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RESUMO

Oblivious Transfer (OT) é uma das primitivas criptográficas principais, uma vez que pode-se
implementar computação de duas partes (e múltiplas partes) a partir dele. Neste trabalho, será
mostrado que oblivious transfer de strings, seguro no senso da teoria da informação, pode ser
construído baseado em canal "com apagamentos" generalizado (GEC) – que é uma combinação
de um canal discreto sem memória (DMC) com um canal "com apagamentos". Em seguida, será
apresentado um protocolo que atinge a capacidade de OT frente à adversários maliciosos para um
canal GEC com probabilidade de ocorrer "apagamentos" de ao menos 1/2, i.e. o protocolo explora
o canal com a máxima eficiência para o oblivious transfer de strings na presença de adversários
maliciosos.

ABSTRACT

Oblivious Transfer (OT) is one of the central cryptographic primitives since one can implement
secure two-party (and multi-party) computation from it. In this work we show that information-
theoretically secure string oblivious transfer can be constructed based on the generalized erasure
channel (GEC), which is a combination of a discrete memoryless channel (DMC) with the erasure
channel. Then, we presents a protocol that achieves the OT capacity against malicious adversaries
for the GEC with erasure probability at least 1/2, i.e. the protocol exploits the channel with
maximum efficiency for secure oblivious transfer of strings against malicious adversaries.
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1 INTRODUCTION

Oblivious Transfer (OT) is a cryptographic primitive by which the sender transmits some information

to the receiver, without knowing precisely which information was received. It was initially proposed in

different flavors [1, 2] which later turned out to be equivalent [3]. OT is a very powerful tool since it implies

secure two-party (and multi-party) computation [4, 5, 6]. Namely, a secure multi-party computation [7]

allows two or more distrustful players to jointly compute a function of their inputs without learning more

than what they can extract from their own input and output. So, using OT as a subprotocol, one can

implement any secure multi-party computation like Oblivious Circuit Evaluation, Mental Games and so

on. Therefore, improvements in Oblivious Transfer are of great importance for cryptography. In this work

we will consider the one-out-of-two string oblivious transfer, string-OT, in which Alice transmits two

input strings r0, r1 ∈ {0, 1}k and Bobs uses a choice bit c to choose the string rc that he will receive. This

protocol ensures that a dishonest Alice cannot learn c, while a dishonest Bob cannot learn both r0 and r1.

The potential of noisy channels for implementing information-theoretically secure cryptographic pro-

tocols was first noted by the pioneering work of Wyner [8], with respect to secret key agreement. Crépeau

and Kilian [9] proved that noisy channels can be used to implement oblivious transfer. Those results were

later improved in [10, 11, 12, 13, 14]. We will implement oblivious transfer based in a Generalized Erasure

Channel(GEC). This channel can be seen as a combination of a discrete memoryless channel and a erasure

channel since the output and the input of the channel is uncorrelated with certain probability (this behavior

resembles an erasure in a erasure channel) and otherwise the output will behavior in accordance with a

discrete memoryless channel associated. We call the reader’s attention to the fact that a generalized erasure

channel, in fact, is a general channel, since the bits transmitted can be erasure and flipped according to the

channel. Then, we will work with a general primitive in a general channel.

The question of determining the optimal rate at which oblivious transfer can be implemented using a

noisy channel (i.e., the oblivious transfer capacity of the channel) was raised by Nascimento and Winter

in [14]. Strictly speaking, oblivious transfer capacity is a measure of how efficiently one can implements

oblivious transfer from a noisy resource which can be a noisy channel or a noisy distribution. Nascimento

and Winter also characterized the noise distributions that provide strictly positive oblivious transfer ca-

pacity. Imai et al [15] obtained the oblivious transfer capacity of the Erasure Channels. Ahlswede and

Csiszár [16] proved additional bounds to those capacities and also obtained the oblivious transfer capacity
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of GECs in the passive adversary model (where the players always follow the protocol). The related notion

of commitment capacity was proposed by Imai et al in [17].

The aim of this work is to show that the rates achieved in [16] against passive players can actually be

achieved even against the malicious ones (i.e. those that can arbitrarily deviate from the rules specified by

the protocol). As the upper bounds proved in [16] for the case of passive players still hold against active

ones, we thus establish the oblivious transfer capacity of the Generalized Erasure Channels [16] in the

malicious adversary model. Moreover, we prove security of our protocols using definitions by Crépeau

and Wullschleger [18], which are known to imply sequential composability.

The main tool for obtaining our results is Interactive Hashing (IH), originally introduced by Ostrovsky

et al [19]. Our solution is based on the protocol proposed by Savvides [20] (building on the results of [21])

for oblivious transfer from erasure channels that employs information-theoretic Interactive Hashing [22] as

a sub-protocol. However, instead of directly adapting Savvides’ solution to our scenario, we show that it is

possible to use the interactive hashing protocol by Ding et al [23] and obtain a constant number of rounds,

thus answering an open question posed by [20].

ORGANIZATION OF THIS WORK In the Chapter 2, we present the notation, some basic concepts

and auxiliary results. Chapter 3 presents the concepts and definitions of two-party protocols. Chapter 4

presents Interactive Hashing, its security and the protocol by Ding et al [23]. Chapter 5 presents Oblivious

Transfer, the security definition of String OT, OT capacity and asserts our main theorem. In Chapter 6

we present a protocol that achieves the OT capacity of GEC in the malicious model and prove that this

protocol follows the definition of security. In Chapter 7 we prove the main theorem and in Chapter 8, we

discuss the conclusions of this work.

2



2 PRELIMINARIES

2.1 NOTATION

We will denote by calligraphic letters the domains of random variables and other sets; by ∣X ∣ the

cardinality of a set X ; by upper case letters the random variables and algorithms; and by lower case

letters one realization of the random variable. For a random variable X over X , we denote its probability

distribution by PX : X → [0, 1] with
∑

x∈X PX(x) = 1. For a joint probability distribution PXY :

X × Y → [0, 1], let PX(x) :=
∑

y∈Y PXY (x, y) denote the marginal probability distribution and let

PX∣Y (x∣y) := PXY (x,y)
PY (y) denote the conditional probability distribution if PY (y) ∕= 0. We write X ∈R X

for a random variable uniformly distributed over X .

If a and b are two bit strings of the same lenght; we denote by a⊕ b their bitwise XOR. The logarithms

used in this work are in base 2. The entropyX is denoted byH(X) and the mutual information betweenX

and Y by I(X;Y ). We write [n] for {1, ..., n} and
([n]
l

)
for the set of all subsets K ⊆ [n], where ∣K∣ = l.

For Xn = (X1, X2, . . . , Xn) and S ⊂ [n], we write XS for the restriction of Xn to the positions in the

subset S . Similarly for a setℛ,ℛS is the subset ofℛ consisted of the elements determined by S.

2.2 BASIC CONCEPTS

In this section we will introduce some basic concepts and auxiliary results used in subsequent chapters.

2.2.1 Generalized Erasure Channel

Aiming to define a generalized erasure channel we define a discrete memoryless channel and an erasure

channel.

Definition 2.2.1 A discrete memoryless channel is a system consisting of an input alphabet X , an output

alphabet Y and a probability transition matrix W = [p(y∣x)], where x ∈ X and y ∈ Y . The output does

not depend on the initial state of the channel and p(y∣x) is conditionally independent of previous channel

inputs or outputs, i.e., p(y1, ..., yn∣x1, ..., xn) = p(y1∣x1)p(y2∣x2)...p(yn∣xn), xi ∈ X and yi ∈ Y .

Definition 2.2.2 An erasure channel is a channel {W : X → Y} such that the input is erased (lost) with a

3



probability � or the output is equal to the input with a probability 1− �.

With these definitions, we can define a Generalized Erasure Channel(GEC).

Definition 2.2.3 ( [16]) A discrete memoryless channel {W : X → Y} will be called the Generalized

Erasure Channel (GEC) if the output alphabet Y can be decomposed as Y0 ∪ Y∗ such that W (y∣x) does

not depend on x ∈ X , if y ∈ Y∗. For a GEC, we denote W0(y∣x) = 1
1−p∗W (y∣x), x ∈ X , y ∈ Y0, where

p∗ is the sum of W (y∣x) for y ∈ Y∗ (not depending on x).

In other words, a GEC is a combination of a discrete memoryless channel and an erasure channel: with

probability p∗ the output will be such that its probability is independent of the input x ∈ X , it is as if the

input was erased, and the output was changed for one y ∈ Y∗; and with probability 1 − p∗ the input will

be transmitted in an discrete memoryless channel with channel matrix W0. Notice that, in this definition,

we do not know a priori the error probability.

Figure 2.1: Generalized Erasure Channel

2.2.2 Entropy, Mutual Information and Statistical Information

We will use the following tools in our proofs. The Shannon entropy of a discrete random variable X is

H(X) = −
∑
x∈X

p(x)logp(x),

4



and the conditional Shannon entropy of a discrete random variable Y given a discrete random variable Y

is

H(Y ∣X) = −
∑
x∈X

∑
y∈Y

p(x, y)logp(y∣x).

