2004. v.24, n.3, p.373-391.

TARTUCE, TJA. Métodos de pesquisa. Fortaleza: UNICE-Ensino Superior, v. 7, 2006.

APÊNDICES

Apêndice A – Tabelas de análise de sensibilidade do modelo.

Tabela 9- Tabela Média de análise de sensibilidade do modelo

Variáveis De Decisão												
A.1. ~	M: ~	Custo	Valor	Aumento	Diminuição							
Alocação	Missões	Reduzido	Objetivo	permissível	permissível							
AM AC	0	1003	1450	1,00E+100	1003							
AM AL	0	878	1112	1,00E+100	878							
AM AP	0	722	838	1,00E+100	722							
AM AM	4	197	0	1,00E+100	1,00E+100							
AM BA	0	857	740	1,00E+100	857							
AM CE	0	702	649	1,00E+100	702							
AM DF	0	845	533	1,00E+100	845							
AM ES	0	988	902	1,00E+100	988							
AM GO	0	1023	711	1,00E+100	1023							
AM MA	0	611	802	1,00E+100	611							
AM MT	0	1243	931	1,00E+100	1243							
AM MS	0	1331	1056	1,00E+100	1331							
AM MG	0	1216	904	1,00E+100	1216							
AM PA	0	967	655	1,00E+100	967							
AM PB	0	1236	1474	1,00E+100	1236							
AM PR	0	1092	780	1,00E+100	1092							
AM PE	0	977	920	1,00E+100	977							
AM PI	0	1149	1390	1,00E+100	1149							
AM RJ	0	1049	737	1,00E+100	1049							
AM RS	0	1240	928	1,00E+100	1240							
AM RO	6	202	360	1,00E+100	1E+100							
AM RR	2	167	786	1,00E+100	1E+100							
AM SC	0	1142	974	1,00E+100	1142							
AM SP	0	1052	740	1,00E+100	1052							
AM SE	0	836	1052	1,00E+100	836							
AM TO	0	1042	1066	1,00E+100	1042							
BA AC	0	712	1192	1,00E+100	712							
BA AL	0	167	434	1,00E+100	167							
BA AP	0	775	924	1,00E+100	775							
BA AM	0	904	740	1,00E+100	904							
BA BA	4	84	0	1,00E+100	1E+100							
BA CE	0	372	352	1,00E+100	372							
BA DF	0	735	456	1,00E+100	735							
BA ES	0	487	434	1,00E+100	487							
BA GO	0	937	658	1,00E+100	937							
BA MA	0	612	836	1,00E+100	612							
BA MT	0	1041	762	1,00E+100	1041							
BA MS	0	970	728	1,00E+100	970							

BA MG	0	566	287	1,00E+100	566
BA PA	0	1142	863	1,00E+100	1142
BA PB	0	591	863	1,00E+100	591
BA PR	0	866	587	1,00E+100	866
BA PE	0	354	330	1,00E+100	354
BA PI	0	564	838	1,00E+100	564
BA RJ	0	757	478	1,00E+100	757
BA RS	0	905	626	1,00E+100	905
BA RO	0	713	904	1,00E+100	713
BA RR	0	864	1516	1,00E+100	864
BA SC	0	661	526	1,00E+100	661
BA SP		791	512		791
	0			1,00E+100	
BA SE	7	23	272	1,00E+100	1E+100
BA TO	0	644	701	1,00E+100	644
DF AC	0	367	1125	1,00E+100	367
DF AL	0	140	686	1,00E+100	140
DF AP	36	143	570	1,00E+100	1E+100
DF AM	0	364	478	1,00E+100	364
DF BA	0	254	448	1,00E+100	254
DF CE	0	499	757	1,00E+100	499
DF DF	27	0	0	1,00E+100	1E+100
DF ES	0	86	312	1,00E+100	86
DF GO	0	264	264	1,00E+100	264
DF MA	0	195	698	1,00E+100	195
DF MT	0	398	398	1,00E+100	398
DF MS	0	339	376	1,00E+100	339
DF MG	0	319	319	1,00E+100	319
DF PA	0	970	970	1,00E+100	970
DF PB	0	290	840	1,00E+100	290
DF PR	0	358	358	1,00E+100	358
DF PE	0	205	460	1,00E+100	205
DF PI	0	210	762	1,00E+100	210
DF RJ	0	228	228	1,00E+100	228
DF RS	0	530	530	1,00E+100	530
DF RO	0	382	852	1,00E+100	382
DF RR	0	377	1308	1,00E+100	377
DF SC	0	283	426	1,00E+100	283
DF SP	0	228	228	1,00E+100	228
DF SE	0	123	651	1,00E+100	123
DF TO	37	0	336	96	1E+100
MG AC	0	496	1187	1,00E+100	496
MG AL	7	106	584	1,00E+100	1E+100
MG AP	0	497	857	1,00E+100	497
MG AM	0	857	904	1,00E+100	857
MG BA	3	136	263	1,00E+100	1E+100
MG CE	0	465	656	1,00E+100	465
MG DF	0	386	319	1,00E+100	386
MG ES	2	67	225	1,00E+100	1E+100
MG GO	0	658	591	1,00E+100	658
MG MA	0	426	862	1,00E+100	426
1110 11111	V	120	002	1,001.100	120

