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RESUMO

A visão de robôs interagindo e ajudando pessoas a executar tarefas existe há bastante tempo. A

evolução da tecnologia inseriu os primeiros robôs manipuladores nas fábricas para realizar tare-

fas repetitivas e perigosas para humanos. Apesar disso, as tarefas e o ambiente foram adaptados

para o robô. Além disso, por questões de segurança, eles foram isolados dos humanos. O uso

de robôs em fábricas trouxe vários benefícios, mas alguns desa�os surgiram. As capacidades de

repetibilidade e precisão dos robôs são elevadas, mas eles não são bons em se adaptar para novas

tarefas e precisam sempre serem reprogramados. Por outro lado, os humanos tem alta capacidade

de adaptação, mas não é recomendado trabalharem longos períodos realizando a mesma tarefa

podendo sofrer lesões por esforço repetitivo. No futuro as máquinas vão ter que trabalhar cada vez

mais perto dos humanos em ambientes não estruturados, logo, é preciso ser seguro para humanos

trabalharem próximo delas. Nesse sentido, o campo de interação humano-robô (IHR) surgiu para

integrar humanos e robôs no ambiente de trabalho e tornar possível realizar tarefas que nenhum

dos dois conseguiria realizar sozinhos. Para aumentar a segurança, robôs manipuladores compla-

centes que permitem ajuste da rigidez das juntas são utilizados. No entanto, o uso seguro e o

controle e�ciente deles ainda é um desa�o a ser resolvido em robótica. Logo, neste trabalho con-

troladores de trajetória recentemente desenvolvidos na literatura são implementados e testados em

um robô manipulador complacente e um ambiente de trabalho (framework) para utilizar o robô é

desenvolvido.

O controle de um robô para realizar tarefas requer sua descrição cinemática de corpo rígido.

Existem diferentes métodos para representações de corpos rígidos nas quais a orientação e a trans-

lação são tratadas de forma desacoplada. Apesar disso, tais representações não consideram o

acoplamento cinemático completo. Isso pode gerar descrições incompletas causando problemas

como, por exemplo, singularidades no caso dos uso dos ângulos de Euler. Matrizes de trans-

formação homogênea (MTH) são uma das ferramentas mais utilizadas que acoplam orientação e

translação. Entretanto, elas tem um custo computacional elevado. Nesse sentido, os quatérnios

duais vem ganhando popularidade nas últimas quatro décadas. Eles realizam a maioria das opera-

ções envolvendo movimentações de corpos rígidos com menor custo computacional se comparado

com a MTH. Além disso, eles podem ser usados diretamente nas leis de controle sem necessitar

converter para outra representação como é o caso da MTH. Logo, quatérnios duais foram utilizados

neste trabalho para representar corpos rígidos e implementar controladores de trajetória.

Os manipuladores complacentes são uma solução atrativa para aumentar a segurança e apro-

ximar robôs de humanos. No entanto, em aplicações práticas, é preciso que eles entendam tarefas

requisitadas pelos humanos, ou seja, precisam seguir trajetórias descritas no espaço de tarefas. Em

outras palavras, se uma pessoa for pegar uma caneca de café em uma mesa, ela se preocupa para

qual posição sua mão deve se mover e não como cada junta do seu braço deve se deslocar. Logo, os

robôs devem deslocar seu efetuador para a posição especi�cada pelo humano no espaço de tarefas.

Portanto, o presente trabalho implementou técnicas de controle cinemático projetadas no espaço

de tarefas.



Dessa forma, foram implementados seis controladores cinemáticos baseados em quate¯nios duais

para analisar seu desempenho em um robô real e contribuir para seu futuro uso em aplicações de

IHR. Eles foram avaliados extensamente no manipulador complacente antropomór�co A2 Arm da

Meka Robotics com 7 graus de liberdade disponível no Laboratório de Automação e Robótica

(LARA) da Universidade de Brasília (UnB). Os controladores foram implementados em C++

e a estabilidade numérica foi veri�cada no simulador Virtual Robot Experimentation Platform

(V-REP). A integração das plataformas robô, computador e simulador foi feita com ROS. As

especi�cações técnicas do robô A2 Arm foram detalhadas ao longo deste trabalho e o framework

para facilitar o desenvolvimento de trabalhos futuros foi estabelecido.

Dois controladores proporcionais com e sem termo de antecipação apresentaram desempenho

aceitavel em relação a norma do erro com um ajuste simples de ganho, apesar disso só possuem um

parâmetro que otimiza o erro sem considerar as velocidades das juntas e do efetuador. Entretanto,

em IHR os manipuladores trabalham próximos aos humanos que devem se sentir confortáveis pró-

ximo dos robôs, logo, eles devem realizar trajetórias mais suaves com menores picos de velocidade.

Portanto, foram implementados dois controladores do tipo regulador quadrático linear (RQL) que

permitiram balancear entre velocidade do efetuador e esforço de controle além de ter apresentado

erro inferior comparado aos controladores proporcionais. Por �m, para considerar perturbações

externas e incertezas de modelo, dois controladores H∞ foram implementados e forneceram o me-

lhor desempenho de erro sem gerar velocidades excessivamente altas. A desvantagem dos controles

H∞ e RQL foi o ajuste de ganhos que em algumas situações precisou variar durante a trajetória.

Os controladores também foram avaliados do ponto de vista do período de amostragem utilizado.

São apresentados histogramas do período de amostragem para 20 ms e 8 ms. Percebeu-se que o

módulo de controle conseguiu manter um período próximo do desejado. Entretanto, em traba-

lhos futuros podem ser explorados os módulos de controle de baixo nível do robô para facilitar a

escolha do período de amostragem utilizados nos módulo de controle de trajetória de alto nível

implementados.

Logo, este trabalho veri�cou que os controladores cinemáticos podem ser aplicados em um

manipulador complacente real e forneceu resultados para comparar controladores so�sticados com

outros métodos clássicos de controle. Além disso, gerou um ambiente de programação que facilitará

futuros trabalhos no LARA envolvendo o robô A2 Arm. Portanto, conclui-se que, apesar da

implementação dos controladores e do framework poderem ser melhoradas no futuro, houve sucesso

no desenvolvimento do ambiente de trabalho e no uso dos controladores de trajetória para um robô

real complacente.

Palavras Chave: robôs complacentes, controle cinemático, quatérnios duais, interação humano-

robô



ABSTRACT

This work implements six dual quaternion based kinematic control algorithms recently developed

in literature to analyze their performance on a real robot and contribute to their use in future

human-robot interaction (HRI) applications. They were extensively evaluated on the A2 Arm

anthropomorphic compliant manipulator from Meka Robotics with 7 degrees of freedom available

in the Robotics and Automation Laboratory (LARA) at the University of Brasília. The motivation

for this work was to control a compliant manipulator which can work safely alongside humans in

HRI tasks. Two proportional controllers with and without feedforward term showed a satisfactory

performance regarding the error norm and, as expected, with simple gain adjustment. Nonetheless,

they have only one parameter which seeks to reduce the error disregarding the overall joint velo-

cities and end e�ector velocities along the trajectory. However, in HRI applications, manipulators

will work near humans which must feel comfortable and safe near the robotic arms. Therefore,

smoother end e�ector trajectories with lower velocity peaks are desired. Hence, two linear quadra-

tic regulators (LQR) controllers which enable to reach a trade-o� between trajectory error and end

e�ector velocities are implemented. In addition to lower velocity peaks, they also had a better error

performance compared to the proportional controllers. Lastly, to consider exogeneous disturbances

and uncertainties, two H∞ controllers are implemented and delivered the best error performance

without an excessive increase in control e�ort. Their disadvantage together with the LQRs con-

trollers was their parameter selection which in some cases needed to vary along the trajectory. The

controllers are implemented in C++ and called in a ROS node. Thus they can be applied across

platforms running ROS. In order to check the controllers numerical stability before testing them

on the real robot, the controllers are tested on a Kuka LBR iiwa 7 R800 in the V-REP simulator.

Consequently, this work combines development and evaluation results. The work veri�ed the kine-

matic controllers can be applied to a compliant robot. Moreover, the contributions derived herein

provides enough results to compare sophisticated control methods with classic controllers and also

developed a programming framework for future projects at LARA involving the A2 Arm robot.

Keywords: compliant robots, kinematic control, dual quaternions, human-robot interaction
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Chapter 1

Introduction

The vision of robots interacting and helping people to execute tasks is around here for a long

time already. Technological evolution brought the �rst robot manipulators to factories to perform

jobs which are repetitive and dangerous for humans. In order to deploy robots in the factory �oor,

tasks and environment were adapted for them. However, in the future, machines will have to work

even closer to humans in an unpredictable environment. Therefore, this work is focused on one of

the many challenges involved in making robot arms execute tasks in the presence of a human.

Innovation in robotics is encouraged by a wide number of sources and one of them is human-

robot interaction (HRI) which aims factory and non-factory environments. New technological

improvements appear even in educational contexts. Robots are also used by teachers to motivate

students through ludic activities. The �eld of medical robotics also emerged where robots are

developed on a collaboration between roboticists and medical doctors to be applied in di�erent

processes, for instance, in rehabilitation. In this sense, today, robots are being developed in many

�elds and applied in distinct situations and not only by specialized factory technicians to be used

in factory environments [1]. Therefore, it is also necessary for them to interact safely with humans

and one of the ways to do it is to use compliant joints and motors in the manipulators [2].

In applications which require HRI for object manipulation it is common to use anthropomorphic

robotic arms because they are designed to move the same way humans do. Thus, there are fewer

modi�cations to be done in the environment for them to accomplish their tasks.

Although the use of robots in manufacturing comes with bene�ts, they are still seen, in some

cases, as a replacemenent for human workers which could reduce the number of jobs in factory.

The HRI research �eld appeared to integrate both humans and robots in the workplace and turn

possible to do things which a robotics-only or human-only team would not be able to do. The

robots used for HRI require robust methods and tools in order to deliver acceptable results. Hence,

improvements make easier the implementation of robotic manipulator controllers and integrate

them to computer vision, force and positioning sensors.

Section 1.1 will brie�y review the historic context and motivation for introducing robots in the

human workplace. Afterwards, the challenge and goals of this project are presented in Section 1.2,

followed by a description of the framework used in this work and the obtained results.
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1.1 Historic Contextualization and Motivation

Since the term robot appeared, robotics has been imagined as robots cooperating and coexisting

with humans in everyday life. However, they have been restricted for a long time to factories and

laboratories. If you visit one of them today you will still encounter robot manipulators isolated

from researchers or workers. They may be too dangerous to be around with and need to be kept

at a safe distance [3].

In 1961, the �rst industrial robot from Unimation Inc. was installed for extracting parts from

a die-casting machine at an industrial plant [4]. Then, hydraulically actuated robots were used

for workpiece handling and spot-welding of car bodies [5]. The results were good enough for each

application and have shown robots could o�er reliability and quality together with uniformity.

From then on, other industrial companies began to implement robots on their production and an

innovating process started. Although reliability had been veri�ed, there were still safety problems

to be solved.

(a)Kuka KR5001 (b)

Figure 1.1: (a) Robot working on foundry and (b) ABB welding robots (source: ABB)

One of the motivations for using robots in factories was to pull out humans from hazardous work

environments. Moreover, robots achieve high accuracy and speed, and work long periods without

tiring if correct maintenance procedures are periodically done. Nonetheless, safety concerns also

emerged because of robots potential to cause accidents involving humans. Therefore, early technical

texts about robotic safety recommended isolating robots from personnel, but new issues arise with

this approach.

Although robots are reliable and precise, there are still tasks which robots cannot do because

of their minimal sensing and interpreting capability in comparison to humans. For every new

task they must be reprogrammed which is not always straightforward. Meanwhile, humans adapt

easily to new situations and problems. For instance, the products on the supermarket shelves are

constantly changing places, sizes and positions and a person can easily rearrange a wide range

of di�erent objects while a robot must be reprogrammed for each new object. For this reason,

1http://www.roboworld.com/high-temperature
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people still injure themselves in daily activities because of repetitive material handling which

causes work-related musculoskeletal disorders [2]. If robots are safe enough to be around with and

easily reprogrammed by people, the �exibility in the work environment can be clearly increased.

For instance, in factories where di�erent materials constantly arrive in large quantities, a human

could always adapt the robot manipulator to unload each of them instead of repeating a lot of

similar tiresome unloading tasks. In this sense, the �eld of physical human-robot interaction (HRI

or pHRI) appeared.

The HRI robots will empower humans to develop new ideas and accomplish them with the accu-

racy of robots without worrying about repetitive procedures. HRI robots are focused on extending

workers ability and not on replacing them. Thus, they help to overcome the skepticism about

robots replacing human jobs. In order to achieve this, safety become of paramount importance.

(a)Baxter2 (b) Kuka LBR 3

Figure 1.2: (a) Baxter from Rethink Robotics working together with worker (b) Kuka robot

assisting welding process

Safety in robotics involve a lot of considerations. In [6], an extensive review was made of

published literature on various aspects of robot reliability and safety. In HRI, two distinct cases

are commonly mentioned: �rst, when physical contact occurs occasionally or by accident, and

second, when physical interaction is an intentional part of planned operations [2].

This paradigm shift from precision, speed and error performance to safety comes together with

new challenges in the design of control methods. Classic industrial robots are made to be as sti�er

as possible in order to be more precise without the need of complex control methods. However,

one way to increase safety is to increment the energy-absorbing properties of the robot structure,

hence, decreasing sti�ness. This has been done since the early 1980s by equipping the manipulator

with protective layers and designing active force controllers or, sti�ness and impedance control

with respect to sensed interactions. However, this approach does not work for portions of the

robot manipulator which do not have sensors [2]. Therefore, safety use and control of robotic

manipulators is still a challenge to be e�ciently solved in robotics.
2http://www.rethinkrobotics.com/blog/meet-sally-applin-humans-and-robots/baxter-teach-onexia/
3http://lasa.ep�.ch/tutorial_erra/welding_assist_kuka.jpg
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It is recognized in robotics that the controller has intrinsic limitations to what it can do to

change a robot arm behavior. This is closely related to the manipulator mechanical properties.

Although possible, it is not simple to make a heavy robot gently, safe and precise, if realistic

circumstances are considered. With this in mind, lightweight robots for service applications began

to appear, �rst the whole-arm manipulator (WAM) from the Barret Technology Inc. and later

the lightweight robot (LWR) from the german aerospace center (Deutsches Zentrum für Luft- und

Raumfahrt - DLR).

Lightweight robot arms use high-performance actuators and integrated torque sensors. Signi�-

cant joint compliance is usually present because of design choices such as use of cable transmissions,

harmonic drives and joint torque sensors. Therefore, introducing mechanical compliance into the

design of HRI robots has turned to be an e�ective way to increase safety for service application

robot arms and has been used in numerous implementations in di�erent contexts in robotics.

1.1.1 Compliant Robot Control

One primary skill that robots lacks compared to biological systems is adaptable compliance or

variable sti�ness. The dynamic decoupling of robots actuators rotor inertia from the links whenever

an impact occur complements the low-inertia design of manipulators links and soft coverings. This

helps to mimic the desired mechanical compliance. The HRI tasks usually require the combination

of motions which vary from fully sti� to fully compliant. They may vary depending on the goal.

In [7], Ahmed divided the types of motions in three categories:

1. Sti� motion: refers to robot movement in free space referred as unconstrained free work space.

The manipulator trajectory within its work-space is done by position and velocity control.

It has no compliance variation and, hence, is not good enough for executing constrained

motions with HRI.

2. Soft motion: relates to robot movement constrained by an environment referred as con-

strained work-space. The sudden, unexpected intrusion of an obstacle makes collision un-

avoidable. Therefore, the robot behavior is changed from fully sti� to fully compliant.

3. Compliant motion: motions which incorporate all transitions between sti� and soft motion.

It appears in HRI tasks, where a human want to impose its motion over the robot's speci�ed

motion. In this case, variable compliance in the robot is required and achieved through

compliant mode.

Then, in order to e�ectively use compliant robots, some issues have to be solved. Compliant trans-

missions can reduce performance, causing slow response, increased oscillations and longer settling

times. Nevertheless, for practical applications, positioning accuracy and velocity of task execution

are crucial. The control of soft manipulators quickly and accurately is one of the challenges open

in front of HRI research.

In [2], a extensive review of robotics literature regarding mechanical joint designs to achieve

compliant control of robot manipulators was done. The control of robots with elastic joints was ex-
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plored in [8, 9]. Robot safety achieved through safety oriented design using series elastic actuators

appeared in [10]. Adaptive control methods were also employed to endure uncertain inertia caused

by elastic joints. Moreover, other compliant actuation mechanisms were developed such as dis-

tributed macro-mini actuation [11] which separates torque generation in low- and high-frequency

components and sum them in parallel to deliver a better performance while reducing the manipu-

lators inertia.

Even though elastically actuated arms have high enough compliance to be safe, there are

intrinsic limitations to what can be achieved by such design although optimal controlling methods

exists for them. With this in mind, it was also explored in [2] techniques which allow mechanical

compliance of motion transmission devices to vary during the execution of tasks. In other words,

the robot joints of a manipulator may be adjusted to be as sti� or soft as needed at a given moment.

This is comparable to what humans do to behave in a safe manner: the human arm moves slowly

when it is sti� and compliantly when moving fast.

Variable compliance enables to achieve the safety-performance trade-o� using mechanical means

and control strategies. In this sense, numerous implementations have emerged such as the mechan-

ical impedance adjuster (MIA) in [12] which enables to choose the compliance level in a wide range

of values accordingly to the desired task. On the other hand, the compliance must be chosen before

the execution of the task and remains constant during motion. Another solution was proposed

in [13] which allows variable-impedance actuation (VIA) during task execution. This is achieved

through a combination of mechanical and control design allowing rapid and continuous variations

of transmission impedance. Therefore, the injury risk during all motion may be reduced by ad-

justing sti�ness, damping and gear ratio while minimizing negative e�ects on control performance.

Furthermore, it allows to adjust the overall performance to accomplish as quickly and accurately as

possible to achieve the desired task speci�cations. In this sense, VIA design suits well the challenge

of executing compliant motions adjusting between sti� and soft motions as needed.

1.2 Problem Description & Project Goal

Compliant robot control techniques have been a compelling way to increase safety and bring

robot manipulators closer to humans. However, in order to use robots e�ectively in practical

applications, one must also be able to devise tasks for the robot. It is natural for humans to

execute trajectories in the task-space instead of the joint space. In other words, when a person is

picking up a co�ee cup of a table, the person focus to which position in space their hand must move

and not on how each arm joint will move. The same goes for robots working alongside humans.

They must be able to work with their human work partners solving tasks in a similar way.

This brings up the problem investigated in this work, which is how to make a robot manipulator

execute a trajectory speci�ed in the task-space. Di�erent kinematic control techniques for robot

manipulators have been presented in the literature. However, they are still being evaluated on real

robots. Recent kinematic control techniques in the task-space were developed in [14] which were

based on the complete framework for robotic kinematic modeling formalized in [15]. However, the
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controllers designed in [14] were only fully explored in simulation environments. Moreover, some

of the experiments were done in simulation tools without a physics engine to simulate rigid body

dynamics.

In this sense, the goal of this work is to implement and evaluate for the �rst time on a real

compliant anthropomorphic manipulator some of the kinematic control techniques in the task-space

developed in [14]. In other words, evaluate them in the real world scenario with multiple sources

of disturbances and uncertainties and, in addition to compare their performance with other classic

control methods. Furthermore, they will be tested under high amount of compliance which turns

kinematics-only control strategies way more challenging and demmanded. The kinematic control

techniques use only the robot joint encoders position as input and no force feedback. Impedance

and force control helps to solve this issue [16, 17, ch. 9], but they need the robot dynamic model

which is seldom straightforward to obtain [16, 17, ch. 7].

For all the above reasons and challenges posed, this work contributes to the use and further

development of kinematic control techniques for compliant robots in practical applications.

1.2.1 Work Overview

The present chapter brought up the HRI scenario and its challenges. The �rst section explained

how robots emerged in the industrial environment to execute repetitive and dangerous tasks and

then were seen as a solution to help and empower humans in the workplace, but with a lot of

safety issues to be solved. As a consequence, the compliant robots concept appeared as a solution.

Then, the problem description and goal of this work was de�ned.

Including this introduction chapter, this work is organized in six chapters. In Chapter 2,

the mathematical background of the dual quaternions is presented, a basic kinematic controller

is derived and the invariant error norm is described. The Chapter 3 shows the mathematical

derivation of the kinematic controllers evaluated in this work. Chapter 4 describes the robotic

tools and development of the programming framework used for implementing and testing and how

to use it. In Chapter 5, the tasks de�nition procedure, evaluation criteria and parameter selection

are explained. Then, the experiments are described and their results are given and analyzed.

Lastly, Chapter 6 contains a conclusion and future work ideas to enhance the kinematic controllers

performance on the A2 Arm.

For the sake of giving a clearer understanding of how this text will be developed, the following

diagram in Figure 1.3 was devised:
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Figure 1.3: Work diagram

1.2.2 Mathematical and Framework Tools

To achieve good results with compliant control techniques, one must �rst solve the robot

kinematic control problem. In this sense, an e�cient representation for rigid body transformation

must also be chosen. In this work, the dual quaternions were used due to its advantages in

comparison to the homogeneous transformation matrices (HTM). For instance, as presented in [15],

most of the mathematical operations of rigid body motion with dual quaternions are achieved with

lesser calculations. Moreover, they do not have representation singularity problems in comparison

to the Euler angles representation. Furthermore, they can be directly used in the control law design

without the need of extracting parameters as it is the case of the HTM. The dual quaternions will,

therefore, be detailed in Chapter 2.

Closely intertwined with the rigid body mathematical representation, the control method used

to solve forward- and inverse kinematics also plays an important role. Classic proportional and

feedforward controllers for robot manipulators deliver acceptable results. However, their perfor-

mance depends only on their one-parameter gain adjustment. Hence, the control e�ort together

with the robot joints velocity and, consequently, the end e�ector linear velocity are bounded to

this one gain value.

In other words, if one wish to reduce the robot end e�ector trajectory error, one may increase

the proportional gain. The robot motion velocity and the motors power will also increase. Then

it is not possible to adjust each performance speci�cation isolated. For this reason, this work

implements two linear-quadratic optimal tracking controllers which allows to minimize end e�ector

velocities in the sense of joints control e�ort while improving trajectory error [18].

Although the classic proportional and feedforward controllers are simple to be implemented,

they do not consider the in�uence of multiple external disturbances acting on the system which
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also causes uncertainties in the kinematic model of the robot. Therefore, robust H∞ kinematic

controllers were also implemented and investigated. Their goal is to reduce the noise-to-output

in�uence and, therefore, reduce the e�ect of external disturbances while keeping the system internal

stability.

The real robot experimentation platform used for this work was the anthropomorphic compliant

manipulator A2 Arm from Meka Robotics available at the Robotics and Automation Laboratory

(LARA) at the University of Brasília (UnB). In order to prevent causing damage to the robot,

the control methods were �rst run on the simulation environment Virtual Robot Experimentation

Platform (V-REP). Finally, to integrate all the systems the Robot Operating System (ROS) was

adopted. This tools will be explained in Chapter 4.

1.2.3 Results

This work outcomes are divided in development and evaluation results. The programming

framework used to implement and test the dual quaternion based kinematic controllers turns eas-

ier future works and applications involving the A2 Arm robot to be implemented at LARA. The

main controller ROS node written in C++ enables to load a desired trajectory speci�ed in the

task-space from a .txt �le or to get a discrete trajectory speci�ed point-to-point in Cartesian coor-

dinates. Afterwards, the trajectory Cartesian coordinates can be used as the input of the kinematic

controllers which deliver the robot joints trajectory output. The programming framework docu-

mentation can be found in [19], that is, the Wiki created at the LARA GitHub1 page for the Meka

project2. More details on how to start working with the framework will be presented in Chapter

4.

As a result of the control techniques evaluation on the real robot, it was seen the dual quaternion

based kinematic controllers can be used for trajectory control on a compliant robot manipulator.

They enable the A2 Arm robot to be used in applications which accepts precision of 1cm. Depend-

ing on the tasks which must be done, each controller has its advantages. Proportional controllers

can do multiple lower precision tasks without the need of online gain tuning. Optimal controllers

can be adjusted for repetitive similar tasks which demand higher precision with lower end e�ector

velocities. Robust H∞ controllers can be adjusted for high precision tasks without an excessive

increase in robot joints velocities but they need a more cautious gain adjustment including online

gain variation.

1https://github.com/
2https://github.com/lara-unb/Meka/wiki
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Chapter 2

Mathematical Background

In order to plan and control robot motions to perform speci�ed tasks, it is needed to model

them mathematically. A lot of rigid motion mathematical representations detach and individually

address attitude and translational kinematics or, in other words, orientation and position of the

rigid body are treated separately [14, ch.2]. Hence, they do not consider the coupling between the

full rigid motion kinematics which include both orientation and position. This may yield improper

descriptions of rigid body motion. The homogeneous transformation matrices (HTMs) are one of

the most used ones to represent rigid body motion which couples orientation and position. Still,

they are computational demanding. Another representation which has been gaining attention in

the last 30 to 40 years are the quaternions and dual quaternions due to their properties. The dual

quaternions, more speci�cally, do most of the rigid body motion operations with lesser calculations

and it is straightforward to extract geometric parameters while HTMs requires additional calcula-

tions in order to extract control parameters [14, ch. 2]. Moreover, they do not have representation

singularity problems as in the case of Euler angles. They also allow to use the same set of variables

to represent the forwards kinematic model and perform robot control [15], henceforth, they were

adopted in this work.

In this chapter the dual quaternions are explored and associated with rigid body motion of

robotic manipulators. Afterwards, the basic concepts of di�erential kinematic control for robot

manipulators using unit dual quaternions are presented. A background on rigid motion and HTMs

can be found in Appendix A.

2.1 Dual Quaternions

Dual quaternions are dual numbers in which the primary and dual parts are quaternions [15].

Before getting into details about them, a brief introduction to dual numbers and rigid body motion

using quaternions is done.
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2.1.1 Quaternions

Quaternions were invented by Hamilton in the nineteenth century and are an extension of

the complex numbers [20]. They have three imaginary components ı̂, ̂ and k̂ which de�ne the

quaternions set, such that

ı̂2 = ̂2 = k̂2 = ı̂̂k̂ = −1.

A general quaternion h = h1 + ı̂h2 + ̂h3 + k̂h4 and its conjugate is de�ned as h∗ , h1 − h2ı̂−
h3̂− h4k̂. The norm of a quaternion is ‖h‖ =

√
hh∗.

The rotation of an angle θ around an axis n = nxı̂ + ny ̂ + nzk̂ can be described by the unit

quaternion r = cos( θ2) + n sin( θ2) = η+ nε where ‖r‖ = 1. Sequential rotations r1, r2, r3,..., rn are

described by sequential quaternion multiplications r1 · r2 · r3 · ..., rn.

Analogous to the rotation matrices RεSO(3) (Appendix Section A.2), the rotation quaternion

r also has geometrical meanings [14, ch. 2, p.21]:

1. It represents a coordinate transformation relating the coordinates of a point p in two di�erent

frames. Considering the pure quaternions p0 and p1 represents p with respect to frames 0

and 1, respectively. If frame 1 is obtained by rotating frame 0 by a quaternion r01, the

representation of the point in frame 1 is given by the frame rotation transformation,

p1 = r0∗1 p0r11.

2. If p0
0 is a point with respect to a coordinate frame 0. The representation of the new point p0

1

after rotating within the same coordinate frame is given by the point rotation transformation,

p0
1 = r01p

0
0r

0∗
1 .

3. The quaternion r01 gives the frame rotation between frames 0 and 1.

The challenges which arise when using the Euler angle/axis representation mentioned in the end

of Appendix Section A.3 can be overcome using the unit quaternion representation. A rotation by

−θ about −r yields the same quaternion as that associated with a rotation by θ about r. This

solve the nonuniqueness problem of the angle/axis description [17, ch. 2, section 2.6]. On the

other hand, the unit quaternion representation is liable to the unwinding phenomenon where the

attitude of the rigid body may contrast with the antipodal representation yielding in unnecessary

rotation. It is interesting to highlight that tiny representation presents topological issues.

Unit quaternions are then a four-parameter rotation representation constrained to unit norm.

They have a unique algebra and enable to represent all rotations with lesser parameters than a

rotation matrix. Moreover, the representation singularities which interfere in the use of minimal

rotation representations are solved [21, p. 24].
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2.1.2 Dual Numbers

Dual numbers were introduced by Cli�ord in the nineteenth century, who proposed the dual

unit ε to create a new algebra over the real numbers in which, ε has the following properties:

ε 6= 0

ε2 = 0

In a dual number a = a+ εa′, a is the primary part and a′ the dual part. Both parts are of the

same type of elements. The usual operations of sum, subtraction and multiplication consider the

ε operator and are de�ned [22]. The dual numbers are not a division algebra, hence, the inverse is

only de�ned when a 6= 0 [22].

2.1.3 Dual Quaternions

Dual quaternion are dual numbers in which the primary and dual parts are quaternions. They

are the building blocks of the kinematic control theory used in this work.

A three dimensional translation t = txı̂ + ty ̂ + tzk̂ can be combined with a rotation r to

represent a unit dual quaternion rigid body motion as h = r + 1
2 ε tr [22, ch. 2]. Furthermore, the

unit dual quaternion conjugate is h∗ , r∗ + 1
2 ε(tr)∗. Therefore, a unit dual quaternion represent

rotations and translations simultaneously using 8 parameters while HTMs represent rigid body

motions with the use of 12 free parameters and are also more computationally demanding.

A general dual quaternion is composed of eight elements g = g1 + g2ı̂+ g3̂+ g4k̂+ ε (g5 + g6ı̂+

g7̂+ g8k̂). The vec operator is used to map it into an eight-dimensional column real vector; i.e.,

~g , [g1, g2, g3, g4, g5, g6, g7, g8]
T . Throughout this work, the following matrix

C8 , diag (1, −1, −1, −1, 1, −1, −1, −1) (2.1)

such that

vech∗ =C8vech. (2.2)

Finally, given dual quaternions g1, g2, the Hamilton operators H̄(.),
+
H(.) are transformation

matrices satisfying the following relation [15]:

vec (g1g2) =
+
H(g1)vecg2 =

−
H(g2)vecg1. (2.3)

The set of dual quaternions H⊗ D forms a group under dual quaternion multiplication [15].

Quaternions and dual quaternions are associative and distributive, but non-commutative. The

Hamilton operators are used as a way to describe the multiplication operation of the dual quater-

nion algebra using matrix form which allows to commute the terms [15].
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2.2 Kinematic Modeling, Control and Error Criteria

The �rst steps to mathematically describe the kinematic modeling of rigid body motion ap-

plied to robotic serial manipulators is to group the pose or Cartesian coordinate variables of the

manipulator end e�ector in a vector ~x of size m. Then, the position of the manipulator joints are

grouped in ~θ of size n, where n is the number of degrees of freedom (DOF) of the robot. One of

the ways to solve the kinematic problem is to work in the joint space and �nd

~θ = g (~x) (2.4)

which means how the robot joints ~θ must be set in order that the end e�ector is located at the

position ~x. This is also known as the inverse kinematic problem. Let the search for g begin by

using a already known vector valued function

~x = f (~θ). (2.5)

In (2.5), f is the forward kinematics model (FKM). The FKM can be found for any serial link

robotic manipulator using its Denavit-Hartenberg(DH) parameters [17, 16]. A solution for g would

be to obtain f−1(~x). Yet, the inversion of f is rarely straightforward. Additionally, if ~θ has higher

order than ~x there could be in�nite solutions for this problem. This is the case for robots with

more than six DOF [16] because they usually can reach an arbitrary point in the three dimensional

space with di�erent poses.

The inverse kinematic problem admits closed-form solutions only for manipulators having a

simple kinematic structure. For complex structures it is not possible to relate the end e�ector

pose to di�erent sets of joint variables, or else the manipulator is redundant. The highly nonlinear

relationship between joint space variables and task space variables causes this limitations [16, ch.

3].