Some fruitful results of entropy are

H(X,Y ) = H(X) +H(Y ∣X) Chain rule for entropy,

its conditional version

H(X,Y ∣Z) = H(X∣Z) +H(Y ∣X,Z),

and

H(X∣Y ) ≤ H(X) conditioning reduces entropy.

Similarly, the mutual information of a discrete random variable X given Y is

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y)log
p(x, y)

p(x)p(y)
= H(X)−H(X∣Y ),

the conditional mutual information of discrete random variables X,Y given Z is

I(X;Y ∣Z) = H(X∣Z)−H(X∣Y, Z)

and

I(X,Y, Z;V ) = I(X;V ) + I(Y ;V ∣X) + I(Z;V ∣XY ) Chain rule for mutual information.

In order to build a security definition, Crépeau and Wullschleger [18] introduced the definition of

Statistical Information. This measure was introduced in their paper with the intent to obtain the probability

that an adversary gets any information at all.

Definition 2.2.4 The statistical distance between two probability distributions PX and PY over the same

domain V is

SD(PX , PY ) :=
1

2

∑
v∈V
∣PX(v)− PY (v)∣.

We say that a random variable X over V is �-close to uniform with respect to Y if SD(PXY , PUPY ) ≤

5



�, where PU is the uniform distribution over V .

Definition 2.2.5 The statistical information of X and Y given Z is defined as

IS(X;Y ∣Z) = SD(PXY Z , PZPX∣ZPY ∣Z).

2.2.3 Typical Sequences and Jointly Typical Sequences

Here we will follow chapter 3 and 7 of [24]. The asymptotic equipartition property (AEP) states that

for i.i.d. random variables Xi such that − 1
n logp(X1, X2, ..., Xn) converges in probability to the entropy

H(X). It means that

∀� > 0,Pr

{∣∣∣∣−1

n
logp(X1,X2, ...,Xn)−H(X)

∣∣∣∣ > �

}
−→ 0.

This result enables us to divide the set of all sequences Xn into two sets: the set of typical sequences,

where the empirical entropy is close to the true entropy and the set of non-typical sequences. The power

of AEP lies in the fact that the set of typical sequences is a highly representative set. In other words, the

probability that a sequence belongs to the set of typical sequences is close to one.1In fact, the typical set is

defined below:

Definition 2.2.6 The typical set an� with respect to the probability mass function p(x) is the set of sequences

(x1, x2, ..., xn) with the property

2−n(H(x)+�) ≤ p(x1, x2, ..., xn) ≤ 2−n(H(x)−�)

Armed with this definition, we can state the follow theorem that show us some properties of typical

sequences:

Theorem 2.2.7

1. (x1, x2, ..., xn) ∈ an� ⇒ H(X)− � ≤ − 1
n logp(x1, x2, ..., xn) ≤ H(X) + �

2. Pr{an� } > 1− � for n sufficiently large.

3. ∣an� ∣ ≤ 2n(H(X)+�)

1Note that the typical set is representative relative to the probability. The number of typical sequences is fairly small set. See
the theorem 2.2.7.
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4. ∣an� ∣ ≥ (1− �)2n(H(X)−�) for n sufficiently large.

Now, we can extend the concept of typical sequences to jointly typical sequences. The setAn� of jointly

typical sequences is the set of n-sequences xn and yn such that the empirical entropies are �-close to the

true entropies and true jointly entropy.

Definition 2.2.8 The set An� of jointly typical sequences {(xn, yn)} with respect to the distribution p(x, y)

is:

An� = {(xn, yn)} ∈ X nxYn :
∣∣∣− 1

n
logp(xn)−H(X)

∣∣∣ < �,∣∣∣− 1

n
logp(yn)−H(Y )

∣∣∣ < �,∣∣∣− 1

n
logp(xn, yn)−H(X,Y )

∣∣∣ < �.

where

p(xn, yn) =

n∏
i=1

p(xi, yi)

Similarly to the case of typical sequences, we can state the follow theorems:

Theorem 2.2.9 Let (Xn, Y n) be sequences of length n drawn i.i.d. according to

p(xn, yn) =
n∏
i=1

p(xi, yi).

Then:

1. Pr((Xn,Yn) ∈ An
� )→ 1 as n→∞

2. The number of the sequences xn jointly typical with yn is ∣An� ∣ ≤ 2n(H(X,Y )+�)

3. If (X̃n, Ỹ n) are independent of the same marginal probabilities as X,Y , i.e. p(x̃) = p(x) and

p(ỹ) = p(y), then:

Pr
(
(X̃n, Ỹ n) ∈ An�

)
≤ 2−nI(X;Y )−3�.

Theorem 2.2.10 Let (Xn, Y n) be sequences of length n drawn i.i.d. according to

p(xn, yn) =

n∏
i=1

p(xi, yi).

Then the number of the sequences xn jointly typical with yn is ∣An� ∣ ≤ 2n(H(Y ∣X)+�)

7



Proof The proof follows that of item 2 of the last theorem.

1 =
∑

p(xn, yn)

≥
∑
An�

p(xn, yn)

≥
∑
An�

p(yn∣xn)

≥ ∣An� ∣2−n(H(Y ∣X)+�)

Then, ∣An� ∣ ≤ 2n(H(Y ∣X)+�) □

2.2.4 Strong extractors

Extractors were introduced in [25]. They are tools that act extracting randomness from a source with

an arbitrary distribution using a small number of truly random bits. Aiming to define extractors, we need

the concepts of statistical distance (definition 2.2.4), �-source and min-entropy.

Definition 2.2.11 A distribution D on {0, 1}n is called a �-source if D(x) ≤ 2−�n, ∀x ∈ {0, 1}n.

The follow definition, by [25], states that from an input of n bits and using r truly random bits, the

function Ext gives us an output of m bits with distribution �-close to the uniform distribution.

Definition 2.2.12 Let Ext : {0, 1}n × {0, 1}r → {0, 1}m. Ext is called a (�, �)-extractor if for every

�-source D, the distribution of Ext(x, y)∘ y induced by choosing x from D and y uniformly in {0, 1}r has

a statistical distance similar than � from the uniform distribution on {0, 1}m × {0, 1}r.

However, in this work we will use a version a little different of extractors [26]. This definition does not

use Shannon entropy, it uses the min-entropy. Intuitively, if a distribution has min-entropy k, it is “at least

as random” as the uniform distribution on k bit strings. 2

Definition 2.2.13 For a finite alphabet X , the min-entropy of a random variable X ∈ X is defined as

H∞(X) = min
x

log(1/PX(x)).

2In fact when we work with min-entropy, we are considering the worst case. Moreover, it is impossible to extract randomness
from distributions which are not close to having high min-entropy (see [27])
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Its conditional version, defined over Y with finite alphabet is

H∞(X∣Y ) = min
y
H∞(X∣Y = y).

Definition 2.2.14 (Strong Randomness Extractors) Let Ext : {0, 1}n → {0, 1}l be a probabilistic poly-

nomial time function which uses r bits of randomness. We say that Ext is an efficient (n,m, l, �)−strong

extractor if for all probability distributions PW with W = {0, 1}n and H∞(W ) ≥ m, we have that

SD(PExt(W ;Ur),Ur , PUlPUr) ≤ �.

Note that a �-source has min-entropy �n ≥ m.

In [28] we have the result that strong extractors can extract at most l = m− 2 log(�−1) +O(1) bits of

nearly random bits, and this optimal bound is achieved by a Universal Hash Function [29] which we define

below.

Definition 2.2.15 (Universal Hash Function) A class G of functions A → ℬ is 2-universal if, for any

distinct x1, x2 ∈ A, the probability that g(x1) = g(x2) is at most ∣ℬ∣−1 when g is chosen uniformly at

random from G.

The Leftover-Hash Lemma (similarly the Privacy-Amplification Lemma) [30, 31, 32, 33, 26] guaran-

tees that the Universal Hash Functions allow us to extract l = m− 2 log(�−1) + 2 bits.

Lemma 2.2.16 (Leftover-Hash Lemma) Assume that a class G of functions G : {0, 1}n → {0, 1}l is

2-universal. Then for G selected uniformly at random from G we have that

SD(PG(W ),G, PUlPG) ≤ 1

2

√
2−H∞(W )2l.

In particular, Universal Hash Functions are (n,m, l, �)−strong extractors whenever

l ≤ m− 2 log(�−1) + 2

.
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3 SECURE TWO-PARTY PROTOCOLS

In this chapter we present secure two-party protocols and related definitions of security. Specifically,

we present security definitions of protocols in the real/ideal paradigm and the corresponding information-

theoretic conditions for security on the malicious and semi-honest models. We closely follow the defini-

tions presented by Crépeau and Wullschleger [18]. An excellent exposition of this theme can be found in

[34].

3.1 ADVERSARIES AND PROTOCOLS

A two-party protocol consists of a pair of interactive, probabilistic algorithms. Such algorithms are

formally defined as Interactive Turing machines. See more in [35].

Another way to see a two-party protocol is through a set formed by a specification of a random process

and a pair of inputs and one of outputs. The random process describes a desired functionality, denoted by

f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗, which maps the pair of inputs to the pair of outputs. Then,

for every pair of inputs (x, y) and an associated probability distribution, the desired output pair is also a

random variable f(x, y). We stress that the output f(x, y) is bipartite, i.e. it is composed of two parts, one

in possession of the first player and another one in possession of a second player.

