AVALIAÇÃO DE FLAVONÓIDES EM EXTRATOS VEGETAIS POR MEIO DA TÉCNICA DE CLAE

Marília Masson Loureiro dos Reis 10/0115306
Orientadora: Profª. Dra. Yris Maria Fonseca-Basso

Brasília
2015
AVALIAÇÃO DE FLAVONÓIDES EM EXTRATOS VEGETAIS POR MEIO DA TÉCNICA DE CLAE

Trabalho apresentado ao curso de graduação em Farmácia da Universidade de Brasília, como requisito parcial para aprovação na disciplina de Elaboração de Trabalho Científico.

Orientadora: Profª. Dra. Yris Maria Fonseca-Bazzo

Brasília
2015
LISTA DE FIGURAS

Figura 1 – Estrutura Geral dos flavonóides ... 9
Figura 2 – Estrutura Geral dos Flavonóis ... 10
Figura 3 – Fórmula estrutural da Rutina ... 11
Figura 4 – Fórmula estrutural da quercetina ... 11
Figura 5 – Fórmula estrutural do hiperosídeo .. 12
Figura 6 – Fórmula estrutural da Isoquercitrina ... 12
Figura 7 – Cromatograma do hiperosídeo (padrão de referência) (1 mg/mL) 26
Figura 8 – Cromatograma da isoquercitrina (padrão de referência) (1 mg/mL) 26
Figura 9 – Cromatograma da quercetina (padrão de referência) (1 mg/mL) 27
Figura 10 – Cromatograma da rutina (padrão de referência) (1 mg/mL). Condições 27
Figura 11 – Cromatograma do extrato aquoso de Erythroxylum daphnites 28
Figura 12 – Espectro de absorção Uv/VIS referente ao pico com tempo de retenção de 25,19 ... 29
Figura 13 – Espectro de absorção Uv/VIS referente ao pico com tempo de retenção de 29,087 ... 29
Figura 14 – Espectro de absorção Uv/VIS referente ao pico com tempo de retenção de 33,407 ... 29
Figura 15 – Cromatograma do extrato etanólico de Erythroxylum suberosum 31
Figura 16 – Espectro de absorção Uv/VIS referente ao pico com tempo de retenção de 28,83 ... 31
Figura 17 – Espectro de absorção Uv/VIS referente ao pico com tempo de retenção de 29,400 ... 32
Figura 18 – Espectro de absorção Uv/VIS referente ao pico com tempo de retenção de 31,260 ... 32
Figura 19 – Cromatograma do extrato aquoso de Eugenia dysenterica 32
Figura 20 – Cromatograma do extrato etanólico de Sapindus saponaria 33
LISTA DE TABELAS

Tabela 1 – Gradiente de eluição por CLAE ... 18
Tabela 2 – Espécies vegetais com relatos de atividade antioxidante e presença de flavonóides ... 20
Tabela 3 – Tempos de retenção, máximos de absorção e áreas dos padrões das substâncias .. 25
Tabela 4 – Tempo de retenção, áreas, similaridade, pureza e concentração dos padrões no extrato aquoso de *E. daphnites.* ... 29
Tabela 5 – Tempo de retenção, áreas, similaridade, pureza e concentração dos padrões no extrato aquoso de *E. suberosum.* ... 31
RESUMO

6

1 INTRODUÇÃO

7

2 OBJETIVOS

15

3 METODOLOGIA

16

4 RESULTADOS E DISCUSSÃO

20

5 CONCLUSÃO

34

REFERÊNCIAS

35
RESUMO

Os flavonóides são compostos do metabolismo secundário dos vegetais e possuem grande importância farmacológica, já que atuam na prevenção de doenças degenerativas gerando benefícios para a saúde humana. Muitos estudos constataram uma grande diversidade de atividade biológica desses compostos. Dentre essas atividades são destacados efeitos antioxidantes, anti-inflamatórios, ação vasodilatadora, ação contra a evolução de tumores (PETERSON; DWYER, 1998). As riquezas terapêuticas advindas da natureza, em especial da região do Cerrado, muitas vezes têm uma grande aceitabilidade, por serem ricas em princípios ativos, em especial os flavonóides, que geralmente são isentos de efeitos indesejáveis (PETERSON; DWYER, 1998). Diante desse contexto, determinou-se a presença de flavonóides, como hiperosídeo, rutina, isoquercitrina e quercetina, em extratos vegetais da *Erythroxylum daphnites, Eugenia dysenterica, Erythroxylum suberosum e Sapindus saponaria* provenientes da região do Cerrado. Além disso, por meio de levantamentos bibliográficos no desenvolvimento do trabalho, observou-se a riqueza de plantas com características antioxidantes. Foi possível também quantificar o teor dos flavonóides identificados nos extratos analisados.

Palavras-chave: Flavonóides. CLAE. Flavonóis.
1 INTRODUÇÃO

O estudo foi desenvolvido para a análise e quantificação de flavonóides pré-determinados em extratos vegetais utilizando o método de Cromatografia Líquida de Alto Eficiência (CLAE), já que esses metabólitos são de grande importância no processo de oxidação de radicais livres.