Another approach to solve the inverse kinematic problem is to use di�erential kinematics which

represents a linear mapping between the joint velocity and the task space velocities, although it

changes for each joint con�guration. In the pioneer work [23], Whitney di�erentiated (2.5) to

obtain

~̇x =
∂f (~θ)

∂~θ

∂~θ

∂t
, (2.6)

in which

Jw(~θ) ,
∂f (~θ)

∂~θ
=


∂f1(~θ)
∂θ1

· · · ∂f1(~θ)
∂θn

...
. . .

...
∂fn(~θ)
∂θ1

· · · ∂fn(~θ)
∂θn

 , (2.7)

and then

~̇x = Jw(~θ)~̇θ (2.8)

which is a linear relation and Jw is the analytical Jacobian. If m = n and Jw(θ) is full rank, the

basis of kinematic control is obtained as

~̇θ = J−1w (~θ)~̇x. (2.9)
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Equation (2.9) allows to control the robot joints con�guration in order to reach the desired end

e�ector position in the three dimensional space. This happens by feeding the output joint velocities
~̇θ to the robot manipulator as motor speeds, for instance, in the case of a low level controller for

each manipulator joint.

In this approach, linear systems issues are present. If m > n, J−1w (~θ) is not de�ned and (2.9)

could have in�nite solutions. A manipulator is called redundant whenever this occurs. One of the

ways to overcome this problem is by using the Moore-Penrose pseudoinverse, which minimizes the

instantaneous norm of the joint velocities. Another problem of (2.9) is the existence of work-space

singularities. A robot con�guration ~θ is singular if the analytical Jacobian Jw is rank-de�cient.

The issue arises not in the singular con�guration itself, but also its neighborhood. Pseudoinverse

matrices have ill-conditioning near singularities, in which small task-space coordinate reference

velocities may need unreachable velocities in the robot joints. However, redundancy and work-

space singularities will not be the main focus in this work1.

2.2.1 Kinematic Control

The use of (2.9) enables to �nd the velocity of the manipulator joints and obtain a given

velocity of the end e�ector in world coordinates. Nonetheless, it is still needed to �nd the joint

positions for a desired position of the tool in space. First, an open-loop scheme will be presented

to check that, despite it's simplicity, it has no guarantee of convergence, and then, a closed-loop

approach is devised. In [21], Marinho used the following solution proposed in [17]: given the initial

tool position ~x (0), the �nal tool position ~xd and a time frame tf , �nd a reference tool velocity

trajectory ~̇x(t). Therefore, in a computational system, the goal is to control the manipulator joint

velocities with a sampling period T , such that tf/T is an integer. The result of this method is to

evaluate
~̇θ = Jinvw (~θ(t))~̇x (2.10)

a number of tf/T steps. The joints position at each time step can be found by integration

tfˆ

0

~̇θ(t)dt =

tfˆ

0

Jinvw (~θ(t))~̇x(t)dt (2.11)

~θ(t) =

tfˆ

0

Jinvw (~θ(t))~̇x(t)dt+ ~θ.(0) (2.12)

Assuming the tool velocity was constant during the sampling period and applying Euler inte-

gration in (2.12),

~θ(k) =

tf/T∑
l=0

Jinvw (~θ(l))~̇x(l)T + ~θ(0) (2.13)

If an additive perturbation vector ~b(k) is added containing e�ects of variations of the tool

velocity during the sampling interval and the uncertainties and simpli�cations errors from the
1Pseudoinverse matrices will be calculated using the damped least-squares pseudoinverse proposed in [24].
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integration,

~θ(k) =

tf/T∑
l=0

Jinvw (~θ(l))~̇x(l)T +

tf/T∑
l=0

~b(l) + ~θ(0). (2.14)

This perturbation has many external disturbances sources and also the change of Jw(~θ) as ~θ

changes. Thus, (2.14) will not necessarily converge and the tool may not reach ~xd. For this reason,

in [21] Marinho also proposed a closed-loop algorithm. In order to keep a cleaner notation, Jw

will be used in place of Jw(θ). Resuming to the suitable inverse Jinvw and setting ~̇x as a variable

velocity of the tool in the direction of the desired ~xd,

~̇θ = Jinvw [~xd − ~x(t)] (2.15)

~̇θ = Jinvw K[~xd − ~x(t)]. (2.16)

This will force the tool to move with variable velocity in the direction [~xd − ~x(t)], going slower

the closer it is to the desired position. To control the rate of convergence, an arbitrary gain K was

added to (2.15). It can be shown that (2.16) converges for K > 0 [17]. In the discrete case, the

closed-loop velocity and position control algorithm of the robot joints gives

~̇θ(k) = Jinvw K[~xd − ~x(k)] (2.17)

~θ(k + 1) = ~θ(k) + Jinvw TK[~xd − ~x(k)] = ~θ(k) + Jinvw K̃[~xd − ~x(k)]. (2.18)

The gain K̃ = TK enables to see the e�ect of T in the stability of the control loop. For a stable

value of K̃, as T represents the amount of time the system will take to correct itself, a bigger T

should be compensated by a smaller K in order to keep stability. The in�uence of the sampling

time on the controllers parameters will appear later for other controllers used in this work.

Equations (2.17) and (2.18) make use of both the Jacobian and ~x for the general manipulator

case in [16, 17, 25] using HTM or using dual quaternion in [15]. Thus, this closed-loop algorithm

solution for the manipulator inverse kinematics is the basic standard for kinematic control.

2.2.2 Dual Quaternion Kinematic Control

Equations (2.17) and (2.18) may be written with the dual quaternion formulation. Substituting

~x in (2.10) for its dual quaternion representation,

~̇θ = Jinvvec (ẋ) (2.19)

in which ẋ is the generalized velocity of the robot pose, i.e. the dual quaternion representation

of ~̇x. In order to describe correctly the di�erential relation between arm coordinates and world

coordinates, Jw is altered to J εR8×n because of the change to the dual quaternion representation.

J is the analytical Jacobian and can be found algebraically [15]. Although J εR8×n, the maximum

rank of the dual quaternion analytical Jacobian J is 6, as the dual quaternions have eight terms

but two constraints.
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Applying the same procedure to (2.19) in order to obtain the unit dual quaternion formulation

of (2.15) yields
~̇θ = JinvKvec (xd − x(t)) (2.20)

where K is a positive de�nite matrix, xd is the desired pose, and x(t) is the dual quaternion FKM

of the manipulator at time t which can be obtained in [14, Section 2.7.1]. The stability of (2.20)

was proven in Pham's et al work in 2010 [26]. Once again, it is seen that the dual quaternion

FKM can be directly used in the control equation. If HTMs were used, it would be possible to

obtain the FKM of a manipulator, but it would still be necessary to convert it to another minimal

representation to obtain [xd−x(t)]. In [21], Marinho has commented on other control applications

besides pose control using the dual quaternions techniques: tool translation using the translation

Jacobian Jp and tool orientation using the orientation Jacobian Jo [15, p. 77].

It is also possible to obtain the discrete cases (2.17) and (2.18) using the unit dual quaternion

formulation. The formulation with the error [xd − x(k)] were obtained in [26].

~̇θ(k) = JinvKvec[xd − x(k)] (2.21)

~θ(k + 1) = ~θ(k) + JinvK̃vec[xd − x(k)]. (2.22)

2.2.3 Invariant Error Function

As the last mathematical tool of this chapter, it is important to highlight the invariant error

criteria. Since the spatial distance in dual quaternion space is described by xe = x∗xd, also known

as the multiplication by the conjugate, then the invariant error function is given by [27]

e = 1− x∗xd (2.23)

It is seen from (2.23) that when x converges to xd, the spatial di�erence xe tends to 1 and,

hence, the dual quaternion error function e → 0. In other words, the manipulator end e�ector

will reach the desired pose when e is stabilized to 0. The invariant error e also has convergence

properties related to the adopted de�nition. For instance, if the invariant error with respect to

coordinate changes with regard to arbitrary left shifts is considered, that is, xe = x∗xd, and

that both end e�ector pose and desired set point have been transformed by a coordinate change

represented by the unit dual quaternion y,

x
′

= yx

x
′
d = yxd.

The invariant error in the new coordinate system is given by
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e
′

= 1− x
′
e = 1− x

′∗x
′
d

= 1− x∗y∗yxd

= 1− x∗xd

= e.

Therefore, e is invariant with respect to coordinate changes with regard to arbitrary left shifts.

If xe = xx∗d, a similar result is obtained and e is invariant with respect to coordinate changes with

regard to arbitrary right shifts. From the control point of view, the controllers are designed to

asymptotically stabilize the system with the goal of x(t) → xd(t) as t → ∞. In this sense the

invariant error norm results in pose convergence to the desired pose without regard to the robot

base coordinate systems and from coordinate changes [27].

This error form will be used in the unit dual quaternion kinematic controllers implemented in

this work in Chapter 3. As the starting point, the control law (2.20) is derived using the invariant

error. The distance error xd−x is changed to e and, consequently, there are some more operations

in addition to the inverse Jacobian matrix.

2.3 Conclusion

This chapter began with the introduction of dual quaternions. It was seen how to represent

rotations using quaternions and how to describe both translations and rotations with dual quater-

nions. In comparison to the 12 parameters of the HTMs, unit quaternions have 4 parameters and

solve the singularity problem of the rotation matrices parametrization allowing the use of minimal

rotation representations. The last section of the chapter presented the kinematic control basic

theory which will be explored in Chapter 3. It was also shown that the dual quaternions may be

directly used in control laws without the need to convert them to another minimal representation.

For all this reasons, the dual quaternions were chosen as the proper mathematical framework in

this work to implement kinematic controllers in the task-space for robotic manipulators.
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Chapter 3

Kinematic Controllers

This chapter presents a compilation of dual quaternion based kinematic controllers recently

proposed in literature which were implemented in this work for the trajectory control of a com-

pliant anthropomorphic robotic arm. The mathematical tools and kinematic control concepts

introduced in Chapter 2 are used to derive kinematic control laws. The �rst one to be obtained

is a proportional controller similar to the one explained in Section 2.2.2. Afterward it is extended

to a proportional controller with feed-forward term. Then, dual quaternion based H∞ robust

controllers are presented. Lastly, two linear quadratic optimal controllers are devised.

Recalling some concepts presented in Chapter 2, it is known that the forward kinematics model

(FKM) of a serial manipulator robot (that is, the mapping between the n-dimensional vector of

joint positions θ εRn and the end e�ector pose x) can be obtained directly in dual quaternion space

using algebraic manipulations [15]. In addition, the di�erential FKM (i.e., the mapping between

the joint velocities θ̇ εRn and the generalized end e�ector velocity vec ẋ εR8) can be obtained from

(2.19) by multiplying it from the right side by J which yields

vec ẋ = Jθ̇, (3.1)

where J εR8×n is the manipulator Jacobian (which is also found algebraically [15, 14, Section

2.7.2-2.7.3] and depends on robot joints con�guration).

3.1 Proportional Controller

Since the manipulator di�erential kinematics (3.1) is a simple linear mapping, it is common

practice to design closed-loop controllers based on the pseudoinverse of the Jacobian J. Propor-

tional controllers can exponentially reduce the error between the current pose x and a desired pose

xd.

In Section 2.2.2, a proportional controller was obtained in (2.21) using the [xd − x(k)] error1.

1Although this control law can be easily derived, it must be noted that when representing rigid motions using

dual quaternions, the reverse motion operation in unit dual quaternion space is not given by a subtraction, but by

the multiplication by the conjugate.
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Another way of reaching the proportional controller is to apply a least square minimization to∥∥∥vec e− J~̇θ
∥∥∥2

[28], and obtain the following control law
.

~θ = KJ†vec e, (3.2)

where K is a positive de�nite matrix and J† is the pseudoinverse of J.

Now, the proportional controller will be derived using invariant error form to obtain the result

of [27]. Assuming a time varying pose trajectory x and a desired pose trajectory xd with constant

velocity, it is possible to di�erentiate the invariant error e = 1− x∗xd and obtain

ė = −ẋ∗xd − x���
0

ẋd = −ẋ∗xd. (3.3)

Then, applying the vec operator of (2.3) to ė, considering that e , vec (e) and ė = vec (ė),

hence

ė = vec (−ẋ∗xd) =
−
H(xd)vec (−ẋ∗). (3.4)

From (2.1) and (2.2), it is seen that

ė = −
−
H(xd)C8vec (ẋ) (3.5)

where it is possible to use the di�erential FKM from (3.1) to obtain

ė = −
−
H(xd)C8J~θ. (3.6)

De�ning

N ,
−
H(xd)C8J, (3.7)

substituting it in (3.6) and solving for ~̇θ,

ė = −N~̇θ = vec (ė)

~̇θ = −N†vec (ė),

where N† is the pseudoinverse2 matrix. Finally, an arbitrary gain k is added in order to control

the rate of convergence. From control theory, for an exponential decay, it is considered vec (ė) =

−k vec(e), k εR+. Hence, the result of [27] is achieved for the dual quaternion based proportional

controller (K controller) given by K = kI, where k εR+

~̇θ = N†Kvec e.
(3.8)

The arbitrary gain matrix K in (3.8) controls the rate of convergence. It is shown in [16] and

in [27] that (3.8) converges for K > 0 and that it is stable.

2As it was mentioned in chapter 2, pseudoinverse matrices are being calculated using the damped least-squares

pseudoinverse proposed in [24].
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3.1.1 Decoupled Proportional Controller

In addition to the classic proportional controller approach, a proportional controller which

decouples rotation and translation of the end e�ector was also derived. Since there is no desire to

control both orientation and position of the end e�ector simultaneously in this method and the

goal is mainly to follow a desired trajectory, this would be the most simple way to control the end

e�ector position. Comparing it with the proportional controller (3.8), the control law would be

the same, but there would be modi�cations in the Jacobian J and in the error vector ~e.

First, instead of using the analytical Jacobian, J is redesigned. The translation Jacobian Jp

is obtained from J and then merged with the rotational Jacobian [15, p. 77]. A new Jacobian is

obtained in which the �rst four rows are related with the translation and the last four rows are

related to orientation.

The error criteria is also modi�ed. The �rst four rows of the error vector ~e are the translation

error given by the di�erence of the translational part of xd and of x derived in [15, p. 29], while

the last four rows are the invariant error norm of the primary part of xd and x.

This controller is the least complex one in comparison to all the other controllers in this

work. However, it does not consider the orientation in which the end e�ector follows the desired

trajectory. In other words, the end e�ector pose may reach the desired end e�ector pose with

the wrong orientation, hence, the orientation will be corrected which may incur in pose error

then the translational and rotational error may not converge smoothly and simultaneously to zero.

Therefore, some issues may arise when this controller is used in practical applications.

One of them is that the orientation of the end e�ector tool may be wrong in order to execute the

desired task. For example, consider that a robot must weld a electronic component on a computer

motherboard. The end e�ector should approach the motherboard from a speci�c side to reach the

desired position and start welding. It can not approach it from the other side, even though the

end e�ector would reach the same position.

The robot arm con�guration will not be restricted during the trajectory, only its end e�ector

position that must follow the desired trajectory. Therefore the controller may generate robot

con�gurations ~θ along the trajectory which will bring the robot to a singular pose. Hence, it is

possible to occur damages to the robot due to robot joint limitations. Furthermore, this work uses

the Meka robot which is a anthropomorphic robot manipulator with joint limitations similar to

the human arm.

An experimental evaluation for this controller was done in [29]. It can be seen that the de-

coupled controller does not succeed in following a desired trajectory with a desired orientation.

Moreover, it has higher end e�ector velocities and accelerations peaks along the trajectory and

as a consequence the joints control e�ort is also higher. For all the reasons mentioned in this

subsection, the decoupled proportional controller will not be explored in details in this work.
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3.2 Proportional Controller with Feed-forward Term

The proportional controller yields an easy to implement and e�cient solution for setpoint

control. Still, it neglects the in�uence of a moving reference and the pose variation along the

trajectory. To better address the context of a end e�ector tracking a desired trajectory instead of

a �xed point, it is added a feed-forward term (K+FF) to the proportional controller (3.8).

Considering a time-varying reference xd = xd(t), then the derivative of (2.23) is given by

ė = −ẋ∗ẋd − x∗ẋd. (3.9)

Applying the vec operator to (3.9), it is obtained

ė = vec (−ẋ∗xd)− vec (x∗ẋd). (3.10)

Using (2.2), (2.3), (3.1) and (3.7) in (3.10) yields

ė = −H̄(xd)vec ẋ∗ − vec (x∗ẋd)

= −H̄(xd)C8J~̇θ − vec (x∗ẋd)

= −N~̇θ − vec (x∗ẋd).

(3.11)

To obtain an exponentially stable closed loop system, it is de�ned the following dual quaternion

based proportional controller with the feed-forward term, solving (3.11) for ~̇θ,K = kI, in which k εR+

~̇θ = N†(Ke− vecx∗ẋd).
(3.12)

Hence, ė = ke where k de�nes the convergence rate of an exponential error decay. Since the

end e�ector pose must follow a desired trajectory instead of a �xed point, the feedforward term

works as a feedback term which compensates the pose and velocity variation along the trajectory.

3.3 Dual Quaternion Based Robust H∞ Kinematic Control

The FKM maps the rigid body joints con�guration ~θ εRn to the end-e�ector pose con�guration
xE which can be given by

xE = x0
1 x1

2 ...x
n−1
n , (3.13)

and the di�erential FKM which maps the robot joints velocities ~̇θ εRn to the end-e�ector velocity

vec ẋE εR8 given by ẋE =
∑n−1

i=0 x0
i ẋii+1 xi+1

n . It is known that xii+1 is a function of θi, i.e. xii+1 =

f
i
(θi), where f i : R → Spin(3) n R3, therefore ẋii+1 = f

′

i
(θi) = ωi θ̇i f i (θi) with ωi εH0 ⊗ D.

As long as the dual quaternion di�erential FKM is well de�ned within the unit dual quaternion

group, the di�erential FKM is described in [14, p. 46] as

ẋE =
1

2

n−1∑
i=0

j
i
θ̇i xE

=
1

2
vec6 (Jω θ̇) xE , (3.14)
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where vec6 (Jω θ̇) describes the end-e�ector twist in dual quaternion space [14, p. 37], ~θ =

[θ0, ..., θn−1]
T is the measured vector of joints variables and Jω is the Jacobian [14, p. 36-37].

The end-e�ector pose con�guration (3.13) describes the system model in an ideal environment.

However, in realistic scenarios, the system is subjected to a lot of external in�uences. It is desir-

able to take into account the e�ects of di�erent disturbances over the system. The trajectory of

the end-e�ector may be a�ected by exogenous disturbances, inaccurate robot arm parameters and

uncertainties in the FKM due to unmodeled viscosity and friction. In order to improve the kine-

matics accuracy and control performance, Figueredo proposed in [14, p. 46-47] a more complete

and accurate kinematics description which considers twist and pose con�guration uncertainties.
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In his thesis, Figueredo used the following de�nitions in [14, p. 46-47] for the

two mentioned types of uncertainties.

Twist uncertainties υω take into account unmodeled twists describing mul-

tiple sources of exogenous disturbances, unmodeled time-varying uncertainties

and forces acting directly at the pose of the end-e�ector (e.g. gravity or inter-

action with the environment) or at di�erent links from the serial manipulator,

such that

ẋE =
1

2

n−1∑
i=0

j
i
θ̇i xE +

1

2
υωxE . (3.15)

The di�erential equation is well-posed as υω , υω + ε υ
′
ω, with υω, υ

′
ωεH0, is

in the Lie algebra of Spin (3) n R3.

Pose con�guration uncertainties considers unforeseen inaccuracies within

model parameters and time-varying uncertainties and disturbances on the co-

ordinate base of the manipulator or at the reference frame. They may be

described as an unknown transformation in the FKM as

x = xEc, (3.16)

where c ε Spin (3) n R3 and x denotes the real con�guration of the disturbed

end-e�ector. In this sense and with regard to the kinematics of the unknown

pose disturbance, ċ = 1
2cυ̃c, the di�erential kinematics yields

ẋ = ẋEc + xE ċ

=
1

2

n−1∑
i=0

j
i
θ̇ixEc +

1

2
υωxEc +

1

2
xEcυ̃c

=
1

2
(

n−1∑
i=0

j
i
θ̇ix + υωx + xυ̃c) (3.17)

where υ̃c εH0 ⊗ D. To improve the readability, υ̃c is rede�ned with the adjoint

transformation, υ̃c , x∗υcx which does not a�ect the induced norm, ‖ υc ‖=‖
υ̃c ‖, such that,

ẋ =
1

2
(

n−1∑
i=0

j
i
θ̇ix + υωx + υcx).

The goal of the robust H∞ kinematic controller is to bring the manipulator to a desired con�gu-

ration pose reducing the impact of uncertainties and disturbances and keeping stability. Therefore

the noise-to-output in�uence should reduce while the system remains internally stable.

In Chapter 2, the spatial di�erence in the dual quaternion space invariant to left shifts was

de�ned as xe = x∗xd. For the H∞ kinematic controllers, the invariant to right shifts error is used

xe = xx∗d = re + ε
1

2
pere, (3.18)
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where re denote the orientation error in Spin (3) and pe the position error in H0. Hence, the

invariant dual quaternion error function (2.23) using (3.18) will be

e = 1− xe = 1− xx∗d = e + εe
′
. (3.19)

Therefore, the spatial di�erential kinematics for xe results in

ẋe =
1

2
(
n−1∑
i=0

j
i
θ̇ix + υωx + υcx)x∗d

=
1

2
(

n−1∑
i=0

j
i
θ̇i + υω + υc)xx∗d

=
1

2
(

n−1∑
i=0

j
i
θ̇i + υω + υc)xe. (3.20)

The uncertainties and disturbances considered in the H∞ sense assume that

υω, υ
′
ω, υc, υ

′
c ε L2[0,∞), (3.21)

where L2 is the Hilbert space of all square-integrable functions. The induced norm of the map

υ → z, where z εL2[0,∞) is the desired output state [30], results in the gain that de�nes the H∞
norm and represents the supremum of the noise ampli�cation upon the system output

sup{‖ z ‖2
‖ υ ‖2

, υ ε L2 \ {0}}, (3.22)

which means the worst-case in�uence of the noise over the controlled output. In other words, if, for

instance, we consider z as the integral norm of the invariant error along the trajectory, the amount

of uncertainty υ to which the system is subjected to will limit the error. The H∞ norm does not

require inferences about the statistics of the uncertainties and noises. This is an advantage when

working in the space of rigid body transformations because probability density functions are in

general not well de�ned for non-Euclidean spaces [14, p. 48].

To solve the problem of minimization of (3.22), Figueredo [14] introduced the variable γ which

upper bounds the induced norm

‖ z ‖2≤ γ ‖ υ ‖2 . (3.23)

Therefore, the smaller the value of γ, the smaller the in�uence of the uncertainties υ over z

(i.e. the integral norm of the error). In this sense, γ allow to reduce the e�ect of the disturbances

υ on the output z. The aim of the H∞ control is to reduce the noise-to-output upper bound γ

while keeping the system internal stability.

3.3.1 H∞ Control in Dual Quaternion Space

Figueredo proposed in [14, ch. 3] a setpoint controller and a trajectory tracking controller for

robot arms. Both controllers were designed to ensure H∞ performance to the system. Therefore,

they take into account (3.21), (3.22) and (3.23) which considers the worst-case in�uence of the
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noise over the controlled output (i.e. robot joint velocities) and the noise-to-output upper bound

γ.

In robotic manipulators the actuation is done in the joint-space. Nonetheless, it is more natural

for humans to devise jobs for robotic arms in the task-space. Hence, the H∞ controller also has

another interesting advantage. Due to dual quaternion algebra properties, the control laws were

derived in the task-space and exploited to the joint velocity space. Therefore, the manipulator

tasks may be de�ned in the task-space. Moreover, there is a intuitive connection between control

e�ort in task-space, the performance e�ects over the end-e�ector trajectory and the in�uence of

uncertainties and disturbance which eases the controller parameter selection.

The invariant error considers coupled orientation and translation in (3.19). Hence, the orien-

tation and translational errors are de�ned respectively as

O (e) , 1− re, (3.24)

T (e) , pe. (3.25)

The orientation error is obtained from the primary quaternion part of (3.19), that is, O (e) = e

and the translational error is T (e) = −2e
′
(1− e∗) [14, ch.3].

To describe the robust performance in the H∞ sense, in terms of the dual quaternion error

(3.19) and the translational and orientation error, Figueredo used the following de�nition based

on [30] .

De�nition 3.1 (De�nition 3.3 in [14, p. 62]) For prescribed positive scalars

γO1 , γO2 , γT1 , γT2 , the robust control performance is achieved in the H∞ sense

if the following hold

1. The error (3.19) is exponentially stable for υω ≡ υc ≡ 0;

2. Under the assumption of zero initial conditions, the disturbances in�u-

ence upon the orientation and translational errors is attenuated below a

desired level

‖ O (e) ‖2 ≤ γO1 ‖ υω ‖2 +γO2 ‖ υc ‖2 ∀ υω, υc ε L2[0,∞) \ 0; (3.26)

‖ T (e) ‖2 ≤ γT1 ‖ υω ‖2 +γT2 ‖ υc ‖2 ∀ υω, υc ε L2[0,∞) \ 0. (3.27)

3.3.2 Dual Quaternion H∞ Controllers

Figueredo designed the controllers ensuring H∞ performance for control and tracking problems

without decoupling the rotational and translational errors. To solve the problem that traditional

H∞ theory does not deal with multiplicative noises as in (3.20), the di�erential forward kinematics
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(3.20) was rewritten as

xe =
1

2
(
n−1∑
i=0

j
i
θ̇i + υω + υc)xe (3.28)

=
1

2
(vec (Jω ~̇θ) + υω + υc)xe, (3.29)

where ~θ = [θ0 ... θn−1]
T is the measured vector of joint variables and Jω = [vec j

0
... vec j

n−1] is the

analytical Jacobian [14, p. 36-37].

The robust exponential stabilization of the dual quaternion error function (3.19) led to the

task-space controller that yields the following joint velocity inputs

~̇θ = J+
ω [KOvec

T
3 (Im(O (e)) −KT vec

T
3 (T (e))]T , (3.30)

where e εH⊗D is de�ned in (3.19), Ko, KT εR3×3 are respectively the orientation and translation

gain matrices, J+
ω is the pseudoinverse of Jω, and the transformation vec3 : H0 → R3 uses the

isomorphism from H0 and R3 to map elements from Spin (3) to the Euclidean vector space. The

closed loop system stability was veri�ed in [14, p. 63-64]. In addition to the task-space controller

in (3.30), Figueredo also de�ned the following theorem3.

Theorem 3.1 (Theorem 3.7 in [14, p. 63]) For prescribed positive scalars γO1 ,

γO2 , γT1 , γT2 , the closed-loop system (3.29) with task-space controller that

yields joint velocity inputs as de�ned in (3.30) with

KO ≥
√

2
√
γ−2O1

+ γ−2O2
I and

KT ≥
√
γ−2T1 + γ−2T2 I

achieves exponential stability with H∞ disturbance rejection in the sense of

De�nition 4.1 with minimum control e�ort.

In order to use kinematic controllers in practical applications, the proportional controller with

feed-forward term was derived in equation (3.12). Similarly, the task-space controller (3.30) is an

e�cient solution for setpoint control, but in the case of having time-varying reference trajectories,

it is interesting to consider a more general scenario. Figueredo solved this problem in [14, ch. 3]

considering the desired end-e�ector trajectory over time is described by the �rst order di�erential

kinematic equation of a rigid body,

ẋd =
1

2
ωdxd, (3.31)

where ωd is the twist for the desired pose in inertial frame. Therefore, for varying pose con�gura-

3Avoidance techniques for kinematics singularities were not the main goal of this work. The Jacobian Jω is

assumed to be well-posed. Pseudoinverse matrices were calculated using the damped least-squares pseudoinverse

proposed in [24].
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tions, the error di�erential kinematics from (3.20) can be rewritten as

ẋe = ẋx∗d + xẋ∗d

=
1

2
(vec6(Jω

~̇θ)x + υωx + υcx)x∗d +
1

2
xx∗dω

∗
d

=
1

2
(vec6(Jω

~̇θ) + υω + υc)xx∗d +
1

2
xx∗dω

∗
d

=
1

2
(vec6(Jω

~̇θ) + υω + υc)xe −
1

2
xeωd. (3.32)

Hence, from De�nition 3.1 and Theorem 3.1, the following H∞ tracking control solution was

obtained and its stability proved in [14, p.65].

Theorem 3.2 (Theorem 3.8 in [14, p. 65]) For prescribed positive scalars γO1 ,

γO2 , γT1 , γT2 , the task-space controller yielding joint velocity inputs

~̇θ = J+
ω [KOvec

T
3 (Im(O (e)) −KT vec

T
3 (T (e))]T + J+

ω (vec6(xeωdx
∗
e)) (3.33)

with the feed-forward term vec6(xeωdx
∗
e) based on the desired end-e�ector twist

ωd described in (3.31), and control gains

KO ≥
√

2
√
γ−2O1

+ γ−2O2
I and

KT ≥
√
γ−2T1 + γ−2T2 I

ensures exponential H∞ tracking performance with disturbance rejection in the

sense of De�nition 3.3.1 with minimum control e�ort for the closed-loop system

(3.19) and (3.32).

In situations where it is di�cult to decouple both sources of uncertainties the induced norm

upper bound variable γ may be set the same, that is, γT = γT1 = γT2 and γO = γO1 = γO2 .

3.4 Linear Quadratic Optimal Control (LQR)

In [26], the stable proportional gain controller was derived, but it showed an intrinsic delay

in the presence of time-varying trajectories. A similar controller was also obtained in [27] and

presented in this work in (3.8). To reduce the delay, a feed-forward term was added to the controller

as in (3.12). Both solutions exceeds in stabilizing the trajectory of the rigid body. Nonetheless,

they do not take into account the control e�ort which inevitably grows along the trajectory time

derivative. In this sense, they may lead to higher velocity and acceleration peaks in the manipulator

end-e�ector trajectory and as a consequence higher joint velocities. For these reasons, Figueredo,

Marinho and Adorno proposed in [18] a dual quaternion error mapping to an R8 manifold solution

to optimize the task-space control trajectory and velocity. Later on, with the goal of increasing

the geometric signi�cance of the controller and ease the parameter selection, Figueredo derived in

26



[14, ch. 4] an optimal criterion to optimize the dual quaternion error exponential convergence rate

in the dual quaternion space.

3.4.1 Optimal Dual Quaternion Based Controller in R8 Manifold

In [18], the optimal state-feedback is derived and its computation is discussed. It is shown

that the kinematic control with a time-varying reference can be described as a linear time-varying

system with an additive perturbation term. Instead of considering ~̇θ the input signal for the

system, it can be considered as input the end e�ector velocity u using the mapping ~u = −N˙̃θ

where N ,
−
H(xd)C8J as in (3.7). This allows the optimization to be done in task-space variables.

Consequently, there are the advantages of not requiring an external inverse kinematics solution

and of making direct use of the available robot low level controller instead of redesigning them.

The LQR exploits future knowledge of the desired trajectory, therefore, it calculates the control

signals o�ine for a given desired trajectory. With time varying x and xd, the error derivative is

given by (3.9). Hence,
e = 1− x∗xd

=⇒ ex∗d = x∗d − x∗

=⇒ x∗ = x∗d − ex∗d.

(3.34)

Using the vec operator on both sides of (3.9) and applying (3.34) to (3.9) yields

ė = −H̄(xd)C8vec ẋ + H̄(x∗dẋd)e− vecx∗dẋ. (3.35)

By de�ning A , H̄(x∗dẋd) and ~c , −vecx∗dẋ, using (3.1) and (3.7), it follows that

~̇e = −H̄(xd)C8J
˙̃θ + A~e+ c (3.36)

~̇e = A~e−N~̇θ + ~c. (3.37)

Then, the goal is to �nd the optimal controller for the a�ne time-varying system

˙̃e(t) = A(t)~e(t) + ~u(t) + ~c(t) (3.38)

where ~u(t) = −N˙̃θ(t).

Therefore, from the error point-of-view, it is possible to solve the tracking problem for a contin-

uous trajectory using a �nite horizon LQR applied to a disturbed system, as the error disturbance

caused by the time-varying trajectory is given by ~c(t). Other modeled continuous disturbances can

also be grouped into ~c(t) and used in the same solution.