MG MT	0	668	601	1,00E+100	668
MG MS	0	471	441	1,00E+100	471
MG MG	0	67	0	1,00E+100	67
MG PA	0	938	871	1,00E+100	938
MG PB	0	342	825	1,00E+100	342
MG PR	0	377	310	1,00E+100	377
MG PE	0	416	603	1,00E+100	416
MG PI	0	244	729	1,00E+100	244
MG RJ	0	292	225	1,00E+100	292
MG RS	$\overset{\circ}{0}$	437	370	1,00E+100	437
MG RO	Ö	503	905	1,00E+100	503
MG RR	0	619	1482	1,00E+100	619
MG SC	0	360	436	1,00E+100	360
MG SP	0	273	206	1,00E+100	273
MG SE	0	357	817	1,00E+100 1,00E+100	357
MG TO	0	184	453	1,00E+100 1,00E+100	184
MS AC	0	469	1145	1,00E+100 1,00E+100	469
MS AL	0	303	766	1,00E+100 1,00E+100	303
MS AL MS AP	0	303 398	743	1,00E+100 1,00E+100	398
		653	685	,	
MS AM	$0 \\ 0$	399		1,00E+100	653 399
MS BA			511	1,00E+100	
MS CE	0	586	762	1,00E+100	586
MS DF	0	406	324	1,00E+100	406
MS ES	0	291	434	1,00E+100	291
MS GO	0	550	468	1,00E+100	550
MS MA	0	87	507	1,00E+100	102
MS MT	0	360	278	1,00E+100	360
MS MS	5	45	0	1,00E+100	1E+100
MS MG	0	394	312	1,00E+100	394
MS PA	0	773	691	1,00E+100	773
MS PB	0	317	785	1,00E+100	317
MS PR	0	504	422	1,00E+100	504
MS PE	0	540	712	1,00E+100	540
MS PI	0	137	607	1,00E+100	164
MS RJ	0	435	353	1,00E+100	435
MS RS	0	480	398	1,00E+100	480
MS RO	0	603	990	1,00E+100	603
MS RR	7	80	928	1,00E+100	1E+100
MS SC	0	421	482	1,00E+100	421
MS SP	0	353	271	1,00E+100	353
MS SE	0	268	713	1,00E+100	268
MS TO	0	183	437	1,00E+100	183
PE AC	0	866	1342	1,00E+100	866
PE AL	8	60	324	1,00E+100	1E+100
PE AP	0	910	1056	1,00E+100	910
PE AM	0	1088	920	1,00E+100	1088
PE BA	0	418	330	1,00E+100	418
PE CE	0	456	432	1,00E+100	456
PE DF	0	828	546	1,00E+100	828
PE ES	0	618	562	1,00E+100	618