As riquezas terapêuticas advindas da natureza, em especial da região do Cerrado, muitas vezes têm uma grande aceitabilidade, por serem ricas em princípios ativos, em especial os flavonóides, que geralmente são isentos de efeitos indesejáveis. As estruturas químicas desses vegetais são diferenciadas por posicionamentos e pelos tipos dos açúcares presentes, sendo analisados para uma maior aceitabilidade no tratamento de doenças degenerativas.

A análise de flavonóides no trabalho provou a presença desses compostos e o benefício que eles podem gerar para o tratamento de patologias. Muitas das desordens relacionadas ao miocárdio são ocasionadas pelo acúmulo de colesterol e têm gerado um aumento na taxa de mortalidade em grande parte da população. Essas desordens são potencializadas por fatores de risco que envolve estresse, sexo, nível de colesterol, idade e outros fatores individuais que são ligados às taxas de colesterol no sangue e também com atividades oxidativas de radicais livres que atuam nas lipoproteínas de baixa densidade – LDL, apesar de existir muitas alternativas farmacológicas para tratar esses tipos de problemas citados previamente, elas normalmente são abandonadas diante de prescrição prolongada, devido aos eventos adversos. Assim, por esses e outros fatores, os flavonóides são constantemente estudados para uma melhor qualidade de vida para a população (RATTY E DAS, 1998).
1.1 FLAVONÓIDES

Em 1930, o doutor Szent György, teve o primeiro contato com os flavonóides. Ao estudar a casca do limão ele isolou a citrina e observou que a essência da fruta tinha alto caráter de controle da permeabilidade dos capilares (MARTÍNEZ-FLORES et al., 2002). Essa classe do metabolismo secundário das plantas é obtida da via dos fenilpropanóides, os chamados polifenóis (ZUANAZZI; MONTANHA, 2003).

Os flavonóides são encontrados em frutas, flores e em alguns tipos de vegetais. Esses compostos provocam grandes propensões a estudos já que revelam uma relação inversamente proporcional ao uso desses metabolitos e a ocorrência de doenças degenerativas como o câncer (KNEKT et al., 1996).

Analisou-se que provavelmente as atividades realizadas pelos flavonóides são provenientes de sua ação antioxidante por causa das suas capacidades de sequestrar oxigênio, de quelar metais e/ou doar oxigênio, sendo poderosos sequestradores de radicais livres. (HUBER et al., 2007).

Os principais antioxidantes explorados no comércio são ácido ascórbico, tocoferóis e alguns extratos de plantas. Esses extratos apesantam em sua composição compostos fenólicos especialmente flavonóis e ácido fenólicos que são mais explorados pelas atividades antioxidantes, anticancerígena e por ter ação a fim de diminuir o risco de doenças cardiovasculares (LOULI et al., 2004; PINELO et al., 2005). Os flavonóides são encontrados em plantas sob forma de glicosídios e na maioria das vezes são coadjuvantes para a absorção nos organismos vivos (MOLNÁR-PERL; FÚZFAI, 2005).

Os flavonóides são encontrados em vários modelos de estruturas, possuindo 15 átomos de carbono no centro fundamental, composto de duas fenilas unidas por uma cadeia de três carbonos (ZUANAZZI & MONTANHA, 2003). As diferenças dos grupos dos
flavonóides são a alteração no número e posição das hidroxilas, por mudanças nos núcleos e pelo nível que as estruturas estão metiladas e glicosiladas (HAVSTEEN, 2002). Isso pode ser observado na Figura 1. Eles são denominados a partir das suas estruturas químicas: flavanonas (encontradas em frutas cítricas), flavonóis (constante em vegetais e frutas), flavonas (frutas cítricas e cereais), isoflavonas (particularmente encontrados na soja), flavanóis e antocianinas (presentes em frutas e flores). A diferenciação nas estruturas químicas dos flavonoides utilizados no trabalho descrito é basicamente a posição e o tipo de açúcar (carbono 3 do núcleo do flavonóide). Assim, a rutina possui um dissacarídeo (raminose + glicose) na posição C-3 do flavonóide (PEDRIALI, 2005); a quercetina é uma flavona sem molécula de açúcar presente na estrutura, sendo classificada como aglicona (MI et al., 2010); a isoquercitrina é um flavonóide glicosado (3-O-glicosídeo) (ROGERIO, et al., 2007); o hiperosídeo é um flavonóide que possui um açúcar na região 3 (O-galactosídeo).

Figura 1 – Estrutura Geral dos flavonóides

Os flavonóis são uma das relevantes subclasses de flavonóides. Flavonóis possuem uma estrutura em forma de anel aromático com uma ligação dupla nas posições 2-3, como pode-se observar na Figura 2. Os flavonóis são semelhantes às flavonas, sendo que há uma mudança na posição C-3 por uma hidroxila, para os flavonóis. Esses compostos são provenientes da 3-hidroxi flavona e são conhecidos por apresentarem coloração amarela de flores e raízes (ZUANAZZI & MONTANHA, 2003). Estas moléculas são encontradas nas
uvas, maçãs, acerola, caju, goiaba, figo, em chás (erva doce, erva cidreira, erva mate) principalmente na casca sob a forma de monoglicosídeo, com o resíduo de açúcar ligado ao grupo hidroxila, prevalecendo na posição C-3 do anel contendo O (oxigênio) (SANTOS-BUELG; WILLIAMSOM, 2003).