In order to achieve security in the case where protocols run one after another, we use hybrid-protocols.

An ℱ-hybrid protocol consists of a pair of algorithms P = (A1, A2), representing the parties which

strategies can interact by means of two-way message exchange and have access to some functionality ℱ .

We say that a pair of algorithms Ã = (Ã1, Ã2) is admissible for protocol P if at least one of the parties is

honest (follows exactly the protocol), that is, if Ã1 = A1 or Ã2 = A2.

Regarding the players, they can be either honest or corrupted. The honest ones are those that follow

exactly the protocol and refuse to obtain any knowledge about information which they are not supposed

to obtain. Corrupted players can further be classified as active, passive, adaptive, and non-adaptive. Ac-

tive players (a.k.a malicious player) are those that can arbitrarily deviate from the rules specified by the

protocol, i.e., they sends messages that differ from those specified by the protocol. Passive players (also

called honest-but-curious or semi-honest player) are those that follow the protocol but gather information.
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Adaptive players are those that may corrupt parties to the protocol, according to the information they have

gathered so far, while the execution goes on. Conversely, non-adaptive players form a arbitrarily fixed set

before the execution starts.

We call the set of all corrupted players of adversary. Formally, an adversary is defined as a probabilistic

Turing machine. 1 In this work we consider non-adaptive and active adversaries. As we work with two-

party protocols, we provide security when at most one of the players is corrupted.

3.2 DEFINITION OF SECURITY IN REAL/IDEAL PARADIGM

One way to define secure protocols is using the real/ideal paradigm which postulates that any effect

of adversaries that participate in the execution of the real protocol can be achieved by simulation of a

corresponding ideal protocol with corresponding adversaries. In this paradigm, a protocol is considered

secure if running it is equivalent to all parties sending their inputs to a trusted party, who locally computes

the outcome of the desired functionality and sends the appropriate output to each party.

More precisely, an ideal model describes the two parties send their inputs to a trusted party who locally

computes the outcome. A real model describes the execution of a real two-party protocol where there exists

no trusted party. Then, a protocol in the real model is called secure with respect to a certain adversary

if the outcome of execution of the real protocol with such adversary and the outcome of execution on

corresponding ideal model are indistinguishable.

To prove that a protocol in the real model is close enough to or indistinguishable from the correspond-

ing ideal model, we can use some measures of similarity: “equal distribution", “statistical closeness" or

“computational indistinguishability". We stress that each measure of similarity will produce a different

notion of security. Whenever working with computationality unbounded adversaries, it is natural to use

perfect indistinguishability or statistical indistinguishability. As perfect indistinguishability is a stronger

requirement we will use the notion of statistical indistinguishability. It means that the probability distribu-

tion of the outcome of the protocol in the real model is �-close to the probability distribution of the outcome

in the corresponding ideal model.

We will use the construction of the real/ideal model from [34].
1A probabilistic Turing machine is a Turing machine in which some transitions are randomly chooses between the available

ones according to some probability distribution. Then, for the same input and instruction a probabilistic TM may have different
reactions, yielding different outputs.
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3.2.1 Security in the Honest-But-Curious Model

The ideal model The protocol in the ideal model that both parties send their inputs to the trusted party,

who computes the corresponding output pair and sends each output to the corresponding party. The honest-

but-curious adversary tries to learn something from his view of the execution. It means that he can only

determine his own output based on his input and the output he has received from the trusted party. The

output of honest party is the one received from the trusted party.

In order to formalize the output in the ideal model, let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ be

a desired functionality, and let (u, v) = f(x, y) be the outcome of the functionality. Given an f -hybrid

protocolB = (B1, B2) and pair of algorithms B̃ = (B̃1, B̃2) which is admissible in the ideal model for the

protocol B, the joint execution of B under B̃ on input pair (x, y) ∈ X ×Y and auxiliary input z ∈ {0, 1}∗

(see section 3.4 to more explanations of the necessity of this auxiliary input) in the ideal model is defined

as

IDEAL
f,B̃(z)

(x, y) ≜

⎧⎨⎩ (f(x, y), B1(x, u, z), B2(y, v)) if the corrupted player is Player 1

(f(x, y), B1(x, u), B2(y, v, z)) if the corrupted player is Player 2

The real model The two-party protocol in this model is executed properly, but the honest-but-curious

adversary may produce his own output based on his view of the execution.

Similarly to the previous case, let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ be a desired functionality

and let Π be a two-party real protocol for computing f . The view of the first player during an execution of

Π on (x, y), denoted by V IEWΠ
1 (x, y), is (x,m1, . . . ,m2), where mi represents the i-th message it has

received. The view of the second player is defined similarly. However, the output of execution of Π on

(x, y) in this model will be denoted as OUTPUTΠ(x, y) = (OUTPUTΠ
1 (x, y), OUTPUTΠ

2 (x, y)).

More precisely, given a g-hybrid protocol Π = (A1, A2) and pair of algorithms Ã = (Ã1, Ã2) which

is admissible in the real model for the protocol Π, the joint execution of Π under Ã on input pair (x, y) ∈

X × Y and auxiliary input z ∈ {0, 1}∗ in the real model is defined as
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REAL
Π,Ã(z)

(x, y) ≜

⎧⎨⎩

(OUTPUTΠ(x, y), A1(V IEWΠ
1 (x, y), z), B2(V IEWΠ

2 (x, y)))

if the corrupted player is Player 1

(OUTPUTΠ(x, y), A1(V IEWΠ
1 (x, y)), A2(V IEWΠ

2 (x, y), z))

if the corrupted player is Player 2

Then, a protocol is secure if, considered whenever one of the parties is honest-but-curious, we can

simulate the joint outcome by the execution in a ideal model with one party is also honest-but-curious.

Definition 3.2.1 (Statistical Security in Honest-But-Curious Model) Let f : {0, 1}∗×{0, 1}∗ → {0, 1}∗×

{0, 1}∗ be a desired functionality; let Π be a two-party protocol for computing f with access to the func-

tionality g; and let B be an ideal protocol which has access to the ideal functionality f . A g-hybrid

protocol Π securely computes f with an error of at most � if for every pair of algorithms Ã = (Ã1, Ã2)

that is admissible in the real model for the protocol Π, there exists a pair algorithms B̃ = (B̃1, B̃2) that is

admissible in the ideal model for protocol B, such that for all x ∈ X , y ∈ Y , and z ∈ {0, 1}∗, we have

SD(PREALg

Π,Ã(z)
(x,y),PIDEAL

f,B̃(z)
(x,y)) ≤ �

3.2.2 Security in the Malicious Model

In [18] the ideal and real model is different from what is presented here. However, the proof of the

theorem 1 of that paper does not suffer any change.

The ideal model A malicious adversary can refuse to participate in the protocol when the protocol is

first invoked or he can modify his input on different from what the protocol determines. As we work with

oblivious transfer, we define a functionality f in which only one party obtains an output (single-output

functionality).

The ideal protocol works as follows. An honest party always sends his own input w to the trusted party

and a malicious party may either send some w′ ∈ {0, 1}∣w∣ or nothing to the trusteds party. In the case

of the malicious party, nothing is sent to the trusted party and the trusted party assumes to that his input

is a default value. Next, the trusted party computes the desired functionality and only replies the second

player with v, where f(x, y) = (⊥, v). An honest party always outputs the message that it receives from

the trusted party but a malicious player may change the output received from the trusted party according to
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his initial input and the message that he obtained from the trusted party (this message can be ⊥).

Formally, let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be a desired single-output functionality and let (⊥, v) =

f(x, y), v = f2(x, y) be the outcome of the functionality. Given an f -hybrid protocol B = (B1, B2) and

the pair of algorithms B̃ = (B̃1, B̃2) which is admissible in the ideal model for the protocol B, the joint

execution of B under B̃ on input pair (x, y) ∈ X × Y , where ∣X ∣ = ∣Y∣, and auxiliary input z ∈ {0, 1}∗

in the ideal model is defined as

IDEAL
f,B̃(z)

(x, y) ≜

⎧⎨⎩ (B1(x, z,⊥), B2(y, f2(B1(x, z), B2(y)))) if the corrupted player is Player 1

(B1(x,⊥), B2(y, z, f2(B1(x), B2(y, z)))) if the corrupted player is Player 2

The real model In a two-party protocol in the real model there is no trusted party, and the malicious

player may follow an arbitrary strategy.

Formally, let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be a desired single-output functionality and (⊥, v) =

f(x, y) be the outcome of functionality. Given a g-hybrid protocol Π = (A1, A2) and a pair of algo-

rithms Ã = (Ã1, Ã2) which is admissible in the ideal model for the protocol B, the joint execution

of Π under Ã on input pair (x, y) ∈ X × Y and auxiliary input z ∈ {0, 1}∗ in the ideal model, de-

noted REALg
Π,Ã(z)

(x, y), is defined as the output pair resulting from the interaction between Ã1(x, z) and

Ã2(y, z). An honest party ignores the auxiliary input z.