PE GO	0	922	640	1,00E+100	922
PE MA	0	439	660	1,00E+100	439
PE MT	0	1155	873	1,00E+100	1155
PE MS	0	989	744	1,00E+100	989
PE MG	0	885	603	1,00E+100	885
PE PA	0	1254	972	1,00E+100	1254
PE PB	11	72	340	1,00E+100	1E+100
PE PR	0	908	626	1,00E+100	908
PE PE	25	27	0	1,00E+100	1E+100
PE PI	0	289	560	1,00E+100	289
PE RJ	0	782	500	1,00E+100	782
PE RS	0	832	550	1,00E+100	832
PE RO	0	908	1096	1,00E+100	908
PE RR	0	521	1170	1,00E+100	521
PE SC	0	764	626	1,00E+100	764
PE SP	0	876	594	1,00E+100	876
PE SE	1	178	424	1,00E+100	201
PE TO	0	720	774	1,00E+100	720
PR AC	0	1088	1846	1,00E+100	1088
PR AL	0	120	666	1,00E+100	120
PR AP	0	1453	1880	1,00E+100	1453
PR AM	0	628	742	1,00E+100	628
PR BA	0	338	532	1,00E+100	338
PR CE	5	362	620	1,00E+100	1E+100
PR DF	0	438	438	1,00E+100	438
PR ES	0	94	320	1,00E+100	94
PR GO	0	273	273	1,00E+100	273
PR MA	0	511	1014	1,00E+100	511
PR MT	0	489	489	1,00E+100	489
PR MS	0	385	422	1,00E+100	385
PR MG	0	310	310	1,00E+100	310
PR PA	0	1000	1000	1,00E+100	1000
PR PB	0	262	812	1,00E+100	262
PR PR	0	0	0	1,00E+100	0
PR PE	0	371	626	1,00E+100	371
PR PI	0	190	742	1,00E+100	190
PR RJ	0	338	338	1,00E+100	338
PR RS	0	240	240	1,00E+100	240
PR RO	0	700	1170	1,00E+100	700
PR RR	0	169	1100	1,00E+100	169
PR SC	0	229	372	1,00E+100	229
PR SP	0	232	232	1,00E+100	232
PR SE	0	236	764	1,00E+100	236
PR TO	0	320	656	1,00E+100	320
RJ AC	0	407	1165	1,00E+100	407
RJ AL	6	111	657	1,00E+100	125
RJ AP	0	456	883	1,00E+100	456
RJ AM	0	504	618	1,00E+100	504
RJ BA	0	284	478	1,00E+100	284
RJ CE	0	452	710	1,00E+100	452
			-	,	

RJ DF	0	228	228	1,00E+100	228
RJ ES	0	57	283	1,00E+100	57
RJ GO	0	412	412	1,00E+100	412
RJ MA	0	87	590	1,00E+100	87
RJ MT	0	385	385	1,00E+100	385
RJ MS	0	318	355	1,00E+100	318
RJ MG	0	225	225	1,00E+100	225
RJ PA	0	800	800	1,00E+100	800
RJ PB	0	201	751	1,00E+100	201
RJ PR	0	338	338	1,00E+100	338
RJ PE	0	245	500	1,00E+100	245
RJ PI	18	83	635	1,00E+100	1E+100
RJ RJ	0	0	0	1,00E+100	0
RJ RS	0	386	386	1,00E+100	386
RJ RO	10	330	800	1,00E+100	432
RJ RR	23	101	1032	1,00E+100	143
RJ SC	0	327	470	1,00E+100	327
RJ SP	0	238	238	1,00E+100	238
RJ SE	30	78	606	1,00E+100	1E+100
RJ TO	0	191	527	1,00E+100	191
RN AC	0	559	1140	1,00E+100	559
RN AL	0	175	544	1,00E+100	175
RN AP	0	885	1136	1,00E+100	885
RN AM	0	791	728	1,00E+100	791
RN BA	0	433	450	1,00E+100	433
RN CE	0	535	616	1,00E+100	535
RN DF	0	1174	997	1,00E+100	1174
RN ES	0	990	1039	1,00E+100	990
RN GO	0	1055	878	1,00E+100	1055
RN MA	2	209	535	1,00E+100	1E+100
RN MT	0	1119	942	1,00E+100	1119
RN MS	0	1123	983	1,00E+100	1123
RN MG	0	832	655	1,00E+100	832
RN PA	0	1388	1211	1,00E+100	1388
RN PB	18	109	482	1,00E+100	1E+100
RN PR	0	997	820	1,00E+100	997
RN PE	0	502	580	1,00E+100	502
RN PI	4	74	450	1,00E+100	1E+100
RN RJ	0	1107	930	1,00E+100	1107
RN RS	0	979	802	1,00E+100	979
RN RO	0	862	1155	1,00E+100	862
RN RR	0	638	1392	1,00E+100	638
RN SC	0	881	848	1,00E+100	881
RN SP	0	997	820	1,00E+100	997
RN SE	0	293	644	1,00E+100	293
RN TO	0	1055	1214	1,00E+100	1055
RS AC	0	1484	2242	1,00E+100	1484
RS AL	0	226	772	1,00E+100	226
RS AP	0	1385	1812	1,00E+100	1385
RS AM	0	810	924	1,00E+100	810