Figura 2 – Estrutura Geral dos Flavonóis

![Estrutura Geral dos Flavonóis]

Fonte: Silva et al., 2005

A rutina (Figura 3), pertence à subclasse dos flavonóides, o flavonol. Principalmente encontrada em frutas cítricas e também nas cascas dos frutos (ISAI et al., 2009). A rutina é conhecida por demonstrar atividade antioxidante e atuar no colesterol (fígado e corrente sanguínea), reduzindo-o (SUN et al., 2011). A rutina também tem a capacidade de acabar com os radicais e impossibilitar a peroxidação lipídica em circunstância de estresse oxidativo promovido pela estreptozotocina (uma nitrosamida), que induz diabete tipo I (ISAI et al., 2009).

A estrutura química da rutina apresenta um dissacarídeo (raminose + glicose) conectado a região (posição) 3 (três) da estrutura do anel (PEDRIALI, 2005).
A quercetina é uma flavona que pode ser encontrada na dieta humana como a maçã e o brócolis (MI et al., 2010). Ensaios laboratoriais, demonstraram que a quercetina possui atividade antioxidante, antitumoral (ATAWODI et al., 2009) o que faz com que a citotoxicidade provocada pelo medicamento antineoplásico doxorrubicina a células hepáticas saudáveis seja diminuída (WANG et al., 2012).

Hiperosídeo (Figura 5) é um flavonóide glicosado (3-O galactosídeo) possuindo ação anti-inflamatória e antidepressiva sendo amplamente utilizado na clínica para aliviar a dor e melhorar as funções cardiovasculares. (RUI-LI LIU et al., 2012).
A isoquercitrina (Figura 6) é um flavonol glicosado e possui uma diversidade de ação biológica como atuação na supressão da inflamação dos eosinófilos sendo também utilizado para tratar alergias (ROGERIO, et al., 2007).

1.2 PLANTAS UTILIZADAS NESTE ESTUDO

As plantas utilizadas neste estudo foram selecionadas considerado relatos prévios de presença de flavonóides, todas as espécies pertencem ao Bioma Cerrado. As espécies analisadas para determinação de flavonóides foram: *Eugenia dysenterica, Erythroxylum daphnites, Sapindus Saponaria e Erythroxylum suberosum*.

Eugenia dysenterica

A *Eugenia dysenterica* da família *Myrtacea* é uma árvore oriunda do cerrado e é comumente chamada de cagaita. As folhas e os frutos são aproveitados para usos
terapêuticos como disenteria e constipação intestinal, respectivamente. É possível achar nas folhas da *E. dysenterica* alta presença de compostos fenólicos, como tanino e flavonóide (ZORZIN, 2014).

Erythroxylum daphnites

Predominante no cerrado, a *Erythroxylum daphnites*, também conhecida como “chapadinho” é da família *Erythroxylacea*. Em ensaios realizados a partir das folhas durante os últimos anos foi possível identificar por meio do isolamento dos compostos a presença de flavonóides, esteróides, glicerídeos, entre outros (MARTINS, 2015).

Sapindus saponária

Sapindus Saponaria da família *Sapindaceae* conhecida como fruta-de-sabão é uma árvore que pode ser encontrada nas regiões dos trópicos, incluindo América e Índia. Alguns pesquisadores encontraram atividade contra úlceras nos seus extratos (MEYER, 2002) e lesões ocasionadas por fungos (MURGU; RODRIGUES, 2006).

Erythroxylum suberosum

1.3 CROMATOGRAFIA LÍQUIDA DE ALTA EFICIÊNCIA – CLAE

A necessidade para lançar novas composições/ apresentações de medicamentos em um menor prazo de tempo, gerou uma grande pressão sob a indústria farmacêutica no processo de desenvolvimento. As novas fórmulas desenvolvidas devem ser testadas quanto às suas potências e pureza. Para a análise de estabilidade das amostras, geralmente utiliza-se a técnica de cromatografia líquida de alta eficiência (CLAE). A análise em um equipamento de CLAE dura em torno de 60 minutos e também serve para obter dados analíticos para liberar um lote ou até mesmo para controlar um dos processos de fabricação. Então, uma análise ágil é importante não só no processo de desenvolvimento, mas um elemento-chave ao longo de todo o ciclo de vida de um produto. O equipamento de HPLC é utilizado para o desmembramento de substâncias de uma amostra entre fases imiscíveis, a fase estacionária que fica contida em uma coluna em forma de cilindro e a fase móvel, que são os solventes (BRASIL 2010).