Consider that the manipulator has to track the trajectory during t ε [0, tf ]. Then, it is wanted

to minimize the following cost function

F =
1

2
~e(tf )TS~e(tf ) +

1

2

tfˆ

0

(~eTQ~e+ ~uTR~u)dt, (3.39)
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given the matrices S,Q(t) ≥ 0 and R(t) > 0 with S, Q, R εR8×8. The matrix S is the weight of

the �nal error norm, the time-varying matrix Q weighs the error cost along the trajectory, and the

time-varying matrix R weighs the control e�ort in terms of end e�ector velocity norm. As long

as N is well conditioned, an increase in R will also cause an overall decrease in joint velocities.

The optimization of (3.39) leads to an optimal feedback without excessive expenditure of control

energy while keeping the error ~e(t) near zero [31].

To solve the optimization problem, it is introduced the costate variable p, which acts as a

Lagrange multiplier for the state equations. Then, using the equality constraint de�ned in (3.37),

the function (3.39) can be rewritten as

H = F +

tfˆ

0

pT (A~e+ ~u+ ~c− ~̇e)dt. (3.40)

Considering [32], distribution theory applied to optimality conditions, and ∂H/∂~u = 0 and

∂H/∂~e = 0 as necessary conditions for the optimal trajectory, then,

∂H/∂~u = 0 =⇒ R~u+ ~p = 0 =⇒ ~u = −R−1~p

∂H/∂~e = 0 =⇒ Q~e+ AT ~p+ ~̇p = 0

=⇒ ~̇p = −(Q~e+ AT ~p)

(3.41)

The term ∂2H/∂2~u must be positive to minimize (3.40), which requires R > 0. The system

and proposed cost function allow the use of the costate function [32]

~p(t) = P~e+ ~ξ, (3.42)

where P is a time-varying proportional gain and ~ξ is a weighted feed-forward term. The derivative

of (3.42) is given by

~̇p = Ṗ~e+ P~̇e+ ~̇ξ (3.43)

Applying (3.42) in (3.41) and using the result in (3.37), and also substituting (3.42) in (3.41),

the results are applied to (3.43). It is also considered that (3.43) must hold for any choice of initial

state ~e and that both P and ~ξ do not depend on the initial error, it is needed then simultaneouslyṖ = −PA−ATP + PR−1P−Q

~̇ξ = −AT ~ξ + PR−1~ξ −P~c.
(3.44)

where ~u(t) = −R−1(P~e+ ~ξ).

The system (3.44) is solved by �nding the boundary conditions using the �nal time, tf , of the

trajectory. Set ~ξ(tf ) = 0 to �nd the �rst boundary condition. From (3.42), with ~ξ(tf ) = 0, it is

obtained ∂H/∂~e(tf ) = 0 which yields P(tf ) = S. It is important to note that A , H̄(x∗dẋd) for

all t. Hence, the di�erential Ricatti equation P(t) can be numerically solved backwards in time.

As ~c , −vecx∗dẋ is also known for all t and, with the solution of P(t), ~ξ(t) can be found by also

solving it backwards in time. Therefore, from (3.41) and (3.42) the optimal control is given by
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~u(t) = −R−1(P~e+ ~ξ). Applying as joint velocities it is obtained the dual quaternion LQR based

controller in R8 manifold [18]
~̇θ = N†R−1(P~e+ ~ξ), (3.45)

3.4.2 Optimal Quadratic Controller in Dual Quaternion Space

Motivated by the results obtained in [18], Figueredo derived an optimal control law in the dual

quaternion space. The controller has the advantage of having a explicitly geometric signi�cance

and a well-de�ned map between the range space of the dual quaternion error dynamics to the

space where the actuation takes place. Furthermore, it yields a more intuitive understanding on

the performance in�uence over the end-e�ector trajectory and eases the implementation process.

On the other hand, there are highly and complex nonlinearities within the di�erential coupled

kinematics in the end-e�ector dual quaternion space.

For this controller, as in the case of the H∞ robust controllers, the following spatial di�erence

in the dual quaternion space was adopted

xe = xx∗d = re + ε
1

2
pere, (3.46)

with a time-varying reference trajectory, that is, a tracking system, the spatial di�erence kinematics

is given by

ẋe = ẋx∗d + xẋ∗d (3.47)

where the end-e�ector di�erential kinematics is de�ned in (3.14) and the desired end-e�ector

trajectory over time is given by the �rst order kinematic equation of a rigid body in equation

(3.31) with ωd being the twist of the desired pose in inertial frame. Applying (3.14) and (3.31) to

the spatial di�erence kinematics in (3.47) results in

ẋe =
1

2
vec6(Jω

~̇θ)xe −
1

2
xeωd, (3.48)

where ~θ = [θ0 ... θn−1]
T is the measured vector of joint variables and Jω = [vec j

0
... vec j

n−1] is the

analytical Jacobian [14, p. 36-37].

Although solutions are possible [33, Prop. 2.1], the spatial di�erence kinematics equation shows

the complexity and nonlinearities involved in �nding solutions in the real space for ~̇θ such that

(3.48) remains well-posed.

In order to solve the optimal problem, the following dual quaternion based task-space controller

with joint velocity vector inputs was assumed in [14, p. 83]

~̇θ = J+
ω [uc + vec6(xeωdx

∗
e)], (3.49)

where

uc = [KOvec
T
3 (Im(re))

1

2
KT vec

T
3 (pe)]

T , (3.50)

and J+
ω is the pseudoinverse of Jω, KO and KT are real valued 3×3 matrices and the transformation

vec3 : H0 → R3 de�nes the isomorphism mapping fromH0 and R3. If Jω is well de�ned, the solution
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is always in the range space of Jω. From [14, p. 36], it is possible to de�ne a dual quaternion

Jacobian that maps changes in the n-joint con�guration to the end-e�ector twist ωE , that is, a

mapping of the form Rn 7→ H0 ⊗ D from the n-joint con�guration velocities to the end-e�ector

twist

ωE = Jω ~̇θ, (3.51)

hence,
~̇θ = J+

ωωE (3.52)

and comparing (3.49) with (3.52), it is seen that

ωE = [uc + vec6(xeωdx
∗
e)]. (3.53)

The spatial di�erence in the dual quaternion space was de�ned as xe = xx∗d in (3.46) and the

�rst order di�erential kinematic of a rigid body is ẋ = 1
2ωx with ẋ∗ = 1

2x∗ω∗. Hence, the error

spatial di�erence kinematics (3.47) may be written as

ẋe = ẋx∗d + xẋ∗d

=
1

2
ωxx∗d + x

1

2
x∗dω

∗
d

=
1

2
ωxe +

1

2
xeω

∗
d

=
1

2
ωxe −

1

2
xeωd. (3.54)

Applying (3.53) in (3.54) and after some manipulation, the closed-loop spatial di�erence kine-

matics yields

ẋe =
1

2
vec6(uc)xe. (3.55)

In order to obtain a dual quaternion exponentially stable controller, the following theorem was

de�ned and its exponential stability was veri�ed in [14, p.83-84].

Theorem 3.3 (Theorem 4.2 in [14, p. 83]) The closed-loop system (3.48)

with dual quaternion task-space controller (3.49)-(3.50) achieves exponential

stability with negative de�nite matrices KO and KT . Moreover the convergence

decay is de�ned by

d

dt
‖ vec3{Im(re)} ‖2 ≤ vecT3 {Im(re)}KOvec3{Im(re)},

d

dt
‖ vec3{Im(pe)} ‖2 ≤ vecT3 {pe}KT vec3{pe}. (3.56)

To solve the complex nonlinearities from (3.48), the exponentially stable controller (3.49)-(3.50)

and Theorem 3.3 were used to optimize the exponential gains KO and KT in the algebra of unit

dual quaternions. The optimization of the exponential gains was performed at the tangent space of
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the dual quaternion task-space. They are then mapped to the geodesic direction for rotation and

translation yielding control actions along the geodesic directions for orientation and translational

errors.

In this sense, the goal was to optimize the error dynamics and control output vector described

in the tangent space as

ė = u, (3.57)

where u must satisfy the following constraint

u = diag (KO, KT )e, (3.58)

and the goal is to minimize the cost function

F =
1

2
~e(tf )TS~e(tf ) +

1

2

tfˆ

0

(~eT (τ)Q~e(τ) + ~u(τ)TR~u(τ))dτ, (3.59)

given the matrices S,Q(t) ≥ 0 and R(t) > 0 with S, Q, R εR6×6. The matrix S is the weight of

the �nal error norm, the time-varying matrix Q weighs the error cost along the trajectory, and the

time-varying matrix R weighs the control e�ort in terms of end e�ector velocity norm. As long as

Jω is well conditioned, an increase in R will also cause an overall decrease in joint velocities. The

optimization of (3.59) leads to an optimal feedback in unit dual quaternion tangent space without

excessive expenditure of control energy while optimizing the exponential convergence of the dual

quaternion error function.

After solving the optimization problem, Figueredo obtained the following dual quaternion based

task-space controller for the closed loop system (3.48)-(3.50)

~̇θ = J+
ω [uc + vec6(xeωdx

∗
e)]

uc = −R−1P(t)e (3.60)

Ṗ(t) = PR−1P−Q. (3.61)

The boundary conditions yields P(tf ) = S. Therefore, the di�erential Riccati equation (3.61)

can be solved backwards in time. Theorem 4.3 in [14, p. 86] gives the dual quaternion task-space

controller gain matrices de�nition.

3.5 Conclusion

The third chapter of this work recalled the fundamental di�erential FKM equation described in

Chapter 2 in order to derive the kinematic controllers. The �rst section derived the proportional

controller using the invariant error form. However, the proportional controller is not concerned

with a moving trajectory reference. Hence, in the second part of the chapter, a feed-forward term

was added to the proportional controller and a new control law result was reached. Nonetheless,

both controllers do not take into account uncertainties and exogenous disturbances which are

present in most practical applications.
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With this in mind, two dual quaternion based robust H∞ kinematic controllers were presented.

They use a more complete and accurate kinematics description yielding a controller which consider

external in�uences in more realistic scenarios. All this controllers results are bounded to the

in�uence of gain values which acts mainly on the trajectory error and may lead to higher end

e�ector velocity peaks and, therefore, greater joints control e�ort along the trajectory. In this

sense, they do not allow to adjust separately joint velocities and trajectory error.

Thus, two linear quadratic optimal controllers were presented in which it is possible to reach

a balance between joint velocities (i.e. control e�ort) and trajectory error by setting two gain

matrices R and Q. The main goal of this work is to implement and evaluate kinematic controllers

on compliant manipulators to be used in human-robot interaction environments. Then, controllers

which enable to reach a trade-o� between trajectory error and end e�ector velocities enables to

make manipulators move slower within the accepted error criteria.

Table 3.1 presents an overview of the controllers equations.

Table 3.1: Kinematic controllers equations overview.
Controller Equation

Proportional

(K)

K = kI, where k εR+

~̇θ = N†Kvec e

Proportional

with

feedforward

term (K+FF)

K = kI, in which k εR+

~̇θ = N†(Ke− vecx∗ẋd)

LQR in R8

Ṗ = −PA−ATP + PR−1P−Q

~̇ξ = −AT ~ξ + PR−1~ξ −P~c

~̇θ = N†R−1(P~e+ ~ξ)

LQR in DQ ~̇θ = J+
ω [uc + vec6(xeωdx

∗
e)]

uc = −R−1P(t)e

Ṗ(t) = PR−1P−Q

H∞

(HIR)

~̇θ = J+
ω [KOvec

T
3 (Im(O (e)) −KT vec

T
3 (T (e))]T

KO ≥
√

2
√
γ−2O1

+ γ−2O2
I

KT ≥
√
γ−2T1 + γ−2T2 I

H∞ with

tracking term

(HIRT)

~̇θ = J+
ω [KOvec

T
3 (Im(O (e)) −KT vec

T
3 (T (e))]T + J+

ω (vec6(xeωdx
∗
e))

KO ≥
√

2
√
γ−2O1

+ γ−2O2
I

KT ≥
√
γ−2T1 + γ−2T2 I
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Chapter 4

Development and Implementation

The further development of techniques to control robots require not only a strong mathematical

background, but also testing them in simulations and in real robots in order to check their usability

in practical applications. This chapter describes the tools used, the framework developed to test

the kinematic controllers and the programming libraries used to implement the dual quaternion

kinematic controllers. The �rst section introduce the Virtual Robot Experimentation Platform

(V-REP) simulator. Then, the Meka Robotics robot and some of its capabilities are presented.

Afterward, the Robotics Operating System (ROS) is mentioned and the ROS computation graph

of nodes and topics used in this work is shown and explained. In the next section, the DQ Robotics

and Eigen libraries are introduced as programming tools to implement the mathematical operations

of dual quaternion based kinematic control. Lastly, the programming framework developed in this

work is explained and a brief introduction on how to start working with the robot is done.

4.1 Virtual Robot Experimentation Platform (V-REP)

Robotic systems make use of sensors, actuators and controllers. In order to become functional,

they require fundamental tools and a strong foundation on kinematics, dynamics, motion plan-

ning, computer vision and control techniques [16]. Moreover, each robot or machine in a robotic

application environment must often be able to deal with each one of these �elds. Therefore, a

general-purpose robot simulator needs to integrate them well and make possible to run everything

simultaneously.

The Virtual Robot Experimentation Platform (V-REP) from Coppelia Robotics1 is a robot

simulator. V-REP main goal is to unify all the necessary computational demands for complex

robotic system simulation scenarios into a versatile and scalable framework. Therefore, it uses a

distributed control architecture [34].

As other robot simulation platforms, for instance OpenHRP [35], Gazebo [36] and Webots [37],

V-REP o�ers lots of scene objects: joints, shapes, proximity sensors, vision sensors, force sensors,

paths and so on. However, while many simulators o�er similar functionalities, not all of them

1http://www.coppeliarobotics.com
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provide di�erent options of programming techniques and their simulation models are more di�cult

to port between hardware or platforms.

V-REP allows the user to choose among various programming techniques simultaneously and

even combine them [34]: embedded scripts in Lua, add-ons for customization or porting, plug-ins

to interface to speci�c hardware, ROS and remote API clients via socket communication. In the

case of this work, it is being used a C++ ROS node to exchange data with V-REP.

For this work, V-REP is being mainly used to test the kinematic controllers in robot manip-

ulators before running them on the real robot. This approach to the development of controllers

is bene�cial to the robot. It allows to check for sudden stability problems in controllers due to

numerical conditioning, numerical drifting and unexpected issues. Therefore it prevents incurring

in damages to the real robot. The virtual model of a Kuka LBR iiwa 7 R800 industrial robot

(Figure 4.1) was used in this work.

Figure 4.1: Kuka LBR iiwa 7 used for simulations in V-REP

4.2 A2 Arm from Meka Robotics

In a robotic simulation environment it is possible to test the numerical stability of the controllers

for robotic manipulators. It also enables to check for sudden instabilities due to the robot dynamic

model, the in�uence of gravity and so on. However, it cannot be fully guaranteed that the result

of the control algorithm will have the same behavior in a real robot only by running simulations.

Therefore, the kinematic controllers were tested in a compliant robot arm.

The compliant anthropomorphic robotic manipulator A2 Arm from Meka Robotics (acquired by

Google), which is available at the Robotics and Automation Laboratory (LARA) at the University

of Brasília (UnB) (Figure 4.2), was used as test platform. From now on, the robot manipulator will

be referred as Meka. Recalling that the goal of this work is to implement and evaluate kinematic
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controllers on compliant robots, the Meka robot suits very well the requirements.

Figure 4.2: Meka robot available at LARA at UnB (A2 Arm from Meka Robotics)

One of the main advantages of using a compliant manipulator is its safety. The Meka robot

enables to easily set through software the sti�ness parameter of each one of its joints which has

the e�ect of scaling the commanded torque that is fed to the low level controllers. In other words,

this means the torques generated for each joint will be adjustable. Thus, there will be no danger

if someone accidentally crosses the robot end e�ector path, while a trajectory is being executed

because joint torques are scaled.

In order to better understand the capabilities of Meka, some of its technical speci�cations are

reviewed. All of them were obtained in the Meka User Guide Overview [38] and Controllers [39]

documentation provided by Meka Robotics.

4.2.1 Actuators

The robot makes use of Series Elastic Actuators (SEA) which are compliant actuators with

force control characteristics. They utilizes BDC/BLDC brushless motors and a Harmonic Drive

gearhead for reduction. All joints of Meka are equipped with them. Figure 4.3 shows an illustration

of where they are located at Meka.

In [10], Pratt proposes that incorporating series elasticity within an actuator delivers good

results and presents the trade-o� of low and high sti�ness. It is common to say �the sti�er the

better� because it increases precision, stability and bandwidth of position-control. Therefore,

open-loop positioning or colocated feedback have a decrease in end-point position error under load

disturbances. In feedback systems where the position sensor is located at the load side of the

interface, the need for corrections in response to load variations is decreased and the resonant

frequency of the motor inertia and interface compliance is raised. Hence, the bandwidth of the

position control feedback loop is raised while staying stable.

Although high sti�ness has some bene�ts, electric motors have poor torque density and thus can

generate high torque density only at high speed. In order to accelerate heavy loads, gear reduction

is needed, but introducing friction, backlash, torque ripple and noise. One more negative point of
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gear trains is the re�ected inertia and high backdrive-friction which can cause damage to objects

in contact to the load axis.

(a) SEA2 illustration

Figure 4.3: Illustration of where the SEA are located at the robot. Note that the SEA in this

�gure is a general SEA example and not the speci�c SEA which the Meka robot uses.

The SEA makes use of an elastic (spring) element between the gear train and the load. Figure

4.3 shows an example of a SEA and illustrate where the Meka SEA are located. The spring

de�ection under load is measured and used as a force-feedback signal for control. Human safety

is therefore enhanced because the spring decouples the motor inertia from the link during impact.

As mentioned by Pratt in [10], series elasticity works as a low-pass �lter which reduces peak

gear forces. Interface elasticity between gear train and load can increase shock tolerance while

maintaining small motion bandwidth. Moreover, in a SEA force control, it is transformed into a

position control problem enhancing accuracy.

4.2.2 Software

The Meka software comes with an EtherCAT real-time control system using the Meka software

package. It handles the joint level controls and dynamics of the arm. In order to interface with

the joint level controllers, Python scripting is used. Moreover, it is also possible to use Robot

Operating System (ROS) interfaces which allow the use of C++ programming. The robot also has

2http://mechanicaldesign.asmedigitalcollection.asme.org/data/Jo urnals/JMDEDB/27913/008912jmd3.jpeg
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a pre-con�gured Real Time PC (RTPC). The pre-installed software is: Ubuntu Linux compiled

with RTAI2, EtherLab EtherCAT Master, Meka M3 software and the ROS software created by

Willow Garage [40] and enhanced since then.

4.2.3 Controllers

Control of the robot can be made at di�erent levels: whole body control of posture, simultaneous

control of a group of joints, independent control of each joint, independent calibrated control of each

joint, independent calibrated control of each actuator and independent uncalibrated control of each

actuator. Status data from the robot high-level posture control of the whole body circles all the

way until the actuator low-level DSP PID controllers. All this layers are continuously exchanging

data. If desired, a Python Client may publish information to an intermediate component as long as

higher level components are disabled and placed in safe operation mode (SAFEOP) mode. Figure

4.4 shows the information �ow diagram. For this work, the robot higher level whole body posture

control was used which comes with di�erent control modes. The default mode is the OFF mode

at start-up and in the case of errors. In this mode the motor ampli�er voltage and current is zero.

Figure 4.4: Meka robot: continuously �ow of information between higher level controllers (left)

and lower level controllers (right).

The most simple way of sending an actuation signal for a joint power system is using the PWM

mode. It allows to directly set the voltage or current at the desired motor. The value is limited to

pwm_max found in the lowest-level actuator component .yaml con�guration �le of the robot.

TORQUE mode allows to control the desired joint torque τq using an underlying DSP PID

controller. The torque range of each joint is speci�ed in the min_tq and max_tq. They are also

written in an actuator .yaml con�guration �le.

Similar to TORQUEmode, the TORQUE_GCmode controls the joint torque with the addition

of a feed-forward term τg which describes the torques due to gravity. To obtain this term, it is

used the kinematic and dynamic model of each component provided in con�guration �les of the

robot. The τg is subtracted from the commanded joint torque τd and passed to the TORQUE

mode controller:

τq = τd − τg. (4.1)

It is possible to include inverse-dynamics velocity and acceleration terms by setting �ags in

each component con�guration �le.

For kinematic control, there are higher level controllers. The THETA mode directly control the

joint angle using a PID controller. Joint limits are also speci�ed by min_q and max_q in .yaml

2https://www.rtai.org/

37



con�guration �les for each joint. The input PID joint angle is slewed to the desired joint angle.

The maximum velocity of the joint is set on the slew �lter and the maximum slew rate (deg/s)

is speci�ed in the q_slew of each joint .yaml con�guration �le. It comes already tuned for safe

operation of the robot.

Analogous to the TORQUE_GC, there is also the THETA_GC mode in which a PID controller

computes a desired joint torque τs that sets to zero the joint angle error. It also make use of a

sti�ness parameter s which has the e�ect of scaling the commanded torque which is delivered to

the underlying TORQUE_GC controller:

τd = τss. (4.2)

As with THETA mode, THETA_GC mode also utilizes the slew �lter on the commanded joint

angle.

It is also possible to use a minimum-jerk �lter on the commanded joint angle passed to the

underlying THETA controller using THETA_MJ mode. This �lter allows a smoother trajectory.

Instead of setting a slew rate, THETA_MJ requires the setting of a desired velocity. Similar to

THETA_GC, there is also the THETA_GC_MJ mode which passes the desired joint position to

a THETA_GC controller which allows both smooth and compliant control of the joint.

In this work, the THETA_GC mode was used. According to the robot documentation, it

should do the gravity compensation, since it has the TORQUE_GC controller working in the

background. However, during the kinematic controllers tests on the robot, the gravity in�uence

was visibly seen acting on the robot. This happens due to the high compliance of the robot inherent

to its construction and use of the SEA.

4.3 Robot Operating System (ROS)

Integration of di�erent systems is not an easy task when there is a variety of communication

protocols, routines, hardware and software architectures. This is also the case for robots which have

a continually scale growth. The ROS3 is a suitable framework created with the goal of integrating

large-scale robotics research [40].

In this sense, ROS was used in this work because each robotic tool being used works separately,

but needs to exchange information every now and then. Furthermore, both the V-REP simulator

and the Meka software allow integration with ROS. Considering also future works, ROS will also

be useful to add computer vision systems and other robotic tools and sensors to improve the range

of applications for Meka, for instance, the integration with the haptics platform. For each di�erent

system and sensor there will be at least one ROS node and one ROS topic.

The main ROS tools used in this project are ROS nodes4 and topics5. A node can be understood

as a process that performs computation and a topic is a bus over which nodes exchange messages.
3http://www.ros.org/
4http://wiki.ros.org/Nodes
5http://wiki.ros.org/Topics
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A node can have publishers which publish messages to a topic and subscribers which subscribe to

a topic and receive messages sent via the topic. The messages are strongly typed speci�cally for

the subscriber which must know the message type it will receive otherwise the message transport

will not be established.

In the context of this project, ROS is applied to exchange data between the control module,

the robot joint actuators, the force sensor and the V-REP simulator. In other words, the control

module must know the position of the robot joints of the Meka robot or of the Kuka robot in V-

REP at each control loop iteration. On the other hand, the robots need to receive the commanded

joints position from the control module. Further sensors (for instance, vision and control interfaces)

added in the setup will also need to send information to the control module. Hence, each of the

system modules or sensors will have a ROS node which will have publishers and subscribers to

transfer messages via topics. A simpli�ed communication graph between the platforms can be seen

in Figure 4.5.

Figure 4.5: System modules overview.

4.4 DQ Robotics and Eigen

The rigid body motions represented using the dual quaternions were introduced in Chapter 2.

It was shown that a lot of mathematical operations with vector, matrices and dual quaternions are

executed. Therefore, it is needed to choose a suitable way of implementing them. The controllers

are being implemented in C++ using ROS, however there are no standard libraries to deal with

more complex algebraic operations. In this sense, the DQ Robotics and the Eigen libraries were

chosen. DQ Robotics6 is a standalone open-source robotics library which provides quaternion

algebra and kinematic algorithms for robot modeling and control. It is possible to use it in

6http://dqrobotics.sourceforge.net/
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MATLAB, Python and C++. Therefore it suits very well to integrate with V-REP and the Meka

software. Eigen7 is a C++ library for linear algebra. It provides matrices, vectors and numerical

solvers to operate them. DQ robotics uses a lot of elements from Eigen. Hence it is also a good

choice to combine both to implement the kinematic controllers.

4.5 Programming Framework

In Figure 4.6, the ROS computation graph of the system framework used in this work can be

seen.

Figure 4.6: ROS computation graph integrating the Meka robot, the control node and the V-REP

simulation environment.

• Nodes

� /robot_controlling_node: This is a C++ node which runs the kinematic controllers

implemented using DQ Robotics and Eigen. It publishes the Meka robot joint commands

to the /humanoid_command topic and subscribe to the /humanoid_state topic to

receive the robot joints state information. To publish joint commands to the V-REP

simulator it uses the /vrep_robot topic.

� /vrep: This is a node created by the V-REP simulator which has services to exchange

information with the simulation environment. It publish the robot joint states to the

/humanoid_state topic and subscribe to the /vrep_robot topic to receive the com-

manded robot joint states from the control module.

� /hum_controller: This is a C++ node created by the real time shared memory module

of the robot which get the status of each robot joint sensor. It publish the robot joint
7http://eigen.tuxfamily.org
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states to the /humanoid_state topic and subscribe to the /humanoid_command topic

to receive the commanded robot joint states from the control module.

� /loadx6_publisher: This is a C++ node created by the real time shared memory module

of the robot force sensor which get the status of the forces and torques on each axis

of the force sensor. It publish the forces and torques to the /loadx6_right_state and

/loadx6_left_state topic. Since the available robot only has the right arm, only the

right sensor status is presented.

• Topics

� /humanoid_command: Contains the joints command being sent to the robot. In this

work, the Meka robot.

� /humanoid_state: Contains the joints state being read from the Meka robot or from

the robot in the V-REP simulation environment.

� /vrep_robot: Contains the joint command message which will be sent to the robot in

the V-REP simulation environment through the node /vrep.

� /loadx6_right_state: Contains the force and torques on each axis read from the force

sensor.

Given the ROS nodes connections, the main development and implementation tasks of this

work were done in C++ in the robot controlling node. An overview of the control node

architecture can be seen in Figure 4.7.
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Figure 4.7: Overview of the robot controlling node, the use of the DQ Robotics library and the

Drawer class.

In Figure 4.7, note that the Drawer is a class de�ned outside of the robot controlling node. It is

used to create or load trajectories. The trajectory draw can be done in two ways. One of them is to

describe the linear and circular segments of the trajectory in a .txt �le following a speci�ed syntax.

Then, the Drawer load this �le and generate a discrete trajectory based on the one speci�ed. The

second option is to write all the trajectory points as cartesian coordinates in a .txt �le and then

load it. Both methods deliver the task-space trajectory used as reference by the controllers.

To keep simplicity and make easier the future use of the controllers, they were implemented

similarly to the DQ Robotics controllers class and were de�ned outside of the robot controlling

nodes. Note that the LQR controllers were not yet adapted to the DQ controllers class. All the

DQ controllers can be used for set point control. However, the LQR controllers needs to have

previous knowledge of the whole trajectory in order to calculate their gain matrices. In this sense,

they were implemented as methods of the robot controlling node.
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4.6 How to start working with the Meka Robot

There are di�erent ways to control the Meka robot. Section 4.2 gives and overview of the

robot and Section 4.5 explains the ROS programming framework used to control the robot. In

this section, the basic steps on how to start the robot system will be introduced. The following

steps will start the robot basic modules and create the robot ROS nodes which publish data from

sensors and receive commands for the robot actuators:

1. Turn on the Meka robot and the Meka robot computer;

2. Start ROS on a terminal by running roscore;

3. Open a new terminal and start the program which identi�es and communicate with the avail-

able robot components and start the RTAI8 procedures by running the commandm3rt_server_run

-m on the terminal;

4. Open another terminal and start the shared memory program (Figure 4.6: Robot) which

creates the ROS nodes which publish the robot sensors data to ROS topics and receive

commands to be sent to the robot actuators. The shared memory program is started by

running the command rosrun shm_humanoid_controller shm_humanoid_controller on the

terminal;

5. At this point, data from the robot sensors can be obtained via ROS and joint commands

from the robot controlling node can be sent to the robot. The ROS computation graph was

presented in Figure 4.5.

This section presented the basic modules which must be started to control the robot. However,

to use the Meka robot at the LARA laboratory, the detailed instructions available on the LARA

GitHub Meka Wiki9 must be read. Further details about the robot software and hardware and

instructions on how to integrate new sensors will also be added. The Meka Wiki will be constantly

updated to ease the development of future projects involving the A2 Arm robot at LARA.

4.7 Conclusion

This chapter presented the robotic tools used in this work. It explained the need for a robotic

simulation environment in order to check the stability of the kinematic controllers and described

the V-REP simulator with the Kuka LBR iiwa 7. Then, the robot A2 Arm from Meka Robotics and

its underlying controllers and software were discussed. For future works, the Meka robot virtual

model may be implemented on the V-REP simulator for more precise simulation results. As a

result of both V-REP and Meka being able to use ROS integration, and due to ROS availability

of lots of sensors which may be added in future works, it was selected as the communication

8https://www.rtai.org/
9https://github.com/lara-unb/Meka
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system across platforms. The dual quaternion and linear algebra libraries, DQ Robotics and Eigen

respectively, were chosen as programming tools to implement the kinematic controllers. Lastly, the

programming framework developed to test and implement the controllers in C++ was described

and a short introduction on how to start working with the Meka robot is done.
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Chapter 5

Evaluation and Results

Concerning the practical application of the kinematic controllers for robot manipulators im-

plemented in this work, it is necessary to test them in simulations and in a real robot before

using them in HRI applications. In Chapter 5, �rst, the methodology analysis is presented by

de�ning tasks, evaluation criteria and parameter selection. Afterward, experimental results on the

real robot are shown and analyzed in order to bring up the advantages and disadvantages of each

controller. Then, in order to evaluate the frequency and time periods achieved by the controllers,

the sampling time histograms along the trajectory are presented. Lastly, images of a simple light

painting application which may be extended and used in educational contexts are presented.

The results of this work presented in this chapter contain the experimental evaluation of the

proportional controllers with and without feedforward term de�ned in (3.8) and (3.12), respectively,

the LQR controller in R8 manifold (LQR in R8) given by (3.45) and in the dual quaternion space

(LQR DQ) given by (3.60), and the two robust H∞ dual quaternion controllers described by (3.30)

and (3.33) which are a setpoint (H-in�nity robust - HIR) and a tracking controller (H-in�nity

robust tracking - HIRT), respectively. Table 3.1 presents an overview of the controllers equations.

The controllers were implemented in C++ and executed on the Meka robot as described in details

in Chapter 4. Figure 5.1 present the coordinate axes on the robot.

Figure 5.1: Coordinate axes on the Meka robot used on the experiments.
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Four experiments were devised and their results are presented together with the controllers

performance evaluation. Table 5.1 presents an overview of the four experiments. More experiments

were also done in the authors previous work [29] and in Appendix C.

Table 5.1: Overview of all experiments
Experiment Goal

LQR controllers

performance

analysis

Evaluate both LQR controllers performance regarding q

and r in�uence by executing a circular trajectory 10 times

for each parameter set

H∞ controllers

performance

analysis

Evaluate both H∞ controllers performance regarding noise

to error ampli�cation executing a spiral trajectory 5 times

for each parameter set

Circular

trajectory

Compare all controllers executing a circular trajectory 10

times for each parameter set

Spiral trajectory Compare all controllers performance and repeatability

executing a spiral trajectory 50 times for each parameter

set

5.1 Tasks De�nition

In order to demonstrate results of the controllers behavior under di�erent set of parameters,

di�erent experiments were run on the A2 Arm Meka Robotics manipulator with seven degrees

of freedom (DOF). The control algorithms stability was also previously checked on the V-REP

simulator with the Kuka LBR iiwa 7 (Figure 4.1).

The motivation for the tasks trajectories lies on the need for robots to work alongside humans,

they need to accomplish repetitive tasks. Therefore, it is investigated the ability of the robot

to follow simple trajectories which would be tiring for a human to do for a long time. Due to

anthropomorphic arm joint limitations it is always considered initial robot con�gurations θ0 such

that the trajectory lies within the end-e�ector reachable space. In other words, θ0 must allow the

robot to execute the whole trajectory1.