Definition 3.2.2 (Statistical Security in Malicious Model, [18], Definition 3) A g-hybrid protocol Π se-

curely computes f with an error of at most � if, for every pair of algorithms Ã = (Ã1, Ã2) admissible in

the real model for the protocol Π, there exists a pair of algorithms B̃ = (B̃1, B̃2) is admissible in the ideal

model for protocol B , such that for all x ∈ X , y ∈ Y , and z ∈ {0, 1}∗, we have

SD(PREALg
Π,Ã(z)

(x,y), PIDEALf,B̃(z)
(x,y)) ≤ �

3.3 INFORMATION-THEORETIC CONDITIONS FOR SECURITY

In order to simplify the security proofs, the real/ideal paradigm can be replaced by information-

theoretic conditions to define secure protocols. As our intention is work in the malicious model, we show

here the security in the malicious model. We stress that in an honest-but-curious model, the adversary is

not allowed to modify its input. So the definition in that case is similar to the next definition.
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3.3.1 Security on Malicious Model

Let X and Y be random variables denoting players inputs distributed according to a distribution PXY

unknown to the players, and let U and V be random variables denoting the outputs of the parties. We

assume that the ideal functionality is deterministic.

Definition 3.3.1 ( [18], Theorem 1) A protocol Π securely compute the deterministic functionality f with

an error of at most 3� if, for every admissible pair of algorithms Ã = (Ã1, Ã2) admissible in the real model

for protocol Π and for any inputs (X,Y ) distributed according to PXY over X × Y , Ã produces outputs

(U, V ) distributed according to PUV ∣XY such that the following conditions are satisfied:

− (Correctness) If both parties are honest, we have

Pr[(U, V ) = f(X,Y )] ≥ 1− �

− (Security for Player 1) If player 1 is honest, then there exist random variables Y ′ and V ′ distributed

according to PY ′V ′∣X,Y,U,V , such that

Pr[(U, V ′) = f(X,V ′)] ≥ 1− �

IS(X;Y ′∣Y ) ≤ �

and

IS(UX;V ∣Y Y ′V ′) ≤ �.

− (Security for Player 2) If player 2 is honest, then there exist random variables X ′ and U ′ distributed

according to PX′U ′∣X,Y,U,V , such that

Pr[(U ′, V ) = f(X ′, V )] ≥ 1− �

IS(Y ;X ′∣X) ≤ �

and

IS(V Y ;U ∣XX ′U ′) ≤ �.

Both Py′V ′∣X,Y,U,V and PX′U ′∣X,Y,U,V should have explict constructions.
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Crépeau and Wullschleger proved that this definition is equivalent to the definition 3.2.2.

3.4 COMPOSITION OF PROTOCOLS

Since a protocol can be implemented using other protocols as subroutines, a definition of secure proto-

cols must guarantee that a protocol composed of secure protocols is still secure. There are different types

of composition, such as sequential composition and universal composition. Sequential composition means

run several secure protocols one after the other, where the inputs for each execution are the local outputs

and all intermediate results from the previous one. Universal composition means running protocols in

parallel at the same time (concurrently).

According to Canneti [36], a composite protocol is secure if it has the follow property: even adver-

saries that have already gathered some information on other executions of the protocol will not be able

to gather additional information about the current execution, or otherwise gain some undesired advantage.

In the case of non-adaptative adversaries, this property is guaranteed by letting the adversary have some

arbitrary auxiliary input, representing the information gathered by the adversary during the other proto-

col executions, at the beginning of the current execution. For this reason, in definition 3.2.2 we have an

auxiliary input z ∈ {0, 1}∗.

A result of [36] is that Definition 3.2.2 implies sequential composition and by [18] we have that the

Definition 3.3.1 is equivalent to Definition 3.2.2.
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4 INTERACTIVE HASHING

Interactive Hashing (IH) was introduced in [37] and has been a very valuable tool in cryptography. It

is a cryptographic primitive between two players, the sender (Bob) and the receiver (Alice) that takes as

input a string w ∈ {0, 1}m from Bob, and produces as output two m-bit strings: one of them is w and the

other is w′ ∕= w. Let the two output strings be w0 and w1, according to lexicographic order. Then exists a

d ∈ {0, 1} such that wd = w. The output strings are available to both Bob and Alice. Interactive Hashing

has the following properties: the cheating Alice cannot tell which of (w,w′) was the Bob’s input, and at

least one of w,w′ is effectively beyond the control of the cheating Bob.

Interactive Hashing is named after its initial implement which used random hash functions. In that

scenario, Bob wants to send w to Alice. He transfers a random two-to-one hash y = ℎ(w) to Alice. Thus,

Alice does not learn which of the two pre-images {w,w′} = ℎ−1(y) was Bob input. Furthermore, Bob

is guaranteed that Alice does not learn any additional information on w. Note that interactive hashing can

be implemented without hash functions. For example, in [20] we have an IH protocol where Bob wants to

send w with m bits to Alice. In order to, Alice chooses uniformly on (m− 1) ×m matrix of rank m− 1.

For each row of the matrix, Alice sends it to Bob and he responds with the inner product between the row

and w. After m − 1 rows have been transmitted, Alice and Bob compute the two values of w consistent

with the linear system Q.w = c, where Q is the matrix chosen by Alice and c is the vector of Bob’s

response. However, in this work a interactive hashing protocol will be used that is closer to the former, i.e.,

it uses hash functions to implement a secure interactive hashing. We will focus on the information-theoretic

variant of IH. This line of research was initiated by [22].

4.1 SECURITY OF INTERACTIVE HASHING

In this section we present the definition for a secure interactive hashing protocol. We say that the IH

protocol is secure for Bob if, even Alice cheats, she does not know which of the two outputs of the protocol

the Bob’ s input was. On the other hand, we say that the IH protocol is secure for Alice if, for any strategy

of Bob, he cannot force a particular property on both outputs. It means thatw andw′ cannot simultaneously

belong to a specific set S. Formally, we have the following definition:

Definition 4.1.1 (Security of Interactive Hashing [23]) An interactive hashing protocol is secure for Bob
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if, for every unbounded strategy of Alice (A′), and every W , if W0, W1 are the outputs of the protocol

between an honest Bob with input W and A′, then the distributions {V iew⟨A
′,B⟩

A′ (W )∣W = W0} and

{V iew⟨A
′,B⟩

A′ (W )∣W = W1} are identical, where V iew⟨A
′,B⟩

A′ (W ) is Alice’s view of the protocol when

Bob’s input is W . An interactive hashing protocol is (s, �)-secure for Alice if, for every S ⊆ {0, 1}m of

size at most 2s and every unbounded strategy of Bob (B′), if W0, W1 are the outputs of the protocol, then

Pr[W0,W1 ∈ S] < �.

Here the probability is taken over the coin tosses of Alice and Bob. An interactive hashing protocol is

(s, �)-secure if it is secure for Bob and (s, �)-secure for Alice.

In the next section we present the constant round interactive hashing protocol of [23, Section 5.4].

4.2 THE CONSTANT ROUND INTERACTIVE HASHING PROTOCOL

One of the principal tools used in the constant round interactive hashing protocol is an �-almost t-wise

independent permutation. A t-wise independent permutation � is such that when it is applied in any t points

in {0, 1}m, the permutation � behaves as a truly random permutation. 1 In an �-almost t-wise independent

permutations �′ 2, the distribution on any t points has statistical distance at most � to the distribution

induced on these points by a truly random permutation. A 2-wise independent permutation can be seen as

a 0-almost 2-wise independent permutation and we can build it, by choosing a, b ∈R GF (2m), a ∕= 0 (the

strings {0, 1}m are identified with the field GF (2m)) and defining the permutation by g(x) = ax+ b.

Another tool used in this protocol is the 2-1 hash function. Let ℎ: {0, 1}m → {0, 1}m−1 be a 2-1

hash function. Then, for each output of ℎ there are exactly 2 pre-images. Notice that to construct a 2-

wise independent 2-1 hash function, one can take a 2-wise independent permutation and omit the last bit

of its output. Thus, we have a way of computing 2-wise independent 2-1 hash function by permutation

polynomials over finite fields.

In order to implement the constant round interactive hashing, let the set S have size ∣S∣ = 2s. Remem-

ber that S is the subset of {0, 1}m whose strings have some particular property and the sender’s input is

w ∈ {0, 1}m. Then, the parameters and tools of the protocol are

1The reason we do not use a truly random permutation is because your description would be exponential on m.
2See [38, 39] for a survey.
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− The parameters are m and s, such that m is the length of string w and s is the parameter which

defines the size of set S,

− t = m and � = ( 1
2v )t, where v = s− logm,

− A family Π of �-almost t-wise independent permutations �: {0, 1}m → {0, 1}m,

− A family G of 2-wise independent 2-1 hash functions g: {0, 1}m−v → {0, 1}m−v−1,

− A family H (induced by Π and G) of 2-1 hash functions ℎ: {0, 1}m → {0, 1}m−1 defined as:

ℎ(x) ≜ �(x)1, ..., �(x)v, g(�(x)v+1, ..., �(x)m),

where �(x)i denotes the itℎ bit of �(x).

Now we will present the protocol that implements interactive hashing with only four message ex-

changes, regardless of the size of the string that the sender wants to send to the receiver. Let Bob be the

sender and Alice be the receiver. Bob, in this case, has the input w ∈ {0, 1}m.