As separações são realizadas por diversos meios, como exclusão por diferença de tamanho, troca de íons, coeficiente de partição, adsorção e dependem do padrão da fase estacionária. As vantagens da cromatografia de alta eficiência são relacionadas à separação de amostras que são sensíveis ao aumento de temperatura e que também não evaporam (volatilidade) com facilidade. As misturas a serem analisadas possuem diversas naturezas químicas, então elementos químicos e físicos podem influir na separação das substâncias.

O equipamento é composto de um reservatório que comporta a fase móvel, bomba de solvente que tem o propósito de lançar a fase móvel ao longo do equipamento, um injetor para inserir a amostra no sistema, a coluna em forma de cilindro e um sensor que captura os picos e os transformam em dados que são traduzidos por um programa de software (BRASIL, 2010).
2 OBJETIVOS

Geral
- Analisar a presença de flavonóides em extratos vegetais utilizando a técnica CLAE.

Específico
- Realizar levantamento bibliográfico de estudos que relataram a presença de flavonoides em plantas medicinais com atividade antioxidante, agrupando estas plantas por famílias.
- Analisar a presença de flavonóides, tais como rutina, quercetina, hiperosídeo, isoquercitrina em extratos vegetais de *Erythroxylum daphnites, Eugenia dysenterica, Erythroxylum suberosum e Sapindus saponaria* utilizando CLAE.
- Quantificar o teor dos flavonóides identificados nos extratos.
3 METODOLOGIA

3.1 LEVANTAMENTO BIBLIOGRÁFICO DE ESTUDOS QUE RELATAM A PRESENÇA DE FLAVONOIDES EM PLANTAS MEDICINAIS COM ATIVIDADE ANTIOXIDANTE

As plantas contendo relato da presença de flavonoides foram pesquisadas de forma ativa nos sítios eletrônicos: SCIELO, SCIENCE e GOOGLE ACADÊMICO. Utilizou-se palavras chaves que contemplem o tema (flavonoides, plantas, extratos, quercetina, rutina, antioxidante, entre outros). De forma exploratória, foi considerado combinações entre as palavras chaves e o idioma a ser aplicado (português ou espanhol ou inglês).

3.2 OBTENÇÃO DAS ESPÉCIES VEGETAIS

As folhas das espécies vegetais Eugenia dysenterica, Erythroxylum suberosum, Erythroxylum daphnites e Sapindus saponaria foram coletadas e identificadas pelo colaborador Prof. Dr. Christopher Willian Fagg do Instituto de Biologia da Universidade de Brasília. Voucher Fagg 2305 E. daphnites, Voucher Fagg CW2192 E. suberosum, Voucher UB 916 S.saponaria, E. dysenterica Voucher UB 914.

3.3 REAGENTES E EQUIPAMENTOS

Acetonitrila (4000mL) com alto grau de pureza para HPLC, marca Tedia Brasil.

Ácido Fosfórico (4000mL) em água Milli-Q a 1% com alto grau de pureza para HPLC, marca Tedia Brasil.
Água milli-Q utilizada para HPLC.

Etanol com alto grau de pureza para HPLC, marca Tedia Brasil.

Moinho triturador de folhas secas TE – 648, rotação fixa em 1730 RPM.

Liofilizador SP scientific customer e Technical Service Model Advantage Plus XL-70

CLAE LaChrom Elite (Hitachi, Tokyo, Japan), contando com bomba L2130, injetor L2200, forno para coluna L2300, mantido a 25 ºC e detector L2455 DAD;

Percolador em aço inox 304, com torneira, disco furado, tampa e suporte 5.000 mL.

3.4 OBTENÇÃO DOS EXTRATOS

As folhas das espécies vegetais foram recolhidas e após um processo de secagem e moagem, foi obtido o extrato aquoso bruto pelo processo de infusão do rasurado das folhas secas. O extrato obtido foi liofilizado e o extrato seco utilizado para determinação de flavonóides por CLAE.

3.5 DETERMINAÇÃO DE FLAVONÓIDES POR CLAE

Utilizou-se cromatógrafo líquido de alta eficiência (CLAE) LaChrom Elite (Hitachi, Tokyo, Japan), contando com bomba L2130, injetor L2200, forno para coluna L2300, mantido a 25 ºC e detector L2455 DAD (Hitachi, Tokyo, Japan). O detector de UV visível foi ajustado para coletar dados na faixa de 230 nm e 400 nm. A fase móvel foi constituída de solução de ácido fosfórico 1% (Bomba A) e acetonitrila (Bomba B), com
gradiente de eluição, de acordo com a tabela 1. O fluxo de fase móvel foi de 0.6 mL/min. A coluna utilizada PurospherStar RP C18e (150 x 4.6 mm, 5 mm, Merck, Germany), acoplada a pré-coluna de mesmas características (4 x 4; 5mm particle size, Merck, Germany). Os dados foram adquiridos por EZChrom Elite software version 3.3.2 SP1 Scientific Software. Inc. (LEITE et al, 2014).