In most of the tasks chosen, the controllers were set with an intentional initial error to evaluate

the smoothness of each controller convergence. This means that the robot end e�ector initial

position was not at the �rst point of the devised tasks. Therefore, all the controllers yield larger

control signals θ0 in the beginning of the trajectory in order to correct the trajectory error.

In this sense, it turns out that if a high control gain is set right at the start of the desired

trajectory, it may yield high initial joint velocities which can lead the controller to an unstable

behavior. For this reason, when selecting parameters for the controllers, some of them were varied

1Avoidance techniques for kinematic singularities and joint limits were not the main goal of this work. A short

review on workspace singularities was done in [21, Section 3.3] and singularity avoidance techniques using dual

quaternions were presented in [14, ch. 5].

46



along the trajectory. According to their in�uence on the controller they were initially set to low or

high values to deliver a smoother initial error decay. After the manipulator reaches a stable pose,

the gains are tuned in order to enhance the controller performance while keeping internal stability.

5.2 Evaluation Criteria

In order to compare performance, evaluation criteria which allow to understand the bene�ts

of each controller were adopted. Before mentioning them, some concepts are explained. It is

necessary to understand the meaning of the invariant error norm, joints control e�ort and control

signal.

The invariant error norm computation was de�ned in Section 2.2.3. It gives the error between

the trajectory desired pose xd(t) and the robot pose x(t) at each time instant t

Err(t) = 1− x∗(t)xd(t). (5.1)

One of the main contributions of the LQR controllers derived in Section 3.4 is its ability to

achieve a trade-o� between control e�ort and invariant error norm. In this work, joint control

e�ort is de�ned as the di�erence between two consecutive joint positions of the robot. It means

how much the robot joints turned between two measured samples and it is given by

Eff = ~θ(k + 1)− ~θ(k). (5.2)

Similar to the control e�ort, the control signal is also being analyzed. The control signal is the
~̇θ computed for each controller in equations (3.8), (3.12), (3.30), (3.33), (3.45) and (3.60). This

value is useful to demonstrate that the joints control e�ort in the real robot are much lower than

the control signal as expected. This occurs in order to prevent damage to the robot actuators.

Joint velocities commanded by the controller are much greater than the angular velocities achieved

by the robot joints.

Lastly, to better understand the physical meaning of control e�ort and the controller param-

eters e�ect on the robot trajectory tracking ability, the end e�ector linear velocity (L.V el) and

acceleration (L.Acc) is also being analyzed.

All of the evaluation criteria used are graphically and numerically presented. Each graph

presents the norm of the value at each time instant. Since Eff. is a vector, the norm of the

joints control e�ort at each time instant t is the quadratic norm of ~θ(k + 1) − ~θ(k), the same

goes for control signals ~̇θ. The velocities and acceleration norms are obtained of the end e�ector

linear velocity and linear acceleration vectors, respectively, at each time instant t. The robot pose

trajectory error is already obtained as the invariant error norm.

The numerical evaluation of each criteria is presented in tables and their value is calculated as

the integral of the norm of the criteria along the whole trajectory time, such as
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Integral Norm =

tfˆ

t0

‖ criteria ‖2 dt. (5.3)

For instance, the numerical evaluation of the end e�ector linear velocity during a trajectory is

the integral of the linear velocity norm along the trajectory time frame.

For all the proceeding analysis, the following notation is used.

Err. is the invariant error norm.

θ̇ [rad/s] is the norm of the control signal.

Eff. [rad] is the norm of the control e�ort.

L.V el. [m/s] is the end e�ector velocity norm.

L.Acc. [m/s2] is the end e�ector acceleration norm.

The plots show the norm of the criteria along the trajectory and the tables shows the integral

norm of the criteria along the trajectory.

5.3 Parameters Selection

5.3.1 Proportional Controller with and without Feedforward Term

The K and K+FF controllers described in (3.8) and (3.12), respectively, make use only of the

proportional gain k εR such that K =kI and I εR8×8. The K and K+FF controllers are bounded

to the overall e�ect of the proportional gain k. The choice of k was done by trial and error elevating

the k value until there would be no more improvement in the integral norm of the error without

an excessive increase in the joint control e�ort.

5.3.2 LQR Controllers

In order to simplify both LQR controllers choice of parameters, it is de�ned s, q, r εR such

that

S =sI,Q = qI, R =rI,

where I εR is an identity matrix.

The choice of parameters is closely related with the task optimization goals. For instance, it

is supposed that the end-time error is not of higher importance than the error in the remainder of

the trajectory by setting s = 0. The choice of q is done in order to keep the system stable during

the whole trajectory and is closely related with r. Because the r parameter weighs the control

e�ort in terms of end e�ector velocity norm, for a higher r, the joint velocities will be lower and
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it is needed to compensate with a higher q, that is, a �stronger� error correction demanding faster

correction, in order to obtain an acceptable minimization overall.

The optimal dual quaternion based controller in R8 manifold, or LQR in R8, has the following

gain matrices S,Q(t) ≥ 0 and R(t) > 0 with S, Q, R εR8×8 and the optimal quadratic controller

in dual quaternion space, or LQR in DQ has the matrices S,Q(t) ≥ 0 and R(t) > 0 with S, Q,

R εR6×6.

In order to compare performance, the LQR controllers are distinguished by varying the weight

of the control e�ort parameter, that is r is increased and decreased to evaluate its in�uence on the

trajectory. In all controllers, the choice of q allows a well-behaved initial motion.

5.3.3 Dual Quaternion H∞ controllers

The two H∞ controllers, that is, the H-in�nity robust setpoint controller (HIR) and the H-

in�nity robust tracking controller (HIRT) make use of the gain matrices Ko, KT εR3×3 which are

respectively the orientation and translation gain matrices. Both gain matrices depends on the

induced norm upper bound variable γ > 0, which can be speci�ed as γO1 , γO2 , γT1 , γT2 . To ensure

exponential H∞ tracking performance, the gain matrices must be de�ned as

KO ≥ kOI =
√

2
√
γ−2O1

+ γ−2O2
I and

KT ≥ kT I =
√
γ−2T1 + γ−2T2 I, (5.4)

kO, kT εR+.

Considering it is di�cult to decouple both sources of uncertainties on the real robot, the induced

norm upper bound variable γ may be set the same, that is, γT = γT1 = γT2 and γO = γO1 = γO2

as mentioned in [14, ch. 3]. Applying this to (5.4), the following gain relations are obtained

kOγO = 2 (5.5)

kTγT =
√

2. (5.6)

5.4 Linear Quadratic Optimal Control (LQR) performance analy-

sis

In order to evaluate both LQR controllers performance, a similar experiment to the one pre-

sented in Appendix C was repeated. Table 5.2 presents an overview of the experiment of this

section.
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Table 5.2: Overview of experiment to evaluate the LQR controller performance
Trajectory Circle on xz-plane (Figure 5.1)

Initial joint

con�guration

θ0 = [0, π/5, 0, π/2, 0, π/5, 0, 0]

Trajectory

parametrization

x = r sin (θ), y = 0, z = r cos (θ), θ ε [0, 2π]

Radius r = 7 cm

Sampling time 20 ms

Trajectory points 3000

Parameter sets 4 sets: r ε {0.001, 0.01, 0.1, 1} and q ε {1, 10, 100, 1000}
Executions 10 times for each parameter set

To exploit the performance obtained before, a new sampling time of Ts = 20ms was used in

comparisson with the 25ms sampling time of Section C. Moreover, the number of the circular

trajectory points was doubled from 1500 to 3000 steps in comparisson with the experiments in

Appendix C.

The devised task is a circle with a radius r = 7 cm and is drawn on the XZ-plane (Figure 5.1)

while maintaining Y constant, that is,

x = r sin (θ), θ ε [0, 2π],

y = 0,

z = r cos (θ), θ ε [0, 2π]. (5.7)

In order to numerically compare performance with the evaluation criteria, the LQR in R8 and

the LQR in DQ controllers are distinguished by choosing a increasing weight for the control e�ort

and error parameters r and q, respectively, that is r ε {0.001, 0.01, 0.1, 1} and q ε {1, 10, 100, 1000}.
The same procedure was followed in Appendix C. For each gain combination the same trajectory

was executed 10 times. The 10 experiments results can be found in Appendix Sections E.1-E.4.

All the other controllers were also run and their results will be used later in this chapter.

Tables 5.3 and 5.4 shows the results for the trajectories run on the Meka robot with the LQR

controller R8 based and the LQR controller DQ based, respectively.
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Table 5.3: Trajectory results obtained on Meka performing the circular end e�ector trajectory

described by (5.7) with the LQR in R8: Err., θ̇ [rad/s], Eff. [rad], L. V el [m/s], L.Acc [m/s2].
LQR controller in R8

Q 1 10 100 1000

R 0.001 0.01 0.1 1

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Err. 4.882 0.126 4.858 0.138 5.034 0.122 4.853 0.218

θ̇ 307.08 6.35 304.87 6.70 313.98 5.99 306.48 10.17

Eff. 0.111 0.001 0.109 0.002 0.111 0.002 0.108 0.001

L.V el. 0.968 0.012 0.969 0.010 0.966 0.007 0.960 0.010

L.Acc. 24.094 3.004 25.105 3.837 23.235 0.934 22.648 0.498

Table 5.4: Trajectory results obtained on Meka performing the circular end e�ector trajectory

described by (5.7) with the LQR in DQ: Err., θ̇ [rad/s], Eff. [rad], L. V el [m/s], L.Acc [m/s2].
LQR controller in DQ

Q 1 10 100 1000

R 0.001 0.01 0.1 1

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Err. 5.593 0.182 5.635 0.209 5.855 0.168 5.688 0.344

θ̇ 318.22 9.20 319.96 9.94 330.54 8.49 325.35 16.37

Eff. 0.114 0.003 0.116 0.003 0.118 0.004 0.116 0.003

L.V el. 0.998 0.029 1.007 0.024 1.013 0.037 1.016 0.025

L.Acc. 24.730 1.534 25.834 1.357 26.254 2.035 26.171 1.569

In comparison to the simulation results presented in Table 3 in the Appendix Section C, when

the trajectory was run on the Meka robot, the results show a larger variation. Table 5.3 showed

the LQR in R8 controller performance oscillated with the increase in r and q. As expected, as long

as r or q are not high enough, the error norm and the control e�ort will decrease with an increase

in q and r. The control e�ort will be more in�uenced by the q increase than by the r increase. A

lower r = 0.001 with a lower q = 1 showed an increase in control e�ort which happens because the

r = 0.001 have a lower weigh on the control e�ort minimization. Therefore, the control signal θ̇ is

also higher than with r = 0.01. For r = 1 and q = 1000 it is seen although q was increased and

the error decreased, the control e�ort did not increase because of the e�ect of r. In this sense, the

error decay is smoother. Similarly, Table 5.4 showed the LQR in DQ had an increase in the error

norm with the increase in r until the error weigh q start to in�uence the error convergence over

the e�ect of r. It is also seen r kept the control e�ort lower than 0.12 even though q was increased

for both LQR controllers which lowers the error.

For a more in depth analysis of the LQR controller in R8 performance in the simulation envi-

ronment and on the Meka robot, Appendix D show the results of a wider range of q and r values

variation and their in�uence on the control e�ort, the error norm and the end e�ector velocity.
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5.5 Dual Quaternion H∞ Controllers Performance Analysis

The goal of this experiment is to check that the H∞ performance is being achieved. Table 5.5

presents an overview of the experiment of this section.

Table 5.5: Overview of experiment to evaluate the H∞ controller performance
Trajectory Spiral trajectory along the x-axis

(Figure 5.1)

Initial joint

con�guration

θ0 = [0, π/3.7, 0, π/2, 0, π/3.7, 0, 0]

Trajectory

parametrization

x = l, y = r sin (θ), z = r cos (θ), θ ε [0, 6π]

Radius r = 5 cm

Height l = 5 cm

Sampling time 8 ms

Trajectory points 3000

Parameter sets for

t > 0.1tf

5 sets: γ = {0.372, 0.465, 0.620, 0.930, 1.86}

Executions 5 times for each parameter set

Gain variation Gains varied for t ≤ 0.1tf as described in (5.9)

Error norm Evaluated for t > 0.1tf while all gain values were constant

The dual quaternion H∞ controllers performance is such that the noise to error ampli�cation�

directly related to (3.22) in Chapter 4 � should apply for a trajectory in the time interval [t0, t1]

with t0, t1 εR+ ´ t1
t0
‖ vec e ‖2´ t1
t0
‖ υ ‖2

≤ γ, (5.8)

where υ represent the disturbances and uncertainties to which the manipulator is subjected. In

[14], υ was estimated in the V-REP simulation environment for the KUKA LBR IV arm, however,

it is out of the scope of this work to precisely estimate υ acting on the real Meka robot.

Therefore, to evaluate the H∞ performance given a desired γd = γOd = γTd yielding gain

matrices KTd and KOd, the orientation gain matrices were reduced to 0.2KOd, 0.4KOd, 0.6KOd

and 0.8KOd. The same was applied to the translation gain matrices which were also obtained as

0.2KTd, 0.4KTd, 0.6KTd and 0.8KTd. Assuming that υ remains constant for the manipulator,

then, the error norm integral is directly proportional to γ as seen in (5.8).

Given a desired γd, KOd and KTd are calculated using (5.5)-(5.6). Then, γ is calculated for

each K percentage using (5.5)-(5.6).

Considering the error in the beginning of the trajectory will be higher as mentioned in Section

5.1, the gain matrices KO and KT initial values at time instant t0 were lowered. They were then
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increased along the trajectory until they reach their �nal value, such that

γd (tf ) = γO (tf ) = γT (tf ) = 0.372

kO(t) =


2.8 t = t0

2.8 + t
0.1tf

2.5 t ≤ 0.1tf

5.3 t > 0.1tf

kT (t) =


2.4 t = t0

2.4 + t
0.1tf

1.4 t ≤ 0.1tf

3.8 t > 0.1tf

, (5.9)

and, then,KO(t) = kO(t)I and KT (t) = kT (t)I.

The γd = 0.372 parameter was found by an heuristic method such that the controller would

deliver the lowest integral error norm without an excessive increase in joints control e�ort or too

much oscillations during the trajectory. Afterwards, with γd , KOd and KTd and using (5.5)-(5.6),

the respective γ values were obtained. They can be seen in Tables 5.6-5.7.

For this experiment the sampling time was reduced as much as possible considering the control

loop frequency. After some code review of the C++ controller implementation, the control loop

period was decreased from between 20ms and 25ms to 8ms. Therefore, the sampling time for

this experiment was set to Ts = 8ms. The chosen task was a spiral trajectory with 3000 points,

constant radius of r = 5cm, length l = 5cm and robot initial joint con�guration given by θ0 =

[0, π/3.7, 0, π/2, 0, π/3.7, 0, 0] such that

x = l,

y = r sin (θ), θ ε [0, 6π].

z = r cos (θ), θ ε [0, 6π] (5.10)

The trajectory was executed 5 times for each value of γ . The �ve experiments full tables

are in Appendix Section E.5. Tables 5.6 and 5.7 show the e�ect of decreasing the γ or, in other

words, proportionally increasing the value of KO and KT on the H∞ setpoint and H∞ tracking

controllers.

Table 5.6: Trajectory results obtained on Meka performing the spiral end e�ector trajectory de-

scribed by (5.10) with the HIR controller: Err., θ̇ [rad/s], Eff. [rad], L. V el [m/s], L.Acc [m/s2].
HIR

γ = γO = γT K20%, γ = 1.86 K40%, γ = 0.930 K60%, γ = 0.620 K80%, γ = 0.465 K100%, γd = 0.372

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Err. 3.133 0.018 1.660 0.011 1.138 0.009 0.837 0.008 0.661 0.007

θ̇ 344.05 2.879 373.86 1.274 392.40 2.013 393.60 2.206 394.64 2.659

Eff. 0.038 0.0004 0.050 0.001 0.055 0.0003 0.059 0.0003 0.065 0.001

L.V el. 1.051 0.0128 1.251 0.005 1.346 0.004 1.427 0.014 1.613 0.020

L.Acc. 97.195 3.537 111.025 4.149 119.582 1.995 126.120 4.271 139.597 2.681
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Table 5.7: Trajectory results obtained on Meka performing the spiral end e�ector trajectory de-

scribed by (5.10) with the HIRT controller: Err., θ̇ [rad/s], Eff. [rad], L. V el [m/s], L.Acc [m/s2].
HIRT

γ = γO = γT K20%, γ = 1.86 K40%, γ = 0.930 K60%, γ = 0.620 K80%, γ = 0.465 K100%, γd = 0.372

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Err. 3.118 0.015 1.662 0.007 1.125 0.011 0.829 0.011 0.662 0.005

θ̇ 342.95 2.519 374.93 1.426 389.44 2.403 390.60 2.918 395.77 2.427

Eff. 0.038 0.0003 0.050 0.0004 0.055 0.001 0.059 0.0004 0.065 0.001

L.V el. 1.065 0.008 1.253 0.005 1.337 0.009 1.441 0.012 1.617 0.028

L.Acc. 95.224 0.686 109.450 1.073 117.818 2.024 126.929 3.720 138.806 2.038

As expected by (5.8), the results from 5.6 and 5.7 show that if we increase the value of γ, the

error integral norm is proportionally increased. For example, Err.K40%

Err.K80%
≈ 2, which means the H∞

performance was enhanced by 2 when the gain matrices KO and KT were doubled.

Figure 5.2 depicts graphically the increase by 5 times in the error norm if the gains are 5 times

lower. The improvement in the trajectory end e�ector translation and in the pose orientation

quaternion can also be seen.
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Figure 5.2: Gains adjusted to 20% (left) and 100% (right)
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5.6 Circular Trajectory

The proportional controller (K controller), proportional controller with feedforward term (K+FF

controller) and the LQR controller in R8 manifold (LQR in R8) were �rst evaluated in the authors

previous work [29] with a circular and a squared trajectory where the goal was to verify the LQR

in R8 performance and possible advantages on a real robot. Since then, the gains and sampling

time have been tuned to get better results. In Appendix C, results with lower error norm and

control e�ort for similar trajectories are presented.

Motivated by the results obtained in [29] and in Appendix C, more three dual quaternion

based kinematic controllers designed in [14] were implemented. The dual quaternion based LQR

in the dual quaternion space (LQR DQ) given by (3.60) and two robust H∞ dual quaternion

controllers described by (3.30) and (3.33) which are a setpoint (H-in�nity robust - HIR) and a

tracking controller (H-in�nity robust tracking - HIRT), respectively.

In order to have a �rst comparisson of all the controllers performance together, the same

experiment presented in Section 5.4 was repeated including all controllers. Table 5.8 presents an

overview of the experiment of this section.

Table 5.8: Overview of the experiment to compare all controllers using a circular trajectory.
Trajectory Circle on xz-plane (Figure 5.1)

Initial joint

con�guration

θ0 = [0, π/5, 0, π/2, 0, π/5, 0, 0]

Trajectory

parametrization

x = r sin (θ), y = 0, z = r cos (θ), θ ε [0, 2π]

Radius r = 7 cm

Sampling time 20 ms

Trajectory points 3000

LQR controller

parameters

4 sets: r ε {0.001, 0.01, 0.1, 1} and q ε {1, 10, 100, 1000}

Proportional

controllers

parameters

k = 50

H∞ controllers γ

parameters

γT = 0.471 and γO = 0.666

H∞ controllers gain

k variation

kT (t) = kO(t) = 2.5 + t
tf

0.5 for 0 < t ≤ tf
(hence, varied along whole trajectory)

Executions 10 times for each parameter set

The sampling time of Ts = 20ms was used again and the number of circular trajectory points

was 3000.

As in Section 5.4, the devised task is a circle with a radius r = 7 cm and is drawn on the
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XZ-plane (Figure 5.1) while maintaining Y constant, that is,

x = r sin (θ), θ ε [0, 2π],

y = 0,

z = r cos (θ), θ ε [0, 2π]. (5.11)

The results obtained for the proportional controllers and the H∞ controllers which were not

shown in Section 5.4 are presented in Table 5.9. For each paremeter variation in the experiment of

Section 5.4, all the controllers were executed 10 times. However the mean and standard deviation

presented in Table 5.9 takes into account only the experiments from Appendix Subsection E.4.

The tables with results for all the 40 experiments can be found in Appendix E.1-E.4.

Table 5.9: Trajectory results obtained on Meka performing the circular end e�ector trajectory

described by (5.7): Err., θ̇ [rad/s], Eff. [rad], L. V el [m/s], L.Acc [m/s2].
K K+FF HIR HIRT

k=50 k=50 γT = 0.471, γO = 0.666

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Err. 3.16 0.086 3.16 0.114 1.50 0.024 1.52 0.010

θ̇ 314.98 8.740 316.77 10.984 372.60 4.933 376.56 2.705

Eff. 0.117 0.001 0.117 0.002 0.140 0.004 0.141 0.002

L.V el. 0.986 0.007 0.990 0.006 1.265 0.043 1.289 0.017

L.Acc. 22.945 0.367 23.690 2.428 27.378 1.563 26.941 0.586

LQR in R8

Q 1 10 100 1000

R 0.001 0.01 0.1 1

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Err. 4.882 0.126 4.858 0.138 5.034 0.122 4.853 0.218

θ̇ 307.08 6.349 304.87 6.701 313.98 5.990 306.48 10.171

Eff. 0.111 0.001 0.109 0.002 0.111 0.002 0.108 0.001

L.V el. 0.968 0.012 0.969 0.010 0.966 0.007 0.960 0.010

L.Acc. 24.094 3.004 25.105 3.837 23.235 0.934 22.648 0.498

LQR in DQ

Q 1 10 100 1000

R 0.001 0.01 0.1 1

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Err. 5.593 0.182 5.635 0.209 5.855 0.168 5.688 0.344

θ̇ 318.22 9.199 319.96 9.944 330.54 8.493 325.35 16.37

Eff. 0.114 0.003 0.116 0.003 0.118 0.004 0.116 0.003

L.V el. 0.998 0.029 1.007 0.024 1.013 0.037 1.016 0.025

L.Acc. 24.730 1.534 25.834 1.357 26.254 2.035 26.171 1.569
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In Table 5.9, it is seen although the LQR controllers allowed to keep a lower control e�ort

while setting the error convergence, they had a worse performance in the integral error norm in

comparison to the other controllers. Lastly, as expected, the H∞ controllers delivered the lowest

error norms and only a slight increase of 0.02 in control e�ort. This makes sense since it was

designed considering disturbances rejection and minimum control e�ort as stated in Theorems

3.1-3.2.

Figure 5.3 illustrates the behavior of the LQR controller for q = 1 and r = 0.001. The same

analysis can be done. As presented in Table 5.9 the LQR in DQ had a worse trajectory tracking and,

therefore, higher integral error norm. However, both LQR controllers had lower end e�ector linear

velocity peaks in the beginning of the trajectory. This contribute to their use in HRI applications,

since someone working near or with the robot would feel safer with a smoother sudden manipulator

movement than with a fast sudden tool displacement.
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Figure 5.3: Circular trajectory with q = 1 and r = 0.001.
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5.7 Spiral Trajectory

This experiment goal is to compare all controllers and their reliability on the real robot. Table

5.10 presents an overview of the experiment of this section.

Table 5.10: Overview of the experiment to compare all controllers using a spiral trajectory.
Trajectory Spiral trajectory along the y-axis

(Figure 5.1)

Initial joint

con�guration

θ0 = [0, π/3.7, 0, π/2, 0, π/3.7, 0, 0]

Trajectory

parametrization

x = r sin (θ), y = l, z = r cos (θ), θ ε [0, 6π]

Radius r = 7 cm

Height l = 7 cm

Sampling time 8 ms

Trajectory points 3000

LQR in R8 controller

parameters

The q and r parameter vary as in Table 5.11

LQR in DQ

controller

parameters

r ε {0.01} and q ε {129.722, 187.15, 270}

Proportional

controllers

parameters

k = {60.057, 86.643, 125}

H∞ controllers γ

parameters

γT = {0.372, 0.537, 0.775} and γO = {0.377, 0.544, 0.786}

H∞ controllers gain

k

Table 5.12 shows the kT and kO parameter variation

Executions 50 times for each parameter set

The following trajectory was executed 50 times. The tables with results for all the experiments

can be found in Appendix Section E.6. It is a spiral trajectory with constant radius of r = 7cm,

length l = 7cm and robot initial joint con�guration given by θ0 = [0, π/3.7, 0, π/2, 0, π/3.7, 0, 0]

such that

x = r sin (θ), θ ε [0, 6π],

y = l,

z = r cos (θ), θ ε [0, 6π]. (5.12)

This trajectory was chosen because it involves displacements in all directions of the coordinate

frames. Furthermore, the gravity force is clearly acting on the end e�ector while it does the spiral

circles. It is then an interesting task to test the performance of all the controllers, speci�cally, the
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H∞ controller due to its goal of reducing the in�uence of uncertainties and exogenous disturbances.

Therefore, the advantages and disadvantages of each controller are seen.

To exploit the controllers results presented in Section C, the sampling time for this experiment

was set to Ts = 8ms after the code review done for the experiment of Section 5.5.

The controllers parameter selection was done by setting the best gains for each controller

through an heuristic method. The best gains were searched until there would be no more improve-

ment in the integral norm of the error without an excessive increase in the joints control e�ort.

Except for the LQR controller in R8, all other controllers follow an exponential error decay. In

this sense, to check the controllers exponential error decay, the same trajectory was repeated with

the best gain multiplied by ln 2 and by (ln 2)2. Therefore, the error norm should increase by 1
ln 2

and 1
(ln 2)2

, respectively.

Considering the error in the beginning of the trajectory will be higher as mentioned in section

5.1, some gain variation adjusts were made for the LQR in R8 and for the H∞ controllers. This

was done to prevent high joint velocities in the beginning of the trajectory which could lead the

system to become unstable. The LQR in R8 gain variation is presented in Table 5.11

Table 5.11: LQR in R8 controller gain variations
Gain q r

best gain

q (t) = 220 t < 0.3tf

q (t) = 270 t ≥ 0.3tf
0.01

best gain ln 2 187.15 0.01

best gain (ln 2)2 129.722 0.01

The H∞ controller gains were set, in order that the gain matrices KO and KT initial values at

time instant t0 were lowered and increased along the trajectory until they reach their �nal value.

The gain variation can be seen in Table 5.12

Table 5.12: H∞ gains variation.
Gain γO γT

k kO(t) = (kO(tf )− 2.3) + t
tf

(kO(tf )− 2.8)

kT (t) = (kT (tf )− 1.4) + t
0.3tf

1.4 t ≤ 0.3tf

kT (t) = kT (tf ) t > 0.3tf

k ln 2 kO(t) = kO(tf )/2 + t
tf

(
kO(tf )

2 )

kT (t) = (kT (tf )− 0.834) + t
0.3tf

0.834 t ≤ 0.3tf

kT (t) = kT (tf ) t > 0.3tf

k (ln 2)2 kO(t) = kO(tf )/2 + t
tf

(
kO(tf )

2 )

kT (t) = (kT (tf )− 1) + t
0.3tf

0.826 t ≤ 0.3tf

kT (t) = kT (tf ) t > 0.3tf

In order to evaluate the repeatability and consistency of the controllers the trajectory was

executed 50 times for each controller with each gain setting. Tables 5.13-5.15 show the experiment

results.
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Table 5.13: Trajectory results obtained on Meka performing the spiral end e�ector trajectory

described by (5.12) with all controllers set to (ln 2)2 of performance: Err., θ̇ [rad/s], Eff. [rad],

L. V el [m/s], L.Acc [m/s2].
K K+FF LQR in R8 LQR in DQ

k = 60.057 k = 60.057 q = 129.722, q = 0.01

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Err. 2.43 0.052 2.43 0.047 1.41 0.032 1.58 0.043

θ̇ 316.63 4.752 316.28 4.084 353.42 6.232 357.02 8.067

Eff. 0.054 0.0005 0.054 0.0005 0.060 0.001 0.061 0.001

L.V el. 1.327 0.008 1.328 0.008 1.424 0.019 1.443 0.031

L.Acc. 120.332 9.517 121.295 9.024 114.235 4.003 110.081 5.172

HIR HIRT

γT = 0.775, γO = 0.786

Mean Std. Dev. Mean Std. Dev.

Err. 1.84 0.036 1.86 0.039

θ̇ 335.27 4.388 336.17 4.486

Eff. 0.057 0.0004 0.057 0.0004

L.V el. 1.348 0.007 1.350 0.006

L.Acc. 120.058 6.784 117.563 4.596

Table 5.14: Trajectory results obtained on Meka performing the spiral end e�ector trajectory

described by (5.12) with all controllers set to ln 2 of performance: Err., θ̇ [rad/s], Eff. [rad],

L. V el [m/s], L.Acc [m/s2].
K K+FF LQR in R8 LQR in DQ

k = 86.643 k = 86.643 q = 187.15, r = 0.01

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Err. 1.68 0.034 1.69 0.038 1.56 0.059 1.29 0.034

θ̇ 326.87 3.868 328.02 4.497 460.68 17.689 356.35 9.092

Eff. 0.058 0.001 0.058 0.001 0.059 0.001 0.064 0.002

L.V el. 1.378 0.008 1.377 0.007 1.406 0.043 1.480 0.063

L.Acc. 125.172 7.887 123.161 6.601 112.552 4.549 110.381 6.262

HIR HIRT

γT = 0.537, γO = 0.544

Mean Std. Dev. Mean Std. Dev.

Err. 1.24 0.021 1.24 0.024

θ̇ 337.31 2.943 336.14 3.669

Eff. 0.060 0.001 0.060 0.001

L.V el. 1.388 0.007 1.388 0.006

L.Acc. 122.898 4.731 119.003 2.426
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Table 5.15: Trajectory results obtained on Meka performing the spiral end e�ector trajectory

described by (5.12) with all controllers set to the best performance de�ned: Err., θ̇ [rad/s],

Eff. [rad], L. V el [m/s], L.Acc [m/s2].
K K+FF LQR in R8 LQR in DQ

k = 125 k = 125 q = 270, r = 0.01

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Err. 1.232 0.036 1.232 0.032 1.394 0.039 1.071 0.025

θ̇ 342.94 6.154 343.11 5.618 468.73 7.39 353.96 7.170

Eff. 0.060 0.001 0.060 0.001 0.061 0.001 0.063 0.002

L.V el. 1.409 0.024 1.404 0.008 1.426 0.025 1.470 0.035

L.Acc. 126.561 7.881 125.703 8.762 114.867 3.235 112.349 4.981

HIR HIRT

γT = 0.372, γO = 0.377

Mean Std. Dev. Mean Std. Dev.

Err. 0.876 0.021 0.876 0.023

θ̇ 346.06 5.630 346.17 6.096

Eff. 0.063 0.001 0.063 0.001

L.V el. 1.449 0.010 1.443 0.008

L.Acc. 125.601 4.338 123.524 2.816

As expected, from the point of view of the integral error norm, the performance of the H∞
controller is the best one for all of the gain sets both for the mean value and the standard deviation.

Moreover, it also does this without an excessive increase in the end e�ector velocity and joints

control e�ort. Therefore, the disturbance rejection with minimum control e�ort mentioned in

Theorems 3.1-3.2 surely contributed to this results.

The LQR controller achieved better results for this parameter selection and smaller sampling

time Ts = 8ms in comparisson to the experiments of Sections 5.4 and Appendix D. It is important

to recall that the LQR in R8 controller does not follow an exponential error decay, only the LQR

in DQ controller. In this sense, it is more di�cult to compare its error with the other controllers.

Comparing both LQR controllers, it is seen the LQR in DQ is more predictable and easier to tune

gains. The LQR in DQ did not required to vary the q gain along the trajectory and, as expected,

its error norm decreased with the increase of q. Lastly, the error norm of the LQR in DQ controller

was 0.161 lower than the proportional controllers with an increase of only 0.003 in control e�ort

and of 0.066 in end e�ector velocities. This shows it was possible to optimize the error norm

without an excessive increase in control e�ort.