RS BA	0	432	626	1,00E+100	432
RS CE	0	522	780	1,00E+100	522
RS DF	0	592	592	1,00E+100	592
RS ES	0	220	446	1,00E+100	220
RS GO	0	371	371	1,00E+100	371
RS MA	0	359	862	1,00E+100	359
RS MT	0	544	544	1,00E+100	544
RS MS	0	443	480	1,00E+100	443
RS MG	0	370	370	1,00E+100	370
RS PA	0	868	868	1,00E+100	868
RS PB	0	422	972	1,00E+100	422
RS PR	0	240	240	1,00E+100	240
RS PE	0	295	550	1,00E+100	295
RS PI	0	236	788	1,00E+100	236
RS RJ	Ö	386	386	1,00E+100	386
RS RS	4	0	0	1,00E+100	1E+100
RS RO	0	938	1408	1,00E+100	938
RS RR	0	270	1201	1,00E+100	270
RS SC	7	103	246	1,00E+100 1,00E+100	1E+100
RS SP	0	338	338	1,00E+100 1,00E+100	338
RS SE	0	294	822	1,00E+100 1,00E+100	294
RS TO	0	320	656	1,00E+100 1,00E+100	320
				,	
SP AC	17	152	910	1,00E+100	1E+100
SP AL	0	214	760	1,00E+100	214
SP AP	0	404	831	1,00E+100	404
SP AM	0	626	740	1,00E+100	626
SP BA	0	318	512	1,00E+100	318
SP CE	0	406	664	1,00E+100	406
SP DF	0	236	236	1,00E+100	236
SP ES	36	45	271	1,00E+100	1E+100
SP GO	0	330	330	1,00E+100	330
SP MA	15	47	550	1,00E+100	1E+100
SP MT	0	474	474	1,00E+100	474
SP MS	0	360	397	1,00E+100	360
SP MG	0	203	203	1,00E+100	203
SP PA	0	715	715	1,00E+100	715
SP PB	14	177	727	1,00E+100	195
SP PR	0	232	232	1,00E+100	232
SP PE	0	325	580	1,00E+100	325
SP PI	0	302	854	1,00E+100	302
SP RJ	0	238	238	1,00E+100	238
SP RS	0	338	338	1,00E+100	338
SP RO	0	466	936	1,00E+100	466
SP RR	0	203	1134	1,00E+100	203
SP SC	0	109	252	1,00E+100	109
SP SP	0	0	0	1,00E+100	0
SP SE	0	130	658	1,00E+100	130
SP TO	0	96	432	1,00E+100	96
•				,	