<table>
<thead>
<tr>
<th>Tempo (min)</th>
<th>Bomba A</th>
<th>Bomba B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>90%</td>
<td>10%</td>
</tr>
<tr>
<td>40</td>
<td>70%</td>
<td>30%</td>
</tr>
<tr>
<td>50</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>55</td>
<td>90%</td>
<td>10%</td>
</tr>
</tbody>
</table>

Fonte: LEITE et al., 2014

3.6 PREPARAÇÃO DA AMOSTRA PARA ANÁLISE EM CLAE

Pesou-se 10mg de extrato aquoso liofilizado dos diferentes extratos, sendo dissolvidos em 10 mL de metanol, exceto para a Eugenia dysenterica que foi dissolvido em 10 mL de água. A solução obtida foi posteriormente filtrada e submetida ao CLAE.

3.7 IDENTIFICAÇÃO E QUANTIFICAÇÃO DOS FLAVONÓIDES

A identificação dos flavonoides foi realizada por comparação dos tempos de retenção e espectros de absorção UV/VIS de padrões autênticos, utilizando biblioteca de padrões presente no equipamento. Foram utilizados os seguintes compostos para comparação: rutina, quercetina, isoquercitrina e hipersídeo.

Para verificar o teor dos padrões autênticos identificados nos extratos foi utilizada a
fórmula a seguir:

$$\text{CPA} = \frac{\text{AA} \times \text{CP}}{\text{AP}} \times \text{FC}$$

CPA = concentração do padrão na amostra (mg/mg)
AP = área obtida pela rutina, isoquercitrina, hiperósídeo, quercetina, padrões autênticos
CP = concentração do padrão em mg/mL
AA = área obtida pela amostra de extrato teste
FC = fator de correção diluição
4 RESULTADOS E DISCUSSÃO

4.1 FLAVONOIDES EM PLANTAS MEDICINAIS COM ATIVIDADE ANTIOXIDANTE

Compostos antioxidantes são responsáveis por atuarem nos radicais livres amenizando e/ou cessando os efeitos gerados por ele (BARBOSA et al., 2010). Há vários mecanismos de ação como: inibição da formação de radicais livres, o que evita a atividade desses ou pela contribuição da reconstituição de tecidos biológicos danificados (BARBOSA et al., 2010). Espécies reativas de oxigênio desempenham uma função relevante em processos de degeneração como a senescência da pele (HALLIWELL, B., 1989). Vegetais com essas características podem ser visualizados resumidamente na Tabela 2.

Segue abaixo uma tabela relacionando a atividade antioxidante classificada por famílias.
Tabela 2 – Espécies vegetais com relatos de atividade antioxidante e presença de flavonóides

<table>
<thead>
<tr>
<th>Família</th>
<th>Espécie</th>
<th>Nome popular</th>
<th>Indicação</th>
<th>Substâncias ativas biologicamente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cecropiaceae</td>
<td>Cecropia pachystachya T</td>
<td>Embaúba, Embaúva Branca</td>
<td>Analgésico, Antioxidante</td>
<td>Flavonóides C-glicosilados, orientina. (COSTA et al., 2011)</td>
</tr>
<tr>
<td>Fabaceae</td>
<td>B. purpúrea</td>
<td>Pata-de-vaca roxa, coração-roxo</td>
<td>Antioxidante</td>
<td>Flavonóides (ZAKARIA et al., 2007).</td>
</tr>
<tr>
<td>Guttiferae</td>
<td>Hypericum Brathys</td>
<td>-</td>
<td>Antioxidante</td>
<td>Flavonóides (AVATO et al., 2004)</td>
</tr>
<tr>
<td>Lamiaceae</td>
<td>H. Marrubioides</td>
<td>-</td>
<td>Antioxidante</td>
<td>Flavonóides (SOUZA E LORENZI, 2008)</td>
</tr>
<tr>
<td>Lamiaceae</td>
<td>H. Lantanifolia</td>
<td>-</td>
<td>Antioxidante</td>
<td>Flavonóides (SOUZA E LORENZI, 2008)</td>
</tr>
<tr>
<td>Lamiaceae</td>
<td>H. suaveolens</td>
<td>-</td>
<td>Antioxidante</td>
<td>Flavonóides (SOUZA E LORENZI, 2008)</td>
</tr>
<tr>
<td>Lamiaceae</td>
<td>H. microphylla</td>
<td>-</td>
<td>Antioxidante</td>
<td>Flavonóides (SOUZA E LORENZI, 2008)</td>
</tr>
<tr>
<td>Malpighiaceae</td>
<td>Davilla elliptica</td>
<td>Lixeirinha</td>
<td>Antioxidante</td>
<td>Flavonóides; quercetina e da miricetina. (SOUZA E LORENZI, 2008)</td>
</tr>
<tr>
<td>Leguminosae (Mimosaceae)</td>
<td>Stryphnodendron obovatum Benth</td>
<td>Barbatimão</td>
<td>Cicatrizante e antioxidante</td>
<td>Flavonóides; flavonós e flavonas (PINHO ET AL., 2012).</td>
</tr>
<tr>
<td>Myrtaceae</td>
<td>E. brasiliensi,</td>
<td>Grumixama</td>
<td>Antioxidante</td>
<td>Flavonóides (MAGINA et al., 2010)</td>
</tr>
<tr>
<td>Myrtaceae</td>
<td>E. orbiculata</td>
<td>-</td>
<td>Antioxidante</td>
<td>Flavonóides (MAGINA et al., 2010)</td>
</tr>
<tr>
<td>Myrtaceae</td>
<td>Eugenia umbeliflora</td>
<td>Biguacu</td>
<td>Antioxidante</td>
<td>Flavonóides (MAGINA et al., 2010)</td>
</tr>
<tr>
<td>Myrtaceae</td>
<td>Eugenia dysenterica</td>
<td>Cagaita</td>
<td>Antioxidante</td>
<td>Flavonóides (MARTINS, 2015)</td>
</tr>
<tr>
<td>Verbenaceae</td>
<td>Lippia sidoides</td>
<td>Alercim-pimenta, estrepa-cavalo</td>
<td>Antioxidante</td>
<td>Flavonóides (COSTA et al, 2002)</td>
</tr>
<tr>
<td>Rubiaceae</td>
<td>Palicourea rígida</td>
<td>Douradão</td>
<td>Antioxidante</td>
<td>Flavonóides (VON POSER et al., 2004)</td>
</tr>
</tbody>
</table>