The proportional controllers with and without feedforward term behavior was predictable be-

cause of their simplicity. As k is increased, the error norm decreases with an increase in the end

e�ector velocity and, consequently, in the joints control e�ort. Their main advantage is their easy

gain setting and their disadvantage is that they do not allow to optimize an speci�c evaluation

attribute. However, they had a worse repeatability and, hence, reliability. This can be seen in
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their standard deviation values wich are in most cases greater than for the LQR controllers or H∞
controllers. Regarding the integral error norm, they had higher error norms, hence, lower preci-

sion. Nonetheless, it is not possible to generalize that they will always have a worse performance.

Depending on the application, they may be the best controller option to choose.

Figure 5.4 shows the graphical results of the best gain selection. The same evaluation for each

controller can be done. It is possible to see that both LQR controllers have a longer computa-

tional time. Therefore, their trajectory takes longer to complete. Nonetheless, their numerical

performance presented along this chapter was done based on their own duration. In this sense, the

longer time it takes to complete does not a�ect the error norm which is calculated online.

Lastly, the error norm increased by a factor of 1
ln 2 as the gain was multiplied by ln 2. Therefore

the exponential error decay behavior was checked.
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Figure 5.4: Best gain selection: k = 125, q = 270, r = 0.01, γT = 0.372, γO = 0.377
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5.8 Sampling Time Histogram

In the four experiments executed to evaluate and compare the dual quaternion based kinematic

controllers, two sampling times were chosen. The experiments of Sections 5.4 and 5.6 used a

sampling time of 20 ms and the experiments of Sections 5.5 and 5.7 used a sampling time of 8 ms.

Table 5.16 gives an overview of the sampling times.

Table 5.16: Overview of experiments sampling time
Experiment Sampling Time

LQR controllers (Section 5.4) 20 ms

H∞ controllers (Section 5.5) 8 ms

Circular trajectory (Section 5.6) 20 ms

Spiral trajectory (Section 5.7) 8 ms

The controllers were implemented in C++ as explained in Chapter 4. The sampling time was

chosen based on the lowest sampling time which the controllers could execute keeping the system

stability. On experiments of Sections 5.5 and 5.7, the LQR and H∞ controllers could execute in

around 20 ms. However, in order to improve the performance, the controllers implementation was

reviewed and a sampling time of 8 ms was achieved.

To set the sampling time of the control loop in the robot controlling ROS node (Figure 4.6), the

ROS class of the type ros::Rate2 was used. To measure the trajectory time duration and sampling

time achieved, the function ros::Time::now().toSec()3 was used.

Although the C++ programs, more speci�cally, the control loop rate in the robot controlling

ROS node (Figure 4.6) can be set, it does not guarantee that the frequency will be kept. The

ros::Rate is a class which makes a best e�ort at maintaining a particular rate, or period, for a

loop. This e�ort to keep a stable rate can be seen in Figures 5.5 and 5.6 which shows the sampling

time histogram of trajectories with rate periods set to 20 ms and 8 ms, respectively. Nonetheless,

the communication rate of the low level modules of the Meka robot which receive and send joint

commands to the electronic circuit boards (EC boards) may not be running with such sampling

time.

The low level software modules of the Meka Robot use the Real Time Application Interface

(RTAI4). The C++ program called shm_humanoid_controller.cpp given by Meka Robotics is used

to get status from the Meka robot sensors using shared memory commands and use RTAI to enable

more strict timing constraints. Afterward, they create ROS nodes which publish the robot sensors

data to ROS topics. This was explained in Figure 4.6.

In this sense, the results obtained with the controllers on the Meka robot can be further

enhanced by exploring the low level software modules. The sampling time achieved on the robot

2http://wiki.ros.org/roscpp/Overview/Time#Sleeping_and_Rates
3http://wiki.ros.org/roscpp/Overview/Time
4https://www.rtai.org/
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(Figure 4.6) can be investigated and the choice of the ros::Rate used in the robot controlling node

can be optimized.
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Figure 5.5: Histogram of the time di�erence between each trajectory step for a sampling time of

20 ms. Mean values (left to right): 0.020, 0.020, 0.020, 0.021, 0.020, 0.020. Std. Dev.: 0.001 (See

Appendix E.7 Table 61).
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Figure 5.6: Histogram of time di�erence between each trajectory step for a sampling time of 8 ms.

Mean values: 0.008, Std. Dev. values: 0.001 (See Appendix E.7 Table 61)

5.9 Trajectory Control Simple Application: Robot Light Painting

The main goal of kinematic control for robot manipulators is to make possible for a robot

arm to execute a given task speci�ed in the task-space. As it was mentioned in Section 1.2, one

of the contributions of this work should be to deliver a method for controlling a compliant robot
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manipulator, more speci�cally, the Meka Robot which is available at the Robotics and Automation

Laboratory (LARA). The dual quaternion based implemented algorithms were applied to draw light

paintings using linear and circular trajectories. The results can be seen in Figures 5.7(a)-(f).

(a) (b)

(c) (d)

(e) (f)

Figure 5.7: Kinematic controllers applied to light painting tasks
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5.10 Conclusion

First, the procedure for the task de�nition, the evaluation criteria and the parameter selection

was presented. Then, experiments were run to evaluate the implemented dual quaternion based

kinematic controllers for trajectory control.

The LQR controllers performance was analyzed. It was shown that the LQR controller had a

worse performance in error norm in comparison to the other controllers. Nonetheless, the LQR

goal of reaching a trade-o� between error norm and control e�ort varying q and r was achieved.

It was also mentioned the earlier experiments with the LQR in R8 controller of section D for a

similar circular trajectory with less trajectory points. There it was shown that the LQR controller

has the potential to achieve the safety-performance trade-o� needed for HRI tasks while the K and

K+FF controllers do not allow to tune error and joints velocity simultaneously. Even though the

LQR controller has a higher trajectory error, for HRI tasks safety is as important as performance.

The lower joints control e�ort obtained with the LQR generated lower torques and forces which

score good points in an HRI environment.

In the next experiment, the H∞ controllers performance was evaluated by investigating the

noise to error ampli�cation results when varying the gain parameters. First, the controller param-

eters were investigated until there would be no more improvement in the integral norm of the error

without an excessive increase in the joints control e�ort. Then the gain matrices parameters were

reduced to 80%, 60%, 40% and 20%. As expected, the integral error norm is improved when the

gain matrices are increased. In this sense, the dual quaternion based H∞ controllers proved to be

behave well when applied to kinematic control of a compliant robot manipulator.

Afterward, the reliability of all controllers and the exponential error decay were evaluated by

running 50 times the same trajectory with three di�erent sets of parameters related by a reason of

ln 2.

The H∞ controllers showed themselves to deliver the best integral error norm performance

together with lower joints control e�ort. This was expected since they are designed with the

goal of disturbance rejection and reducing uncertainties with minimum control e�ort mentioned

as stated in Theorems 3.1-3.2. Their disadvantage is the more complicated parameters selection

procedure.

The LQR controllers proved to deliver acceptable error norm results without excessive joints

control e�ort and the choice of gain parameters was easier than in the H∞ controllers. They enable

to keep lower control e�ort and still optimize the error norm performance.

Although the proportional controllers did not deliver the best error norm, the gain adjustment

is simple and the error norm improves as k is increased. However, they had a worse repeatability

when their standard deviation of each evaluation criteria after 50 repetitions was compared with

the results of the LQR and H∞ controllers.

As the main result of this chapter, the controllers evaluation provided useful information on

when to use each of them with the Meka robot. If the robot needs to run lots of distinct trajectories
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without adjusting gain parameters and with no need of high precision, the proportional controllers

are good choices. When the task trajectory does not change much and error norm must be

optimized keeping lower end e�ector velocity, the LQR controllers should be used. The H∞ robust

controllers are for trajectories with high performance needs. Table 5.17 shows an overview of all

controllers with their performance advantages and disadvantages.

Table 5.17: Overview of controllers evaluation.
Controller Invariant Err.

Norm

Joints control

e�ort and end

e�ector velocities

Parameter

selection

Proportional

with/without

Feedforward

term

Good for di�erent

non-high precision

tasks. Lower

repeatability in

comparisson with

the other controllers.

Do not take them

into account. For

lower error, deliver

high velocities.

Easy. Changes only

with changes in

sample time.

LQR Improved error.

Good for similar

tasks without

variation.

No excessive

increase in control

e�ort and velocities.

Enable to adjust

both with q and r.

Parameters may

change for each

trajectory.

H∞ Best error

performance.

Disturbances

rejection with

minimum control

e�ort. Deliver high

velocities which are

feasible.

Parameter may

change for di�erent

trajectory and vary

along each

trajectory.

The controllers were evaluated considering the Meka robot low level controllers work as ex-

pected. However, the minimum sampling time achieved by the robot controlling node and the low

level controllers may di�er. In this sense, the sampling time histograms of the robot controlling

node were presented. From the point of view of the control module, the rate was kept around the

desired value. However, the performance of the dual quaternion based kinematic controllers can

be enhanced if the performance of the low level modules of the Meka robot are exploited.

Lastly, the LQR controller in DQ was used to execute task trajectories of drawings. The results

were presented using light painting. Long exposure photos were taken in order to visualize the

robot running the trajectories.
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Chapter 6

Conclusion and Future Works

This work evaluated six di�erent recently developed task-space dual quaternion based kinematic

controllers on the compliant anthropomorphic manipulator A2 Arm from Meka Robotics with seven

degrees of freedom. This project was motivated by the challenges posed in the �eld of human-

robot interaction (HRI) related to control a compliant robotic arm which is safe to work alongside

humans. A review of the HRI �eld was done to better understand the safety issues involved. The

mathematical background on unit dual quaternion representation of rigid body motion and the

dual quaternion algebra applied on the design of kinematic controllers was also presented.

To evaluate the controllers, several trajectory tasks and evaluation criteria were devised. Tra-

jectories which lies within the end-e�ector reachable space were chosen as to avoid joint limits and

boundary singularities � which are out of the scope of the present manuscript. Considering the

HRI safety requirements, the end e�ector linear velocities and acceleration, the joints control e�ort

and the control signals were analyzed. Taking into account the dual quaternion spatial di�erence,

the invariant error norm was used to check the controller's error performance.

It was obtained that simple proportional kinematic controllers with and without feedforward

term showed acceptable error norm results. Furthermore, the parameter selection is straightfor-

ward. As the proportional gain is increased, the error norm decreases. However, it does not take

end e�ector velocities and acceleration into account. Hence, if the gain is too high, the controller

may command velocities which are not feasible by the robot joints and lead to chattering ad local

instability performance. Moreover, in the HRI context, high-velocity peaks are not desired for the

end e�ector because they cause discomfort on the humans working near him.

The high-velocity peaks motivated the use of two dual quaternion based linear quadratic op-

timal controllers (LQR controllers). Their parameters allow weighting the control e�ort in terms

of the end e�ector velocity and the error cost along the trajectory. As a consequence, results were

obtained in which the error norm improved in comparison to the proportional controllers without

an excessive increase in the end e�ector velocity and in the joints control e�ort. However, exoge-

nous disturbances and uncertainties in�uenced the LQR controller. Even though the parameters

were well tuned, the performance varied too much for distinct trajectories with a di�erent number

of points and sampling times. It was perceived a constant need to tune parameters.
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In order to reduce the robot sensitivity to disturbances and uncertainties, two dual quaternions

based H∞ robust controllers were tested. Experiments checked their noise to error ampli�cation

properties worked on the real robot. Then, experiments showed they had the best improvement in

the error norm in comparison to the other controllers. Moreover, they behaved well under di�erent

trajectories and sampling times. On the other hand, to keep their performance with lower control

frequencies, they deliver high end e�ector velocities and cause oscillations in the manipulator.

To solve this problem, their gains were set lower in the beginning of the trajectory and linearly

increased with time. Hence, their disadvantage is the need for gain tuning along the trajectory.

Considering the Meka robot system use ROS, the kinematic controller module was implemented

in a C++ ROS node and used the DQ Robotics library. Later, this will ease the integration of

force and vision sensors with ROS support. Stability problems in the controllers due to numerical

conditioning, numerical drifting, and unexpected issues were checked with the V-REP simulator

to prevent damages on the real robot. The Kuka LBR iiwa 7 R800 model was used since the fully

working Meka robot model was not yet available. Therefore, the performance of the controllers in

the simulation and on the real robot could not be compared one-to-one.

Hence, the contribution of this work is the sum of di�erent aspects. An environment to imple-

ment and test dual quaternion based kinematic controllers on a compliant robot manipulator was

developed. It allows it to execute end e�ector trajectories de�ned in the task-space. Moreover, each

controller's evaluation provided useful information on when to use each of them with the Meka

robot. If the robot needs to run lots of distinct trajectories without adjusting gain parameters

and with no need of high precision, the proportional controllers are good choices. When the task

trajectory does not change much and error norm must be optimized keeping lower end e�ector

velocity, the LQR controllers should be used. The H∞ robust controllers are for trajectories with

high-performance needs. Lastly, in order to use the robot with the new the controllers in a practical

application, simple trajectory drawings were generated and the Meka robot drawed them as light

paintings captured by long exposure photos.

In future works, the Meka robot force sensor information could be used to implement force

control in order to get a better gravity compensation. Due to the compliant characteristics of the

Meka robot, the gravity, and other exogenous forces strongly in�uence the manipulator behavior

although the low level controllers provided by Meka Robotics already do the gravity compensation.

Moreover, the Meka low level controllers achievable sampling times may be investigated and the

choice of the task-space controllers sampling time may be optimized. Solving this issues may

enable the robot to execute assembling and writing tasks and also give force feedback to haptic

interface devices. Regarding the kinematic controllers implementation, most of the controllers

were implemented as a DQ Robotics controller class which must be able to do both setpoint and

trajectory tracking control. However, the LQR controllers were designed for trajectory tracking

and not for setpoint control. This issue was explained at the end of Chapter 4. In future works,

the LQR controllers could be adapted for setpoint control and implemented as a DQ Robotics

controller.
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A Rigid Motions and Homogeneous Transformations

A.1 Representing Positions

The Euclidean space can be used to represent points and vectors in multiple coordinate frames.

Positions may be geometrically described using the synthetic approach which works directly with

geometric entities (e.g., points or lines). For example, one can say that x0 and y0 are perpendicular

and that the cross product υ1 × υ2 de�nes a vector perpendicular to the plane containing υ1 and

υ2 (Figure 1).

y0

x0

x1

y1

υ1

υ2p

o0y

o0x

o1x

o1y

Figure 1: Two coordinate frames, a point p and vectors υ1 and υ2

The second approach is analytic and represents positions using coordinates and equations.

Robot manipulator tasks are often de�ned using Cartesian coordinates. It is possible to describe

the trajectory of the end e�ector of a robot in relation to a �xed coordinate system, called the

world (w) or base frame to which all objects including the manipulator are referenced (Figure 2).

Therefore, the analytic reasoning is usually chosen [16].

From a geometrical point of view, a point p corresponds to a speci�c location in space. In the

analytic approach, its position is represented by a coordinate vector p0 with respect to a coordinate

frame o0x0y0 or in the case of a robot, the world or base frame. To clearly denote the reference

frame, the superscript notation will be adopted.

In robotics, is often needed to represent the positions of objects in space with respect to di�erent

coordinate systems. The coordinate system origin is just a point in space, then the position of the

origin of one coordinate system with respect to another may be assigned. In Figure 1, we have

o01 = [o1x o1y]
T and o10 = [o0x o0y]

T .
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zω

xω

yω

υwtool

ztool

ytool

xtool

Figure 2: Baxter robot with world coordinate frame w (source: Rethink Robotics).

In comparison to a point, a vector speci�es a direction and a magnitude. They can be used to

represent displacements or forces. The displacement of the origin oo to the point p is given by the

vector υ1. Along the text, the term vector will be used to refer to what are also called free vectors

which are not constrained to be located at a particular point in space. Under this convention, it

is clear that points and vectors are not equivalent because points refer to a speci�c location in

space and a vector can be moved to any location in space. Then, two vectors are equal if they

have the same direction and magnitude [16]. The assignment of coordinates to vectors use the

same notation convention of points. They depend directly on the choice of reference coordinate

frame and to perform algebraic manipulations all vectors must be de�ned with respect to the same

coordinate frame. In Figure 3, they would be υ0
1 = [υ01x υ

0
1y]

T , υ1
1 = [υ11x υ

1
1y]

T , υ0
2 = [υ02x υ

0
2y]

T ,

υ1
2 = [υ12x υ

1
2y]

T .

y0

x0

x1

y1

υ01

υ12
p

υ02

υ11

Figure 3: Two coordinate frames, a point p and vectors υ0
1, υ

0
2, υ

1
1, υ

0
2.

Therefore, a representation system needs to allow points to be represented with respect to

various coordinate systems and to allow to transform the coordinates of points between coordinate

systems.
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Points and vectors are useful to describe the position of the origin of one frame with respect to

another. However, it is also needed to represent the orientation of one coordinate frame relative

to another frame. This problem appears, for example, when we have the robot manipulator end

e�ector rotated with respect to the world or base coordinate frame (Figure 2). Another situation

occurs when we describe the robot joints coordinate frames which are usually rotated or translated.

In Figure 4, it is possible to see that each joint of a robot has its own coordinate frame. They are

translated and rotated in relation to each other. The Figure 4 will be used to help visualize the

concepts of translations, rotations and rigid body motions.

O0

O1

O2

O3

O4

O5

O6

~k

~d6

θ

p6

~d06

V-REP Simulator1

Figure 4: Kuka LBR iiwa 7 on simulation environment.

In Figure 4, each joint has its own coordinate frame. The vectors in black represent the

translation between O0, O1, ..., O6. The red, green and blue vectors represents the x, y and z

axes, respectively. The vector k represents an arbitrary axis in space. In order to have a clearer

�gure, all the coordinate frames and vectors were not shown directly on the robot, except k, which

will be used to represent the robot gripper orientation.

1The V-REP simulator is introduced in the Chapter 4. This �gure was adapted from the V-REP EDUCATIONAL

version: http://www.coppeliarobotics.com/
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A.2 Representing Rotations

It is possible to specify the coordinate vectors for the axes of frame o1x1y1 with respect to

coordinate frame o0x0y0 as

R0
1 = [x01|y01]

where x0
1 and y01 are the coordinates in frame o0x0y0 of unit vectors x1 and y1, respectively.

R0
1 is the rotation matrix. The notation convention of allowing the superscript to denote the

reference frame is also used. The rotation matrix column vectors are the coordinates of the (unit

vectors along the) axes of one frame expressed relative to the frame of reference expressed by the

superscript.

It is possible to build the rotation matrix by projecting the axes of the one frame onto the

coordinate axes of the reference frame of the superscript. This is also scalable to the three dimen-

sional case. Considering that the dot product of two unit vectors gives the projection of one onto

the other, we have for the three dimensional case

R0
1 =

 x1 · x0 y1 · x0 z1 · x0

x1 · y0 y1 · y0 z1 · y0
x1 · z0 y1 · z0 z1 · z0

 (A.1)

and

R1
0 =

 x0 · x1 y0 · x1 z0 · x1

x0 · y1 y0 · y1 z0 · y1
x0 · z1 y0 · z1 z0 · z1

 .
The inner product is commutative, (i.e. xi ·yj = yj ·xi), then R1

0 = (R1
0)T . And remembering

that coordinate axes are always mutually orthogonal, it is seen that (R0
1)T = (R0

1)−1. Moreover,

the column vectors of R0
1 are of unit length and mutually orthogonal which means the rotation

matrix is orthogonal. It is possible to show that detR0
1 = ±1 and restricting to right-handed

coordinate systems, then detR0
1 = +1. The set of all 3× 3 matrices which have this properties are

parts of the Special Orthogonal group of order 3 (SO(3)) [16, 17].

The basic rotation matrices which describe the rotation of a frame through an angle θ about

the x, y and z-axis are derived from (A.1) and represented as

Rz,θ =

 cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 (A.2)

Rx,θ =

 1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 (A.3)

Ry,θ =

 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 . (A.4)
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A rotation matrix RεSO(3) has three equivalent geometrical meanings [17, 16]:

1. It represents a coordinate transformation relating the coordinates of a point p in two di�erent

frames:

p0
b = R0

1 p1
b. (A.5)

2. It gives the coordinate transformation between the coordinates of a point expressed in two

di�erent frames:

R0
1.

3. It is an operator which allows the rotation of a vector in the same coordinate frame:

υ0
1 = R0

1 υ
1.

The (A.5) describes a rotational transformation between two frames. It is possible to do more than

one rotation and add new coordinate frames. A point p can then be represented by coordinates

speci�ed with respect to any of the frames. The order in which a sequence of rotations and

the matrices multiplications are done a�ects the result. While positions are a vector quantity,

rotational transformation do not commute.

Composition of rotational transformations have the following rule. Consider a �xed frame

o0x0y0z0, a current frame o1x1y1z1 and a third frame o2x2y2z2, the rotation matrix R0
1, that is,

the relation between 1 and 2, is given by rotation R = R1
2 done to the current frame. To obtain

the rotation matrix between 0 and 2, then post-multiply R0
1 by R

R0
2 = R0

1R
1
2. (A.6)

For the rotation done relative to the �xed frame, pre-multiply R0
1 by R to obtain

R0
2 = RR0

1. (A.7)

In Figure 4, it is possible to obtain the rotation matrix between each joint coordinate frame:

R0
1,R

1
2,...,R

5
6. Each of them is easily obtained using robot forward kinematics [16, p. 68]. Then,

if, for instance, it is desired to know the rotation between the base coordinate frame and the end

e�ector:

R0
6 = R0

1R
1
2R

2
3R

3
4R

4
5R

5
6 = R0

6. (A.8)

Regarding the parametrizations of rotations, a general rotational transformation has nine el-

ements rij which are not independent quantities, but related by six constraints due to the or-

thogonality conditions. A rigid body has three rotational degrees-of-freedom (DOF). Therefore,

three quantities are needed to describe its orientation and this representation is called minimal

representation [17]. This can be seen by inspecting the properties of the SO(3) matrices:∑
i

r2ij = 1, j ε {1, 2, 3} (A.9)

r1ir1j + r2ir2j + r3ir3j = 0, i 6= j. (A.10)

Equations (A.9) and (A.10) are based on the fact that the columns of a rotation matrix are

unit vectors and are also mutually orthogonal.
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A.3 Parametrization of Rotations

One arbitrary rotation can be parametrized using only three independent quantities. A minimal

representation of orientation can then be obtained by using a set of three angles (φ, θ, ψ). A

generic rotation matrix can be built by doing three elementary rotations and guaranteeing that

two successive rotations are not made about parallel axes. Therefore, 12 di�erent combinations of

the angles are allowed of all 27 possible sets. Each set is known as triplet of Euler Angles. The

more common Euler angles used are the ZYZ angles and the ZYX (or roll-pitch-yaw) angles [17]

which are both minimal representations.

The ZYZ angles yields the following rotation matrix and considering the notation adopted1

RZY Z = Rz,φRy,θRz,ψ =

 cφcθcψ − sφsψ −cφcθsψ − sφcψ cφsθ

sφcθcψ + cφsψ −sφcθsψ + cφcψ sφsθ

−sθcφ sθsψ cθ

 = R (A.11)

R =

 r11 r12 r13

r21 r22 r23

r31 r32 r33

 . (A.12)

The more di�cult problem to tackle is to determine a set of Euler angles φ, θ and ψ in order

that R = Rzyz. It is shown there are in�nitely many solutions [16, 17]. Suppose that not both of

r13 and r23 are zero. Hence from equation A.11, sθ 6= 0, and thus not both r31, r32 are zero. If not

both r13 and r23 are zero, follows that r33 6= ±1, and cθ = r33, sθ = ±
√

1− r233. Hence,

θ = atan2(r33,±
√

1− r233). (A.13)

If the positive square root in (A.13) is chosen, then sθ > 0 and

φ = atan2(r13, r23) (A.14)

ψ = atan2(−r31, r32). (A.15)

If the choice is the negative square root in (A.13), then sθ < 0 and

φ = atan2(−r13,−r23) (A.16)

ψ = atan2(r31,−r32). (A.17)

Assuming that R has the form

R =

 r11 r12 0

r21 r22 0

0 0 ±1

 , (A.18)

if r33 = 1, from (A.11), it is seen that

φ+ ψ = atan2(r11, r21) = atan2(r11,−r12). (A.19)

1The notations cx and sx means cx = cos(x) and sx = sin(x) respectively.
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The sum φ+θ is the only result which can be determined in this case, hence, there are in�nitely

many solutions. It is assumed φ = 0 by convention. If r33 = −1, then it is yielded by (A.11) that

φ+ ψ = atan2(−r11,−r12) (A.20)

which also have in�nitely many solutions. A similar conclusion is obtained for the roll-pitch-yaw

angles [17, 16].

In robotic manipulators applications it is, however, interesting to use representations which

can solve the problem of trajectory planning for the manipulator's end e�ector orientation. Fur-

thermore, rotations are not always performed about the principal coordinate axis. Sometimes it is

desired to rotate about an arbitrary axis in space. For example, in Figure 4, the robot end e�ector

orientation is given by ~k.

In order to simplify calculation, assume that O6 in Figure 4, is now O0. A nonminimal repre-

sentation can be obtained using four parameters indicating a rotation of a given angle about an

axis in space. Assume k = (kx, ky, kz)
T , expressed in the frame o0xoy0z0, is a unit vector de�ning

an axis. It is of interest to obtain the rotation matrix Rk,θ representing a rotation of θ about k.

Rk,θ is derived after some calculation [16, 17] as

Rk,θ =

 k2xυθ + cθ kxkyυθ − kzsθ kxkzυθ + kysθ

kxkyυθ + kzsθ k2yυθ + cθ kykzυθ − kxsθ
kxkzυθ − kysθ kykzυθ + kxsθ k2zυθ + cθ

 = R, (A.21)

where υθ = vers θ = 1 − cθ. With Rk,θ and considering that it was obtained considering O6 as

O0, it is possible to obtain the end e�ector rotation in relation to each other joint coordinate

frame. Therefore, the set of rotations matrix grows to: R0
1,R

2
1,...,R

6
5 and R

k
6 . Now, it is feasible to

describe any rotation between each combination of the robot frames as in (A.8), but also including

the robot end e�ector which may be rotated about a arbitrary vector ~k.

Any rotation matrix R εSO(3) can be described by a single rotation about an axis in space

by an angle θ, R = Rk,θ, and the problem of determining θ and k, given a desired Rk,θ remains.

Thus, the same problem as the one with the Euler angles appear. The solution for this problem is

discussed in Chapter 2. From (A.1), (A.21) and direct manipulations of the entries of (A.21), the

solution as in [16, 17] is

θ = cos−1(
r11 + r22 + r33 − 1

3
) (A.22)

k =
1

2 sin θ

 r32 − r23
r13 − r31
r21 − r12

 . (A.23)

The nonuniqueness of the axis/angle representation occurs because a rotation of −θ about −k
is the same as a rotation of θ about k,

Rk,θ = R−k,−θ. (A.24)

If θ = 0, R is an identity matrix and the axis of rotation is unde�ned.
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A.4 Homogeneous Transformation Matrix

Combining together the concepts to represent positions and orientations of rigid body presented

before, the de�nition of a rigid motion is an ordered pair (d,R) where d εR3 and RεSO(3).

The group of all rigid motions is the Special Euclidean Group denoted by SE(3) and SE(3) =

R3 × SO(3) [16, 17]. A rigid motion is a pure translation together with a pure rotation

p0 = R0
1p

1 + d01, (A.25)

and in the case of Figure 4

d6 = R0
6p

6 + d06. (A.26)

Rotations were represented by rotation matrices and translations by Cartesian positions. The

process to obtain (A.26) using (A.25) will require a lot of vectors and matrices operations and is

not practical to implement. However, grouping the rotation matrix and the Cartesian positions

vector as in (A.25) leads to homogeneous transformation matrices (HTM). They enable to describe

a rigid motion in a more compact form

H =

[
R3×3 d3×1

01x3 11×1

]
=


r11 r12 r13 dx

r21 r22 r23 dy

r31 r32 r33 dz

0 0 0 1

 ; RεSO(3), d εR3. (A.27)

The composition and ordering rules for homogeneous transformations are the same as for

rotations described in Section A.2. The HTM to describe the end e�ector orientation and position

in Figure 4 is, then, given by

H0
6 =

[
R0

6 d06
0 1

]
. (A.28)

B Rotation matrix of a quaternion

It is possible to obtain the rotation matrix corresponding to a given quaternion [17]

Rη,ε =

 2(η2 + ε2x)− 1 2(εxεy − ηεz) 2(εxεz + ηεy)

2(εxεy + ηεz) 2(η2 + ε2y)− 1 2(εyεz − ηεx)

2(εxεz − ηεy) 2(εyεz + ηεx) 2(η2 + ε2z)− 1

 = R (B.1)

and the inverse problem to compute the quaternion corresponding to a given rotation matrix R

from (A.12) and (B.1) yields

η =
1

2

√
r11 + r22 + r33 + 1 (B.2)

ε =
1

2

 sgn(r32 − r23)
√
r11 − r22 − r33 + 1

sgn(r13 − r31)
√
r22 − r33 − r11 + 1

sgn(r21 − r12)
√
r33 − r11 − r22 + 1

 (B.3)

It is assumed that sgn(x) = 1 for x ≥ 0 and sgn(x) = −1 for x < 0. From (B.2) η ≥ 0, then

angle θ ε [−π, π], and any rotation can be described.
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C Circular and Squared Trajectory

The �rst three controllers to be implemented were the proportional controller (K controller)

and proportional controller with feedforward term (K+FF controller) and the LQR controller in

R8 manifold (LQR in R8). They were �rst tested by running a circular and a squared trajectory

both on the V-REP simulator and on the Meka robot. The trajectories are independent and were

executed separately. The robot initial joint vector con�guration adopted for both tasks is given by

θ0 = [0, π/5, 0, π/2, 0, π/5, 0, 0].

The circular task is a circle with 7 cm radius and is drawn on the XZ-plane while maintaining

Y constant. It contains 1500 points equally distant from each other. The sampling time used was

Ts = 25ms de�ned based on the lowest controller frequency or on the highest controller period.

Table 1 gives an overview of this experiment.

Table 1: Overview of the circular trajectory experiment to compare the proportional controllers

with the LQR in R8 controller.
Trajectory Circle on xz-plane (Figure 5.1)

Initial joint

con�guration

θ0 = [0, π/5, 0, π/2, 0, π/5, 0, 0]

Trajectory

parametrization

x = r sin (θ), y = 0, z = r cos (θ), θ ε [0, 2π]

Radius r = 7 cm

Sampling time 25 ms

Trajectory points 1500

LQR controller

parameters

4 sets: r ε {0.001, 0.01, 0.1, 1} and q ε {1, 10, 100, 1000}

Proportional

controllers

parameters

k = 50

The squared task is a square with 10 cm side, also on the XZ-plane while maintaining Y

constant. It contain 1600 points equally distant from each other, but the �rst and third sides of

the square have 500 points while the other two sides have 300 points. Table 2 gives an overview

of this trajectory.
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Table 2: Overview of the square trajectory experiment to compare the proportional controllers

with the LQR in R8 controller.
Trajectory Square on xz-plane (Figure 5.1)

Initial joint

con�guration

θ0 = [0, π/5, 0, π/2, 0, π/5, 0, 0]

Square size l = 0.1m

Sampling time 25 ms

Trajectory points Side 1: 500, side 2: 300, side 3: 500, side 4: 500

LQR controller

parameters

4 sets: r ε {0.001, 0.01, 0.1, 1} and q ε {1, 10, 100, 1000}

Proportional

controllers

parameters

k = 50

In order to numerically compare performance with the evaluation criteria, the LQR in R8

controller is distinguished by choosing a increasing weight for the control e�ort and error parameters

r and q, respectively, that is r ε {0.001, 0.01, 0.1, 1} and q ε {1, 10, 100, 1000}.

Tables 3 and 4 show the results for the trajectories run on the V-REP simulator and on the

Meka robot respectively. Err. is the integral norm of the error, θ̇ is the integral norm of the control

signal, Eff. is the integral norm of the control e�ort, and L.V el. and L.Acc. are the end e�ector

velocity and acceleration integral norms, respectively. This same notation is used on the data plots

which also appear in this section.