Protocol 4.2.1

1. Alice chooses � ∈R Π and sends the description of � to Bob.

2. Bob computes �(w) = z1...zm, where zi is the itℎ bit of �(w), and sends the bits z1...zv to

Alice.

3. Alice chooses g ∈R G and sends the description of g to Bob.

4. Bob computes and sends g(zv+1...zm) to Alice.

5. Both compute and output (w0, w1) such that ℎ(w) = ℎ(w0) = ℎ(w1).

In [23, Section 5.4] has the following theorem which determines the bounds of security parameters for

to achieve a (s, �)-secure interactive hashing.

Theorem 4.2.2 For all s,m such that s ≥ logm+2, the above protocol is a (s, 2−(m−s)+O(logm))-secure

�′-uniform interactive hashing protocol for �′ = (2s−logm−1)−m < 2−m.
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Remark. Note that [39, 23] has a result that confirms that there exists an �-almost t-wise independent

permutation space Π which runs in polynomial time and space with the security parameters of the protocol

above. Furthermore, this is an �′-uniform interactive hashing protocol, where �′ = �2m, since ℎ is �-close

to be pairwise independent.

20



5 OBLIVIOUS TRANSFER

Oblivious Transfer was introduced by Rabin in [2]. In Rabin OT the sender transmits a bit b to the

receiver who was output either the bit b with probability 1
2 or an erasure with probability 1

2 . The sender

does not know which output receiver received. In addition, if b is chosen independently and uniformly

at random when the receiver receives an erasure, he cannot guess what bit was sending with probability

greater than 1/2. Thus, the receiver remains ignorant about the sender’s input. Note that Rabin OT can be

seen as an erasure channel [Chapter 2, Definition 2.2.2]. Another flavor of OT introduced by [40] is the

one-out-of-two oblivious transfer. In this protocol, the sender inputs two bits b0, b1 and the receiver inputs a

bit c called the choice bit. The receiver receives bc and remains ignorant about bc, while the sender remains

ignorant about receiver’s choice. In this protocol, if the sender’s input are two strings b0, b1 ∈ {0, 1}k, one

has one-out-of-two string oblivious transfer (String OT). We call the reader’s attention to the fact that has

been showed by [3] that both kinds of OT are equivalent.

In this work, we will use one-out-of-two string oblivious transfer. So, unless explicitly indicate, other-

wise when we say Oblivious Transfer, we refer to one-out-of-two string oblivious transfer. We assume that

the inputs are uniformly random to make our analysis easier. It can be done without loss of generality due

to the (very efficient) randomized self-reduction of OT [41, Section 3.2].

We will present a definition of security OT in the next section, then we present the definition of OT

capacity and, finally, we present our main theorem: the capacity of oblivious transfer on a generalized

erasure channel in a malicious model, in other words, it give us an optimal way in which a GEC can be

used for obtaining secure implementations of OT with fully malicious players.

5.1 SECURITY OF OT

We will use the security definition of String OT from Crépeau and Wullschleger [18]. We choose this

definition because it is an information-theoretic security definition with a particular property: this definition

implies that the String OT protocol that satisfies it is sequentially composable.

We remember the reader that a ℱ-hybrid protocol consists of a pair of algorithms P = (A1, A2) that

can interact by means of two-way message exchange and have access to some functionality ℱ . A pair of
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algorithms Ã = (Ã1, Ã2) is admissible for protocol P if at least one of the parties is honest, that is, if

Ã1 = A1 or Ã2 = A2 or both.

Let B and C be the random variables denoting the sender’s input (B0, B1) and the receiver’s input,

respectively, distributed according to a distribution PBC unknown to the players, and left U and V be the

random variables denoting the outputs of sender and receiver, respectively.

It was shown in [18] that Definition 3.3.1 applied to the case of the Oblivious Transfer functionality is

the follow definition:

Definition 5.1.1 A protocol P securely realizes String OT (for strings of length k) with an error of at most

6� if, for every admissible pair of algorithms Ã = (Ã1, Ã2), for protocol P , and for all inputs (B,C), Ã

produce outputs (U, V ) such that the following conditions are satisfied:

− (Correctness) If both parties are honest, then U = ⊥ and

Pr[V = BC ] ≥ 1− �

− (Security for Sender) If the sender is honest, then we have U =⊥ and there exists a random variable

C ′ distributed according to PC′∣B,C,V , such that

IS(B;C ′∣C) ≤ �

and

IS(B;V ∣C,C ′, BC′) ≤ �.

− (Security for Receiver) If the receiver is honest, we have V ∈ {0, 1}k and

IS(C;U ∣B) ≤ �.

The protocol is secure if � is negligible in the security parameter n.
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5.2 OT CAPACITY

The oblivious transfer capacity [14] measures the optimal way of implementing secure OT from a

noisy resource, i.e., it measures how efficiently an OT protocol uses the noisy resource. 1

We present the definition of the oblivious transfer capacity.

Definition 5.2.1 If the noisy channel is used n times and k is the length of the string being obliviously

transferred, the oblivious transfer rate of the protocol is given by

ROT =
k

n
.

Definition 5.2.2 If there exists a protocol implementing oblivious transfer securely and with a OT rate R,

we call R as an achievable rate.

Definition 5.2.3 The oblivious transfer capacity of a protocol is given by

COT = sup
k

n
.

where the supremum is taken over all achievable rates.

Note that the oblivious transfer capacity, by definition, depends on the type of the channel. In this

work, we consider the oblivious transfer capacity of the Generalized Erasure Channel when the adversaries

are malicious. We calculate the optimal capacity and a protocol that achieves it. Our main result is given

in the next theorem. We would like to remember that [16] has found OT capacity of the GEC when the

adversaries are passive. Actually, our result asserts that the OT capacity of the GEC in the passive and in

the malicious adversary model, is the same. The reader can obtain bounds for OT capacity in other noisy

resources in [14, 16, 15].

Theorem 5.2.4 For a Generalized Erasure Channel with p∗ ≥ 1
2 , the oblivious transfer capacity in the

case of malicious adversaries is (1 − p∗)C(W0) where C(W0) is the Shannon capacity of the discrete

memoryless channel {W0 : X → Y0}.

Remark The Shannon capacity of the discrete memoryless channel is defined as C = maxp(x)I(x; y),

where the maximum is taken over all possible input distributions p(x) and I(.; .) is the Shannon mutual
1Here, we will work with Generalized Erasure Channel, but one can implement OT from noisy distribution. See [14] to know

what kind of noisy distribution one can implement OT.
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information. Remember that the channel capacity is the logarithm of the maximum number of distinguish-

able signals for n uses of a communication channel and operationally the channel capacity is the highest

rate in bits per channel use at which information can be sent with arbitrarily low probability of error.

The protocol that achieves this capacity is presented in next chapter and the proof of Theorem 5.2.4 is

in chapter 7.
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6 THE PROTOCOL

In this chapter we show first the encoding scheme of subsets used in the protocol that achieves OT

capacity based on GEC. Subsequently we present the own protocol and, finally, we prove that it is a secure

implementation of OT against malicious adversaries.

6.1 ENCODING SCHEME OF SUBSETS

An encoding scheme of subsets the following problem: given a string of length n, we choose l positions

it and we wish represent the set k of l positions as a binary string.

Cover showed [42] that there exist an efficiently computable, one to one mapping F :
([n]
l

)
→ [
(
n
l

)
] for

pair of every integers l ≤ n. The encoding, as described, associates an integer in the set {0, ...,
(
n
l

)
− 1}

with the subset k of [n], ∣k∣ = l. The encoding of the subset k of [n] is given by:

�(k) =

l∑
i=1

e1−1∑
j=ei−1+1

(
n− i
l − i

)

where k = {e1, e2, . . . , ev, . . . , el}. Hence, we can encode the set
([n]
l

)
in bit strings of length m =

⌈log
(
n
l

)
⌉(see [22, Section 3.1] for more details). The decoding of a binary string m is done by calculating

each ev like maxr{
∑r−1

e1+1

(
n−j
l−i
)
} ≤ m, taking m = m −

∑j=ei−1
e1+1

(
n−j
l−i
)

and repeating from i = 1 to

i = l. Nevertheless, a disadvantage of this scheme is that the strings that correspond to valid encodings

can constitute only slightly more than half of all strings.

We use here the solution of Savvides [20, Section 4.2.1] in which each string w ∈ {0, 1}m encodes

the same subset as w (mod log
(
n
l

)
), which is always a valid encoding in the original scheme. Since each

subset correspond to either 1 or 2 strings in {0, 1}m, this scheme can at most double the fraction of the

strings that maps to subsets with a desired property.
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6.2 OUR PROTOCOL

The next protocol is based on the protocol for String OT from the erasure channel [20, Protocol 5.1].

We assume a malicious (or active) adversary that can have an arbitrary behavior. The players are connected

by a noiseless channel and by a Generalized Erasure Channel (Chapter 2, Definition 2.2.3).

Let Alice be the sender and Bob be the receiver. Alice wishes to send the random strings r0 and r1 to

Bob and he will learn information about at least one of them.

Alice’s inputs are a binary string xn, chosen randomly, and four 2-universal hash functions g0, g1, ℎ0

and ℎ1 chosen randomly too. Bob’s inputs are the choice bit c and w ∈R {0, 1}m, where w will decoded

into a set S whith ∣S∣ = �n. In the beginning of the protocol both players agree on the security parameters

�, � and 
, where �n is the proportion of bits sacrificed to test. Both know the probability p∗.