Fonte: Elaborado pelo autor

Apêndice C - Modelo de Transbordo

Figura 1- Modelo de Transbordo para designação de inspetores

																- 		2	<u> </u>		- I											
Alocação	AC	AL	AP	AM	И В	A C	Έ	DF	ES	GO	M	A MT		MS	MG	PA	P	В	PR	PE	PI	RJ	RS	RO	RR	S	С	SP	SE	TO	Total	Available
AM		0	0	0	1	0	(0	0	0	0	0	0		0	0	0		0	0	0	0	0 ()	0	0	0	0	0		0	1 1
BA		0	0	0	0	1	()	0	0	0	0	0		0	0	0		0	0	0	0	0 ()	0	0	0	0	0		0	1 1
DF		0	0	4	0	0	- ()	1	0	0	0	0		0	0	0		0	0	0	0	0 ()	0	0	0	0	0		4	9 12
MG		0	- 1	0	0	0	- ()	0	0	0	0	0		0	0	0		0	0	0	0	0 ()	0	0	0	0	0		0	1 1
MS		0	0	0	0	0	-)	0	0	0	0	0		1	0	0		0	0	0	0	0 ()	0	0	0	0	0		0	1 1
PE		0	0	0	0	0	-)	0	0	0	0	0		0	0	0		2	0	2	0	0 ()	0	0	0	0	0		0	4 4
PR		0	0	0	0	0		0	0	0	0	0	0		0	0	0		0	0	0	0	0 0)	0	0	0	0	0		0	0 5
RJ		0	1	0	0	0)	0	0	0	0	0		0	0	0		0	0	0	2	0 ()	3	0	0	0	2		0	8 36
RN		0	0	0	0	0	-)	0	0	0	0	0		0	0	0		2	0	0	0	0 ()	0	0	0	0	0		0	2 2
RS		0	0	0	0	0	- ()	0	0	0	0	0		0	0	0		0	0	0	0	0 ()	0	0	0	0	0		0	0 8
SP		2	0	0	0	0	-	0	0	7	0	0	0		0	0	0		3	0	0	0	0 ()	0	0	0	0	0		0	12 28
Total		2	2	4	1	1		0	1	7	0	0	0		1	0	0		7	0	2	2	0 ()	3	0	0	0	2		4	39 99
Required		2	2	4	1	1)	1	7	0	0	0		1	0	0		7	0	2	2	0 ()	3	0	0	0	2		4	39
Custos aloca	AC	AL	AP	AM	vi D/			DF	ES	GO	M			MS	MG	PA	P		PR	PE	PI	RJ	RS	RO	RR	S	-	٠.	SE	TO		
AM	R\$ 1.450,	00 R\$ 1.11	2,00 R\$	838,00 R	\$ - R							\$ 802,00 R\$																				
BA			.,		\$ 740,00 R							\$ 836,00 R\$																				
DF										1		\$ 698,00 R\$,					
												\$ 862,00 R\$				- R\$																
MS												\$ 507,00 R\$																				
PE			7					1			,	\$ 660,00 R\$. ,									.,	,	1 1				
PR												\$ 1.014,00 R\$,					
RJ												\$ 590,00 R\$																				
												\$ 535,00 R\$																				
								1				\$ 862,00 R\$																				
SP	R\$ 910,	00 R\$ 76	0,00 R\$	831,00 R	\$ 740,00 R	R\$ 512,00 I	R\$ 664,00	R\$ 236,0	0 R\$ 2	71,00 R\$	330,00 R	\$ 550,00 R\$	474,00	R\$ 397,	00 R\$	203,00 R\$	715,00 F	\$ 727,0	0 R\$ 232,0	0 R\$ 580,00	R\$ 854,00	R\$ 238,0	R\$ 338,00	R\$ 936	00 R\$ 1.	.134,00 F	R\$ 252,00	R\$ -	R\$ 658,00	R\$ 432,0	.0	
		Ta.	1				_									12.	_			1	1	1- :	1									
Custo Total		AL	AP	AM			_	DF	ES	GO	M			MS	MG	PA	P		PR	PE	PI	RJ	1.10	RO	RR	S	-		-	TO	Total	
AM	1.14	1.4	- R\$	- R				1	1.17	- R\$	- R			* * * *	R\$	- R\$	- F		R\$ -	1.44		R\$ -			- R\$	- F	-7	***		1	R\$	•
BA	1.14	1.14	- R\$	- R	* .		· · ·	1.14	R\$	- R\$		\$ - R9 \$ - R9			R\$	- R\$	- F		R\$ -	114			114	114	- R\$	- F	.4	114	R\$ -	R\$ -	R\$	-
DF.		114	1.17	.280,00 R	* .		R\$ -	R\$ -		- R\$		7		* * *		- R\$				R\$ -			1.00	R\$			₹\$ -		R\$ -	R\$ 1.344,0		624,00
MG MS		R\$ 58	4,00 R\$ - R\$	- R				1.40		- R\$	- R			***	R\$	- R\$	- F	-+	R\$ -	1.44		114	1.44	1.14	- R\$	- F	3\$ - 3\$ -	***	R\$ -	R\$ -	R\$ 5	584,00
PE PE	R\$ -	1.14	- R\$	- R	* .		R\$ - R\$ -	1.14		- R\$		\$ - R\$ \$ - R\$		R\$ -	1.14	- R\$		\$ - \$ 680.0		R\$ -	1.4	1.14	1.14	R\$	- 14	· F	το - το	R\$ -	R\$ -	D¢ -	1.44	680.00
PE		1.14	- R\$	- R	* .			R\$ -		- R\$	- R	7		* * * *	R\$	- R\$	- r			R\$ -			R\$ -	R\$		- F	₩ - ₩ -			R\$ -	1.14	380,00
R.I	1.14	R\$ 65	1.14	- R	*		₹\$ -	1.14		- R\$	- R			R\$ -	1.14	- R\$	- r	-7					R\$ -	R\$ 2.400		- r			R\$ - R\$ 1.212.00	1.14	1.44	539.00
DN	1.14	1.14	7,00 R\$	- R	* .		· · ·	1.14		- R\$	- R				R\$	- R\$		ະຣັ - ປ\$ 964.0		R\$ -			R\$ -		. R\$	- F	•		R\$ 1.212,00	Lý -	110 0.0	964.00
DC		1.4	- R\$	- R	* .			R\$ -		- R\$	- R	7		* * * *	R\$	- R\$	- F			R\$ -			R\$ -		· R\$	- F	.4		· • •	R\$ -		704,00
SD	R\$ 1.820.	1.14	- R\$	- R	*			R\$ -		97.00 R\$	- N			R\$ -	R\$	- R\$		ು - !\$ 2.181.0		R\$ -		R\$ -	R\$ -	R\$	· R\$	- 1	w - oe .			R\$ -		808 00
J.	1.02U,	UU IND	- 179	- 1	۰ <u>۱</u>	· -	φ -	1/4 -	r\p 1.0	101,00 IND	- 1	. اس		1.φ -	1/0	- 1/2	-	ψ Z. IU I,U	υ r.φ -	ro -	ι\φ -	1/4 -	1/40 -	1/4	IVφ	-	Ψ -	ιω -	- ψ	110 -	R\$ 17.2	
																															No 17.2	.00,00