A família Fabaceae vem do gênero Bauhinia que é composto por volta de 300 espécies, sendo encontrada principalmente na região amazônica (SILVA; CECHINEL, 2002). As espécies desse gênero possui uma diversidade de compostos, como flavonóides,
alcaloides, esteróides, entre outros (NOGUEIRA; SABINO, 2012). Estudos sobre a ação antioxidante da espécie *B. purpurea* estão recebendo uma atenção significativa, visto que os extratos dessa planta têm mostrado grande poder quando comparados utilizando-se os testes para esta atividade descrita (ZAKARIA et al., 2007).

A família *Malpighiaceae* é composta de aproximadamente 75 gêneros, que são encontrados em regiões subtropicais e tropicais do globo, sendo que no Brasil o gênero *Byrsonima* é encontrado na região Nordeste (SOUZA; LORENZI, 2008). Vegetais dessa família possuem compostos antioxidantes em abundância tais como flavonóides e taninos (GOTTLIEB; BORIN, 2001). As espécies *Davilla elliptica* e *Byrsonima crassifólia* foram caracterizadas quimicamente, sendo possível encontrar e isolar substâncias voláteis provenientes dos frutos como ácidos triterpênicos, triterpenos, catequinas, das folhas os flavonóides e do caule, taninos (RASTRELLI et al., 1997).

A família *Myrtaceae* possui 400 espécies do gênero *Eugenia*. Visando a potência antioxidativa, diversas espécies desse gênero foram estudadas, como a *E. brasiliensis*, *E. orbiculata*, *Eugenia umbelliflora* entre outras que são encontradas no sul e sudeste do país (FONTENELLE; MACHADO, 1994). Usada pela população para tratamento de artrite e diabetes o extrato do gênero *Eugenia*, se mostrou eficaz com uma ação antioxidante relevante (REVILLA, 2002; MAGINA et al., 2010).

A família *Guttiferae* possui 1200 espécies é composta pelo gênero *Hypericum*. Há uma diversidade de espécies do gênero *Hypericum* como a *Brathys*, sendo amplamente usadas pela população para o tratamento de diferentes doenças como diabetes, verminoses e atua também como antiretroviral (TROVATO et al., 2001). Em estudos da capacidade farmacológica foi observada ação antioxidante e antiinflamatória para cicatrizar ferimentos (AVATO et al., 2004).

O gênero *Crecropia* da família Urticaceae abrange cerca de 60 espécies presentes na América Latina, a espécie *Cecropia pachystachya* Trécul é comum na região sul do Brasil (BERG; ROSSELLI, 2005). Essa espécie é conhecida como Embaúba, sendo utilizada pela população como antihipertensivo, antiinflamatório e também atua como antioxidante. Estudo realizado a partir da análise fitoquímica, foi possível encontrar flavonóis e catequinas (LORENZI, 2008).

A família Leguminosae responsável pelo gênero *Stryphnodendron* Mart, é composta por volta de 48 espécies, como *Stryphnodendron obovatum* Benth conhecida como o barbatimão, que são oriundas do cerrado brasileiro (DURIGAN et al., 2004). A parte da planta utilizada pelos habitantes nativos é o caule para tratamento de cicatrização e diarreia (SANTOS; MELLO, 2004). Na avaliação fitoquímica desse gênero foi possível observar a presença de saponinas, flavonóides e taninos (LOPES et. al., 2009).