The protocol works in the following way: Alice sends xn through the GEC, whose output is yn. Bob

creates two disjoint sets, a set ℬ containing the positions in which the bits were transmitted through the

erasure channel, and a set G containing the positions where the bits were transmitted through the discrete

memoryless channel. Bob aborts if he does not have the sufficient amount of positions to continue the

protocol. Bob creates also two other sets, ℛc with only positions from G and ℛc with the �n positions to

test from G and the other (� − �)n positions, out of the positions have already chosen, from G ∪ ℬ. Note

that both positions �n and from G are transmitted through discrete memoryless channel, then Bob knows

all bits in this positions at least some bits that can be flipped by the channel according to the matrix channel

W0. Then Bob sends that description ofℛ0 andℛ1 to Alice so that she can confirm that all positions have

chosen once and Bob is following the protocol at this point. Of course, Alice does not know which set

(eitherℛ0 orℛ1) is formed only by positions from G and which of them has positions to test.

Then, Bob sends to Alice which positions are to test fromw through interactive hashing. For interactive

hashing properties Alice will receive the positions chosen by Bob and will receive other set of �n positions

to test that is not under control of Bob. We will show later that this property of IH will help us to guarantee

to Alice that Bob is not deviating from the protocol. Note also that Bob knows the bit b s.t. w = wb and

knows wb.

Until this point, Bob just sent positions to Alice. Now, Bob wishes to send to Alice the bits received

in the positions to test, yℛ
Sa
1 = yℛ

Sb
c , and the bits received in positions determined by the other output of

interactive hashing, yℛ
Sa
0 = yℛ

S
b
c .
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In order to known if the possible errors introduced by discrete memoryless channel in the string yn are

so many as to invalidate the string received by Bob, Alice tests if yℛ
Sa
0 and yℛ

Sa
1 are jointly typical with

her input on these positions. If they are not typical, yn contains too many errors and the protocol is aborted.

Now, Alice wants to discard the �n bits used in the test and extract the random strings r0 and r1.

However, Alice has to correct the possible errors in the string received by Bob yn. To this end, Alice

computes g0(xℛ0), g1(xℛ1) and sends the descriptions of g0, g1 to Bob. Thus, Bob can computes all

possible x̃ℛc that are jointly typical with yℛc and satisfy gc(x̃ℛc) = gc(x
ℛc).1 By doing this, Bob is able

to “recover" the string sent in the beginning of protocol by Alice x̃ℛc .

At this point, Alice can extract the random strings r0 and r1 (discarding the �n bits used in the positions

test; the �n[H(X∣Y ∈ Y0) + �] bits used to jointly typical sequences test; and other �n + H(X)[�n −

5�n] + 
n bits such that the security of protocol is achieved ) doing r0 = ℎ0(xℛ0) and r1 = ℎ1(xℛ1)

and sending the descriptions of ℎ0, ℎ1 to Bob. In turn, Bob can finally receives the desired random string

rc = ℎc(x̃
ℛc).

So, we can assert the following theorem.

Theorem 6.2.1 The protocol 6.2.2 is secure under the definition 5.1.1.
1Since Bob uses the output of universal hash functions to correct errors, the above protocol is not computationally efficient.

However, this suffices for our result as we only claim possibility of achieving the OT capacity.
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Protocol 6.2.2

1. Alice and Bob select a (typically very small) positive constant � < 1−p∗
3 and set � = 1− p∗− 2�.

2. Alice randomly chooses xn according to the probability distribution that achieves the Shannon

capacity of W0 and sends xn through the GEC.

3. Bob receives the string yn and collects the good (those corresponding to y ∈ Y0) and the bad

(those corresponding to y ∈ Y∗) positions in sets G and ℬ, respectively. He aborts if ∣G∣ <

(1− p∗ − �)n = �n+ �n.

4. Bob chooses c ∈R {0, 1} and w ∈R {0, 1}m, where m = ⌈log
(
�n
�n

)
⌉. He decodes w into a subset

S of cardinality �n (out of �n) using the encoding scheme of Section 6.1. Bob then defines two

disjoint setsℛc andℛc of cardinality �n. ℛc consists only of positions from G, chosen randomly

and without repetition. ℛc has �n positions from G (defining the subset ℛSc ) and the remaining

positions are chosen from G ∪ ℬ, randomly and without repetition. Bob sends the descriptions of

ℛ0 andℛ1 to Alice.

5. Alice checks that no position is repeated in the setsℛ0 andℛ1, otherwise she aborts.

6. Bob sends w to Alice using Interactive Hashing (Protocol 4.2.1). Let w0, w1 be the output strings,

let S0, S1 be the corresponding subsets of cardinality �n and let b ∈ {0, 1} be such that wb = w.

7. Bob announces a = b⊕ c as well as yℛ
Sa
0 and yℛ

Sa
1 .

8. Alice checks if yℛ
Sa
0 and yℛ

Sa
1 are jointly typical (for a discrete memoryless channel {W0 : X →

Y0}) with her input on these positions. If they are not jointly typical, Alice aborts.

9. Alice chooses randomly 2-universal hash functions g0, g1 : X �n → {0, 1}�n[H(X∣Y ∈Y0)+�′]

(with �′ > 0 such that the output length is integer). She computes g0(xℛ0) and g1(xℛ1).

She also randomly chooses 2-universal hash functions ℎ0, ℎ1 : X �n → {0, 1}�n, where � =

(�− 5�)H(X)−�(H(X∣Y ∈ Y0) + �′)−
 and 
 > 0 such that the output length is integer. She

sends g0(xℛ0), g1(xℛ1) and the descriptions of g0, g1, ℎ0, ℎ1 to Bob. Alice outputs r0 = ℎ0(xℛ0)

and r1 = ℎ1(xℛ1).

10. Bob computes all possible x̃ℛc that are jointly typical with yℛc and satisfy gc(x̃ℛc) = gc(x
ℛc). If

there exists exactly one such x̃ℛc , Bob outputs rc = ℎc(x̃
ℛc). Otherwise, he outputs rc = 0�n.
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6.3 SECURITY PROOF

In this section we prove Theorem 6.2.1. According to Definition 5.1.1 we have to prove the correct-

ness, the security for Alice (sender) and the security for Bob (receiver).

6.3.1 Correctness

When Alice and Bob are honest, Bob does not obtain the correct output if he aborts in Step 3, or if he

does not obtain exactly x̃ℛc = xℛc in Step 10.

We first analyze Step 3. Bob aborts if ∣G∣ < (1 − p∗ − �)n. Note that yn = {y1, y2, . . . , yn},

yi ∈ {0, 1} and Pr[y ∈ Y0] = 1 − p∗. Then, the expected value of yi ∈ Y0 is E(yi∣yi ∈ Y0) =

(1 − p∗)p, where p = Pr[yi = 1]. By the Chernoff bound (Lemma I.0.5 in the appendix) and setting

� =
{

1− 1
p + �

(1−p∗)p

}
, the probability that Bob aborts in Step 3 is

Pr

{
1

n

n∑
i=1

yi ≤ 1− p∗ − �

}
≤ e−(1−p∗)n.

So, the event ∣G∣ < (1−p∗−�)n occurs with probability � < e−(1−p∗)n, which is a negligible function

of n.

Analyzing Step 3, Bob does not obtain exactly x̃ℛc = xℛc either if xℛc is not jointly typical with yℛc

or if there exists another xℛc that is both jointly typical with yℛc and has gc(xℛc) = gc(x
ℛc).

However, by Theorem 2.2.9, item 1, Pr((xℛc , yℛc) ∈ An� ) ≤ " as n → ∞. Then, the probability of

xℛc is not jointly typical with yℛc is negligible with n. By Theorem 2.2.9, item 2, the number of xℛc that

are jointly typical with yℛc is

∣An� ∣ ≤ 2�n[H(X∣Y ∈Y0)+�′]

for 0 < �′ < � and n sufficiently large. So, by the Leftover-Hash Lemma, we have that the probability of a

xℛc jointly typical with yℛc and with gc(xℛc) = gc(x
ℛc) is

2�n[H(x∣y∈Y0)+�′]

2�n[H(x∣y∈Y0)+�]
= 2�n(�′−�) → 0 as n→∞.
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As all the failure probabilities are negligible in n, the protocol meets the correctness requirement

Pr[V = BC ] ≥ 1− �.

6.3.2 Security for Bob

In order to provide security for Bob we have to prove that at the end of the protocol the probability of

Alice has any information beyond her point of view (all the information in possession of player at the end

of the protocol including the results of all local computations, local random samplings, local inputs and

messages exchanged) about the choice bit c of Bob since her input B is negligible.

Alice just can obtain information about c when Bob sends to her the descriptions of ℛ0 and ℛ1 in

Step 4 and in Step 7 when Bob announces a = b⊕ c as well as yℛ
Sa
0 and yℛ

Sa
1 .

We first analyze Step 4. Since in GEC, every input symbol x is erased (i.e. ends up in Y∗) with proba-

bility p∗ independent of x, Alice does not know which input symbols were erased. Hence, the distribution

of (ℛ0,ℛ1) is independent of c from Alice’s point of view. So Alice cannot tell ifℛc = ℛ0 orℛc = ℛ1.