Fonte: Elaborada pelo autor.

ANEXOS

Anexo A – Estrutura Organizacional da ANAC

ANAC GE AVIAÇÃO EIVIL Diretor Diretor Diretor Diretor **Diretor-Presidente** Hélio Paes de Juliano Alcântara Ricardo Sérgio Maia Ricardo Fenelon José Ricardo Pataro Barros Júnior Noman Junior Bezerra Botelho de Queiroz Diretoria Ouvidoria Gabinete (GAB) (OUV) Plenário Assessoria de Assessoria Parlamentar Counicação Social (ASPAR) Conselho (ASCOM) Consultivo Corregedoria Articulação com o (CRG) Sistema de Investigação e Prevenção de Auditoria Interna Acidentes Aeronáuticos (AUD) (ASIPAER) Assessoria Procuradoria Internacional (PF-ANAC) (ASINT) Assessoria de Assessoria Técnica Julgamento de Autos (ASTEC) em Segunda Instância (ASJIN) Superintendência Superintendência de Superintendência de Superintendência de Tecnologia de Planejamento Gestão de Pessoas Administração e Finanças da Informação Institucional (SGP) (SAF) (SPI) (STI) Superintendência Superintendência Superintendência de Superintendência de Superintendência de Superintendência de de Infraestrutura de Padrões Acompanhamento de Regulação Econômica Aeronavegabilidade Ação Fiscal Aeroportuária Operacionals Serviços Aéreos de Aeroportos (SAR) (SFI) (SPO) (SAS) (SIA) (SRA)