Table 3: Simulation results obtained in V-REP performing two di�erent end e�ector trajectories

on the Kuka LBR iiwa 7.
Circular trajectory Squared trajectory

LQR K K+FF LQR K K+FF

Q 1 10 100 1000

k=50 k=50

1 10 100 1000

k=50 k=50

R 0.001 0.01 0.1 1 0.001 0.01 0.1 1

Err. 0.0251 0.0251 0.0413 0.2183 0.0197 0.0149 0.0192 0.0196 0.0191 0.0199 0.0131 0.0095

θ̇ 0.1778 0.1774 0.1828 0.1797 0.0186 0.0189 0.1311 0.1335 0.1308 0.1348 0.1307 0.1328

Eff. 0.0605 0.0607 0.0609 0.0605 0.0625 0.0635 0.0431 0.0431 0.0431 0.0432 0.0433 0.0432

L.V el. 0.5145 0.5295 0.5321 0.5302 0.5569 0.5568 0.4036 0.4029 0.4022 0.4032 0.4042 0.4035

L.Acc. 19.36 22.07 20.00 21.19 20.63 21.64 11.81 10.94 11.86 13.77 12.62 11.42

In Table 3, it is seen that the overall quantitative performance of the LQR controller was worse

than the K or K+FF controller. An increase in r caused an slightly increase in the trajectory error

norm. The control e�ort barely changed. However the end e�ector linear velocity and acceleration

were, in most cases, increased with the increase in r. This can be associated with the increase in

q which tries to lower the error by increasing velocity to compensate the higher r which tends to

reduce joints control e�ort. Note that the end e�ector velocity of the LQR was, in most cases,
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lower than both other controllers. Nevertheless, if q was high enough in comparison to r, than r

could not slow the overall trajectory.

Table 4: Trajectory results obtained on Meka performing two di�erent end e�ector trajectories.
Circular trajectory Squared trajectory

LQR K K+FF LQR K K+FF

Q 1 10 100 1000

k=50 k=50

1 10 100 1000

k=50 k=50

R 0.001 0.01 0.1 1 0.001 0.01 0.1 1

Err. 3.332 3.340 3.265 3.216 2.220 2.217 3.648 3.628 3.549 3.600 2.293 2.247

θ̇ 4.878 4.896 4.800 4.746 5.198 5.200 5.279 5.291 5.183 5.276 5.353 5.269

Eff. 0.0874 0.0878 0.0868 0.0868 0.0960 0.0981 0.0841 0.0843 0.0834 0.0820 0.0869 0.0879

L.V el. 0.6322 0.6440 0.6461 0.6360 0.6657 0.6680 0.5692 0.5563 0.5619 0.5688 0.5780 0.5758

L.Acc. 14.51 13.24 13.14 14.50 15.03 14.61 13.23 12.99 12.10 13.10 13.40 13.56

In comparison to the simulation results, when the trajectory was run on the Meka robot, the

results show a larger variation. Table 4 allows to see that an increase in r caused a decrease on the

joints control e�ort as expected. Moreover, the increase in q showed a better result on the error

norm which has decreased. Therefore, it is seen again, that an increase in q has a better e�ect on

diminishing the trajectory error than a decrease in r. Once more, the minimization chosen in the

cost function of (3.39) showed the desired e�ect in the LQR in R8 controller trajectory tracking

capability. Note that the joints control e�ort and also end e�ector velocity of the LQR controller

were lower than the K and K+FF controllers.

A similar analysis in a qualitative manner may be done with Figures 5 and 6 which represent

the results of both trajectories run on the Meka robot.

Proceeding with the analysis of Figures 5 and 6, the linear trajectory of the end e�ector and

the unit dual quaternion representing orientation shows that the LQR in R8 controller do not

follow the expected trajectory as precise as the K and K+FF controller. However, the LQR in R8

controller has the lowest end e�ector velocity (L.V el.) and acceleration (L.Acc.) initial peak for

both trajectories. Furthermore, it also has lower velocity and acceleration peaks along the whole

motion. This can, consequently, also be seen in the joints control e�ort (Eff.) and control signal

(θ̇) plots. In this sense, the robot joints su�er less abrupt torques and forces and, hence, the LQR

controller may contribute to the robot life span.

A small addition may also be made. The initial joints control e�ort peaks of the circular

trajectory seems to be higher on the LQR controller. However, in less than �ve seconds the K

and K+FF controller peaks increase more than the LQR controller. The fast decrease in the LQR

controller Eff. peaks also goes for the squared trajectory.
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Figure 5: Circular trajectory with r = 1 and q = 1000
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Figure 6: Square trajectory with r = 1 and q = 1000
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D LQR in R8 in Depth Analysis Performance

Concerning the performance of the LQR controller and the Q and R parameters in�uence on

the joints control e�ort, the end e�ector velocity norm and the invariant error norm the circular

trajectory was run again. An increasing weight for the control e�ort r and the error parameter q

was chosen. The results were analyzed both in the V-REP simulator with the Kuka LBR iiwa 7

R800 industrial robot and with the Meka robot.

Table 5: Overview of the circular trajectory experiment to evaluate the LQR in R8 controller

behavior on the Meka robot.
Trajectory Circle on xz-plane (Figure 5.1)

Initial joint

con�guration

θ0 = [0, π/5, 0, π/2, 0, π/5, 0, 0]

Trajectory

parametrization

x = r sin (θ), y = 0, z = r cos (θ), θ ε [0, 2π]

Radius r = 7 cm

Sampling time 25 ms

Trajectory points 1500

LQR controller

parameters

10 sets: r ε {0.05, 0.1, 0.5, 1, 5, 10, 50, 100} and
q ε {1, 10, 20, 30, 40, 50, 60, 70}

For the simulation, r ε {0.05, 0.1, 0.5, 1, 5, 10, 50, 100} while q ε {1, 10, 20, 30, 40, 50, 60, 70}.
On the Meka robot, r ε {0.05, 0.1, 1, 10, 100} and q ε {1, 20, 40, 60, 80}.

In the interest of better visualizing the in�uence of the LQR parameters, the results were

plotted to form a surface. Three surfaces are presented where their height represents the integral

value along the whole trajectory of the joints control e�ort norm, the end e�ector velocity norm

and the invariant error norm. Note that the increase in q was not so strong as in Tables 3 and 4.

The q gain was kept lower in order to obtain stability for the whole trajectory considering the r

variation and still be able to get enough data to build a surface. For this reason, some results are

not exactly as expected.

The simulation results in Figure 7 show, as expected, that an increase in r delivers a lower

control e�ort as long as q is not dramatically increased. The end e�ector velocity norm will be

higher when r is decreased and q is increased accordingly. It is expected that an increase in q and

a lower r will result in lower errors, however, the error norm surfaces obtained show that this will

not always happen. If q is not high enough while r is too low or too high, the velocities achieved

may deliver a slight increase in error. The controller may be not be capable of compensating the

error for such velocities. A solution for this problem is seen both in Tables 3 and 4, a high increase

in q reduced the trajectory error norm.
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Figure 7: LQR parameters surface on Kuka LBR iiwa 7 on V-REP

A similar analysis can be done for the results on the Meka Robot using Figure 8. The V-

REP simulator incorporates the dynamical properties of the robot and the environment, but, in

comparison to the real robot, they vary much less. Furthermore, the kinematic control used in

this work does not include dynamics, forces and torques. Therefore, the results on the Meka robot

show some disparities. The joints control e�ort norm do not decrease with the increase in r, if q

is not properly increased. During the trajectory execution it was seen that the controller could

not rightly follow the desired trajectory if r was too high and q not so drastically increased. This

could explain the divergences obtained in the error in which the error was lower for a smaller q and

lower r. Despite of the divergence of the error, the end e�ector velocity behaved itself as expected,

for a higher r and lower q, the end e�ector moves slower as far as the trajectory is correctly being

followed with a lower error.
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E Tables of Results

E.1 Tables from Circular Trajectory with r = 0.001, q = 1�Sections 5.4 and 5.6
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Table 6: LQR controller with r = 0.001, q = 1: Integral norm of the end-e�ector invariant error.
Experiment K K+FF LQR in R8 LQR in DQ HIR HIRT

k = 50 k = 50 r = 0.001, q = 1 γT = 0.471, γO = 0.666

1 3.128367 3.111993 4.773411 5.599988 1.481183 1.513701

2 3.143041 3.005740 4.734508 5.462487 1.528755 1.513384

3 3.110902 3.232741 4.746095 5.466275 1.442317 1.506571

4 3.172984 3.065525 4.734550 5.837564 1.521314 1.509682

5 3.103292 3.183072 4.908637 5.482014 1.499819 1.501389

6 3.011214 3.124857 4.957241 5.555529 1.504782 1.526967

7 3.128492 3.013988 4.960959 5.309714 1.488762 1.516047

8 3.236896 3.300024 5.079988 5.786483 1.510137 1.528165

9 3.310722 3.304715 5.015199 5.567993 1.492056 1.508575

10 3.246760 3.270729 4.904716 5.861354 1.489426 1.528850

Table 7: LQR controller with r = 0.001, q = 1: Control output θ̇.
Experiment K K+FF LQR in R8 LQR in DQ HIR HIRT

k = 50 k = 50 r = 0.001, q = 1 γT = 0.471, γO = 0.666

1 311.037168 310.402087 301.868174 319.269808 368.972470 375.168101

2 312.629730 303.216900 300.842179 310.316613 379.924969 375.159911

3 310.035336 321.300264 300.598134 312.587799 361.589695 374.534059

4 314.659601 308.911881 300.275683 331.176162 375.709128 375.794078

5 309.610052 316.801997 307.561037 314.074326 371.341757 372.234980

6 301.380326 312.300715 307.803059 315.615006 373.549999 379.056367

7 310.965094 303.151137 309.790510 304.235086 371.470844 376.535829

8 324.135357 330.244751 319.406773 327.093552 376.389168 379.863511

9 329.218077 332.379851 313.797516 315.684269 374.379229 376.061720

10 326.177986 328.962727 308.873003 332.140058 372.660163 381.162825
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Table 8: LQR controller with r = 0.001, q = 1: Joints Control E�ort Norm (E�.).
Experiment K K+FF LQR in R8 LQR in DQ HIR HIRT

k = 50 k = 50 r = 0.001, q = 1 γT = 0.471, γO = 0.666

1 0.117964 0.117395 0.111321 0.112979 0.138753 0.141051

2 0.119017 0.117910 0.110463 0.110235 0.143544 0.140937

3 0.118709 0.118047 0.108275 0.112962 0.141903 0.142055

4 0.118379 0.117590 0.110718 0.118669 0.142404 0.140961

5 0.117933 0.118318 0.109275 0.116037 0.141599 0.145783

6 0.117305 0.118949 0.112137 0.116899 0.143023 0.141588

7 0.118983 0.119208 0.110455 0.110883 0.142887 0.143033

8 0.115465 0.115388 0.111045 0.109965 0.133489 0.138636

9 0.115455 0.114737 0.111985 0.113115 0.136385 0.138377

10 0.115336 0.113511 0.109558 0.115313 0.135808 0.137756

Table 9: LQR controller with r = 0.001, q = 1: End e�ector linear velocity (L. Vel.).
Experiment K K+FF LQR in R8 LQR in DQ HIR HIRT

k = 50 k = 50 r = 0.001, q = 1 γT = 0.471, γO = 0.666

1 0.989696 0.982646 0.957519 1.016560 1.255906 1.306051

2 0.973547 0.984773 0.987741 0.971089 1.264021 1.271009

3 0.986715 0.989741 0.962186 0.998487 1.222288 1.305377

4 0.983419 0.980696 0.982293 1.038601 1.296339 1.270802

5 0.985127 0.993482 0.961477 1.029174 1.301607 1.312345

6 0.979948 0.995573 0.974686 1.003628 1.302144 1.264491

7 0.991657 1.000678 0.968137 0.978986 1.296664 1.291550

8 0.984080 0.993064 0.974552 0.962870 1.176083 1.285176

9 0.997709 0.986662 0.966618 0.961197 1.302639 1.282935

10 0.986021 0.991169 0.945484 1.014948 1.234499 1.296365
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Table 10: LQR controller with r = 0.001, q = 1: End e�ector linear acceleration (L. Acc.).
Experiment K K+FF LQR in R8 LQR in DQ HIR HIRT

k = 50 k = 50 r = 0.001, q = 1 γT = 0.471, γO = 0.666

1 22.916654 30.482965 22.530082 24.727423 26.696148 26.900505

2 22.815918 22.607981 23.178839 22.940774 26.587019 27.051911

3 23.272522 23.715574 22.565928 25.046173 26.226317 27.187062

4 23.077284 22.831542 23.607238 27.041424 27.335831 26.204175

5 23.208757 23.190118 23.092996 26.329517 27.732785 27.382558

6 22.701270 22.789812 23.361433 25.213418 31.222485 26.864843

7 23.139270 23.452011 23.244298 23.857070 27.036465 28.187437

8 22.313654 23.065582 32.582470 22.867501 25.459152 26.365433

9 23.504121 22.588686 23.498653 22.978083 28.290839 26.321159

10 22.504249 22.176451 23.273069 26.296261 27.190694 26.946540

E.2 Tables from Circular Trajectory with r = 0.01, q = 10�Sections 5.4 and 5.6
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Table 11: LQR controller with r = 0.01, q = 10: Integral norm of the end-e�ector invariant error.
Experiment K K+FF LQR in R8 LQR in DQ HIR HIRT

k = 50 k = 50 r = 0.01, q = 10 γT = 0.471, γO = 0.666

1 3.279806 3.291509 5.013098 5.760778 1.514283 1.528292

2 3.109048 3.048276 4.745299 5.739577 1.479808 1.477260

3 3.088182 3.049559 4.842139 5.829555 1.501052 1.487824

4 3.128897 3.079712 4.723980 5.321395 1.446299 1.509183

5 3.183707 3.136173 4.781896 5.728371 1.445686 1.506773

6 3.111173 3.090586 4.850429 5.334785 1.515239 1.502841

7 3.175278 3.147619 4.868070 5.525922 1.517182 1.500992

8 3.137127 3.149314 4.739240 5.479084 1.514157 1.547204

9 3.208774 3.141802 4.847400 5.695411 1.540820 1.532840

10 3.341611 3.318165 5.169726 5.934421 1.611344 1.633253

Table 12: LQR controller with r = 0.01, q = 10: Control output θ̇.
Experiment K K+FF LQR in R8 LQR in DQ HIR HIRT

k = 50 k = 50 r = 0.01, q = 10 γT = 0.471, γO = 0.666

1 327.644890 334.294935 313.487339 324.083413 379.158698 379.115081

2 311.866427 306.924405 301.694955 326.561690 369.117726 370.904534

3 310.274646 306.757543 304.852437 330.169273 375.073979 371.815811

4 314.353218 314.137501 300.285466 307.306949 364.114549 376.604005

5 317.808741 315.909959 299.535172 324.770096 360.635230 375.775251

6 307.938199 311.592830 302.752087 303.533350 375.785028 372.838083

7 316.867318 315.303378 304.336644 315.014406 376.338514 373.113336

8 314.803843 315.116687 299.519550 311.636725 375.375340 383.029638

9 320.368530 314.328679 302.166628 323.715943 380.987872 379.497896

10 331.624149 328.755956 320.021225 332.774660 398.671178 403.851860
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Table 13: LQR controller with r = 0.01, q = 10: Joints Control E�ort Norm (E�.).
Experiment K K+FF LQR in R8 LQR in DQ HIR HIRT

k = 50 k = 50 r = 0.01, q = 10 γT = 0.471, γO = 0.666

1 0.114312 0.122055 0.108220 0.113674 0.134955 0.135518

2 0.115339 0.115779 0.107419 0.116540 0.135759 0.135539

3 0.115058 0.114404 0.107448 0.120605 0.139093 0.139514

4 0.115651 0.116503 0.108574 0.111791 0.137878 0.140643

5 0.117730 0.116771 0.108943 0.119985 0.139579 0.141269

6 0.116528 0.115989 0.112196 0.114250 0.138498 0.140274

7 0.115121 0.116183 0.109087 0.114079 0.136166 0.142696

8 0.114924 0.116215 0.111211 0.112228 0.140185 0.139110

9 0.115063 0.114888 0.108134 0.117143 0.139187 0.140797

10 0.119312 0.119249 0.111256 0.120197 0.145972 0.150701

Table 14: LQR controller with r = 0.01, q = 10: End e�ector linear velocity (L. Vel.).
Experiment K K+FF LQR in R8 LQR in DQ HIR HIRT

k = 50 k = 50 r = 0.01, q = 10 γT = 0.471, γO = 0.666

1 0.985045 1.026824 0.950634 0.996898 1.238909 1.274431

2 0.999239 0.987223 0.974203 1.033382 1.238542 1.214609

3 0.992187 0.993154 0.970346 1.034153 1.346329 1.261576

4 0.993333 1.002342 0.972692 0.963097 1.281394 1.349574

5 0.999381 0.989022 0.974634 1.028729 1.284474 1.297131

6 0.997462 0.993287 0.969356 0.986082 1.257085 1.290371

7 0.987895 0.983929 0.971139 0.986995 1.199455 1.314910

8 0.976529 0.985394 0.952404 1.004500 1.278610 1.277611

9 0.993576 0.996461 0.969554 1.019314 1.255219 1.267206

10 0.986456 0.987717 0.981368 1.018534 1.325124 1.354712

100



Table 15: LQR controller with r = 0.01, q = 10: End e�ector linear acceleration (L. Acc.).
Experiment K K+FF LQR in R8 LQR in DQ HIR HIRT

k = 50 k = 50 r = 0.01, q = 10 γT = 0.471, γO = 0.666

1 22.408657 22.662297 23.409343 25.108651 25.552879 25.984867

2 22.121794 22.054782 23.274637 26.298487 25.866053 25.819997

3 29.983563 22.515183 27.788416 27.189799 27.220253 26.592841

4 23.055553 23.168932 22.619764 23.622339 27.172178 27.377939

5 23.472819 23.255432 23.198917 27.309489 27.037386 26.974257

6 22.954181 23.715481 23.685605 23.845141 26.695643 27.006101

7 23.244493 25.159734 34.999155 25.301207 26.743042 27.558097

8 22.809555 22.849953 22.649749 25.701431 29.826394 26.828696

9 23.271223 26.245662 23.480860 27.095652 26.786403 26.936612

10 23.763140 23.268542 25.939655 26.871093 30.678912 28.357721

E.3 Tables from Circular Trajectory with r = 0.1, q = 100�Sections 5.4 and 5.6
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Table 16: LQR controller with r = 0.1, q = 100: Integral norm of the end-e�ector invariant error.
Experiment K K+FF LQR in R8 LQR in DQ HIR HIRT

k = 50 k = 50 r = 0.1, q = 100 γT = 0.471, γO = 0.666

1 3.224737 3.308168 5.074394 5.761797 1.602424 1.581452

2 3.353828 3.353356 5.164810 6.026074 1.587569 1.608253

3 3.301526 3.331762 5.141589 5.653705 1.582725 1.581338

4 3.412422 3.399187 5.201922 5.849904 1.571771 1.583000

5 3.337518 3.412450 4.811209 6.087800 1.610040 1.573865

6 3.389497 3.253588 5.041014 5.968023 1.595498 1.595126

7 3.412940 3.317498 5.017600 6.058584 1.591707 1.589469

8 3.315143 3.372180 4.915169 5.644469 1.594419 1.572659

9 3.241784 3.280417 4.929389 5.771981 1.511240 1.513258

10 3.335754 3.219715 5.043219 5.731621 1.534127 1.522916

Table 17: LQR controller with r = 0.1, q = 100: Control output θ̇.
Experiment K K+FF LQR in R8 LQR in DQ HIR HIRT

k = 50 k = 50 r = 0.1, q = 100 γT = 0.471, γO = 0.666

1 321.934581 330.244394 315.040121 324.542926 397.858381 394.721239

2 330.964909 333.348820 319.793289 338.537658 392.403486 398.618072

3 328.834676 330.136903 318.850378 319.944637 394.359122 392.874071

4 337.423309 336.571613 322.062408 329.509344 391.378691 393.568228

5 331.962562 338.410155 301.854695 343.028151 399.270217 391.896988

6 335.488553 326.953207 313.655097 337.148628 396.393992 395.377834

7 336.910957 328.825790 312.934202 339.792619 395.565895 395.376528

8 328.752459 336.018045 307.732171 319.576367 396.538751 391.956003

9 324.675187 328.410575 311.510249 327.238694 378.973141 380.703815

10 332.806793 322.945504 316.338718 326.115334 384.354753 381.407409
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Table 18: LQR controller with r = 0.1, q = 100: Joints Control E�ort Norm (E�.).
Experiment K K+FF LQR in R8 LQR in DQ HIR HIRT

k = 50 k = 50 r = 0.1, q = 100 γT = 0.471, γO = 0.666

1 0.120105 0.118990 0.112582 0.116444 0.145734 0.147949

2 0.120918 0.119081 0.114737 0.124235 0.145274 0.147683

3 0.118934 0.120498 0.113528 0.115675 0.146153 0.148944

4 0.120904 0.119891 0.111059 0.117815 0.145662 0.147966

5 0.119840 0.120045 0.112583 0.123855 0.148917 0.146711

6 0.119273 0.118883 0.112599 0.120089 0.146873 0.148143

7 0.119436 0.120417 0.112002 0.122046 0.143755 0.146882

8 0.120029 0.118846 0.108672 0.114765 0.146033 0.149541

9 0.111848 0.114319 0.108205 0.111517 0.133151 0.135614

10 0.113686 0.114007 0.107176 0.115806 0.134775 0.135279

Table 19: LQR controller with r = 0.1, q = 100: End e�ector linear velocity (L. Vel.).
Experiment K K+FF LQR in R8 LQR in DQ HIR HIRT

k = 50 k = 50 r = 0.1, q = 100 γT = 0.471, γO = 0.666

1 0.988990 0.985132 0.969637 1.011656 1.267878 1.304507

2 0.995297 0.991134 0.968109 1.079345 1.300797 1.313210

3 0.999152 1.017452 0.962429 0.974584 1.286807 1.335026

4 1.004261 0.995093 0.974065 0.987071 1.308882 1.257524

5 1.005842 0.984460 0.958917 1.054453 1.324277 1.279808

6 0.992483 1.001436 0.961113 1.014161 1.300913 1.313290

7 0.993654 1.005098 0.976861 1.042165 1.232417 1.295692

8 1.004595 1.008007 0.960594 0.965452 1.321664 1.343360

9 0.982786 0.993645 0.966248 0.985445 1.244177 1.275816

10 0.990627 0.976424 0.957850 1.015194 1.283581 1.259794
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Table 20: LQR controller with r = 0.1, q = 100: End e�ector linear acceleration (L. Acc.).
Experiment K K+FF LQR in R8 LQR in DQ HIR HIRT

k = 50 k = 50 r = 0.1, q = 100 γT = 0.471, γO = 0.666

1 23.444362 24.692603 23.278344 25.384412 28.759955 27.528697

2 24.012440 23.111159 25.216067 29.189016 27.892882 27.740110

3 23.946524 24.160492 23.576793 24.904633 27.904901 27.962885

4 24.284863 24.403648 23.577492 25.088770 27.751314 27.595485

5 24.062990 25.631242 22.998993 29.580290 28.309808 27.622409

6 23.953182 23.929086 23.378479 26.626735 27.717127 27.542349

7 23.906289 23.559295 23.316952 28.105313 26.945552 27.741331

8 23.704642 24.186455 23.198393 23.647196 28.402500 27.585589

9 22.406002 22.864331 21.719535 24.701596 25.517425 25.995551

10 22.419965 22.101138 22.090469 25.309240 26.591739 25.610895

E.4 Tables from Circular Trajectory with r = 1, q = 1000�Sections 5.4 and 5.6
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Table 21: LQR controller with r = 1, q = 1000: Integral norm of the end-e�ector invariant error.
Experiment K K+FF LQR in R8 LQR in DQ HIR HIRT

k = 50 k = 50 r = 1, q = 1000 γT = 0.471, γO = 0.666

1 3.265432 3.209739 5.019396 5.865678 1.539791 1.540600

2 3.224401 3.333474 5.016777 6.059302 1.529502 1.538543

3 3.297897 3.266339 4.956768 5.972665 1.543325 1.545404

4 3.283132 3.372171 4.992939 5.984452 1.537390 1.538964

5 3.277682 3.326582 5.065056 5.814905 1.536915 1.540114

6 3.191356 3.328606 4.931744 5.913453 1.539181 1.518566

7 2.992234 3.007952 4.628419 5.367810 1.472481 1.483363

8 3.091167 3.184765 4.695239 5.066122 1.488619 1.478364

9 2.959533 2.948301 4.386905 5.519525 1.493555 1.511719

10 3.094144 3.027774 4.833367 5.311782 1.458942 1.514873

Table 22: LQR controller with r = 1, q = 1000: Control output θ̇.
Experiment K K+FF LQR in R8 LQR in DQ HIR HIRT

k = 50 k = 50 r = 1, q = 1000 γT = 0.471, γO = 0.666

1 324.815487 324.282839 315.335426 332.772841 384.109247 385.713681

2 324.520663 333.805590 315.349581 342.715077 383.279766 385.078193

3 328.732263 326.865811 310.314767 337.802762 386.179844 385.500458

4 327.334760 335.045952 312.003783 338.885927 383.572075 384.114433

5 325.933380 331.188545 317.465060 330.998746 383.629720 385.653382

6 319.747406 330.338874 308.759656 338.061261 383.446787 379.807165

7 301.843978 304.438854 295.289583 309.581214 364.976295 369.326651

8 309.911887 319.126440 299.285492 294.070526 370.275133 369.636448

9 301.872737 300.395705 285.884171 319.336303 371.817146 375.224422

10 313.027698 309.462147 305.161424 309.250032 363.183240 377.434490
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Table 23: LQR controller with r = 1, q = 1000: Joints Control E�ort Norm (E�.).
Experiment K K+FF LQR in R8 LQR in DQ HIR HIRT

k = 50 k = 50 r = 1, q = 1000 γT = 0.471, γO = 0.666

1 0.113099 0.115107 0.108437 0.114733 0.135654 0.138184

2 0.115301 0.115276 0.107171 0.118218 0.137117 0.138861

3 0.114927 0.115730 0.106979 0.120137 0.137476 0.136693

4 0.113584 0.115417 0.111129 0.117362 0.137659 0.135081

5 0.116148 0.114296 0.109674 0.113927 0.137779 0.138631

6 0.113797 0.114098 0.108127 0.118553 0.138040 0.139248

7 0.115566 0.116961 0.106988 0.112658 0.138568 0.138673

8 0.115730 0.116499 0.107182 0.109905 0.140450 0.138309

9 0.117840 0.118670 0.108174 0.117620 0.142617 0.143737

10 0.119125 0.117344 0.109750 0.113857 0.142240 0.143876

Table 24: LQR controller with r = 1, q = 1000: End e�ector linear velocity (L. Vel.).
Experiment K K+FF LQR in R8 LQR in DQ HIR HIRT

k = 50 k = 50 r = 1, q = 1000 γT = 0.471, γO = 0.666

1 0.971134 0.988900 0.938537 1.008629 1.285433 1.277422

2 0.989915 0.985503 0.960147 1.037774 1.307272 1.274731

3 0.973104 0.993790 0.959436 1.047060 1.333427 1.257763

4 0.993189 0.980965 0.950813 1.033642 1.273288 1.216551

5 0.976480 0.990089 0.956889 0.997794 1.313807 1.283705

6 0.966204 0.996507 0.967900 1.049008 1.317216 1.270714

7 0.986870 0.984383 0.965687 1.002390 1.262150 1.241089

8 0.975551 0.997825 0.964017 0.976350 1.246471 1.239499

9 0.976134 0.978169 0.967988 1.018999 1.271200 1.245869

10 1.004319 0.999232 0.970647 0.992014 1.232170 1.267514
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Table 25: LQR controller with r = 1, q = 1000: End e�ector linear acceleration (L. Acc.).
Experiment K K+FF LQR in R8 LQR in DQ HIR HIRT

k = 50 k = 50 r = 1, q = 1000 γT = 0.471, γO = 0.666

1 21.917141 23.073463 22.404420 26.045646 26.641037 26.301895

2 23.166972 22.505385 23.187434 27.709829 26.588317 39.678952

3 22.486977 23.133859 22.512780 27.882955 27.128130 26.828229

4 23.108805 22.586362 22.854689 27.654520 26.742009 26.546402

5 23.242579 22.890033 22.655668 25.310052 26.674973 26.447638

6 22.932756 23.238637 22.821124 27.946382 26.909805 26.524620

7 22.821866 22.760494 21.800936 24.788215 26.855014 26.433429

8 22.666487 22.712969 22.107479 23.434383 26.674017 26.258426

9 23.107193 23.089608 22.607370 25.893763 26.792061 26.784458

10 22.749556 23.058656 23.529205 25.043114 26.657251 27.409088

E.5 Tables from Dual Quaternion H∞ Controllers Performance Analysis�Section

5.5
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Table 26: H∞controller behavior: Integral norm of the end-e�ector invariant error.
Exp. HIR HIRT HIR HIRT HIR HIRT HIR HIRT HIR HIRT

γT = γO = 1.86 γT = γO = 0.930 γT = γO = 0.620 γT = γO = 0.465 γT = γO = 0.372

1 3.105020 3.130416 1.661440 1.655479 1.129358 1.114526 0.836497 0.821427 0.660390 0.665032

2 3.141411 3.121509 1.669011 1.668547 1.135748 1.143185 0.842166 0.829010 0.654989 0.654544

3 3.149936 3.130758 1.647908 1.664758 1.139455 1.126871 0.844095 0.836463 0.665998 0.666279

4 3.142550 3.112167 1.649165 1.653133 1.152585 1.121572 0.823881 0.843082 0.653196 0.664149

5 3.125664 3.096059 1.672417 1.666831 1.132126 1.120526 0.836549 0.815955 0.668965 0.659987

Table 27: H∞controller behavior: Control output θ̇.
Exp. HIR HIRT HIR HIRT HIR HIRT HIR HIRT HIR HIRT

γT = γO = 1.86 γT = γO = 0.930 γT = γO = 0.620 γT = γO = 0.465 γT = γO = 0.372

1 339.48781 342.81488 372.05950 373.46463 391.06247 386.64510 393.94487 388.58918 394.87609 395.15948

2 344.71173 343.16210 374.73962 376.71878 391.68426 393.15636 396.05764 390.41028 392.42381 392.35311

3 346.86515 346.77980 373.10258 375.34005 392.41530 389.64128 394.37641 392.62521 396.33665 398.63703

4 345.90233 342.22322 375.20577 373.47260 395.84942 389.50017 390.03651 394.29313 391.58787 397.49209

5 343.30657 339.76798 374.16866 375.63088 390.98457 388.24603 393.56817 387.10033 397.97581 395.20277

Table 28: H∞controller behavior: Joints Control E�ort Norm (E�.).
Exp. HIR HIRT HIR HIRT HIR HIRT HIR HIRT HIR HIRT

γT = γO = 1.86 γT = γO = 0.930 γT = γO = 0.620 γT = γO = 0.465 γT = γO = 0.372

1 0.038356 0.038931 0.049315 0.050697 0.054863 0.055767 0.058665 0.059208 0.064671 0.065262

2 0.037764 0.038363 0.050286 0.050779 0.055225 0.055470 0.058245 0.058622 0.064757 0.062812

3 0.037182 0.037967 0.050505 0.050048 0.055884 0.054174 0.059229 0.059090 0.065315 0.064421

4 0.038072 0.038209 0.050661 0.049855 0.055017 0.055089 0.059033 0.059295 0.065598 0.065597

5 0.038153 0.038424 0.050447 0.050667 0.055233 0.054927 0.058851 0.058298 0.063132 0.065776

Table 29: H∞controller behavior: End e�ector linear velocity (L. Vel.).
Exp. HIR HIRT HIR HIRT HIR HIRT HIR HIRT HIR HIRT

γT = γO = 1.86 γT = γO = 0.930 γT = γO = 0.620 γT = γO = 0.465 γT = γO = 0.372

1 1.053734 1.076614 1.245332 1.259511 1.343930 1.341329 1.431315 1.438452 1.608259 1.618468

2 1.068187 1.069328 1.249841 1.249246 1.346105 1.349712 1.407349 1.431988 1.617426 1.579939

3 1.033594 1.059773 1.253032 1.253475 1.353144 1.328162 1.445617 1.451929 1.624849 1.601669

4 1.044420 1.061176 1.248319 1.247093 1.345231 1.331409 1.424587 1.456308 1.634280 1.634385

5 1.054070 1.058839 1.259157 1.257261 1.343191 1.332821 1.427155 1.427501 1.580866 1.651597
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Table 30: H∞controller behavior: End e�ector linear acceleration (L. Acc.).
Exp. HIR HIRT HIR HIRT HIR HIRT HIR HIRT HIR HIRT

γT = γO = 1.86 γT = γO = 0.930 γT = γO = 0.620 γT = γO = 0.465 γT = γO = 0.372

1 94.49797 95.80462 111.8452 110.8942 122.3788 121.2549 126.4543 130.9134 140.4273 138.9856

2 102.1279 95.72132 108.1474 110.1813 118.5676 116.2885 126.6149 123.4663 136.3896 137.8304

3 94.54717 95.25620 109.2199 108.7551 118.1414 117.7075 132.6424 124.9104 143.6406 136.3956

4 99.78237 95.25322 107.9975 108.3886 117.8383 117.4721 123.6863 131.0172 138.9012 138.8806

5 95.01788 94.08591 117.9161 108.8290 120.9819 116.3667 121.2046 124.3395 138.6248 141.9394

E.6 Tables from Spiral Trajectory�Section 5.7

E.6.1 (ln 2)2 of the best performance
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Table 31: Integral norm of the end-e�ector invariant error: spiral trajectory with (ln 2)2 of the

best performance gains.