In Step 7, Alice receiving a can correctly guess c if and only if she can correctly guess b, but the

security of Interactive Hashing protocol provides that Alice’s view is the same for b = 0 and b = 1.

Note that no matter what the malicious Alice actually sends in Step 9, Bob will not abort. In particular,

this prevents reaction attacks 2, i.e. receiving the bits of Bob from the previous step, a malicious Alice will

gain nothing if she tries to cheat by sending some different function, depending on the bits received, that

g0, g1, ℎ0, ℎ1 set the protocol in Step 9.

Therefore, the distribution of Alice’s view of the protocol does not depend on c. Thus, given a small

positive constant " = "(p∗, �′), where �′ comes from the Interactive Hashing (see Chapter 4), we have

IS(C;U ∣B) ≤ ".

6.3.3 Security for Alice

Our proof follows the lines of Savvides’ proof [20, Section 5.1]. In order to provide the security

for Alice, we had to prove that a malicious Bob cannot complete the protocol without being caught with
2Reaction attack is an attack where the adversary observes the behavior of the player and tries to extract some information

from there.
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overwhelming probability and if he deviated from the protocol a little, he will have information about both

Alice’s inputs with a negligible probability.

Note that Bob has about (1−p∗)n good positions except with a probability negligible in n (see 6.3.1).

Therefore a malicious Bob can follow two strategies: either (i) Bob uses good positions in both R0 and R1

as much as possible, and thus both have many bad positions, or (ii) Bob uses only a few good positions in

one of R0 and R1 in order to complete the protocol and try to get information from both Alice’s input. We

will show bellow both strategies does not give information to Bob of two Alice’s input. We first present

some definitions.

Definition 6.3.1 Let u(ℛ) be the number of positions contained in ℛ such that the corresponding output

at this position was an erasure.

Definition 6.3.2 S is called good forℛ if u(ℛS) < �2n, otherwise it is called bad forℛ.

Then we can reduce the two strategies of malicious Bob to: (i) both u(ℛ0) and u(ℛ1) are greater than

or equal to 2�n, (ii) either u(ℛ0) or u(ℛ1) is less than 2�n.

For the first case we need the following two lemmas from [20, Section 5.1]. Lemma 6.3.3 follows from

the Chernoff bound and the properties of GEC, and Lemma 6.3.4 follows from the last lemma, the union

bound and the properties of encoding scheme used.

Lemma 6.3.3 Letℛ be a set of cardinality �n such that u(ℛ) ≥ 2�n. Then the fraction f of subsets S of

cardinality �n that are good forℛ satisfies f < e−�
2n/4.

Lemma 6.3.4 Let ℛ0,ℛ1 be sets of cardinality �n such that u(ℛ0) ≥ 2�n and u(ℛ1) ≥ 2�n. Then the

fraction of strings w that decode to subsets S that are good for eitherℛ0 orℛ1 is no larger than 4e−�
2n/4.

Strategy 1 Since the fraction of the strings w ∈R {0, 1}m that are good for either ℛ0 or ℛ1 is no larger

than 4e−�
2n/4, we can set the security parameter s of the interactive hashing protocol to log(4e−�

2n/42m) =

m− �2n
4 log e+ 2.

We also have that m = ⌈log
(
�n
�n

)
⌉ ≤ ⌈log 2�n⌉ = ⌈�n⌉ = O(n). Therefore we have that � =

2−(m−s)+O(logm) = 2−�
2 log(e)n/4+O(logn) and so, by the security of the interactive hashing protocol, the

probability that Bob gets both w0 and w1 to be good for eitherℛ0 orℛ1 is

Pr[w0, w1 ∈ S] < � = 2−�
2 log(e)n/4+O(logn)
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a negligible function of n.

Then, with overwhelming probability one of the sets, without loss of generalityℛ0, will have u(ℛSa0 ) ≥

�2n, i.e., ℛSbc will have more than �2n positions corresponding with an erasure, and Bob succeeds in the

test of Step 8 only if he correctly guesses y’s values for these positions that are jointly typical with Alice’s

input.

For n sufficiently large, by Theorem 2.2.10, there are at most 2�
2n[H(Y ∈Y0∣X)+�] (� > 0) sequences

of y’s values that are jointly typical with Alice’s input, and by the definition of jointly typical sequences,

the sequences of y’s values had to be a typical sequence. However, by Theorem 2.2.7, item 2, there are at

least 2�
2n[H(Y ∈Y0)−�] typical sequences for the values of y.

Then the probability that Bob succeeds in the test is less than 2�
2n[H(Y ∈Y0∣X)−H(Y ∈Y0)+2�] = 2−�

2n[C(W0)−2�],

which is a negligible function of n.3

In other words, a malicious Bob should correctly guess all the information that an honest Bob would

have received if these positions were good.

So the probability that Bob successfully cheat in the protocol � when both u(ℛ0) and u(ℛ1) are at

least 2�n is a negligible function of n:

� = 2−�
2n[H(Y ∈Y0)+H(Y ∈Y0∣X)+2�+

log(�)
4

]+O(n)

Strategy 2 We now analyze the security if either u(ℛ0) or u(ℛ1) is less than 2�n without loss of

generality we assume that u(ℛ0) < 2�n.

By the Chernoff bound (lemma I.0.5 in the appendix) and setting � =
{

(p∗−�)
(1−p∗)p − 1

}
, the probability

that ∣ℬ∣ > (p∗ − �)n is

Pr

{
1

n

n∑
i=1

yi ≤ p∗ − �

}
≤ exp

(
− n

2ln2

p∗

(1− p∗)
(p∗ − �)

p

)
= #.

Since only (1−2�)n positions were not used inℛ0,ℛ1, then u(ℛ0)+u(ℛ1)+(1−2�)n > (p∗−�)n

and so u(ℛ1) > (1− p∗ − 7�)n = �n− 5�n.

Observe that more than �n− 5�n positions fromℛ1 are erasures and Alice only sends �n[H(X∣Y ∈

Y0) + �] bits of information about xℛ1 in Step 9. So we have that H∞(Xℛ1 ∣ViewBob) > n[(� −
3Note than H(Y ∈ Y0∣X)−H(Y ∈ Y0) ≤ 0.
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5�)H(X) − �H(X∣Y ∈ Y0) − ��], where ViewBob denotes all the information that Bob knows. So the

property of the 2-universal hash function ℎ1 for extracting n[(�−5�)H(X)−�H(X∣Y ∈ Y0)−��−
] bits

of information (with 
 > 0) follows from the Leftover-Hash Lemma. Therefore, Bob has only negligible

information about r1, it means, the probability that Bob obtains some information about r1 is

� <
1

2
2−


n
2

Hence, we have that

IS(B;C ′∣C) ≤ �

and

IS(B;V ∣C,C ′, BC′) ≤ �.

Therefore the protocol above is secure according to the definition 5.1.1.
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7 ACHIEVING THE OBLIVIOUS TRANSFER CAPACITY

In this chapter we will prove theorem 5.2.4. For sake of reability we repeat it below:

Theorem 5.2.4 For a Generalized Erasure Channel with p∗ ≥ 1
2 , the oblivious transfer capacity in the

case of malicious adversaries is (1 − p∗)C(W0), where C(W0) is the Shannon capacity of the discrete

memoryless channel {W0 : X → Y0}.

First, we will show that the protocol 6.2.2 achieves the OT rate (1 − p∗)C(W0) (Direct Part). Sub-

sequently, we will show that this rate is the largest achievable OT rate based on GEC (Converse Part).

Hence, the OT capacity being the supremum of all achieves OT rates and the protocol being secure against

malicious adversaries, follows the result of theorem.

7.1 DIRECT PART

Theorem 7.1.1 There exists arbitrarily small positive constants �, � and 
 such that using a Generalized

Erasure Channel with probability p∗ ≥ 1
2 , for n sufficiently large, protocol 6.2.2 achieves the OT rate

(1− p∗)C(W0), where C(W0) is the Shannon capacity for the discrete memoryless channel {W0 = X →

Y0}.

Proof According to protocol 6.2.2, � indicates the proportion of bits sacrificed in the Step 8 and we have

� < 1−p∗
3 , so it can be chosen arbitrarily small. Similarly the parameters � and 
 can be chosen arbitrarily

small since � is negligible in n and 
 is a parameter that help to extract random strings in such way that a

malicious Bob cannot learn about more than one of the Alice’s input. Note that 
 can be chosen arbitrarily

small without compromise the security of protocol.

Since the protocol in Step 2 allows Alice chooses xn according to the probability distribution that

achieves the Shannon capacity of W0, we have that the length of the strings r0, r1 obliviously transmitted
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when n→∞ is

l = n[(� − 5�)H(X)− �(H(X∣Y ∈ Y0) + �′)− 
]

= n�[H(X)−H(Y ∈ Y0)]

= n(1− p∗)[H(X)−H(X∣Y ∈ Y0)]

= n(1− p∗)I(X;Y ∈ Y0)

= n(1− p∗)C(W0)

As the OT ratio is defined as the ratio of the length of the strings obliviously transmitted and the number

of use of noisy channel we have:

ROT = (1− p∗)C(W0).