Figura 2- Estrutura Organizacional da ANAC(continua)

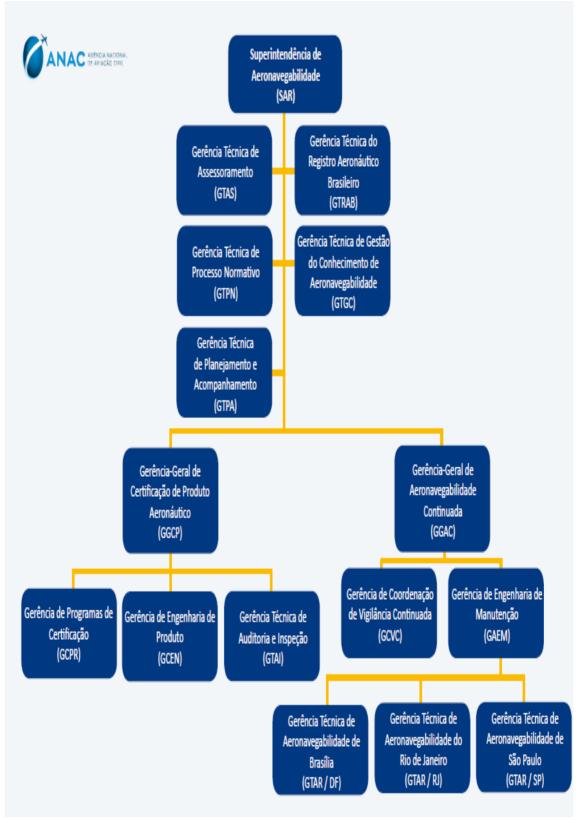


Figura 3- Estrutura organizacional da ANAC(conclusão).

Anexo B - Seção V do Regimento Interno da ANAC- Responsabilidades da Superintendência de Aeronavegabilidade.

Figura 3- Seção V da Superintendência de Aeronavegabilidade (continua).

Seção V Da Superintendência de Aeronavegabilidade

Art. 35. À Superintendência de Aeronavegabilidade compete:

- I submeter à Diretoria, no que tange a aeronavegabilidade, ruído e emissões de produtos aeronáuticos, proposta de ato normativo e parecer relativos às seguintes matérias:
 - a) certificação de projeto, incluindo validação de produto aeronáutico importado;
 - b) certificação de organização de produção;
- c) certificação de organização de manutenção, incluindo as atividades de manutenção das empresas de transporte aéreo;
- d) certificação de modificação de projeto, incluindo validação modificação de produto aeronáutico importado;
 - e) certificação de aeronavegabilidade, incluindo aprovação de aeronavegabilidade para exportação;
 - f) aprovação e/ou aceitação de instruções de aeronavegabilidade continuada;
- g) acompanhamento da aeronavegabilidade continuada, e sobre a emissão de diretrizes de aeronavegabilidade;
- h) credenciamento de pessoas e empresas para desempenhar atividades relacionadas às suas competências;
- i) formação e habilitação de pessoal autorizado a desempenhar atividades relacionadas com manutenção; e
- j) ato normativo de outro órgão, governamental ou não, nacional ou internacional que tenha repercussão nas suas áreas de competência, inclusive casos omissos.

Publicado no Diário Oficial da União de 15 de Junho de 2016, Seção 1, página 57. Retificado no Diário Oficial da União de 16 de junho de 2016, Seção 1, página 36.