Exp. K K+FF LQR in R8 LQR in DQ HIR HIRT

k = 60.057 k = 60.057 q = 129.722, q = 0.01 γT = 0.775, γO = 0.786

1 2.268931 2.276568 1.323556 1.490234 1.747520 1.737543

2 2.229215 2.265468 1.344884 1.470916 1.752185 1.713109

3 2.275881 2.331420 1.353992 1.561978 1.736945 1.765156

4 2.439919 2.432450 1.394379 1.570548 1.876606 1.893139

5 2.483150 2.466904 1.455097 1.641296 1.919997 1.911240

6 2.441242 2.430732 1.459092 1.651180 1.873756 1.904767

7 2.485043 2.474700 1.476800 1.663814 1.864008 1.919127

8 2.512113 2.496303 1.437371 1.587033 1.872599 1.900597

9 2.473074 2.535148 1.471238 1.578637 1.904214 1.917390

10 2.494314 2.458293 1.466971 1.588187 1.854626 1.890730

11 2.514821 2.475940 1.460671 1.636987 1.899454 1.907780

12 2.434070 2.395845 1.405276 1.526140 1.816358 1.860744

13 2.436220 2.423770 1.422719 1.560727 1.850162 1.852220

14 2.426624 2.423094 1.418287 1.618067 1.856332 1.875963

15 2.449063 2.422059 1.391765 1.625861 1.860494 1.868759

16 2.464254 2.484265 1.390019 1.556193 1.864220 1.885607

17 2.449078 2.458137 1.388233 1.578789 1.853750 1.876439

18 2.440889 2.460179 1.437709 1.552346 1.865745 1.862778

19 2.475485 2.490195 1.449897 1.649099 1.843762 1.853482

20 2.430912 2.433455 1.431069 1.557230 1.866149 1.876663

21 2.398399 2.424250 1.432139 1.641966 1.876667 1.881869

22 2.437336 2.456539 1.438684 1.565529 1.862539 1.859809

23 2.427957 2.473488 1.423501 1.546684 1.874663 1.852118

24 2.442517 2.423821 1.410946 1.528640 1.859646 1.870732

25 2.455300 2.445113 1.375088 1.526087 1.887840 1.840770

26 2.454429 2.448432 1.417771 1.623552 1.849200 1.850271

27 2.450052 2.425915 1.405210 1.542290 1.840962 1.824602

28 2.438835 2.456820 1.398059 1.527039 1.829434 1.834108

29 2.409778 2.428810 1.395896 1.531834 1.831790 1.824838

30 2.450441 2.450334 1.416950 1.575659 1.830605 1.862087

31 2.420430 2.406738 1.369727 1.558557 1.806434 1.852238

32 2.433244 2.431419 1.392136 1.537414 1.802488 1.840154

33 2.387488 2.400458 1.412697 1.600479 1.828577 1.852504

34 2.426813 2.415202 1.407113 1.602991 1.818940 1.841981

35 2.403027 2.413592 1.411558 1.567384 1.813315 1.837323
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36 2.408958 2.388213 1.418329 1.628627 1.823923 1.855356

37 2.416086 2.446995 1.381755 1.579058 1.811664 1.839731

38 2.419935 2.450039 1.359364 1.528949 1.842990 1.818611

39 2.406924 2.420356 1.406839 1.612392 1.820673 1.862236

40 2.411082 2.439522 1.386057 1.588262 1.806479 1.848654

41 2.445971 2.432676 1.414754 1.599544 1.852943 1.840840

42 2.456986 2.400088 1.383864 1.546704 1.838615 1.858656

43 2.424771 2.458291 1.428424 1.627727 1.836889 1.867144

44 2.447868 2.386386 1.416142 1.550924 1.802053 1.843765

45 2.440500 2.406939 1.419125 1.588304 1.810358 1.855754

46 2.458035 2.402882 1.418004 1.632737 1.830199 1.841494

47 2.453044 2.400010 1.386885 1.553212 1.839634 1.879314

48 2.457722 2.407752 1.389539 1.566726 1.848899 1.867521

49 2.471141 2.435757 1.423197 1.551818 1.865658 1.875485

50 2.439184 2.415828 1.423496 1.618629 1.847202 1.879861
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Table 33: Control output θ̇: spiral trajectory with (ln 2)2 of the best performance gains.

Exp. K K+FF LQR in R8 LQR in DQ HIR HIRT

k = 60.057 k = 60.057 q = 129.722, q = 0.01 γT = 0.775, γO = 0.786

1 301.831309 303.888108 340.038152 344.579206 325.695692 325.631568

2 299.164906 303.611655 344.364852 341.350026 325.724756 322.306218

3 303.346257 308.341957 344.061729 357.814094 322.689472 326.644372

4 317.485567 316.200278 351.189683 357.540699 340.017436 341.928506

5 321.947317 320.655881 364.364225 370.272867 344.982355 343.192869

6 316.947215 317.048749 363.825415 371.675872 340.301521 342.911280

7 321.846266 321.297965 365.443377 374.058422 338.311795 345.230788

8 324.553389 322.589626 358.642535 358.562718 339.732892 342.320637

9 320.513020 326.284558 366.211586 357.260440 343.413174 343.025712

10 322.638653 319.753172 364.866678 357.404840 336.239070 340.345389

11 324.618920 321.326668 364.135756 369.424426 343.358851 342.279150

12 319.934235 315.091731 355.535123 349.588076 335.702520 338.411136

13 318.175993 316.063919 356.987159 355.505297 338.227871 336.567911

14 316.562878 315.949761 356.510170 365.231224 337.149632 339.107579

15 318.354478 317.272534 350.417694 366.487516 338.508300 340.126947

16 319.286666 321.688764 348.885694 353.510913 338.761394 339.642087

17 318.833534 319.760516 348.158235 355.185714 337.469849 338.380851

18 317.804359 320.508053 359.159074 351.746044 338.466337 337.850004

19 320.825644 321.214202 362.126532 370.886061 335.691965 336.559893

20 315.907598 316.520399 356.425062 351.443180 336.683807 338.005560

21 312.966016 315.844011 356.369226 367.337786 339.662038 338.976347

22 315.892842 319.014557 357.071512 352.680882 337.140689 336.937425

23 317.602050 318.782164 354.641309 349.810987 340.333889 335.303331

24 317.699903 315.402352 352.789599 346.755260 336.564870 336.783117

25 317.409533 317.278373 344.764826 346.764288 336.675951 332.874910

26 318.379852 318.198660 354.600888 367.008139 337.714665 336.421631

27 318.238802 315.176802 351.666129 349.042630 335.879842 331.664057

28 317.007203 318.280546 349.923661 347.375357 333.624415 333.947942

29 314.666710 315.866072 350.240779 347.776568 332.702165 331.496844

30 317.371665 317.782700 354.932377 356.604282 332.855813 336.183651

31 315.089653 313.101180 343.675814 353.024920 330.518331 335.070488

32 316.266978 315.227034 348.420089 349.036212 330.099563 333.141196

33 312.033803 313.526256 351.953149 359.052884 334.255113 335.426339

34 314.899367 314.881186 351.603838 361.127873 331.934471 332.769722

35 313.895029 314.293592 352.566331 354.630556 331.320963 331.999119

36 314.050317 311.620555 353.218890 365.108637 332.492716 334.412294
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37 314.482693 317.962587 347.115012 357.178915 332.610304 333.354494

38 315.095527 317.465602 342.432102 347.249484 333.334135 329.641857

39 313.796943 315.140044 351.332682 362.714448 333.020914 335.963554

40 314.336977 317.058243 347.809695 358.472480 331.233161 334.825085

41 317.428153 316.627209 353.413922 360.436268 335.613934 334.237908

42 317.781367 313.006775 348.825805 349.425636 335.346774 335.031977

43 315.931657 317.899112 356.726768 365.831164 333.604885 336.054190

44 317.970948 312.588073 354.058957 350.027054 330.479592 334.083113

45 316.696922 313.785046 355.558079 358.600993 330.938914 336.006018

46 319.786335 314.271595 355.517274 367.407655 333.071533 333.867210

47 318.275240 313.074622 348.359290 351.419722 334.435423 338.519215

48 318.473263 314.573481 349.789231 353.940566 336.282911 337.398048

49 320.641948 316.352559 355.839741 351.017992 337.359786 337.855598

50 316.506784 314.963178 354.660531 364.387835 335.218110 337.651079
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Table 35: Joints Control E�ort Norm (E�.): spiral trajectory with (ln 2)2 of the best performance

gains.

Exp. K K+FF LQR in R8 LQR in DQ HIR HIRT

k = 60.057 k = 60.057 q = 129.722, q = 0.01 γT = 0.775, γO = 0.786

1 0.054672 0.054604 0.059250 0.061244 0.056990 0.056747

2 0.053104 0.054645 0.060387 0.059912 0.056537 0.056216

3 0.054004 0.053771 0.060581 0.063406 0.057656 0.057422

4 0.053713 0.054072 0.058643 0.059181 0.056455 0.056847

5 0.053620 0.053838 0.061034 0.063138 0.057234 0.056806

6 0.053858 0.054266 0.060767 0.062781 0.057056 0.056800

7 0.054291 0.053995 0.060061 0.062694 0.057089 0.056939

8 0.053541 0.054010 0.059058 0.059462 0.056882 0.056700

9 0.053981 0.053585 0.061855 0.059836 0.056488 0.057037

10 0.053831 0.053792 0.061453 0.059596 0.056871 0.057062

11 0.053702 0.054412 0.061356 0.062987 0.056692 0.057361

12 0.053989 0.054379 0.059526 0.059047 0.056586 0.055970

13 0.053599 0.054029 0.060379 0.060061 0.056158 0.056507

14 0.053605 0.053927 0.059582 0.062203 0.056577 0.056200

15 0.054173 0.054631 0.059037 0.062129 0.056957 0.056472

16 0.053100 0.053830 0.058724 0.059379 0.056091 0.056594

17 0.054629 0.054413 0.058689 0.059611 0.057397 0.056623

18 0.054224 0.053854 0.061206 0.059961 0.056634 0.057106

19 0.054497 0.054089 0.061125 0.063030 0.056690 0.057164

20 0.053860 0.054642 0.060207 0.059809 0.057197 0.056628

21 0.054911 0.054736 0.060619 0.063201 0.057168 0.057275

22 0.054904 0.053786 0.061125 0.059798 0.056613 0.057034

23 0.054877 0.055013 0.060054 0.059474 0.057048 0.057046

24 0.054424 0.054759 0.060480 0.059460 0.056375 0.056825

25 0.054353 0.054262 0.058914 0.059478 0.057592 0.057313

26 0.054704 0.055155 0.060926 0.062573 0.056988 0.056935

27 0.054171 0.055057 0.059922 0.059576 0.057515 0.057304

28 0.053797 0.054238 0.060081 0.059361 0.057072 0.057342

29 0.053897 0.054073 0.059609 0.059558 0.057208 0.056823

30 0.053988 0.054596 0.061233 0.060764 0.057205 0.056949

31 0.054535 0.053395 0.059019 0.060848 0.057683 0.057106

32 0.054095 0.053674 0.059885 0.059706 0.056450 0.057846

33 0.053754 0.053922 0.060945 0.061889 0.056859 0.056947

34 0.053505 0.053601 0.060573 0.061234 0.056534 0.057464

35 0.054016 0.053880 0.060314 0.059994 0.057048 0.057702
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36 0.053680 0.053534 0.060273 0.062626 0.058307 0.057368

37 0.054136 0.053397 0.059049 0.060751 0.056825 0.056441

38 0.054244 0.054667 0.058684 0.059371 0.056692 0.056929

39 0.054316 0.053447 0.060123 0.062026 0.056667 0.056736

40 0.053410 0.053812 0.059185 0.060756 0.056186 0.057010

41 0.054499 0.053414 0.060694 0.060274 0.057370 0.057017

42 0.053785 0.053752 0.059006 0.059764 0.056592 0.057347

43 0.054034 0.054238 0.060378 0.061802 0.057267 0.056770

44 0.053972 0.054518 0.060095 0.059174 0.057064 0.056823

45 0.053830 0.054687 0.059667 0.060676 0.056767 0.056874

46 0.055125 0.054541 0.060570 0.062666 0.056469 0.056629

47 0.053886 0.054462 0.059454 0.059439 0.057180 0.056924

48 0.053731 0.054580 0.059281 0.059969 0.057030 0.057325

49 0.054579 0.054437 0.060096 0.058670 0.057376 0.056771

50 0.053592 0.054470 0.060190 0.062089 0.056592 0.056473
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Table 37: End e�ector linear velocity (L. Vel.): spiral trajectory with (ln 2)2 of the best perfor-

mance gains.

Exp. K K+FF LQR in R8 LQR in DQ HIR HIRT

k = 60.057 k = 60.057 q = 129.722, q = 0.01 γT = 0.775, γO = 0.786

1 1.341699 1.305637 1.393111 1.431237 1.331473 1.342722

2 1.318170 1.331367 1.414202 1.403089 1.336744 1.338513

3 1.331697 1.320703 1.421194 1.483432 1.358710 1.351949

4 1.323423 1.327943 1.394555 1.413735 1.341484 1.348060

5 1.326998 1.323756 1.439126 1.492063 1.355989 1.346906

6 1.319980 1.328213 1.438134 1.485218 1.349170 1.346821

7 1.337307 1.328946 1.424902 1.476490 1.347358 1.345541

8 1.326241 1.332013 1.392962 1.412110 1.352786 1.349665

9 1.331180 1.326715 1.458090 1.422088 1.339999 1.352622

10 1.327177 1.329151 1.440944 1.412146 1.348557 1.349172

11 1.327112 1.323543 1.447618 1.488122 1.340893 1.349786

12 1.326738 1.336160 1.426626 1.409338 1.348745 1.342584

13 1.340489 1.333488 1.445301 1.436166 1.341514 1.351869

14 1.323052 1.327467 1.422659 1.481465 1.348167 1.348647

15 1.331968 1.340644 1.408928 1.483639 1.348031 1.344689

16 1.313664 1.321497 1.391523 1.416179 1.334904 1.350807

17 1.335430 1.338266 1.386394 1.415924 1.354140 1.351755

18 1.328722 1.317792 1.446326 1.420482 1.349315 1.348753

19 1.338490 1.326979 1.452791 1.495375 1.346067 1.354469

20 1.317522 1.330567 1.433501 1.421566 1.356068 1.345705

21 1.339802 1.333225 1.437543 1.492925 1.352505 1.353903

22 1.337875 1.317809 1.454353 1.420564 1.347050 1.354696

23 1.317542 1.339109 1.433064 1.417365 1.348711 1.360155

24 1.331897 1.340363 1.435376 1.417803 1.339077 1.346364

25 1.320800 1.319862 1.398552 1.419604 1.354490 1.352973

26 1.333976 1.343486 1.438040 1.483227 1.344148 1.348367

27 1.333795 1.337332 1.422442 1.408675 1.353100 1.354603

28 1.326486 1.331972 1.424067 1.411920 1.350755 1.353973

29 1.319791 1.333281 1.413130 1.416165 1.349333 1.344527

30 1.329408 1.335748 1.451629 1.447665 1.351382 1.350084

31 1.336738 1.314978 1.391948 1.451911 1.350769 1.351615

32 1.321199 1.320395 1.419715 1.417744 1.342781 1.361199

33 1.323475 1.319837 1.446053 1.472725 1.344801 1.347260

34 1.313568 1.317588 1.431805 1.464305 1.337598 1.355004

35 1.322919 1.324223 1.431796 1.430285 1.351581 1.363299
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36 1.314975 1.315662 1.428241 1.481358 1.353841 1.362679

37 1.327988 1.316722 1.395935 1.453971 1.352557 1.344309

38 1.315531 1.336797 1.397014 1.413426 1.345880 1.346670

39 1.336838 1.320597 1.425171 1.477243 1.350012 1.351808

40 1.314226 1.322120 1.410427 1.450214 1.347757 1.353205

41 1.330004 1.315769 1.435631 1.444544 1.358679 1.345551

42 1.320950 1.324724 1.397110 1.426854 1.343067 1.360327

43 1.333914 1.338835 1.439611 1.473846 1.349997 1.341336

44 1.326295 1.328601 1.427500 1.406588 1.350005 1.348322

45 1.332858 1.340893 1.425044 1.447993 1.351168 1.349184

46 1.347449 1.338720 1.435882 1.482118 1.346209 1.349008

47 1.320865 1.334210 1.413863 1.413454 1.352649 1.350150

48 1.320893 1.326705 1.409293 1.419621 1.359158 1.353770

49 1.336743 1.331088 1.420851 1.404891 1.367163 1.346995

50 1.315774 1.325998 1.422668 1.476849 1.340023 1.337617
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Table 39: End e�ector linear acceleration (L. Acc.): spiral trajectory with (ln 2)2 of the best

performance gains.

Exp. K K+FF LQR in R8 LQR in DQ HIR HIRT

k = 60.057 k = 60.057 q = 129.722, q = 0.01 γT = 0.775, γO = 0.786

1 136.722495 112.915369 116.472430 111.792719 113.361807 121.829930

2 112.529986 123.097703 112.058561 113.836398 112.484560 114.401182

3 139.556628 113.016511 113.663961 103.968905 123.351983 126.528919

4 118.550489 118.586052 119.575571 114.279821 114.676808 115.744390

5 120.109350 116.424587 113.873308 102.453630 121.505215 118.158380

6 112.765424 114.258047 112.099857 103.813183 122.832160 114.806881

7 126.460798 128.165798 113.817964 103.431745 122.505782 116.061916

8 116.057200 131.099061 120.007168 116.125489 122.603777 117.855555

9 119.335525 118.196782 108.672626 117.742628 124.737281 121.556094

10 118.607951 116.311993 111.133852 116.546949 121.440276 118.443926

11 119.168811 123.886083 109.686915 104.256713 114.729915 116.041003

12 119.870170 127.922900 111.965487 113.337593 112.458744 114.597270

13 148.599693 143.155313 108.623100 109.402633 113.673479 113.630397

14 113.734416 125.238477 114.278602 102.105724 125.408016 113.542051

15 125.832933 143.940072 115.353891 103.507195 112.276907 114.318399

16 113.695453 113.626069 122.540311 114.133635 120.818769 120.483499

17 112.358637 117.256303 119.922369 115.746450 112.514133 114.849416

18 111.830539 112.909032 109.162092 114.010036 142.199671 113.198019

19 129.371428 114.082149 108.151796 102.612090 116.936876 118.300567

20 113.696797 132.945409 112.535812 114.992538 117.695998 114.983364

21 112.423690 121.119794 112.043557 102.758563 128.191478 113.567773

22 124.478655 113.040801 110.643562 113.820594 112.519960 127.690075

23 114.233806 114.969642 111.495069 114.425465 113.105000 116.018857

24 113.747766 120.727757 113.605209 113.304493 113.873567 114.529877

25 113.872359 116.009073 117.474887 114.287897 114.028708 130.760021

26 140.867457 136.609958 112.109584 101.997690 118.560641 113.582895

27 114.974742 119.322002 113.345366 114.747811 130.247633 115.371494

28 121.975595 115.354576 115.196112 114.594122 138.027968 117.073514

29 114.272641 137.725975 114.394413 115.177786 117.476375 114.135328

30 124.829006 114.246945 108.942249 108.319871 128.193120 114.034314

31 132.726231 112.695402 120.300522 107.730931 125.104080 117.950560

32 118.556282 111.566580 117.970877 113.552320 122.370059 113.625540

33 112.715786 112.656996 113.480466 105.871957 114.387462 123.757254

34 113.214256 111.992092 111.407354 106.402854 113.046168 115.584432

35 114.252194 124.356944 113.223708 112.146548 116.995647 119.223372
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36 112.441094 111.724809 112.047826 103.881360 123.190047 118.739643

37 122.232731 117.334775 123.352819 107.253805 113.710055 118.534489

38 112.595789 114.980168 121.816379 115.171647 116.930040 117.338779

39 128.026434 114.188056 112.168014 104.157435 114.325728 116.152058

40 112.975241 122.503847 120.174439 108.118756 129.662988 118.373673

41 123.375529 112.798243 110.690184 110.972723 116.183225 114.093219

42 112.618016 127.395961 121.319221 117.389459 119.188913 122.715195

43 112.786071 130.439900 110.137912 103.185686 125.142529 113.780290

44 117.867908 117.937120 113.264110 114.167396 118.152474 115.974706

45 130.444770 132.773474 113.843882 109.713448 114.403982 121.613270

46 149.691062 143.484997 110.040549 103.848163 117.841308 115.437246

47 117.471902 128.765650 115.588464 115.091256 128.605383 115.031782

48 114.127998 118.116707 119.353615 113.014374 127.733213 134.518389

49 120.121548 125.776122 114.053687 115.773673 124.374475 114.784843

50 113.844858 117.094961 114.659910 105.076670 119.126476 114.810904

E.6.2 (ln 2) of the best performance
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Table 41: Integral norm of the end-e�ector invariant error: spiral trajectory with (ln 2) of the best

performance gains.

Exp. K K+FF LQR in R8 LQR in DQ HIR HIRT

k = 86.643 k = 86.643 q = 187.15, r = 0.01 γT = 0.537, γO = 0.544

1 1.642340 1.624950 1.592690 1.242188 1.225588 1.234155

2 1.658781 1.654525 1.624520 1.299189 1.242725 1.220993

3 1.655785 1.652415 1.500473 1.230629 1.235760 1.209952

4 1.639596 1.638225 1.565242 1.289772 1.229953 1.224240

5 1.645112 1.640259 1.614849 1.239090 1.230657 1.247814

6 1.663297 1.656902 1.549416 1.305277 1.239888 1.241181

7 1.647812 1.682431 1.586609 1.267538 1.233262 1.241091

8 1.634806 1.651401 1.568970 1.305862 1.214803 1.224710

9 1.661692 1.677400 1.527333 1.271085 1.234054 1.217828

10 1.662121 1.654896 1.601174 1.311825 1.233444 1.214569

11 1.662385 1.664383 1.494742 1.278014 1.214390 1.210791

12 1.650396 1.637147 1.466418 1.321474 1.233505 1.232203

13 1.641074 1.663595 1.637975 1.231670 1.232178 1.232529

14 1.667053 1.681249 1.567856 1.315631 1.222219 1.221977

15 1.657144 1.662774 1.478920 1.312048 1.244512 1.212514

16 1.633083 1.661042 1.667855 1.250214 1.226317 1.222995

17 1.664593 1.672101 1.483760 1.321851 1.226869 1.197773

18 1.655154 1.650095 1.526778 1.250697 1.222528 1.217682

19 1.660464 1.646678 1.600142 1.256320 1.215143 1.213629

20 1.635076 1.633025 1.544805 1.275697 1.210002 1.230358

21 1.658400 1.697624 1.622549 1.249671 1.221014 1.213877

22 1.635585 1.647796 1.492008 1.262698 1.217713 1.210993

23 1.634249 1.667149 1.535721 1.301478 1.215229 1.189586

24 1.630181 1.648881 1.587741 1.269677 1.232490 1.221631

25 1.659811 1.652169 1.618211 1.332885 1.234206 1.239158

26 1.668167 1.668272 1.554910 1.327571 1.248335 1.234199

27 1.694915 1.693814 1.527497 1.347641 1.232509 1.246358

28 1.674534 1.672045 1.514748 1.264452 1.253518 1.245941

29 1.707578 1.686485 1.620558 1.245554 1.275310 1.271968

30 1.708723 1.704679 1.581515 1.333845 1.252633 1.258441

31 1.683925 1.708281 1.553604 1.264979 1.254799 1.254404

32 1.709160 1.718176 1.547648 1.280782 1.293072 1.275432

33 1.731421 1.686914 1.535927 1.294704 1.260626 1.281891

34 1.700857 1.695341 1.602126 1.309251 1.253044 1.244139

35 1.710104 1.710514 1.488326 1.324105 1.235051 1.242807
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36 1.692439 1.726115 1.576584 1.333599 1.255120 1.240404

37 1.708452 1.727059 1.617139 1.264244 1.259438 1.260450

38 1.712671 1.714158 1.551895 1.270974 1.256861 1.257652

39 1.718356 1.696913 1.361212 1.253407 1.243989 1.268518

40 1.704213 1.732264 1.569839 1.313940 1.265622 1.266963

41 1.730273 1.735843 1.510208 1.306047 1.290407 1.283073

42 1.715046 1.756487 1.662381 1.253039 1.264555 1.274731

43 1.719967 1.755595 1.578794 1.326214 1.280311 1.275405

44 1.742992 1.753077 1.527813 1.250092 1.266309 1.268828

45 1.728029 1.746995 1.573755 1.332084 1.280945 1.262776

46 1.742656 1.737488 1.647273 1.243685 1.271860 1.273593

47 1.738552 1.737942 1.627506 1.271189 1.260094 1.268215

48 1.713719 1.742821 1.567420 1.330253 1.259129 1.266383

49 1.717275 1.746780 1.588891 1.320317 1.266504 1.257098

50 1.694722 1.711057 1.657662 1.338221 1.265828 1.270645
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Table 43: Control output θ̇: spiral trajectory with (ln 2) of the best performance gains.

Exp. K K+FF LQR in R8 LQR in DQ HIR HIRT

k = 86.643 k = 86.643 q = 187.15, r = 0.01 γT = 0.537, γO = 0.544

1 324.125712 321.174490 471.081478 347.307077 336.004809 338.277347

2 325.633080 325.270997 479.326230 359.191082 340.645068 334.844807

3 324.636168 325.585353 449.468107 344.575965 337.829612 334.398537

4 322.998019 321.142248 463.147029 358.749408 334.873903 335.956501

5 325.114103 322.775840 479.041296 345.607474 335.786529 338.136245

6 325.062607 324.389306 462.733884 359.679140 338.503527 337.046082

7 325.090857 329.487739 468.627397 352.171751 335.876268 337.061077

8 321.039016 324.501430 466.995774 360.941357 332.289588 334.910075

9 326.121476 328.371441 456.164743 355.893057 336.323063 331.933581

10 326.500411 324.901300 472.591671 363.059805 337.282969 331.191227

11 324.664500 324.880018 447.055921 353.300178 332.182224 331.397384

12 323.134249 321.063627 433.852865 363.331115 336.662248 334.760130

13 322.009388 324.700559 480.283767 342.983997 336.264458 335.152456

14 325.857835 328.045087 466.712531 362.661532 332.043944 332.284791

15 323.515602 326.224592 443.412144 361.385343 337.434189 330.209816

16 321.429996 325.589510 475.706147 346.799231 336.395317 333.678270

17 325.487663 327.033588 449.708569 363.886594 334.101219 327.878886

18 323.524159 323.723116 453.053852 345.290359 334.592437 331.785032

19 323.620861 321.696494 471.647953 347.019457 333.248979 330.855173

20 320.585883 321.069771 459.004224 354.250448 329.652349 333.445238

21 323.638978 329.939171 469.337877 345.921895 334.566897 332.821799

22 320.743189 322.261612 443.041805 349.306465 333.938249 331.287880

23 321.100287 325.094919 455.268083 359.019825 333.298662 326.772961

24 320.847415 323.397823 465.782046 351.803290 337.476848 333.453639

25 325.211259 323.720876 456.959628 365.431438 337.123753 336.684524

26 326.647246 325.640345 458.970622 364.675408 339.089047 335.142242

27 327.559357 328.393918 450.758370 370.732175 336.260735 337.091939

28 325.144410 325.150263 448.305723 349.006307 337.939519 336.413183

29 330.335249 327.312786 472.914974 344.349292 341.586344 339.986394

30 329.935830 330.573550 466.117691 363.970682 337.930877 337.862543

31 326.324052 328.737842 459.116265 349.299231 337.352794 336.611459

32 329.024805 330.575738 461.170350 354.722689 342.335482 338.679321

33 330.337534 325.707450 452.049668 356.759459 336.439079 340.169218

34 330.769991 330.035912 473.547983 361.083487 340.259850 338.486770

35 331.125286 331.589876 443.383558 362.722621 336.797360 337.682121

36 329.181004 333.693380 464.005561 365.468135 339.396728 335.991432
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37 330.569338 333.427680 473.197863 348.999184 339.774762 340.369601

38 331.119625 331.723854 461.514715 353.358728 339.345070 338.552240

39 330.655008 329.141349 368.623440 347.256763 336.706683 340.697699

40 329.720389 333.935672 462.959590 362.923989 340.659182 339.443970

41 332.271827 333.055565 448.998749 361.038386 344.442081 343.323160

42 329.325540 335.834690 485.365415 347.684525 339.421476 341.184706

43 330.913511 336.429017 462.855549 364.029574 341.647099 341.156301

44 334.479341 335.115064 451.916026 349.020110 339.136719 339.060102

45 331.943794 334.320800 462.286331 364.808964 340.521134 339.170108

46 333.989392 333.337343 480.024904 345.299584 340.571565 339.982034

47 334.098987 333.723410 476.506140 351.954655 338.195210 339.314363

48 330.218327 334.022285 462.759821 365.251958 337.331033 337.641014

49 329.673002 334.298955 465.134990 361.958717 339.037293 337.116699

50 326.497691 329.300617 481.369168 391.291790 338.904837 339.796764
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Table 45: Joints Control E�ort Norm (E�.): spiral trajectory with (ln 2) of the best performance

gains.