A família Rubiaceae é composta por cerca de seiscentos e trinta gêneros (ROBBRECHT, 1988). O gênero *Paicourea* possui duzentas e trintas espécies. As plantas deste gênero apresentam uma diversidade de metabólitos como alcaloides e cumarinas (NASCIMENTO et al., 2006). A espécie *Palicourea rigida*, popularmente chamada de douradão é utilizada para inflamações (VENCATO et al., 2005). Em experimentos observou a presença de flavonóides, compostos antioxidantes como quercetina foram encontrados nas folhas desse vegetal (VON POSER et al., 2004).
4.2 IDENTIFICAÇÃO DE FLAVONÓIDES EM ESPÉCIES VEGETAIS POR CLAE

Extratos aquosos das folhas das espécies vegetais *E. dysenterica, E. suberosum, E. daphnites e S. saponaria* foram submetidos a técnica CLAE para determinação de flavonóides, seguindo o sistema de eluição proposto por LEITE *et al.*, 2014. A detecção da presença de flavonóides foi observado pela avaliação espectral dos principais picos eluídos para cada extrato observando os máximos de absorção. Segundo ARAPITSAS (2008), flavonóis possuem características espectrais no UV/VIS apresentando máximos de absorção entre 340 e 370 nm. Desta forma, com os dados obtidos a partir da análise por CLAE pode ser observada a presença ou não de flavonóides nos extratos analisados. Os picos com características espectrais semelhantes a flavonóis foram comparados com os espectros e tempo de retenção de padrões autênticos, como quercetina, rutina, hipersídeo e isoquercetrina para identificação e quantificação dos mesmos.

Abaixo estão apresentados os cromatogramas obtidos para os padrões autênticos (Figura 7 – 10). A tabela 3 apresenta os tempos de retenção, máximos de absorção e áreas encontrados para cada substância padrão.

<table>
<thead>
<tr>
<th>Padrões</th>
<th>Tempo de retenção</th>
<th>Máximo de absorção (lambida λ)</th>
<th>Área</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hiperosídeo</td>
<td>28,813</td>
<td>256, 353</td>
<td>14422063</td>
</tr>
<tr>
<td>Isoquercetrina</td>
<td>30,38</td>
<td>256, 354</td>
<td>24671707</td>
</tr>
<tr>
<td>Quercetina</td>
<td>47, 740</td>
<td>255, 371</td>
<td>34584536</td>
</tr>
<tr>
<td>Rutina</td>
<td>29,140</td>
<td>256, 354</td>
<td>8732052</td>
</tr>
</tbody>
</table>
Figura 7 – Cromatograma do hiperosídeo (padrão de referência) (1 mg/mL). Condições da análise: coluna C 18, eluição em gradiente: ACN:H₃PO₄ (1%), detecção: 354nm, vazão: 0,6mL/min.

Figura 8 – Cromatograma da isoquercitrina (padrão de referência) (1 mg/mL) Condições da análise: coluna C 18, eluição em gradiente: ACN:H₃PO₄ (1%), detecção: 354nm, vazão: 0,6mL/min.
Figura 9 – Cromatograma da quercetina (padrão de referência) (1 mg/mL). Condições da análise: coluna C 18, eluição em gradiente: ACN:H₃PO₄ (1%), detecção: 354nm, vazão: 0,6mL/min

Figura 10 – Cromatograma da rutina (padrão de referência) (1 mg/mL). Condições da análise: coluna C 18, eluição em gradiente: ACN:H₃PO₄ (1%), detecção: 354nm, vazão: 0,6mL/min

Para o extrato etanólico de *E. daphnites* foi observado cinco principais picos de substâncias, sendo possível identificar uma delas, rutina (TR 29,09), conforme demonstrado na Figura 11. Além disso, os picos em 25,19 min e 33,40 min são flavonoides
derivados da quercetina, com base na semelhança espectral com padrão de quercetina. Os picos em 27,72 min. e 32,44 min. não são flavonoides, e portanto não foi possível identificá-los utilizando os métodos e padrões disponíveis. Nas figuras (12-14) é possível observar o lambda máximo dos picos dos tempos de retenções avaliados.

O teor de rutina encontrado no extrato aquoso de *E. daphnites* foi de 0,199 µg/mL.

Figura 11 – Cromatograma do extrato aquoso de *Erythroxylum daphnites*. Condições da análise: coluna C 18, eluição em gradiente: ACN:H₃PO₄ (1%), detecção: 354nm, vazão: 0,6mL/min
Tabela 4 – Tempo de retenção, áreas, similaridade, pureza e concentração dos padrões no extrato aquoso de *E. daphnites*.

<table>
<thead>
<tr>
<th>Tempo de Retenção</th>
<th>Área</th>
<th>Similaridade</th>
<th>Pureza</th>
<th>Concentração de padrão (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Média</td>
<td>Desvio padrão</td>
<td>Coeficiente de variância</td>
<td>Média</td>
<td>Desvio padrão</td>
</tr>
<tr>
<td>25,10</td>
<td>0,08</td>
<td>0,003</td>
<td>3003136</td>
<td>1322,86</td>
</tr>
<tr>
<td>28,99</td>
<td>0,08</td>
<td>0,002</td>
<td>1739568</td>
<td>4590,07</td>
</tr>
<tr>
<td>33,30</td>
<td>0,09</td>
<td>0,002</td>
<td>1365961</td>
<td>2644,56</td>
</tr>
</tbody>
</table>