Figura 4- Seção V da Superintendência de Aeronavegabilidade. (continuação)

- II emitir, suspender e extinguir certificado de tipo, certificado suplementar de tipo, certificado de organização de produção, certificado de organização de manutenção e atestado de produto aeronáutico aprovado, incluindo os respectivos adendos e especificações técnicas, quando aplicável;
- III desenvolver e propor requisitos mínimos de segurança relativos ao projeto, à fabricação e à manutenção aplicáveis a produto aeronáutico;
- IV emitir, suspender e extinguir certificado de matrícula e certificado de aeronavegabilidade, padrão ou especial;
 - V emitir aprovação de aeronavegabilidade para exportação;
 - VI emitir e revogar diretriz de aeronavegabilidade;
- VII emitir, suspender e extinguir outros atestados, aprovações e autorizações relativas às atividades em seu âmbito de atuação;
- VIII analisar normas e recomendações, na sua área de competência, da Organização de Aviação Civil Internacional OACI e propor medidas para implementá-las avaliando resultado e sugerindo alteração necessária ou propor a notificação de diferença;
 - IX avaliar pedido de cancelamento, suspensão e/ou cassação de qualquer certificado emitido;
- X analisar, dar parecer e tomar ação, conforme aplicável, sobre recomendação de segurança de voo relativa à investigação de acidente e de incidente aeronáutico;
 - XI administrar o Registro Aeronáutico Brasileiro;
- XII representar a ANAC em discussões relativas à sua área de competência, quando determinado pela Diretoria;
- XIII participar e apoiar atividade de pesquisa e desenvolvimento que seja de interesse da Superintendência;
- XIV coordenar ações, participar de negociações, realizar intercâmbios, buscar consenso e articularse com as outras Superintendências e demais órgãos da ANAC em atividades que envolvam esses órgãos;
- XV participar de negociações, realizar intercâmbios e articular-se com autoridade aeronáutica estrangeira para validação recíproca de atividade relativa à sua área de competência;
- XVI credenciar pessoas, nos termos estabelecidos em regulamento específico, para desempenhar atividades relacionadas à aeronavegabilidade, assim como executar a supervisão continuada destas pessoas e suspender ou revogar tal credenciamento;
- XVII delegar, quando necessário, qualquer de suas atribuições, salvo aquelas que, pela sua própria natureza ou por vedação legal, só possam ser por ela exercidas privativamente;

Publicado no Diário Oficial da União de 15 de Junho de 2016, Seção 1, página 57. Retificado no Diário Oficial da União de 16 de junho de 2016, Seção 1, página 36.

Figura 4- Seção V da Superintendência de Aeronavegabilidade (conclusão)

Seção V Da Superintendência de Aeronavegabilidade

Art. 35. À Superintendência de Aeronavegabilidade compete:

- I submeter à Diretoria, no que tange a aeronavegabilidade, ruído e emissões de produtos aeronáuticos, proposta de ato normativo e parecer relativos às seguintes matérias:
 - a) certificação de projeto, incluindo validação de produto aeronáutico importado;
 - b) certificação de organização de produção;
- c) certificação de organização de manutenção, incluindo as atividades de manutenção das empresas de transporte aéreo;
- d) certificação de modificação de projeto, incluindo validação modificação de produto aeronáutico importado;
 - e) certificação de aeronavegabilidade, incluindo aprovação de aeronavegabilidade para exportação;
 - f) aprovação e/ou aceitação de instruções de aeronavegabilidade continuada;
- g) acompanhamento da aeronavegabilidade continuada, e sobre a emissão de diretrizes de aeronavegabilidade;
- h) credenciamento de pessoas e empresas para desempenhar atividades relacionadas às suas competências;
- i) formação e habilitação de pessoal autorizado a desempenhar atividades relacionadas com manutenção; e
- j) ato normativo de outro órgão, governamental ou não, nacional ou internacional que tenha repercussão nas suas áreas de competência, inclusive casos omissos.

Publicado no Diário Oficial da União de 15 de Junho de 2016, Seção 1, página 57. Retificado no Diário Oficial da União de 16 de junho de 2016, Seção 1, página 36.