Exp. K K+FF LQR in R8 LQR in DQ HIR HIRT

k = 86.643 k = 86.643 q = 187.15, r = 0.01 γT = 0.537, γO = 0.544

1 0.057666 0.057302 0.057838 0.062215 0.061487 0.060673

2 0.058087 0.057691 0.059321 0.064642 0.060554 0.060054

3 0.058062 0.058546 0.059980 0.062172 0.061186 0.060795

4 0.058665 0.058097 0.057942 0.065132 0.060754 0.060616

5 0.059198 0.058685 0.059764 0.061660 0.061095 0.060610

6 0.059196 0.058466 0.058366 0.064325 0.061131 0.061066

7 0.058528 0.058932 0.058377 0.063155 0.060722 0.061141

8 0.058416 0.057898 0.059610 0.065298 0.060943 0.061034

9 0.058266 0.059403 0.059780 0.069077 0.061436 0.060370

10 0.058220 0.058167 0.059200 0.064776 0.060656 0.060803

11 0.058416 0.058017 0.059035 0.063093 0.060919 0.060872

12 0.058597 0.059263 0.060574 0.064010 0.061698 0.060603

13 0.058184 0.058321 0.059786 0.061394 0.061330 0.061074

14 0.058322 0.058818 0.058609 0.065055 0.060791 0.060719

15 0.058770 0.058709 0.060405 0.064658 0.061076 0.060733

16 0.058887 0.058429 0.065549 0.060784 0.061637 0.061071

17 0.057986 0.058297 0.059111 0.064965 0.060940 0.060706

18 0.058434 0.058372 0.057925 0.061028 0.061406 0.060791

19 0.058536 0.058603 0.058826 0.061350 0.061275 0.060254

20 0.058891 0.059061 0.058132 0.062654 0.060385 0.060794

21 0.057797 0.059065 0.059702 0.061508 0.061115 0.060917

22 0.058128 0.058523 0.058477 0.061699 0.061087 0.060232

23 0.058683 0.058472 0.058467 0.064443 0.060770 0.060012

24 0.057192 0.057327 0.060624 0.062080 0.060256 0.059132

25 0.057455 0.057112 0.064626 0.065091 0.059851 0.060119

26 0.057487 0.057617 0.059577 0.065111 0.060005 0.059385

27 0.057501 0.057449 0.057531 0.065784 0.059939 0.059560

28 0.058057 0.058048 0.057788 0.062030 0.059326 0.059536

29 0.058068 0.057842 0.057593 0.061367 0.060288 0.059976

30 0.057878 0.058275 0.058437 0.065057 0.059860 0.060088

31 0.057957 0.058422 0.058860 0.061762 0.060376 0.059766

32 0.057744 0.058076 0.058252 0.062690 0.060316 0.060344

33 0.057489 0.058110 0.060286 0.063329 0.060231 0.060258

34 0.057434 0.057484 0.059294 0.064670 0.058963 0.058855

35 0.056652 0.056904 0.058609 0.064257 0.059191 0.059132
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36 0.058082 0.057092 0.058604 0.064668 0.059434 0.059068

37 0.056896 0.057247 0.058633 0.061651 0.058827 0.059298

38 0.057117 0.056867 0.059212 0.062457 0.060036 0.059221

39 0.057844 0.057982 0.060906 0.060488 0.059108 0.059579

40 0.057938 0.057565 0.058827 0.064676 0.059485 0.059833

41 0.057031 0.057582 0.058559 0.064882 0.060604 0.060829

42 0.057199 0.058421 0.058773 0.061789 0.059173 0.059208

43 0.057397 0.057798 0.059950 0.064956 0.059850 0.059531

44 0.057775 0.058266 0.060116 0.062385 0.060369 0.059547

45 0.058412 0.057461 0.059554 0.064347 0.059175 0.059599

46 0.058346 0.057927 0.058994 0.060897 0.060543 0.059199

47 0.058638 0.057380 0.058766 0.061991 0.059571 0.059439

48 0.058130 0.058363 0.058378 0.065101 0.059856 0.059504

49 0.057187 0.057792 0.058585 0.063922 0.059348 0.059542

50 0.057763 0.058295 0.058255 0.074778 0.059861 0.059568
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Table 47: End e�ector linear velocity (L. Vel.): spiral trajectory with (ln 2) of the best performance

gains.

Exp. K K+FF LQR in R8 LQR in DQ HIR HIRT

k = 86.643 k = 86.643 q = 187.15, r = 0.01 γT = 0.537, γO = 0.544

1 1.372280 1.366343 1.382241 1.448676 1.394162 1.388639

2 1.369587 1.367986 1.394241 1.498064 1.386156 1.378776

3 1.379410 1.380213 1.402642 1.429456 1.387862 1.391873

4 1.377900 1.374399 1.374273 1.505276 1.388959 1.391262

5 1.387642 1.382898 1.408181 1.438174 1.391368 1.384837

6 1.397145 1.378569 1.382704 1.493141 1.388556 1.394383

7 1.381069 1.386052 1.384162 1.465446 1.383113 1.394314

8 1.381808 1.369456 1.416185 1.509851 1.393141 1.390036

9 1.372325 1.386281 1.399754 1.661216 1.390251 1.389671

10 1.374213 1.373223 1.407191 1.504687 1.383605 1.387912

11 1.375809 1.370845 1.398357 1.468729 1.393291 1.389300

12 1.385421 1.384221 1.414836 1.499941 1.395093 1.384582

13 1.374327 1.377565 1.408867 1.432004 1.389428 1.388630

14 1.372712 1.387383 1.396441 1.507554 1.391335 1.389610

15 1.383001 1.387448 1.415554 1.502334 1.392932 1.394005

16 1.388504 1.371693 1.610323 1.420066 1.387872 1.384536

17 1.368124 1.372199 1.390603 1.509068 1.392611 1.392360

18 1.372545 1.368942 1.381228 1.422099 1.388033 1.389351

19 1.381358 1.383493 1.402736 1.421302 1.390150 1.387093

20 1.390359 1.371443 1.378470 1.457898 1.386941 1.386658

21 1.367278 1.386795 1.406968 1.426394 1.391484 1.394614

22 1.371892 1.379682 1.395829 1.427664 1.394680 1.382102

23 1.382916 1.376151 1.388629 1.497360 1.383974 1.387902

24 1.371901 1.370223 1.428034 1.449467 1.384719 1.384832

25 1.369159 1.372187 1.594276 1.509649 1.381914 1.390101

26 1.373142 1.373027 1.421438 1.515321 1.381772 1.388212

27 1.369168 1.373448 1.356462 1.515726 1.381960 1.390911

28 1.374577 1.373912 1.372921 1.437299 1.380081 1.379397

29 1.380430 1.376261 1.376267 1.421127 1.382238 1.388781

30 1.381337 1.380453 1.387303 1.495836 1.385729 1.389081

31 1.372892 1.382455 1.392777 1.430710 1.386276 1.384849

32 1.377268 1.376218 1.388397 1.455828 1.392469 1.385805

33 1.371059 1.374531 1.411706 1.466454 1.386318 1.386049

34 1.379058 1.375304 1.413198 1.501672 1.370187 1.374902

35 1.363436 1.370364 1.389284 1.494290 1.384488 1.384480
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36 1.389344 1.374435 1.404050 1.506909 1.383422 1.382341

37 1.369642 1.374999 1.396950 1.430149 1.371444 1.391830

38 1.369675 1.366915 1.405233 1.455761 1.394064 1.385493

39 1.389585 1.383567 1.442179 1.425608 1.380428 1.390746

40 1.387665 1.369793 1.394071 1.505522 1.385651 1.387067

41 1.364272 1.367581 1.393647 1.505259 1.406457 1.413632

42 1.367597 1.391144 1.398988 1.428475 1.380042 1.379017

43 1.373965 1.368551 1.410593 1.507842 1.385793 1.378091

44 1.373225 1.382430 1.409439 1.455227 1.393772 1.387332

45 1.391915 1.367641 1.401581 1.502445 1.379447 1.384018

46 1.392969 1.385955 1.401865 1.412585 1.406453 1.383016

47 1.391626 1.366529 1.388467 1.444239 1.389028 1.397153

48 1.385858 1.385082 1.384012 1.503955 1.397230 1.379417

49 1.368389 1.376652 1.387596 1.479872 1.382322 1.384712

50 1.381956 1.386610 1.394446 1.793818 1.393278 1.391449
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Table 49: End e�ector linear acceleration (L. Acc.): spiral trajectory with (ln 2) of the best

performance gains.

Exp. K K+FF LQR in R8 LQR in DQ HIR HIRT

k = 86.643 k = 86.643 q = 187.15, r = 0.01 γT = 0.537, γO = 0.544

1 120.358257 116.495185 116.315053 112.236567 129.070419 119.952939

2 122.209094 115.608521 109.268361 104.096984 123.078630 116.293444

3 126.826828 129.744602 109.255588 115.241832 124.086056 118.330744

4 126.111283 123.114353 117.404811 103.454329 123.583873 123.630447

5 127.996869 126.611870 113.489761 118.107188 124.774646 117.867978

6 152.162435 125.581312 113.004954 105.518988 124.622552 122.434243

7 126.068157 126.191897 112.708435 108.804851 124.455597 122.618680

8 126.765343 120.150710 113.536241 103.294817 128.470193 120.184766

9 120.363838 119.532056 109.901418 131.270655 127.099878 118.051165

10 121.621622 121.536845 109.813281 104.784080 117.838910 119.684975

11 122.284823 118.345066 112.830229 110.530872 124.360640 118.906585

12 130.424284 131.628487 113.432057 105.669049 122.647886 118.536014

13 116.743626 119.778886 108.251698 116.650945 125.357329 121.306081

14 125.718668 131.080090 109.148826 104.338528 130.836735 122.338846

15 124.308932 127.985378 108.615141 104.495388 123.411067 119.250898

16 134.934135 127.376210 134.096194 116.262664 122.087650 118.716371

17 119.601046 118.646692 112.579648 103.672927 118.388135 120.601361

18 117.826128 115.686544 112.618597 113.933470 128.196819 118.954400

19 128.998472 136.236262 109.039223 116.072711 126.179986 119.975160

20 129.230756 122.783188 115.206378 112.155605 121.382132 119.535304

21 118.896609 143.296356 110.250720 115.435205 123.197102 117.995937

22 119.442001 119.526650 111.909381 115.713674 122.938195 117.898712

23 130.056088 120.965935 115.485773 104.843386 121.456365 117.609181

24 118.363567 115.682016 108.451065 117.385987 125.974330 120.894995

25 122.922963 119.809768 127.531282 103.784991 117.334067 120.175405

26 118.164088 123.657181 109.600975 101.991056 120.687671 118.045316

27 121.058613 118.800473 117.183208 104.001518 117.351552 117.537494

28 118.529964 116.318166 113.357005 114.700041 121.431316 119.077055

29 127.033114 123.536554 112.491031 116.337243 121.762345 126.576807

30 131.283001 123.676064 113.259813 105.847710 119.157611 121.563685

31 125.807494 124.969010 111.330354 115.067071 122.816124 122.118329

32 116.940818 116.046998 116.136685 110.317997 119.529835 117.556507

33 116.798056 116.569223 109.021467 108.929777 122.021855 120.185615

34 135.717714 117.350306 109.283377 104.612561 117.371599 117.452031

35 115.609029 121.282582 113.589634 104.732733 124.333945 115.782383
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36 135.887198 116.253578 109.957233 105.214894 125.392817 116.982782

37 122.039960 128.473525 110.302993 115.790777 119.349217 118.701603

38 122.189733 116.360102 108.269381 111.210137 116.971761 117.311591

39 119.323575 130.329695 111.606811 116.073044 125.999135 115.631464

40 132.588100 115.960071 113.752931 104.843406 119.450352 118.048993

41 118.126940 121.077280 111.156474 105.472450 113.783877 112.862456

42 116.124034 128.890267 111.791086 117.157273 117.076933 117.869985

43 116.133181 129.415425 107.878246 104.113028 130.870458 117.221227

44 125.614057 135.991289 108.731724 118.108835 138.083498 118.274122

45 133.304128 118.887046 111.231332 104.621821 117.407930 117.688456

46 148.708879 136.173300 111.845729 116.633684 128.531303 117.939213

47 126.554937 118.114292 113.336804 114.498360 115.709432 117.639896

48 131.082780 120.576771 114.978858 104.229070 130.939037 115.853032

49 117.391633 115.808997 110.922403 108.089726 120.586136 116.584017

50 136.327194 130.158628 112.418040 118.697707 117.469010 123.911283

E.6.3 Best performance
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Table 51: Integral norm of the end-e�ector invariant error: spiral trajectory with best performance

gains.

Exp. K K+FF LQR in R8 LQR in DQ HIR HIRT

k = 125 k = 125 q = 270, r = 0.01 γT = 0.372, γO = 0.377

1 1.251944 1.266689 1.438943 1.080970 0.903847 0.883590

2 1.257981 1.239157 1.474702 1.045402 0.893807 0.884444

3 1.260923 1.256307 1.407573 1.089744 0.887880 0.889654

4 1.269366 1.262349 1.342663 1.073822 0.883148 0.889947

5 1.262249 1.265130 1.419202 1.096290 0.891667 0.892536

6 1.216475 1.204680 1.368524 1.099475 0.860610 0.872318

7 1.265416 1.262776 1.436994 1.046192 0.891586 0.894544

8 1.254832 1.264140 1.407571 1.049505 0.879434 0.894882

9 1.269964 1.254328 1.433464 1.057758 0.890817 0.889417

10 1.263980 1.257022 1.406917 1.109977 0.889129 0.883783

11 1.245168 1.242628 1.391207 1.048787 0.889365 0.883149

12 1.270405 1.258278 1.435381 1.070822 0.888391 0.888716

13 1.246787 1.269183 1.423027 1.038000 0.881735 0.883651

14 1.250410 1.259948 1.432970 1.053481 0.892365 0.900333

15 1.252844 1.264478 1.403575 1.060005 0.890369 0.887022

16 1.261573 1.272017 1.397854 1.052874 0.901413 0.900361

17 1.185118 1.190544 1.338520 1.053463 0.861563 0.861772

18 1.220269 1.215943 1.364627 1.051306 0.868279 0.866737

19 1.205292 1.214406 1.401654 1.055033 0.886555 0.874948

20 1.221004 1.226239 1.392592 1.057197 0.867374 0.865999

21 1.220401 1.225942 1.378204 1.089117 0.878366 0.874906

22 1.231091 1.240790 1.403604 1.073659 0.874439 0.883415

23 1.234467 1.229870 1.394075 1.160858 0.881875 0.877612

24 1.282744 1.245632 1.411647 1.066141 0.883073 0.884725

25 1.237570 1.244533 1.417958 1.072680 0.884439 0.874024

26 1.244413 1.241331 1.415672 1.102566 0.875183 0.878154

27 1.235657 1.238679 1.440704 1.061885 0.885138 0.886400

28 1.239991 1.242944 1.438148 1.113333 0.881014 0.896990

29 1.174785 1.175406 1.330187 1.047421 0.845903 0.843224

30 1.168900 1.172865 1.362908 1.071343 0.839700 0.832522

31 1.183158 1.192815 1.324391 1.066273 0.841093 0.842502

32 1.161527 1.185674 1.343357 1.042865 0.831366 0.822875

33 1.167556 1.172882 1.350391 1.056686 0.843002 0.847946

34 1.181383 1.195462 1.355997 1.088165 0.836773 0.840232

35 1.185666 1.173476 1.346758 1.048374 0.826456 0.832541
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36 1.160287 1.167764 1.352118 1.070773 0.845904 0.831231

37 1.175585 1.169207 1.340050 1.054456 0.836695 0.829797

38 1.151299 1.178921 1.348516 1.099207 0.836595 0.826728

39 1.244687 1.230496 1.390652 1.100186 0.878846 0.873938

40 1.234254 1.228544 1.420625 1.102737 0.878770 0.875011

41 1.246533 1.255873 1.412589 1.059565 0.899945 0.890009

42 1.249934 1.259683 1.500013 1.072292 0.891491 0.888811

43 1.261064 1.251995 1.427182 1.066036 0.888104 0.889444

44 1.252343 1.258387 1.352529 1.048111 0.889293 0.893131

45 1.262301 1.242321 1.387169 1.109051 0.891968 0.903682

46 1.256340 1.233721 1.389836 1.055747 0.898055 0.896759

47 1.262967 1.250640 1.413116 1.104990 0.893505 0.896651

48 1.255077 1.264276 1.344451 1.051505 0.890538 0.899584

49 1.252514 1.253670 1.428971 1.054980 0.896104 0.896884

50 1.254415 1.246210 1.383968 1.057639 0.895813 0.900120
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Table 53: Control output θ̇: spiral trajectory with best performance gains.

Exp. K K+FF LQR in R8 LQR in DQ HIR HIRT

k = 125 k = 125 q = 270, r = 0.01 γT = 0.372, γO = 0.377

1 346.141097 349.827162 472.117425 360.542980 352.988637 349.591627

2 347.649966 343.374138 469.646245 349.942980 349.375311 347.585887

3 348.086415 347.210123 465.199294 361.149337 349.338273 349.318956

4 348.751907 347.765738 460.229435 357.444239 347.125513 348.354491

5 347.954896 347.542819 473.127921 364.113758 349.741099 349.574697

6 340.668289 335.987836 461.882791 363.042217 340.260472 344.576243

7 347.237313 347.734610 476.036291 347.019839 349.107385 350.723510

8 344.407920 347.659288 469.881549 349.760110 347.331939 351.009900

9 348.401628 347.006354 476.365293 351.697601 351.071211 350.136397

10 347.278238 345.595606 467.178819 364.329231 348.499898 347.244598

11 343.390961 342.260491 463.539171 348.964659 348.854445 346.922403

12 348.461695 345.864670 472.990528 353.906064 348.093300 347.667768

13 342.923919 349.020299 469.246036 345.422070 347.471833 347.977612

14 343.433183 346.034641 475.120224 349.250498 349.094051 352.086467

15 343.917747 345.859312 466.002651 351.601694 347.604817 347.851571

16 346.882949 348.190437 466.704736 349.049132 353.722862 352.634058

17 334.952297 334.838564 463.919201 347.894099 342.504316 342.870775

18 341.301062 339.679787 464.361600 348.332676 344.080218 343.839555

19 336.956225 338.460902 473.879267 350.666075 347.558061 346.260639

20 341.338817 342.105778 468.200966 350.046060 343.476698 343.439504

21 340.406104 341.572726 467.736885 359.028187 347.631998 344.325828

22 342.442341 344.589706 473.560595 354.596122 345.595318 348.464850

23 342.604513 343.924575 468.122874 381.279160 347.257700 346.613201

24 346.028719 345.239370 473.178641 351.587777 346.679211 346.994073

25 343.662583 344.482738 473.756438 355.593800 347.184951 345.589958

26 343.491327 343.117158 474.444269 364.260258 343.176794 344.354681

27 342.241315 343.611562 478.145893 350.782886 346.532847 348.434611

28 343.576980 342.958607 478.665579 364.453890 346.323920 349.263521

29 336.351511 335.299651 464.475001 346.181583 339.985684 338.281809

30 333.684510 334.554601 468.083854 352.961488 338.796809 335.656492

31 336.176267 338.038524 460.070447 351.876691 337.763204 340.054766

32 329.404132 335.273416 460.816272 345.575565 333.742656 332.344659

33 331.887116 332.708505 463.029620 349.238591 337.812773 338.364338

34 335.366753 337.274823 464.493288 357.752200 335.144155 337.003560

35 334.965939 333.160255 463.228418 345.642843 334.059510 335.304741

36 330.622399 331.998074 462.329757 354.703179 337.999079 333.663580
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37 331.928587 331.329874 463.398281 347.869777 336.056560 334.291056

38 329.088168 334.622494 459.643691 360.658003 334.613848 331.824484

39 346.343431 342.280705 468.585538 361.497724 346.848939 346.252592

40 344.987987 341.957617 477.701526 361.307629 346.324324 346.609811

41 347.954495 349.879641 478.279126 349.834236 355.334033 353.057648

42 348.548821 350.809558 497.738523 352.716114 351.182688 351.722571

43 352.630795 349.287121 480.455566 349.656124 351.260822 351.649302

44 348.892860 349.054664 460.456318 346.598629 350.145101 351.564641

45 350.569861 347.199663 465.800769 362.262954 351.122710 354.952285

46 348.400494 344.318759 466.665590 348.293245 353.324259 352.207760

47 349.950343 348.131113 469.025616 361.992469 350.742946 352.396919

48 350.028915 350.588532 453.816815 347.814576 350.149086 352.953094

49 346.418399 348.867801 465.721442 349.132684 351.294517 352.031947

50 348.016141 347.515749 459.329390 348.765682 351.588003 352.655829
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Table 55: Joints Control E�ort Norm (E�.): spiral trajectory with best performance gains.

Exp. K K+FF LQR in R8 LQR in DQ HIR HIRT

k = 125 k = 125 q = 270, r = 0.01 γT = 0.372, γO = 0.377

1 0.059768 0.060247 0.061477 0.064195 0.061839 0.061705

2 0.059557 0.060305 0.066074 0.062202 0.061591 0.062086

3 0.060392 0.060265 0.060066 0.064034 0.061878 0.062169

4 0.059184 0.060383 0.059073 0.063801 0.062069 0.062024

5 0.060472 0.059441 0.061253 0.065520 0.062309 0.061583

6 0.059800 0.059399 0.060946 0.065181 0.062624 0.062539

7 0.059790 0.060399 0.061038 0.061956 0.063428 0.062122

8 0.060418 0.060446 0.060672 0.062278 0.062424 0.062418

9 0.059645 0.059410 0.061090 0.062667 0.062594 0.062146

10 0.059937 0.059766 0.059131 0.064816 0.063302 0.062642

11 0.060081 0.059702 0.060773 0.062415 0.062337 0.062388

12 0.059567 0.059115 0.061071 0.062242 0.062429 0.062213

13 0.060236 0.059587 0.061441 0.061931 0.062463 0.062005

14 0.060169 0.059577 0.060639 0.061849 0.062617 0.061784

15 0.059043 0.059061 0.060828 0.062801 0.062604 0.061546

16 0.060641 0.059439 0.060093 0.062195 0.062227 0.062229

17 0.059741 0.060047 0.060546 0.062438 0.062003 0.061539

18 0.060338 0.060166 0.061122 0.062266 0.062281 0.061987

19 0.060285 0.059978 0.061270 0.062899 0.062866 0.062872

20 0.060225 0.060182 0.061379 0.063070 0.062987 0.062940

21 0.060005 0.059985 0.061198 0.065396 0.063172 0.062329

22 0.060232 0.060919 0.061860 0.062984 0.063287 0.062465

23 0.060001 0.060744 0.060270 0.068816 0.062024 0.063054

24 0.065370 0.060852 0.061336 0.062719 0.063437 0.062638

25 0.060935 0.059727 0.061198 0.063977 0.063007 0.062091

26 0.060136 0.060562 0.061423 0.065885 0.062797 0.062747

27 0.060826 0.060778 0.061287 0.062835 0.063387 0.062606

28 0.059883 0.060250 0.061620 0.066119 0.062359 0.062563

29 0.060226 0.060497 0.061420 0.061902 0.062631 0.063351

30 0.060305 0.060182 0.062251 0.062879 0.064076 0.062734

31 0.061169 0.060948 0.061103 0.062491 0.063363 0.063082

32 0.060996 0.060131 0.061744 0.062283 0.063494 0.063226

33 0.060108 0.060622 0.061629 0.062601 0.063830 0.063355

34 0.060255 0.060854 0.061454 0.063984 0.063894 0.063308

35 0.060699 0.060659 0.061412 0.062211 0.063274 0.063874

36 0.060673 0.060464 0.061159 0.063489 0.063056 0.063747
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37 0.060850 0.059773 0.060785 0.062576 0.063309 0.063637

38 0.060255 0.060372 0.062269 0.065844 0.063349 0.063699

39 0.058921 0.058515 0.059936 0.065722 0.062031 0.061300

40 0.059095 0.058639 0.059181 0.065900 0.062150 0.061977

41 0.060121 0.059726 0.060813 0.062663 0.062208 0.062371

42 0.060598 0.059948 0.061147 0.063627 0.062586 0.062793

43 0.060060 0.060194 0.061189 0.062629 0.063754 0.063022

44 0.060592 0.060349 0.059981 0.062223 0.063372 0.063149

45 0.060386 0.060185 0.061681 0.065801 0.063694 0.062740

46 0.060218 0.060261 0.061258 0.062979 0.061939 0.062720

47 0.060324 0.060109 0.062087 0.065802 0.063168 0.062967

48 0.061098 0.060385 0.059640 0.062437 0.063041 0.063327

49 0.059962 0.060342 0.062854 0.062453 0.063682 0.063010

50 0.060423 0.060298 0.062158 0.062615 0.063406 0.063287
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Table 57: End e�ector linear velocity (L. Vel.): spiral trajectory with best performance gains.

Exp. K K+FF LQR in R8 LQR in DQ HIR HIRT

k = 125 k = 125 q = 270, r = 0.01 γT = 0.372, γO = 0.377

1 1.399483 1.411059 1.438439 1.494212 1.433499 1.437929

2 1.400017 1.417262 1.568803 1.447410 1.428857 1.449927

3 1.418412 1.406143 1.403008 1.499287 1.432601 1.440718

4 1.398260 1.416447 1.372328 1.486238 1.444600 1.436365

5 1.412392 1.396981 1.433841 1.530274 1.443246 1.437855

6 1.402879 1.395850 1.426109 1.517968 1.443618 1.449031

7 1.402107 1.415234 1.427624 1.438804 1.470720 1.439208

8 1.419534 1.412406 1.418259 1.450840 1.440662 1.440771

9 1.396762 1.390300 1.434810 1.455159 1.449053 1.436349

10 1.403353 1.397998 1.389909 1.514277 1.462083 1.447435

11 1.407714 1.404182 1.421796 1.455052 1.445252 1.446066

12 1.395245 1.397696 1.429480 1.456903 1.452524 1.445529

13 1.420733 1.401396 1.428216 1.440442 1.446661 1.431291

14 1.418505 1.406200 1.421525 1.439875 1.448141 1.446165

15 1.395696 1.394938 1.420126 1.463718 1.454640 1.442778

16 1.427199 1.396136 1.418573 1.444974 1.434819 1.440737

17 1.409455 1.411696 1.418848 1.441335 1.432286 1.431282

18 1.420178 1.399931 1.427040 1.447168 1.446877 1.420518

19 1.411199 1.404254 1.426007 1.469560 1.457540 1.445769

20 1.401699 1.399496 1.437814 1.465639 1.457877 1.439672

21 1.403502 1.405708 1.420896 1.510867 1.453412 1.437920

22 1.408226 1.409831 1.431354 1.453136 1.457140 1.431623

23 1.401295 1.419852 1.407665 1.598111 1.438274 1.449101

24 1.563865 1.416436 1.428679 1.447977 1.452615 1.433749

25 1.420126 1.402772 1.427174 1.460260 1.441786 1.435646

26 1.397649 1.410234 1.430534 1.511812 1.442098 1.439619

27 1.415484 1.414266 1.428655 1.450081 1.458430 1.441435

28 1.399886 1.399806 1.432494 1.516444 1.438762 1.437854

29 1.397035 1.410348 1.432434 1.433977 1.436803 1.453390

30 1.407053 1.405181 1.434874 1.458840 1.472612 1.450268

31 1.426185 1.410553 1.404748 1.449806 1.468335 1.442091

32 1.397632 1.402294 1.423830 1.437411 1.452954 1.439337

33 1.400339 1.400120 1.418400 1.448423 1.458191 1.438074

34 1.396265 1.422322 1.438159 1.484264 1.463988 1.450731

35 1.398448 1.396501 1.427694 1.435127 1.453410 1.458135

36 1.404090 1.395210 1.421203 1.468955 1.449454 1.458506
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37 1.415459 1.396629 1.408293 1.438241 1.442837 1.451079

38 1.403730 1.400166 1.441585 1.509079 1.448584 1.448213

39 1.399148 1.390267 1.423571 1.510498 1.445671 1.434142

40 1.399094 1.390247 1.408028 1.515008 1.451705 1.448484

41 1.402261 1.406544 1.435034 1.447075 1.441887 1.443890

42 1.414754 1.406313 1.442983 1.476003 1.451384 1.449490

43 1.402609 1.405138 1.427436 1.445067 1.465959 1.443314

44 1.408687 1.400724 1.403025 1.437116 1.454030 1.452816

45 1.400552 1.402239 1.430559 1.514759 1.450519 1.439234

46 1.400756 1.401823 1.423230 1.446769 1.430345 1.430211

47 1.401856 1.399462 1.442064 1.510117 1.437132 1.445827

48 1.416689 1.401773 1.385275 1.449904 1.440161 1.460286

49 1.396835 1.406511 1.448149 1.441321 1.454743 1.445333

50 1.404236 1.401656 1.419384 1.440520 1.452064 1.456642
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Table 59: End e�ector linear acceleration (L. Acc.): spiral trajectory with best performance gains.

Exp. K K+FF LQR in R8 LQR in DQ HIR HIRT

k = 125 k = 125 q = 270, r = 0.01 γT = 0.372, γO = 0.377

1 121.977267 121.911183 111.710227 108.650290 121.231423 121.747685

2 119.248318 147.296076 124.443725 115.719709 122.411007 124.449226

3 121.704519 130.719880 118.294910 107.280744 121.572509 127.008601

4 118.303425 154.797714 120.362949 110.216055 122.411614 120.945340

5 127.259299 119.884171 111.998760 107.257322 122.294069 120.283021

6 121.315792 116.954452 114.088447 105.128805 123.014126 123.195106

7 122.485063 128.606592 113.631683 115.918625 129.843528 121.963415

8 132.059760 137.310429 122.468022 114.652594 119.862870 125.727656

9 118.764919 117.099860 114.264297 114.009295 123.676729 120.630941

10 124.338293 119.606343 121.976745 105.938510 123.758950 122.354796

11 127.560917 128.173617 114.547718 115.060862 123.903311 121.662205

12 119.968950 119.887204 112.318739 113.897842 127.447881 122.358488

13 143.742855 123.103753 114.472601 117.887702 127.744912 123.155356

14 133.690982 117.677758 114.683729 116.379657 122.733213 121.894354

15 120.667073 117.428802 114.665812 113.682923 122.369375 121.447519

16 136.827736 119.463832 117.357784 116.045534 122.502154 121.209447

17 133.981758 135.437982 112.988329 116.169641 119.821052 123.805566

18 129.346898 123.770257 115.688444 117.016867 128.664859 121.776364

19 134.806871 120.998063 113.454974 114.314165 129.303406 127.459432

20 125.304117 126.070758 112.667933 113.442925 135.073586 125.934184

21 123.400786 141.434088 115.975156 107.699632 124.453185 122.350133

22 121.211703 129.527019 113.875335 115.494720 129.875588 120.986310

23 118.886389 132.517303 120.222647 93.665272 121.820173 133.192051

24 130.668799 141.712936 115.804372 113.548266 125.787165 123.684034

25 142.517232 119.154675 113.970839 117.041737 125.711213 123.807801

26 117.042597 134.310922 112.765863 105.055816 128.317985 122.988970

27 129.614696 131.014342 113.504214 116.854273 127.777409 126.576895

28 119.661629 122.631440 113.035101 104.816552 121.409535 125.706211

29 126.424135 126.612859 112.062341 115.794630 121.221771 124.752493

30 118.481105 116.919784 115.635612 112.867235 127.198617 121.789353

31 153.421803 142.866045 116.487992 115.563642 127.373645 126.801895

32 123.097716 119.696452 113.585467 116.156435 124.277547 122.310050

33 117.387412 117.111783 118.163298 116.229345 123.804709 121.806934

34 117.966112 120.140205 113.037159 108.710672 135.949398 123.263393

35 120.214966 119.027963 113.818879 117.279674 120.650087 125.831767

36 118.552015 119.124121 114.820153 112.377413 122.632357 122.140665
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37 132.923691 119.834833 118.499829 116.095496 120.512478 124.678089

38 128.120432 119.281412 112.951896 105.576028 123.613917 132.617521

39 136.756726 119.596206 113.531337 109.648651 126.832472 120.311925

40 127.941170 117.087351 115.021178 104.692579 122.646718 121.366421

41 128.401150 125.415820 112.194488 116.693371 131.930306 121.601653

42 129.675906 127.611068 110.496971 112.177011 127.180220 122.157785

43 127.049601 127.988935 112.190205 115.314051 141.045385 121.477968

44 128.702550 117.882020 117.917611 116.253676 129.500610 129.335994

45 130.410687 131.696299 112.431261 106.127513 126.980840 122.092519

46 125.064225 122.179118 112.384484 114.531994 124.180986 122.739825

47 117.293851 119.939351 111.386420 105.976053 125.917449 124.708388

48 139.875463 129.407853 120.483181 115.101552 130.712334 122.293689

49 120.185982 120.200799 109.973062 115.766772 127.085533 121.525075

50 123.729140 127.032783 111.024958 115.682824 123.994992 122.289483

E.7 Table from Sampling Time Histogram�Section 5.8

Table 61: Sampling time histograms mean values and standard deviation.

Controller
Ts = 8 ms Ts = 20 ms

Mean Std. Dev. Mean Std. Dev.

K 0.008012 0.001200 0.020001 0.000423

K+FF 0.008000 0.001411 0.019999 0.000355

LQR in R8 0.008239 0.000551 0.019998 0.000630

LQR in DQ 0.008175 0.000188 0.021174 0.000483

HIR 0.007999 0.001228 0.020001 0.000354

HIRT 0.007999 0.000660 0.019999 0.000397
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IV. DESCRIÇÃO DO CONTEÚDO DO CD

• trabalho_de_graduação.pdf: relatório de Trabalho de Graduação;

• resumo_do_trabalho.pdf: resumo do relatório de Trabalho de Graduação;

• abstract_do_trabalho.pdf: abstract do relatório de Trabalho de Graduação.
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