□

7.2 CONVERSE PART

We will use to this part the theorem 1, its proof, and the lemma 1 of Ahlswede and Csiszár [16]. We

will consider Alice as the sender and Bob as the receiver in the OT protocol.

Theorem 7.2.1 The OT capacity of a Generalized Erasure Channel with probability p∗ ≥ 1
2 is COT =

(1− p∗)C(W0).

The follow lemma will be used in the proof of above theorem.

Lemma 7.2.2 ( [16]) For arbitrary RVs U, V, Z with values in finite sets U ,V,Z , and any z0, z1 in Z with

Pr{Z = z0} = p > 0, Pr{Z = z1} = q > 0,

∣H(U ∣V,Z = z0)−H(U ∣V,Z = z1)∣ ≤ c
√
I(UV ;Z)log∣U∣+ ℎ

(
min

[
c
√
I(UV ;Z),

1

2

])

where ℎ(t) = −tlogt− (1− t)log(1− t) and c is a constant depending on p and q.

Proof of theorem 7.2.1 The idea of this proof is that if there exists a secure protocol that uses a GEC

n times to transmit a string of length k, and with players also connected with a noiseless channel, it has k
n

less than or equal to max[I(X;Y ), H(X∣Y )].
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We will use the following notation (all parameters are random variables):

− K0,K1 ∈ {0, 1}k are the strings transmitted;

− Xn is the Alice’s input on GEC;

− Bn is the Bob’s output on GEC;

− Z is the choice bit of Bob;

− K̂Z is the estimated output of Bob and

− F is the total communication in the noisyless channel.

Without loss of generality Z = 0. So we have these conditions of security:

Pr{K̂0 ∕= K̂0} → 0 (7.1)

I(K0X
nF ;Z)→ 0 (7.2)

1

k
I(Y nF ;Z = 1)→ 0 (7.3)

Note that these conditions are weaker than the conditions of security (Definition 5.1.1, Chapter 5).

Making a comparison between the two conditions we have that equation (7.1) is the correctness, equation

(7.2) is the security for receiver and equation (7.3) is the security of the sender.

Claim 7.2.3
k

n
≤ 1

n

n∑
t=1

I(Xt;Yt) + ", "→ 0.

Demonstration of claim 7.2.3

From lemma 7.2.2, we have

∣H(K0∣XnF,Z = z0)−H(K0∣XnF,Z = z1)∣ ≤ c
√
I(K0XnF ;Z)logk + ℎ

(
min

[
c
√
I(K0XnF ;Z),

1

2

])

However by equation (7.2) I(K0X
nF ;Z) = �, ℎ(�′) = �′′ and c

√
I(K0XnF ;Z)logk = o(k). Then

H(K0∣XnF,Z = 0)−H(K0∣XnF,Z = 1) = o(k)

⇒ H(K0∣F,Z = 0)−H(K0∣F,Z = 1) = o(k) (7.4)
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since conditioning reduces entropy.

On the other hand, we know that H(K0∣Z = 0) = H(K0∣Z = 1) = H(K0) = k, because K0 is

independent of Z. Thus, by 7.4,

I(K0;F ∣Z = 0) = H(K0∣Z = 0)−H(K0∣FZ = 0)

= k + o(k) +H(K0∣F,Z = 1)

Nevertheless, by the equation (7.3)

I(Y nF ;K0∣Z = 1) = k#

I(Y nF ;K0∣Z = 1) = I(F ;K0∣Z = 1) + I(Y n;K0∣FZ = 1)

I(F ;K0∣Z = 1) = I(Y nF ;K0∣Z = 1)− I(Y n;K0∣FZ = 1)

I(F ;K0∣Z = 1) = o(k)

since, if the protocol is secure, I(Y n;K0∣FZ = 1)→ 0.

So

I(K0;F ∣Z = 0) = k + o(k) + o(k)

I(K0;F ∣Z = 0) = o(k) (7.5)

If the equations 7.1 and 7.5 held without conditioning on Z = 0 then K0 would be a secret key

for Alice and Bob, with security from an eavesdropper observing the public communication F . Then we

can use Theorem 3 of [43]. With our equations we had to use I(Xt;Yt∣Z = 0), but we can chance it

to I(Xt;Yt) since I(K0;F ∣Z = 0) ≤ I(K0;F ) and the conditional distribution of Xt on the condition

Z = 0 differs negligible from the unconditional distribution.

Thus the claim follows.

Claim 7.2.4
k

n
≤ 1

n

n∑
t=1

H(Xt;Yt) + ", "→ 0.

Demonstration of claim 7.2.4

Note that K0 → XnF → Y nFZ is a Markov chain since PK0∣XnF,Y nFZ = PK0∣XnF . Then by the
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Fano’s inequality (theorem I.0.6 on Appendix)

H(K0∣XnF,Z = 0) ≤ H(K0∣Y nF,Z = 0) = o(k) (7.6)

By ( 7.3) we have

I(Y nF ;K0∣Z = 1) = o(k)

H(K0∣Z = 1)−H(K0∣Y nF,Z = 1) = o(k) (7.7)

By ( 7.4) and ( 7.7) we have

H(K0∣XnF,Z = 1) = H(K0∣XnF,Z = 0)− o(k)

H(K0∣XnF,Z = 1) ≤ H(K0∣XnF,Z = 0)

≤ H(K0∣Y nF,Z = 0) = o(k)

⇒ H(K0∣XnY nF,Z = 1) ≤ H(K0∣XnF,Z = 1)

≤ o(k) (7.8)

Thus, we can say

k = H(K0∣Z = 1) = H(K0∣Y nF,Z = 1) + o(k), by 7.7

≤ H(K0∣XnY nF,Z = 1) +H(Xn∣Y nF,Z = 1) + o(k)

≤ H(Xn∣Y n, Z = 1) + o(k) by 7.8 and by H(Xn∣Y nF,Z = 1) < H(Xn∣Y n, Z = 1)

≤
n∑
t=1

H(Xt∣Yt, Z = 1) + o(k) by chain rule

≤
n∑
t=1

H(Xt, Yt) + o(k) since conditioning reduces entropy and chain rule.
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Finally, by the claims ( 7.2.3 and 7.2.4)

k

n
≤ 1

n

n∑
t=1

I(Xt;Yt) + " ≤ I(XT ;YT )

k

n
≤ 1

n

n∑
t=1

H(Xt;Yt) + " ≤ H(XT ;YT )

where T is a RV uniformly distribution on [n] independent of the RVs Xt, Yt.

Hence,

k

n
≤ max[I(X;Y ), H(X;Y )]

k

n
≤ max[I(X;Y ), H(X) +H(Y )− I(X;Y )]

k

n
≤ C(W0)(1− p∗)

Since there exists a secure protocol that achieves the OT ratio C(W0)(1 − p∗), this is the capacity of

OT of a Generalized Erasure Channel with p∗ ≥ 1
2 .

□

Proof of theorem 5.2.4

This follows from Theorems 7.1.1 and 7.2.1 and the observation that the protocol in question is secure

for malicious adversaries.

□
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8 CONCLUSION

In this work our gosl was to implement oblivious transfer using a noisy resource efficiently. We im-

prove the results of Ahlswede and Csiszár [16]. That paper presents oblivious transfer capacity of general-

ized erasure channel on honest-but-curious model; we show OT capacity of GEC in the malicious model.

Namely, both models have the same OT capacity to GEC.

Our work presents some advantages as to obtain a constant round protocol, i.e., the amount of exchange

of messages in the protocol is independent of size of the string obliviously transmitted - this result comes

from interactive protocol of Ding et al [23]; and to obtain a protocol sequentially composable secure, since

our protocol follows the definition of Crépeau and Wullschleger [18] which implies it. It means that if a

protocol properly reduces to our implementation of String Oblivious Transfer, the resulting protocol also

will be secure.

However, a disadvantage of our protocol is that our protocol is not computationally efficiently, because

Bob uses the output of universal hash functions to correct errors in his string received from GEC. This does

not impact our result since our goal was to reach OT capacity in the case considered. So, to determine a

computationally efficiently protocol that achieves the OT capacity of GEC on malicious model is an open

problem.

A Generalized Erasure Channel is a channel that the message to transmit can be erasure, flipped or

transmitted without errors. But it is yet a specific kind of channel. Then, another open problem is to

determine the OT capacity of a general channel on the malicious model. To determine OT capacity to

continuous channels is a open problem too.
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APPENDIX
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I. FORMAL TECHNICALITIES

Lemma I.0.5 (Chernoff Bound [44]) For i.i.d random variables X1, . . . , Xn with 0 ≤ Xn ≤ 1 and with

expectation E(Xn) = p:

Pr

{
1

N

N∑
n=1

Xn ≥ (1 + �)p

}
≤ exp

(
−N p�2

2ln2

)
,

P r

{
1

N

N∑
n=1

Xn ≤ (1− �)p

}
≤ exp

(
−N p�2

2ln2

)
.

Theorem I.0.6 (Fano’s Inequality) For any estimator X̂ such that X → Y → X̂ with Pe = Pr(X̂ ∕=

X), we have

H(Pe) + Pelog∣X ∣ ≥ H(X∣X̂) ≥ H(X∣Y ).
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