Figura 12 – Espectro de absorção Uv/VIS referente ao pico com tempo de retenção de 25,19. Absorção máxima 256, 353

Figura 13 – Espectro de absorção Uv/VIS referente ao pico com tempo de retenção de 29,087. Absorção máxima 256, 352

Figura 14 – Espectro de absorção Uv/VIS referente ao pico com tempo de retenção de 33,407. Absorção máxima 256, 352
Para o extrato etanólico de *E. suberosum* foi observado cinco principais picos de substâncias, sendo possível identificar algumas delas, hiperosídeo (TR 28,83) rutina (TR 29,09), isoquercitrina. (TR 31,26) conforme demonstrado na Figura 15. Nas Figuras 16-18 é possível observar o lambda máximo dos picos dos tempos de retenções avaliados.

Os teores de dos flavonóides encontrados no extrato aquoso de *E. suberosum* foi de 0,320 µg/mL para hiperosídeo, 0,994 µg/mL para rutina e 0,067 µg/mL para isoquercitrina.
Figura 15 – Cromatograma do extrato etanólico de *Erythroxylum suberosum*. Condições da análise: coluna C 18, eluição em gradiente: ACN:H₃PO₄ (1%), detecção: 354nm, vazão: 0,6mL/min.

![Cromatograma do extrato etanólico de *Erythroxylum suberosum*.](image)

Tabela 5 – Tempo de retenção, áreas, similaridade, pureza e concentração dos padrões no extrato aquoso de *E. suberosum*.

<table>
<thead>
<tr>
<th>Tempo de Retenção</th>
<th>Área</th>
<th>Similaridade</th>
<th>Pureza</th>
<th>Concentração de padrão (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Média</td>
<td>Desvio padrão</td>
<td>Coeficiente de variância</td>
<td>Média</td>
<td>Desvio padrão</td>
</tr>
<tr>
<td>28,87</td>
<td>0,04</td>
<td>0,001</td>
<td>4617172</td>
<td>8379,42</td>
</tr>
<tr>
<td>29,43</td>
<td>0,04</td>
<td>0,001</td>
<td>868253</td>
<td>2694,42</td>
</tr>
<tr>
<td>31,3</td>
<td>0,04</td>
<td>0,001</td>
<td>1659727</td>
<td>2061,21</td>
</tr>
</tbody>
</table>

Figura 16 – Espectro de absorção Uv/VIS referente ao pico com tempo de retenção de 28,83. Absorção máxima 256, 357.

![Espectro de absorção Uv/VIS](image)
Figura 17 – Espectro de absorção Uv/VIS referente ao pico com tempo de retenção de 29,400. Absorção máxima 256, 352

Figura 18 – Espectro de absorção Uv/VIS referente ao pico com tempo de retenção de 31,260. Absorção máxima 256, 356

Tanto para o extrato aquoso de *E. dysenterica*, Figura 19, quanto para o da *S. saponaria*, Figura 20, não foi possível identificar substâncias presentes, mas sabe-se que não se tratam de flavonóides e sim de outros compostos. No cromatograma da *S. saponária*, observou-se a inexistência de picos na faixa de absorção selecionada no equipamento, o que pode ser a ausência de grupos cromóforos nos compostos presentes nesta espécie.

Figura 19 – Cromatograma do extrato aquoso de *Eugenia dysenterica*. Condições da análise: coluna C 18, eluição em gradiente: ACN:H₃PO₄ (1%), detecção: 354nm, vazão: 0,6mL/min
Figura 20 – Cromatograma do extrato etanólico de *Sapindus saponaria*. Condições da análise: coluna C 18, eluição em gradiente: ACN:H₃PO₄ (1%), detecção: 354nm, vazão: 0,6mL/min
CONCLUSÃO

Foi observado por meio de levantamento bibliográfico que o cerrado possui uma grande diversidade de vegetais com características antioxidantes, gerando um vasto campo de pesquisa e estudos dessas plantas. De acordo com os resultados obtidos é possível perceber que os extratos das plantas *E. suberosum* e *E. daphnites* possuem os compostos ativos pesquisados (rutina, hiperosídeo e isoquercitrina). Já os outros dois extratos, *S. saponária* e *E. dysenterica* possuem outros compostos ativos não flavonóides e não identificados neste estudo. Por meio da equação descrita no trabalho foi possível quantificar o teor dos flavonóides identificados, teor de rutina encontrado no extrato aquoso de *E. daphnites* foi de 0,199 µg/mL, já os teores de dos flavonóides encontrados no extrato aquoso de *E. suberosum* foi de 0,320 µg/mL para hiperosídeo, 0,994 µg/mL para rutina e 0,067 µg/mL para isoquercitrina.
REFERÊNCIAS

EZCHROM ELITE SOFTWARE (version 3.3.2 SP1 Scientific Software. Inc.).

REBUGLIO J.; C. et al., Antioxidant and cytotoxic studies for kaempferol, quercetin and

ZAKARIA, Z. A.; LOO Y. W.; ABDUL RAHMAN, N. I.; ABDUL AYUB, A. H.;
